arm

Arm® C1-Nano Core

Revision: rOp1

Software Optimization Guide

Non-Confidential Issue 04
Copyright © 2024-2025 Arm Limited (or its affiliates). 109590 0001 04
All rights reserved.

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
Issue 04

Arm® C1-Nano Core Software Optimization Guide

This document is Confidential. This document may only be used and distributed in accor-
dance with the terms of the agreement entered into by Arm and the party that Arm deliv-
ered this document to.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights. Arm only
permits use of this document if you have reviewed and accepted Arm’s Proprietary notice
found at the end of this document.

This document (109590_0001_04) was issued on 16th September 2025. There might be
a later issue at http://developer.arm.com/documentation/

The product revision is rOp1.

See also: Product and document information | Useful Resources

Start reading
If you prefer, you can skip to the start of the content.
Intended audience

This document is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses an Arm core.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that
can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey:
https://developer.arm.com/documentation-feedback-survey.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 2 of 76
Non-Confidential

http://developer.arm.com/documentation/
terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04

Contents
1 ProducCt OVEIVIEWcoeiiiieirircinntetnctnneestssnesteessesssssssessssssssssssssssssssssssssssssssssssssasssssssns 6
1.1 PIDEIINE OVEIVIEW ... 7
2 Instruction CharaCteriStiCs.........iviruiiiiiinieiiininirtneccercsct et sessssssneens 9
2.1 INSErUCHION TADIES oo 9
2.2 BranCh INSErUCTIONS ..o 9
2.3 Arithmetic and logical INSTTUCTIONS ... 10
2.4 Divide and mUltiply INSErUCTIONS ..o 10
2.5 Pointer authentication INSErUCTIONSooiiiiii e 11
2.6 Miscellaneous data-processing iINStrUCHIONS ... 13
2.7 LOAA INSEIUCTIONS .o e 14
2.8 SEOIE INSEIUCTIONS 1. 15
2.9 Tag data PrOCESSING ..o 16
210 Tag load INSTIUCTIONS ..o e 17
217 Tag STOre INSTIUCTIONS ..o e 17
2.12 FPscalar data processing inStruCtioNS ... i 18
213 FPscalar miscellan@ous INSErUCTIONS ...c..iviiiiiiiie e 20
214 FPscalar 10ad INSTTUCTIONS c..oouiiiiiii e 20
215 FPscalar store INSTrUCTIONSiiiiiiiie e 22
216 ASIMD INteger INSTIUCTIONS ...oiie e 23
2.17 ASIMD FP data processing INSTrUCTIONS......ooviii i 26
2.18 ASIMD BFloat1é (BFLO) INSTIUCTIONS «oeveee e 29
2.19 ASIMD miscellaneous INSErUCHONSoiiiiiii i 29
220 ASIMD 10ad INSTIUCTIONS ..ot 31
221 ASIMD Store INSErUCTIONS .ooviiiiiic e 33
222 Cryptography EXtENSIONS ... oo 35
.28 CRC e 36
224 SVE Predicate INSTrUCTIONS.iiiii e 36
2.25 SVE INteger INSErUCTIONS ..o 38
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 3 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
2.26 SVE FP data processing iNStrUCTIONSo 46
2.27 SVE BFIoatL1é (BFLA) INSTrUCTIONS ..o e 49
2.28 SVE Load INSTIUCTIONS ..o 49
229 SVE StOre INSEIUCHIONS .ooviiiic e 53
2.30 SVE Miscellaneous INSErUCTIONS. ..c..oiiiiiii e 55
2.31 SVE Cryptography iNStrUCTIONS ...ovei e 55
2.32 MOPS INSEIUCTIONS ..o 56
2.33 SME INSTIUCTIONS oot 59
2.33.1 Entering and leaving streaming MOAeoooiiii i 59
2.33.2 Predicate and flag related INSTrUCTIONS ... e 59
2.33.3 Load and store INSEIUCHONS ...ooiiiiiii e 60
2.33.4 Data processing INSTIUCTIONS ... 60
2.33.5 System register INSErUCTIONS ... o e 60
3 1Yo T<Tol =] I el0] 4 153 [(=T =1 m [] K30t 61
3.1 [SSUE CONSEIAINTS ..ottt 61
3.2 INSTFUCTION FUSTON «o it 62
3.3 Branch instruction alignment. e, 62
3.4 Load / Store AlINMENT ... o e, 62
3.5 A64 low latency pointer fOrwWarding........ooo oo, 63
3.6 AUTT RET fOrWarding ... 63
3.7 SIMD MAC fOrWaTAING ... 63
3.8 Memory Tagging EXTENSIONSoi e 64
3.9 MEMOIY TOUTINES ... 64
3.10 Cache maintenanCe OPEratioNS i e 66
311 Cache aCCESS [AtENCIES.iiiiiiici e 66
A2 SNAEA VPU e 67
3.13 AES encryption / decrypliion . oo 67
PrOPIIEEArY NOLICEeeeeeeceeeeeceeecctreeecctreeeccsrreeeeesereeeesssssseeeessssssessssssssessssssssaessssssssessssssssesssnes 68
Product and document information............cceeevieeieiiininininninininentneseeeeee e e seenes 70
PrOGUCE STATUS ..ottt 70
ROV S 0N NS T O Y e 70
CONVENTIONS ¢ttt e e h et h et ettt ettt ettt 72

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 4 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

USEIUI FESOUICES ...cooveeeeteteeeeieeieeeecessssesseeeeeeeeseeesssssssssssseesssssssssssssssssssesssssssessssssssssssessssssssssssssssssnes 75

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 5 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Product Overview

1 Product Overview

C1-Nano Core is a high-efficiency, low-power product that implements the Arm®v9.3-A
architecture. The Arm®v9.3-A architecture extends the architecture defined in the Arm®v8-A
architectures up to Arm®v8.9-A. The key features of C1-Nano Core are:

¢ Implementation of the Arm®v9.3-A Ab64 instruction set.
o AArché4 Execution state at all Exception levels, ELO to ELS3.

e Separate L1 data and instruction side memory systems with a Memory Management Unit
(MMU).

¢ In-order pipeline with direct and indirect branch prediction.

o Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor.
o Generic Timer interface that supports a 64-bit count input from an external system counter.

o Implementation of the Reliability, Availability, and Serviceability (RAS) Extension.

o 128-bit Scalable Vector Extension (SVE) and SVE2 SIMD instruction set, offering Advanced
SIMD (ASIMD) and floating-point (FP) architecture support.

o Support for the optional Cryptographic Extension, which is licensed separately.
o Activity Monitoring Unit (AMU).

¢ Dual/Single Core configuration option: C1-Nano cores can be grouped into dual-core
complexes or instantiated as single-core complexes. Dual-core complexes share the L2 cache
and VPU, while single-core complexes have a dedicated L2 cache and VPU.
Figure 1-1 highlights the VPU pipelines shared between C1-Nano cores in a complex.

o Configurable vector datapath size: The size of the vector datapaths can be 2x64 or 2x128-bit.
The selected option applies to all cores in the complex. Figure 1-1 highlights the VPU pipelines
that are only instantiated for a 2x128-bit configuration.

This document describes the elements of C1-Nano Core micro-architecture that influence the
software performance so that software and compilers can be optimized accordingly.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 6 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Product Overview

1.1 Pipeline overview

Figure 1-1: C1-Nano Core pipeline.

IFo IF1 IF2 DE0 DE1 DEZ2 1S5 EX1 EX2 EX3 WR RET

Fetch |—b| Decode |—D

ALUO

ALUA

Branch

Load/Store

Load

MAC

PAC

INNN NN

|
|
|
DIV |
|
|
|
|

vo vio v V3 V4 V5 RC

anss|

=I Crypto0 |

=I VALUO |

:I VMACO |

=I VMC |

NdA peieys
NdA

Crypto1

VALU1

VMACH1

1g-821 NdA

The execution pipelines support different types of operations, as shown in the following table.

Table 1-1: C1-Nano Core Pipeline

Pipeline ‘ Instructions ‘
ALUO, ALU1 Arithmetic and logic
Branch Branch
CryptoO Cryptography
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 7 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

109590_0001_04

Issue 04

Product Overview

Pipeline ‘ Instructions ‘
Supports 1x128-bit operation.
This pipeline is shared for dual core configuration.
Present only for implementations configured with Cryptographic.
Extensions enabled.
Cryptol Cryptography
Supports 1x128-bit operation.
This pipeline is shared for dual core configuration.
Present only for implementations configured with Cryptographic
Extensions enabled and a Vector datapath size of 2x128-bit.
DIV Integer scalar division (iterative)
Load/Store Load and store
Load Load
MAC Multiply accumulate
PAC Pointer Authentication
VALUO Addition, logic and shift for ASIMD, FP, Neon, and SVE
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configuration.
VALU1 Addition, logic and shift for ASIMD, FP, Neon, and SVE
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configuration.
Present only for implementations configured with a Vector datapath
size of 2x128-hit.
VMACO Multiply accumulate for ASIMD, FP, Neon, and SVE
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configurations.
VMAC1 Multiply accumulate for ASIMD, FP, Neon, and SVE
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configurations.
Present only for implementations configured with a Vector datapath
size of 2x128-bit configurations.
VMC Cryptography and iterative multi cycle instruction (e.g. bit
permutation, division, and square root)
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configurations.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2 Instruction characteristics

2.1 Instruction tables

This chapter describes high-level performance characteristics for most Armv?-A instructions.

A series of tables summarize the effective execution latency and throughput (instruction bandwidth
per cycle), pipelines utilized, and special behaviors associated with each group of instructions.
Utilized pipelines correspond to the execution pipelines described in chapter 2.

In the tables below:

e Execution Latency is the minimum latency seen by an operation dependent on an instruction in
the described group.

e load Latency is the minimum latency seen by an operation dependent on the load. It is
assumed the memory access hits in the L1 Data Cache.

e [xecution Throughput is maximum throughput (in instructions per cycle) of the specified
instruction group that can be achieved in the entirety of C1-Nano Core microarchitecture.

The Vector datapath size may affect the operation of ASIMD, FP, Neon, and SVE instructions. In
such cases the Execution Latency and Execution Throughput will be defined with two value, “AB”. A'is
for a 2x128-bit configuration or a non-Q or scalar form of a 2x64-bit configuration. B is for a
2x64-bit configuration.

2.2 Branch Instructions

Table 2-1: AArché4 Branch instructions.

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline
Branch, immed B - 1 Branch
Branch, register BR, RET - 1 Branch
Branch and link, immed BL 1 1 Branch
Branch and link, register BLR 1 1 Branch
Compare and branch CBZ, CBNZ, TBZ, - 1 Branch

TBNZ

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 9 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

2.3 Arithmetic and logical instructions

Table 2-2: AArché4 Branch instructions.

Instruction Group

AArché4
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

Arithmetic, basic ADD, ADC, SBC, 1 2 ALU
SUB, NEG

Arithmetic, basic, flagset ADDS, SUBS 1 2 ALU

Arithmetic, basic, carry, ADCS, SBCS 1 1 ALU

flagset

Arithmetic, extend and shift ADD, ADDS, SUB, 1 2 ALU
SUBS, NEG

Compare CMN, CMP 1 2 ALU

Conditional compare CCMN, CCMP 1 1 ALU

Conditional select CSEL, CSINC, 1 2 ALU
CSINV, CSNEG

Logical, basic AND, ANDS, BIC, 1 2 ALU
BICS, EON, EOR,
ORN, ORR

Logical, shift AND, ANDS, BIC, 1 2 ALU
BICS, EON, EOR,
ORN, ORR

2.4 Divide and multiply instructions

Integer divides are performed using an iterative algorithm and block any subsequent divide
operations until complete. Early termination is possible, depending upon the data values.

Table 2-3: AArché4 Divide and multiply instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Divide, W-form SDIV, UDIV 12 1/12 DIV

Divide, X-form SDIV, UDIV 20 1/20 DIV

(U Latency=2 when the dependency is on Rm.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Multiply accumulate, W-form

MADD, MSUB,
MUL

MAC

Multiply accumulate, X-form

MADD, MSUB,
MUL

MAC

Multiply accumulate long

SMADDL,
SMSUBL,
UMADDL,
UMSUBL

MAC

Multiply high

SMULH, UMULH

1/4

MAC

2.5 Pointer authentication instructions

Table 2-4: AArché4 Pointer authentication instructions.

Instruction Group

AArch64
Instruction

Execution

Latency

Execution

Throughput

Utilized
Pipeline

Authenticate data address AUTDA, AUTDB, 4 1 PAC
AUTDZA, AUTDZB
Authenticate instruction AUTIA, AUTIB, 4 1 PAC
address AUTIA1716,
AUTIB1716,
AUTIASP, AUTIBSP,
AUTIAZ, AUTIBZ,
AUTIZA, AUTIZB
Branch and link, register, with | BLRAA, BLRAAZ, 1 1 Branch, PAC
pointer authentication BLRAB, BLRABZ
Branch, register, with pointer BRAA, BRAAZ, - 1 Branch, PAC
authentication BRAB, BRABZ
Branch, return, with pointer RETA, RETB - 1 Branch
authentication
Compute pointer PACDA, PACDB, 4 1 PAC
authentication code for data PACDZA, PACDZB
address
Compute pointer PACGA 5 1 PAC

authentication code, using
generic key

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Compute pointer PACIA, PACIB, 4 1 PAC

authentication code for PACIA1716,

instruction address PACIB1716,

PACIASP, PACIBSP,
PACIAZ, PACIBZ,
PACIZA, PACIZB

Load register, with pointer LDRAA, LDRAB 2 2 PAC
authentication, offset

Load register, with pointer LDRAA, LDRAB 2 1 PAC
authentication, pre-indexed

Strip pointer authentication XPACD, XPACI, 4 1 PAC
code XPACLRI

1. There is a dedicated forwarding path in the accumulate portion of the unit
that allows the result of one MAC operation to be used as the accumulate
operand of a following MAC operation with no interlock. Thanks to this, a
typical sequence of multiply-accumulate instructions can issue one every 2
cycles). Accumulator forwarding is not supported for consumers of 64 bit

o multiply high operations.
Ei 2. Latency and throughput numbers given for SDIV and UDIV are the worst-

case values. Early termination is possible, depending upon the data values
(for example, degenerate cases such as divide by zero). Integer divides are
performed using an iterative algorithm and block any subsequent divide op-
erations until complete. The number of cycles needed to execute these in-
structions can be calculated using the formula [N + bits/4] (N=3 for UDIV,
N=4 for SDIV, i.e. signed division takes one more cycle than unsigned divi-
sion).

Note

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 12 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

2.6 Miscellaneous data-processing instructions

Table 2-5: AArché64 miscellaneous data-processing instructions.

Instruction Group

AArché4
Instruction

Execution
Latency

Execution
Throughput

109590_0001_04

Issue 04

Instruction characteristics

Utilized
Pipeline

Address generation ADR, ADRP 1 2 ALU
Bitheld extract EXTR 212 2 ALU
Bitfield move, basic SBFM, SBFIZ, 20! 2 ALU
SBFX, SXTH,
SXTW, UBFM,
UBFIZ, UBFX,
UXTH
Bitfield move, insert BFC, BFI, BFM 2 2 ALU
Convert floating-point AXFLAG, XAFLAG - 1/2 ALU
condition flags
Flag set instructions SETES8, SETF16 2 1/2 ALU
Flag manipulation RMIF 1 1 ALU
instructions, rotate and select
Flag manipulation CFINV 1 1/2 ALU
instructions, invert carry
Count leading CLS, CLZ 2 ALU
Move MOV, MOVN, 2 ALU
MVN, MOVK,
MOVZ
Reverse bytes REV, REV16, 1 2 ALU
REV32
Reverse bits RBIT 2 ALU
Variable shift ASR, ASRV, LSL, 2 ALU
LSLV, LSR, LSRV,
ROR, RORV
Extend, sign or zero SXTB, UXTB 1 2 ALU

21 Latency=1 for ROR (immediate) alias of EXTR.
Bl Latency=1 for LSL (immediate), LSR (immediate) and UXTB aliases of UBFM. Latency=1 for SXTB and ASR

(immediate) aliases of SBFM.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 76

Arm® C1-Nano Core Software Optimization Guide

2.7 Load instructions

109590_0001_04

Issue 04

Instruction characteristics

The latencies shown in Table 2-6 assume the memory access hits in the Level 1 Data Cache. Base
register updates are done in parallel to the operation.

Table 2-6: AArché4 Load instructions.

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

Utilized
Pipeline

PRFM

Load register, literal LDR, LDRSWY, 2 2 Load/Store,
PRFM Load

Load register, unscaled LDUR, LDURB, 2 2 Load/Store,

immediate LDURH, LDURSB, Load
LDURSH,
LDURSW, PRFUM

Load register, immediate LDR, LDRB, LDRH, 2 1 Load/Store,

post-index LDRSB, LDRSH, Load
LDRSW

Load register, immediate LDR, LDRB, LDRH, 2 1 Load/Store,

pre-index LDRSB, LDRSH, Load
LDRSW

Load register, immediate LDTR, LDTRB, 2 2 Load/Store,

unprivileged LDTRH, LDTRSB, Load
LDTRSH, LDTRSW

Load register, unsigned LDR, LDRB, LDRH, 2 2 Load/Store,

immediate LDRSB, LDRSH, Load
LDRSW, PRFM

Load register, register offset, LDR, LDRB, LDRH, 2 2 Load/Store,

basic LDRSB, LDRSH, Load
LDRSW, PRFM

Load register, register offset, LDR, LDRB, LDRSB, 2 2 Load/Store,

scale LDRSW, PRFM Load

Load register, register offset, LDRH, LDRSH 2 2 Load/Store,

scale, halfword Load

Load register, register offset, LDR, LDRB, LDRH, 2 2 Load/Store,

extend LDRSB, LDRSH, Load
LDRSW, PRFM

Load register, register offset, LDR, LDRB, 2 2 Load/Store,

extend, scaled LDRSW, LDRSB, Load

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Load register, register offset, LDRH, LDRSH 2 2 Load/Store,
extend, scaled, halfword Load
Load pair, signed immediate LDP, LDNP 2 2 Load/Store,
offset, normal, W-form Load
Load pair, signed immediate LDP, LDNP 2 2 Load/Store,
offset, normal, X-form Load
Load pair, signed immediate LDPSW 2 2 Load/Store,
offset, signed words Load
Load pair, immediate LDP 2 1 Load/Store,
post-index or immediate Load
pre-index, normal, W-form
Load pair, immediate LDP 2 1 Load/Store,
post-index or immediate Load
pre-index, normal, X-form
Load pair, immediate LDPSW 2 1 Load/Store,
post-index or immediate Load
pre-index, signed words

2.8 Store instructions

Base register updates are done in parallel to the operation.

Table 2-7: AArché4 Store instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Store register, unscaled STUR, STURB, - 1 Load/Store
immediate STURH
Store register, immediate STR, STRB, STRH - 1 Load/Store
post-index
Store register, immediate STR, STRB, STRH - 1 Load/Store
pre-index
Store register, immediate STTR, STTRB, - 1 Load/Store
unprivileged STTRH
Store register, unsigned STR, STRB, STRH - 1 Load/Store
immediate

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 15 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

109590 _0001_04
Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Store register, register offset, | STR, STRB, STRH - 1 Load/Store

basic

Store register, register offset, | STR, STRB - 1 Load/Store

scaled

Store register, register offset, | STRH - 1 Load/Store

scaled, halfword

Store register, register offset, | STR, STRB, STRH - 1 Load/Store

extend

Store register, register offset, | STR, STRB - 1 Load/Store

extend, scaled

Store register, register offset, | STRH - 1 Load/Store

extend, scaled, halfword

Store pair, immediate offset STP, STNP - Load/Store

Store pair, immediate STP - Load/Store

post-index

Store pair, immediate STP - 1 Load/Store

pre-index

2.9 Tag data processing

Table 2-8: AArché64 Tag data processing instructions.

Instruction Group

AArché64
Instruction

Execution Execution

Utilized

Latency Throughput

Pipeline

Arithmetic, immediate to ADDG, SUBG 2 2 ALU
logical address tag

Insert Random Tags IRG 4 1/3 ALU
Insert Tag Mask GMI 2 2 ALU
Subtract Pointer SUBP 2 2 ALU
Subtract Pointer, flagset SUBPS 2 2 ALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04

Instruction characteristics

2.10 Tag load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Table 2-9: The latencies shown assume the memory access hits in the Level 1 Data Cache.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Load allocation tag LDG 2 2 Load/Store,
Load
Load multiple allocation tags LDGM 2 1/4 Load/Store,
Load

2.11 Tag store instructions

Base register updates are done in parallel to the operation.

Table 2-10: AArché64 Tag store instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Store allocation tags to one STG - 1 Load/Store

granule, post-index

Store allocation tags to two ST2G - 1/2 Load/Store

granules, post-index

Store allocation tags to one STG - 1 Load/Store

granule, pre-index

Store allocation tags to two ST2G - 1/2 Load/Store

granules, pre-index

Store allocation tags to one STG - 1 Load/Store

granule, signed offset

Store allocation tags to two ST2G - 1/2 Load/Store

granules, signed offset

Store allocation tag to one STZG - 1 Load/Store

granule, zeroing, post-index

Store allocation tag to two STZ2G - 1/2 Load/Store

granules, zeroing, post-index

Store Allocation Tag to one STZG - 1 Load/Store

granule, zeroing, pre-index

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

zeroing

Store Allocation Tag to two STZ2G - 1/2 Load/Store
granules, zeroing, pre-index

Store allocation tag to one STZG - 1 Load/Store
granule, zeroing, signed offset

Store allocation tag to two STZ2G - 1/2 Load/Store
granules, zeroing, signed

offset

Store allocation tag and reg STGP - 1 Load/Store
pair to memory, post-Index

Store allocation tag and reg STGP - 1 Load/Store
pair to memory, pre-Index

Store allocation tag and reg STGP - 1 Load/Store
pair to memory, signed offset

Store multiple allocation tags | STGM - Load/Store
Store multiple allocation tags, | STZGM - Load/Store

2.12 FP scalar data processing instructions

Table 2-11: AArché64 FP data processing instructions.

Instruction Group

AArché4
Instruction

Execution

Execution

Utilized

Latency

Throughput

Pipeline

FP absolute value FABS, FABD 4 2 VALU
FP arithmetic FADD, FSUB, 4 2 VALU
FADDP
FP conditional compare FCCMP, FCCMPE 1/5 VALU
FP compare FCMP, FCMPE 1 VALU
FP divide, H-form FDIV 2/5 VMC
FP divide, S-form FDIV 13 2/10 VMC
FP divide, D-form FDIV 22 2/19 VMC
FP min/max FMIN, FMINNM, 4 2 VALU

FMAX, FMAXNM

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

FP max/min, pairwise FMAXP, 4 2 VALU
FMAXNMP, FMINP,
FMINNMP

FP multiply FMUL, FNMUL, 4 2 VMAC
FMULX

FP multiply accumulate FMADD, FMSUB, 4 2 VMAC
FNMADD,
FNMSUB

FP negate FNEG 4 2 VALU

FP round to integral FRINTA, FRINTI, 4 2 VALU

FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ, FRINT32X,

FRINT64X,

FRINT32Z,

FRINT64Z
FP select FCSEL 3 1 VALU
FP square root, H-form FSQRT 11 2/5 VMC
FP square root, S-form FSQRT 14 2/9 VMC
FP square root, D-form FSQRT 25 2/19 VMC

(normal with a zero trailing significand).

O
% Floating-point division operations may finish early if the divisor is a power of two

Note

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 19 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.13 FP scalar miscellaneous instructions

Table 2-12: AArché4 FP miscellaneous instructions.

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline
FP convert, from gen to vec SCVTF, UCVTF 4 2 VALU
reg
FP convert, from vec to gen FCVTAS, FCVTAU, 4 2 VALU
reg FCVTMS,

FCVTMU, FCVTNS,

FCVTNU, FCVTPS,

FCVTPU, FCVTZS,

FCVTZU
FP convert, Javascript from FICVTZS 4 1 VALU
vec to gen reg
FP convert, from vec to vec FCVT, FCVTXN 4 2 VALU
reg
FP move, immediate FMOV 3 2 VALU
FP move, register FMQOV 2 2 VALU
FP transfer, from gen to vec FMQOV - 2 VALU
reg
FP transfer, from vec to gen FMOV - 2 VALU
reg

2.14 FP scalar load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.
Base register updates are done in parallel to the operation.

Table 2-13: AArché4 FP load instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Load vector reg, literal LDR 3 2 Load/Store,
Load
Load vector reg, unscaled LDUR 3 2 Load/Store,
immediate Load
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 20 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Load vector reg, immediate LDR Load/Store,
post-index Load
Load vector reg, immediate LDR Load/Store,
pre-index Load
Load vector reg, unsigned LDR Load/Store,
immediate Load
Load vector reg, register LDR Load/Store,
offset, basic Load
Load vector reg, register LDR Load/Store,
offset, scale Load
Load vector reg, register LDR Load/Store,
offset, extend Load
Load vector reg, register LDR Load/Store,
offset, extend, scale Load
Load vector pair, immediate LDP, LDNP Load/Store,
offset, S/D-form Load
Load vector pair, immediate LDP, LDNP Load/Store,
offset, Q-form Load
Load vector pair, immediate LDP Load/Store,
post-index, S/D-form Load
Load vector pair, immediate LDP Load/Store,
post-index, Q-form Load
Load vector pair, immediate LDP Load/Store,
pre-index, S/D-form Load
Load vector pair, immediate LDP Load/Store,
pre-index, Q-form Load

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.15 FP scalar store instructions

Base register updates are done in parallel to the operation.
Table 2-14: AArché4 FP Store instructions.

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

Store vector reg, unscaled STUR 1 Load/Store
immediate

Store vector reg, immediate STR 1 Load/Store
post-index

Store vector reg, immediate STR 1 Load/Store
pre-index

Store vector reg, unsigned STR 1 Load/Store
immediate

Store vector reg, register STR 1 Load/Store
offset, basic

Store vector reg, register STR 1 Load/Store
offset, scale

Store vector reg, register STR 1 Load/Store
offset, extend

Store vector reg, register STR 1 Load/Store
offset, extend

Store vector pair, immediate STP, STNP 1 Load/Store
offset, S-form

Store vector pair, immediate STP, STNP 1 Load/Store
offset, D-form

Store vector pair, immediate STP, STNP 1/2 Load/Store
offset, Q-form

Store vector pair, immediate STP 1 Load/Store
post-index, S-form

Store vector pair, immediate STP 1 Load/Store
post-index, D-form

Store vector pair, immediate STP 1/2 Load/Store
post-index, Q-form

Store vector pair, immediate STP 1 Load/Store
pre-index, S-form

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

pre-index, Q-form

Store vector pair, immediate STP - 1 Load/Store
pre-index, D-form
Store vector pair, immediate STP - 1/2 Load/Store

2.16 ASIMD Integer instructions

Table 2-15: AArché64 ASIMD Integer instructions.

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD absolute diff SABD, UABD 3 2 VALU
ASIMD absolute diff accum SABA, UABA 5 1/3 VALU
ASIMD absolute diff accum SABAL2, UABAL2 5 1/3 VALU
long
ASIMD absolute diff long SABDL2, UABDL2 3 2 VALU
ASIMD arith, basic ABS, ADD, NEG, 3 2 VALU

SHADD, SHSUB,

SUB, UHADD,

UHSUB
ASIMD arith, basic, long, SADDL, SADDL2, 3 2 VALU
saturate SADDW,

SADDW2, SSUBL,

SSUBL2, SSUBW,

SSUBW?2, UADDL,

UADDL2, UADDW,

UADDW?2, USUBL,

USUBL2, USUBW,

USUBW?2
ASIMD arith, complex ADDHN, ADDHN2, 4 2 VALU

SQABS, SQADD,
SQNEG, SQSUB,
SUBHN, SUBHNZ2,
SUQADD, UQADD,
UQSUB, USQADD

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 23 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

ASIMD arith, complex, RADDHN, 6 1/3 VALU
rounding, add and subtract RADDHN?2,
RSUBHN,
RSUBHN2
ASIMD arith, complex, SRHADD, 2 2 VALU
rounding halving addition URHADD
ASIMD arith, pair-wise ADDP, SADDLP, 3 2 VALU
UADDLP
ASIMD arith, reduce, 4H/4S ADDV, SADDLY, 4 1 VALU
UADDLV
ASIMD arith, reduce ADDV 3 VALU
ASIMD arith, reduce Long SADDLV, UADDLV 4 VALU
ASIMD compare CMEQ, CMGE, 3 VALU
CMGT, CMHI,
CMHS, CMLE,
CMLT
ASIMD compare test CMTST 3 2 VALU
ASIMD dot product SDOT, ubOT 4 2 VMAC
ASIMD dot product using SUDOT, USDOT 4 2 VMAC
signed and unsigned integers
ASIMD logical AND, BIC, EOR, 3 2 VALU
MOV, MVN, NOT,
ORN, ORR
ASIMD matrix SMMLA, UMMLA, 4 2 VALU
multiply-accumulate USMMLA
ASIMD max/min, basic and SMAX, SMAXP, 3 2 VALU
pair-wise SMIN, SMINP,
UMAX, UMAXP,
UMIN, UMINP
ASIMD max/min, reduce, SMAXY, SMINV, 4 1 VALU
B-form UMAXV, UMINV
ASIMD max/min, reduce, SMAXYV, SMINV, 4 1 VALU
H-form UMAXV, UMINV
ASIMD max/min, reduce, SMAXYV, SMINV, 4 1 VALU
S-form UMAXV, UMINV
ASIMD multiply MUL, SQDMULH, 4 2 VMAC
SQRDMULH

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD multiply accumulate MLA, MLS 4 2 VMAC
ASIMD multiply accumulate SQRDMLAH, 4 2 VMAC
high SQRDMLSH
ASIMD multiply accumulate SMLAL2, SMLSL2, 4 2 VMAC
long UMLALZ, UMLSL2
ASIMD multiply accumulate SQDMLAL2, 4 2 VMAC
saturating long SQDMLSL2
ASIMD multiply/multiply long | PMUL, PMULL2 3 2 VALU
(8x8) polynomial, D-form
ASIMD multiply/multiply long | PMUL, PMULL2 3 2 VALU
(8x8) polynomial, Q-form
ASIMD multiply long SMULL, SMULL2, 4 2 VMAC

UMULL, UMULL2,

SQDMULL,

SQDMULL2
ASIMD pairwise add and SADALP, UADALP 5 1/3 VALU
accumulate long
ASIMD shift and accumulate SRSRA, URSRA 5 1/3 VALU
ASIMD rounding shift and SSRA, USRA 3 2 VALU
accumulate
ASIMD shift by immediate, SHL, SHLL2, 3 2 VALU
basic SSHLL2, SSHR,

SXTL2, USHLL2,

USHR, UXTL2
ASIMD shift by immediate, SHRN2 4 2 VALU
narrow
ASIMD shift by immediate SLI, SRI 3 2 VALU
and insert, basic
ASIMD shift by immediate, RSHRN2, 4 2 VALU
complex SQRSHRN2,

SQRSHRUN2,

SQSHL, SQSHLU,

SQSHRN2,

SQSHRUNZ2,

UQRSHRN2,

UQSHL, UQSHRN2

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 25 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

ASIMD shift by register, basic | SSHL, USHL, 3 2 VALU
SRSHL, SRSHR,
URSHL, URSHR

ASIMD shift by register, SQRSHL, SQSHL, 4 2 VALU
complex UQRSHL, UQSHL

2.17 ASIMD FP data processing instructions

Table 2-16: AArch64 ASIMD Floating-point instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
ASIMD FP absolute FABS, FABD 4 2 VALU
value/difference
ASIMD FP arith, normal FADD, FSUB, 4 2 VALU
FADDP
ASIMD FP compare FACGE, FACGT, 3 2 VALU
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT
ASIMD FP complex add FCADD 4 2 VMAC
ASIMD FP complex multiply FCMLA 4 2 VMAC
add
ASIMD FP convert, long (F16 | FCVTL, FCVTL2 4 2 VALU
to F32)
ASIMD FP convert, long (F32 | FCVTL, FCVTL2 4 2 VALU
to F64)
ASIMD FP convert, narrow FCVTN, FCVTN2 4 2 VALU
(F32 to F16)
ASIMD FP convert, narrow FCVTN, FCVTN2, 4 2 VALU
(F64 to F32) FCVTXN2
ASIMD FP convert, from gen | SCVTF, UCVTF 4 2 VALU
to vec reg
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 26 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

ASIMD FP convert, other, F16 | FCVTAS, FCVTAU, 4 2 VALU
FCVTMS,
FCVTMU, FCVTNS,
FCVTNU, FCVTPS,
FCVTPU, FCVTZS,
FCVTZU
ASIMD FP convert, other, F32 | FCVTAS, FCVTAU, 4 2 VALU
FCVTMS,
FCVTMU, FCVTNS,
FCVTNU, FCVTPS,
FCVTPU, FCVTZS,
FCVTZU
ASIMD FP convert, other, F64 | FCVTAS, FCVTAU, 4 2 VALU
FCVTMS,
FCVTMU, FCVTNS,
FCVTNU, FCVTPS,
FCVTPU, FCVTZS,
FCVTZU
ASIMD FP divide, D-form, FDIV 8 2/5 VMC
F16
ASIMD FP divide, D-form, FDIV 13 1/5 VMC
F32
ASIMD FP divide, Q-form, FDIV 8 1/5 VMC
F16
ASIMD FP divide, Q-form, FDIV 13 1/10 VMC
F32
ASIMD FP divide, Q-form, FDIV 22 1/19 VALU
Fé4
ASIMD FP max/min, normal FMAX, FMAXNM, 4 2 VALU
FMIN, FMINNM
ASIMD FP max/min, pairwise | FMAXP, 4 2 VALU
FMAXNMP, FMINP,
FMINNMP
ASIMD FP max/min, reduce FMAXYV, 4 1 VALU
FMAXNMV,
FMINV, FMINNMYV
ASIMD FP multiply FMUL, FMULX 4 2 VMAC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 27 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

ASIMD FP multiply FMLA, FMLS 4 2 VMAC
accumulate
ASIMD FP multiply FMLAL, FMLAL2, 4 2 VMAC
accumulate long FMLSL, FMLSL2
ASIMD FP negate FNEG 4 2 VALU
ASIMD FP round, F16 FRINTA, FRINTI, 4 2 VALU
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ, FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z
ASIMD FP round, F32 FRINTA, FRINTI, 4 2 VALU
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ, FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z
ASIMD FP round, F64 FRINTA, FRINTI, 4 2 VALU
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ, FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z
ASIMD FP square root, FSQRT 8 2/5 VMC
D-form, F16
ASIMD FP square root, FSQRT 12 2/9 VMC
D-form, F32
ASIMD FP square root, FSQRT 8 1/5 VMC
Q-form, F16
ASIMD FP square root, FSQRT 12 1/9 VMC
Q-form, F32
ASIMD FP square root, FSQRT 22 1/19 VMC
Q-form, F64

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 28 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

O
Ei Floating-point division operations may finish early if the divisor is a power of two.

Note

2.18 ASIMD BFloat16 (BF16) instructions

Table 2-17: AArch64 ASIMD BFloat16 (BF16) instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD convert, F32 to BF16 | BFCVTN, 4 2 VALU
BFCVTN2

ASIMD dot product BFDOT 10 2 VMACVALU

ASIMD matrix multiply BFMMLA 14 1 VMACVALU

accumulate

ASIMD multiply accumulate BFMLALB, 4 2 VMAC

long BFMLALT

Scalar convert, F32 to BF16 BFCVT 4 2 VALU

2.19 ASIMD miscellaneous instructions

Table 2-18: AArch64 ASIMD miscellaneous instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
ASIMD bit reverse RBIT 3 2 VALU
ASIMD bitwise insert BIF, BIT, BSL 3 2 VALU
ASIMD count CLS, CLZ, CNT 3 2 VALU
ASIMD duplicate, gen reg DUP 3 2 VALU
ASIMD duplicate, element DUP 3 2 VALU
ASIMD extract EXT 3 2 VALU
ASIMD extract narrow XTN 4 2 VALU
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 29 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

109590 _0001_04
Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Utilized
Instruction Throughput Pipeline
ASIMD extract narrow, SQXTN, SQXTN2, 2 VALU
saturating SQXTUN,
SQXTUN2,
UQXTN, UQXTN2
ASIMD insert, element to INS 2 VALU
element
ASIMD move, FP immediate MOV 2 VALU
ASIMD FP convert, from vec FCVT, FCVTXN 2 VALU
to vec reg
ASIMD move, FP immediate FMQOV 2 VALU
ASIMD move, FP register FMQOV 2 VALU
ASIMD move, FP transfer, FMQOV 2 VALU
from gen to vec reg
ASIMD move, integer MOVI, MVNI 2 VALU
immediate
ASIMD reciprocal estimate, FRECPE, FRECPX, 2 VMAC
F16 FRSQRTE,
URECPE, URSQRTE
ASIMD reciprocal estimate, FRECPE, FRECPX, 2 VMAC
F32 FRSQRTE,
URECPE, URSQRTE
ASIMD reciprocal estimate, FRECPE, FRECPX, 2 VMAC
F64 FRSQRTE,
URECPE, URSQRTE
ASIMD reciprocal step FRECPS, FRSQRTS 2 VMAC
ASIMD reverse REV16, REV32, 2 VALU
REV64
ASIMD table lookup, 1 table TBL 2 VALU
regs
ASIMD table lookup, 2 table TBL 1/2 VALU
regs
ASIMD table lookup, 3 table TBL 1/3 VALU
regs
ASIMD table lookup, 4 table TBL 1/4 VALU
regs
ASIMD table lookup BX 1/2 VALU
extension, 1 table reg

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 30 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD table lookup TBX 6 1/3 VALU

extension, 2 table regs

ASIMD table lookup TBX 7 1/4 VALU

extension, 3 table regs

ASIMD table lookup TBX 8 1/5 VALU

extension, 4 table regs

ASIMD transfer, element to UMOV, SMOV 3 2 VALU

gen reg

ASIMD transfer, gen reg to INS 3 2 VALU

element

ASIMD transpose TRN1, TRN2 3 2 VALU

ASIMD unzip/zip UZP1, UZP2, ZIP1, 3 2 VALU
ZIP2

2.20 ASIMD load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.
Base register updates are done in parallel to the operation.

Table 2-19: AArché64 ASIMD load instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
ASIMD load, 1 element, LD1 3 2 Load/Store,
multiple, 1 reg, D-form Load
ASIMD load, 1 element, LD1 3 2 Load/Store,
multiple, 1 reg, Q-form Load
ASIMD load, 1 element, LD1 3 1 Load/Store
multiple, 2 reg, D-form
ASIMD load, 1 element, LD1 3 1 Load/Store
multiple, 2 reg, Q-form
ASIMD load, 1 element, LD1 4 1/2 Load/Store
multiple, 3 reg, D-form
ASIMD load, 1 element, LD1 4 1/2 Load/Store
multiple, 3 reg, Q-form

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 31 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group

AArché64
Instruction

Execution
Throughput

Execution
Latency

Utilized
Pipeline

ASIMD load, 1 element, LD1 4 1/2 Load/Store
multiple, 4 reg, D-form

ASIMD load, 1 element, LD1 4 1/2 Load/Store
multiple, 4 reg, Q-form

ASIMD load, 1 element, one LD1 3 1 Load/Store,
lane, B/H/S Load
ASIMD load, 1 element, one LD1 3 1 Load/Store,
lane, D Load
ASIMD load, 1 element, all LD1R 3 2 Load/Store,
lanes, D-form Load
ASIMD load, 1 element, all LD1R 3 2 Load/Store,
lanes, Q-form Load
ASIMD load, 2 element, LD2 4 1 Load/Store
multiple, D-form

ASIMD load, 2 element, LD2 4 1 Load/Store
multiple, Q-form

ASIMD load, 2 element, one LD2 4 1/4 Load/Store
lane, B/H/S

ASIMD load, 2 element, one LD2 4 1/4 Load/Store
lane, D

ASIMD load, 2 element, all LD2R 3 1 Load/Store
lanes, D-form

ASIMD load, 2 element, all LD2R 3 1 Load/Store
lanes, Q-form

ASIMD load, 3 element, LD3 5 1/3 Load/Store
multiple, D-form

ASIMD load, 3 element, LD3 5 1/3 Load/Store
multiple, Q-form

ASIMD load, 3 element, one LD3 5 1/5 Load/Store
lane, B/H/S

ASIMD load, 3 element, one LD3 5 1/5 Load/Store
lane, D

ASIMD load, 3 element, all LD3R 4 1/2 Load/Store
lanes, D-form

ASIMD load, 3 element, all LD3R 4 1/2 Load/Store
lanes, Q-form

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 32 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD load, 4 element, LD4 5 1/3 Load/Store

multiple, D-form

ASIMD load, 4 element, LD4 5 1/3 Load/Store

multiple, Q-form

ASIMD load, 4 element, one LD4 6 1/5 Load/Store

lane, B/H/S

ASIMD load, 4 element, one LD4 6 1/5 Load/Store

lane, D

ASIMD load, 4 element, all LD4R 4 1/2 Load/Store

lanes, D-form

ASIMD load, 4 element, all LD4R 4 1/2 Load/Store

lanes, Q-form

2.21 ASIMD store instructions

Base register updates are done in parallel to the operation.

Table 2-20: AArché64 ASIMD store instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD store, 1 element, ST1 - 1 Load/Store

multiple, 1 reg, D-form

ASIMD store, 1 element, ST1 - 1 Load/Store

multiple, 1 reg, Q-form

ASIMD store, 1 element, ST1 - 1 Load/Store

multiple, 2 reg, D-form

ASIMD store, 1 element, ST1 - 1/2 Load/Store

multiple, 2 reg, Q-form

ASIMD store, 1 element, ST1 - 1/2% Load/Store

multiple, 3 reg, D-form

ASIMD store, 1 element, ST1 - 1/3 Load/Store

multiple, 3 reg, Q-form

ASIMD store, 1 element, ST1 - 1/2 Load/Store

multiple, 4 reg, D-form

U Throughput=1/3 when the access is aligned and crosses 16B boundary, one more cycle is needed.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 33 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD store, 1 element, ST1 - 1/4 Load/Store
multiple, 4 reg, Q-form
ASIMD store, 1 element, one | ST1 - 1 Load/Store
lane, B/H/S
ASIMD store, 1 element, one | ST1 - 1 Load/Store
lane, D
ASIMD store, 2 element, ST2 - 1 Load/Store
multiple, D-form
ASIMD store, 2 element, ST2 - 1/2 Load/Store
multiple, Q-form
ASIMD store, 2 element, one | ST2 - 1 Load/Store
lane, B/H/S
ASIMD store, 2 element, one | ST2 - 1 Load/Store
lane, D
ASIMD store, 3 element, ST3 - 1/4 Load/Store
multiple, D-form, B/H/S
ASIMD store, 3 element, ST3 - 1/6 Load/Store
multiple, Q-form, B/H/S
ASIMD store, 3 element, ST3 - 1/3 Load/Store
multiple, Q-form, D
ASIMD store, 3 element, one | ST3 - 1/2 Load/Store
lane, B/H/S
ASIMD store, 3 element, one | ST3 - 1/2 Load/Store
lane, D
ASIMD store, 4 element, ST4 - 1/4 Load/Store
multiple, D-form, B/H/S
ASIMD store, 4 element, ST4 - 1/8 Load/Store
multiple, Q-form, B/H/S
ASIMD store, 4 element, ST4 - 1/4 Load/Store
multiple, Q-form, D
ASIMD store, 4 element, one | ST4 - 1/2 Load/Store
lane, B/H/S
ASIMD store, 4 element, one | ST4 - 1/2 Load/Store
lane, D

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 34 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

2.22 Cryptography extensions

Table 2-21: AArché4 Cryptography instructions.

Instruction Group

AArché4
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Crypto AES ops AESD, AESE, 3 2 Crypto
AESIMC, AESMC
Crypto polynomial (64x64) PMULL, PMULL2 3 2 VMC
multiply long
Crypto SHA1 hash SHA1H 3 1 VALU
acceleration op
Crypto SHA1 hash SHA1C, SHA1M, 4 2 VMC
acceleration ops SHA1P
Crypto SHA1 schedule SHA1SUOQ, 3 2 VMC
acceleration ops SHA1SU1
Crypto SHA256 hash SHA256H, 4 2 VMC
acceleration ops SHA256H2
Crypto SHA256 schedule SHA256SU0, 4 2 VMC
acceleration ops SHA2565U1
Crypto SHA512 hash SHAS512H, 9 1/7 VMC
acceleration ops SHA512H2,
SHA512SU0,
SHA512SU1
Crypto SHAS3 ops BCAX, EOR3 3 VALU
Crypto SHA3 ops, exclusive XAR 4 VALU
Or and rotate
Crypto SHA3 ops, rotate and | RAX1 3 2 VMC
exclusive Or
Crypto SM3 ops SMB3PARTWI1, 9 1/7 VMC
SM3PARTW?2,
SM3S5S1,
SM3TT1A,
SM3TT1B,
SMBTT2A,
SM3TTZ2B
Crypto SM4 ops SM4E, SM4EKEY 9 1/7 VMC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 35 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.23 CRC

Table 2-22: AArché64 CRC instructions

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

CRC checksum ops CRC32, CRC32C, 2 1 MAC
CRC32B, CRC32B,
CRC32CB,
CRC32CH,
CRC32CW,
CRC32CX,
CRC32H,
CRC32W, CRC32X

2.24 SVE Predicate instructions

Table 2-23: SVE Predicate instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Loop control, based on BRKA, BRKB 2 1 PALU
predicate
Loop control, based on BRKAS, BRKBS 2 1 PALU
predicate and flag setting
Loop control, propagating BRKN, BRKPA, 2 1 PALU
BRKPB
Loop control, propagating and | BRKNS, BRKPAS, 2 1 PALU
flag setting BRKPBS
Loop control, based on GPR WHILEGE, 2 1 PALU
WHILEGT,
WHILEH],
WHILEHS,
WHILELE,
WHILELO,
WHILELS,
WHILELT,
WHILERW,
WHILEWR
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 36 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

109590 _0001_04
Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Loop terminate CTERMEQ, 1 1 ALU
CTERMNE
Predicate counting scalar, add | ADDPL, ADDVL, 1 2 ALU
RDVL
Predicate counting scalar CNTB, CNTH, 1 1 ALU
CNTW, CNTD,
DECB, DECH,
DECW, DECD,
INCB, INCH, INCW,
INCD
Predicate counting scalar, SQDECB, 5 1 ALU
saturate SQDECH,
SQDECW,
SQDECD, SQINCB,
SQINCH, SQINCW,
SQINCD, UQDECS,
UQDECH,
UQDECW,
UQDECD,
UQINCB, UQINCH,
UQINCW, UQINCD
Predicate counting scalar, CNTP, DECP, INCP 1 1 PALU
active predicate
Predicate counting scalar, SQDECP, SQINCP, 2 1 VALU
active predicate, saturating, UQDECP, UQINCP
64-bit
Predicate counting scalar, SQDECP, SQINCP 1 1 VALU
active predicate, saturating,
32-bit
Predicate counting scalar, UQDECP, UQINCP 2 1 VALU
active predicate, saturating,
32-bit
Predicate counting vector, CNTP, DECP, INCP 3 2 PALU
active predicate
Predicate counting vector, SQDECP, SQINCP, 4 2 VALU
active predicate, saturating UQDECP, UQINCP
Predicate logical AND, BIC, EOR, 2 1 PALU
MOV, NAND, NOR,
NOT, ORN, ORR

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Uzp2

Predicate logical, flag setting ANDS, BICS, EORS, 2 1 PALU
MOVS, NANDS,
NORS, NOTS,
ORNS, ORRS
Predicate reverse REV 1 1 PALU
Predicate select SEL 2 1 PALU
Predicate set PFALSE, PTRUE 1 1 PALU
Predicate set/initialize, set PTRUES 2 1 PALU
flags
Predicate find first/next PFIRST, PNEXT 2 1 PALU
Predicate test PTEST 1 1 PALU
Predicate transpose TRN1, TRN2 1 1 PALU
Predicate unpack and widen PUNPKHI, 1 1 PALU
PUNPKLO
Predicate zip/unzip ZIP1, ZIP2, UZP1, 1 1 PALU

Note

O
gi Instructions with dependencies may be co-issue.

2.25 SVE Integer instructions

Table 2-24: SVE integer instructions.

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

Utilized
Pipeline

accum long

UABALB, UABALT

Arithmetic, absolute diff SABD, UABD 3 2 VALU
Arithmetic, absolute diff SABA, UABA 5 1/3 VALU
accum

Arithmetic, absolute diff SABALB, SABALT, 5 1/3 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 38 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Arithmetic, absolute diff long | SABDLB, SABDLT, 3 2 VALU
UABDLB, UABDLT

Arithmetic, basic ABS, ADD, ADR, 3 2 VALU
CNOT, NEG,

SHADD, SHSUB,
SHSUBR, SRHADD,
SUB, UADDWSB,
UADDWT,
UHADD, UHSUB,
UHSUBR,
URHADD

Arithmetic, basic SUBHNB, SUBHNT, 4 2 VALU
SUBR, USUBWHB,
USUBWT

Arithmetic, basic SADDLB, 4 2 VALU
SADDLBT, SADDLT,
SADDWB,
SADDWT, SSUBLB,
SSUBLBT, SSUBLT,
SSUBLTB,
SSUBWB,
SSUBWT,
UADDLB, UADDLT,
USUBLB, USUBLT

Arithmetic, complex ADDHNB, 4 2 VALU
ADDHNT, SQABS,
SQADD, SOQNEG,
SQSUB, SQSUBR,
SUQADD, UQADD,
UQSUB, UQSUBR,
USQADD
Arithmetic, complex RADDHNB, 6 1/3 VALU
RADDHNT,

RSUBHNB,
RSUBHNT

Arithmetic, large integer ADCLB, ADCLT, 4 2 VALU
SBCLB, SBCLT

Arithmetic, pairwise add ADDP 3 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 39 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Arithmetic, pairwise add and SADALP, UADALP 6 1/4 VALU
accum long
Arithmetic, shift ASR, ASRR, LSL, 3 2 VALU
LSLR, LSR, LSRR
Arithmetic, shift and USRA 3 2 VALU
accumulate
Arithmetic, shift and SRSRA, URSRA 5 1/3 VALU
accumulate complex, round
Arithmetic, shift and SSRA 3 2 VALU
accumulate complex
Arithmetic, shift by immediate | SHRNB, SHRNT, 3 2 VALU
SSHLLB, SSHLLT,
USHLLB, USHLLT
Arithmetic, shift by immediate | SLI, SRI 3 2 VALU
and insert
Arithmetic, shift complex RSHRNB, RSHRNT, 4 2 VALU
SQRSHL,
SQRSHLR,
SQRSHRNB,
SQRSHRNT,
SQRSHRUNSB,
SQRSHRUNT,
SQSHL, SQSHLR,
SQSHLU,
SQSHRNB,
SQSHRNT,
SQSHRUNB,
SQSHRUNT,
UQRSHL,
UQRSHLR,
UQRSHRNB,
UQRSHRNT,
UQSHL, UQSHLR,
UQSHRNB,
UQSHRNT
Arithmetic, shift right for ASRD 4 2 VALU

divide

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 40 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

Arithmetic, shift rounding SRSHL, SRSHLR, 4 2 VALU
SRSHR, URSHL,
URSHLR, URSHR
Bit manipulation (B) BDEP, BEXT, BGRP 13 1/11 VMC
Bit manipulation (H) BDEP, BEXT, BGRP 21 1/19 VMC
Bit manipulation (S) BDEP, BEXT, BGRP 37 1/35 VMC
Bit manipulation (D) BDEP, BEXT, BGRP 68 1/66 VMC
Bitwise select BSL, BSL1N, 3 2 VALU
BSL2N, NBSL
Count/reverse bits CLS, CLZ, RBIT 3 2 VALU
Count (B,H) CNT 3 2 VALU
Count (S) CNT 6 1/4 VALU
Count (D) CNT 9 1/7 VALU
Broadcast logical bitmask DUPM 4 2 VALU
immediate to vector
Compare and set flags CMPEQ, CMPGE, 5 1 VALU
CMPGT, CMPHI,
CMPHS, CMPLE,
CMPLO, CMPLS,
CMPLT, CMPNE
Complex add CADD 3 2 VALU
Complex add saturating SQCADD 4 2 VALU
Complex dot product 8-bit CDOT 4 2 VMAC
element
Complex dot product 16-bit CDOT 4 2 VMAC
element
Complex multiply-add B, H, S | CMLA 4 2 VMAC
element size
Complex multiply-add D CMLA 4 2 VMAC
element size
Conditional extract CLASTA, CLASTB 4 1/4 VALU
operations, general purpose
register
Conditional extract CLASTA, CLASTB, 4 2 VALU
operations, SIMD&FP scalar COMPACT, SPLICE
and vector forms

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 41 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Convert to floating point, 64b | SCVTF, UCVTF 4 2 VALU
to float or convert to double
Convert to floating point, 32b | SCVTF, UCVTF 4 2 VALU
to single or half
Convert to floating point, 16b | SCVTF, UCVTF 4 2 VALU
to half
Copy CPY 3 2 VALU
Divides, 32 bit SDIV, SDIVR, UDIV, 15 1/12 VMC
UDIVR
Divides, 64 bit SDIV, SDIVR, UDIV, 26 1/23 VMC
UDIVR
Dot product, 8 bit SDOT, UDOT 4 2 VMAC
Dot product, 8 bit, using SUDOT, USDOT 4 2 VMAC
signed and unsigned integers
Dot product, 16 bit SDOT, UDOT 4 2 VMAC
Duplicate, immediate and DUP 3 2 VALU
indexed form
Duplicate, indexed > elem DUP 3 2 VALU
Duplicate, scalar form DUP 3 2 VALU
Extend, sign or zero SXTB, SXTH, 3 2 VALU
SXTW, UXTB,
UXTH, UXTW
Extract EXT 3 2 VALU
Extract narrow saturating SQXTNB, SQXTNT, 4 2 VALU
SQXTUNB,
SQXTUNT,
UQXTNB,
UQXTNT,
UQXTUNB,
UQXTUNT
Extract/insert operation, LASTA, LASTB, 4 2 VALU
SIMD and FP scalar form INSR
Extract operation, scalar LASTA, LASTB 8 1/4 VALU
Insert operation, scalar INSR 4 2 VALU
Histogram operations HISTCNT, HISTSEG 6 1/4 VALUO

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 42 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

Horizontal operations, B, H, S | INDEX 4 2 VMAC

form, immediate operands

only

Horizontal operations, B, H, S | INDEX 4 1 VMAC

form, scalar, immediate

operands or immediate, scalar

operands

Horizontal operations, D INDEX 4 2 VMAC

form, immediate operands

only

Horizontal operations, D INDEX 4 1 VMAC

form, scalar, immediate

operands or immediate, scalar

operands

Logical ops AND, BIC, EON, 3 2 VALU
EOR, MOV, NOT,
ORN, ORR

Logical, exclusive or EORBT, EORTB 4 2 VALU

bottom-top and top-bottom

Max/min, basic and pairwise SMAX, SMAXP, 3 2 VALU
SMIN, SMINP,
UMAX, UMAXP,
UMIN, UMINP

Matching operations MATCH, NMATCH 8 1/4 VALU

Matrix multiply-accumulate SMMLA, UMMLA, 4 2 VMAC
USMMLA

Move prefix MOVPREFX 3 2 VALU

Multiply, B, H, S element size | MUL, SMULH, 4 2 VMAC
UMULH

Multiply, D element size MUL, SMULH, 4 2 VMAC
UMULH

Multiply long SMULLB, SMULLT, 4 2 VMAC
UMULLB, UMULLT

Multiply accumulate, B, H, S MLA, MLS, MAD, 4 2 VMAC

element size MSB

Multiply accumulate, D MLA, MLS, MAD, 4 2 VMAC

element size MSB

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 43 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

AArché64
Instruction

Utilized
Pipeline

Execution
Throughput

Execution
Latency

Instruction Group

Multiply accumulate long SMLALB, SMLALT, 4 2 VMAC
SMLSLB, SMLSLT,
UMLALB, UMLALT,
UMLSLB, UMLSLT
Multiply accumulate SQDMLALB, 4 2 VMAC
saturating doubling long SQDMLALT,
regular SQDMLALBT,
SQDMLSLB,
SQDMLSLT,
SQDMLSLBT
Multiply saturating doubling SQDMULH 4 2 VMAC
high, B, H, S element size
Multiply saturating doubling SQDMULH 4 2 VMAC
high, D element size
Multiply saturating doubling SQDMULLB, 4 2 VMAC
long SQDMULLT
Multiply saturating rounding SQRDMLAH, 4 2 VMAC
doubling regular/complex SQRDMLSH,
accumulate, B, H, S element SQRDCMLAH
size
Multiply saturating rounding SQRDMLAH, 4 2 VMAC
doubling regular/complex SQRDMLSH,
accumulate, D element size SQRDCMLAH
Multiply saturating rounding SQRDMULH 4 2 VMAC
doubling regular/complex, B,
H, S element size
Multiply saturating rounding SQRDMULH 4 2 VMAC
doubling regular/complex, D
element size
Multiply/multiply long, (8, 16, | PMUL, PMULLB, 3 2 VALU
32) polynomial PMULLT
Multiply/multiply long, (64) PMULLB, PMULLT 9 1/7 VMC
polynomial
Predicate counting vector DECB, DECH, 4 2 VALU
DECW, DECD,
INCB, INCH, INCW,
INCD

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 44 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

Predicate counting vector, SQDECB, 4 2 VALU
saturating SQDECH,
SQDECW,
SQDECD, SQINCB,
SQINCH, SQINCW,
SQINCD, UQDECS,
UQDECH,
UQDECW,
UQDECD,
UQINCB, UQINCH,
UQINCW, UQINCD

Reciprocal estimate URECPE, URSQRTE 4 2 VMAC

Reduction, arithmetic, B form | SADDV, UADDV, 4 1 VALUO
SMAXYV, SMINV,
UMAXV, UMINV

Reduction, arithmetic, H form | SADDV, UADDYV, 4 1 VALUO
SMAXYV, SMINV,
UMAXV, UMINV

Reduction, arithmetic, S form | SADDV, UADDYV, 4 1 VALUO
SMAXV, SMINV,
UMAXV, UMINV

Reduction, arithmetic, D form | SADDV, UADDYV, 4 1 VALUO
SMAXV, SMINV,
UMAXV, UMINV

Reduction, logical ANDV, EORV, ORV 4 1 VALUO

Reverse, vector REV, REVB, REVH, VALU
REVW

Select, vector form SEL
Table lookup TBL
Table lookup, double table TBL
Table lookup extension TBX
Transpose, vector form TRN1, TRN2

Unpack and extend SUNPKHI,
SUNPKLO,
UUNPKHI,
UUNPKLO

Zip/unzip UZP1, UZP2, ZIP1, 3 2 VALU
ZIP2

wW

2 VALU
2 VALU
1/5 VALU
VALU
2 VALU
2 VALU

INIRY NS NG R NI AN
N

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 45 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.26 SVE FP data processing instructions

Table 2-25: SVE Floating-point instructions.

Instruction Group

AArché4
Instruction

Execution
Latency

Execution
Throughput

Utilized
Pipeline

Floating point absolute FABD, FABS 4 2 VALU
value/difference
Floating point arithmetic FADD, FADDP, 4 2 VALU
FNEG, FSUB,
FSUBR
Floating point associative add, | FADDA 32 1/25 VALU
F16
Floating point associative add, | FADDA 16 1/9 VALU
F32
Floating point associative add, | FADDA 8 2/5 VALU
Fé4
Floating point compare FACGE, FACGT, 4 1 VALU
FACLE, FACLT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT, FCMNE,
FCMUO
Floating point complex add FCADD 4 2 VALU
Floating point complex FCMLA 4 2 VMAC
multiply add
Floating point convert, long to | FCVT, FCVTLT, 4 2 VALU
narrow FCVTNT
Floating point convert, round | FCVTX, FCVTXNT 4 2 VALU
to odd
Floating point base2? log, F16 | FLOGB 4 2 VMAC
Floating point base2 log, F32 | FLOGB 4 2 VMAC
Floating point base2 log, F64 | FLOGB 4 2 VMAC
Floating point convert to FCVTZS, FCVTZU 4 2 VALU
integer, F16
Floating point convert to FCVTZS, FCVTZU 4 2 VALU
integer, F32

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 46 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

109590 _0001_04
Issue 04
Instruction characteristics

Utilized
Pipeline

Floating point convert to FCVTZS, FCVTZU 4 2 VALU
integer, F64
Floating point copy FCPY, FDUP, 3 2 VALU
FMQV
Floating point divide, F16 FDIV, FDIVR 8 1/5 VMC
Floating point divide, F32 FDIV, FDIVR 13 1/10 VMC
Floating point divide, F64 FDIV, FDIVR 22 1/19 VMC
Floating point min/max FMAXP, 4 2 VALU
pairwise FMAXNMP, FMINP,
FMINNMP
Floating point min/max FMAX, FMIN, 4 2 VALU
FMAXNM,
FMINNM
Floating point multiply FSCALE, FMUL, 4 2 VMAC
FMULX
Floating point multiply FMLA, FMLS, 4 2 VMAC
accumulate FMAD, FMSB,
FNMAD, FNMLA,
FNMLS, FNMSB
Floating point multiply FMLALB, FMLALT, 4 2 VMAC
add/sub accumulate long FMLSLB, FMLSLT
Floating point reciprocal FRECPE, FRECPX, 4 2 VMAC
estimate, F16 FRSQRTE
Floating point reciprocal FRECPE, FRECPX, 4 2 VMAC
estimate, F32 FRSQRTE
Floating point reciprocal FRECPE, FRECPX, 4 2 VMAC
estimate, F64 FRSQRTE
Floating point reciprocal step | FRECPS, FRSQRTS 4 2 VMAC
Floating point max/min FMAXNMY, 4 1 VALUO
reduction FMAXYV,
FMINNMYV, FMINV
Floating point reduction, F16 | FADDV 12 1/5 VALUO
Floating point reduction, F32 | FADDV 8 2/5 VALUO
Floating point reduction, F64 | FADDV 4 2 VALUO

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 47 of 76

Arm® C1-Nano Core Software Optimization Guide

109590 _0001_04
Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline
Floating point round to FRINTA, FRINTI, 4 2 VALU
integral, F16 FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ
Floating point round to FRINTA, FRINTI, 4 2 VALU
integral, F32 FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ
Floating point round to FRINTA, FRINTI, 4 2 VALU
integral, F64 FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ
Floating point square root, FSQRT 8 1/5 VMC
F16
Floating point square root, FSQRT 12 1/9 VMC
F32
Floating point square root FSQRT 22 1/19 VMC
F64
Floating point trigonometric FEXPA 4 2 VMAC
exponentiation
Floating point trigonometric FTMAD 4 2 VMAC
multiply add
Floating point trigonometric FTSMUL 4 2 VMAC
starting value
Floating point trigonometric FTSSEL 3 2 VALU
select coefficient

Note

O
gi Floating-point division operations may finish early if the divisor is a power of two.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 48 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.27 SVE BFloat16 (BF16) instructions

Table 2-26: SVE Bfloat16 (BF16) instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline

Convert, F32 to BF16 BFCVT, BFCVTNT 4 2 VALU

Dot product BFDOT 10 2 VMACVALU

Matrix multiply accumulate BFMMLA 14 1 VMACVALU

Multiply accumulate long BFMLALB, 4 2 VMAC
BFMLALT

2.28 SVE Load instructions

The latencies shown in Table 2-27 assume the memory access hits in the Level 1 Data Cache.
Base register updates are done in parallel to the operation.

Table 2-27: SVE Load instructions.

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Load vector LDR 3 1 Load/Store,
Load
Load predicate LDR 3 1 Load/Store
Contiguous load, scalar + imm | LD1B, LD1D, 3 1 Load/Store,
LD1H, LD1W, Load
LD1SB, LD1SH,
LD1SW
Contiguous load, scalar + LD1B, LD1D, 3 1 Load/Store,
scalar LD1H, LD1W, Load
LD1SB, LD1SH,
LD1SW
Contiguous load broadcast, LD1RB, LD1RH, 3 1 Load/Store,
scalar + imm LD1RD, LD1RWY, Load
LD1RSB, LD1RSH,
LD1RSW, LD1RQB,
LD1RQD,
LD1RQH,
LD1RQW
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 49 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

109590 _0001_04
Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized
Instruction Latency Throughput Pipeline
Contiguous load broadcast, LD1RQB, LD1RQD, 3 1 Load/Store,
scalar + scalar LD1RQH, Load
LD1RQW
Non-temporal load, scalar + LDNT1B, LDNT1D, 3 1 Load/Store,
imm LDNT1H, LDNT1W Load
Non-temporal load, scalar + LDNT1B, LDNT1D, 3 1 Load/Store,
scalar LDNT1H, LDNT1W Load
Non-temporal gather load, LDNT1B, LDNT1H, 9 1/7 Load/Store
vector + scalar 32-bit element | LDNT1VV,
size LDNT1SB,
LDNT1SH
Non-temporal gather load, LDNT1B, LDNT1D, 7 1/6 Load/Store
vector + scalar 64-bit element | LDNT1H,
size LDNT1IW,
LDNT1SB,
LDNT1SH,
LDNT1SW
Contiguous first faulting load, | LDFF1B, LDFF1D, 3 1 Load/Store,
scalar + scalar LDFF1H, LDFF1WY, Load
LDFF1SB,
LDFF1SD,
LDFF1SH,
LDFF1SW
Contiguous non-faulting load, | LDNF1B, LDNF1D, 3 1 Load/Store,
scalar +imm LDNF1H, Load
LDNF1W,
LDNF1SB,
LDNF1SH,
LDNF1SW
Contiguous load two LD2B, LD2D, 3 1 Load/Store
structures to two vectors, LD2H, LD2W
scalar +imm
Contiguous load two LD2B, LD2D, 3 1/2 Load/Store
structures to two vectors, LD2H, LD2W
scalar + scalar
Contiguous load three LD3B, LD3D, 5 1/3 Load/Store
structures to three vectors, LD3H, LD3W
scalar + imm

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 50 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

Contiguous load three LD3B, LD3D, 5 1/4 Load/Store
structures to three vectors, LD3H, LD3W
scalar + scalar

Contiguous load four LD4B, LD4D, 5 1/3 Load/Store
structures to four vectors, LD4H, LD4W

scalar + imm

Contiguous load four LD4B, LD4D, 5 1/4 Load/Store
structures to four vectors, LD4H, LD4W

scalar + scalar

Gather load, vector + imm, LD1B, LD1H, 9 1/7 Load/Store
32-bit element size LD1W, LD1SB,

LD1SH, LD1SW,
LDFF1B, LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SH,
LDFF1SW

Gather load, vector + imm, LD1B, LD1D, 7 1/6 Load/Store
64-bit element size LD1H, LD1W,
LD1SB, LD1SH,
LD1SW, LDFF1B,
LDFF1D, LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SD,
LDFF1SH,
LDFF1SW

Gather load, 32-bit scaled LD1H, LD1SH, 7 1/7 Load/Store
offset LDFF1H,
LDFF1SH, LD1WY,
LDFF1W,
LDFF1SW

Gather load, 32-bit unpacked | LD1B, LD1SB, 7 1/6 Load/Store
unscaled offset LDFF1B, LDFF1SB,
LD1D, LDFF1D,
LD1H, LD1SH,
LDFF1H,
LDFF1SH, LD1W,
LD1SW, LDFF1WY,
LDFF1SW

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 51 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

Gather load, 32-bit unscaled LD1B, LD1H, 7 1/7 Load/Store
offset LD1W, LDFF1B,
LDFF1H, LDFF1SB,
LDFF1SH,
LDFF1W

Gather load, 32-bit unpacked | LD1B, LD1SB, 7 1/6 Load/Store
scaled offset LDFF1B, LDFF1SB,
LD1D, LDFF1D,
LD1H, LD1SH,
LDFF1H,
LDFF1SH, LD1W,
LD1SW, LDFF1W,

LDFF1SW
Gather load, 64-bit unscaled LD1B, LD1D, 7 1/6 Load/Store
offset LD1H, LD1SB,

LD1SH, LD1SW,
LD1W, LDFF1B,
LDFF1D, LDFF1H,
LDFF1SB,
LDFF1SH,
LDFF1SW,
LDFF1IW

Gather load, 64-bit scaled LD1B, LD1D, 7 1/6 Load/Store
offset LD1H, LD1SB,
LD1SH, LD1SW,
LD1W, LDFF1B,
LDFF1D, LDFF1H,
LDFF1SB,
LDFF1SH,
LDFF1SW,
LDFF1IW

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 52 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.29 SVE Store instructions

Base register updates are done in parallel to the operation.
Table 2-28: SVE Store instructions.

AArché64 Execution Utilized

Throughput Pipeline

Instruction Group Execution

Instruction Latency

Store from predicate reg STR 1 Load/Store
Store from vector reg STR 1 Load/Store
Contiguous store, scalar + ST1B, ST1H, ST1D, 1 Load/Store
imm STIW

Contiguous store, scalar + ST1H, ST1B, ST1D, 1 Load/Store
scalar ST1IW

Contiguous store two ST2B, ST2H, ST2D, 1/2 Load/Store
structures from two vectors, ST2W

scalar +imm

Contiguous store two ST2H, ST2B, ST2D, 1/2 Load/Store
structures from two vectors, ST2W

scalar + scalar

Contiguous store three ST3B, ST3H, ST3W 1/6 Load/Store
structures from three vectors,

scalar + imm

Contiguous store three ST3D 1/3 Load/Store
structures from three vectors,

scalar + imm, doubleword

Contiguous store three ST3B, ST3H, ST3W 1/6 Load/Store
structures from three vectors,

scalar + scalar

Contiguous store three ST3D 1/3 Load/Store
structures from three vectors,

scalar + scalar, doubleword

Contiguous store four ST4B, ST4H, ST4W 1/8 Load/Store
structures from four vectors,

scalar +imm

Contiguous store four ST4D 1/4 Load/Store
structures from four vectors,

scalar + imm, doubleword

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 53 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

109590 _0001_04
Issue 04
Instruction characteristics

Execution Utilized
Throughput Pipeline

Contiguous store four ST4B, ST4H, ST4W 1/8 Load/Store
structures from four vectors,

scalar + scalar

Contiguous store four ST4D 1/4 Load/Store
structures from four vectors,

scalar + scalar, doubleword

Non-temporal store, scalar + STNT1B, STNT1D, 1 Load/Store
imm STNT1H, STNT1IW

Non-temporal store, scalar + STNT1H, STNT1B, 1 Load/Store
scalar STNT1D, STNT1IW

Scatter non-temporal store, STNT1B, STNT1H, 1/9 Load/Store
vector + scalar 32-bit element | STNT1W

size

Scatter non-temporal store, STNT1B, STNT1D, 1/7 Load/Store
vector + scalar 64-bit element | STNT1H, STNT1IW

size

Scatter store vector + imm ST1B, ST1H, ST1W 1/9 Load/Store
32-bit element size

Scatter store vector + imm ST1B, ST1D, ST1H, 1/7 Load/Store
64-bit element size ST1IW

Scatter store, 32-bit scaled STIH, STIW 1/9 Load/Store
offset

Scatter store, 32-bit unpacked | ST1B, ST1D, ST1H, 1/7 Load/Store
unscaled offset ST1IW

Scatter store, 32-bit unpacked | ST1D, ST1H, ST1IW 1/7 Load/Store
scaled offset

Scatter store, 32-bit unscaled | ST1B, ST1H, ST1W 1/9 Load/Store
offset

Scatter store, 64-bit unscaled | ST1B, ST1D, ST1H, 1/7 Load/Store
offset STIW

Scatter store, 64-bit scaled ST1D, ST1H, ST1IW 1/7 Load/Store
offset

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 54 of 76

Arm® C1-Nano Core Software Optimization Guide

2.30 SVE Miscellaneous instructions

Table 2-29: SVE Miscellaneous instructions

Instruction Group

AArché4
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Read first fault register, RDFFR 1 1 Load/Store
unpredicated

Read first fault register, RDFFR 3 1 Load/Store
predicated

Read first fault register and RDFFRS 3 1 Load/Store
set flags

Set first fault register SETFFR Load/Store
Write to first fault register WRFFR Load/Store

2.31 SVE Cryptography instructions

Table 2-30: SVE cryptography instructions.

Instruction Group

AArché64
Instruction

Execution
Latency

Execution
Throughput

Utilized
Pipeline

Crypto AES ops AESD, AESE, 3 2 Crypto
AESIMC, AESMC

Crypto SHA3 ops BCAX, EOR3 3 2 VALU

Crypto SHAS3 ops, exclusive XAR 4 2 VALU

Or and rotate

Crypto SHA3 ops RAX1 RAX1 3 2 VALU

Crypto SM4 ops SM4E, SM4EKEY 9 1/7 VMC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 55 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.32 MOPS instructions

Table 2-31: MOPS instructions.

Instruction Group AArché64 Execution Execution Utilized

Instruction Latency Throughput Pipeline

Memory Copy Forward-only CPYFP, CPYFPN, 2 1/2 ALU,
Prologue CPYFPRN, Load/Store
CPYFPRT,
CPYFPRTN,
CPYFPRTRN,
CPYFPRTWN,
CPYFPT, CPYFPTN,
CPYFPTRN,
CPYFPTWN,
CPYFPWN,
CPYFPWT,
CPYFPWTN,
CPYFPWTRN,
CPYFPWTWN

Memory Copy Forward-only CPYFM, CPYFMN, 15 1 ALU,
Main CPYFMRN, Load/Store
CPYEMRT,
CPYEMRTN,
CPYEMRTRN,
CPYEMRTWN,
CPYEMT,
CPYEMTN,
CPYEMTRN,
CPYEMTWN,
CPYFMWN,
CPYEMWT,
CPYFMWTN,
CPYEFMWTRN,
CPYEMWTWN

B Actual execution latency depends on Xn. For Xn > 16, latency will be L%J.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 56 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Memory Copy Forward-only
Epilogue

CPYFE, CPYFEN,
CPYFERN,
CPYFERT,
CPYFERTN,
CPYFERTRN,
CPYFERTWN,
CPYFET, CPYFETN,
CPYFETRN,
CPYFETWN,
CPYFEWN,
CPYFEWT,
CPYFEWTN,
CPYFEWTRN,
CPYFEWTWN

ALU,
Load/Store

Memory Copy Prologue

CPYP, CPYPN,
CPYPRN, CPYPRT,
CPYPRTN,
CPYPRTRN,
CPYPRTWN,
CPYPT, CPYPTN,
CPYPTRN,
CPYPTWN,
CPYPWN,
CPYPWT,
CPYPWTN,
CPYPWTRN,
CPYPWTWN

1/3

ALU,
Load/Store

Memory Copy Main

CPYM, CPYMN,
CPYMRN, CPYMRT,
CPYMRTN,
CPYMRTRN,
CPYMRTWN,
CPYMT, CPYMTN,
CPYMTRN,
CPYMTWN,
CPYMWN,
CPYMWT,
CPYMWTN,
CPYMWTRN,
CPYMWTWN

ALU,
Load/Store

I Actual execution latency depends on Xn. For Xn > 16, latency will be | X2=18 |,

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 57 of 76

Arm® C1-Nano Core Software Optimization Guide

Instruction Group

AArché64
Instruction

Execution
Latency

109590_0001_04

Issue 04

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

Memory Copy Epilogue CPYE, CPYEN, 1 1 ALU,

CPYERN, CPYERT, Load/Store

CPYERTN,

CPYERTRN,

CPYERTWN,

CPYET, CPYETN,

CPYETRN,

CPYETWN,

CPYEWN,

CPYEWT,

CPYEWTN,

CPYEWTRN,

CPYEWTWN
Memory Set Prologue SETP, SETPN, 2 1/2 ALU,

SETPT, SETPTN Load/Store
Memory Set Main SETM, SETMN, 1V 1 ALU,

SETMT, SETMTN Load/Store
Memory Set Epilogue SETE, SETEN, 1 1 ALU,

SETET, SETETN Load/Store
Memory Set with tag setting SETGP, SETGPN, 2 1/2 ALU,
Prologue SETGPT, SETGPTN Load/Store
Memory Set with tag setting SETGM, SETGMN, 1@ 1 ALU,
Main SETGMT, Load/Store

SETGMTN
Memory Set with tag setting SETGE, SETGEN, 1 1 ALU,
Epilogue SETGET, SETGETN Load/Store

I Actual execution latency depends on Xn. For Xn > 16, latency will be | X2=16 .
¥ Actual execution latency depends on Xn. For Xn > 16, latency will be | Xa=16].

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.33 SME instructions

SME instructions are instructions within the SME extensions 2-31

SME instructions are decoded on the CPU and then issued to the C1-SME2. The overall
performance of the instructions rely not only on the CPU, but also the C1-SME2 unit and transport
layer.

This section only describes the performance from the CPU point of view.

The CPU has a maximum bandwidth of three instructions to the C1-SME2 unit. With the use of
MOVPRFX fusion this can be increased to four.

There are five different classes of SME instructions from a performance point of view in the CPU.
The instructions related to entering and exiting streaming mode, system related instructions e.g.
FPSR updates, load store related instructions, predicate and flag related instructions and finally data
processing instructions.

Instruction fusion in the form of MOVPRFX is supported in the same way as in SVE mode 2-31.

2.33.1 Entering and leaving streaming mode

To enter and leave streaming mode use the SMSTART and SMSTOP instructions. The MSR SVCR, Xn
versions incur a penalty in terms of a flush. SMSTART and SMSTOP are single issued.

2.33.2 Predicate and flag related instructions

Predicate only instructions, where the producer and consumers are predicate and or integer, have
the same performance as in SVE. With the exception of the WHILE instructions which have one less
cycle of throughput.

Instructions which produce the predicate value based on vector registers, e.g. a CMPEQ <Pd>.<T>,
<Pg>/Z, <Zn>.<T>, <Zm>.<T> are executed on the C1-SME2 unit. Therefore any instruction
consuming the same predicte on the CPU, e.g. predicated load / stores or predicate operation will
stall until the result has been produced.

These code constructs should be avoided.

The CPU has a mechanism to deal with multiple outstanding writes to the same predicate register.
With a maximum of 16 outstanding writes. For example if a CMP is executed in a loop and the
predicate is used only as a consumer in subsequent data processing instructions executed on the
C1-SMEZ2, there is no need for the CPU to stall as there is no consumer of the predicate in the CPU
itself. This mechanism is the same for the NZCV flags which also supports a maximum of 16
outstanding writes.

The 16 outstanding writes are only tracked for a single predicated register at a time. Any other
predicate register which is outstanding at the same time would incur stall penalties until the result is
produced.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 59 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Instruction characteristics

2.33.3 Load and store instructions

Load and store instructions have a bandwidth of two instead of three as the bandwidth to the
memory system is two wide. They can be issued together with data processing instructions.

2.33.4 Data processing instructions

These instructions can use the full bandwidth of three instructions per cycle.

2.33.5 System register instructions

System instructioons e.g. MSR FPSR, Xn are single issue only

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 60 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Special considerations

3 Special considerations

3.1 Issue constraints

The issue queue has space for three instructions that support a maximum of (excluding
Floating-Point. Predicate, SIMD, SVE register accesses):

e Four general purpose destination registers.

e Six general purpose source registers.
An instruction will occupy two entries when it has either:

e Three or more general purpose destination registers.

e Three or more general purpose source registers.

An instruction will stall if insufficient space is available in the issue queue.

AES instructions will stall until there is at least one other instruction available to be issued (see 3.2
Instruction fusion).

A maximum of three issue queue entries can be co-issued per cycle (ignoring hazards) consisting of
at most:

e Two ALU instructions.
e Two load instructions.
e One store instruction.
e Two VPU data processing instructions.

Multicycle entries disable co-issuing for all cycles of the operation but the last.

The following are multicycle:

e Atomic instructions with Acquire or Release semantics.

Loads that load more than 256-bit of data.

Stores that store more than 128-bits of data.

Stores with Release semantics.

RDFFRS instructions.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 61 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Special considerations

3.2 Instruction fusion

C1-Nano Core can accelerate key instruction pairs in an operation called fusion.

The following instruction pairs can be fused for increased execution efficiency:

e 'AESE + AESMC’ and 'AESD + AESIMC (see 3.3)

e MOVPRFX fusion: C1-Nano Core implements instruction fusion for MOVPRFX instructions
followed by SVE data processing instructions in all cases where the instruction pair is defined
as architecturally predictable other than those listed below, and the fused pair will execute with
the latency of the SVE data processing instruction.

Due to microarchitectural limitations, the following instructions will not fuse with an
unpredicated MOVPREX: FCMLA, FMAD, FMLA, FMLS, FNMAD, FNMLA, FNMLS, FNMSB,
MAD, MLA, MLS, MSB, UDOT, BFMLALB, BEFMLALT, SMMLA, UMMLA, USMMLA, USDOT,
SUDOT.

The following instructions will not fuse with a predicated or unpredicated MOVPRFX: CNT,
SABA, SABALB, SABALT, UABA, UABALB, UABALT, URSRA.

3.3 Branch instruction alighment

Branch instruction and branch target instruction alignment and density can affect performance.

o
For best case performance, avoid placing more than one conditional branch in-
structions within an aligned 16-byte instruction memory region.

Note

3.4 Load / Store Alignment

The Armv8-A architecture allows many types of load and store accesses to be arbitrarily aligned.
C1-Nano Core handles most unaligned accesses without performance penalties. However, there are
cases which could reduce bandwidth or incur additional latency, as described below.

e Quad-word load operations that are not 4-byte aligned.
e |Load operations that cross a 32-byte boundary.

e Store operations that cross a 16-byte boundary.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 62 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Special considerations

3.5 A6b4 low latency pointer forwarding

In the A64 instruction set the following pointer sequence is expected to be common to generate
load-store addresses:

adrp x0, <comnst>
ldrp x0, [x0, #lol2 <const>]

In C1-Nano Core, there are dedicated forwarding paths that always allow this sequence to be
executed without incurring a dependency-based stall.

3.6 AUT* RET forwarding

In the A64 instruction set any variant of the AUT instruction will be dual issued with the directly
following RET instruction. The latency of the AUT instruction for the dependency of the LR does not
apply for these cases.

3.7 SIMD MAC forwarding

For the following integer SIMD instructions:
MUL, MLA, MLS, UMULL, UMULL2. SMULL, SMULL2. UMLAL. UMLAL2, SMLAL, SMLALZ,
UMLSL, UMLSL2, SMLSL, SMLAL2, UDOT, SDOT

A dedicated MAC accumulator forwarding path is present. This forwarding path will be triggered
only when two consecutive instructions satisfy the following conditions:

e Both instructions read from/write to the same destination/accumulator register.
e Both instructions use the same destination element size.

e The instructions target the same destination register size (128-bit or 64-bit).

When this forwarding path is active, the latency between the above instructions will be 1 cycle.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 63 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Special considerations

3.8 Memory Tagging Extensions

Enabling precise tag checking can prevent C1-Nano Core from entering write-streaming mode. This
can reduce performance and increase power for larger writes, and memset or memcpy-like
workloads.

3.9 Memory routines

C1-Nano Core implements FEAT_MOPS, a feature that optimizes memory copying and setting
operations by proposing microarchitecture-independent instruction sequences. For each invocation
of a memcpy, memmove or memset routine, three instructions (a prologue, main, and epilogue)
should be used consecutively. C1-Nano Core implements Option B for all instructions of
FEAT_MOPS. Those are referenced as Memory Copy and Memory Set instructions in the Armv9.3-A
architecture which exhaustively describes all supported instructions, such as nontemporal versions.

Table 3-1: C1-Nano FEAT_MOPS bandwidth

Operation ‘ FEAT_MOPS Instructions Opeartion Bandwidth
Memory copying (memcpy, memmove) CPY* 16 bytes/cycles
Memory setting (memset) to O SET* 16 bytes/cycles
Memory setting to non-zero value SET* 16 bytes/cycles

The bandwidth achievable with SET* is less than that with DC ZVA, given the same alignment and
data size conditions. Therefore, DC ZVA should be used for optimal memset to zero. An example
routine of memset to zero using DC ZVA is shown in Figure 3-4.

In case one does not want to use FEAT_MOPS instructions, legacy memcpy and memset routines
can be used. These routines and corresponding recommendations are described below.

To achieve maximum throughput for memory copy (or similar loops), one should do the following:

e Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.

e Stores should be aligned on a 16-byte boundary wherever possible.

e |oads should not cross a 32-byte boundary as they incur a penalty.

are available:
https://github.com/ARM-software/optimized-routines/tree/master/string/
Note aarché4

]o Updated optimized routines, including those utilizing FEAT_MOPS instructions,

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 64 of 76
Non-Confidential

https://github.com/ARM-software/optimized-routines/tree/master/string/aarch64
https://github.com/ARM-software/optimized-routines/tree/master/string/aarch64

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Special considerations

Figure 3-1 shows a code snippet from the inner loop of memory copy routine that copies at least
128 bytes. The loop copies 64 bytes per iteration and prefetches one iteration ahead.

Figure 3-1: Code Snippet from memcpy routine - large copy inner loop.

L(loop64_simd) :

str A_q, [dst, 16]
ldr A_q, [src, 16]
str B_q, [dst, 32]
ldr B_q, [src, 32]
str C_q, [dst, 48]
ldr C_q, [src, 48]
str D_q, [dst, 64]!
ldr D_q, [src, 64]!
subs count, count, 64
b.hi L(loop64_simd)

Figure 3-2 shows a code snippet from the inner loop memory copy routine that copies O to 16 bytes.

Figure 3-2: Code Snippet from memcpy routine - small copy inner loop.

.p2align 4

/* Small copies: 0..16 bytes. */
L(copyl6_simd) :

/* 8-15 bytes. */

cmp count, 8

b.lo 1f

ldr A_1, [src]

ldr A_h, [srcend, -8]
str A_1, [dstin]

str A_h, [dstend, -8]
ret

.p2align 4

1 .

/* 4-7 bytes. */

tbz count, 2, 1f

ldr A_lw, [src]

ldr A_hw, [srcend, -4]
str A_lw, [dstin]

str A_hw, [dstend, -4]
ret

bic src, src, 15

To achieve maximum throughput on memset, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of
looping. Figure 3-3 shows code from the memset routine to set 17 to 96 bytes.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 65 of 76
Non-Confidentia

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04

Issue 04
Special considerations

Figure 3-3: Code snippet from memset routine.

L(set_medium) :

str q0, [dstin]

tbnz count, 6, L(set96)
str q0, [dstend, -16]
tbz count, 5, 1f

str q0, [dstin, 16]

str q0, [dstend, -32]
1: ret

To achieve maximum performance on memset to zero, it is recommended that one use DC ZVA
instead of STP/SET™. Figure 3-4 shows code from the memset routine to illustrate the usage of DC
ZVA.

Figure 3-4: Code snipper from memset to zero routine.

L(zva_loop):

add dst, dst, 64

dc zva, dst

subs count, count, 64
b.hi L(zva_loop)

stp 90, 90, [dstend, -64]
stp q0, qO0, [dstend, -32]
ret

3.10 Cache maintenance operations

While using set way invalidation operations on L1 cache, it is recommended that software be written
to traverse the sets in the inner loop and ways in the outer loop.

3.11 Cache access latencies

The latency numbers for load instructions given in Instruction characteristics section assume the
ideal case. It should be noted that more cycles will be added to these access delays depending on
which level of cache is accessed. Table 4-1 lists the latencies for the different levels of cache.

Table 3-2: C1-Nano cache access latencies

Scenario ‘ Cycle count
L1 cache hit 2-4 cycles (2 is best case, 4 is normal case)
L2 cache hit 10-12 cycles (10 is best case, 11-12 is normal case)

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 76

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

3.12 Shared VPU

C1-Nano Core shares a VPU between all C1-Nano cores in a complex. The VPU is used to execute
ASIMD, FP, Neon, and SVE instructions. Instructions being executed on VPU pipelines by one core
may reduce performance of the instructions executed on the VPU by the other core.

3.13 AES encryption / decryption

C1-Nano Core implements instruction fusion for AES instructions (see section 3.2). It is
recommended instructions pairs be interleaved in groups of three or more for the following: AESE,
AESMC, AESD, AESIMC.

Figure 3-5: Code snippet for AES instruction fusion.

AESE data0, key_reg
AESMC data0O, dataO
AESE datal, key_reg
AESMC datal, datal
AESE data2, key_reg
AESMC data2, data2...

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 67 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of the agreement
between you and Arm Limited (“Arm”) or the terms of the agreement between you and the party authorized by
Arm to disclose this document to you.

This document is protected by copyright and other related rights and the use or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that, without obtaining
Arm’s prior written consent, you will not use or permit others to use the information: (i) for the purposes of
determining whether the subject matter of this document infringes any third party patents; (ii) for developing
technology or products which avoid any of Arm’s intellectual property; (iii) as a reference for modifying
existing patents or patent applications or creating any continuation, continuation in part, or extension of
existing patents or patent applications; or (iv) for generating data for publication or disclosure to third parties,
which compares the performance or functionality of the Arm technology described in this document with any
other products created by you or a third party.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further
assist the recipient and does not represent Arm'’s view of the scope of its obligations. You acknowledge and
agree that you possess the necessary expertise in system security and functional safety and that you shall be
solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition,
you are responsible for any applications which are used in conjunction with any Arm technology described in
this document, and to minimize risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED
‘AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH
RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, any patents, copyrights,
trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied
approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 68 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to
any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written
agreement prevails over and supersedes the conflicting provisions of these terms.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(PRE-1122-V1.0)

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 69 of 76
Non-Confidential

https://www.arm.com/company/policies/trademarks

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Product and document information

Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in the Arm documents.

Product status

All products and Services provided by Arm require deliverables to be prepared and made available at
different levels of completeness. The information in this document indicates the appropriate level of
completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product
Product revision status

This product is rOp1, which indicates the revision status of the product described in this manual,
where:

r(value) Identifies the major revision of the product, for example, r1.

p(value) |dentifies the minor revision or modification status of the product, for example, p2.

Revision history

These sections can help you understand how the document has changed over time.
Document release information

The Document history table gives the issue number and the released date for each released issue of
this document.

Document history

Issue ‘ Date Confidentiality ‘ Change
0001-04 | 16 September Non-Confidential Documentation update.
2025
0001-03 | 10 September Non-Confidential Second early access release for rOp1.
2025
0001-02 | 7 May 2024 Confidential First early access release for rOp1.
0000-01 | 26 February 2024 Confidential First limited access release for rOpO.
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 70 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Change history

The first table is for the first release. Then, each table compares the new issue of the manual with the
last released issue of the manual. Issue numbers match the revision history in Release Information.

Table 3-4: Issue 0000-01

Change Location

First limited access release for rOpO -

Table 3-5: Issue 0001-02

Change Location

First early access release for rOp1 -

Editorial changes Throughout document

Table 3-6: Issue 0001-03

Change Location ‘
Second early access release for rOp1 -

Updated product name to C1-Nano Throughout document
Memory routines updated to include FEAT _MOPS Section 3.9

Editorial changes Throughout document

Table 3-7: Issue 0001-04

Change Location ‘
Correction to supported Arm Architecture version Section 1
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 71 of 76

Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Conventions
The following subsections describe conventions used in Arm documents.
Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.
Typographical conventions

Arm documentation uses typographical conventions to convey specific meaning.

Convention ‘ Use ‘
italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands,

file and program names, and source code.

monospace underlined A permitted abbreviation for a command or option. You can
enter the underlined text instead of the full command or
option name.

<and> Encloses replaceable terms for assembler syntax where they
appear in code or code fragments.

For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in
the Arm®

Glossary. For example, IMPLEMENTATION DEFINED,
IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

We recommend the following. If you do not follow these
recommendations your system might not work.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 72 of 76
Non-Confidential

https://developer.arm.com/glossary

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Convention ‘ Use ‘
Your system requires the following. If you do not follow
.m these requirements your system will not work.
Warning
You are at risk of causing permanent damage to your system
.m or your equipment, or of harming yourself.
Danger
o This information is important and needs your attention.
Note
This information might help you perform a task in an easier,
better, or faster way.
This information reminds you of something important
relating to the current content.
Remember

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 73 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Clock [|
HIGH to LOW ‘
Transient 77
HIGH/LOWtoHIGH f
Bus stable
Bus to high impedance 37
Bus change :>.<:
High impedance to stable bus —.(:

Signals
The signal conventions are:
Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

e HIGH for active-HIGH signals.
e LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 74 of 76
Non-Confidential

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
"~ lssue 04

Useful resources

This document contains information that is specific to this product. See the following resources for
other relevant information.

Access to Arm documents depends on their confidentiality:

o Arm Non-Confidential documents are available at
https://developer.arm.com/documentation. Each document link in the tables below provides
direct access to the online version of the document.

o Arm Confidential documents are available to licensees only through the product package.

Arm product resources ‘ Document ID ‘ Confidentiality

Arm® C1-Scalable Matrix Extension 2 Configuration and Integration Manual 107832 Confidential
Arm® C1-Scalable Matrix Extension 2 Technical Reference Manual 107831 Non-Confidential
Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Configuration and 101089 Confidential
Integration Manual
Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference 101088 Non-Confidential
Manual
Arm® C1-Nano Core Cryptographic Extension Technical Reference Manual 107755 Confidential
Arm® C1-Nano Core iBEP User Guide PJDOC- Confidential
1505342170-
693760
Arm® C1-Nano Core Release Note 109356 Confidential
Arm® C1-Nano Core Configuration and Integration Manual 107754 Confidential
Arm® C1-Nano Core Technical Reference Manual 107753 Non-Confidential
Arm® C1-DynamlQ™ Shared Unit Configuration and Integration Manual 107805 Confidential
Arm® C1-DynamlQ™ Shared Unit Technical Reference Manual 107804 Non-Confidential

Arm architecture and specifications ‘ Document ID ‘ Confidentiality

Arm® Architecture Reference Manual for A-profile architecture profile DDI 0487 Non-Confidential
AMBA® 5 CHI Architecture Specification IHI 0050 Non-Confidential
Arm® CoreSightTM Architecture Specification v3.0 IHI 0029 Non-Confidential

Non-Arm resources Document ID | Organization

|EEE, Standard for Access and Control of Instrumentation Embedded within a 1687-2014 IEEE

Semiconductor Device

|IEEE, Standard for Design and Verification of Low Power Integrated Circuits 1801-2009 |EEE
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 75 of 76

Non-Confidential

https://developer.arm.com/documentation
https://developer.arm.com/documentation/107831/latest
https://developer.arm.com/documentation/101088/latest
https://developer.arm.com/documentation/101088/latest
https://developer.arm.com/documentation/107753/latest
https://developer.arm.com/documentation/107804/latest
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ihi0050/latest/
https://developer.arm.com/documentation/ihi0029/latest
www.ieee.org
www.ieee.org

Arm® C1-Nano Core Software Optimization Guide 109590 0001 04
Issue 04

Non-Arm resources Document ID | Organization
|IEEE, Standard Test Access Port and Boundary Scan Architecture 1149.1-2001 | IEEE
Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved. Page 76 of 76

Non-Confidential

www.ieee.org

	Product Overview
	Pipeline overview

	Instruction characteristics
	 Instruction tables
	Branch Instructions
	Arithmetic and logical instructions
	Divide and multiply instructions
	Pointer authentication instructions
	Miscellaneous data-processing instructions
	Load instructions
	Store instructions
	Tag data processing
	Tag load instructions
	Tag store instructions
	FP scalar data processing instructions
	FP scalar miscellaneous instructions
	FP scalar load instructions
	FP scalar store instructions
	ASIMD Integer instructions
	ASIMD FP data processing instructions
	ASIMD BFloat16 (BF16) instructions
	ASIMD miscellaneous instructions
	ASIMD load instructions
	ASIMD store instructions
	Cryptography extensions
	CRC
	SVE Predicate instructions
	SVE Integer instructions
	SVE FP data processing instructions
	SVE BFloat16 (BF16) instructions
	SVE Load instructions
	SVE Store instructions
	SVE Miscellaneous instructions
	SVE Cryptography instructions
	MOPS instructions
	SME instructions
	Entering and leaving streaming mode
	Predicate and flag related instructions
	Load and store instructions
	Data processing instructions
	System register instructions

	Special considerations
	Issue constraints
	Instruction fusion
	Branch instruction alignment
	Load / Store Alignment
	A64 low latency pointer forwarding
	AUT* RET forwarding
	SIMD MAC forwarding
	Memory Tagging Extensions
	Memory routines
	Cache maintenance operations
	Cache access latencies
	Shared VPU
	AES encryption / decryption

	Proprietary Notice
	Product and document information
	Product status
	Revision history
	Conventions

	Useful resources

