
Arm® C1-Nano Core
Revision: r0p1

Software Optimization Guide

Non-Confidential
Copyright © 2024-2025 Arm Limited (or its affiliates).

All rights reserved.

Issue 04
109590_0001_04

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Arm® C1-Nano Core Software Optimization Guide

This document is Confidential. This document may only be used and distributed in accor-

dance with the terms of the agreement entered into by Arm and the party that Arm deliv-

ered this document to.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights. Arm only

permits use of this document if you have reviewed and accepted Arm’s Proprietary notice

found at the end of this document.

This document (109590_0001_04) was issued on 16th September 2025. There might be

a later issue at http://developer.arm.com/documentation/

The product revision is r0p1.

See also: Product and document information | Useful Resources

Start reading

If you prefer, you can skip to the start of the content.

Intended audience

This document is for system designers, system integrators, and programmers who are designing or

programming a System-on-Chip (SoC) that uses an Arm core.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that

can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this

document, email terms@arm.com.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the

product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey:

https://developer.arm.com/documentation-feedback-survey.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 2 of 76

http://developer.arm.com/documentation/
terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Contents

1 Product Overview.. 6

1.1 Pipeline overview .. 7

2 Instruction characteristics... 9

2.1 Instruction tables ... 9

2.2 Branch Instructions ... 9

2.3 Arithmetic and logical instructions... 10

2.4 Divide and multiply instructions... 10

2.5 Pointer authentication instructions .. 11

2.6 Miscellaneous data-processing instructions ... 13

2.7 Load instructions... 14

2.8 Store instructions .. 15

2.9 Tag data processing... 16

2.10 Tag load instructions ... 17

2.11 Tag store instructions.. 17

2.12 FP scalar data processing instructions ... 18

2.13 FP scalar miscellaneous instructions .. 20

2.14 FP scalar load instructions .. 20

2.15 FP scalar store instructions... 22

2.16 ASIMD Integer instructions .. 23

2.17 ASIMD FP data processing instructions... 26

2.18 ASIMD BFloat16 (BF16) instructions .. 29

2.19 ASIMD miscellaneous instructions... 29

2.20 ASIMD load instructions... 31

2.21 ASIMD store instructions ... 33

2.22 Cryptography extensions.. 35

2.23 CRC.. 36

2.24 SVE Predicate instructions.. 36

2.25 SVE Integer instructions ... 38

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 3 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

2.26 SVE FP data processing instructions.. 46

2.27 SVE BFloat16 (BF16) instructions.. 49

2.28 SVE Load instructions ... 49

2.29 SVE Store instructions .. 53

2.30 SVE Miscellaneous instructions.. 55

2.31 SVE Cryptography instructions .. 55

2.32 MOPS instructions.. 56

2.33 SME instructions ... 59

2.33.1 Entering and leaving streaming mode.. 59

2.33.2 Predicate and flag related instructions... 59

2.33.3 Load and store instructions .. 60

2.33.4 Data processing instructions .. 60

2.33.5 System register instructions ... 60

3 Special considerations ... 61

3.1 Issue constraints.. 61

3.2 Instruction fusion .. 62

3.3 Branch instruction alignment.. 62

3.4 Load / Store Alignment ... 62

3.5 A64 low latency pointer forwarding... 63

3.6 AUT* RET forwarding ... 63

3.7 SIMD MAC forwarding ... 63

3.8 Memory Tagging Extensions ... 64

3.9 Memory routines... 64

3.10 Cache maintenance operations .. 66

3.11 Cache access latencies.. 66

3.12 Shared VPU ... 67

3.13 AES encryption / decryption.. 67

Proprietary Notice .. 68

Product and document information.. 70

Product status .. 70

Revision history.. 70

Conventions... 72

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Useful resources ... 75

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 5 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Product Overview

1 Product Overview

C1-Nano Core is a high-efficiency, low-power product that implements the Arm®v9.3-A

architecture. The Arm®v9.3-A architecture extends the architecture defined in the Arm®v8-A

architectures up to Arm®v8.9-A. The key features of C1-Nano Core are:

• Implementation of the Arm®v9.3-A A64 instruction set.

• AArch64 Execution state at all Exception levels, EL0 to EL3.

• Separate L1 data and instruction side memory systems with a Memory Management Unit

(MMU).

• In-order pipeline with direct and indirect branch prediction.

• Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor.

• Generic Timer interface that supports a 64-bit count input from an external system counter.

• Implementation of the Reliability, Availability, and Serviceability (RAS) Extension.

• 128-bit Scalable Vector Extension (SVE) and SVE2 SIMD instruction set, offering Advanced

SIMD (ASIMD) and floating-point (FP) architecture support.

• Support for the optional Cryptographic Extension, which is licensed separately.

• Activity Monitoring Unit (AMU).

• Dual/Single Core configuration option: C1-Nano cores can be grouped into dual-core

complexes or instantiated as single-core complexes. Dual-core complexes share the L2 cache

and VPU, while single-core complexes have a dedicated L2 cache and VPU.

Figure 1-1 highlights the VPU pipelines shared between C1-Nano cores in a complex.

• Configurable vector datapath size: The size of the vector datapaths can be 2x64 or 2x128-bit.

The selected option applies to all cores in the complex. Figure 1-1 highlights the VPU pipelines

that are only instantiated for a 2x128-bit configuration.

This document describes the elements of C1-Nano Core micro-architecture that influence the

software performance so that software and compilers can be optimized accordingly.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 6 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Product Overview

1.1 Pipeline overview

Figure 1-1: C1-Nano Core pipeline.

The execution pipelines support different types of operations, as shown in the following table.

Table 1-1: C1-Nano Core Pipeline

Pipeline Instructions

ALU0, ALU1 Arithmetic and logic

Branch Branch

Crypto0 Cryptography

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 7 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Product Overview

Pipeline Instructions

Supports 1x128-bit operation.

This pipeline is shared for dual core configuration.

Present only for implementations configured with Cryptographic.

Extensions enabled.

Crypto1 Cryptography

Supports 1x128-bit operation.

This pipeline is shared for dual core configuration.

Present only for implementations configured with Cryptographic

Extensions enabled and a Vector datapath size of 2x128-bit.

DIV Integer scalar division (iterative)

Load/Store Load and store

Load Load

MAC Multiply accumulate

PAC Pointer Authentication

VALU0 Addition, logic and shift for ASIMD, FP, Neon, and SVE

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configuration.

VALU1 Addition, logic and shift for ASIMD, FP, Neon, and SVE

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configuration.

Present only for implementations configured with a Vector datapath

size of 2x128-bit.

VMAC0 Multiply accumulate for ASIMD, FP, Neon, and SVE

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configurations.

VMAC1 Multiply accumulate for ASIMD, FP, Neon, and SVE

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configurations.

Present only for implementations configured with a Vector datapath

size of 2x128-bit configurations.

VMC Cryptography and iterative multi cycle instruction (e.g. bit

permutation, division, and square root)

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configurations.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2 Instruction characteristics

2.1 Instruction tables

This chapter describes high-level performance characteristics for most Armv9-A instructions.

A series of tables summarize the effective execution latency and throughput (instruction bandwidth

per cycle), pipelines utilized, and special behaviors associated with each group of instructions.

Utilized pipelines correspond to the execution pipelines described in chapter 2.

In the tables below:

• Execution Latency is the minimum latency seen by an operation dependent on an instruction in
the described group.

• Load Latency is the minimum latency seen by an operation dependent on the load. It is
assumed the memory access hits in the L1 Data Cache.

• Execution Throughput is maximum throughput (in instructions per cycle) of the specified
instruction group that can be achieved in the entirety of C1-Nano Core microarchitecture.

The Vector datapath size may affect the operation of ASIMD, FP, Neon, and SVE instructions. In

such cases the Execution Latency and Execution Throughput will be defined with two value, “A,B”. A is

for a 2x128-bit configuration or a non-Q or scalar form of a 2x64-bit configuration. B is for a

2x64-bit configuration.

2.2 Branch Instructions

Table 2-1: AArch64 Branch instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Branch, immed B - 1 Branch

Branch, register BR, RET - 1 Branch

Branch and link, immed BL 1 1 Branch

Branch and link, register BLR 1 1 Branch

Compare and branch CBZ, CBNZ, TBZ,

TBNZ

- 1 Branch

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 9 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.3 Arithmetic and logical instructions

Table 2-2: AArch64 Branch instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Arithmetic, basic ADD, ADC, SBC,

SUB, NEG

1 2 ALU

Arithmetic, basic, flagset ADDS, SUBS 1 2 ALU

Arithmetic, basic, carry,

flagset

ADCS, SBCS 1 1 ALU

Arithmetic, extend and shift ADD, ADDS, SUB,

SUBS, NEG

1[1] 2 ALU

Compare CMN, CMP 1 2 ALU

Conditional compare CCMN, CCMP 1 1 ALU

Conditional select CSEL, CSINC,

CSINV, CSNEG

1 2 ALU

Logical, basic AND, ANDS, BIC,

BICS, EON, EOR,

ORN, ORR

1 2 ALU

Logical, shift AND, ANDS, BIC,

BICS, EON, EOR,

ORN, ORR

1 2 ALU

2.4 Divide and multiply instructions

Integer divides are performed using an iterative algorithm and block any subsequent divide

operations until complete. Early termination is possible, depending upon the data values.

Table 2-3: AArch64 Divide and multiply instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Divide, W-form SDIV, UDIV 12 1/12 DIV

Divide, X-form SDIV, UDIV 20 1/20 DIV

[1] Latency=2 when the dependency is on Rm.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Multiply accumulate, W-form MADD, MSUB,

MUL

3 1 MAC

Multiply accumulate, X-form MADD, MSUB,

MUL

4 1/2 MAC

Multiply accumulate long SMADDL,

SMSUBL,

UMADDL,

UMSUBL

2 1 MAC

Multiply high SMULH, UMULH 6 1/4 MAC

2.5 Pointer authentication instructions

Table 2-4: AArch64 Pointer authentication instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Authenticate data address AUTDA, AUTDB,

AUTDZA, AUTDZB

4 1 PAC

Authenticate instruction

address

AUTIA, AUTIB,

AUTIA1716,

AUTIB1716,

AUTIASP, AUTIBSP,

AUTIAZ, AUTIBZ,

AUTIZA, AUTIZB

4 1 PAC

Branch and link, register, with

pointer authentication

BLRAA, BLRAAZ,

BLRAB, BLRABZ

1 1 Branch, PAC

Branch, register, with pointer

authentication

BRAA, BRAAZ,

BRAB, BRABZ

- 1 Branch, PAC

Branch, return, with pointer

authentication

RETA, RETB - 1 Branch

Compute pointer

authentication code for data

address

PACDA, PACDB,

PACDZA, PACDZB

4 1 PAC

Compute pointer

authentication code, using

generic key

PACGA 5 1 PAC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Compute pointer

authentication code for

instruction address

PACIA, PACIB,

PACIA1716,

PACIB1716,

PACIASP, PACIBSP,

PACIAZ, PACIBZ,

PACIZA, PACIZB

4 1 PAC

Load register, with pointer

authentication, offset

LDRAA, LDRAB 2 2 PAC

Load register, with pointer

authentication, pre-indexed

LDRAA, LDRAB 2 1 PAC

Strip pointer authentication

code

XPACD, XPACI,

XPACLRI

4 1 PAC

1. There is a dedicated forwarding path in the accumulate portion of the unit

that allows the result of one MAC operation to be used as the accumulate

operand of a following MAC operation with no interlock. Thanks to this, a

typical sequence of multiply-accumulate instructions can issue one every 2

cycles). Accumulator forwarding is not supported for consumers of 64 bit

multiply high operations.

2. Latency and throughput numbers given for SDIV and UDIV are the worst-

case values. Early termination is possible, depending upon the data values

(for example, degenerate cases such as divide by zero). Integer divides are

performed using an iterative algorithm and block any subsequent divide op-

erations until complete. The number of cycles needed to execute these in-

structions can be calculated using the formula [N + bits/4] (N=3 for UDIV,

N=4 for SDIV, i.e. signed division takes one more cycle than unsigned divi-

sion).

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 12 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.6 Miscellaneous data-processing instructions

Table 2-5: AArch64 miscellaneous data-processing instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Address generation ADR, ADRP 1 2 ALU

Bitfield extract EXTR 2[2] 2 ALU

Bitfield move, basic SBFM, SBFIZ,

SBFX, SXTH,

SXTW, UBFM,

UBFIZ, UBFX,

UXTH

2[3] 2 ALU

Bitfield move, insert BFC, BFI, BFM 2 2 ALU

Convert floating-point

condition flags

AXFLAG, XAFLAG - 1/2 ALU

Flag set instructions SETF8, SETF16 2 1/2 ALU

Flag manipulation

instructions, rotate and select

RMIF 1 1 ALU

Flag manipulation

instructions, invert carry

CFINV 1 1/2 ALU

Count leading CLS, CLZ 1 2 ALU

Move MOV, MOVN,

MVN, MOVK,

MOVZ

1 2 ALU

Reverse bytes REV, REV16,

REV32

1 2 ALU

Reverse bits RBIT 1 2 ALU

Variable shift ASR, ASRV, LSL,

LSLV, LSR, LSRV,

ROR, RORV

1 2 ALU

Extend, sign or zero SXTB, UXTB 1 2 ALU

[2] Latency=1 for ROR (immediate) alias of EXTR.
[3] Latency=1 for LSL (immediate), LSR (immediate) and UXTB aliases of UBFM. Latency=1 for SXTB and ASR

(immediate) aliases of SBFM.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.7 Load instructions

The latencies shown in Table 2-6 assume the memory access hits in the Level 1 Data Cache. Base

register updates are done in parallel to the operation.

Table 2-6: AArch64 Load instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Load register, literal LDR, LDRSW,

PRFM

2 2 Load/Store,

Load

Load register, unscaled

immediate

LDUR, LDURB,

LDURH, LDURSB,

LDURSH,

LDURSW, PRFUM

2 2 Load/Store,

Load

Load register, immediate

post-index

LDR, LDRB, LDRH,

LDRSB, LDRSH,

LDRSW

2 1 Load/Store,

Load

Load register, immediate

pre-index

LDR, LDRB, LDRH,

LDRSB, LDRSH,

LDRSW

2 1 Load/Store,

Load

Load register, immediate

unprivileged

LDTR, LDTRB,

LDTRH, LDTRSB,

LDTRSH, LDTRSW

2 2 Load/Store,

Load

Load register, unsigned

immediate

LDR, LDRB, LDRH,

LDRSB, LDRSH,

LDRSW, PRFM

2 2 Load/Store,

Load

Load register, register offset,

basic

LDR, LDRB, LDRH,

LDRSB, LDRSH,

LDRSW, PRFM

2 2 Load/Store,

Load

Load register, register offset,

scale

LDR, LDRB, LDRSB,

LDRSW, PRFM

2 2 Load/Store,

Load

Load register, register offset,

scale, halfword

LDRH, LDRSH 2 2 Load/Store,

Load

Load register, register offset,

extend

LDR, LDRB, LDRH,

LDRSB, LDRSH,

LDRSW, PRFM

2 2 Load/Store,

Load

Load register, register offset,

extend, scaled

LDR, LDRB,

LDRSW, LDRSB,

PRFM

2 2 Load/Store,

Load

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Load register, register offset,

extend, scaled, halfword

LDRH, LDRSH 2 2 Load/Store,

Load

Load pair, signed immediate

offset, normal, W-form

LDP, LDNP 2 2 Load/Store,

Load

Load pair, signed immediate

offset, normal, X-form

LDP, LDNP 2 2 Load/Store,

Load

Load pair, signed immediate

offset, signed words

LDPSW 2 2 Load/Store,

Load

Load pair, immediate

post-index or immediate

pre-index, normal, W-form

LDP 2 1 Load/Store,

Load

Load pair, immediate

post-index or immediate

pre-index, normal, X-form

LDP 2 1 Load/Store,

Load

Load pair, immediate

post-index or immediate

pre-index, signed words

LDPSW 2 1 Load/Store,

Load

2.8 Store instructions

Base register updates are done in parallel to the operation.

Table 2-7: AArch64 Store instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store register, unscaled

immediate

STUR, STURB,

STURH

- 1 Load/Store

Store register, immediate

post-index

STR, STRB, STRH - 1 Load/Store

Store register, immediate

pre-index

STR, STRB, STRH - 1 Load/Store

Store register, immediate

unprivileged

STTR, STTRB,

STTRH

- 1 Load/Store

Store register, unsigned

immediate

STR, STRB, STRH - 1 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store register, register offset,

basic

STR, STRB, STRH - 1 Load/Store

Store register, register offset,

scaled

STR, STRB - 1 Load/Store

Store register, register offset,

scaled, halfword

STRH - 1 Load/Store

Store register, register offset,

extend

STR, STRB, STRH - 1 Load/Store

Store register, register offset,

extend, scaled

STR, STRB - 1 Load/Store

Store register, register offset,

extend, scaled, halfword

STRH - 1 Load/Store

Store pair, immediate offset STP, STNP - 1 Load/Store

Store pair, immediate

post-index

STP - 1 Load/Store

Store pair, immediate

pre-index

STP - 1 Load/Store

2.9 Tag data processing

Table 2-8: AArch64 Tag data processing instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Arithmetic, immediate to

logical address tag

ADDG, SUBG 2 2 ALU

Insert Random Tags IRG 4 1/3 ALU

Insert Tag Mask GMI 2 2 ALU

Subtract Pointer SUBP 2 2 ALU

Subtract Pointer, flagset SUBPS 2 2 ALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.10 Tag load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Table 2-9: The latencies shown assume the memory access hits in the Level 1 Data Cache.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Load allocation tag LDG 2 2 Load/Store,

Load

Load multiple allocation tags LDGM 2 1/4 Load/Store,

Load

2.11 Tag store instructions

Base register updates are done in parallel to the operation.

Table 2-10: AArch64 Tag store instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store allocation tags to one

granule, post-index

STG - 1 Load/Store

Store allocation tags to two

granules, post-index

ST2G - 1/2 Load/Store

Store allocation tags to one

granule, pre-index

STG - 1 Load/Store

Store allocation tags to two

granules, pre-index

ST2G - 1/2 Load/Store

Store allocation tags to one

granule, signed offset

STG - 1 Load/Store

Store allocation tags to two

granules, signed offset

ST2G - 1/2 Load/Store

Store allocation tag to one

granule, zeroing, post-index

STZG - 1 Load/Store

Store allocation tag to two

granules, zeroing, post-index

STZ2G - 1/2 Load/Store

Store Allocation Tag to one

granule, zeroing, pre-index

STZG - 1 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store Allocation Tag to two

granules, zeroing, pre-index

STZ2G - 1/2 Load/Store

Store allocation tag to one

granule, zeroing, signed offset

STZG - 1 Load/Store

Store allocation tag to two

granules, zeroing, signed

offset

STZ2G - 1/2 Load/Store

Store allocation tag and reg

pair to memory, post-Index

STGP - 1 Load/Store

Store allocation tag and reg

pair to memory, pre-Index

STGP - 1 Load/Store

Store allocation tag and reg

pair to memory, signed offset

STGP - 1 Load/Store

Store multiple allocation tags STGM - 1 Load/Store

Store multiple allocation tags,

zeroing

STZGM - 1 Load/Store

2.12 FP scalar data processing instructions

Table 2-11: AArch64 FP data processing instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

FP absolute value FABS, FABD 4 2 VALU

FP arithmetic FADD, FSUB,

FADDP

4 2 VALU

FP conditional compare FCCMP, FCCMPE 5 1/5 VALU

FP compare FCMP, FCMPE 1 1 VALU

FP divide, H-form FDIV 8 2/5 VMC

FP divide, S-form FDIV 13 2/10 VMC

FP divide, D-form FDIV 22 2/19 VMC

FP min/max FMIN, FMINNM,

FMAX, FMAXNM

4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

FP max/min, pairwise FMAXP,

FMAXNMP, FMINP,

FMINNMP

4 2 VALU

FP multiply FMUL, FNMUL,

FMULX

4 2 VMAC

FP multiply accumulate FMADD, FMSUB,

FNMADD,

FNMSUB

4 2 VMAC

FP negate FNEG 4 2 VALU

FP round to integral FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ, FRINT32X,

FRINT64X,

FRINT32Z,

FRINT64Z

4 2 VALU

FP select FCSEL 3 1 VALU

FP square root, H-form FSQRT 11 2/5 VMC

FP square root, S-form FSQRT 14 2/9 VMC

FP square root, D-form FSQRT 25 2/19 VMC

Floating-point division operations may finish early if the divisor is a power of two

(normal with a zero trailing significand).

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.13 FP scalar miscellaneous instructions

Table 2-12: AArch64 FP miscellaneous instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

FP convert, from gen to vec

reg

SCVTF, UCVTF 4 2 VALU

FP convert, from vec to gen

reg

FCVTAS, FCVTAU,

FCVTMS,

FCVTMU, FCVTNS,

FCVTNU, FCVTPS,

FCVTPU, FCVTZS,

FCVTZU

4 2 VALU

FP convert, Javascript from

vec to gen reg

FJCVTZS 4 1 VALU

FP convert, from vec to vec

reg

FCVT, FCVTXN 4 2 VALU

FP move, immediate FMOV 3 2 VALU

FP move, register FMOV 2 2 VALU

FP transfer, from gen to vec

reg

FMOV - 2 VALU

FP transfer, from vec to gen

reg

FMOV - 2 VALU

2.14 FP scalar load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Base register updates are done in parallel to the operation.

Table 2-13: AArch64 FP load instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Load vector reg, literal LDR 3 2 Load/Store,

Load

Load vector reg, unscaled

immediate

LDUR 3 2 Load/Store,

Load

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 20 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Load vector reg, immediate

post-index

LDR 3 1 Load/Store,

Load

Load vector reg, immediate

pre-index

LDR 3 1 Load/Store,

Load

Load vector reg, unsigned

immediate

LDR 3 2 Load/Store,

Load

Load vector reg, register

offset, basic

LDR 3 2 Load/Store,

Load

Load vector reg, register

offset, scale

LDR 3 2 Load/Store,

Load

Load vector reg, register

offset, extend

LDR 3 2 Load/Store,

Load

Load vector reg, register

offset, extend, scale

LDR 3 2 Load/Store,

Load

Load vector pair, immediate

offset, S/D-form

LDP, LDNP 3 1 Load/Store,

Load

Load vector pair, immediate

offset, Q-form

LDP, LDNP 3 1 Load/Store,

Load

Load vector pair, immediate

post-index, S/D-form

LDP 3 1 Load/Store,

Load

Load vector pair, immediate

post-index, Q-form

LDP 3 1 Load/Store,

Load

Load vector pair, immediate

pre-index, S/D-form

LDP 3 1 Load/Store,

Load

Load vector pair, immediate

pre-index, Q-form

LDP 3 1 Load/Store,

Load

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.15 FP scalar store instructions

Base register updates are done in parallel to the operation.

Table 2-14: AArch64 FP Store instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store vector reg, unscaled

immediate

STUR - 1 Load/Store

Store vector reg, immediate

post-index

STR - 1 Load/Store

Store vector reg, immediate

pre-index

STR - 1 Load/Store

Store vector reg, unsigned

immediate

STR - 1 Load/Store

Store vector reg, register

offset, basic

STR - 1 Load/Store

Store vector reg, register

offset, scale

STR - 1 Load/Store

Store vector reg, register

offset, extend

STR - 1 Load/Store

Store vector reg, register

offset, extend

STR - 1 Load/Store

Store vector pair, immediate

offset, S-form

STP, STNP - 1 Load/Store

Store vector pair, immediate

offset, D-form

STP, STNP - 1 Load/Store

Store vector pair, immediate

offset, Q-form

STP, STNP - 1/2 Load/Store

Store vector pair, immediate

post-index, S-form

STP - 1 Load/Store

Store vector pair, immediate

post-index, D-form

STP - 1 Load/Store

Store vector pair, immediate

post-index, Q-form

STP - 1/2 Load/Store

Store vector pair, immediate

pre-index, S-form

STP - 1 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store vector pair, immediate

pre-index, D-form

STP - 1 Load/Store

Store vector pair, immediate

pre-index, Q-form

STP - 1/2 Load/Store

2.16 ASIMD Integer instructions

Table 2-15: AArch64 ASIMD Integer instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD absolute diff SABD, UABD 3 2 VALU

ASIMD absolute diff accum SABA, UABA 5 1/3 VALU

ASIMD absolute diff accum

long

SABAL2, UABAL2 5 1/3 VALU

ASIMD absolute diff long SABDL2, UABDL2 3 2 VALU

ASIMD arith, basic ABS, ADD, NEG,

SHADD, SHSUB,

SUB, UHADD,

UHSUB

3 2 VALU

ASIMD arith, basic, long,

saturate

SADDL, SADDL2,

SADDW,

SADDW2, SSUBL,

SSUBL2, SSUBW,

SSUBW2, UADDL,

UADDL2, UADDW,

UADDW2, USUBL,

USUBL2, USUBW,

USUBW2

3 2 VALU

ASIMD arith, complex ADDHN, ADDHN2,

SQABS, SQADD,

SQNEG, SQSUB,

SUBHN, SUBHN2,

SUQADD, UQADD,

UQSUB, USQADD

4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 23 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD arith, complex,

rounding, add and subtract

RADDHN,

RADDHN2,

RSUBHN,

RSUBHN2

6 1/3 VALU

ASIMD arith, complex,

rounding halving addition

SRHADD,

URHADD

2 2 VALU

ASIMD arith, pair-wise ADDP, SADDLP,

UADDLP

3 2 VALU

ASIMD arith, reduce, 4H/4S ADDV, SADDLV,

UADDLV

4 1 VALU

ASIMD arith, reduce ADDV 3 1 VALU

ASIMD arith, reduce Long SADDLV, UADDLV 4 1 VALU

ASIMD compare CMEQ, CMGE,

CMGT, CMHI,

CMHS, CMLE,

CMLT

3 2 VALU

ASIMD compare test CMTST 3 2 VALU

ASIMD dot product SDOT, UDOT 4 2 VMAC

ASIMD dot product using

signed and unsigned integers

SUDOT, USDOT 4 2 VMAC

ASIMD logical AND, BIC, EOR,

MOV, MVN, NOT,

ORN, ORR

3 2 VALU

ASIMD matrix

multiply-accumulate

SMMLA, UMMLA,

USMMLA

4 2 VALU

ASIMD max/min, basic and

pair-wise

SMAX, SMAXP,

SMIN, SMINP,

UMAX, UMAXP,

UMIN, UMINP

3 2 VALU

ASIMD max/min, reduce,

B-form

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU

ASIMD max/min, reduce,

H-form

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU

ASIMD max/min, reduce,

S-form

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU

ASIMD multiply MUL, SQDMULH,

SQRDMULH

4 2 VMAC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 24 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD multiply accumulate MLA, MLS 4 2 VMAC

ASIMD multiply accumulate

high

SQRDMLAH,

SQRDMLSH

4 2 VMAC

ASIMD multiply accumulate

long

SMLAL2, SMLSL2,

UMLAL2, UMLSL2

4 2 VMAC

ASIMD multiply accumulate

saturating long

SQDMLAL2,

SQDMLSL2

4 2 VMAC

ASIMD multiply/multiply long

(8x8) polynomial, D-form

PMUL, PMULL2 3 2 VALU

ASIMD multiply/multiply long

(8x8) polynomial, Q-form

PMUL, PMULL2 3 2 VALU

ASIMD multiply long SMULL, SMULL2,

UMULL, UMULL2,

SQDMULL,

SQDMULL2

4 2 VMAC

ASIMD pairwise add and

accumulate long

SADALP, UADALP 5 1/3 VALU

ASIMD shift and accumulate SRSRA, URSRA 5 1/3 VALU

ASIMD rounding shift and

accumulate

SSRA, USRA 3 2 VALU

ASIMD shift by immediate,

basic

SHL, SHLL2,

SSHLL2, SSHR,

SXTL2, USHLL2,

USHR, UXTL2

3 2 VALU

ASIMD shift by immediate,

narrow

SHRN2 4 2 VALU

ASIMD shift by immediate

and insert, basic

SLI, SRI 3 2 VALU

ASIMD shift by immediate,

complex

RSHRN2,

SQRSHRN2,

SQRSHRUN2,

SQSHL, SQSHLU,

SQSHRN2,

SQSHRUN2,

UQRSHRN2,

UQSHL, UQSHRN2

4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 25 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD shift by register, basic SSHL, USHL,

SRSHL, SRSHR,

URSHL, URSHR

3 2 VALU

ASIMD shift by register,

complex

SQRSHL, SQSHL,

UQRSHL, UQSHL

4 2 VALU

2.17 ASIMD FP data processing instructions

Table 2-16: AArch64 ASIMD Floating-point instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD FP absolute

value/difference

FABS, FABD 4 2 VALU

ASIMD FP arith, normal FADD, FSUB,

FADDP

4 2 VALU

ASIMD FP compare FACGE, FACGT,

FCMEQ, FCMGE,

FCMGT, FCMLE,

FCMLT

3 2 VALU

ASIMD FP complex add FCADD 4 2 VMAC

ASIMD FP complex multiply

add

FCMLA 4 2 VMAC

ASIMD FP convert, long (F16

to F32)

FCVTL, FCVTL2 4 2 VALU

ASIMD FP convert, long (F32

to F64)

FCVTL, FCVTL2 4 2 VALU

ASIMD FP convert, narrow

(F32 to F16)

FCVTN, FCVTN2 4 2 VALU

ASIMD FP convert, narrow

(F64 to F32)

FCVTN, FCVTN2,

FCVTXN2

4 2 VALU

ASIMD FP convert, from gen

to vec reg

SCVTF, UCVTF 4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD FP convert, other, F16 FCVTAS, FCVTAU,

FCVTMS,

FCVTMU, FCVTNS,

FCVTNU, FCVTPS,

FCVTPU, FCVTZS,

FCVTZU

4 2 VALU

ASIMD FP convert, other, F32 FCVTAS, FCVTAU,

FCVTMS,

FCVTMU, FCVTNS,

FCVTNU, FCVTPS,

FCVTPU, FCVTZS,

FCVTZU

4 2 VALU

ASIMD FP convert, other, F64 FCVTAS, FCVTAU,

FCVTMS,

FCVTMU, FCVTNS,

FCVTNU, FCVTPS,

FCVTPU, FCVTZS,

FCVTZU

4 2 VALU

ASIMD FP divide, D-form,

F16

FDIV 8 2/5 VMC

ASIMD FP divide, D-form,

F32

FDIV 13 1/5 VMC

ASIMD FP divide, Q-form,

F16

FDIV 8 1/5 VMC

ASIMD FP divide, Q-form,

F32

FDIV 13 1/10 VMC

ASIMD FP divide, Q-form,

F64

FDIV 22 1/19 VALU

ASIMD FP max/min, normal FMAX, FMAXNM,

FMIN, FMINNM

4 2 VALU

ASIMD FP max/min, pairwise FMAXP,

FMAXNMP, FMINP,

FMINNMP

4 2 VALU

ASIMD FP max/min, reduce FMAXV,

FMAXNMV,

FMINV, FMINNMV

4 1 VALU

ASIMD FP multiply FMUL, FMULX 4 2 VMAC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 27 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD FP multiply

accumulate

FMLA, FMLS 4 2 VMAC

ASIMD FP multiply

accumulate long

FMLAL, FMLAL2,

FMLSL, FMLSL2

4 2 VMAC

ASIMD FP negate FNEG 4 2 VALU

ASIMD FP round, F16 FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ, FRINT32X,

FRINT64X,

FRINT32Z,

FRINT64Z

4 2 VALU

ASIMD FP round, F32 FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ, FRINT32X,

FRINT64X,

FRINT32Z,

FRINT64Z

4 2 VALU

ASIMD FP round, F64 FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ, FRINT32X,

FRINT64X,

FRINT32Z,

FRINT64Z

4 2 VALU

ASIMD FP square root,

D-form, F16

FSQRT 8 2/5 VMC

ASIMD FP square root,

D-form, F32

FSQRT 12 2/9 VMC

ASIMD FP square root,

Q-form, F16

FSQRT 8 1/5 VMC

ASIMD FP square root,

Q-form, F32

FSQRT 12 1/9 VMC

ASIMD FP square root,

Q-form, F64

FSQRT 22 1/19 VMC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 28 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Floating-point division operations may finish early if the divisor is a power of two.

2.18 ASIMD BFloat16 (BF16) instructions

Table 2-17: AArch64 ASIMD BFloat16 (BF16) instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD convert, F32 to BF16 BFCVTN,

BFCVTN2

4 2 VALU

ASIMD dot product BFDOT 10 2 VMAC,VALU

ASIMD matrix multiply

accumulate

BFMMLA 14 1 VMAC,VALU

ASIMD multiply accumulate

long

BFMLALB,

BFMLALT

4 2 VMAC

Scalar convert, F32 to BF16 BFCVT 4 2 VALU

2.19 ASIMD miscellaneous instructions

Table 2-18: AArch64 ASIMD miscellaneous instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD bit reverse RBIT 3 2 VALU

ASIMD bitwise insert BIF, BIT, BSL 3 2 VALU

ASIMD count CLS, CLZ, CNT 3 2 VALU

ASIMD duplicate, gen reg DUP 3 2 VALU

ASIMD duplicate, element DUP 3 2 VALU

ASIMD extract EXT 3 2 VALU

ASIMD extract narrow XTN 4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 29 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD extract narrow,

saturating

SQXTN, SQXTN2,

SQXTUN,

SQXTUN2,

UQXTN, UQXTN2

4 2 VALU

ASIMD insert, element to

element

INS 3 2 VALU

ASIMD move, FP immediate MOV 3 2 VALU

ASIMD FP convert, from vec

to vec reg

FCVT, FCVTXN 4 2 VALU

ASIMD move, FP immediate FMOV 3 2 VALU

ASIMD move, FP register FMOV 3 2 VALU

ASIMD move, FP transfer,

from gen to vec reg

FMOV 3 2 VALU

ASIMD move, integer

immediate

MOVI, MVNI 3 2 VALU

ASIMD reciprocal estimate,

F16

FRECPE, FRECPX,

FRSQRTE,

URECPE, URSQRTE

4 2 VMAC

ASIMD reciprocal estimate,

F32

FRECPE, FRECPX,

FRSQRTE,

URECPE, URSQRTE

4 2 VMAC

ASIMD reciprocal estimate,

F64

FRECPE, FRECPX,

FRSQRTE,

URECPE, URSQRTE

4 2 VMAC

ASIMD reciprocal step FRECPS, FRSQRTS 4 2 VMAC

ASIMD reverse REV16, REV32,

REV64

3 2 VALU

ASIMD table lookup, 1 table

regs

TBL 4 2 VALU

ASIMD table lookup, 2 table

regs

TBL 5 1/2 VALU

ASIMD table lookup, 3 table

regs

TBL 6 1/3 VALU

ASIMD table lookup, 4 table

regs

TBL 7 1/4 VALU

ASIMD table lookup

extension, 1 table reg

TBX 5 1/2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 30 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD table lookup

extension, 2 table regs

TBX 6 1/3 VALU

ASIMD table lookup

extension, 3 table regs

TBX 7 1/4 VALU

ASIMD table lookup

extension, 4 table regs

TBX 8 1/5 VALU

ASIMD transfer, element to

gen reg

UMOV, SMOV 3 2 VALU

ASIMD transfer, gen reg to

element

INS 3 2 VALU

ASIMD transpose TRN1, TRN2 3 2 VALU

ASIMD unzip/zip UZP1, UZP2, ZIP1,

ZIP2

3 2 VALU

2.20 ASIMD load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Base register updates are done in parallel to the operation.

Table 2-19: AArch64 ASIMD load instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD load, 1 element,

multiple, 1 reg, D-form

LD1 3 2 Load/Store,

Load

ASIMD load, 1 element,

multiple, 1 reg, Q-form

LD1 3 2 Load/Store,

Load

ASIMD load, 1 element,

multiple, 2 reg, D-form

LD1 3 1 Load/Store

ASIMD load, 1 element,

multiple, 2 reg, Q-form

LD1 3 1 Load/Store

ASIMD load, 1 element,

multiple, 3 reg, D-form

LD1 4 1/2 Load/Store

ASIMD load, 1 element,

multiple, 3 reg, Q-form

LD1 4 1/2 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 31 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD load, 1 element,

multiple, 4 reg, D-form

LD1 4 1/2 Load/Store

ASIMD load, 1 element,

multiple, 4 reg, Q-form

LD1 4 1/2 Load/Store

ASIMD load, 1 element, one

lane, B/H/S

LD1 3 1 Load/Store,

Load

ASIMD load, 1 element, one

lane, D

LD1 3 1 Load/Store,

Load

ASIMD load, 1 element, all

lanes, D-form

LD1R 3 2 Load/Store,

Load

ASIMD load, 1 element, all

lanes, Q-form

LD1R 3 2 Load/Store,

Load

ASIMD load, 2 element,

multiple, D-form

LD2 4 1 Load/Store

ASIMD load, 2 element,

multiple, Q-form

LD2 4 1 Load/Store

ASIMD load, 2 element, one

lane, B/H/S

LD2 4 1/4 Load/Store

ASIMD load, 2 element, one

lane, D

LD2 4 1/4 Load/Store

ASIMD load, 2 element, all

lanes, D-form

LD2R 3 1 Load/Store

ASIMD load, 2 element, all

lanes, Q-form

LD2R 3 1 Load/Store

ASIMD load, 3 element,

multiple, D-form

LD3 5 1/3 Load/Store

ASIMD load, 3 element,

multiple, Q-form

LD3 5 1/3 Load/Store

ASIMD load, 3 element, one

lane, B/H/S

LD3 5 1/5 Load/Store

ASIMD load, 3 element, one

lane, D

LD3 5 1/5 Load/Store

ASIMD load, 3 element, all

lanes, D-form

LD3R 4 1/2 Load/Store

ASIMD load, 3 element, all

lanes, Q-form

LD3R 4 1/2 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 32 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD load, 4 element,

multiple, D-form

LD4 5 1/3 Load/Store

ASIMD load, 4 element,

multiple, Q-form

LD4 5 1/3 Load/Store

ASIMD load, 4 element, one

lane, B/H/S

LD4 6 1/5 Load/Store

ASIMD load, 4 element, one

lane, D

LD4 6 1/5 Load/Store

ASIMD load, 4 element, all

lanes, D-form

LD4R 4 1/2 Load/Store

ASIMD load, 4 element, all

lanes, Q-form

LD4R 4 1/2 Load/Store

2.21 ASIMD store instructions

Base register updates are done in parallel to the operation.

Table 2-20: AArch64 ASIMD store instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD store, 1 element,

multiple, 1 reg, D-form

ST1 - 1 Load/Store

ASIMD store, 1 element,

multiple, 1 reg, Q-form

ST1 - 1 Load/Store

ASIMD store, 1 element,

multiple, 2 reg, D-form

ST1 - 1 Load/Store

ASIMD store, 1 element,

multiple, 2 reg, Q-form

ST1 - 1/2 Load/Store

ASIMD store, 1 element,

multiple, 3 reg, D-form

ST1 - 1/2[4] Load/Store

ASIMD store, 1 element,

multiple, 3 reg, Q-form

ST1 - 1/3 Load/Store

ASIMD store, 1 element,

multiple, 4 reg, D-form

ST1 - 1/2 Load/Store

[4] Throughput=1/3 when the access is aligned and crosses 16B boundary, one more cycle is needed.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 33 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

ASIMD store, 1 element,

multiple, 4 reg, Q-form

ST1 - 1/4 Load/Store

ASIMD store, 1 element, one

lane, B/H/S

ST1 - 1 Load/Store

ASIMD store, 1 element, one

lane, D

ST1 - 1 Load/Store

ASIMD store, 2 element,

multiple, D-form

ST2 - 1 Load/Store

ASIMD store, 2 element,

multiple, Q-form

ST2 - 1/2 Load/Store

ASIMD store, 2 element, one

lane, B/H/S

ST2 - 1 Load/Store

ASIMD store, 2 element, one

lane, D

ST2 - 1 Load/Store

ASIMD store, 3 element,

multiple, D-form, B/H/S

ST3 - 1/4 Load/Store

ASIMD store, 3 element,

multiple, Q-form, B/H/S

ST3 - 1/6 Load/Store

ASIMD store, 3 element,

multiple, Q-form, D

ST3 - 1/3 Load/Store

ASIMD store, 3 element, one

lane, B/H/S

ST3 - 1/2 Load/Store

ASIMD store, 3 element, one

lane, D

ST3 - 1/2 Load/Store

ASIMD store, 4 element,

multiple, D-form, B/H/S

ST4 - 1/4 Load/Store

ASIMD store, 4 element,

multiple, Q-form, B/H/S

ST4 - 1/8 Load/Store

ASIMD store, 4 element,

multiple, Q-form, D

ST4 - 1/4 Load/Store

ASIMD store, 4 element, one

lane, B/H/S

ST4 - 1/2 Load/Store

ASIMD store, 4 element, one

lane, D

ST4 - 1/2 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 34 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.22 Cryptography extensions

Table 2-21: AArch64 Cryptography instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Crypto AES ops AESD, AESE,

AESIMC, AESMC

3 2 Crypto

Crypto polynomial (64x64)

multiply long

PMULL, PMULL2 3 2 VMC

Crypto SHA1 hash

acceleration op

SHA1H 3 1 VALU

Crypto SHA1 hash

acceleration ops

SHA1C, SHA1M,

SHA1P

4 2 VMC

Crypto SHA1 schedule

acceleration ops

SHA1SU0,

SHA1SU1

3 2 VMC

Crypto SHA256 hash

acceleration ops

SHA256H,

SHA256H2

4 2 VMC

Crypto SHA256 schedule

acceleration ops

SHA256SU0,

SHA256SU1

4 2 VMC

Crypto SHA512 hash

acceleration ops

SHA512H,

SHA512H2,

SHA512SU0,

SHA512SU1

9 1/7 VMC

Crypto SHA3 ops BCAX, EOR3 3 2 VALU

Crypto SHA3 ops, exclusive

Or and rotate

XAR 4 2 VALU

Crypto SHA3 ops, rotate and

exclusive Or

RAX1 3 2 VMC

Crypto SM3 ops SM3PARTW1,

SM3PARTW2,

SM3SS1,

SM3TT1A,

SM3TT1B,

SM3TT2A,

SM3TT2B

9 1/7 VMC

Crypto SM4 ops SM4E, SM4EKEY 9 1/7 VMC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 35 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.23 CRC

Table 2-22: AArch64 CRC instructions

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

CRC checksum ops CRC32, CRC32C,

CRC32B, CRC32B,

CRC32CB,

CRC32CH,

CRC32CW,

CRC32CX,

CRC32H,

CRC32W, CRC32X

2 1 MAC

2.24 SVE Predicate instructions

Table 2-23: SVE Predicate instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Loop control, based on

predicate

BRKA, BRKB 2 1 PALU

Loop control, based on

predicate and flag setting

BRKAS, BRKBS 2 1 PALU

Loop control, propagating BRKN, BRKPA,

BRKPB

2 1 PALU

Loop control, propagating and

flag setting

BRKNS, BRKPAS,

BRKPBS

2 1 PALU

Loop control, based on GPR WHILEGE,

WHILEGT,

WHILEHI,

WHILEHS,

WHILELE,

WHILELO,

WHILELS,

WHILELT,

WHILERW,

WHILEWR

2 1 PALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 36 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Loop terminate CTERMEQ,

CTERMNE

1 1 ALU

Predicate counting scalar, add ADDPL, ADDVL,

RDVL

1 2 ALU

Predicate counting scalar CNTB, CNTH,

CNTW, CNTD,

DECB, DECH,

DECW, DECD,

INCB, INCH, INCW,

INCD

1 1 ALU

Predicate counting scalar,

saturate

SQDECB,

SQDECH,

SQDECW,

SQDECD, SQINCB,

SQINCH, SQINCW,

SQINCD, UQDECB,

UQDECH,

UQDECW,

UQDECD,

UQINCB, UQINCH,

UQINCW, UQINCD

5 1 ALU

Predicate counting scalar,

active predicate

CNTP, DECP, INCP 1 1 PALU

Predicate counting scalar,

active predicate, saturating,

64-bit

SQDECP, SQINCP,

UQDECP, UQINCP

2 1 VALU

Predicate counting scalar,

active predicate, saturating,

32-bit

SQDECP, SQINCP 1 1 VALU

Predicate counting scalar,

active predicate, saturating,

32-bit

UQDECP, UQINCP 2 1 VALU

Predicate counting vector,

active predicate

CNTP, DECP, INCP 3 2 PALU

Predicate counting vector,

active predicate, saturating

SQDECP, SQINCP,

UQDECP, UQINCP

4 2 VALU

Predicate logical AND, BIC, EOR,

MOV, NAND, NOR,

NOT, ORN, ORR

2 1 PALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 37 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Predicate logical, flag setting ANDS, BICS, EORS,

MOVS, NANDS,

NORS, NOTS,

ORNS, ORRS

2 1 PALU

Predicate reverse REV 1 1 PALU

Predicate select SEL 2 1 PALU

Predicate set PFALSE, PTRUE 1 1 PALU

Predicate set/initialize, set

flags

PTRUES 2 1 PALU

Predicate find first/next PFIRST, PNEXT 2 1 PALU

Predicate test PTEST 1 1 PALU

Predicate transpose TRN1, TRN2 1 1 PALU

Predicate unpack and widen PUNPKHI,

PUNPKLO

1 1 PALU

Predicate zip/unzip ZIP1, ZIP2, UZP1,

UZP2

1 1 PALU

Instructions with dependencies may be co-issue.

2.25 SVE Integer instructions

Table 2-24: SVE integer instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Arithmetic, absolute diff SABD, UABD 3 2 VALU

Arithmetic, absolute diff

accum

SABA, UABA 5 1/3 VALU

Arithmetic, absolute diff

accum long

SABALB, SABALT,

UABALB, UABALT

5 1/3 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 38 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Arithmetic, absolute diff long SABDLB, SABDLT,

UABDLB, UABDLT

3 2 VALU

Arithmetic, basic ABS, ADD, ADR,

CNOT, NEG,

SHADD, SHSUB,

SHSUBR, SRHADD,

SUB, UADDWB,

UADDWT,

UHADD, UHSUB,

UHSUBR,

URHADD

3 2 VALU

Arithmetic, basic SUBHNB, SUBHNT,

SUBR, USUBWB,

USUBWT

4 2 VALU

Arithmetic, basic SADDLB,

SADDLBT, SADDLT,

SADDWB,

SADDWT, SSUBLB,

SSUBLBT, SSUBLT,

SSUBLTB,

SSUBWB,

SSUBWT,

UADDLB, UADDLT,

USUBLB, USUBLT

4 2 VALU

Arithmetic, complex ADDHNB,

ADDHNT, SQABS,

SQADD, SQNEG,

SQSUB, SQSUBR,

SUQADD, UQADD,

UQSUB, UQSUBR,

USQADD

4 2 VALU

Arithmetic, complex RADDHNB,

RADDHNT,

RSUBHNB,

RSUBHNT

6 1/3 VALU

Arithmetic, large integer ADCLB, ADCLT,

SBCLB, SBCLT

4 2 VALU

Arithmetic, pairwise add ADDP 3 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 39 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Arithmetic, pairwise add and

accum long

SADALP, UADALP 6 1/4 VALU

Arithmetic, shift ASR, ASRR, LSL,

LSLR, LSR, LSRR

3 2 VALU

Arithmetic, shift and

accumulate

USRA 3 2 VALU

Arithmetic, shift and

accumulate complex, round

SRSRA, URSRA 5 1/3 VALU

Arithmetic, shift and

accumulate complex

SSRA 3 2 VALU

Arithmetic, shift by immediate SHRNB, SHRNT,

SSHLLB, SSHLLT,

USHLLB, USHLLT

3 2 VALU

Arithmetic, shift by immediate

and insert

SLI, SRI 3 2 VALU

Arithmetic, shift complex RSHRNB, RSHRNT,

SQRSHL,

SQRSHLR,

SQRSHRNB,

SQRSHRNT,

SQRSHRUNB,

SQRSHRUNT,

SQSHL, SQSHLR,

SQSHLU,

SQSHRNB,

SQSHRNT,

SQSHRUNB,

SQSHRUNT,

UQRSHL,

UQRSHLR,

UQRSHRNB,

UQRSHRNT,

UQSHL, UQSHLR,

UQSHRNB,

UQSHRNT

4 2 VALU

Arithmetic, shift right for

divide

ASRD 4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 40 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Arithmetic, shift rounding SRSHL, SRSHLR,

SRSHR, URSHL,

URSHLR, URSHR

4 2 VALU

Bit manipulation (B) BDEP, BEXT, BGRP 13 1/11 VMC

Bit manipulation (H) BDEP, BEXT, BGRP 21 1/19 VMC

Bit manipulation (S) BDEP, BEXT, BGRP 37 1/35 VMC

Bit manipulation (D) BDEP, BEXT, BGRP 68 1/66 VMC

Bitwise select BSL, BSL1N,

BSL2N, NBSL

3 2 VALU

Count/reverse bits CLS, CLZ, RBIT 3 2 VALU

Count (B,H) CNT 3 2 VALU

Count (S) CNT 6 1/4 VALU

Count (D) CNT 9 1/7 VALU

Broadcast logical bitmask

immediate to vector

DUPM 4 2 VALU

Compare and set flags CMPEQ, CMPGE,

CMPGT, CMPHI,

CMPHS, CMPLE,

CMPLO, CMPLS,

CMPLT, CMPNE

5 1 VALU

Complex add CADD 3 2 VALU

Complex add saturating SQCADD 4 2 VALU

Complex dot product 8-bit

element

CDOT 4 2 VMAC

Complex dot product 16-bit

element

CDOT 4 2 VMAC

Complex multiply-add B, H, S

element size

CMLA 4 2 VMAC

Complex multiply-add D

element size

CMLA 4 2 VMAC

Conditional extract

operations, general purpose

register

CLASTA, CLASTB 4 1/4 VALU

Conditional extract

operations, SIMD&FP scalar

and vector forms

CLASTA, CLASTB,

COMPACT, SPLICE

4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 41 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Convert to floating point, 64b

to float or convert to double

SCVTF, UCVTF 4 2 VALU

Convert to floating point, 32b

to single or half

SCVTF, UCVTF 4 2 VALU

Convert to floating point, 16b

to half

SCVTF, UCVTF 4 2 VALU

Copy CPY 3 2 VALU

Divides, 32 bit SDIV, SDIVR, UDIV,

UDIVR

15 1/12 VMC

Divides, 64 bit SDIV, SDIVR, UDIV,

UDIVR

26 1/23 VMC

Dot product, 8 bit SDOT, UDOT 4 2 VMAC

Dot product, 8 bit, using

signed and unsigned integers

SUDOT, USDOT 4 2 VMAC

Dot product, 16 bit SDOT, UDOT 4 2 VMAC

Duplicate, immediate and

indexed form

DUP 3 2 VALU

Duplicate, indexed > elem DUP 3 2 VALU

Duplicate, scalar form DUP 3 2 VALU

Extend, sign or zero SXTB, SXTH,

SXTW, UXTB,

UXTH, UXTW

3 2 VALU

Extract EXT 3 2 VALU

Extract narrow saturating SQXTNB, SQXTNT,

SQXTUNB,

SQXTUNT,

UQXTNB,

UQXTNT,

UQXTUNB,

UQXTUNT

4 2 VALU

Extract/insert operation,

SIMD and FP scalar form

LASTA, LASTB,

INSR

4 2 VALU

Extract operation, scalar LASTA, LASTB 8 1/4 VALU

Insert operation, scalar INSR 4 2 VALU

Histogram operations HISTCNT, HISTSEG 6 1/4 VALU0

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 42 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Horizontal operations, B, H, S

form, immediate operands

only

INDEX 4 2 VMAC

Horizontal operations, B, H, S

form, scalar, immediate

operands or immediate, scalar

operands

INDEX 4 1 VMAC

Horizontal operations, D

form, immediate operands

only

INDEX 4 2 VMAC

Horizontal operations, D

form, scalar, immediate

operands or immediate, scalar

operands

INDEX 4 1 VMAC

Logical ops AND, BIC, EON,

EOR, MOV, NOT,

ORN, ORR

3 2 VALU

Logical, exclusive or

bottom-top and top-bottom

EORBT, EORTB 4 2 VALU

Max/min, basic and pairwise SMAX, SMAXP,

SMIN, SMINP,

UMAX, UMAXP,

UMIN, UMINP

3 2 VALU

Matching operations MATCH, NMATCH 8 1/4 VALU

Matrix multiply-accumulate SMMLA, UMMLA,

USMMLA

4 2 VMAC

Move prefix MOVPRFX 3 2 VALU

Multiply, B, H, S element size MUL, SMULH,

UMULH

4 2 VMAC

Multiply, D element size MUL, SMULH,

UMULH

4 2 VMAC

Multiply long SMULLB, SMULLT,

UMULLB, UMULLT

4 2 VMAC

Multiply accumulate, B, H, S

element size

MLA, MLS, MAD,

MSB

4 2 VMAC

Multiply accumulate, D

element size

MLA, MLS, MAD,

MSB

4 2 VMAC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 43 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Multiply accumulate long SMLALB, SMLALT,

SMLSLB, SMLSLT,

UMLALB, UMLALT,

UMLSLB, UMLSLT

4 2 VMAC

Multiply accumulate

saturating doubling long

regular

SQDMLALB,

SQDMLALT,

SQDMLALBT,

SQDMLSLB,

SQDMLSLT,

SQDMLSLBT

4 2 VMAC

Multiply saturating doubling

high, B, H, S element size

SQDMULH 4 2 VMAC

Multiply saturating doubling

high, D element size

SQDMULH 4 2 VMAC

Multiply saturating doubling

long

SQDMULLB,

SQDMULLT

4 2 VMAC

Multiply saturating rounding

doubling regular/complex

accumulate, B, H, S element

size

SQRDMLAH,

SQRDMLSH,

SQRDCMLAH

4 2 VMAC

Multiply saturating rounding

doubling regular/complex

accumulate, D element size

SQRDMLAH,

SQRDMLSH,

SQRDCMLAH

4 2 VMAC

Multiply saturating rounding

doubling regular/complex, B,

H, S element size

SQRDMULH 4 2 VMAC

Multiply saturating rounding

doubling regular/complex, D

element size

SQRDMULH 4 2 VMAC

Multiply/multiply long, (8, 16,

32) polynomial

PMUL, PMULLB,

PMULLT

3 2 VALU

Multiply/multiply long, (64)

polynomial

PMULLB, PMULLT 9 1/7 VMC

Predicate counting vector DECB, DECH,

DECW, DECD,

INCB, INCH, INCW,

INCD

4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 44 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Predicate counting vector,

saturating

SQDECB,

SQDECH,

SQDECW,

SQDECD, SQINCB,

SQINCH, SQINCW,

SQINCD, UQDECB,

UQDECH,

UQDECW,

UQDECD,

UQINCB, UQINCH,

UQINCW, UQINCD

4 2 VALU

Reciprocal estimate URECPE, URSQRTE 4 2 VMAC

Reduction, arithmetic, B form SADDV, UADDV,

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU0

Reduction, arithmetic, H form SADDV, UADDV,

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU0

Reduction, arithmetic, S form SADDV, UADDV,

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU0

Reduction, arithmetic, D form SADDV, UADDV,

SMAXV, SMINV,

UMAXV, UMINV

4 1 VALU0

Reduction, logical ANDV, EORV, ORV 4 1 VALU0

Reverse, vector REV, REVB, REVH,

REVW

3 2 VALU

Select, vector form SEL 2 2 VALU

Table lookup TBL 4 2 VALU

Table lookup, double table TBL 8 1/5 VALU

Table lookup extension TBX 4 2 VALU

Transpose, vector form TRN1, TRN2 3 2 VALU

Unpack and extend SUNPKHI,

SUNPKLO,

UUNPKHI,

UUNPKLO

4 2 VALU

Zip/unzip UZP1, UZP2, ZIP1,

ZIP2

3 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 45 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.26 SVE FP data processing instructions

Table 2-25: SVE Floating-point instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Floating point absolute

value/difference

FABD, FABS 4 2 VALU

Floating point arithmetic FADD, FADDP,

FNEG, FSUB,

FSUBR

4 2 VALU

Floating point associative add,

F16

FADDA 32 1/25 VALU

Floating point associative add,

F32

FADDA 16 1/9 VALU

Floating point associative add,

F64

FADDA 8 2/5 VALU

Floating point compare FACGE, FACGT,

FACLE, FACLT,

FCMEQ, FCMGE,

FCMGT, FCMLE,

FCMLT, FCMNE,

FCMUO

4 1 VALU

Floating point complex add FCADD 4 2 VALU

Floating point complex

multiply add

FCMLA 4 2 VMAC

Floating point convert, long to

narrow

FCVT, FCVTLT,

FCVTNT

4 2 VALU

Floating point convert, round

to odd

FCVTX, FCVTXNT 4 2 VALU

Floating point base2 log, F16 FLOGB 4 2 VMAC

Floating point base2 log, F32 FLOGB 4 2 VMAC

Floating point base2 log, F64 FLOGB 4 2 VMAC

Floating point convert to

integer, F16

FCVTZS, FCVTZU 4 2 VALU

Floating point convert to

integer, F32

FCVTZS, FCVTZU 4 2 VALU

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 46 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Floating point convert to

integer, F64

FCVTZS, FCVTZU 4 2 VALU

Floating point copy FCPY, FDUP,

FMOV

3 2 VALU

Floating point divide, F16 FDIV, FDIVR 8 1/5 VMC

Floating point divide, F32 FDIV, FDIVR 13 1/10 VMC

Floating point divide, F64 FDIV, FDIVR 22 1/19 VMC

Floating point min/max

pairwise

FMAXP,

FMAXNMP, FMINP,

FMINNMP

4 2 VALU

Floating point min/max FMAX, FMIN,

FMAXNM,

FMINNM

4 2 VALU

Floating point multiply FSCALE, FMUL,

FMULX

4 2 VMAC

Floating point multiply

accumulate

FMLA, FMLS,

FMAD, FMSB,

FNMAD, FNMLA,

FNMLS, FNMSB

4 2 VMAC

Floating point multiply

add/sub accumulate long

FMLALB, FMLALT,

FMLSLB, FMLSLT

4 2 VMAC

Floating point reciprocal

estimate, F16

FRECPE, FRECPX,

FRSQRTE

4 2 VMAC

Floating point reciprocal

estimate, F32

FRECPE, FRECPX,

FRSQRTE

4 2 VMAC

Floating point reciprocal

estimate, F64

FRECPE, FRECPX,

FRSQRTE

4 2 VMAC

Floating point reciprocal step FRECPS, FRSQRTS 4 2 VMAC

Floating point max/min

reduction

FMAXNMV,

FMAXV,

FMINNMV, FMINV

4 1 VALU0

Floating point reduction, F16 FADDV 12 1/5 VALU0

Floating point reduction, F32 FADDV 8 2/5 VALU0

Floating point reduction, F64 FADDV 4 2 VALU0

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 47 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Floating point round to

integral, F16

FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ

4 2 VALU

Floating point round to

integral, F32

FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ

4 2 VALU

Floating point round to

integral, F64

FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX,

FRINTZ

4 2 VALU

Floating point square root,

F16

FSQRT 8 1/5 VMC

Floating point square root,

F32

FSQRT 12 1/9 VMC

Floating point square root

F64

FSQRT 22 1/19 VMC

Floating point trigonometric

exponentiation

FEXPA 4 2 VMAC

Floating point trigonometric

multiply add

FTMAD 4 2 VMAC

Floating point trigonometric

starting value

FTSMUL 4 2 VMAC

Floating point trigonometric

select coefficient

FTSSEL 3 2 VALU

Floating-point division operations may finish early if the divisor is a power of two.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 48 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.27 SVE BFloat16 (BF16) instructions

Table 2-26: SVE Bfloat16 (BF16) instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Convert, F32 to BF16 BFCVT, BFCVTNT 4 2 VALU

Dot product BFDOT 10 2 VMAC,VALU

Matrix multiply accumulate BFMMLA 14 1 VMAC,VALU

Multiply accumulate long BFMLALB,

BFMLALT

4 2 VMAC

2.28 SVE Load instructions

The latencies shown in Table 2-27 assume the memory access hits in the Level 1 Data Cache.

Base register updates are done in parallel to the operation.

Table 2-27: SVE Load instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Load vector LDR 3 1 Load/Store,

Load

Load predicate LDR 3 1 Load/Store

Contiguous load, scalar + imm LD1B, LD1D,

LD1H, LD1W,

LD1SB, LD1SH,

LD1SW

3 1 Load/Store,

Load

Contiguous load, scalar +

scalar

LD1B, LD1D,

LD1H, LD1W,

LD1SB, LD1SH,

LD1SW

3 1 Load/Store,

Load

Contiguous load broadcast,

scalar + imm

LD1RB, LD1RH,

LD1RD, LD1RW,

LD1RSB, LD1RSH,

LD1RSW, LD1RQB,

LD1RQD,

LD1RQH,

LD1RQW

3 1 Load/Store,

Load

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 49 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Contiguous load broadcast,

scalar + scalar

LD1RQB, LD1RQD,

LD1RQH,

LD1RQW

3 1 Load/Store,

Load

Non-temporal load, scalar +

imm

LDNT1B, LDNT1D,

LDNT1H, LDNT1W

3 1 Load/Store,

Load

Non-temporal load, scalar +

scalar

LDNT1B, LDNT1D,

LDNT1H, LDNT1W

3 1 Load/Store,

Load

Non-temporal gather load,

vector + scalar 32-bit element

size

LDNT1B, LDNT1H,

LDNT1W,

LDNT1SB,

LDNT1SH

9 1/7 Load/Store

Non-temporal gather load,

vector + scalar 64-bit element

size

LDNT1B, LDNT1D,

LDNT1H,

LDNT1W,

LDNT1SB,

LDNT1SH,

LDNT1SW

7 1/6 Load/Store

Contiguous first faulting load,

scalar + scalar

LDFF1B, LDFF1D,

LDFF1H, LDFF1W,

LDFF1SB,

LDFF1SD,

LDFF1SH,

LDFF1SW

3 1 Load/Store,

Load

Contiguous non-faulting load,

scalar + imm

LDNF1B, LDNF1D,

LDNF1H,

LDNF1W,

LDNF1SB,

LDNF1SH,

LDNF1SW

3 1 Load/Store,

Load

Contiguous load two

structures to two vectors,

scalar + imm

LD2B, LD2D,

LD2H, LD2W

3 1 Load/Store

Contiguous load two

structures to two vectors,

scalar + scalar

LD2B, LD2D,

LD2H, LD2W

3 1/2 Load/Store

Contiguous load three

structures to three vectors,

scalar + imm

LD3B, LD3D,

LD3H, LD3W

5 1/3 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 50 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Contiguous load three

structures to three vectors,

scalar + scalar

LD3B, LD3D,

LD3H, LD3W

5 1/4 Load/Store

Contiguous load four

structures to four vectors,

scalar + imm

LD4B, LD4D,

LD4H, LD4W

5 1/3 Load/Store

Contiguous load four

structures to four vectors,

scalar + scalar

LD4B, LD4D,

LD4H, LD4W

5 1/4 Load/Store

Gather load, vector + imm,

32-bit element size

LD1B, LD1H,

LD1W, LD1SB,

LD1SH, LD1SW,

LDFF1B, LDFF1H,

LDFF1W,

LDFF1SB,

LDFF1SH,

LDFF1SW

9 1/7 Load/Store

Gather load, vector + imm,

64-bit element size

LD1B, LD1D,

LD1H, LD1W,

LD1SB, LD1SH,

LD1SW, LDFF1B,

LDFF1D, LDFF1H,

LDFF1W,

LDFF1SB,

LDFF1SD,

LDFF1SH,

LDFF1SW

7 1/6 Load/Store

Gather load, 32-bit scaled

offset

LD1H, LD1SH,

LDFF1H,

LDFF1SH, LD1W,

LDFF1W,

LDFF1SW

7 1/7 Load/Store

Gather load, 32-bit unpacked

unscaled offset

LD1B, LD1SB,

LDFF1B, LDFF1SB,

LD1D, LDFF1D,

LD1H, LD1SH,

LDFF1H,

LDFF1SH, LD1W,

LD1SW, LDFF1W,

LDFF1SW

7 1/6 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 51 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Gather load, 32-bit unscaled

offset

LD1B, LD1H,

LD1W, LDFF1B,

LDFF1H, LDFF1SB,

LDFF1SH,

LDFF1W

7 1/7 Load/Store

Gather load, 32-bit unpacked

scaled offset

LD1B, LD1SB,

LDFF1B, LDFF1SB,

LD1D, LDFF1D,

LD1H, LD1SH,

LDFF1H,

LDFF1SH, LD1W,

LD1SW, LDFF1W,

LDFF1SW

7 1/6 Load/Store

Gather load, 64-bit unscaled

offset

LD1B, LD1D,

LD1H, LD1SB,

LD1SH, LD1SW,

LD1W, LDFF1B,

LDFF1D, LDFF1H,

LDFF1SB,

LDFF1SH,

LDFF1SW,

LDFF1W

7 1/6 Load/Store

Gather load, 64-bit scaled

offset

LD1B, LD1D,

LD1H, LD1SB,

LD1SH, LD1SW,

LD1W, LDFF1B,

LDFF1D, LDFF1H,

LDFF1SB,

LDFF1SH,

LDFF1SW,

LDFF1W

7 1/6 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 52 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.29 SVE Store instructions

Base register updates are done in parallel to the operation.

Table 2-28: SVE Store instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Store from predicate reg STR - 1 Load/Store

Store from vector reg STR - 1 Load/Store

Contiguous store, scalar +

imm

ST1B, ST1H, ST1D,

ST1W

- 1 Load/Store

Contiguous store, scalar +

scalar

ST1H, ST1B, ST1D,

ST1W

- 1 Load/Store

Contiguous store two

structures from two vectors,

scalar + imm

ST2B, ST2H, ST2D,

ST2W

- 1/2 Load/Store

Contiguous store two

structures from two vectors,

scalar + scalar

ST2H, ST2B, ST2D,

ST2W

- 1/2 Load/Store

Contiguous store three

structures from three vectors,

scalar + imm

ST3B, ST3H, ST3W - 1/6 Load/Store

Contiguous store three

structures from three vectors,

scalar + imm, doubleword

ST3D - 1/3 Load/Store

Contiguous store three

structures from three vectors,

scalar + scalar

ST3B, ST3H, ST3W - 1/6 Load/Store

Contiguous store three

structures from three vectors,

scalar + scalar, doubleword

ST3D - 1/3 Load/Store

Contiguous store four

structures from four vectors,

scalar + imm

ST4B, ST4H, ST4W - 1/8 Load/Store

Contiguous store four

structures from four vectors,

scalar + imm, doubleword

ST4D - 1/4 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 53 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Contiguous store four

structures from four vectors,

scalar + scalar

ST4B, ST4H, ST4W - 1/8 Load/Store

Contiguous store four

structures from four vectors,

scalar + scalar, doubleword

ST4D - 1/4 Load/Store

Non-temporal store, scalar +

imm

STNT1B, STNT1D,

STNT1H, STNT1W

- 1 Load/Store

Non-temporal store, scalar +

scalar

STNT1H, STNT1B,

STNT1D, STNT1W

- 1 Load/Store

Scatter non-temporal store,

vector + scalar 32-bit element

size

STNT1B, STNT1H,

STNT1W

- 1/9 Load/Store

Scatter non-temporal store,

vector + scalar 64-bit element

size

STNT1B, STNT1D,

STNT1H, STNT1W

- 1/7 Load/Store

Scatter store vector + imm

32-bit element size

ST1B, ST1H, ST1W - 1/9 Load/Store

Scatter store vector + imm

64-bit element size

ST1B, ST1D, ST1H,

ST1W

- 1/7 Load/Store

Scatter store, 32-bit scaled

offset

ST1H, ST1W - 1/9 Load/Store

Scatter store, 32-bit unpacked

unscaled offset

ST1B, ST1D, ST1H,

ST1W

- 1/7 Load/Store

Scatter store, 32-bit unpacked

scaled offset

ST1D, ST1H, ST1W - 1/7 Load/Store

Scatter store, 32-bit unscaled

offset

ST1B, ST1H, ST1W - 1/9 Load/Store

Scatter store, 64-bit unscaled

offset

ST1B, ST1D, ST1H,

ST1W

- 1/7 Load/Store

Scatter store, 64-bit scaled

offset

ST1D, ST1H, ST1W - 1/7 Load/Store

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 54 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.30 SVE Miscellaneous instructions

Table 2-29: SVE Miscellaneous instructions

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Read first fault register,

unpredicated

RDFFR 1 1 Load/Store

Read first fault register,

predicated

RDFFR 3 1 Load/Store

Read first fault register and

set flags

RDFFRS 3 1 Load/Store

Set first fault register SETFFR 1 1 Load/Store

Write to first fault register WRFFR 1 1 Load/Store

2.31 SVE Cryptography instructions

Table 2-30: SVE cryptography instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Crypto AES ops AESD, AESE,

AESIMC, AESMC

3 2 Crypto

Crypto SHA3 ops BCAX, EOR3 3 2 VALU

Crypto SHA3 ops, exclusive

Or and rotate

XAR 4 2 VALU

Crypto SHA3 ops RAX1 RAX1 3 2 VALU

Crypto SM4 ops SM4E, SM4EKEY 9 1/7 VMC

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 55 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.32 MOPS instructions

Table 2-31: MOPS instructions.

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Memory Copy Forward-only

Prologue

CPYFP, CPYFPN,

CPYFPRN,

CPYFPRT,

CPYFPRTN,

CPYFPRTRN,

CPYFPRTWN,

CPYFPT, CPYFPTN,

CPYFPTRN,

CPYFPTWN,

CPYFPWN,

CPYFPWT,

CPYFPWTN,

CPYFPWTRN,

CPYFPWTWN

2 1/2 ALU,

Load/Store

Memory Copy Forward-only

Main

CPYFM, CPYFMN,

CPYFMRN,

CPYFMRT,

CPYFMRTN,

CPYFMRTRN,

CPYFMRTWN,

CPYFMT,

CPYFMTN,

CPYFMTRN,

CPYFMTWN,

CPYFMWN,

CPYFMWT,

CPYFMWTN,

CPYFMWTRN,

CPYFMWTWN

1[5] 1 ALU,

Load/Store

[5] Actual execution latency depends on Xn. ForXn > 16, latency will be bXn−16
16

c.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 56 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Memory Copy Forward-only

Epilogue

CPYFE, CPYFEN,

CPYFERN,

CPYFERT,

CPYFERTN,

CPYFERTRN,

CPYFERTWN,

CPYFET, CPYFETN,

CPYFETRN,

CPYFETWN,

CPYFEWN,

CPYFEWT,

CPYFEWTN,

CPYFEWTRN,

CPYFEWTWN

1 1 ALU,

Load/Store

Memory Copy Prologue CPYP, CPYPN,

CPYPRN, CPYPRT,

CPYPRTN,

CPYPRTRN,

CPYPRTWN,

CPYPT, CPYPTN,

CPYPTRN,

CPYPTWN,

CPYPWN,

CPYPWT,

CPYPWTN,

CPYPWTRN,

CPYPWTWN

3 1/3 ALU,

Load/Store

Memory Copy Main CPYM, CPYMN,

CPYMRN, CPYMRT,

CPYMRTN,

CPYMRTRN,

CPYMRTWN,

CPYMT, CPYMTN,

CPYMTRN,

CPYMTWN,

CPYMWN,

CPYMWT,

CPYMWTN,

CPYMWTRN,

CPYMWTWN

1[6] 1 ALU,

Load/Store

[6] Actual execution latency depends on Xn. ForXn > 16, latency will be bXn−16
16

c.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 57 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

Instruction Group AArch64

Instruction

Execution

Latency

Execution

Throughput

Utilized

Pipeline

Memory Copy Epilogue CPYE, CPYEN,

CPYERN, CPYERT,

CPYERTN,

CPYERTRN,

CPYERTWN,

CPYET, CPYETN,

CPYETRN,

CPYETWN,

CPYEWN,

CPYEWT,

CPYEWTN,

CPYEWTRN,

CPYEWTWN

1 1 ALU,

Load/Store

Memory Set Prologue SETP, SETPN,

SETPT, SETPTN

2 1/2 ALU,

Load/Store

Memory Set Main SETM, SETMN,

SETMT, SETMTN

1[7] 1 ALU,

Load/Store

Memory Set Epilogue SETE, SETEN,

SETET, SETETN

1 1 ALU,

Load/Store

Memory Set with tag setting

Prologue

SETGP, SETGPN,

SETGPT, SETGPTN

2 1/2 ALU,

Load/Store

Memory Set with tag setting

Main

SETGM, SETGMN,

SETGMT,

SETGMTN

1[8] 1 ALU,

Load/Store

Memory Set with tag setting

Epilogue

SETGE, SETGEN,

SETGET, SETGETN

1 1 ALU,

Load/Store

[7] Actual execution latency depends on Xn. ForXn > 16, latency will be bXn−16
16

c.
[8] Actual execution latency depends on Xn. ForXn > 16, latency will be bXn−16

16
c.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 58 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.33 SME instructions

SME instructions are instructions within the SME extensions 2-31

SME instructions are decoded on the CPU and then issued to the C1-SME2. The overall

performance of the instructions rely not only on the CPU, but also the C1-SME2 unit and transport

layer.

This section only describes the performance from the CPU point of view.

The CPU has a maximum bandwidth of three instructions to the C1-SME2 unit. With the use of

MOVPRFX fusion this can be increased to four.
There are five different classes of SME instructions from a performance point of view in the CPU.

The instructions related to entering and exiting streaming mode, system related instructions e.g.

FPSR updates, load store related instructions, predicate and flag related instructions and finally data

processing instructions.

Instruction fusion in the form of MOVPRFX is supported in the same way as in SVE mode 2-31.

2.33.1 Entering and leaving streaming mode

To enter and leave streaming mode use the SMSTART and SMSTOP instructions. The MSR SVCR, Xn
versions incur a penalty in terms of a flush. SMSTART and SMSTOP are single issued.

2.33.2 Predicate and flag related instructions

Predicate only instructions, where the producer and consumers are predicate and or integer, have

the same performance as in SVE. With the exception of the WHILE instructions which have one less
cycle of throughput.

Instructions which produce the predicate value based on vector registers, e.g. a CMPEQ <Pd>.<T>,
<Pg>/Z, <Zn>.<T>, <Zm>.<T> are executed on the C1-SME2 unit. Therefore any instruction
consuming the same predicte on the CPU, e.g. predicated load / stores or predicate operation will

stall until the result has been produced.

These code constructs should be avoided.

The CPU has a mechanism to deal with multiple outstanding writes to the same predicate register.

With a maximum of 16 outstanding writes. For example if a CMP is executed in a loop and the

predicate is used only as a consumer in subsequent data processing instructions executed on the

C1-SME2, there is no need for the CPU to stall as there is no consumer of the predicate in the CPU

itself. This mechanism is the same for the NZCV flags which also supports a maximum of 16

outstanding writes.

The 16 outstanding writes are only tracked for a single predicated register at a time. Any other

predicate register which is outstanding at the same time would incur stall penalties until the result is

produced.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 59 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Instruction characteristics

2.33.3 Load and store instructions

Load and store instructions have a bandwidth of two instead of three as the bandwidth to the

memory system is two wide. They can be issued together with data processing instructions.

2.33.4 Data processing instructions

These instructions can use the full bandwidth of three instructions per cycle.

2.33.5 System register instructions

System instructioons e.g. MSR FPSR, Xn are single issue only

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 60 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Special considerations

3 Special considerations

3.1 Issue constraints

The issue queue has space for three instructions that support a maximum of (excluding

Floating-Point. Predicate, SIMD, SVE register accesses):

• Four general purpose destination registers.

• Six general purpose source registers.

An instruction will occupy two entries when it has either:

• Three or more general purpose destination registers.

• Three or more general purpose source registers.

An instruction will stall if insufficient space is available in the issue queue.

AES instructions will stall until there is at least one other instruction available to be issued (see 3.2

Instruction fusion).

A maximum of three issue queue entries can be co-issued per cycle (ignoring hazards) consisting of

at most:

• Two ALU instructions.

• Two load instructions.

• One store instruction.

• Two VPU data processing instructions.

Multicycle entries disable co-issuing for all cycles of the operation but the last.

The following are multicycle:

• Atomic instructions with Acquire or Release semantics.

• Loads that load more than 256-bit of data.

• Stores that store more than 128-bits of data.

• Stores with Release semantics.

• RDFFRS instructions.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 61 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Special considerations

3.2 Instruction fusion

C1-Nano Core can accelerate key instruction pairs in an operation called fusion.

The following instruction pairs can be fused for increased execution efficiency:

• ’AESE + AESMC’ and ’AESD + AESIMC’ (see 3.3)

• MOVPRFX fusion: C1-Nano Core implements instruction fusion for MOVPRFX instructions
followed by SVE data processing instructions in all cases where the instruction pair is defined

as architecturally predictable other than those listed below, and the fused pair will execute with

the latency of the SVE data processing instruction.

Due to microarchitectural limitations, the following instructions will not fuse with an

unpredicated MOVPRFX: FCMLA, FMAD, FMLA, FMLS, FNMAD, FNMLA, FNMLS, FNMSB,

MAD, MLA, MLS, MSB, UDOT, BFMLALB, BFMLALT, SMMLA, UMMLA, USMMLA, USDOT,

SUDOT.

The following instructions will not fuse with a predicated or unpredicated MOVPRFX: CNT,

SABA, SABALB, SABALT, UABA, UABALB, UABALT, URSRA.

3.3 Branch instruction alignment

Branch instruction and branch target instruction alignment and density can affect performance.

For best case performance, avoid placing more than one conditional branch in-

structions within an aligned 16-byte instruction memory region.

3.4 Load / Store Alignment

The Armv8-A architecture allows many types of load and store accesses to be arbitrarily aligned.

C1-Nano Core handles most unaligned accesses without performance penalties. However, there are

cases which could reduce bandwidth or incur additional latency, as described below.

• Quad-word load operations that are not 4-byte aligned.

• Load operations that cross a 32-byte boundary.

• Store operations that cross a 16-byte boundary.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 62 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Special considerations

3.5 A64 low latency pointer forwarding

In the A64 instruction set the following pointer sequence is expected to be common to generate

load-store addresses:

adrp x0, <const>
ldrp x0, [x0, #lo12 <const>]

In C1-Nano Core, there are dedicated forwarding paths that always allow this sequence to be

executed without incurring a dependency-based stall.

3.6 AUT* RET forwarding

In the A64 instruction set any variant of the AUT instruction will be dual issued with the directly

following RET instruction. The latency of the AUT instruction for the dependency of the LR does not

apply for these cases.

3.7 SIMDMAC forwarding

For the following integer SIMD instructions:

MUL, MLA, MLS, UMULL, UMULL2. SMULL, SMULL2. UMLAL. UMLAL2, SMLAL, SMLAL2,

UMLSL, UMLSL2, SMLSL, SMLAL2, UDOT, SDOT

A dedicated MAC accumulator forwarding path is present. This forwarding path will be triggered

only when two consecutive instructions satisfy the following conditions:

• Both instructions read from/write to the same destination/accumulator register.

• Both instructions use the same destination element size.

• The instructions target the same destination register size (128-bit or 64-bit).

When this forwarding path is active, the latency between the above instructions will be 1 cycle.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 63 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Special considerations

3.8 Memory Tagging Extensions

Enabling precise tag checking can prevent C1-Nano Core from entering write-streaming mode. This

can reduce performance and increase power for larger writes, and memset or memcpy-like

workloads.

3.9 Memory routines

C1-Nano Core implements FEAT_MOPS, a feature that optimizes memory copying and setting

operations by proposing microarchitecture-independent instruction sequences. For each invocation

of a memcpy, memmove or memset routine, three instructions (a prologue, main, and epilogue)

should be used consecutively. C1-Nano Core implements Option B for all instructions of

FEAT_MOPS. Those are referenced as Memory Copy and Memory Set instructions in the Armv9.3-A

architecture which exhaustively describes all supported instructions, such as nontemporal versions.

Table 3-1: C1-Nano FEAT_MOPS bandwidth

Operation FEAT_MOPS Instructions Opeartion Bandwidth

Memory copying (memcpy, memmove) CPY* 16 bytes/cycles

Memory setting (memset) to 0 SET* 16 bytes/cycles

Memory setting to non-zero value SET* 16 bytes/cycles

The bandwidth achievable with SET* is less than that with DC ZVA, given the same alignment and

data size conditions. Therefore, DC ZVA should be used for optimal memset to zero. An example

routine of memset to zero using DC ZVA is shown in Figure 3-4.

In case one does not want to use FEAT_MOPS instructions, legacy memcpy and memset routines

can be used. These routines and corresponding recommendations are described below.

To achieve maximum throughput for memory copy (or similar loops), one should do the following:

• Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.

• Stores should be aligned on a 16-byte boundary wherever possible.

• Loads should not cross a 32-byte boundary as they incur a penalty.

Updated optimized routines, including those utilizing FEAT_MOPS instructions,

are available:

https://github.com/ARM-software/optimized-routines/tree/master/string/

aarch64

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 64 of 76

https://github.com/ARM-software/optimized-routines/tree/master/string/aarch64
https://github.com/ARM-software/optimized-routines/tree/master/string/aarch64

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Special considerations

Figure 3-1 shows a code snippet from the inner loop of memory copy routine that copies at least

128 bytes. The loop copies 64 bytes per iteration and prefetches one iteration ahead.

Figure 3-1: Code Snippet from memcpy routine - large copy inner loop.

L(loop64_simd):
str A_q, [dst, 16]
ldr A_q, [src, 16]
str B_q, [dst, 32]
ldr B_q, [src, 32]
str C_q, [dst, 48]
ldr C_q, [src, 48]
str D_q, [dst, 64]!
ldr D_q, [src, 64]!
subs count, count, 64
b.hi L(loop64_simd)

Figure 3-2 shows a code snippet from the inner loop memory copy routine that copies 0 to 16 bytes.

Figure 3-2: Code Snippet from memcpy routine - small copy inner loop.

.p2align 4
/* Small copies: 0..16 bytes. */
L(copy16_simd):
/* 8-15 bytes. */
cmp count, 8
b.lo 1f
ldr A_l, [src]
ldr A_h, [srcend, -8]
str A_l, [dstin]
str A_h, [dstend, -8]
ret
.p2align 4
1:
/* 4-7 bytes. */
tbz count, 2, 1f
ldr A_lw, [src]
ldr A_hw, [srcend, -4]
str A_lw, [dstin]
str A_hw, [dstend, -4]
ret

bic src, src, 15

To achieve maximum throughput on memset, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of

looping. Figure 3-3 shows code from the memset routine to set 17 to 96 bytes.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 65 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Special considerations

Figure 3-3: Code snippet from memset routine.

L(set_medium):
str q0, [dstin]
tbnz count, 6, L(set96)
str q0, [dstend, -16]
tbz count, 5, 1f
str q0, [dstin, 16]
str q0, [dstend, -32]
1: ret

To achieve maximum performance on memset to zero, it is recommended that one use DC ZVA

instead of STP/SET*. Figure 3-4 shows code from the memset routine to illustrate the usage of DC

ZVA.

Figure 3-4: Code snipper from memset to zero routine.

L(zva_loop):
add dst, dst, 64
dc zva, dst
subs count, count, 64
b.hi L(zva_loop)
stp q0, q0, [dstend, -64]
stp q0, q0, [dstend, -32]
ret

3.10 Cache maintenance operations

While using set way invalidation operations on L1 cache, it is recommended that software be written

to traverse the sets in the inner loop and ways in the outer loop.

3.11 Cache access latencies

The latency numbers for load instructions given in Instruction characteristics section assume the

ideal case. It should be noted that more cycles will be added to these access delays depending on

which level of cache is accessed. Table 4-1 lists the latencies for the different levels of cache.

Table 3-2: C1-Nano cache access latencies

Scenario Cycle count

L1 cache hit 2-4 cycles (2 is best case, 4 is normal case)

L2 cache hit 10-12 cycles (10 is best case, 11-12 is normal case)

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 66 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

3.12 Shared VPU

C1-Nano Core shares a VPU between all C1-Nano cores in a complex. The VPU is used to execute

ASIMD, FP, Neon, and SVE instructions. Instructions being executed on VPU pipelines by one core

may reduce performance of the instructions executed on the VPU by the other core.

3.13 AES encryption / decryption

C1-Nano Core implements instruction fusion for AES instructions (see section 3.2). It is

recommended instructions pairs be interleaved in groups of three or more for the following: AESE,

AESMC, AESD, AESIMC.

Figure 3-5: Code snippet for AES instruction fusion.

AESE data0, key_reg
AESMC data0, data0
AESE data1, key_reg
AESMC data1, data1
AESE data2, key_reg
AESMC data2, data2...

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 67 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of the agreement

between you and Arm Limited (“Arm”) or the terms of the agreement between you and the party authorized by

Arm to disclose this document to you.

This document is protected by copyright and other related rights and the use or implementation of the

information contained in this document may be protected by one or more patents or pending patent

applications. No part of this document may be reproduced in any form by any means without the express prior

written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual

property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that, without obtaining

Arm’s prior written consent, you will not use or permit others to use the information: (i) for the purposes of

determining whether the subject matter of this document infringes any third party patents; (ii) for developing

technology or products which avoid any of Arm’s intellectual property; (iii) as a reference for modifying

existing patents or patent applications or creating any continuation, continuation in part, or extension of

existing patents or patent applications; or (iv) for generating data for publication or disclosure to third parties,

which compares the performance or functionality of the Arm technology described in this document with any

other products created by you or a third party.

The content of this document is informational only. Any solutions presented herein are subject to changing

conditions, information, scope, and data. This document was produced using reasonable efforts based on

information available as of the date of issue of this document. The scope of information in this document may

exceed that which Arm is required to provide, and such additional information is merely intended to further

assist the recipient and does not represent Arm’s view of the scope of its obligations. You acknowledge and

agree that you possess the necessary expertise in system security and functional safety and that you shall be

solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning

your products, notwithstanding any information or support that may be provided by Arm herein. In addition,

you are responsible for any applications which are used in conjunction with any Arm technology described in

this document, and to minimize risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED

“AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NOWARRANTIES, EXPRESS, IMPLIED OR

STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH

RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,

and has undertaken no analysis to identify or understand the scope and content of, any patents, copyrights,

trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL ARM BE LIABLE FOR ANY DAMAGES,

INCLUDINGWITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied

approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 68 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to

assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such

export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to

any partnership relationship with any other company. Arm may make changes to this document at any time

and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or

signed written agreement covering this document with Arm, then the click through or signed written

agreement prevails over and supersedes the conflicting provisions of these terms.

This document may be translated into other languages for convenience, and you agree that if there is any

conflict between the English version of this document and any translation, the terms of the English version of

this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm

Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at

https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names

mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(PRE-1122-V1.0)

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 69 of 76

https://www.arm.com/company/policies/trademarks

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Product and document information

Read the information in these sections to understand the release status of the product and

documentation, and the conventions used in the Arm documents.

Product status

All products and Services provided by Arm require deliverables to be prepared and made available at

different levels of completeness. The information in this document indicates the appropriate level of

completeness for the associated deliverables.

Product completeness status

The information in this document is Final, that is for a developed product

Product revision status

This product is r0p1, which indicates the revision status of the product described in this manual,

where:

r(value) Identifies the major revision of the product, for example, r1.

p(value) Identifies the minor revision or modification status of the product, for example, p2.

Revision history

These sections can help you understand how the document has changed over time.

Document release information

The Document history table gives the issue number and the released date for each released issue of

this document.

Document history

Issue Date Confidentiality Change

0001-04 16 September

2025

Non-Confidential Documentation update.

0001-03 10 September

2025

Non-Confidential Second early access release for r0p1.

0001-02 7 May 2024 Confidential First early access release for r0p1.

0000-01 26 February 2024 Confidential First limited access release for r0p0.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 70 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Change history

The first table is for the first release. Then, each table compares the new issue of the manual with the

last released issue of the manual. Issue numbers match the revision history in Release Information.

Table 3-4: Issue 0000-01

Change Location

First limited access release for r0p0 -

Table 3-5: Issue 0001-02

Change Location

First early access release for r0p1 -

Editorial changes Throughout document

Table 3-6: Issue 0001-03

Change Location

Second early access release for r0p1 -

Updated product name to C1-Nano Throughout document

Memory routines updated to include FEAT_MOPS Section 3.9

Editorial changes Throughout document

Table 3-7: Issue 0001-04

Change Location

Correction to supported Arm Architecture version Section 1

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 71 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those

terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning

differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

Typographical conventions

Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands,

file and program names, and source code.

monospace underlined A permitted abbreviation for a command or option. You can

enter the underlined text instead of the full command or

option name.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in

the Arm®

Glossary. For example, IMPLEMENTATION DEFINED,

IMPLEMENTATION SPECIFIC, UNKNOWN, and

UNPREDICTABLE.

We recommend the following. If you do not follow these

recommendations your system might not work.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 72 of 76

https://developer.arm.com/glossary

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Convention Use

Your system requires the following. If you do not follow

these requirements your system will not work.

You are at risk of causing permanent damage to your system

or your equipment, or of harming yourself.

This information is important and needs your attention.

This information might help you perform a task in an easier,

better, or faster way.

This information reminds you of something important

relating to the current content.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,

have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the

shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 73 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.

Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 74 of 76

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Useful resources

This document contains information that is specific to this product. See the following resources for

other relevant information.

Access to Arm documents depends on their confidentiality:

• Arm Non-Confidential documents are available at

https://developer.arm.com/documentation. Each document link in the tables below provides

direct access to the online version of the document.

• Arm Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® C1-Scalable Matrix Extension 2 Configuration and Integration Manual 107832 Confidential

Arm® C1-Scalable Matrix Extension 2 Technical Reference Manual 107831 Non-Confidential

Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Configuration and

Integration Manual

101089 Confidential

Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference

Manual

101088 Non-Confidential

Arm® C1-Nano Core Cryptographic Extension Technical Reference Manual 107755 Confidential

Arm® C1-Nano Core iBEP User Guide PJDOC-

1505342170-

693760

Confidential

Arm® C1-Nano Core Release Note 109356 Confidential

Arm® C1-Nano Core Configuration and Integration Manual 107754 Confidential

Arm® C1-Nano Core Technical Reference Manual 107753 Non-Confidential

Arm® C1-DynamIQ™ Shared Unit Configuration and Integration Manual 107805 Confidential

Arm® C1-DynamIQ™ Shared Unit Technical Reference Manual 107804 Non-Confidential

Arm architecture and specifications Document ID Confidentiality

Arm® Architecture Reference Manual for A-profile architecture profile DDI 0487 Non-Confidential

AMBA® 5 CHI Architecture Specification IHI 0050 Non-Confidential

Arm® CoreSightTM Architecture Specification v3.0 IHI 0029 Non-Confidential

Non-Arm resources Document ID Organization

IEEE, Standard for Access and Control of Instrumentation Embedded within a

Semiconductor Device

1687-2014 IEEE

IEEE, Standard for Design and Verification of Low Power Integrated Circuits 1801-2009 IEEE

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 75 of 76

https://developer.arm.com/documentation
https://developer.arm.com/documentation/107831/latest
https://developer.arm.com/documentation/101088/latest
https://developer.arm.com/documentation/101088/latest
https://developer.arm.com/documentation/107753/latest
https://developer.arm.com/documentation/107804/latest
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ihi0050/latest/
https://developer.arm.com/documentation/ihi0029/latest
www.ieee.org
www.ieee.org

Arm® C1-Nano Core Software Optimization Guide 109590_0001_04
Issue 04

Non-Arm resources Document ID Organization

IEEE, Standard Test Access Port and Boundary Scan Architecture 1149.1-2001 IEEE

Copyright © 2024-2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 76 of 76

www.ieee.org

	Product Overview
	Pipeline overview

	Instruction characteristics
	 Instruction tables
	Branch Instructions
	Arithmetic and logical instructions
	Divide and multiply instructions
	Pointer authentication instructions
	Miscellaneous data-processing instructions
	Load instructions
	Store instructions
	Tag data processing
	Tag load instructions
	Tag store instructions
	FP scalar data processing instructions
	FP scalar miscellaneous instructions
	FP scalar load instructions
	FP scalar store instructions
	ASIMD Integer instructions
	ASIMD FP data processing instructions
	ASIMD BFloat16 (BF16) instructions
	ASIMD miscellaneous instructions
	ASIMD load instructions
	ASIMD store instructions
	Cryptography extensions
	CRC
	SVE Predicate instructions
	SVE Integer instructions
	SVE FP data processing instructions
	SVE BFloat16 (BF16) instructions
	SVE Load instructions
	SVE Store instructions
	SVE Miscellaneous instructions
	SVE Cryptography instructions
	MOPS instructions
	SME instructions
	Entering and leaving streaming mode
	Predicate and flag related instructions
	Load and store instructions
	Data processing instructions
	System register instructions

	Special considerations
	Issue constraints
	Instruction fusion
	Branch instruction alignment
	Load / Store Alignment
	A64 low latency pointer forwarding
	AUT* RET forwarding
	SIMD MAC forwarding
	Memory Tagging Extensions
	Memory routines
	Cache maintenance operations
	Cache access latencies
	Shared VPU
	AES encryption / decryption

	Proprietary Notice
	Product and document information
	Product status
	Revision history
	Conventions

	Useful resources

