
Arm GPU Errata for Application
Developers

Software Developer Errata Notice

Date of issue: July 04, 2025

Non-Confidential Document version: 4.0

Copyright © 2024-2025 Arm® Limited (or its affiliates). All rights
reserved.

Document ID: SDEN-3735689

This document contains all known errata since the r38p0 release of the product.

This document is Non-Confidential.

Copyright © 2024-2025 Arm® Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.

Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary notice found at the end of
this document.

This document (SDEN_3735689_4.0_en) was issued on July 04, 2025.

There might be a later issue at http://developer.arm.com/documentation/SDEN-3735689

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that
can be offensive. Arm strives to lead the industry and create change.

If you find offensive language in this document, please email terms@arm.com.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Arm GPU
Errata for Application Developers, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey:
https://developer.arm.com/documentation-feedback-survey.

http://developer.arm.com/documentation/SDEN-3735689
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey

Contents
Product version scope

Driver version information

Hardware version information

Introduction
Scope

Categorization of errata

Change Control

Errata summary table

Errata descriptions
Category A

Category A (rare)
3787671  Shader scalar integer right shifts return an incorrect result

Category B
3734951  Freeing command buffers without explicit release causes memory leaks

3779191  Read-only storage buffer accesses in inactive control flow are speculatively
executed

3779215  Shader clamp of conditional values with a zero limit produces incorrect code

3781413  Rendering large amounts of geometry causes rendering artifacts or DEVICE_LOST

3781554  Unreferenced vertex indices are speculatively shaded

3785718  Pipeline barriers are not transitive when intermediate stage is HOST

3786496  vkCmdBindVertexBuffers2() updates stride for an incorrect binding

3786517  vkCmdSetCullMode() incorrectly culls non-triangle topologies

3786532  Freeing simultaneous use command buffers causes memory corruption

3786926  vkCmdBeginRendering() causes rendering artifacts or DEVICE_LOST

3787459  Incorrect rendering when input gl_Position is declared outside of an input block

3787677  Render pass loadOp will return black for 3D images that are 32x32x1 or smaller

3809538  Dynamic render state incorrectly inherited on pipeline change

3809543  Vulkan pipeline caches incorrectly accessed when created with external
synchronization

3809544  OpenGL ES shaders incorrectly use buffer instance name to define bind location

3809560  OpenGL ES surface reads have missing dependency on earlier MSAA surface
writes

3809773  OpenGL ES deadlocks when deleting resources when many compute dispatches
are outstanding

5

5

5

6

6

6

7

10

13

13

14

14

15

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 3 of 51

Non-Confidential

3809774  Incorrect rendering when dynamic state disables depth/stencil write if shader reads
depth/stencil

3817626  Shader constant folding treats unsigned integer values as signed

3843108  Atomic access coordinates for images and texture buffers always truncated to 16-
bits

3843237  Vector bitwise of swizzle/combine returns incorrect result

3893903  Dynamic render state incorrectly used when modified between two binds of a
static pipeline

3893905  Dynamic render state incorrectly inherited on pipeline change (2)

3893908  Declaring NxM matrices as row_major reports incorrect buffer size

3893910  Declaring matrices in struct or array as row_major reports incorrect buffer size

3893911  vkQueuePresentKHR() can hang if no vkQueueSubmit() calls were made

3895259  Enabling inherited occlusion queries with no active query in the primary command
buffer causes DEVICE_LOST

3922301  ASTC decompression incorrectly rounds linear color endpoints when using unorm8
decode mode

4021056  Incorrect rendering when using a separate stencil layout for a depth-stencil
attachment

4021113  Shader compiler reassociation ignores wrapping behavior of integer types

Category B (rare)

Category C
3817843  Vulkan VK_ARM_scheduling_controls feature query always reports false

4065742  GPU Active performance counter may overcount

Proprietary notice

Product and document information
Product status

Product completeness status

Product revision status

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

47

48

49

51

51

51

51

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 4 of 51

Non-Confidential

Product version scope
This document covers Arm GPU and driver errata that have API-visible impact on application software.

To be included in this document an erratum must meet the following criteria:

Must impact Arm GPU hardware from the Mali-G710 series onwards.
Must impact Arm GPU drivers from the r38p0 release onwards.
Must have been encountered by an application developer on a shipping device.

Driver version information
The latest Arm DDK driver release version at the time this document was generated was r54p1.

The impacted driver versions listed for each erratum are based on the version of the original Arm DDK
release made by Arm. Older drivers released in OEM devices may include backported fixes from a later
Arm DDK release, and therefore not be impacted by an issue listed here.

Application-visible errata caused by hardware issues that are independent of driver version will not
document an impacted driver version.

Hardware version information
Arm GPUs are released as sets of products based on the same microarchitecture. Errata will list the GPU
series, instead of individual products, if the whole series is impacted.

Product series Products

Mali-G710 series Mali-G710, Mali-G610,
Mali-G510, Mali-G310

Immortalis-G715 series Immortalis-G715,
Mali-G715, Mali-G615

Immortalis-G720 series Immortalis-G720,
Mali-G720, Mali-G620

Immortalis-G925 series Immortalis-G925,
Mali-G725, Mali-G625

Application-visible errata that are independent of the hardware product will not document an impacted
hardware version.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 5 of 51

Non-Confidential

Introduction
Scope
This document describes errata categorized by level of severity. Each description includes:

The current status of the erratum.
Where the implementation deviates from the specification and the conditions required for erroneous
behavior to occur.
The implications of the erratum with respect to typical applications.
The application and limitations of a workaround where possible.

Categorization of errata
Errata are split into three levels of severity and further qualified as common or rare:

Category A A critical error. No workaround is available or workarounds are impactful. The error is likely to be common
for many systems and applications.

Category A (Rare) A critical error. No workaround is available or workarounds are impactful. The error is likely to be rare for
most systems and applications. Rare is determined by analysis, verification and usage.

Category B A significant error or a critical error with an acceptable workaround. The error is likely to be common for
many systems and applications.

Category B (Rare) A significant error or a critical error with an acceptable workaround. The error is likely to be rare for most
systems and applications. Rare is determined by analysis, verification and usage.

Category C A minor error.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 6 of 51

Non-Confidential

Change Control
Errata are listed in this section if they are new to the document, or marked as "updated" if there has
been any change to the erratum text. Fixed errata are not shown as updated unless the erratum text has
changed. The errata summary table identifies errata that have been fixed in each product revision.

July 04, 2025: Changes in document version v4.0

ID Status Area Category Summary

3893908 Updated Programmer Category B Declaring NxM matrices as row_major reports incorrect buffer size

3895259 New Programmer Category B Enabling inherited occlusion queries with no active query in the primary
command buffer causes DEVICE_LOST

4021056 New Programmer Category B Incorrect rendering when using a separate stencil layout for a depth-stencil
attachment

4021113 New Programmer Category B Shader compiler reassociation ignores wrapping behavior of integer types

4065742 New Programmer Category C GPU Active performance counter may overcount

March 06, 2025: Changes in document version v3.0

ID Status Area Category Summary

3922301 New Programmer Category B ASTC decompression incorrectly rounds linear color endpoints when using
unorm8 decode mode

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 7 of 51

Non-Confidential

February 07, 2025: Changes in document version v2.0

ID Status Area Category Summary

3786926 Updated Programmer Category B vkCmdBeginRendering() causes rendering artifacts or DEVICE_LOST

3809538 New Programmer Category B Dynamic render state incorrectly inherited on pipeline change

3809543 New Programmer Category B Vulkan pipeline caches incorrectly accessed when created with external
synchronization

3809544 New Programmer Category B OpenGL ES shaders incorrectly use buffer instance name to define bind
location

3809560 New Programmer Category B OpenGL ES surface reads have missing dependency on earlier MSAA
surface writes

3809773 New Programmer Category B OpenGL ES deadlocks when deleting resources when many compute
dispatches are outstanding

3809774 New Programmer Category B Incorrect rendering when dynamic state disables depth/stencil write if
shader reads depth/stencil

3817626 New Programmer Category B Shader constant folding treats unsigned integer values as signed

3843108 New Programmer Category B Atomic access coordinates for images and texture buffers always truncated
to 16-bits

3843237 New Programmer Category B Vector bitwise of swizzle/combine returns incorrect result

3893903 New Programmer Category B Dynamic render state incorrectly used when modified between two binds
of a static pipeline

3893905 New Programmer Category B Dynamic render state incorrectly inherited on pipeline change (2)

3893908 New Programmer Category B Declaring NxM matrices as row_major reports incorrect buffer size

3893910 New Programmer Category B Declaring matrices in struct or array as row_major reports incorrect buffer
size

3893911 New Programmer Category B vkQueuePresentKHR() can hang if no vkQueueSubmit() calls were made

3785718 Updated Programmer Category B Pipeline barriers are not transitive when intermediate stage is HOST

3786517 Updated Programmer Category B vkCmdSetCullMode() incorrectly culls non-triangle topologies

3817843 New Programmer Category C Vulkan VK_ARM_scheduling_controls feature query always reports false

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 8 of 51

Non-Confidential

November 14, 2024: Changes in document version v1.0

ID Status Area Category Summary

3787671 New Programmer Category A (rare) Shader scalar integer right shifts return an incorrect result

3734951 New Programmer Category B Freeing command buffers without explicit release causes memory leaks

3786926 New Programmer Category B vkCmdBeginRendering() causes rendering artifacts or DEVICE_LOST

3787459 New Programmer Category B Incorrect rendering when input gl_Position is declared outside of an
input block

3787677 New Programmer Category B Render pass loadOp will return black for 3D images that are 32x32x1 or
smaller

3779191 New Programmer Category B Read-only storage buffer accesses in inactive control flow are
speculatively executed

3779215 New Programmer Category B Shader clamp of conditional values with a zero limit produces incorrect
code

3781413 New Programmer Category B Rendering large amounts of geometry causes rendering artifacts or
DEVICE_LOST

3781554 New Programmer Category B Unreferenced vertex indices are speculatively shaded

3785718 New Programmer Category B Pipeline barriers are not transitive when intermediate stage is HOST

3786496 New Programmer Category B vkCmdBindVertexBuffers2() updates dynamic strides for an incorrect
binding

3786517 New Programmer Category B vkCmdSetCullMode() incorrectly culls non-triangle topologies

3786532 New Programmer Category B Freeing simultaneous use command buffers causes memory corruption

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 9 of 51

Non-Confidential

Errata summary table
The errata associated with this product affect the product versions described in the following table.

ID Area Category Summary Found in versions Fixed in version

3787671 Programmer Category A (rare) Shader scalar integer right shifts
return an incorrect result r42p0 - r47p0 r48p0

3734951 Programmer Category B Freeing command buffers without
explicit release causes memory leaks r48p0, r49p0 r49p1, r50p0

3779191 Programmer Category B
Read-only storage buffer accesses
in inactive control flow are
speculatively executed

r29p0 - ... Open

3779215 Programmer Category B
Shader clamp of conditional values
with a zero limit produces incorrect
code

r38p1 - r49p0,
r50p0 - r51p0 r49p1, r52p0

3781413 Programmer Category B
Rendering large amounts of
geometry causes rendering artifacts
or DEVICE_LOST

r0p0 - ... Open

3781554 Programmer Category B Unreferenced vertex indices are
speculatively shaded r0p0 - ... Open

3785718 Programmer Category B Pipeline barriers are not transitive
when intermediate stage is HOST

r41p0 - r49p0,
r50p0 - r51p0 r49p1, r52p0

3786496 Programmer Category B
vkCmdBindVertexBuffers2()
updates dynamic strides for an
incorrect binding

r42p0 - r47p0 r48p0

3786517 Programmer Category B vkCmdSetCullMode() incorrectly
culls non-triangle topologies

r41p0 - r49p2,
r50p0 - r51p0 r49p3, r52p0

3786532 Programmer Category B Freeing simultaneous use command
buffers causes memory corruption

r46p0 - r49p0,
r50p0 r49p1, r51p0

3786926 Programmer Category B vkCmdBeginRendering() causes
rendering artifacts or DEVICE_LOST

r49p1 - r49p2,
r50p0 - r51p0 r49p3, r52p0

3787459 Programmer Category B
Incorrect rendering when input
gl_Position is declared outside of an
input block

r19p0 - r46p0 r47p0

3787677 Programmer Category B
Render pass loadOp will return
black for 3D images that are
32x32x1 or smaller

r29p0 - r38p1 r39p0

3809538 Programmer Category B Dynamic render state incorrectly
inherited on pipeline change r38p0 - r44p0 r44p1

3809543 Programmer Category B
Vulkan pipeline caches incorrectly
accessed when created with
external synchronization

r43p0 - r45p0 r46p0

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 10 of 51

Non-Confidential

3809544 Programmer Category B
OpenGL ES shaders incorrectly use
buffer instance name to define bind
location

r43p0 - r46p0 r47p0

3809560 Programmer Category B
OpenGL ES surface reads have
missing dependency on earlier
MSAA surface writes

r44p0 - r45p0 r46p0

3809773 Programmer Category B
OpenGL ES deadlocks when
deleting resources when many
compute dispatches are outstanding

r42p0 - r47p0 r48p0

3809774 Programmer Category B
Incorrect rendering when dynamic
state disables depth/stencil write if
shader reads depth/stencil

r37p0 - r44p0 r44p1

3817626 Programmer Category B Shader constant folding treats
unsigned integer values as signed r0p0 - ... Open

3843108 Programmer Category B
Atomic access coordinates for
images and texture buffers always
truncated to 16-bits

r18p0 - r53p0 r54p0

3843237 Programmer Category B Vector bitwise of swizzle/combine
returns incorrect result r18p0 - r53p0 r54p0

3893903 Programmer Category B
Dynamic render state incorrectly
used when modified between two
binds of a static pipeline

r48p0 - r53p0 r54p0

3893905 Programmer Category B Dynamic render state incorrectly
inherited on pipeline change (2) r48p0 - r53p0 r54p0

3893908 Programmer Category B
Declaring NxM matrices as
row_major reports incorrect buffer
size

r18 - ... Open

3893910 Programmer Category B
Declaring matrices in struct or array
as row_major reports incorrect
buffer size

r18p0 - r54p0 r54p1

3893911 Programmer Category B
vkQueuePresentKHR() can hang if
no vkQueueSubmit() calls were
made

r37p0 - r42p0,
r44p0 - r49p0 r43p0, r49p1

3895259 Programmer Category B

Enabling inherited occlusion queries
with no active query in the primary
command buffer causes
DEVICE_LOST

r50p0 - ... Open

3922301 Programmer Category B
ASTC decompression incorrectly
rounds linear color endpoints when
using unorm8 decode mode

r0p0 - ... Open

4021056 Programmer Category B
Incorrect rendering when using a
separate stencil layout for a depth-
stencil attachment

r41p0 - r54p0 Open

ID Area Category Summary Found in versions Fixed in version

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 11 of 51

Non-Confidential

4021113 Programmer Category B
Shader compiler reassociation
ignores wrapping behavior of
integer types

r19p0 - r54p0 Open

3817843 Programmer Category C
Vulkan
VK_ARM_scheduling_controls
feature query always reports false

r47p0 - r49p2,
r50p0 - r52p0 r49p3, r53p0

4065742 Programmer Category C GPU Active performance counter
may overcount r0p0 - ... Open

ID Area Category Summary Found in versions Fixed in version

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 12 of 51

Non-Confidential

Errata descriptions
Category A
There are no errata in this category.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 13 of 51

Non-Confidential

Category A (rare)

3787671 
Shader scalar integer right shifts return an incorrect result

Status

APIs Affected: OpenGL ES, Vulkan
Impacted driver versions: r42p0 - r47p0
Fixed driver version: r48p0

Description

A shader compiler optimization can result in integer right shifts by a constant returning the wrong value
if all of the following conditions are true:

The shifted value is a scalar, and not a vec2 16-bit pair.
The right shifted value was multiplied by a literal constant immediately prior to the right shift,
including multiplies that are generated to implement a left shift operation.
The literal constants must be equivalent to the pair of shifts show in the expression below where
const1 shifts more bits than const0.

(X << const0) >> const1

This erratum affects right shifts created explicitly, using the right shift operator, and implicitly, for
instance as part of a compiler address generation.

Implications

The result of the right shift operation will be incorrect. If this causes an incorrect address to be
calculated, this might result in a Vulkan DEVICE_LOST if it causes a memory fault.

Workaround

There is no workaround for this erratum for compiler-generated shifts in addressing logic.

You can avoid the issue for user-generated shifts by sourcing either of the shift constants from a
uniform rather than a literal constant.

Using OpenGL ES GL_EXT_robustness or Vulkan robustBufferAccess can be be used to reduce the number
of instances of DEVICE_LOST caused by memory faults. However, in these circumstances rendering will
still be incorrect as the address accessed inside the buffer will be incorrect.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 14 of 51

Non-Confidential

Category B

3734951 
Freeing command buffers without explicit release causes memory leaks

Status

APIs affected: Vulkan
Impacted driver versions: r48p0 - r49p0
Fixed driver versions: r49p1, r50p0

Description

The GPU driver might leak memory when freeing a command buffer after it has been individually reset.
The issue is triggered when using the following API usage sequence:

1. Create a command pool using vkCreateCommandPool(), with
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT set.

2. Allocate a command buffer from the command pool using vkAllocateCommandBuffers().
3. Record some commands using the command buffer to trigger memory allocation.
4. Reset the command buffer without releasing resources, either by using an implicit reset when calling

vkBeginCommandBuffer(), or by using vkResetCommandBuffer() without
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT set.

5. Free the command buffer using vkFreeCommandBuffers().

In this scenario, the memory used for command buffer recording will not be freed or reused until the
command pool has been reset using vkResetCommandPool() with
VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT set, or destroyed using
vkDestroyCommandPool().

Implications

An application will run out of memory when enough memory is leaked.

Workaround

You can explicitly reset all command buffers using vkResetCommandBuffer() with
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT set before freeing them.

Alternatively, you can regularly reset the command pool using vkResetCommandPool() with
VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT set.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 15 of 51

Non-Confidential

3779191 
Read-only storage buffer accesses in inactive control flow are speculatively
executed

Status

APIs Affected: OpenGL ES, Vulkan
Impacted driver versions: r29p0 onwards
Fixed driver version: No shipping fix

Description

Read-only storage buffer accesses might be speculatively executed, even when located in a code path
which is dynamically not taken. For example, in the code below, the values array may be accessed even
when index is greater than maxIndex.

layout(set = 0, binding = 0) buffer B {
 vec4 values[16];
};

void main()
{
 uint index = ...; // Calculation of accessed index
 uint maxIndex = ...; // Calculation of dynamically last backed index
 if (index <= maxIndex)
 {
 vec4 readValue = values[index];
 }
}

Implications

An application might encounter incorrect rendering or Vulkan DEVICE_LOST if the speculative access
results in a memory fault.

Workaround

You can ensure that the buffer is valid for the full range of potentially speculatively accessed indices.
This requires that the buffer descriptor is valid and that it is backed by sufficient memory.

Alternatively, you can use OpenGL ES GL_EXT_robustness or Vulkan robustBufferAccess to clamp the
memory range accessed. However, note that this can reduce shader performance.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 16 of 51

Non-Confidential

3779215 
Shader clamp of conditional values with a zero limit produces incorrect code

Status

APIs affected: OpenGL ES, Vulkan, OpenCL
Impacted driver versions: r38p1 - r49p0, r50p0 - r51p0
Fixed driver versions: r49p1, r52p0

Description

When clamping values between two constants the compiler might generate incorrect code if all of the
following conditions are true:

The value being clamped is conditionally chosen from values known at compile-time.
The value being clamped can be positive or negative depending on the conditional selection.
The value of one of the clamp limits is known at compile time to be zero.

On impacted drivers the clamp is replaced by a min() or max(), limiting to only one end of the range,
instead of clamping to both ends of the range.

Clamp behavior implemented manually, for example using separate min() and max() calls, is also impacted
by this errata.

The following example can trigger the errata on impacted driver versions:

vec2 data[4] = vec2[](vec2(-1.0, -1.0), vec2(-1.0, 3.0), vec2(3.0, -1.0), vec2(3.0, -1.0));
vec2 pos_xy = data[min(gl_VertexIndex, 3)];
vec2 pos_xy_clamp = clamp(pos_xy, vec2(0.0, 0.0), vec2(1.0, 1.0));

Implications

The miscalculated data value can cause undefined behavior in the impacted shader program.

Workaround

You can use a uniform buffer to provide the constant inputs, so that they are no longer compile-time
known constants. For example:

uniform vec2 data[4];
vec2 pos_xy = data[min(gl_VertexIndex, 3)];
vec2 pos_xy_clamp = clamp(pos_xy, vec2(0.0, 0.0), vec2(1.0, 1.0));

Alternatively, you can add a uniform-sourced zero to each constant before using it, so that the input in
to the clamp is no longer a compile-time known constants. This can have more performance overhead
than directly sourcing the data from a uniform buffer.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 17 of 51

Non-Confidential

3781413 
Rendering large amounts of geometry causes rendering artifacts or
DEVICE_LOST

Status

APIs Affected: OpenGL ES, Vulkan
Impacted hardware: All Arm GPUs
Fixed hardware: No shipping fix, but less likely on recent products

Description

Arm GPUs store intermediate outputs from vertex, tessellation, and geometry pipeline stages to an
implementation-owned memory pool in system memory. When the intermediate memory pool is
exhausted the application might experience missing geometry or a Vulkan DEVICE_LOST error.

The memory allocation strategy and storage requirements have been improved in recent generations of
Arm hardware, making it much harder to hit the out-of-memory condition. The sections below describe
the behavior in each generation. In these sections, "Advanced geometry" includes draw calls using
transform feedback, tessellation shaders, and geometry shaders.

Arm GPUs implementing the Midgard or Bifrost architectures

This generation of hardware defaults to a 180MB memory pool per render pass that is used for
intermediate memory allocations.

For all draw calls, memory is allocated to store the output data of all pipeline stages, for all vertices in the
min-to-max range of spanned indices. This includes storage for indices between the min and max that
are not referenced, and storage for indices that contribute only to culled primitives.

Note: The 180MB limit is the Arm default, but we are aware of some entry-level devices where the limit
has been lowered by device manufacturers.

Arm GPUs implementing the Valhall architecture

This generation of hardware defaults to a 180MB memory pool per render pass that is used for
intermediate memory allocations.

For draw calls that are not using Advanced geometry, memory is allocated to store output data of the
vertex shader for all vertices that are used by visible primitives.

For all draw calls that are using Advanced geometry, memory is still allocated to store the output data of
all pipeline stages, for all vertices in the min-to-max range of spanned indices.

Note: The 180MB limit is the Arm default, but we are aware of some entry-level devices where the limit
has been lowered by device manufacturers.

Arm GPUs implementing the 5th Generation architecture

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 18 of 51

Non-Confidential

This generation of hardware uses a larger memory pool that can be dynamically shared by multiple
render passes, so there is no longer a clearly defined limit.

For draw calls that are not using Advanced geometry, this generation of hardware uses Deferred Vertex
Shading (DVS). When using DVS, the upfront processing only stores primitive binning metadata
information to the intermediate pool. Vertex shader data outputs are no longer stored, and are
recomputed during the main phase that runs the full vertex shader and fragment shading per tile.

For all draw calls that are using Advanced geometry, memory is still allocated to store the output data of
all pipeline stages, for all vertices in the min-to-max range of spanned indices.

Implications

Exhausting the intermediate memory pool can result in rendering corruption or Vulkan DEVICE_LOST
errors.

Workaround

There is no complete workaround, but limits are very hard to hit if you follow the Arm best practice
advice:

You should ensure that all indices between a draw call's min and max index are actually used in the
index buffer.
You should avoid encoding metadata in the index value high bits, even if masking the value when
loading data from buffers, because it can increase the spanned index range.
You should avoid using shader pipelines that require the Advanced geometry path in the
implementation.
You should avoid using very dense geometry meshes.
You should minimize the per-vertex storage requirements by reducing the number and data
precision of vertex attributes.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 19 of 51

Non-Confidential

3781554 
Unreferenced vertex indices are speculatively shaded

Status

APIs Affected: OpenGL ES, Vulkan
Impacted hardware: All Arm GPUs
Fixed hardware: Partial fix in Immortalis-G925 series

Description

Most Arm GPUs process vertices in groups of 4 sequential index locations, naturally aligned on multiple
of four index boundary. Vertex indices which are not referenced by an index buffer may be speculatively
shaded if they are located in a group of 4 indices where at least one of the other indices is referenced.

For example, a draw call using the index buffer [1, 2, 3, 2, 9, 3] will shade 8 vertices in two groups of 4,
group 0-3 and group 8-11.

Starting from the Immortalis-G925 series, Arm GPUs will no longer speculatively shade vertices when
performing a standard draw call. Pipelines using the advanced geometry implementation may still make
speculative accesses. Advanced geometry includes draw calls using transform feedback, tessellation
shaders, and geometry shaders.

Implications

An application might encounter incorrect rendering or Vulkan DEVICE_LOST if the speculative execution
results in a memory fault on an indirect data load. Direct vertex attribute loads will not generate faults.

Workaround

You can avoid speculative accesses causing data faults by ensuring that buffer data is valid for all vertices
in each referenced group of four indices, padding the start and end of the buffer if required.

Alternatively, you can use OpenGL ES GL_EXT_robustness or Vulkan robustBufferAccess to clamp the
memory access to valid buffer extents. However, note that this can reduce shader performance.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 20 of 51

Non-Confidential

3785718 
Pipeline barriers are not transitive when intermediate stage is HOST

Status

APIs Affected: Vulkan
Impacted driver versions: r41p0 - r49p0, r50p0 - r51p0
Fixed driver version: r49p1, r52p0

Description

Vulkan pipeline barriers define an execution dependency chain. A pipeline barrier can depend on source
stages inferred by a transitive dependency on an earlier pipeline barrier, even if it does not explicitly list
those stages in its own srcStageMask.

For example, in the code sequence below the second dispatch has a dependency on first due to the two
pipeline barriers having a transitive dependency caused by the use of the HOST stage. The second
vkCmdDispatch() must wait for the first to complete before it can start processing.

vkCmdDispatch(1)
vkCmdPipelineBarrier(srcStageMask=COMPUTE, dstStageMask=HOST)
vkCmdPipelineBarrier(srcStageMask=HOST, dstStageMask=COMPUTE)
vkCmdDispatch(2)

For the impacted driver versions, hardware stage dependencies inferred by a transitive dependency on
the HOST stage are ignored. In the example above, this means that there is no enforced wait between
the two compute dispatches, and they could incorrectly run out of order.

Implications

Loss of synchronization can cause incorrect rendering or Vulkan DEVICE_LOST if a memory access
results in a memory fault.

Workaround

Avoid transitive HOST dependencies by using a srcStageMask that explicitly lists the hardware stages that
you depend on, copying the srcStageMask of the first pipeline barrier into the srcStageMask of the
second.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 21 of 51

Non-Confidential

3786496 
vkCmdBindVertexBuffers2() updates stride for an incorrect binding

Status

APIs Affected: Vulkan
Impacted driver versions: r42p0 - r47p0
Fixed driver version: r48p0

Description

When using vkCmdBindVertexBuffers2(), a dynamic stride is applied to the incorrect binding when the
index of the binding in the VkPipelineVertexInputStateCreateInfo::pVertexBindingDescriptions array does not
match the value of the binding location in the corresponding VkVertexInputBindingDescription.

For example:

VkVertexInputBindingDescription binding_desc[2] = {};
binding_desc[0].binding = 0;
binding_desc[1].binding = 2;
...

VkDeviceSize strides[3] = { stride0, stride1, stride2 };
vkCmdBindVertexBuffers2EXT(cmd_buf, 0, 3, buffers, offsets, nullptr, strides);

In this example, the erratum will mean that stride1 is used for the binding with index 2, instead of the
expected stride2.

This erratum also impacts vkCmdBindVertexBuffers2EXT().

Implications

When an incorrect stride is used, an incorrect image may be rendered, or a DEVICE_LOST might occur if
incorrect data causes a memory access fault.

Workaround

You can add dummy entries to the VkPipelineVertexInputStateCreateInfo pVertexBindingDescriptions array
to ensure that the array index matches the binding index.

Alternatively, you can use static vertex buffer strides.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 22 of 51

Non-Confidential

3786517 
vkCmdSetCullMode() incorrectly culls non-triangle topologies

Status

APIs Affected: Vulkan
Impacted driver versions: r41p0 - r49p2, r50p0 - r51p0
Fixed driver versions: r49p3, r52p0

Description

When using vkCmdSetCullMode(), the dynamic cull mode will be incorrectly applied to non-triangle
topologies. This can result in primitives being incorrectly culled when they should be visible.

This erratum also impacts vkCmdSetCullModeEXT().

Implications

An incorrect image that is missing geometry may be rendered.

Workaround

You can use a static cull mode for pipelines rendering non-triangle topologies.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 23 of 51

Non-Confidential

3786532 
Freeing simultaneous use command buffers causes memory corruption

Status

APIs Affected: Vulkan
Impacted driver versions: r46p0 - r49p0, r50p0
Fixed driver versions: r49p1, r51p0

Description

Freeing backing memory for command buffers allocated with the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT might cause memory corruption.

Memory is freed when using any of the following API calls:

vkResetCommandBuffer() with VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT set.
vkFreeCommandBuffers().
vkResetCommandPool() with VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT set.
vkDestroyCommandPool().

Implications

The graphics driver may crash or behave unpredictably.

Workaround

You can switch to single-use command buffers, allocating command buffers without the
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 24 of 51

Non-Confidential

3786926 
vkCmdBeginRendering() causes rendering artifacts or DEVICE_LOST

Status

APIs Affected: Vulkan
Impacted driver versions: r49p1 - r49p2, r50p0 - r51p0
Fixed driver versions: r49p3, r52p0

Description

When using vkCmdBeginRendering() the driver will reuse internal resources based on the state values
passed via the VkRenderingInfo structure. Incorrect state hashing can cause the driver to use stale internal
data.

This erratum also impacts vkCmdBeginRenderingKHR().

Implications

This erratum may cause rendering artifacts or DEVICE_LOST during execution of the render pass.

Workaround

You can avoid this issue by using static render passes started with vkCmdBeginRenderPass().

Alternatively, you can avoid state hash collisions by not deleting any VkImageView handle that is referred
to by a VkRenderingInfo structure or its children.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 25 of 51

Non-Confidential

3787459 
Incorrect rendering when input gl_Position is declared outside of an input block

Status

APIs Affected: Vulkan
Impacted driver versions: r19p0 - r46p0
Fixed driver version: r47p0

Description

Vulkan allows input built-in variables to be specified either as a variable, or as a member of a built-in
block. This built-in block is known as the gl_PerVertex block in GLSL. When an incoming gl_Position is
declared as a normal variable, outside of the gl_PerVertex block, the position value used might be
incorrect.

Vertex position inputs impact tessellation control, tessellation evaluation and geometry shaders. It is
known that HLSL shaders compiled with DXC can trigger this pattern.

Implications

This erratum may cause rendering artifacts due to incorrect vertex positions being used.

Workaround

You can change the affected SPIR-V program to declare gl_Position inside of a built-in block.

Alternatively, it is possible that a different high-level language to SPIR-V compiler does not emit
gl_Position as a variable outside of a built-in block.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 26 of 51

Non-Confidential

3787677 
Render pass loadOp will return black for 3D images that are 32x32x1 or smaller

Status

APIs Affected: Vulkan
Impacted driver versions: r29p0 - r38p1
Fixed driver version: r39p0

Description

Vulkan render pass attachment loadOp will fail to load attached image slices from a 3D image if the
image is less than or equal to 32x32x1 in all three dimensions. When this erratum is encountered, the
loadOp will return black values for the impacted attachments.

Implications

The failing loadOp might result in incorrect rendering.

Workaround

You can workaround this issue by adding an dummy Z plane to the impacted images, increasing the Z
dimension to 2.

Alternatively, you can insert a manual readback at the start of the render pass using a draw call
containing a textured quad to write the data into the framebuffer.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 27 of 51

Non-Confidential

3809538 
Dynamic render state incorrectly inherited on pipeline change

Status

APIs Affected: Vulkan
Impacted driver versions: r38p0 - r44p0
Fixed driver version: r44p1

Description

Draw calls using Vulkan pipelines with dynamic render states will not use the correct dynamic value
when changing pipeline if the draw immediately before the pipeline change also used the same state
dynamically. For example, in the following scenario:

1. Bind Pipeline1
2. Set dynamic state
3. Draw
4. Bind Pipeline2
5. Draw

... where Pipeline1 and Pipeline2 are both pipelines using one of the impacted dynamic states, the second
draw will not use the dynamically set render state value.

This erratum impacts the following dynamic states:

VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE
VK_DYNAMIC_STATE_STENCIL_OP
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK
VK_DYNAMIC_STATE_CULL_MODE
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE

Implications

The application might encounter incorrect rendering.

Workaround

You can reset the value of all impacted dynamic states after binding a new pipeline.

Alternatively, you can use static pipeline render state.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 28 of 51

Non-Confidential

3809543 
Vulkan pipeline caches incorrectly accessed when created with external
synchronization

Status

APIs Affected: Vulkan
Impacted driver versions: r43p0 - r45p0
Fixed driver version: r46p0

Description

When creating a Vulkan pipeline cache using the
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT, memory corruption or a driver crash
may be encountered due to the driver failing to synchronize a concurrent access made by driver-owned
threads.

This erratum also impacts VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT_EXT.

Implications

An application might encounter incorrect rendering due to memory corruption, or software instability.

Workaround

You can create Vulkan pipeline caches without setting
VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 29 of 51

Non-Confidential

3809544 
OpenGL ES shaders incorrectly use buffer instance name to define bind location

Status

APIs Affected: OpenGL ES
Impacted driver versions: r43p0 - r46p0
Fixed driver version: r47p0

Description

For a buffer interface block defined as:

storage_qualifier block_name
{

} instance_name;

... the compiler buffer address binding logic incorrectly uses the interface instance_name, instead of the
block_name, to define the internal binding location used. This might cause an incorrect binding to be
accessed if the same buffer is used in multiple shader stages in a program and these stages use more
than one instance_name to refer to it.

Implications

An application might encounter incorrect rendering or a context lost error.

Workaround

You can use the same instance_name for buffers that are shared across multiple shader stages.

Alternatively, you can avoid specifying an instance_name and use only the block_name in your shaders.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 30 of 51

Non-Confidential

3809560 
OpenGL ES surface reads have missing dependency on earlier MSAA surface
writes

Status

APIs Affected: OpenGL ES
Impacted driver versions: r44p0 - r45p0
Fixed driver version: r46p0

Description

Multisampled OpenGL ES framebuffer attachments can be implicitly resolved to a single sample at the
end of a render pass when the framebuffer is written to memory, avoiding the need to resolve manually
using a separate glBlitFramebuffer() call. This is the default behavior for multisampled EGL window
surfaces, and can be enabled for offscreen rendering by using the
GL_EXT_multisampled_render_to_texture extension.

During multisampled rendering with an implicit resolve, the GPU will use two logical surfaces for each
attachment point:

a multisampled surface that stores all samples per pixel,
and a resolve surface that stores a single sample per pixel.

When the multisampled surface is implicitly invalidated at the end of a render pass, in situations where it
does not need to be persisted, the driver incorrectly also clears scheduling dependencies on its sibling
resolve surface. This can result in later readers of the resolve surface reading from it before it has been
written, causing incorrect values to be read by the GPU or the system display controller.

Implications

An application might encounter incorrect rendering or screen corruption.

Workaround

To avoid screen corruption, you can render to single-sampled EGL window surface configurations.

To avoid off-screen rendering synchronization issues, you can render to single-sampled OpenGL ES
textures or render buffers.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 31 of 51

Non-Confidential

3809773 
OpenGL ES deadlocks when deleting resources when many compute dispatches
are outstanding

Status

APIs Affected: OpenGL ES
Impacted driver versions: r42p0 - r47p0
Fixed driver version: r48p0

Description

The OpenGL ES driver might deadlock when the application calls glDeleteBuffers() or glDeleteTextures()
while the driver's internal compute dispatch task queue is full.

Implications

The application will hang.

Workaround

You can avoid the deadlock by ensuring that all compute workloads are complete before deleting a
texture or a buffer.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 32 of 51

Non-Confidential

3809774 
Incorrect rendering when dynamic state disables depth/stencil write if shader
reads depth/stencil

Status

APIs Affected: Vulkan
Impacted driver versions: r37p0 - r44p0
Fixed driver version: r44p1

Description

The driver will not correctly use dynamically set states that disable depth or stencil writes if the fragment
shader reads depth or stencil values from the input attachment.

This erratum impacts the following dynamic states:

VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK

Implications

The application might encounter incorrect rendering.

Workaround

You can use static pipeline state to control depth and stencil writes.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 33 of 51

Non-Confidential

3817626 
Shader constant folding treats unsigned integer values as signed

Status

APIs Affected: OpenGL ES
Impacted driver versions: r0p0 - ...
Fixed driver version: No shipping fix.

Description

A shader compiler optimization that evaluates constants for constant folding can treat unsigned integer
values as signed values, which changes the semantics of the operation and can result in an incorrectly
optimized value being used. This erratum impacts literal constant values, and literal constants assigned to
a const local variable.

Implications

The result of unsigned integer constant folding might be incorrect. If this causes an incorrect address to
be calculated, this might result in context loss if it causes a memory fault.

Workaround

You can avoid this erratum by assigning impacted constants values to a non-const local variable, and
using this variable in any subsequent computations in place of the literal value.

Using OpenGL ES GL_EXT_robustness can be be used to reduce the number of instances of context loss
caused by memory faults. However, in these circumstances rendering will still be incorrect as the address
accessed inside the buffer will be incorrect.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 34 of 51

Non-Confidential

3843108 
Atomic access coordinates for images and texture buffers always truncated to
16-bits

Status

APIs Affected: OpenGL ES, Vulkan
Impacted driver versions: r18p0 - r53p0
Fixed driver version: r54p0

Description

The compiler incorrectly truncates 32-bit coordinates used to make atomic accesses to images and
texture buffers to 16 bits.

Implications

Atomics access coordinates will wrap and only use the bottom 16 bits of each coordinate, so incorrect
data values will be returned for texel indices above 65535.

Workaround

You can avoid the issue by manually wrapping texel coordinates at 16-bit boundaries.

For image access, you can often implement wrapping in a single axis by making use of the 2D coordinate
space available. For example, an image using 1M x 1 resolution can be converted into a 2D image using
64K x 16 resolution.

For texel buffers, which are fixed to use a single coordinate, the resource must be either split across
multiple texel buffer bindings or converted to a 2D image.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 35 of 51

Non-Confidential

3843237 
Vector bitwise of swizzle/combine returns incorrect result

Status

APIs Affected: OpenGL ES, Vulkan
Impacted driver versions: r18p0 - r53p0
Fixed driver version: r54p0

Description

During compilation the shader compiler can apply an incorrect code transform to vector operations that
combine an integer bitwise operator with an implicit or explicit lane swizzle.

Implications

Integer bitwise operators on vector variables can give an incorrect result.

Workaround

You can avoid the issue by manually scalarizing the impacted operations. For example, rewrite this:

uvec2 a = uvec2(input1, 2u) | 1u;

... as ...

uvec2 a = uvec2(input1, 2u);
a.y |= 1u;

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 36 of 51

Non-Confidential

3893903 
Dynamic render state incorrectly used when modified between two binds of a
static pipeline

Status

APIs Affected: Vulkan
Impacted driver versions: r48p0 - r53p0
Fixed driver version: r54p0

Description

Draw calls using a Vulkan pipeline with a static render state may incorrectly use a dynamically set state
value when the dynamic state is modified between two binds of the same pipeline. For example, in the
following scenario:

1. Bind pipeline1 using a static state
2. Set the equivalent dynamic state
3. Rebind pipeline1
4. Draw

This erratum impacts the following dynamic states:

VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT
VK_DYNAMIC_STATE_SAMPLE_MASK_EXT

Implications

The application might encounter incorrect rendering.

Workaround

You can set the value of the impacted dynamic states to match the required static state in the bound
pipeline.

Alternatively, you can avoid using these dynamic render states.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 37 of 51

Non-Confidential

3893905 
Dynamic render state incorrectly inherited on pipeline change (2)

Status

APIs Affected: Vulkan
Impacted driver versions: r48p0 - r53p0
Fixed driver version: r54p0

Description

Draw calls using Vulkan pipelines with dynamic render states will not use the correct dynamic value
when changing pipeline if the draw immediately before the pipeline change also used the same state
dynamically. For example, in the following scenario:

1. Bind Pipeline1
2. Set dynamic state
3. Draw
4. Bind Pipeline2
5. Draw

... where Pipeline1 and Pipeline2 are both pipelines using one of the impacted dynamic states, the second
draw will not use the correct dynamically set render state value.

This erratum impacts the following dynamic states:

VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT
VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT

Implications

The application might encounter incorrect rendering.

Workaround

You can reset the value of all impacted dynamic states after binding a new pipeline.

Alternatively, you can use static pipeline render state.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 38 of 51

Non-Confidential

3893908 
Declaring NxM matrices as row_major reports incorrect buffer size

Status

APIs Affected: OpenGL ES
Impacted driver versions: r18p0 - ...
Fixed driver version: No shipping fix.

Description

Buffer sizes will be reported incorrectly when specifying layout(row_major) on a non-square matrix
variable in a buffer.

For example, in the code below, the GL_UNIFORM_BLOCK_DATA_SIZE will be reported as 32 bytes when
it should be 48.

layout(std140) uniform Block {
 layout(row_major) mediump mat2x3 var;
};

Implications

The application might encounter incorrect rendering if the application uses the buffer size returned by
the query to size the allocated buffer. The actual buffer layout used by the shader compiler is correct,
and the shader will function correctly if the allocated buffer size matches the specification requirements.

Workaround

You can specify the layout qualifier on the interface block instead of the member variables. For example:

layout(std140, row_major) uniform Block {
 mediump mat2x3 var;
};

Alternatively, you can use layout(column_major) matrices.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 39 of 51

Non-Confidential

3893910 
Declaring matrices in struct or array as row_major reports incorrect buffer size

Status

APIs Affected: OpenGL ES
Impacted driver versions: r18p0 - r54p0
Fixed driver version: r54p1

Description

Buffer sizes will be reported incorrectly when specifying layout(row_major) on a variable in a buffer when
the member is an array of matrices, or the member is nested inside a structure.

For example, in the code below, the GL_UNIFORM_BLOCK_DATA_SIZE will be reported as 96 bytes when
it should be 144.

layout(std140) uniform Block {
 layout(row_major) highp mat2x3 var[3];
};

Implications

The application might encounter incorrect rendering if the application uses the buffer size returned by
the query to size the allocated buffer. The actual buffer layout used by the shader compiler is correct,
and the shader will function correctly if the allocated buffer size matches the specification requirements.

Workaround

You can specify the layout qualifier on the interface block instead of the member variables. For example:

layout(std140, row_major) uniform Block {
 highp mat2x3 var[3];
};

Alternatively, you can use layout(column_major) matrices.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 40 of 51

Non-Confidential

3893911 
vkQueuePresentKHR() can hang if no vkQueueSubmit() calls were made

Status

APIs Affected: Vulkan
Impacted driver versions: r37p0 - r42p0, r44 - r49p0
Fixed driver version: r43p0, r49p1

Description

If an application repeatedly calls vkQueuePresentKHR() on a queue without any vkQueueSubmit() calls on
the same queue, the the application will hang.

Implications

The call to vkQueuePresentKHR() will hang.

Workaround

You can change the call to vkQueuePresentKHR() to use the queue that is used for rendering workloads
and therefore also uses vkQueueSubmit() as part of normal operation.

Alternatively, if you have a dedicated present queue, you can add an empty vkQueueSubmit() to the
queue before calling vkQueuePresentKHR().

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 41 of 51

Non-Confidential

3895259 
Enabling inherited occlusion queries with no active query in the primary
command buffer causes DEVICE_LOST

Status

APIs Affected: Vulkan
Impacted driver versions: r50p0 - ...
Fixed driver version: No shipping fix.

Description

Enabling support for inherited occlusion queries in a secondary command buffer, by setting
VkCommandBufferInheritanceInfo.occlusionQueryEnable to VK_TRUE, can result in a DEVICE_LOST error if
no occlusion query is active in the primary command buffer when the secondary is executed.

Implications

Enabling inherited queries without an active query in the primary can result in a DEVICE_LOST error.

Workaround

You can avoid this erratum by only setting occlusionQueryEnable to VK_TRUE if there is an active query in
the primary command buffer when the secondary is executed. If there is no active query ensure this
setting is VK_FALSE.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 42 of 51

Non-Confidential

3922301 
ASTC decompression incorrectly rounds linear color endpoints when using
unorm8 decode mode

Status

APIs Affected: OpenGL ES, Vulkan
Impacted hardware versions: All Arm GPUs.
Fixed hardware version: No shipping fix.

Description

The Khronos Data Format Specification states that non-sRGB color endpoints are expanded to 16-bit
values using bit replication.

C0 = (C0 << 8) | C0;
C1 = (C1 << 8) | C1;

When decompressing a linear texture using the unorm8 decode mode, the impacted hardware
incorrectly expands the color endpoint to 16-bits using the sRGB style of endpoint expansion:

C0 = (C0 << 8) | 0x80;
C1 = (C1 << 8) | 0x80;

Implications

The incorrect endpoint expansion style causes rounding changes during decompression. This results in
least-significant bit differences in the decompressed result for some input values.

Workaround

There is no workaround for textures that are compressed offline.

Textures that are compressed at runtime can use a compressor that corrects for the rounding
differences caused by the erratum present in the specific platform in use.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 43 of 51

Non-Confidential

4021056 
Incorrect rendering when using a separate stencil layout for a depth-stencil
attachment

Status

APIs Affected: Vulkan
Impacted driver versions: r41p0 - r54p0
Fixed driver version: r54p1

Description

When using a depth-stencil attachment, the driver will not correctly apply a separate stencil aspect
layout set using VkAttachmentDescriptionStencilLayoutKHR or VkAttachmentReferenceStencilLayoutKHR,
and will always use the layout set for the combined depth-stencil image.

This can result in the stencil aspect of a depth-stencil attachment being incorrectly discarded at the end
of a render pass if the combined depth-stencil image layout is a READ_ONLY layout.

Implications

The application might encounter incorrect rendering.

Workaround

You can set an appropriate combined image layout on the packed depth-stencil image, instead of using
the extension functionality to set a separate layout for the stencil aspect of the image.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 44 of 51

Non-Confidential

4021113 
Shader compiler reassociation ignores wrapping behavior of integer types

Status

APIs Affected: OpenGL ES, Vulkan
Impacted driver versions: r19p0 - r54p0
Fixed driver version: r54p1

Description

The GLSL and SPIR-V specifications define integer arithmetic as wrapping when a variable overflows, so
it is legal for an application to rely on wrapping behavior when performing calculations in a shader
program. A shader compiler optimization pass can incorrectly reassociate integer arithmetic operations in
a manner which changes the precision of the computation and therefore changes if, and where,
wrapping overflow occurs.

The invalid reassociation can be performed if an addition that can wrap has at least one argument that is
a value multiplied by a constant. For example:

mediump uint y = /* e.g. value of uint(-1) */;
mediump uint z = 5;
int res = (y + z) * 6; /* Reassociates to (y * 6) + (z * 6) */

The invalid reassociation can also be performed for address calculations when an array is accessed with
an addition that can wrap and where one argument is a constant. For example:

uint x = /* e.g. value of uint(-1) */;
int res = Array[x + 2];

The invalid reassociation can also can also be performed when an array is accessed using an index
computed using an addition that can wrap and where one argument is an induction variable which
becomes constant due to loop unrolling. For example:

uint x = /* e.g. value of uint(-1) */;
for (uint i = 1; i < 5; ++i) {
 int res = Array[x + i];
 ...
}

The invalid reassociation can also be performed for address calculations when a uniform array is
accessed with a 16-bit addition where one argument is a constant. For example:

mediump uint y = /* e.g. value of uint(-1) */;
mediump uint z = 5;
int res = UniformArray[y + z];

Implications

If the invalid reassociation triggers on numerical calculation, the overflow is removed and incorrect
values are used by later calculations.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 45 of 51

Non-Confidential

If the invalid reassociation triggers on an array access without bounds checking, the overflow is removed
and the shader can access an incorrect array index. This may return an incorrect in-bounds access, or
make an out-of-bounds access triggering a DEVICE_LOST.

If the invalid reassociation triggers on an array access with robust access bounds checking, the overflow
is removed and the shader can access an incorrect array index. This may return an incorrect in-bounds
access, or make an out-of-bounds access that returns zeros.

Workaround

You can avoid this erratum by not using overflowing integer arithmetic in your shader calculations.

If you must use overflowing arithmetic, you can avoid the issue by using 32-bit data types, removing use
of mediump or RelaxedPrecision integer variables, and using uniform values for integer values instead of
literal constants. This workaround is likely to reduce shader performance, especially if use of a uniform
loop limit prevents loop unrolling.

Category B (rare)
There are no errata in this category.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 46 of 51

Non-Confidential

Category C

3817843 
Vulkan VK_ARM_scheduling_controls feature query always reports false

Status

APIs Affected: Vulkan
Impacted driver versions: r47p0 - r49p2, r50p0 - r52p0
Fixed driver versions: r49p3, r53p0

Description

The VK_ARM_scheduling_controls extension feature availability check is incorrectly implemented in
vkGetPhysicalDeviceProperties2() instead of vkGetPhysicalDeviceFeatures2(). When applications use
vkGetPhysicalDeviceFeatures2() the extension availability is always reported as VK_FALSE.

Implications

The application feature query will incorrectly indicate that VK_ARM_scheduling_controls is not available.
This loss of functionality should have no impact on production applications.

Workaround

If the extension is supported in the list of available extensions you can assume that the feature is
available, and attempt to use it. If it is disabled you may not see the shader core scheduling configuration
take impact.

Alternatively, on impacted driver versions, you can use the vkGetPhysicalDeviceProperties2() function to
query extension availability.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 47 of 51

Non-Confidential

4065742 
GPU Active performance counter may overcount

Status

APIs Affected: OpenGL ES, Vulkan
Impacted hardware: Immortalis-G715 series
Fixed hardware: Immortalis-G720 series

Description

The GPU Active (GPU_ACTIVE) performance counter is intended to increment every cycle that the GPU
has at least one hardware command stream queued for processing. In the impacted products, cycles that
are handling GPU internal low power state operations are also counted, even if no hardware command
stream is queued. This results in the GPU Active performance counter significantly overcounting
compared to the same counter in other Arm GPU products.

Implications

The GPU Active performance counter can be misleading for profiling application workloads, because it
appears that the GPU is busy processing work when it is actually idle.

Workaround

The GPU Active performance counter can be substituted for the GPU Queue Active (GPU_ITER_ACTIVE)
performance counter. The GPU Queue Active counter increments every cycle that at least one of the
hardware queues that dispatches tasks to shader cores has work queued. This instrumentation point
counts later in the hardware pipeline than the GPU Active counter, and will exclude cycles spent
processing the command stream when no work is queued on the shader cores. It therefore tends to
count slightly lower than a functionally correct GPU Active counter.

This workaround has been applied in all Arm-provided tools and open source libraries. If you attempt to
access the GPU Active counter using Arm Streamline, RenderDoc for Arm GPUs, or the libGPUCounters
library, the GPU Queue Active counter will be transparently substituted in its place.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 48 of 51

Non-Confidential

Proprietary notice
This document is protected by copyright and other related rights and the use or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
No part of this document may be reproduced in any form by any means without the express prior written
permission of Arm Limited ("Arm"). No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether the subject matter of this
document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further assist
the recipient and does not represent Arm's view of the scope of its obligations. You acknowledge and agree that
you possess the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements concerning your
products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are
responsible for any applications which are used in conjunction with any Arm technology described in this
document, and to minimize risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED "AS
IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no
analysis to identify or understand the scope and content of, any patents, copyrights, trade secrets, trademarks, or
other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Reference by Arm to any third party's products or services within this document is not an express or implied
approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version of this
document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 49 of 51

Non-Confidential

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(PRE-1121-V1.0)

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 50 of 51

Non-Confidential

https://www.arm.com/company/policies/trademarks

Product and document information
Read the information in these sections to understand the release status of the product and documentation, and
the conventions used in the Arm documents.

Product status
All products and Services provided by Arm require deliverables to be prepared and made available at different
levels of completeness. The information in this document indicates the appropriate level of completeness for the
associated deliverables.

Product completeness status

The information in this document is Final, that is for a developed product.

Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, where:

rx

Identifies the major revision of the product.

py

Identifies the minor revision or modification status of the product.

Date of issue: July 04, 2025 Arm GPU Errata for Application Developers
Software Developer Errata Notice

Version: 4.0

SDEN-3735689 Copyright © 2024-2025 Arm® Limited or its affiliates. All rights reserved. Page 51 of 51

Non-Confidential

	Contents
	Product version scope
	Driver version information
	Hardware version information
	Introduction
	Scope
	Categorization of errata

	Change Control
	Errata summary table
	Errata descriptions
	Category A
	Category A (rare)
	3787671  Shader scalar integer right shifts return an incorrect result

	Category B
	3734951  Freeing command buffers without explicit release causes memory leaks
	3779191  Read-only storage buffer accesses in inactive control flow are speculatively executed
	3779215  Shader clamp of conditional values with a zero limit produces incorrect code
	3781413  Rendering large amounts of geometry causes rendering artifacts or DEVICE_LOST
	3781554  Unreferenced vertex indices are speculatively shaded
	3785718  Pipeline barriers are not transitive when intermediate stage is HOST
	3786496  vkCmdBindVertexBuffers2() updates stride for an incorrect binding
	3786517  vkCmdSetCullMode() incorrectly culls non-triangle topologies
	3786532  Freeing simultaneous use command buffers causes memory corruption
	3786926  vkCmdBeginRendering() causes rendering artifacts or DEVICE_LOST
	3787459  Incorrect rendering when input gl_Position is declared outside of an input block
	3787677  Render pass loadOp will return black for 3D images that are 32x32x1 or smaller
	3809538  Dynamic render state incorrectly inherited on pipeline change
	3809543  Vulkan pipeline caches incorrectly accessed when created with external synchronization
	3809544  OpenGL ES shaders incorrectly use buffer instance name to define bind location
	3809560  OpenGL ES surface reads have missing dependency on earlier MSAA surface writes
	3809773  OpenGL ES deadlocks when deleting resources when many compute dispatches are outstanding
	3809774  Incorrect rendering when dynamic state disables depth/stencil write if shader reads depth/stencil
	3817626  Shader constant folding treats unsigned integer values as signed
	3843108  Atomic access coordinates for images and texture buffers always truncated to 16-bits
	3843237  Vector bitwise of swizzle/combine returns incorrect result
	3893903  Dynamic render state incorrectly used when modified between two binds of a static pipeline
	3893905  Dynamic render state incorrectly inherited on pipeline change (2)
	3893908  Declaring NxM matrices as row_major reports incorrect buffer size
	3893910  Declaring matrices in struct or array as row_major reports incorrect buffer size
	3893911  vkQueuePresentKHR() can hang if no vkQueueSubmit() calls were made
	3895259  Enabling inherited occlusion queries with no active query in the primary command buffer causes DEVICE_LOST
	3922301  ASTC decompression incorrectly rounds linear color endpoints when using unorm8 decode mode
	4021056  Incorrect rendering when using a separate stencil layout for a depth-stencil attachment
	4021113  Shader compiler reassociation ignores wrapping behavior of integer types

	Category B (rare)
	Category C
	3817843  Vulkan VK_ARM_scheduling_controls feature query always reports false
	4065742  GPU Active performance counter may overcount

	Proprietary notice
	Product and document information
	Product status
	Product completeness status
	Product revision status

