
Learn the architecture - Arm System
Architectures
Version 1.0

Non-Confidential
Copyright © 2025 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
110303_0100_01_en

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Learn the architecture - Arm System Architectures

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 19 May 2025 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 24

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 24

https://www.arm.com/company/policies/trademarks

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 24

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Contents

Contents

1. Overview of Arm system architectures.. 6

2. Base standards...7
2.1 Generic operating systems... 7
2.1.1 Firmware capabilities.. 7
2.1.2 Hardware capabilities..8
2.2 Server management..9

3. Platform firmware interfaces...12
3.1 Transitioning isolation boundaries.. 14
3.2 Secure and monitor firmware interfaces...15
3.3 Normal world firmware... 16
3.3.1 Operating system boot..16
3.3.2 Hardware discovery..16
3.4 System management controller firmware... 18

4. Hardware components and subsystems...19
4.1 System components...19
4.2 System support for A-profile features...20
4.3 Power control.. 20
4.4 Connecting functional blocks together... 22
4.4.1 Key specifications..22
4.4.2 Application-specific interfaces... 24

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 24

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Overview of Arm system architectures

1. Overview of Arm system architectures
The Arm architecture offers a significant level of flexibility. This flexibility means that designers
can develop processors specifically optimized for a wide range of applications, ranging from tiny
embedded systems to supercomputers. These systems include much more than just a processor
core. Additional components include memory and peripherals, as well as modules for power
management, performance monitoring, and system debug. Connecting these components together
requires hardware, and system software such as an operating system to manage it all.

Reusing components and software across systems minimizes both the elapsed time and the cost
of development. Maintaining custom software becomes a significant burden if security updates are
required throughout the product lifetime and across many generations. Well-established industry
interoperability standards, such as PCIe, address some of these challenges.

To complement these industry standards, Arm provides a collection of open and free-to-use
system architectures. Developed in collaboration with Arm’s ecosystem partners, these system
architectures help engineers design secure and efficient systems as easily as possible.

The Arm system architectures provide just enough standardization of components and interfaces
to tackle common problems while enabling innovation. Over-definition restricts flexibility, while
insufficient standardization creates unnecessary diversity increasing overall development costs.
Arm does not mandate that you must use these system architectures. However, system designers
might find that compliance is necessary for particular markets or beneficial when using off-the-shelf
components and operating systems.

Arm invests to help partners benefit from developing compliant solutions. This investment includes:

• Contributing changes to upstream open-source projects such as the Linux kernel and
trustedfirmware.org

• Developing checklists and automated test tools such as the Architectural Compliance Suites

• Running compliance programs, for example SystemReady

This guide introduces the system architecture specifications. It identifies the relationships between
the different documents, and describes common usage scenarios.

The guide starts with the base standards that define the minimum hardware and firmware
functionality needed to solve a high-level compatibility problem, such as supporting off-the-
shelf operating systems. These standards combine industry and Arm-specific specifications with
clarifications and guidance to define a system profile, or recipe, for a market-specific use case.

Later chapters provide a toolkit of lower-level firmware and hardware specifications, describing
individual components and interfaces designed for Arm-based systems.

Some specifications are mandated by the base standards and remain relevant even in markets
where they are not used. Other specifications are optional, and enable advanced or additional
capabilities.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 24

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Base standards

2. Base standards
System designers face a wide range of choices when developing computing systems. To make the
process easier in common multi-vendor environments, various hardware and firmware standards
ensure a consistent base level of compatibility across implementations. These standards leverage
Arm-specific and industry-standard interfaces, defining market-specific profiles for both required
and optional system-level capabilities.

2.1 Generic operating systems
Many computing scenarios require a standard off-the-shelf operating system (OS), such as
Microsoft Windows or Linux. The OS depends on a critical set of underlying hardware and
firmware capabilities.

Traditionally, vendors of Arm-based systems have extensively customized the OS for each
individual system, but this approach presents challenges. Creating and maintaining these bespoke
OS versions is often not cost-effective or practical, especially considering the growing need for
long-term security updates.

The standards described here help solve this problem by defining a consistent set of firmware and
hardware capabilities that are required to support common operating systems. The focus is on
enabling fundamental system operation, allowing OS-specific driver mechanisms to support more
advanced platform capabilities. These standards underpin the bands in the SystemReady program
which helps partners achieve and declare compliance.

2.1.1 Firmware capabilities

Firmware running on an application processor is essential to enable the system’s boot process
and overall operation. Base Boot Requirements (BBR) (DEN0044), together with market-specific
supplements, defines a standard minimal set of boot and runtime services that firmware must
provide. Different recipes meet the needs of various operating systems and hypervisors. The most
common recipes are:

• SBBR recipe: for operating systems which require UEFI, ACPI, and SMBIOS when running on
BSA-compliant hardware

• EBBR recipe: typically used by operating systems which use UEFI and Devicetree for hardware
discovery

In many secure environments, the operating system needs assurances that the boot process has
not been tampered with. Base Boot Security Requirements (BBSR) (DEN0107) provides additional
standardization and guidance about this situation, including support for UEFI secure boot, UEFI
authenticated variables, and secure firmware update.

The following diagram shows a typical open-source firmware stack implementation for the SBBR
and EBBR recipes with the main firmware interfaces.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 24

https://developer.arm.com/documentation/den0044/latest/
https://developer.arm.com/documentation/den0107/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Base standards

Figure 2-1: Typical SBBR and EBBR open-source firmware stack implementations

For more details about the firmware interfaces which make up BBR, including ACPI and Devicetree,
see Platform firmware interfaces.

2.1.2 Hardware capabilities

Base System Architecture (BSA) (DEN0094), together with market-specific supplements, defines a
basic set of hardware capabilities as seen by software running on an application processor.

The main BSA specification complements the BBR by describing the fundamental hardware
required to run the core features of a standard OS, including boot, basic debugging, and hardware
discovery. BSA requirements include processor features, memory subsystem, PCIe integration,
interrupts, power states, and peripheral systems.

Compliance with BSA is generally required by operating systems which depend on ACPI-based
firmware, for example Microsoft Windows and Linux distributions such as Red Hat Enterprise
Linux. BSA can also benefit Linux distributions which use Devicetree firmware by minimizing or
eliminating the need to customize Linux. This customization can significantly increase both initial
development costs and ongoing maintenance expenses if upstream maintainers reject the changes.

BSA is currently not required for Android-based systems, which have their own set
of compatibility requirements.

The following market-specific BSA supplements enable consistent implementation of additional
hardware capabilities, allowing common software to be used across compliant systems:

• Server Base System Architecture (SBSA) (DEN0029): for servers, such as those used in a data
center. SBSA Levels define progressively higher minimum support requirements for features
including hypervisors, Reliability Availability and Serviceability (RAS) error reporting, system
debug, and telemetry. Each successive SBSA Level improves overall functionality, performance,
and security.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 24

https://developer.arm.com/documentation/den0094/latest/
https://developer.arm.com/documentation/den0029/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Base standards

• PC Base System Architecture (PC-BSA) (DEN0151): for Personal Computers, such as laptops.
Required features include basic hypervisor support, and security such as a Trusted Platform
Module (TPM).

• Virtual Base System Architecture (V-BSA) (DEN0150): describes a logical view of the hardware
presented by a hypervisor to a guest operating system.

The following diagram shows the hardware and software interfaces addressed by these market-
specific BSA supplements:

Figure 2-2: Market-specific BSA supplements

If you produce silicon which does not comply to the relevant standards, costs and time to market
can increase. Developing software workarounds is time consuming, and not always feasible. In
severe scenarios, a silicon re-spin might be necessary for a viable product. To help silicon designers
prevent these issues, the BSA Architecture Compliance Suite (ACS) offers a set of tests which
can be conducted early in the design phase before tape-out. For more information, see the
SystemReady Pre-Silicon Reference Guide BSA integration and compliance guide.

2.2 Server management
Servers designed for multi-server environments, such as data centers, usually have a Baseboard
Management Controller (BMC). The BMC enables administrators to remotely oversee and manage
the server independently from the host OS. The BMC is usually a specialized processor. Typical

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 24

https://developer.arm.com/documentation/den0151/latest/
https://developer.arm.com/documentation/den0150/latest/
https://developer.arm.com/documentation/102858/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Base standards

BMC functions include monitoring hardware, updating firmware, configuring system settings,
deploying operating systems, and debugging remotely.

To establish a standard set of capabilities for the industry, the Server Base Manageability
Requirements (SBMR) (DEN0069) specifies hardware and software interface requirements and
provides guidance for SBSA-compliant Arm servers. It explains how to represent Arm-specific
details using industry-standard protocols such as IPMI, Redfish, MCTP and PLDM. The following
figure shows the main components of the architecture:

Figure 2-3: Typical server management architecture using BMC

Management
System

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 24

https://developer.arm.com/documentation/den0069/latest/
https://developer.arm.com/documentation/den0069/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Base standards

An optional Satellite Management Controller (SatMC), usually a dedicated M-profile microcontroller
integrated with the application processors, provides visibility into the SoC. The SatMC performs
functions including:

• Monitoring boot progress

• Collecting SoC telemetry data such as temperature and power consumption

• Tracking Reliability Availability and Serviceability (RAS) errors

You can use the Manageability Control Processor (MCP) component featured in Arm Compute
Subsystems (CSS) such as Neoverse V2 to implement the SatMC function.

The Platform Active Root of Trust (PA-ROT) authenticates any firmware loaded from flash before
execution, and actively monitors the firmware store to detect any unauthorized changes. The PA-
RoT can be either a discrete system component or integrated in the BMC.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 24

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

3. Platform firmware interfaces
Platform firmware is low-level software that supports higher-level system software such as an OS
or hypervisor. This section describes the standard interfaces provided by the Platform firmware,
focusing on A-profile. Some of these interfaces are needed to meet the Base Boot Requirements
(BBR) described in Base standards. Others extend beyond the BBR with additional capabilities.

Arm A-profile processors use Exception levels and Security states to provide hardware-enforced
isolation between different execution modes. For more information, see the following guides:

• Learn the architecture - AArch64 Exception Model

• Learn the architecture - TrustZone for AArch64

• Learn the architecture - AArch64 Virtualization

• Learn the architecture - Realm Management Extension

The following figure shows how software is typically divided between different Exception levels and
Security states:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 24

https://developer.arm.com/documentation/102412/latest/
https://developer.arm.com/documentation/102418/latest/
https://developer.arm.com/documentation/102142/latest/
https://developer.arm.com/documentation/den0126/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

Figure 3-1: Typical division of software between different Exception levels and Security states

Normal SecureRealm
(CCA)

The Normal world runs the traditional rich software stack. This typically includes a large application
set and a complex operating system such as Linux. This software stack might also include a
hypervisor, or additional firmware, or both. These software stacks are large and complex. While
efforts can be made to secure them, the size of the attack surface means that they are more
vulnerable to attack.

The Secure and Realm worlds are managed by a smaller and simpler software stack. This software
stack has a considerably lower attack surface, which helps reduce vulnerability to attack. The main
difference between the use of Realms and Secure world is the design intent:

• Secure world, also known as TrustZone, is generally used by platform-specific services owned
by parties close to the system development, such as Silicon Providers (SiPs) and Original
Equipment Manufacturers (OEMs). First introduced in Armv6K and enhanced subsequently, the
Secure world is widely adopted in Arm-based devices across all industries.

• Realms are a more recent hardware extension to Armv9-A and enable the Arm Confidential
Compute Architecture (CCA). Realms enable general developers to execute code on a system
without being involved in complex business relationships with the developers of the underlying

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 24

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

compute system, such as a cloud server system. Arm CCA allows Realms and their resources to
be dynamically created and destroyed on demand under the control of the Normal world host.

3.1 Transitioning isolation boundaries
The Arm architecture includes the SVC, HVC, and SMC instructions to enable the PE to move
between Exception levels:

• The Supervisor Call (SVC) instruction enables unprivileged user-space code in EL0 to call the
operating system in EL1 or EL2. The use of registers is defined by the OS and is typically based
on the Arm Procedure Call Standard.

• The Hypervisor Call (HVC) instruction enables EL1 software to request a transition to EL2. For
example, an OS might use the HVC instruction to request hypervisor services.

• The Secure Monitor Call (SMC) instruction enables EL1 and EL2 software to request a
transition to EL3. For example, Secure Monitor firmware might use the SMC instruction.

Only the software running at EL3 can switch between Normal, Secure and Realm Security states.
To ensure basic interoperability with Secure Monitor firmware, a standard SMC Calling Convention
(SMCCC) (DEN0028) is defined. The SMCCC describes how code uses registers to pass arguments
and return results. One of the arguments specified by the SMCCC is a 32-bit Function Identifier
passed on every SMC and HVC call. The calling software uses this Function Identifier to identify
the firmware service. Ranges of Function Identifiers are allocated to standard platform services.
Some ranges are reserved for vendor-specific services, though it is advisable to use these only
when software is tightly integrated and there is no risk of identifier conflicts.

The SMCCC can also be used with the Hypervisor Call (HVC) instruction to trigger EL2 software,
such as the services provided by a hypervisor. These services are typically hypervisor-specific,
although Arm Paravirtualized Time for Arm-based Systems (DEN0057) defines a standardized
interface for measuring stolen time on virtualized system.

The Firmware Framework for A-profile (FF-A) builds on the SMCCC to provide a generalized
method for exchanging messages between Exception levels across Normal and Secure worlds.
This enables vendor services to be isolated in de-privileged sandboxes, preventing code bloat
in EL3 firmware. FF-A provides a standardized method for discovering service partitions using
a Universally Unique IDentifier (UUID), interrupting and resuming blocking calls, and message
passing. FF-A also describes the function of the Secure Partition Manager (SPM) which serves as a
lightweight hypervisor for the Secure world partitions.

The following documents describe FF-A:

• The core specification: Arm Firmware Framework for Arm A-profile (DEN0077)

• A memory management supplement: FF-A Memory Management Protocol (DEN0140)

• A secure partition lifecycle supplement: FF-A SP Lifecycle (DEN0143)

The Arm Confidential Compute Architecture (CCA) provides a protected execution environment
called Realms. The core component, the Realm Management Monitor (RMM), is firmware managing

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 24

https://developer.arm.com/documentation/den0028/latest/
https://developer.arm.com/documentation/den0028/latest/
https://developer.arm.com/documentation/den0057/latest/
https://developer.arm.com/documentation/den0077/latest/
https://developer.arm.com/documentation/den0140/latest/
https://developer.arm.com/documentation/den0143/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

the execution of the Realm VMs and their interaction with the Normal world hypervisor. The
RMM interfaces are SMCCC-based, with the Normal world communicates with RMM through the
Realm Management Interface (RMI), and the RMM interacts with Realm VMs via the Realm Service
Interface (RSI).

For more information about the Arm CCA, see Learn the architecture - Introducing Arm
Confidential Compute Architecture, Learn the architecture - Arm Confidential Compute
Architecture software stack and Realm Management Monitor specification (DEN0137).

3.2 Secure and monitor firmware interfaces
System designers can partition sensitive device hardware and software resources so that they
are isolated from the Normal world. This helps protect against a wide range of possible software
attacks.

The following table lists a set of standard interfaces provided by secure and monitor firmware.
Many of these depend on capabilities provided by the underlying hardware, with the firmware
offering a secure and abstract interface to the hardware. The detail of this hardware interface
is implementation dependent. Typically, these services are used by the operating system or
intermediate firmware running in the Normal world.

Standard Description

Power State Coordination Interface (PSCI)
(DEN0022)

System and CPU state transitions. For example, requesting that cores be powered up or
down, or transferring secure context between cores.

True Random Number Generator (TRNG)
(DEN0098)

Obtain a conditioned entropy source from a secure back end. For example, for generating
seeds or keys.

Errata Management Firmware Interface
(DEN0100)

Discover CPU errata and whether they are mitigated in firmware.

Software Delegated Exception Interface
(SDEI) (DEN0054)

Mechanism for an OS to selectively mask interrupts prior to NMI being supported in
hardware (2021 extensions).

DRTM Architecture for Arm (DEN0113) Establish trust in the boot chain (Dynamic Root of Trust Measurement).

Platform Security Firmware Update for the
A-profile Arm Architecture (DEN0118)

Securely write new images into the platform firmware store, for example flash.

TPM Service Command Response Buffer
Interface over FF-A (DEN0138)

Interact with a standard Trusted Platform Module, for example to use and store private keys.

PCI Configuration Space Access Firmware
Interface (DEN0115)

Alternative firmware-based method for managing PCI configuration on hardware which does
not support the standard Enhanced Configuration Access Mechanism (ECAM).

SMCCC (General Service Queries)
(DEN0028)

Discover firmware support for specific CPU features and security vulnerability workarounds.

In older documentation, you might see the term “standard secure services”. This
document uses the term “secure and monitor firmware interfaces”, which means the
same as “standard secure services”.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 24

https://developer.arm.com/documentation/den0125/latest
https://developer.arm.com/documentation/den0125/latest
https://developer.arm.com/documentation/den0127/latest
https://developer.arm.com/documentation/den0127/latest
https://developer.arm.com/documentation/den0137/latest
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0098/latest/
https://developer.arm.com/documentation/den0098/latest/
https://developer.arm.com/documentation/den0100/latest/
https://developer.arm.com/documentation/den0100/latest/
https://developer.arm.com/documentation/den0054/latest/
https://developer.arm.com/documentation/den0054/latest/
https://developer.arm.com/documentation/den0113/latest/
https://developer.arm.com/documentation/den0118/latest/
https://developer.arm.com/documentation/den0118/latest/
https://developer.arm.com/documentation/den0138/latest/
https://developer.arm.com/documentation/den0138/latest/
https://developer.arm.com/documentation/den0115/latest/
https://developer.arm.com/documentation/den0115/latest/
https://developer.arm.com/documentation/den0028/latest/
https://developer.arm.com/documentation/den0028/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

3.3 Normal world firmware
Many systems run firmware in the Normal world, presenting industry standard interfaces found in
other CPU architectures such as x86. Open source reference firmware implementations include:

• Tianocore EDK II, which supports both ACPI-based and Devicetree-based firmware models

• Uboot, which supports Devicetree-based firmware models

Key functionality provided by Normal world firmware includes booting the operating system and
helping it discover hardware.

3.3.1 Operating system boot

Unified Extensible Firmware Interface (UEFI) is an open industry standard maintained by UEFI
Forum. It defines a standard boot environment for handing over control from SoC-specific firmware
boot loaders to the operating system. It is supported by common operating systems including Linux
and Microsoft Windows. Services provided include:

• Console input and output for use by the OS loader for debug purposes early in the boot
process, before it has loaded its own device drivers

• Booting from block devices or the network

• Accessing files from an EFI file system during boot, for example configuration information, or
executables such as EFI applications and OS boot loaders.

• Network device access during boot

Aside from booting, UEFI defines several runtime services which remain available after OS boot, for
example:

• Reading and writing firmware non-volatile variables, including configuring UEFI Secure Boot

• Reading and updating the system real time clock

• Requesting the system is shutdown or reset

UEFI also provides the low-level interface for accessing other normal world firmware services such
as ACPI and SMBIOS.

3.3.2 Hardware discovery

Operating systems need to know about the hardware present in the system. For example, an OS
needs to know if a generic UART exists, and the memory addresses for accessing its registers.
Some buses, such as PCIe, provide standard mechanisms for discovering and enumerating
connected devices. However, other hardware such as an I2C sensor, might not be discoverable

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 24

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

in this way. Even with PCIe the operating system needs to know the base address of the PCIe
configuration registers used for enumeration.

To avoid customized operating system images containing hardcoded information about hardware,
operating systems designed to run on multiple systems typically use one of the following firmware-
based mechanisms to assist with discovery:

• Advanced Configuration and Power Interface (ACPI): an open standard maintained by UEFI
Forum. This allows firmware to present an abstracted view of hardware to the operating
system, improving cross-compatibility and enabling an older operating system to run on new
BSA-compliant hardware.

• Devicetree: a data structure passed by the boot loader to the OS, statically describing hardware
devices and the connections between them.

The choice of ACPI or Devicetree is determined by the OS:

• Windows only supports ACPI

• Linux support varies by distribution:

◦ Distributions targeting servers, for example Red Hat Enterprise Linux, typically use ACPI

◦ Distributions targeting embedded applications tend to use Devicetree

• Android uses Devicetree

The following Arm-specific supplements complement the core ACPI specification:

Standard Arm hardware binding

ACPI for Arm Components (DEN0093) Miscellaneous Arm-licensed components, for example generic UART and
watchdog.

Arm Functional Fixed Hardware (FFH) (DEN0048) CPU power state enumeration and performance monitoring using AMUs, SMC,
and HVC calls.

ACPI for Memory System Resource Partitioning and
Monitoring (MPAM) (DEN0065)

MPAM memory system components

ACPI for CoreSight (DEN0067) CoreSight debug trace components and their topology, for example the System
Debug Bus and Embedded Trace Buffer.

ACPI for CoreSight Performance Monitoring Unit
Architecture (DEN0117)

CoreSight PMU instances.

ACPI for Arm RAS (DEN0085) Error sources, for example CPU, memory, and SMMU.

IO Remapping Table (IORT) (DEN0049) Input/output topology of the system, PCIe, and System Memory Management
Unit (SMMU).

ACPI also provides a standard interface for abstracting power and performance management.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 24

https://developer.arm.com/documentation/den0093/latest/
https://developer.arm.com/documentation/den0048/latest/
https://developer.arm.com/documentation/den0065/latest/
https://developer.arm.com/documentation/den0065/latest/
https://developer.arm.com/documentation/den0067/latest/
https://developer.arm.com/documentation/den0117/latest/
https://developer.arm.com/documentation/den0117/latest/
https://developer.arm.com/documentation/den0085/latest/
https://developer.arm.com/documentation/den0049/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Platform firmware interfaces

3.4 System management controller firmware
Many SoC designs, including those built using Arm Compute Subsystems (CSS), feature additional
hardware controllers dedicated to particular system management and security tasks. Typically,
these are M-profile microcontrollers running their own specialized firmware.

To enable entities such as the host operating system to interoperate with the controller firmware,
the following message-based interfaces are available:

• System Control and Management Interface (SCMI) (DEN0056): Mainly used for managing
system power, it also features interfaces for resetting domains, accessing sensors and
controlling pins such as General Purpose IO (GPIO). For more information, see Power Control.

• MPAM Firmware-backed (Fb) Profile (DEN0144): MPAM enables partitioning of constrained
memory resources between different software running on the application processor. This
interface provides an alternative method for managing MPAM configuration on hardware
where the MPAM Memory System Controller (MSC) registers are not directly accessible by the
application processor.

Messages are exchanged between entities using a variety of transport mechanisms, for example
an area of shared memory. The details of these mechanisms can be discovered using ACPI or
Devicetree. This provides system designers with the flexibility to create an implementation that
meets the needs of their own particular use cases.

For example, many systems use the standard ACPI Platform Communications Channel to exchange
SCMI messages between the OS and the SCP, and DMTF-defined Management Component
Transport Protocol (MTCP) messages between the OS and MCP.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 24

https://developer.arm.com/documentation/den0056/latest/
https://developer.arm.com/documentation/den0144/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Hardware components and subsystems

4. Hardware components and subsystems
Several standard hardware components and subsystems exist alongside the processor cores in a
modern Arm-based System-on-Chip (SoC). These components support essential system functions
such as interrupts, memory access, and power management, ensuring consistent operation for
system software.

The AMBA hardware interfaces enable the integration of additional components including memory
systems, peripherals, and accelerators.

4.1 System components
Several system components are defined with standardized hardware connections and a software
programming model to complement the A-Profile architecture. Arm provides these as standalone IP
blocks, or pre-integrated into Compute Subsystems (CSS) such as Neoverse CSS.

A Generic Interrupt Controller (GIC) takes interrupts from peripherals, prioritizes them, and delivers
them to the appropriate processor core. It is the standard interrupt controller for Arm Cortex-A
and Arm Cortex-R profile processors, supporting a range of systems from single-core devices to
large multi-chip designs with hundreds of cores. For more information about the GIC, see Learn the
architecture - Generic Interrupt Controller.

Arm provides several GIC models that implement a range of interrupt management solutions for
all types of Arm Cortex multiprocessor systems. Standalone controllers range from the simplest
CoreLink GIC-400 for systems with small CPU cores counts, to CoreLink GIC-700 for high-
performance multi-chip systems.

The System Memory Management Unit (SMMU), also known as IOMMU, translates virtual
addresses from DMA-capable devices to physical addresses. It performs a similar task to the
MMU in a PE. An example implementation of an SMMU is Arm’s CoreLink MMU-700. For more
information about the SMMU, see Learn the architecture - SMMU Software Guide.

The CoreSight architecture provides a comprehensive debug and trace infrastructure for Arm
processors, enabling both self-hosted and external debugging. Components included in CoreSight
include:

• Cross Trigger Interface (CTI) and Cross Trigger Matrix (CTM) for coordinating debug activities
across multiple processor cores

• Embedded Trace Macrocell (ETM) for generating trace data.

The CoreSight architecture supports several connection methods, including JTAG, and facilitates
trace data capture both on-chip and off-chip using components such as the Trace Port Interface
Unit (TPIU) and Embedded Trace Buffer (ETB). These components can be found in Arm products
such as CoreSight SoC-600. For more information about CoreSight, see Learn the architecture -
Introducing CoreSight debug and trace.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 24

https://developer.arm.com/documentation/198123/latest/
https://developer.arm.com/documentation/198123/latest/
https://developer.arm.com/documentation/109242/latest
https://developer.arm.com/documentation/102520/latest/
https://developer.arm.com/documentation/102520/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Hardware components and subsystems

4.2 System support for A-profile features
Some optional features of A-profile cores depend on complementary support in other system
components.

Memory System Resource Partitioning and Monitoring (MPAM) enables the partitioning and
monitoring of memory resources across applications or virtual machines. The goal is to limit
the performance impacts caused by resource contention in the memory system. The MPAM
System Component Specification (IHI0099) describes the requirements for shared memory system
components such as cache memories, interconnects and memory channel controllers. For more
information about MPAM, see Learn the architecture - MPAM Overview.

Reliability, Availability and Serviceability (RAS) defines a framework for gathering and reporting
hardware faults, allowing for a wide range of capabilities from basic “reset-on-error” recovery
through to sophisticated error handling and pre-emptive replacement of failing components. The
Arm Reliability, Availability, and Serviceability (RAS) System Architecture (IHI0100) defines the
features of components that can detect errors, such as memory and I/O controllers. For more
information, see Learn the Architecture - RAS Overview.

The Realm Management Extension (RME) defines the hardware-based isolated execution
environment known as Realms. It underpins the Arm Confidential Compute Architecture
(CCA) but can also be used for other purposes. The Arm Realm Management Extension (RME)
System Architecture (DEN0129 defines the required system properties, including definition of
resources, capabilities, and components. For more information, see Learn the architecture - Realm
Management Extension.

4.3 Power control
The Arm architecture is designed to be highly energy efficient. However, simply using individually
power-efficient components is not sufficient for best results. Minimizing system power requires
intricate and coordinated clock, power, and thermal management.

The Power Control System Architecture (PSCA) (DEN0050) defines a flexible framework for system
power control integration using standard infrastructure components and low-power interfaces.
It enables a generic OS to delegate SoC-specific power and performance control to a specialized
subsystem, while allowing the OS to remain responsible for assessing the performance needs of
workloads and translating them to desired performance levels.

The PSCA is important in most markets, including mobile and servers, and is implemented in many
Arm Compute Systems (CSS).

The following diagram summarizes the main components of the PSCA:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 24

https://developer.arm.com/documentation/ihi0099/latest/
https://developer.arm.com/documentation/ihi0099/latest/
https://developer.arm.com/documentation/107768/latest/
https://developer.arm.com/documentation/IHI0100/
https://developer.arm.com/documentation/107790/latest
https://developer.arm.com/documentation/den0129/
https://developer.arm.com/documentation/den0129/
https://developer.arm.com/documentation/den0126/latest/
https://developer.arm.com/documentation/den0126/latest/
https://developer.arm.com/documentation/den0050/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Hardware components and subsystems

Figure 4-1: PCSA main components

The key elements of the PCSA are as follows:

• System Control Processor (SCP). A processor, for example a microcontroller, which offloads and
abstracts details away from the host Operating System Power Manager (OSPM).

◦ The SCP operates independently from, and reacts faster than the OS kernel. It securely
arbitrates power requests from multiple sources, including when the main application
processors are themselves in a low-power state or subject to thermal throttling.

◦ A complex system may use additional, distributed secondary SCPs to provide functional
encapsulation of subsystems and lower-latency local control. Product documentation refers
to these as Local Control Processors (LCPs).

• Power Policy Unit (PPU). Hardware which converts power domain policy to basic power control
signals (AMBA Low Power Interface) for each power domain. See Arm Power Policy Unit
Architecture Specification (DEN0051) for more information about the PPU.

• System Monitoring Control Framework (SMCF). Defines how data from distributed sensors
can be collected and trigger alerts in the SCP, for example when a temperature threshold is
breached. The SMCF is designed to manage a large and diverse set of on-chip sensors. It does
this by presenting software with a standard interface to control the monitors, regardless of
type, and reducing the software load of sampling and data collection. See System Monitoring
Control Framework Architecture Specification, (DEN0108) for more information.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 24

https://developer.arm.com/documentation/den0051/latest/
https://developer.arm.com/documentation/den0051/latest/
https://developer.arm.com/documentation/Den0108/
https://developer.arm.com/documentation/Den0108/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Hardware components and subsystems

Other entities, including the application processor system software, communicate with the SCP
using the System Control and Management Interface (SCMI) (DEN0056) to perform various
functions including:

• Discovery of power and performance domains in the platform

• Setting performance levels and power states for each domain

• Obtaining sensor information, for example temperature data

When the operating system power manager requires a change in CPU and system power states,
such as shutting down a core, the application processor EL3/Monitor firmware should be called
using PSCI. For more information about PSCI, see Secure and monitor firmware interfaces. This
allows the firmware to perform additional operations before passing the request to the SCP using
SCMI. This typically includes saving and restoring EL3 monitor context, and managing secure-world
interrupts. The OS can use SCMI directly for other operations.

For a more detailed overview of SCMI, see the Power and Performance Management using Arm
SCMI white paper.

4.4 Connecting functional blocks together
The Advanced Microcontroller Bus Architecture (AMBA) family of specifications define standard
interfaces between functional components on a system-on-a-chip (SoC). Widely adopted, feature
rich, and architecture neutral, AMBA has a comprehensive and thriving ecosystem of third-party
partners offering compatible products and solutions. Examples include peripheral IP, modelling, and
validation tools.

4.4.1 Key specifications

Processors and other entities such as accelerators require efficient access to memory and memory-
mapped devices, including peripherals.

AMBA has significantly evolved over many generations to address these needs. AMBA offers a
range of interface options that support non-coherent, IO-coherent, and fully coherent traffic, at
various levels of power, performance, and area requirements.

The following figure shows the AMBA interfaces:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 24

https://developer.arm.com/documentation/den0056/
https://developer.arm.com/documentation/102886/
https://developer.arm.com/documentation/102886/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Hardware components and subsystems

Figure 4-2: AMBA interfaces

GPU Accelerator

PCIe controller

Interconnect Chip-to-chip
controller

Peripherals
Memory Controller

SMMU

CPU

AXI
High-performance

IO and non-coherent

CHI
High-performance and

scalability
Full-coherency and crediting

CHI or AXI

APB and AHB
Low cost, low power and low complexity

Configuration and low bandwidth peripherals

CHI C2C

Packetized CHI protocol optimized for
chip(let)-to-chip(let)

Simple interface abstraction between
(C2C) protocol and transport

The AMBA Coherent Hub Interface (CHI) (IHI0050) offers high performance with full cache
coherency, ensuring all processors in the system see the same data. Some of the key features
include:

• Support for high frequency, non-blocking coherent data transfer between many processors.

• A layered model to enable separation of communication and transport protocols for flexible
topologies, including a cross bar, ring, or mesh.

• Cache stashing to allow accelerators or IO devices to store critical data in a CPU cache for low-
latency access.

• Far atomic operations to enable the interconnect to perform high-frequency updates to shared
data.

• End-to-end data protection and poisoning signaling.

• Realm management support for confidential compute.

The CHI protocol requires a coherent interconnect block to connect multiple components within a
chip. An example interconnect from Arm which features CHI interfaces is the Arm Neoverse CMN-
S3. For more information about the operation of CHI, see Learn the architecture - Introducing
AMBA CHI.

There are several ways to extend the interconnect beyond the die, each offering different design
trade-offs. A SoC design may implement several interfaces for different functions. Using CHI end-
to-end lets architectural features span chip and chiplet boundaries, enabling a common memory
and security model. This approach avoids protocol conversions, incompatibilities, and extra latency.
To facilitate this, the AMBA CHI Chip-to-Chip (C2C) Architecture Specification (IHI0098) defines
how the CHI protocol is encapsulated into fixed-size containers for transport over an appropriate
layer. Example transports include UCIe streaming between chiplet dies and PCIe physical layer
between chip packages. The IP blocks implementing the CHI-C2C packetization and the chosen

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 24

https://developer.arm.com/documentation/ihi0050/latest/
https://developer.arm.com/documentation/102407/latest/
https://developer.arm.com/documentation/102407/latest/
https://developer.arm.com/documentation/IHI0098/latest/

Learn the architecture - Arm System Architectures Document ID: 110303_0100_01_en
Version 1.0

Hardware components and subsystems

transport layer are typically connected on-chip using the AMBA Credited eXtensible Stream (CXS)
protocol (IHI0079).

The simpler AMBA Advanced eXtensible Interface (AXI) (IHI0022) provides a solution for high
performance on-chip connections which only need IO-coherent or non-coherent access. Originally
developed before CHI, AXI has been updated to include several performance and scalability
features which align and complement AMBA CHI. The AXI Coherency Extension (ACE), which
added full coherency to AXI, has been superseded by CHI. For more information about AXI, see
Learn the architecture - An introduction to AMBA AXI.

Other interconnect interfaces include:

• AMBA Advanced High-Performance Bus (AHB) (IHI0033), which is generally used with M-
profile.

• AMBA Advanced Peripheral Bus (APB) (IHI0024), which offers highly compact low-power
implementations for low bandwidth peripherals and configuration registers.

4.4.2 Application-specific interfaces

In addition to load and store operations, AMBA includes the following specialized point-to-point
interfaces targeting specific applications:

AMBA standard Description

AXI-Stream (IHI0051) Interface for transferring streams of arbitrary unidirectional data. AXI-Stream has numerous applications,
including connecting GIC-600 blocks together.

Distributed Translation
Interface (DTI)
(IHI0088)

SMMU interface for querying address translations, which can be cached. DTI-ATS is used by a PCIe Root Port
with Address Translation Services (ATS) support. DTI-TBU is used between internal SMMU components.

Local Translation
Interface (LTI) (IHI0089)

SMMU interface for an I/O device to query address translations. LTI is simpler to use than DTI, but designed for
short distances without any caching.

Advanced Trace Bus
(ATB) (IHI0032)

Data-agnostic interface for transferring trace information between components.

Low Power Interface
(LPI) (IHI0068)

Defines Q-Channel and P-Channel interfaces. LPI is designed to manage clock and power features of SoC
components.

Generic Flash Bus (GFB)
(IHI0083)

Interface between a generic flash controller, for example Arm CoreLink GFC-200, and a process-specific
controller for flash or similar non-volatile memory.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 24

https://developer.arm.com/documentation/ihi0079/latest/
https://developer.arm.com/documentation/ihi0079/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/102202/latest/
https://developer.arm.com/documentation/ihi0033/latest/
https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/ihi0051/latest/
https://developer.arm.com/documentation/ihi0088/latest/
https://developer.arm.com/documentation/ihi0088/latest/
https://developer.arm.com/documentation/ihi0088/latest/
https://developer.arm.com/documentation/ihi0089/latest/
https://developer.arm.com/documentation/ihi0089/latest/
https://developer.arm.com/documentation/ihi0032/latest/
https://developer.arm.com/documentation/ihi0032/latest/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0083/latest/
https://developer.arm.com/documentation/ihi0083/latest/

	Learn the architecture - Arm System Architectures
	Contents
	1. Overview of Arm system architectures
	2. Base standards
	2.1 Generic operating systems
	2.1.1 Firmware capabilities
	2.1.2 Hardware capabilities

	2.2 Server management

	3. Platform firmware interfaces
	3.1 Transitioning isolation boundaries
	3.2 Secure and monitor firmware interfaces
	3.3 Normal world firmware
	3.3.1 Operating system boot
	3.3.2 Hardware discovery

	3.4 System management controller firmware

	4. Hardware components and subsystems
	4.1 System components
	4.2 System support for A-profile features
	4.3 Power control
	4.4 Connecting functional blocks together
	4.4.1 Key specifications
	4.4.2 Application-specific interfaces

