
ML Developers Guide for Cortex-M Processors
and Ethos-U NPU
Version 1.2

Non-Confidential
Copyright © 2023–2025 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
109267_0102_01_en

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Developers Guide for Cortex-M Processors and Ethos-U NPU

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0102-
01

12 May 2025 Non-
Confidential

Minor updates.

0101-
01

9 April 2024 Non-
Confidential

Added information about Cortex-M52, Ethos-U85, and
Corstone-315.

0100-
04

7 November
2023

Non-
Confidential

Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 103

https://www.arm.com/company/policies/trademarks

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 103

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Contents

Contents

1. Overview...8
1.1 Target audience... 9
1.2 Machine Learning on edge devices.. 9
1.2.1 ML compute requirements... 10
1.3 Overview of the ML development process... 11
1.4 Tools and software for ML development... 14
1.5 Targeting Ethos-U NPUs...15

2. ML software development for Arm Cortex-M processors...17
2.1 ML software framework options.. 18
2.2 Example software development flow using TFLM... 19
2.2.1 Create a TensorFlow Lite model file.. 20
2.2.2 Convert the model file to a C/C++ header file... 20
2.2.3 Identify the inputs and outputs of the NN model..21
2.2.4 Integrate the TFLM runtime library..22
2.2.5 Integrate the inference functions..24
2.2.6 Run the inference and process the results... 25
2.3 Re-training an ML model..26
2.4 Further information..26

3. Arm Ethos-U NPU..27
3.1 Ethos-U hardware architecture... 28
3.1.1 Ethos-U performance configuration... 29
3.1.2 Ethos-U bus manager interfaces...30
3.1.3 Differences between Ethos-U55, Ethos-U65 and Ethos-U85... 31
3.1.4 Power, security, and performance analysis... 31
3.2 Ethos-U system integration... 32
3.2.1 Ethos-U integration in a Cortex-M system...32
3.2.2 Ethos-U integration with an Ethos-U subsystem..33
3.2.3 Ethos-U85 system integration... 35
3.3 Corstone reference designs... 35
3.4 ML software support for Ethos-U..38
3.4.1 Ethos-U custom operators..39

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Contents

3.4.2 ML software for microcontrollers with Cortex-M and Ethos-U NPU... 40
3.4.3 ML software for ML subsystems in a larger SoC..41
3.5 Software architecture scenarios and use cases...42
3.6 Additional software and tools for Ethos-U.. 42
3.7 Porting Ethos-U software to a new hardware platform..43
3.7.1 Security configuration for Ethos-U in a TrustZone system... 43
3.7.2 An example of Ethos-U initialization..44
3.7.3 Software integration for the Ethos-U micro NPU in custom designs... 45
3.7.4 Linker script design...46
3.8 Customizing the Ethos-U driver and RTOS integration...48
3.8.1 Putting the processor to sleep while the Ethos-U NPU is running...52
3.8.2 Adding RTOS support.. 53
3.8.3 Ethos-U driver configuration..54

4. Tool support for the Arm Ethos-U NPU...55
4.1 Ethos-U Vela compiler...56
4.1.1 Requirements..57
4.1.2 Installation...57
4.1.3 Usage..58
4.1.4 Command examples... 60
4.1.5 Optimization considerations for the Vela compiler...61
4.2 Machine Learning Inference Advisor... 64
4.2.1 Requirements..65
4.2.2 Installation...65
4.2.3 Usage..65
4.2.4 Command examples... 67
4.3 Arm Virtual Hardware... 67
4.4 SDS Framework.. 68
4.4.1 SDS Recorder Interface... 68
4.4.2 SDS Metadata..69
4.4.3 SDS Utilities..72
4.4.4 SDS Playback... 72

5. The Arm ML Zoo..74
5.1 Integrating an Arm ML-Zoo model...75

6. ML Embedded Evaluation Kit..76

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Contents

6.1 Getting started with the ML Embedded Evaluation Kit..76
6.1.1 Supported platforms...76
6.1.2 System and software requirements.. 77
6.1.3 Check out the repository..78
6.1.4 Compile the default projects..78
6.1.5 Additional resources... 79
6.2 Beyond the basics.. 80
6.2.1 The build process..80
6.2.2 Build options for build_default.py...83
6.2.3 Software components.. 84
6.2.4 Creating custom applications with the ML Embedded Evaluation Kit..85

7. CMSIS-Pack based ML examples...86
7.1 Prerequisites...86
7.2 Compiling the CMSIS-Pack based ML examples.. 87
7.3 Using TFLM CMSIS-Packs in your own project..89
7.3.1 Add the TFLM software components..89
7.3.2 Add the ML model to your project.. 90
7.3.3 Use the TFLM API..92

8. Profiling and optimizing ML models..94
8.1 Ethos-U Vela optimizations..94
8.2 Operator mapping and usage..95
8.3 MLIA guided optimizations (Experimental)...95
8.4 Ethos-U performance profiling..96

9. MLOps systems...97
9.1 License activation... 98
9.2 Example projects...98
9.3 vcpkg..99

10. Resources for Ethos-U... 101
10.1 Product pages...101
10.2 Product document...101
10.3 Software and examples..102
10.4 Other resources... 102
10.5 Partner solutions..103

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

1. Overview
Thank you for using Arm Cortex-M processors optionally with an Ethos-U Network Processing
Unit (NPU) in your Machine Learning (ML) edge device application. To provide you with the best
experience for developing ML applications with Arm processors, Arm offers hardware IP, tools,
and software that make product development easy and productive. In addition, Arm provides
supporting material and collaborates with many AI partners to complement our solution, for
example with optimized ML models, MLOps integrations, and evaluation boards.

This guide contains the following information:

• Overview provides an overview of the ML development process, introducing the Arm
technology and products that support the entire ML development workflow from ML model
training through to debugging on hardware.

• ML software development for Arm Cortex-M processors describes the concepts involved in
developing ML software for resource-constrained systems, with an example using TensorFlow
Lite for Microcontrollers (TFLM).

• Arm Ethos-U NPU provides information about the different Ethos-U processors, including
hardware and software design considerations.

• Tool Support for the Arm Ethos-U NPU describes the Vela compiler that transforms ML models
for execution on Ethos-U NPUs, as well as the ML Interference Advisor, Arm Virtual Hardware,
and SDS-Framework for analysis, verification, and training.

• The Arm ML Zoo introduces a repository containing pre-trained models for various types of
applications. This section also explains how to use the models in the repository.

• ML Embedded Evaluation Kit provides ML examples for a range of use cases that help you to
create your own applications for systems based on the Cortex-M CPU and Ethos-U NPU.

• CMSIS-Pack based ML examples demonstrates ML software integration using software
components in the form of CMSIS-Packs, and using CMSIS-Toolbox to manage the build
environment.

• Profiling and optimizing ML models describes how to analyze and optimize the execution of ML
models on Arm Ethos-U processor-based systems.

• MLOps systems describes the integration of the Arm foundation tools into MLOps systems that
automate training and help select optimal ML models for your applications.

• Resources for Ethos-U gives an overview of the available resources and eco-system partners
that support Ethos-U NPUs.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 103

https://www.arm.com/products/silicon-ip-cpu?families=cortex-m
https://www.arm.com/products/silicon-ip-cpu?families=ethos%20npus
https://www.arm.com/products/silicon-ip-cpu?families=ethos%20npus

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

1.1 Target audience
This guide assumes some basic knowledge about Cortex-M software development. It is written for
the following audiences:

• Embedded Developers that want to use microcontroller devices that incorporate Ethos-U
processors and need easy access to development tools, software examples, and additional
usage information.

• MLOps system architects that want to support the Ethos-U NPU processor series and need to
integrate the various development tools into their development flows.

• Data scientists that analyze data to develop new ML models and need software tools to gather
statistics about model performance.

1.2 Machine Learning on edge devices
Implementing ML on edge devices enables a new range of applications. Examples of these
applications include the following:

Predictive maintenance
Sensors in a system identify likely failures, allowing for proactive maintenance to prevent
downtime.

Speech recognition
Use natural language to interact with devices.

Image detection in factory automation
Improve efficiency, reduce errors, and increase safety in manufacturing environments.

Medical diagnosis
Assist in medical treatment, helping to design personalized treatment plans.

Computer vision
Enable robots to perceive and understand their environment by recognizing objects,
detecting obstacles, and tracking people.

These are just a few examples. The possibilities of ML are vast, and the technology is constantly
evolving making it possible to innovate in many new areas.

Typically, ML models require a large quantity of reliable data for the models to perform accurate
predictions. When training an ML model, engineers need to collect a large and representative
sample of data. This training data could be a collection of images, sensor data, or data collected
from individual users of a device.

Today, AI and ML algorithms that operate on data from IoT endpoint devices frequently execute on
cloud servers. However, to meet the real-time requirements of embedded systems, the actual AI
algorithm must execute on the edge device.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

1.2.1 ML compute requirements

The compute requirements for different machine learning algorithms can vary widely depending
on the type of algorithm, the size of the dataset that is required during model training, the overall
complexity of the problem, and the timing requirements of the application.

Arm therefore offers a broad range of optimized processors targeting machine learning applications
on edge devices, as shown in the following diagram:

Figure 1-1: Arm ML processor portfolio

Cortex-M52, M55, M85
with Helium vector

instructions

Cortex-M with
Ethos NPU ML
acceleration

Sensor
fusion

Keyword
detection

Speech
recognition

Object
classification

Anomaly
detection

Real-time
recognition

Biometric
awareness

Object
detection

Gesture
detection

Vibration
detection

Cortex-M7,
Cortex-M33

Cortex-M0+,
M3, M4

• Even the smallest Arm processor, the Cortex-M0/M0+ processor, can execute simple ML
algorithms. For example, you could use the Cortex-M0/M0+ processor to implement a
predictive maintenance system that monitors data from a single sensor.

• Starting with the Cortex-M4, Arm processors provide hardware floating-point arithmetic and
SIMD instructions that can accelerate DSP and simple ML algorithms. For example, these
processors can run applications that use sensor fusion to merge data from multiple sensors.

• The Cortex-M55 and Cortex-M85 processors extend the architecture with Helium vector
instructions that enable more complex ML algorithms. For example, these processors can run
applications that use speech keyword spotting or object and anomaly detection.

• Ethos-U is a family of microNPUs that enables extremely low-power ML inference at the
endpoint. Ethos-U operates in combination with an Arm Cortex processor and provides an
enormous increase in ML performance.

For more demanding applications, the Arm ML processor portfolio also includes Mali graphics
processors and the Cortex-A processors. However, these processors are outside the scope of this
guide. This guide focuses on the development flow for tiny edge devices that use a single-core
Cortex-M processor optionally paired with an Ethos-U NPU.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

1.3 Overview of the ML development process
The software and system design of an embedded IoT and ML device consists of two parts:

• The classic embedded IoT software part. This part requires efficient device drivers that interface
with peripherals, a communication stack with security, and firmware update services.

• The system part that implements the machine learning algorithm. The ML part is frequently
designed using Software-as-a-Service (SaaS) cloud environments that are specialized for ML
algorithm development.

The machine learning algorithm is developed using an MLOps workflow. MLOps is a set of
practices for developing, deploying, and maintaining machine learning models in production
devices. The following diagram shows the process steps in an MLOps development flow:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

Figure 1-2: MLOps process steps

Data

Labeling

Data

Preparation

Model

Training

Model

Evaluation

System

Validation

Model

Deployment

Data

Collection

Data

Analysis

Training Data

Validation Data

Test Data

The MLOps process contains the following steps:

Data collection
Data collection is the foundation of an ML project. The ML model must have enough data
to learn from, the data must cover as many scenarios as possible, and the data must be
accurate. The quantity and quality of the data is critical for the performance of the model.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

Data analysis
Data analysis requires an understanding of the different scenarios that are represented in
the data collection. Data may need to be cropped or cleaned if the collected data contains a
mixture of scenarios.

Data labelling
Data labelling is the annotation of the collected and cleaned data. For example, data for
a fitness tracker might be labelled with “walk”, “run”, and “rest” to describe the different
activities that are represented.

Data preparation
Data preparation makes the collected data available for training the model. For example, you
might separate data might into training data, validation data, and test data for smoke testing.
Training data is typically the largest data set.

Model training
Model training performs the training of the ML model. Training is the process by which a
machine learning algorithm is fed with a training dataset from which it can learn.

Model evaluation
For any given ML problem, there are several different algorithms to choose from. Evaluation
of these different models is an iterative process to choose the best ML algorithm for the
problem.

System validation
System validation tests the ML algorithm with the model data, running on the final target
system. Verification of the ML algorithm might be performed using a reduced set of
validation data.

Model deployment
Deployment is the integration of the ML algorithm with the model data into the final target
system, for example an embedded IoT application.

Machine learning models are typically tested and developed in isolated systems. Training of the ML
model mostly takes place in the cloud, because training needs both an extensive data set and high
compute power. Once training is complete, the algorithm using the ML model can then execute
directly on the IoT endpoint device.

Just as humans learn and improve upon past experiences, ML algorithms adaptively improve their
performance as the number of samples available for learning increases. Correct decisions can only
be made in areas where training data exists. Learning means therefore that ML algorithms are re-
trained based on new data that delivers additional information.

For example, if a picture recognition application has never seen a picture of a cat, it cannot be
correctly qualified. The figure below shows the result of this missing training data. It is therefore
expected that IoT endpoint systems that incorporate AI and ML technology require periodic
updates.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

Figure 1-3: Missing training data

1.4 Tools and software for ML development
The following tools and software components are provided by Arm and support several MLOps
process steps.

Step Tool Description

Data collection Keil MDK For classic embedded IoT software development targeting Cortex-M processors.

Data collection SDS Framework For data capturing, optionally combined with MDK Middleware to interface with Networks,
USB, or File System.

Model
evaluation

Arm Compiler for
Embedded

Commercial C/C++ Compiler for all Cortex-M processors.

Model
evaluation

Arm GNU Toolchain GCC C/C++ Compiler (community supported); not recommended for Cortex-M processors
with Helium extension.

Model
evaluation

Arm LLVM Embedded
Toolchain

C/C++ CLang Compiler for all Cortex-M processors (community supported).

Model
evaluation

CMSIS-NN Software library of neural network kernels optimized for various Arm Cortex-M processors.

Model
evaluation

Ethos-U Vela compiler Compiler for mapping ML models the Ethos-U processors.

Model
evaluation

Arm Virtual Hardware Simulation model for estimating inference time on different Cortex-M/Ethos-U target
systems.

System
validation

Arm Virtual Hardware Simulation model for streaming validation data to different Cortex-M/Ethos-U target systems.

System
validation

SDS Framework For playback of captured data to Arm Virtual Hardware.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 103

https://www.keil.arm.com/
https://github.com/ARM-software/SDS-Framework
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://learn.arm.com/install-guides/llvm-embedded/
https://learn.arm.com/install-guides/llvm-embedded/
https://arm-software.github.io/CMSIS_6/latest/NN/html/index.html
https://www.arm.com/avh
https://www.arm.com/avh
https://github.com/ARM-software/SDS-Framework

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

Step Tool Description
Model
deployment

Open-CMSIS-Pack Packaging technology and delivery mechanism for software components including ML
models.

Model
deployment

Keil MDK For integration of the final ML model into the Cortex-M/Ethos-U target system.

Model
deployment

Trusted Firmware Open source software projects for IoT systems; includes MCU boot for firmware update.

See MLOps systems for information about how to integrate these tools and software components
into an MLOps system.

The MLOps development flow delivers the algorithms that are integrated into an Cortex-M based
ML application. Typically a library with ML model data is required, that is optimized for the target
processor.

1.5 Targeting Ethos-U NPUs
The Ethos-U Vela compiler takes an ML model as input and generates an optimized binary for the
Ethos-U NPU. The following diagram shows the software development flow for ML models using
an Ethos-U NPU. Compared to a single-core Cortex-M processor system the overall changes to the
development flow are minimal.

Figure 1-4: Software development flow

HOST

TARGET

 TF

L

 M

 Ru

nt
im

e

Ref

erence

Kernels

CMSIS

-

NN

Optimized
Kernels

Cortex

-

M

CPU

TF

Framework

Vela Compiler

TF Quantization

TFL flat file

NN Optimizer

Ethos

-

U

Driver

Ethos

-

U

NPU

The steps in the process are as follows:

1. Host (Offline) process:

a. Start with a trained ML model using the TensorFlow machine learning framework.

b. Use ML model conditioning techniques such as collaborative clustering, pruning, and
quantization aware training (QAT) to improve model performance on Ethos-U while
preserving accuracy.

c. Use TensorFlow Lite post-training quantization to int8 data types to speed-up the ML
model.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 103

https://github.com/Open-CMSIS-Pack
https://www.keil.arm.com/
https://www.trustedfirmware.org/
https://www.tensorflow.org/

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Overview

d. The resulting TFL flatbuffer file (*.tflite file) is then transformed for execution on Ethos-U
NPU using the Vela Compiler.

e. The NN Optimizer identifies graphs to run on Ethos-U and optimizes, schedules, and
allocates these graphs.

f. The *.tflite file is losslessly compressed to reduce the size.

2. Target / Device process:

a. Takes the *.tflite file for execution with the TFLU runtime system.

b. The Ethos-U driver schedules operators for execution on Ethos-U.

c. The CMSIS-NN library executes operators that cannot be mapped to Ethos-U, using a
software implementation on Cortex-M.

See Ethos-U Vela compiler for more information about the Ethos-U Vela compiler.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

2. ML software development for Arm
Cortex-M processors

This section of the guide introduces the concepts behind ML software development for Cortex-M
processors, and provides an example using TensorFlow Lite for Microcontrollers (TFLM).

Arm Cortex-M processors are used in a wide range of modern microcontroller products. They are
used in a wide range of applications, from simple controllers inside toys and home appliances,
to sophisticated smart home products, medical devices, and automotive subsystems. Because
Cortex-M based microcontrollers are widely available, low-cost, and easy-to-use, it is natural for ML
application developers to create applications using these devices.

As discussed in ML compute requirements, there are different types of Cortex-M processors, each
with different levels of ML processing capabilities. An easy way to define the ML performance
of the processor is to measure the number of operations (OPs) per clock cycle. Neural Network
(NN) model processing is often based on multiply-accumulate (MAC) operations, with each MAC
operation considered as two OPs, a multiply and an add. A rough estimation of the relative ML
performance of Cortex-M processors can be established based on the processor’s instruction set
support and pipeline behaviors. The following table provides performance estimates for several
Cortex-M processors:

Processor Instruction set OPs at
100MHz

Cortex-M3 A multiply-accumulate instruction (MLA, 2 OPs) takes 2 cycles. Because the processor also needs to execute
memory load operations for NN processing, assuming a 1:1 ratio of MAC vs load, the average OPs/cycle is 0.6.

0.06
GOPs/
sec

Cortex-M4,
Cortex-M33

The DSP/SIMD instructions support a dual MAC operation (4 OPs). Because the processor also needs to execute
memory load operations for NN processing, assuming a 1:1 ratio of MAC vs load, the average OPs/cycle is 2.

0.2
GOPs/
sec

Cortex-M7 This processor supports dual issue of DSP/SIMD and memory load, so the average OPs/cycle is 4. 0.4
GOPs/
sec

Cortex-M52 With Helium technology, these processors can handle 4 MACs/cycle in parallel with data load. As a result, the
average OPs/cycle is 8.

0.8
GOPs/
sec

Cortex-
M55,
Cortex-M85

With Helium technology, these processors can handle 8 MACs/cycle in parallel with data load. As a result, the
average OPs/cycle is 16.

1.6
GOPs/
sec

Performance can be increased by running the processor at higher clock frequencies. However,
there are several other factors to consider:

• Memory wait states can increase with increasing clock speed.

• There are other operations involved in NN model processing.

• At the application level, there are other data processing tasks involved. For example, a keyword
spotting (KWS) application must also perform audio data processing tasks. These workloads
must be considered when selecting a microcontroller device for an ML application.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 103

https://www.tensorflow.org/lite/microcontrollers

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

A simple real-time KWS application can run on a Cortex-M3 based microcontroller. However,
since the DSP/SIMD instructions in Armv7-M and Armv8-M architectures provide much better
performance for signal processing, a Cortex-M4 or a more advanced processor is recommended.
Armv6-M processors, like Cortex-M0 and Cortex-M0+, can also handle certain levels of ML
applications. However, usually these devices have small memory sizes, so it is more challenging
to run complex ML applications on them. The following third-party articles provide examples of
running ML applications on the Cortex-M0 and Cortex-M0+ devices:

• How to Implement Cough Detection on the Cortex-M0

• Qeexo AutoML Shrinks Automated Machines Learning Footprint to Fit Cortex-M0(+)

The following whitepaper provides additional information about running ML applications on
Cortex-M microcontrollers:

• Machine Learning on Arm Cortex-M Microcontrollers

2.1 ML software framework options
When creating ML applications, one of the first decisions is deciding which ML software framework
should be used. Currently, there are several ML software framework options that are available for
Cortex-M based microcontrollers, including the following:

• TensorFlow Lite for Microcontrollers (TFLM)

• MicroTVM

• PyTorch

• PaddlePaddle

Factors that might influence your choice of ML software framework could include the following:

• The performance and memory footprint of the ML framework.

• The availability of hardware accelerator support for the targeted device.

• The availability of suitable ML models for the targeted application.

• The ease of development and integration of MLOps.

This guide includes an example using TensorFlow Lite for Microcontrollers, often referred to as
TensorFlow Lite Micro or TFLM. We chose TFLM for the following reasons:

• The NN model weights in TFLM can be quantized to 8-bit integers, which helps reduce the
memory footprint. Because memory sizes are often limited in microcontroller devices, this
makes TFLM attractive for microcontroller applications.

• Using quantized 8-bit weights allows for efficient NN on embedded processors such as the
Cortex-M processor family. Recent Cortex-M processors such as the Cortex-M55 and Cortex-
M85 provide 8-bit vector-dot-product operations as part of the Helium technology, which
makes these processors highly efficient when handling NN models in TFLM.

• Many ML hardware accelerators such as the Ethos-U microNPUs are designed to accelerate
quantized ML models and provide software support for TFLM.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 103

https://towardsdatascience.com/keyword-spotting-embedded-on-the-arm-cortex-m0-69241f69fde3
https://www.hackster.io/news/qeexo-automl-shrinks-automated-machine-learning-footprint-to-fit-cortex-m0-91067d19e598
https://armkeil.blob.core.windows.net/developer/Files/pdf/Arm%20ML%20on%20Cortex-M%20Microcontrollers.pdf
https://www.tensorflow.org/lite/microcontrollers
https://tvm.apache.org/docs/topic/microtvm/index.html
https://pytorch.org/
https://github.com/PaddlePaddle

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

• ML models created for TFLM are widely available.

2.2 Example software development flow using TFLM
TensorFlow Lite for Microcontrollers (TFLM) was created by Google. The TFLM runtime library that
runs on the microcontroller is an interpreter that reads an ML model and carries out the required
operations. The following diagram shows an overview of the software flow:

Figure 2-1: TFLM software flow overview

ML Training

ML model Optimize the ML model

Prune Clustering Quantize

Off-line software flow

TensorFlow Lite for Microcontrollers

CMSIS-NN
kernelsReference kernels

User
Application

Runtime software stack
(Cortex series CPU)

Conversion from .tflite to C /
C++ header file

To create an ML project with TFLM, perform the following steps:

• Create a TensorFlow Lite model file

• Convert the model file to a C/C++ header file

• Identify the inputs and outputs of the NN model

• Integrate the TFLM runtime library

• Integrate the inference functions

• Run the inference and process the results

The following sections describe each of these steps needed to create an ML project with TFLM.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

2.2.1 Create a TensorFlow Lite model file

TFLM stores NN models as TensorFlow Lite model files with the file extension .tflite, also known
as FlatBuffers.

You can use any of the following methods to obtain a TensorFlow Lite model:

• Create a new TensorFlow Lite model using the TensorFlow Lite Model Maker. A data set is
required to train the model.

• Use an existing TensorFlow Lite model. TensorFlow.org provides a range of examples. You
can also find other models from various model zoos, such as the Arm Model Zoo at https://
github.com/ARM-software/ML-zoo. Note that not all TensorFlow Lite models can be used on
Cortex-M based microcontrollers.

• Modify an existing TensorFlow Lite model. For example, you might want to re-train an existing
KWS model to allow it to detect different keywords. To do this, you need a new dataset for
training. Re-training an ML model in this way is often referred to as “Transfer Learning”. Note
that not all ML models can be re-trained using this method.

• Convert another type of model to a TensorFlow Lite model. For example, you can convert
a TensorFlow model into a TensorFlow Lite model using the TensorFlow Lite Converter. If
you have a model in the ONNX (Open Neural Network Exchange) format, for example if
you exported the model from Matlab, then you can first convert it to a TensorFlow model,
then convert the TensorFlow model to a TensorFlow Lite model. For more information about
converting ONNX to TensorFlow, see one of the many tutorials available on the Internet. Note
that not all ML models can be converted to TensorFlow Lite models.

To enable the NN model to run efficiently on a Cortex-M processor, the runtime library for
TFLM supports the integration of CMSIS-NN, a library of optimized NN functions for Cortex-M
processors. If the TFLM interpreter encounters a ML operator that is not supported by the CMSIS-
NN library, the reference kernel functions would be used instead.

This example uses the micro-speech example application available in the TensorFlow Github
repository, https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/
micro_speech.

2.2.2 Convert the model file to a C/C++ header file

If you want to use a pre-trained ML model from TFLM in your C/C++ project, you must first
convert the .tflite file to a C/C++ header file.

For the micro-speech example application, the pre-trained model file micro_speech.tflite is
available from the following location:

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/
micro_speech

To convert the micro_speech.tflite file to a C++ header file, do the following:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 103

https://www.tensorflow.org/lite/models/modify/model_maker
https://www.tensorflow.org/
https://www.tensorflow.org/lite/examples
https://github.com/ARM-software/ML-zoo
https://github.com/ARM-software/ML-zoo
https://www.tensorflow.org/lite/models/convert/
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

1. Run the Linux xxd utility to convert micro_speech.tflite:

$> xxd -i micro_speech.tflite > model.cc

The output file model.cc contains the following code, using default variable names generated
from the input filename:

unsigned char micro_speech_tflite[] = {
 0x20, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x00, 0x00,
 ...
 0x00, 0x00, 0x00, 0x04, 0x03, 0x00, 0x00, 0x00
};
unsigned int micro_speech_tflite_len = 18800;

2. Examine the example application code, main_functions.cc in the micro-speech repository to
discover the required variable names, as seen in the following code fragment:

void setup() {
 tflite::InitializeTarget();

 // Map the model into a usable data structure. This doesn't involve any
 // copying or parsing, it's a very lightweight operation.
 model = tflite::GetModel(g_micro_speech_model_data);
 ...

This code shows that the character array name should be g_micro_speech_model_data.

3. Edit model.cc, change the variable names so that they match the application code, and add the
const keyword to ensure that the model data is not copied into SRAM when the device starts
up:

const unsigned char g_micro_speech_model_data[] = {
 0x20, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x00, 0x00,
 ...
 0x00, 0x00, 0x00, 0x04, 0x03, 0x00, 0x00, 0x00
};
const unsigned int g_micro_speech_model_data_len = 18800;

You can now use the modified model.cc in your C++ programming environment.

2.2.3 Identify the inputs and outputs of the NN model

When using a NN model created by a third party, you must identify information about the inputs
and output of the NN model to ensure that when the application is feeding the data to the model,
or taking the result from the model, the correct data formats are used. TensorFlow Lite provides a

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 103

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/main_functions.cc

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

tool called Model Analyzer to help with this. You can run Model Analyzer in either Google Colab or
Jupyter Notebook.

The .ipynb file for is Jupyter Notebook is available on the Model Analyzer page.

There are also a number of other third-party tools that let you analyze and visualize TensorFlow
Lite models.

2.2.4 Integrate the TFLM runtime library

To integrate the TFLM runtime library, you can either compile it from the source or use an IDE that
supports CMSIS-Pack. Do one of the following:

• To compile a TFLM runtime library for a generic Cortex-M device, follow the steps in this
tutorial:

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/cortex_m_generic

To enable CMSIS-NN support, ensure that the command line includes the
OPTIMIZED_KERNEL_DIR=cmsis_nn option.

• To compile a TFLM runtime library for a device containing a Corstone-300 subsystem, follow
the steps in this tutorial:

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/
cortex_m_corstone_300

The compilation setup in the Corstone-300 directory enables the use of Ethos-U microNPU.

• When using an IDE that supports CMSIS-Pack, you can use the CMSIS-Pack mechanism to
integrate the TFLM runtime library. For example, if you are using Keil MDK, select the TFLM
software components as follows:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 103

https://www.tensorflow.org/lite/guide/model_analyzer
https://www.tensorflow.org/lite/guide/model_analyzer
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/cortex_m_generic
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/cortex_m_corstone_300
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/cortex_m_corstone_300

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

Figure 2-2: TFLM components in CMSIS-Pack installer

For the Machine Learning > TensorFlow > Kernel setting, choose one of the following options:

◦ CMSIS-NN. With this option, you must also select the CMSIS > NN Lib option.

◦ Ethos-U. With this option, you must also select the Machine Learning > NPU Support >
Ethos-U Driver option.

The CMSIS-Pack mechanism also lets you import some of the ML application APIs in the ML
Embedded Evaluation Kit.

For more examples of using TFLM with CMSIS-Pack, see https://github.com/ARM-software/
ML-examples/tree/main/cmsis-pack-examples

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 103

https://github.com/ARM-software/ML-examples/tree/main/cmsis-pack-examples
https://github.com/ARM-software/ML-examples/tree/main/cmsis-pack-examples

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

2.2.5 Integrate the inference functions

There are several important aspects to consider when creating the NN inference application.
Examining the micro-speech example code we can see that this example application integrates the
inference functions as follows:

• Create a TensorArena

TFLM requires a memory region in the RAM needs to be assigned. This memory region, called
TensorArena, stores the inputs, outputs, and intermediate values during inferences. The size
of this memory depends on the NN model. For the micro-speech example, the size of this
memory is 10KB. The code fragment in main_functions.cc that declares the TensorArena is as
follows:

// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.
constexpr int kTensorArenaSize = 10 * 1024;
uint8_t tensor_arena[kTensorArenaSize];

In the micro-speech example, the following code in main_functions.cc allocates the
TensorArena memory to the TFLM interpreter:

// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
 MicroPrintf("AllocateTensors() failed");
 return;
}

• Create a pointer to the input buffer

While TensorArena provides the memory needed for the input data, the application also
needs a pointer to the input data so that the program code can transfer data to it. In addition,
applications might need additional data buffers when pre-processing the input data.

In the micro-speech example, the application code main_functions.cc contains the following
pointers:

◦ model_input_buffer points to the data inside the model_input object.

◦ model_input points to the input data inside the TensorArena.

The corresponding code fragments that declare and initialize these pointers are as follows:

TfLiteTensor* model_input = nullptr;
...
int8_t* model_input_buffer = nullptr;
...
model_input = interpreter->input(0);
...
model_input_buffer = model_input->data.int8;

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 103

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/main_functions.cc
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/main_functions.cc
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/main_functions.cc

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

The KWS application code uses an additional data array called feature_buffer to store the
results of the audio processing. During the inference process, each iteration of the main loop
copies data from the feature_buffer[] array is to model_input_buffer. The corresponding
code fragment in main_functions.cc is as follows:

// Copy feature buffer to input tensor
for (int i = 0; i < kFeatureElementCount; i++) {
 model_input_buffer[i] = feature_buffer[i];
}

The feature_buffer array is declared by the following line in main_functions.cc:

int8_t feature_buffer[kFeatureElementCount];

The size of the feature buffer, kFeatureElementCount is defined in micro_model_settings.h.
The following code fragment defines kFeatureElementCount:

// The following values are derived from values used during model training.
// If you change the way you preprocess the input, update all these constants.
constexpr int kFeatureSliceSize = 40;
constexpr int kFeatureSliceCount = 49;
constexpr int kFeatureElementCount = (kFeatureSliceSize * kFeatureSliceCount);

The data constants in the above code fragment define the shape of the input data. For further
information about the shape of the input data shape in the micro-speech example, see the
README.md file in the train directory.

2.2.6 Run the inference and process the results

The Invoke function in the interpreter object starts the inference. In the micro-speech example,
the following code fragment in main_functions.cc executes the Invoke function::

 ...
 tflite::MicroInterpreter* interpreter = nullptr;
 ...
 // Run the model on the spectrogram input and make sure it succeeds.
 TfLiteStatus invoke_status = interpreter->Invoke();
 if (invoke_status != kTfLiteOk) {
 MicroPrintf("Invoke failed");
 return;
 }
 ...

The inference operation stores the result in the output data in the TensorArena. The values in the
output data array are relative probabilities for each voice-command, for example “Yes”, “No”, “Up”,
or “Down”. Before the result can be used to carry out a response, post-processing is needed. Post-
processing is performed by the ProcessLatestResults() function in the recognize_commands.cc
file.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 103

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/main_functions.cc
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/micro_features/micro_model_settings.h
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/train/README.md
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech/train
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/main_functions.cc
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/recognize_commands.cc

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML software development for Arm Cortex-M processors

After post-processing, the application code calls the RespondToCommand() function in the
command_responder.cc to use the result to trigger a response.

2.3 Re-training an ML model
When creating ML applications with an existing trained ML model, you might want to partially
re-train the model to modify the behavior of the NN. For example, you might want to re-train
the micro-speech example to recognize different keywords. The micro-speech example provides
information on how to re-train the reference model.

The re-training process requires a speech command dataset. A reference dataset is available
from Google research at the following location: http://download.tensorflow.org/data/
speech_commands_v0.02.tar.gz (version 2)

Information regarding version 1 of this dataset is available in the Launching the Speech Commands
Dataset blog.

Version 1 (v0.01) of the command dataset provides audio samples of the following words: Yes, No,
Up, Down, Left, Right, On, Off, Stop, Go.

Version 2 (v0.02) added additional words to the dataset. The full list is available in the following
paper: https://arxiv.org/abs/1804.03209 / https://arxiv.org/pdf/1804.03209.pdf (pdf version)

2.4 Further information
Other than the micro-speech example, additional examples can be found in the Tensorflow Lite
Micro Github repository.

Further information about the operation of the TensorFlow Lite for Microcontrollers is available in
the following page https://www.tensorflow.org/lite/microcontrollers/get_started_low_level

The micro-speech example for the Arm development boards uses Mbed tools. Further information
about installing these tools is available at https://os.mbed.com/docs/mbed-os/v6.16/mbed-os-
pelion/machine-learning-with-tensorflow-and-mbed-os.html.

The CMSIS-NN software library is already optimized for Arm Helium technology. Additional
information about Helium software optimization is available in the following locations:

• Getting started with Armv8.1-M based processor: software development hints and tips

• Helium optimization topics

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 103

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/micro_speech/command_responder.cc
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech/train
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
https://blog.research.google/2017/08/launching-speech-commands-dataset.html
https://blog.research.google/2017/08/launching-speech-commands-dataset.html
https://arxiv.org/abs/1804.03209
https://arxiv.org/pdf/1804.03209.pdf
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://os.mbed.com/docs/mbed-os/v6.16/mbed-os-pelion/machine-learning-with-tensorflow-and-mbed-os.html
https://os.mbed.com/docs/mbed-os/v6.16/mbed-os-pelion/machine-learning-with-tensorflow-and-mbed-os.html
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8_2d00_m-based-processor-software-development-hints-and-tips
https://github.com/Arm-Examples/Helium-Optimization

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3. Arm Ethos-U NPU
The majority of Machine Learning (ML) applications perform Neural Network (NN) inference
operations. While software running on a processor can execute NN inference operations, using
a hardware accelerator can increase performance significantly. Using a hardware accelerator to
perform NN inference operations usually improves energy efficiency and allows higher processor
bandwidth to handle other tasks.

There are many types of NN inference hardware accelerators. For example, Arm Ethos-U is a family
of hardware accelerators designed for microcontrollers and System-on-Chips (SoC) which are
known as Neural Processing Units (NPUs).

Ethos-U NPUs are small, power-efficient processors that reduce both the inference time and
memory requirements needed to run ML neural networks. The Ethos-U family contains the
following designs:

• Ethos-U55

• Ethos-U65

• Ethos-U85

These NPUs are available in commercial products. For example:

• Ethos-U55 is used in the:

◦ Alif Ensemble family from Alif Semiconductor.

◦ PSoC Edge from Infineon.

◦ WiseEye2 AL Processor from Himax Technologies (Low cost development board from
Seeed Studio).

• Ethos-U65 is used in the i.MX 93 family from NXP.

You can also evaluate Ethos-U55/U65 without using real hardware. For example, you can use a
simulated environment such as Arm Virtual Hardware (AVH) or Fixed Virtual Platform (FVP). For
more information about these tools, see Tool support for the Arm Ethos-U NPU.

The Ethos-U85 is the latest member in the Ethos-U product family. It offers up to 2048 MAC units
and supports a wide range of NN models including transformer networks. At the same time the
energy efficiency can be up to 20% better than previous Ethos-U designs. Ethos-U85 builds on
previous generations and offers the same consistent toolchain, so developers can leverage previous
Arm ML software investments. More technical details about Ethos-U85 will be released later this
year. The remaining contents of this document focus on Ethos-U55 and Ethos-U65.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 103

https://developer.arm.com/Processors/Ethos-U55
https://developer.arm.com/Processors/Ethos-U65
https://developer.arm.com/Processors/Ethos-U85
https://alifsemi.com/ensemble/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-edge-arm/
https://www.himax.com.tw/products/intelligent-sensing/always-on-smart-sensing/wiseeye2-ai-processor/
https://www.seeedstudio.com/Grove-Vision-AI-Module-V2-p-5851.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93
https://developer.arm.com/downloads/-/arm-ecosystem-fvps

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.1 Ethos-U hardware architecture
An Ethos-U NPU requires a host processor to control its operations. Typically, the host processor is
an Arm Cortex-M processor. The Ethos-U NPU provides several hardware interfaces:

• A peripheral bus interface allows the host processor to access the Ethos-U NPU programmable
registers.

• Two AMBA bus manager interfaces to access the system memories.

• An interrupt output sends interrupt events to the host processor.

For more information, see Ethos-U bus manager interfaces.

Figure 3-1: Overview of a microcontroller system with an Ethos-U NPU

Arm Cortex processor

Ethos-U

Interrupt

AMBA Bus Interconnect

Program memory Shared SRAM

Peripheral
bus interface

Registers

Peripherals, etc

Local
memory
(buffers)

DMA

Configurable
MAC engine

Control
unit

Weight
decode

Bus manager
interface

Elementwise
engine

Most of the processing in an NN inference is based on Multiply-Accumulate (MAC) computations.
Inside the Ethos-U NPU there is a configurable MAC engine to handle MAC operations. Chip
designers can configure the number of MACs that can be carried out per clock cycle, as follows:

• Ethos-U55: 32 to 256

• Ethos-U65: either 256 or 512

• Ethos-U85: 128 to 2048

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

For more information about the relationship between the number of MACs and performance,
see Ethos-U performance configuration. the Ethos-U NPUs also provide an element-wise data
processing engine for other computations.

To enhance the efficiency of NN inferences, Ethos-U NPUs contain local memory for buffering the
data they process. The Ethos-U NPUs also include a Direct Memory Access (DMA) engine so that
data can be copied, before it is needed, from shared memory to local memory.

Ethos-U NPUs are designed for embedded systems that often have limited memory. To reduce
memory usage, Ethos-U NPUs support NN weight data compression. Weight data is decoded on-
the-fly during inference operations.

Ethos-U operations are controlled by several registers which are memory mapped on the processor
system. When the system needs to perform an NN inference, the operations are broken into
several smaller jobs that the Ethos-U NPU runs. Under the control of software libraries, jobs are
issued to the Ethos-U NPU using the peripheral bus interface. Each time a job finishes, the Ethos-
U NPU issues an interrupt request to the host processor so that the software library can issue the
next job.

Ethos-U NPUs also support other interfaces, for example an interface for power management. For
more information about these Ethos-U NPU interfaces, see the following:

• Ethos-U55 Technical Reference Manual

• Ethos-U65 Technical Reference Manual

• Ethos-U85 Technical Reference manual

There are many Neural Network models available, and some of those network models contain
operators that the Ethos-U hardware does not support. In these cases, software running on the
processor handles the unsupported operators. For more information about the ML operators
supported by the Ethos-U55 and Ethos-U65 NPUs, see the following:

• Ethos-U55: Supported data types and operators

• Ethos-U65: Supported data types and operators

• Ethos-U85 provides support for data types and operators that are available in Ethos-U55 and
Ethos-U85, along with support for transformer network and Tensor Operator Set Architecture
(TOSA). The specification for TOSA is available from ML Platform.

3.1.1 Ethos-U performance configuration

The number of MACs that can be carried out per clock cycle is configurable for both the Ethos-
U55 NPU and Ethos-U65 NPU, addressing a range of performance points.

The following table shows the Ethos-U55 NPU configuration options:

Number of MACs per cycle Internal memory Performance@500MHz

256 48KB 256 GOPs

128 24KB 128 GOPs

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 103

https://developer.arm.com/documentation/102420/0200
https://developer.arm.com/documentation/102023/0000
https://developer.arm.com/documentation/102685/latest/
https://developer.arm.com/documentation/102420/0200/Programmers-model/Operators-and-performance/Supported-data-types-and-operators
https://developer.arm.com/documentation/102023/0000/Programmers-model/Operators-and-performance/Supported-data-types-and-operators
https://www.mlplatform.org/tosa/
https://www.mlplatform.org/tosa/
https://www.mlplatform.org/tosa/tosa_spec.html

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

Number of MACs per cycle Internal memory Performance@500MHz
64 16KB 64 GOPs

32 16KB 32 GOPs

The following table shows the Ethos-U65 NPU configuration options:

Number of MACs per cycle Internal memory Performance@1GHz

512 96KB 1 TOP

256 48KB 512 GOPs

The following table shows the Ethos-U85 NPU configuration options:

Number of MACs per cycle Internal memory Performance@1GHz

2048 160KB 4 TOPs

1024 76KB 2 TOPs

512 48KB 1 TOP

256 32KB 512 GOPs

128 16KB 256 GOPs

3.1.2 Ethos-U bus manager interfaces

The Ethos-U55 and Ethos-U65 each have two AMBA 5 AXI interfaces for connecting to the
memory system, named M0 and M1:

• To optimize performance of the Ethos-U NPU, the AXI interface M0 should be connected to a
high-speed, low-latency memory, such as SRAM. The memory is used for dynamic storage of
runtime data during the inference of the neural network.

• The AXI interface M1 is used for memory transactions that tolerate lower bandwidth and
higher latency. The AXI M1 interface can therefore be connected to memory that is slower
or less burst efficient, for example flash or DRAM. The memory is used for the non-volatile
storage of the runtime software stack (including the User Application) and the neural network
definition (including weights).

• For the Ethos-U55 NPU, the AXI interface M1 is read-only. For the Ethos-U65 NPU, the AXI
interface M1 is read/write.

The M0 and M1 ports typically connect to an interconnect, which allows the M0 and M1 AXI
interfaces to access any memory. The Vela compiler schedules high bandwidth, low-latency
memory transactions on the AXI interface M0, and all other transactions on the AXI interface M1.

To support the high inference performance, Ethos-U85 supports up to 6 AMBA 5 AXI interface:

• AXI interfaces SRAM0, SRAM1, SRAM2 and SRAM3 are for on-chip SRAM.

• AXI interfaces EXT0 and EXT1 are suitable for external memories such as DDR.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.1.3 Differences between Ethos-U55, Ethos-U65 and Ethos-U85

There are several key differences between the Ethos-U NPUs:

Feature Ethos-U55 Ethos-U65 Ethos-U85

Number
of MACs/
cycle

32/64/128/256 256 or 512 128/256/512/1024/2048

Manager
Bus
interface

Two 64-bit AXI supporting on-
chip SRAM and embedded flash

Two 128-bit AXI supporting
on-chip SRAM, DRAM and
flash

Up to six 128-bit AXI supporting on-chip SRAM, DRAM
and flash

Host CPU
support

Cortex-M85, Cortex-M55,
Cortex-M7, Cortex-M4, Cortex-
M33

Cortex-M85, Cortex-M55,
Cortex-M7

Cortex-M85, Cortex-M55, Cortex-M7, Cortex-A520,
Cortex-A510, Cortex-A57, Cortex-A55, Cortex-A53,
Cortex-A35

Because Ethos-U65 has wider bus interface and additional hardware resources, on average it
provides around 50% higher performance than the Ethos-U55. For more information, see the blog
post Arm Ethos-U65: Powering innovation in a new world of AI devices.

Ethos-U85 supports even higher number of MACs/cycle (2048 MACs) when compared to Ethos-
U65 (512 MACs), and support transformer network and is fully compliant to TOSA specification.
Highlights of the Ethos-U85 are covered in the blog post Arm Ethos-U85: Addressing the High
Performance Demands of IoT in the Age of AI.

For systems with DRAM/DDR, such as Cortex-A systems running Linux, the Ethos-U65 and Ethos-
U85 is more suitable because the bus interface is designed to support memories with longer
latency.

3.1.4 Power, security, and performance analysis

To enable Ethos-U NPUs to be used in a wide range of systems, the following additional features
are provided:

• Power management interface: Ethos-U55, Ethos-U65 and Ethos-U85 provide Q-channels for
the management of clock and power gating. This interface connects to system level power
management hardware, for example power control infrastructure built with the Arm CoreLink
PCK-600 Power Control Kit. For more information about Q-channels, refer to the AMBA 4 Low
Power Interface Specification.

• Security management: If an Ethos-U NPU is used in a TrustZone enabled system, software
running in the Secure state can restrict access permissions from the Non-secure world.
Privileged software can also control whether the Ethos-U NPU is privileged access only or can
be accessed from both privileged and unprivileged software. Two hardware signals are available
to define the access permission when the NPU comes out of reset. Contents of registers inside
the NPU are also cleared at reset to prevent data leakage.

• Performance Monitoring Unit (PMU): The PMU supports a 48-bit cycle counter and four 32-bit
event counters which can be used to measure activities inside the NPU. This allows software
developers to analyze the characteristics of NN workloads and identify potential performance
issues.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 103

https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/arm-ethos-u65-powering-innovation-in-a-new-world-of-ai-devices
https://www.mlplatform.org/tosa/tosa_spec.html
https://newsroom.arm.com/blog/ethos-u85
https://newsroom.arm.com/blog/ethos-u85
https://developer.arm.com/documentation/101150/latest/
https://developer.arm.com/documentation/101150/latest/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0068/latest/

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.2 Ethos-U system integration
There are two common system arrangements when using an Ethos-U NPU:

• An Ethos-U NPU controlled by a Cortex-M processor. In this scenario, the Cortex-M processor
runs the application code, dispatching NN inference workloads to the Ethos-U NPU. Because
the application code runs directly on the Cortex-M processor, you can use the Cortex-M
processor for other tasks in addition to machine learning.

• An Ethos-U NPU integrated into an ML subsystem together with a Cortex-M processor. In this
scenario, the ML subsystem is part of a larger SoC with one or more Cortex-A processors. The
Cortex-A processor runs the application code and dispatches NN inference workloads to the
Cortex-M processor in the ML subsystem. The Cortex-M processor in turn manages the low-
level control of the Ethos-U NPU.

In both cases, the system designer must ensure that the Ethos-U NPU is able to do the following:

• Access the memory system using the bus manager interface.

• Accept bus transactions from the host processor using the peripheral bus interface. The Ethos-
U NPU has an AMBA 4 APB interface that provides access to its registers. The base address of
the registers block is system-specific, and is normally located in a peripheral address range.

• Generate interrupt requests for the host processor using the interrupt output. The interrupt
output is connected to the interrupt controller for the host processor, for example the NVIC
interrupt on a Cortex-M processor.

In addition, system designers must also connect the power management interface and security
management interface appropriately. For example, if the Ethos-U NPU is integrated into a system
with TrustZone security extension, the hardware can be configured to either restrict the Ethos-U
NPU to be used only by the secure firmware, or to be available to the applications running in the
Non-secure world.

3.2.1 Ethos-U integration in a Cortex-M system

The Ethos-U system is paired with a Cortex-M CPU. The system is highly configurable and can be
built in many different ways. The following figure shows a typical Ethos-U system.

Figure 3-2: Ethos-U system

External
peripheralsArm Cortex-M Arm Ethos-U SRAM Flash

memory

Interconnect

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

The system contains the following components:

• Cortex-M

◦ The Cortex-M series CPU is the application processor that controls one or more Ethos-
U NPUs. You can specify your preferred Cortex-M series CPU, but Arm recommends the
following CPUs:

▪ Cortex-M4

▪ Cortex-M7

▪ Cortex-M33

▪ Cortex-M52

▪ Cortex-M55

▪ Cortex-M85

• Ethos-N NPU

◦ Either an Ethos-U55 NPU, an Ethos-U65 NPU, or an Ethos-U85 can be paired with the
Cortex-M CPU, but the Ethos-U65 and Ethos-U85 NPUs have been designed to optimize
data transfer between the slower memory (for example DDR) and the fast memory cache.

• SRAM

◦ The input feature map (IFM) data and the output feature map (OFM) data are stored
in SRAM. You can specify your preferred amount of SRAM, but optimal performance is
obtained when the network is fully placed in SRAM. If the network cannot be placed fully in
SRAM, only the temporary data is stored in SRAM.

• Flash memory

◦ The weights and biases are stored in flash memory, DRAM, or SRAM.

• External peripherals

◦ Controllers for external peripherals, such as a microphone or camera, can be added.

3.2.2 Ethos-U integration with an Ethos-U subsystem

The Ethos-U subsystem can connect to a Linux host and various other operating systems.

The following figure shows a typical Ethos-U subsystem.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

Figure 3-3: A typical Ethos-U subsystem

Ethos-U system

External
peripherals

Arm
Cortex-M

Arm
Ethos-U SRAM Arm Message

Handling Unit (MHU)

Interconnect

Interconnect

DRAM Arm
Cortex-A

The system contains the following components:

• Ethos-U NPU

◦ Either an Ethos-U55 NPU, an Ethos-U65 NPU, or an Ethos-U85 NPU can be paired with
the Cortex-M CPU. The Ethos-U65 and Ethos-U85 NPUs have been designed to optimize
data transfer between the slower memory (for example DDR) and the fast memory cache
and is therefore the recommended NPU.

• Message Handling Unit

◦ Any type of mailbox, similar to the Arm Message Handling Unit (MHU), can be used.

For an example of using an MHU, see the Arm CoreLink SSE-200 Subsystem for
Embedded Technical Reference Manual.

• DRAM

◦ Weights, biases, the input feature map (IFM), and the output feature map (OFM) data are
stored in slower, high latency memory such as DRAM.

• Cortex-A processor(s)

◦ The Cortex-A series CPU only communicates with the Cortex-M series CPU. The Cortex-
A series CPU has no direct contact with the Ethos-U NPU. Communication between the
CPUs is based on a memory interface in DRAM and the MHU doorbell.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 103

https://developer.arm.com/documentation/101104/0200
https://developer.arm.com/documentation/101104/0200

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.2.3 Ethos-U85 system integration

Ethos-U85 supports the two aforementioned system integration methods, plus the possibility to be
managed by Cortex-A system directly.

Figure 3-4: Ethos-U85 system integration arrangements

3.3 Corstone reference designs
Instead of building new systems from scratch, Arm provides reference system designs in Arm
Corstone subsystem products to help system designers create Cortex-M based systems. The Arm
Corstone-3xx series reference designs provide examples of building a secure System-on-Chip
featuring a Cortex-M and Ethos-U NPU.

• Corstone-300 provides a reference system design for the Cortex-M55 processor with a choice
of either the Ethos-U55 or Ethos-U65 NPU.

• Corstone-310 provides a reference system design for the Cortex-M85 processor with an
Ethos-U65 NPU.

• Corstone-315 provides a reference system design for the Cortex-M85 processor with an
Ethos-U65 NPU.

• Corstone-320 provides a reference system design for the Cortex-M85 processor with an
Ethos-U85 NPU.

To help software developers to test their software, simulation models of the Corstone-300 and
Corstone-310 reference designs are available as Fixed Virtual Platforms (FVPs). These models are
available on the Arm Developer website.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 103

https://developer.arm.com/Processors/Corstone-300
https://developer.arm.com/Processors/Cortex-M55
https://developer.arm.com/Processors/Corstone-310
https://developer.arm.com/Processors/Cortex-M85
https://developer.arm.com/Processors/Corstone-315
https://developer.arm.com/Processors/Cortex-M85
https://developer.arm.com/Processors/Corstone-320
https://developer.arm.com/Processors/Cortex-M85
https://developer.arm.com/downloads/-/arm-ecosystem-fvps

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

The FVPs include simulation models of the corresponding Cortex-M processor and Ethos-U
NPU. These models allow software developers to test their ML software easily. Note that the
simulation models are not cycle accurate, especially for the processors in these models. However,
they can provide an indication of expected processing time on the Ethos-U NPUs. For example,
the Corstone-300 FVP is roughly 90% accurate for Ethos-U55 cycle timing. Note that the timing
accuracy of the Ethos-U65 in the FVP model is lower than the Ethos-U55.

When simulating an NN inference workload with an FVP, if the workload includes operators that
are not supported by the Ethos-U NPU, then the operator processing falls back to the processor.
In these cases, you cannot rely on the FVP models to provide you with an accurate estimate of
processing time. If cycle accurate timing is required, you can choose other evaluation methods. For
example:

• An FPGA platform, for example the Arm MPS3 FPGA board

• Arm IP explorer

• Another hardware device using the same combination of processor and NPU as the device that
you are developing.

Arm provides the following FPGA images for the Arm MPS3 FPGA board:

• AN552 for Corstone-300 with Cortex-M55 processor and Ethos-U55 NPU.

• AN555 for Corstone-310 with Cortex-M85 processor and Ethos-U55 NPU.

The following diagram shows a simplified overview of the AN552 system architecture:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 103

https://www.arm.com/products/development-tools/development-boards/mps3
https://www.arm.com/products/ip-explore
https://developer.arm.com/downloads/-/download-fpga-images

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

Figure 3-5: Simplified overview of the AN552 system architecture

Ethos

-

U55

Cortex

-

M55

ITCM

DTCM

AMBA AXI NIC

-

400

-

Lite

AMBA AXI NIC

-

400

SSE

-

300

SRAM

Flash

BRAM

DDR

M1

M0

This diagram provides an overview of the Corstone-300 memory system. The Ethos-U NPU can
access SRAM, Flash, FPGA block RAM (BRAM), and DDR memory. In this design, you cannot store
the tensor arena in D-TCM or I-TCM because the Ethos-U NPU cannot access this memory.

The advantage of running applications on real hardware such as the MPS3 board is that you
get cycle accurate performance figures for both the CPU and the NPU. The Corstone-300 and
Corstone-310 designs serve as valuable examples for integrating an Ethos-U into a SoC. Arm
recommends that you read the technical reference manual for these reference designs before
starting your own design.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.4 ML software support for Ethos-U
An ML software project is usually based on a specific ML software framework. The Ethos-U NPUs
support TensorFlow Lite Micro (TFLM), a popular ML software framework which is optimized
for microcontrollers, as well as MicroTVM. Because the weights in the NN models in TFLM are
quantized to 8-bit integers, the memory footprint of the NN models is significantly reduced.
Another advantage of using quantized NN models is that generally these models perform very well
on hardware with support for vector-dot-product operations, for example Ethos-U, as well as a
range of modern Arm Cortex processors.

The development of a ML application can be divided into two parts:

1. Off-line development flow. This consists of:

• Preparation of the ML model

• Quantizing the ML model to use 8-bit weight data (TF Quantization tooling - TOCO)

• Optimizing the ML model using the Vela compiler. This tool identifies operators inside the
model that can be handled by the Ethos-U and replaces them with Ethos-U functions. If
an ML operator is not supported by Ethos-U but is supported by an optimized function in
the CMSIS-NN library, CMSIS-NN is used instead. The Vela compiler also handles memory
layout optimizations. See Ethos-U Vela compiler for more information. The Vela compiler
runs on a desktop PC or similar device.

2. The NPU runtime software stack. This consists of a range of software components running on
the target hardware that interact with each other in specific ways. These include the following:

• User application

The user application runs the required functions and makes calls to the TFLM library when
it performs an inference of the model.

• TFLM

The TFLM framework is compiled into a C++ library that contains a copy of the optimized
model from Vela along with the Reference and CMSIS-NN kernels. This library is then used
by the user application to perform inferences.

During an inference, the model is parsed one operator at a time and the corresponding
kernels are executed. The exception to this is when a TensorFlow Lite custom operator is
encountered. In this case, the library sends the operator and associated tensor data to the
Ethos-U NPU driver instead.

• The Ethos-U NPU driver which controls the Ethos-U NPU

The Ethos-U NPU driver handles the communication between the TFLM framework and
the Ethos-U NPU to process custom operators. When the Ethos-U NPU completes its
processing, it signals back to the driver, which in turn informs the TFLM library.

• The CMSIS-NN library

This contains highly optimized and performant kernels that accelerate a subset of operators
in the TFLM framework. It is needed to handle the ML operators that are not supported by
Ethos-U.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela
https://github.com/ARM-software/CMSIS-NN
https://github.com/ARM-software/CMSIS-NN
https://github.com/ARM-software/CMSIS-NN

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

• Reference kernels

This contains a set of kernels for all the operators in the TFLM framework. They are used
when the TFLM framework encounters ML operators that are not supported by the Ethos-
U or the CMSIS-NN library.

The following diagram shows an overview of the software development flow:

Figure 3-6: Software development overview

ML Training

ML model Optimize the ML model

Prune Clustering Quantize

Vela
Off-line software flow

Tooling (PC)

TensorFlow Lite for Microcontrollers

NPU driverCMSIS-NN kernelsReference kernels

User Application Runtime software stack
(Cortex series CPU)

Command stream

Ethos-U NPU hardware

Optimized model for Ethos-U NPU

3.4.1 Ethos-U custom operators

TensorFlow Lite for Microcontrollers (TFLM) is an interpreter. It reads an NN model, in the form of
.tflite data in memory, and carries out the functions of the NN operators. In order to allow NN

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 103

https://github.com/ARM-software/CMSIS-NN

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

model processing to be accelerated by the Ethos-U NPU, TFLM supports a feature called custom
operators.

During the compilation of a NN model, the Vela compiler groups the sequence of operators that
can be accelerated by the NPU into a custom Ethos-U operator. The Ethos-U custom operator has
5 input tensors – tensor for command stream, a flash tensor for constant Read-Only data such as
weights and biases, scratch tensor for the tensor arena, scratch fast tensor for the spilling feature
of the Ethos-U65(scratch fast tensor is not used for the Ethos-U55) and a tensor for the inputs of
the model. From the TF Lite Micro application code, you need to define an interpreter specifying
the model, the operator resolver, the tensor arena, and its size and pass these parameters to TF
Lite Micro. During the inference TensorFlow Lite Micro reads the Ethos-U custom operator and
executes it on the Ethos-U NPU. You can read more about the Ethos-U custom operator here.

3.4.2 ML software for microcontrollers with Cortex-M and Ethos-U NPU

In a Cortex-M based microcontroller with Ethos-U NPU, the runtime software stack provides the
software required to support the Ethos-U NPU. This includes the user application, which uses the
TFLM library to execute parts of the optimized model, or command stream, on the Ethos-U NPU.
Based on the application requirements, additional software components such as an RTOS might be
needed.

Figure 3-7: Microcontroller software overview

Optimized ML model

Vela

Optimized model for Ethos-U

Off-line software flow

Ethos-U hardwareCortex-M

RTOS (optional) CMSIS-NN
library

Software running on target hardware

TensorFlow Lite
Micro Ethos-U driver

Command streamOptimized model
for Ethos-U

Reference
NN kernelsUser Application

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 103

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/kernels/ethos_u/ethosu.cc#L120

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.4.3 ML software for ML subsystems in a larger SoC

In the scenario where the Ethos-U is integrated into an ML subsystem within a SoC with Cortex-
A processors, the applications running in the Linux environment use the Ethos-U kernel driver to
communicate with the ML subsystem. This driver then communicates with the Cortex-M processor
using a Message Handling Unit (MHU). After receiving the information, the Cortex-M processor
controls the Ethos-U NPU that carries out the inference.

The Linux driver stack is provided as an example of how a rich operating system like Linux can
dispatch inferences to an Ethos-U subsystem. The source code is provided. In accordance with the
license, you can modify and further develop the source code.

Figure 3-8: ML subsystem software stack overview

Inference process Message process

RTOS

Arm Cortex-M Arm MHU Arm Ethos-U

Tensorflow lite micro
CMSIS-NN (startup, device, core)

Ethos-U core driver

Inference
runner

Driver library

Ethos-U kernel driver

Linux kernel + DTB

Arm Cortex-A

TFLu
model IFM

Shared memory
interface

Linux driver stack (Cortex-A)
Core software (Cortex-M)
Hardware
TFLu model and IFM

SRAM

The software components include the following:

• Inference runner

The inference runner is a test application that runs inferences on the Ethos-U driver stack. The
inference runner takes as input a TFLM model that has been optimized by the Vela compiler,
and an input file containing input feature map (IFM) data. The output from the inference runner
is an output feature map (OFM) file.

• Driver library

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

The driver library is a thin C++ interface around the kernel-user API (UAPI) header file that the
kernel driver exports to user space. The driver library enables user space applications to detect
NPU capabilities, create buffers, register networks, and run inferences.

• Kernel driver

The kernel driver is the bridge between user space and the Ethos-U subsystem. It presents a
UAPI that allows a user space application to run inferences. The inference request from user
space is forwarded to the Ethos-U subsystem that runs the inference.

• Linux kernel and DTB

Any vanilla Linux kernel can be used. The Debug and Trace Bus (DTB) entry for the Ethos-U
subsystem is documented in the kernel driver.

3.5 Software architecture scenarios and use cases
The software architecture for an Ethos-U subsystem can be categorized into two scenarios:

• Linux dispatches inferences

1. Linux allocates DRAM memory for the network, input feature map (IFM), and the output
feature map (OFM).

2. An inference request is sent from Linux to the Ethos-U subsystem.

3. The Ethos-U subsystem executes inference and returns an inference response.

This use case is implemented and has been verified.

• Ethos-U running without Linux

1. The Ethos-U subsystem is capturing IFMs and running inferences without the help of Linux.
Linux is busy, in sleep mode, or even powered down.

2. The Ethos-U subsystem captures an IFM (audio, video, or sensor data) and runs inference.

3. When the Ethos-U subsystem detects something of interest, Linux is notified.

A possible situation for this use case would be an AI speaker scanning audio for a particular
word or a camera scanning faces to trigger an unlock event.

This use case is not implemented in the Linux driver stack. You would have to implement this
use case.

3.6 Additional software and tools for Ethos-U
An additional experimental tool called ML Inference Advisor (MLIA) is available to help developers
analyze and optimize NN models on a range of Arm based hardware targets such as Ethos-U and
Cortex-A processors. For more information about MLIA, see Machine Learning Inference Advisor.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 103

https://pypi.org/project/mlia/

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

For ML developers using PyTorch, there are third-party tools available that can convert PyTorch
models to TensorFlow Lite. For example, TinyNeuralNetwork from Alibaba. Additional information
about converting PyTorch to TensorFlow Lite using ONNX (Open Neural Network Exchange) is
available in the following resources:

• PyTorch to TensorFlow Lite for deploying on Arm Ethos-U55 and U65

• PyTorch to TFLite

3.7 Porting Ethos-U software to a new hardware platform
To use the Ethos-U hardware, software needs the following information:

• The base address of the Ethos-U NPU register block.

• The interrupt assignment of the Ethos-U NPU.

• The address of the shared memory used by the Ethos-U NPU.

In addition, systems with the TrustZone security extension require the following:

• Hardware designers need to connect the security configuration signals (PORPL and PORSL) to
determine the security level of the NPU after a hard reset.

• Secure firmware needs to configure the system to enable the Ethos-U NPU to be used in the
correct security domain.

Software must also implement the following:

• Invoke the initialization function ethos_init() before using the Ethos-U NPU. The
ethos_init() function is part of the Ethos-U driver.

• Provide an interrupt handler to call the Ethos-U interrupt handler function in the Ethos-U
driver.

As with any other embedded software project, the software developer must also prepare a suitable
linker script or scatter file to allow the toolchain to generate a program image that is compatible
with the system memory map of the hardware platform.

The following sections provide more information about each of these areas.

3.7.1 Security configuration for Ethos-U in a TrustZone system

If an Ethos-U NPU is being used in a TrustZone-enabled system, the secure firmware needs to do
the following:

• Configure the memory map and/or the TrustZone peripheral protection controller so that the
Ethos-U register block is accessible in the correct security address range.

• Configure the memory map and/or the TrustZone memory protection controller so that the
shared memory used by the Ethos-U NPU is accessible to the NPU.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 103

https://github.com/alibaba/TinyNeuralNetwork
https://onnx.ai/
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/pytorch-to-tensorflow-lite-for-deploying-on-arm-ethos-u55-and-u65
https://github.com/ARM-software/ML-examples/tree/main/pytorch-to-tflite

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

• Configure the PROT register in the Ethos-U NPU to configure the current security and
privileged level.

• Configure the security domain of the Ethos-U interrupt in the interrupt controller. In Cortex-M
processors, this is configured using the Interrupt Target Non-secure (ITNS) register.

It is possible to change the security state of the Ethos-U NPU when the system is on. This process
requires a soft reset. For more information, see the following sections in the Technical Reference
Manual:

• Ethos-U55 Boot flow information

• Ethos-U65 Boot flow information

3.7.2 An example of Ethos-U initialization

For an example of Ethos-U NPU initialization, see the ML Embedded Evaluation Kit.

In this example, the initialization function is in ethosu_npu_init.c

Inside this file, the following arm_ethosu_npu_init() code calls the Ethos-U initialization function:

int arm_ethosu_npu_init(void)
{
int err = 0;

/* Initialize the IRQ */
arm_ethosu_npu_irq_init();

/* Initialize Ethos-U device */
void* const ethosu_base_address = (void *)(ETHOS_U_BASE_ADDR);

if (0 != (err = ethosu_init(
 ðosu_drv, /* Ethos-U driver device pointer */
 ethosu_base_address, /* Ethos-U NPU's base address. */
 get_cache_arena(), /* Pointer to fast mem area - NULL for U55. */
 get_cache_arena_size(), /* Fast mem region size. */
 ETHOS_U_SEC_ENABLED, /* Security enable. */
 ETHOS_U_PRIV_ENABLED))) /* Privilege enable. */
{
 printf_err("failed to initialise Ethos-U device\n");
 return err;
}
...
 return 0;
}

In this example, ETHOS_U_BASE_ADDR specifies the base address of the register block. When using a
device support package that is compatible with the CMSIS-Core standard, this is usually defined in
the device’s header file.

This initialization function calls an interrupt initialization function arm_ethos_npu_irq_init()
defined as follows:

static void arm_ethosu_npu_irq_init(void)
{
 const IRQn_Type ethosu_irqnum = (IRQn_Type)ETHOS_U_IRQN;

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 103

https://developer.arm.com/documentation/102420/0200/Boot-flow-information/Boot-flow-information
https://developer.arm.com/documentation/102023/0000/Boot-flow-information/Boot-flow-information
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/source/hal/source/components/npu/ethosu_npu_init.c?ref_type=tags

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

 /* Register the EthosU IRQ handler in our vector table.
 * Note, this handler comes from the EthosU driver */
 NVIC_SetVector(ethosu_irqnum, (uint32_t)arm_ethosu_npu_irq_handler);
 /* Enable the IRQ */
 NVIC_EnableIRQ(ethosu_irqnum);
 debug("EthosU IRQ#: %u, Handler: 0x%p\n",
 ethosu_irqnum, arm_ethosu_npu_irq_handler);
}

In this code, ETHOS_U_IRQN defines the IRQ number of the Ethos-U. When using a device support
package that is compatible with the CMSIS-Core standard, this is usually defined in the device’s
header file.

The example code configures the exception vector as part of the initialization. This is not required if
the exception vector is already defined and stored in non-volatile memory.

Optionally, the software developer can configure the priority level of the interrupt in the NVIC.
When using a device support package that is compatible with the CMSIS-Core standard, the
NVIC_SetPriority function can be used. For a list of NVIC management functions in the CMSIS-
Core, see Interrupts and Exceptions (NVIC) in the CMSIS-Core documentation.

The example code provides the following wrapper function for the interrupt handler:

void arm_ethosu_npu_irq_handler(void)
{
 /* Call the default interrupt handler from the NPU driver */
 ethosu_irq_handler(ðosu_drv);
}

This enables the interrupt handler function in the Ethos-U driver to be called.

3.7.3 Software integration for the Ethos-U micro NPU in custom designs

The ethos-u-core-platform project is one of the recommendation starting points for software
developers who want to create software packages for custom hardware targets with Ethos-U
NPUs. This project provides a mechanism for producing firmware binaries for different defined
targets. The targets directory contains examples that demonstrate how support for Corstone-300
and Corstone-310 reference design targets was added.

To define your custom target, do the following:

1. In targets/demo, edit the CMakeLists.txt and target.cpp files for your design. Search for ToDo
to find the code you need to edit.

In target.cpp, specify the base address for the Ethos-U and the interrupt number relative to
the Ethos-U interrupt in the Cortex-M Vector Interrupt Table.

2. Create one of the following:

• A linker script, if compiling with GCC.

• A scatter file, if compiling with Arm Compiler.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 103

https://arm-software.github.io/CMSIS_5/latest/Core/html/group__NVIC__gr.html
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-platform

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

The linker script or scatter file must match the memory map of your target. FPGA venders
usually provide automated tools for generating linker scripts for a given target.

See this example from Xilinx. The targets/corstone-300/platform.ld linker script targets the
MPS3 FPGA board loaded with the Corstone-300 reference design. The linker script defines
two load regions, rom_exec and rom_dram corresponding to the I-TCM the DDR.

When you deploy an application, the boot loader copies the two binaries to their respective
physical address in memory. The CPU reset is lifted and the entry point for the CMSIS runtime
is called. GCC scatter loads data listed in the copy table, in this example data from DDR to
BRAM. The __cmsis_start function in ethos-u/core_software/cmsis/CMSIS/Core/Include/
cmsis_gcc.h performs this copying of data. Then, constructors and main() functions are called.

You need to create a linker script or scatter file specific to your custom target.

3.7.4 Linker script design

Using the baremetal examples in the core-platform project, let us examine how to place the tensor
arena and the model in memory from the embedded code. The tensor arena is defined in ethos-u-
core-platform/applications/baremetal/main.cpp with the following definition:

__attribute__((section(".bss.tensor_arena"), aligned(16))) uint8_t
 TFLuTensorArena[tensorArenaSize];

This places the tensor arena array in the .bss.tensor_arena section of your memory map. Inside
the scatter file and linker scripts, you can see that the .bss.tensor_arena symbol is placed in either
SRAM or DRAM depending on whether we compile the application for Ethos-U55 or Ethos-U65.
The following code shows a snippet from the scatter file for the Corstone-300 that places different
symbols in SRAM.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 103

https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/Generating-a-Linker-Script-for-an-Application

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

Figure 3-9: Example placement of Ethos-U arena in a linker script for GCC

In the above snippet, if the ETHOSU_ARENA cmake parameter is equal to 0, the .bss.tensor_arena
is placed in SRAM. ETHOSU_ARENA is set to 0 when building the application for Ethos-U55 with the
Shared_Sram memory mode. In this situation, the tensor arena should be placed in SRAM.

Placing the model in memory follows the same logic. The model is an array of read-only data,
and it can be placed in different in various parts of your memory with a section attribute. For
example, the ethos-u-core-platform/applications/baremetal/models/ethos-u55-128/
keyword_spotting_cnn_small_int8/model.h file contains the following definition for placement of
the model:

unsigned char networkModelData[] __attribute__((aligned(16),
 section("network_model_sec")))

The networkModelData array is generated after compiling the model with Vela for an Ethos-
U55-128 for a specified memory mode. The array is placed in the network_model_sec section of
the memory map. The network_model_sec section is then placed in the appropriate location in
memory by the linker script or scatter file.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.8 Customizing the Ethos-U driver and RTOS integration
There are several scenarios in which you might want to customize the Ethos-U driver. For example:

• In a bare metal application, after the Ethos-U NPU starts an inference operation, you might
want to put the processor and some other parts of the microcontroller or SoC into sleep mode.

• In an application with an RTOS running, there could be multiple application threads that contain
ML workloads. As a result, you might want to add semaphore operations to the Ethos-U driver
to ensure that only one application thread can access the Ethos-U NPU at a time.

• In an application with an RTOS running, after the Ethos-U NPU starts an inference operation,
you might want to allow the RTOS to context switch into other RTOS application threads. The
RTOS could then resume the application thread when an interrupt is received from the Ethos-U
NPU.

In order to allow these customizations, some of the functions in the Ethos-U driver are defined
with a weak attribute. This means that the implementations of those functions can be overridden
without needing to modify the source code of the Ethos-U driver. These weak functions include the
following:

• The inference begin and end functions, ethosu_inference_begin and ethosu_inference_end.

• D-cache maintenance functions, for example D-cache flush (clean) and D-cache invalidate.

• RTOS functions including mutex, and semaphore.

• The Ethos-U interrupt handler.

Some of these weak functions are dummy functions and need to be ported.

The source code of the Ethos-U driver is available from the following location: https://
gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-driver

The Ethos-U driver source code is in the file ethosu_driver.c.

During an inference operation, code behaves as follows:

1. The TFLM kernel encounters a custom operator.

2. ethosu.cc in the TFLM kernel calls the driver code, including the ethosu_invoke_v3() function
in ethosu_driver.c.

3. The ethosu.cc function returns when the inference is completed.

The following diagram shows the code sequence:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-driver
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-driver
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-driver/-/blob/25.02/src/ethosu_driver.c?ref_type=tags
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/kernels/ethos_u/ethosu.cc
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-driver/-/blob/25.02/src/ethosu_driver.c?ref_type=tags

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

Figure 3-10: Interface between TFLM and Ethos-U driver

ethosu.cc
(TensorFlow Lite Micro)

ethosu_driver.c
(Ethos-U Driver)

ethosu_reserve_driver()

ethosu_invoke_v3()

ethosu_release_driver()

The Ethos-U driver code includes a bare metal semaphore implementation as default. Two
semaphores are used:

• ethosu_semaphore reserves the driver, ensuring that if an ROTS is used, only one ML
application thread can use the Ethos-U NPU at a time.

• drv->semaphore is used to wait for the NPU to complete the task.

The following diagram illustrates the semaphore operations during a NN inference:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

Figure 3-11: Ethos-U driver semaphore sequence during an inference

ethosu_wait()

ethosu_sempaphore_take(
drv->semaphore)

ethosu_irq_handler()

ethosu_sempaphore_give(
drv->semaphore)

ethosu_register_driver() ethosu_semaphore_give()

Time

ethosu_reserve_driver()
(called by ethosu.cc) ethosu_semaphore_take()

ethosu_semaphore.count=1

Semaphore=0

ethosu_invoke_v3()
(called by ethosu.cc)

ethosu_invoke_async() Command(s) is issued to
the Ethos-U NPU

Stalls until Ethos-U IRQ is serviced

ethosu_release_driver()
(called by ethosu.cc) ethosu_semaphore_give()

ethosu_deregister_driver() ethosu_semaphore_take()

IRQ triggered
later

ethosu_semaphore.count=0

ethosu_semaphore.count=0

ethosu_semaphore.count=1

The semaphore sequence behaves as follows:

• The semaphore is setup when the ethosu_register_driver function is called.

This happens during the execution of ethos_init(), the Ethos-U initialization function.

For each Ethos-U NPU in the SoC, the application calls the ethos_init() function to initialize
the NPU and configure the associated security and privilege level. If there are multiple Ethos-
U NPU in the system, the ethos_init() function is called multiple times, each time with a
different driver handle (struct ethosu_driver *drv). There is a different Ethos-U driver handle
for each Ethos-U NPU.

• The ethosu_register_driver() function registers the driver and creates the ethosu_semaphore
semaphore. This driver now has an associated Ethos-U NPU.

• In the TFLM code (ethosu.cc), the ethosu_reserve_driver() function is called.

This function executes the ethosu_semaphore_take() function.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

In applications that have only one ML application thread, the ethosu_reserve_driver()
function takes the ethosu_semaphore semaphore immediately because the semaphore that was
created during ethosu_register_driver() is still available.

In applications that have multiple ML application threads, the application could stall at this stage
if the Ethos-U NPU is being used by another application thread.

• After acquiring the semaphore successfully, the TFLM code ethosu.cc then executes
ethosu_invoke_v3(), which in turns call the ethosu_invoke_async() function.

The ethosu_invoke_async() function starts running the command stream on the Ethos-U NPU
hardware and returns.

The completion of the function is asynchronous to the NPU’s operations.

• Inside ethosu_invoke_v3(), the TFLM code ethosu.cc then executes the ethosu_wait()
function. This function contains a state machine, and can be operate in blocking or non-
blocking mode. In this instance, blocking-mode is used:

◦ The state machine switches to ETHOSU_JOB_RUNNING state. In block mode, nothing
happen in this state. Because the break statement is not executed, the execution flow falls
into the next state, ETHOSU_JOB_DONE.

◦ In ETHOSU_JOB_DONE state, the code executes the ethosu_semaphore_take() function
again, but this time using a semaphore inside the driver, drv->semaphore. Because the
counter in this semaphore is 0, the application thread is stalled. At this stage, the default
code puts the processor to sleep because the loop that polls the semaphore contains a
WFE (Wait for Event) instruction. If the semaphore function is replaced with an OS-specific
function, the OS can context switch into other threads.

◦ Sometime later, when the Ethos-U NPU completes the inference operation, the Ethos-U
interrupt handler is executed. The handler calls the ethosu_semaphore_give() function and
updates the drv->semaphore.

The ethosu_semaphore_give() function contains a SEV instruction. For single-
core Cortex-M systems, the SEV instruction is not necessary. However, in
multiple core systems where the processor servicing the interrupt could be
different from the one executing ethosu_semaphore_take(), the SEV instruction
is needed to wake up the other processor.

◦ Now the ethosu_semaphore_take() function in ethosu_wait() can take the drv-
>semaphore semaphore and complete the rest of the operations.

◦ On success, when the status register of the NPU is true, the ethosu_wait() function
returns 0 and the ethosu_invoke_v3() function completes.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

• The TFLM code ethosu.cc then executes ethosu_release_driver(). This release the
ethosu_semaphore semaphore. If there is another application thread that is waiting to use the
Ethos-U, it can take the semaphore and resume.

• At a later point in time, software can optionally execute ethosu_deregister_driver() if the
Ethos-U is no longer needed.

In addition to the semaphore code, there are also mutex APIs that could be used to semaphore
operations when those operations are atomic.

If an RTOS is used, the semaphore and mutex API must be ported to an RTOS-specific
implementation.

Note the following:

• The ethosu_semaphore_give() API is executed during ethosu_irq_handler(). Some RTOS
might have different semaphore APIs for threads and interrupt handlers. Take care to use the
correct API when porting the code to an RTOS.

• The Ethos-U driver can support multiple Ethos-U NPUs by using different driver handles for
each NPU instance.

3.8.1 Putting the processor to sleep while the Ethos-U NPU is running

By default, after an inference operation starts, the Ethos-U driver puts the processor to sleep using
a WFE (Wait for Event) instruction. This happens in the ethosu_semaphore_take() function. The
following diagram shows the sequence of events:

Figure 3-12: Ethos-U invoke function

ethos_invoke_v3()

ethosu_invoke_async() Command(s) is issued to
the Ethos-U NPU

ethosu_wait()

ethosu_sempaphore_take()

ethosu_irq_handler()

ethosu_sempaphore_give()

The ethosu_semaphore_take() function is declared with the weak attribute, and can therefore be
customized by application developers. By default this function contains an WFE operation to allow
the processor to enter sleep mode, but additional power control code can be added to utilize low

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

power capabilities of the microcontroller or SoC. The following code shows where this additional
power control code could be added:

// Bare metal simulation of waiting/sleeping and then
// taking a semaphore using intrinsics
int __attribute__((weak)) ethosu_semaphore_take(void *sem)
{
 struct ethosu_semaphore_t *s = sem;
 while (s->count == 0)
 {
 __WFE(); // Additional codes could be added here
 // for device-specific power saving features.
 }
 s->count--;
 return 0;
}

3.8.2 Adding RTOS support

If an RTOS is used and there are multiple application threads, then putting the processor into sleep
mode is not the best option because there could be other active threads waiting to be executed. In
this case, we can suspend the current executing thread so that the RTOS can context switch into
another active thread that is waiting to execute. To do this, we replace the semaphore functions
ethosu_semaphore_take() and ethosu_semaphore_give() in the Ethos-U driver with RTOS-specific
semaphore functions.

With this arrangement, the current thread is put into an inactive state in the following situations:

• When waiting for the NPU resource, in ethosu_reserve_driver()

• After the Ethos-U starts running, in waiting in ethosu_wait()

With semaphore support in the RTOS, the processor can context switch into other threads if there
is another active thread waiting to be executed. If there is no other active thread waiting, the RTOS
executes its own idle thread, which should put the processor into sleep mode providing that the
idle thread contains a WFE instruction in the idle loop.

In addition, the semaphore operations in ethosu_reserve_driver() and ethosu_release_driver()
ensure that, if there are multiple ML application threads sharing the same Ethos-U NPU, only one
of the threads has access to the Ethos-U NPU at a time.

Example code for FreeRTOS is available here:

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-platform/-/blob/25.02/
applications/freertos/main.cpp?ref_type=tags

This repository contains FreeRTOS-specific implementation of the weak functions in the Ethos-U
driver.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-platform/-/blob/25.02/applications/freertos/main.cpp?ref_type=tags
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-platform/-/blob/25.02/applications/freertos/main.cpp?ref_type=tags

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Arm Ethos-U NPU

3.8.3 Ethos-U driver configuration

Several registers in the Ethos-U NPU must be configured by the Ethos-U driver to achieve optimal
performance of the Ethos-U. The registers that need to be configured are defined in the following
header files:

• core_driver/src/ethosu_config_u55.h

• core_driver/src/ethosu_config_u65.h

The hardware has four AXI_LIMIT registers to set limits for the two ports of the AXI0 and AXI1
interfaces. The optimal setting for the AXI_LIMIT is hardware platform-specific.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

4. Tool support for the Arm Ethos-U NPU
Several tools provide support for the Arm Ethos-U NPU:

• Ethos-U Vela

The Ethos-U Vela tool compiles a TensorFlow Lite flatbuffer file into an optimized version that
can run on an embedded system containing an Arm Ethos-U NPU.

In order to be accelerated by the Ethos-U NPU, the network operators must be quantized to
either 8-bit unsigned, 8-bit signed, or 16-bit signed.

The optimized model contains TensorFlow Lite custom operators for those parts of the model
that can be accelerated by the Ethos-U NPU. Parts of the model that cannot be accelerated
remain unchanged and instead run on the Cortex-M series CPU using an appropriate kernel,
such as the Arm-optimized CMSIS-NN kernels.

For more information, see Ethos-U Vela compiler.

• Machine Learning Inference Advisor (MLIA)

The Machine Learning Inference Advisor (MLIA) helps developers design and optimize neural
network models for efficient inference on Arm targets by enabling performance analysis
and providing actionable advice early in the model development cycle. This advice includes
information about supported operators, performance analysis, and suggestions for model
optimizations such as pruning, clustering, and so on.

For more information, see Machine Learning Inference Advisor.

• Arm Virtual Hardware, VSI interfaces for sensors, audio, and video

Arm Virtual Hardware (AVH) provides simulation models, software tools, and infrastructure that
can be integrated into CI/CD and MLOps development flows.

The Virtual Streaming Interface (VSI) is a flexible, memory-mapped peripheral that is part of
Arm Fixed Virtual Platforms (FVPs). VSI simulates data streaming interfaces such as audio,
video, and sensors, which are commonly used in IoT and ML applications. The system provides
eight independent VSI instances that can function in parallel, allowing multi-channel input/
output interfaces.

For more information, see Arm Virtual Hardware.

• Synchronous Data Stream (SDS) Framework

The Synchronous Data Stream (SDS) Framework implements a flexible data stream
management for sensor and audio data interfaces. It provides methods and tools for developing
and optimizing embedded applications that integrate DSP and ML algorithms.

For more information, see SDS Framework.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

4.1 Ethos-U Vela compiler
Ethos-U Vela is a software tool developed by Arm that compiles a TFLM model into an optimized
version that runs on an Ethos-U NPU. Vela takes TensorFlow Lite models as input, applies
optimizations including memory optimization and layer fusion techniques, and generates a
compiled binary that is specifically optimized for the Ethos-U architecture. This optimized binary
maximizes use of Ethos-U NPU hardware features for efficient execution of machine learning
workloads.

The following diagram shows an overview of the Ethos-U Vela development flow:

Figure 4-1: Ethos-U Vela development flow

Trained Model

Optimized model
integrated with

application
Vela

Generate an optimized model for Ethos

-

U

Compile

Run application on
target hardware

The optimized model contains TensorFlow Lite custom operators for those parts of the model that
can be accelerated by the Ethos-U NPU. Parts of the model that cannot be accelerated are left
unchanged and instead run on the host processor (e.g. Cortex‑M series CPU) using an appropriate
kernel.

Ethos-U Vela attempts several different compilation strategies and applies a cost function to each
one. Vela then chooses the optimal execution schedule for each supported operator or group of
operators. Vela is bit-accurate with TF Lite reference kernels, and therefore there is no loss of
accuracy when you optimize an NN with the Vela compiler.

The Vela compiler can report estimated performance. However, the results from Vela are only
an approximate estimation. Software developers should consider using the Machine Learning
Inference Advisor together with a performance model to obtain more accurate performance data.

The Vela compiler performs various memory optimizations to reduce both permanent, (for example
flash) and runtime (for example SRAM) memory requirements. These optimizations include the
following:

• Compressing all the weights in the model reduces permanent storage memory usage.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

• Cascading reduces runtime memory usage by splitting the feature maps (FM) of a group of
consecutively supported operators into stripes. A stripe can be either the full or partial width of
the FM, and it can be the full or partial height of the FM. Each stripe in turn is then run through
all the operators in the group.

The parts of the model that can be optimized and accelerated are grouped and converted into
TensorFlow Lite custom operators. The operators are then compiled into a command stream that is
executed by the Ethos-U NPU.

Finally, Vela outputs the optimized model as a TFLM model, and generates a performance
estimation report. The report provides statistics, such as memory usage and inference time.

The Vela compiler provides configuration options that let you specify various aspects of the
embedded system configuration, for example the Ethos-U NPU configuration, memory types, and
memory sizes. There are also configuration options to control the types of optimization that are
performed during the compilation process.

4.1.1 Requirements

The following should be installed before installing Vela:

• Windows 10 or Linux (amd64)

• Python 3.10 or higher:

◦ Development version containing the Python/C API header files, for example apt install
python3.10-dev or yum install python310-devel

• A C99 capable compiler and associated toolchain:

◦ For Linux operating systems, a GNU toolchain is recommended.

◦ For Microsoft Windows 10, Microsoft Visual C++ 14.2 Build Tools is recommended. See
https://wiki.python.org/moin/WindowsCompilers for more information.

4.1.2 Installation

To install Ethos-U Vela, run the following command:

pip3 install ethos-u-vela

There is a known issue when using Ethos-U Vela with older versions of NumPy
that uses different C APIs. To work around this issue, you must install the desired
NumPy version first, and then build Ethos-U Vela with that specific NumPy version,
as follows:

pip uninstall ethos-u-vela
pip install numpy==1.21.3 --force
pip install "setuptools_scm[toml]<6" wheel

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 103

https://wiki.python.org/moin/WindowsCompilers

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

pip install ethos-u-vela --no-build-isolation --no-cache-dir

For more information, see Ethos-u Vela, Known Issues, NumPy C API version
change.

4.1.3 Usage

Ethos-U Vela takes an input .tflite file passed on the command line. This file contains the neural
network to be compiled.

Vela outputs an optimized .tflite file with a _vela suffix in the file name, along with performance
estimate CSV files, all in the output directory. Vela also prints a performance estimation summary
on the console. For more information, see Vela Performance Estimation Summary.

The command-line syntax for Ethos-U Vela is as follows:

vela [<options>] <network>

Where <network> is the filename of the input TFLM network, and <options> are any available
configuration options, as follows:

-h, --help

Show the help message and exit.

--version

Show the program’s version number and exit.

--api-version

Displays the version of the external API.

--supported-ops-report

Generate the SUPPORTED_OPS.md file in the current working directory and exit.

--list-config-files

Display all available configurations in the config_files folder and exit. To select a
configuration file, use the --config argument with one of the listed configuration files, for
example --config Arm/vela.ini.

--output-dir OUTPUT_DIR

Specifies the output directory to write files to. The default is output.

--enable-debug-db

Enables the calculation and writing of a network debug database to the output directory.

--config CONFIG

Vela configuration files in Python ConfigParser .ini file format.

--verbose-all

Enable all verbose options.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/4.2.0/BUILD.md?ref_type=tags#1-numpy-c-api-version-change
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/4.2.0/BUILD.md?ref_type=tags#1-numpy-c-api-version-change
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/4.2.0/PERFORMANCE.md?ref_type=tags

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

--verbose-config

Verbose system configuration and memory mode.

--verbose-graph

Verbose graph rewriter.

--verbose-quantization

Verbose quantization.

--verbose-packing

Verbose pass packing.

--verbose-tensor-purpose

Verbose tensor purpose.

--verbose-tensor-format

Verbose tensor format.

--verbose-schedule

Verbose schedule.

--verbose-allocation

Verbose tensor allocation.

--verbose-high-level-command-stream

Verbose high level command stream.

--verbose-register-command-stream

Verbose register command stream.

--verbose-operators

Verbose operator list.

--verbose-weights

Verbose weights information.

--verbose-performance

Verbose performance information.

--verbose-progress

Verbose progress information.

--show-cpu-operations

Show the operations that fall back to the CPU.

--timing

Time the compiler doing operations.

--force-symmetric-int-weights

Forces all zero points to 0 for signed integer weights.

--accelerator-config {ethos-u55-32,ethos-u55-64,ethos-u55-128,ethos-u55-256,ethos-
u65-256,ethos-u65-512,ethos-u85-128,ethos-u85-256,ethos-u85-512,ethos-u85-1024,ethos-
u85-2048}

Accelerator configuration to use. The default is ethos-u55-256.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

--system-config SYSTEM_CONFIG

Specifies the system configuration to select from the Vela configuration file. The default is
internal-default.

--memory-mode MEMORY_MODE

Memory mode to select from the Vela configuration file. The default is internal-default.

--tensor-allocator {LinearAlloc,Greedy,HillClimb}

Tensor Allocator algorithm. The default is HillClimb.

--show-subgraph-io-summary

Shows a summary of all the subgraphs and their inputs and outputs.

--max-block-dependency {0,1,2,3}

Set the maximum value that can be used for the block dependency between NPU kernel
operations. The default is 3.

--optimise {Size,Performance}

Set the optimization strategy. The Size strategy results in minimal SRAM usage, ignoring
arena-cache-size if specified. The Performance strategy results in maximal performance,
using arena-cache-size if specified. The default is Performance.

--arena-cache-size ARENA_CACHE_SIZE

Set the size of the arena cache memory area, in bytes. If specified, this option overrides the
memory mode attribute with the same name in a Vela configuration file

--cpu-tensor-alignment CPU_TENSOR_ALIGNMENT

Controls the allocation byte alignment of CPU tensors including Ethos-U Custom operator
inputs and outputs. The default is 16.

--recursion-limit RECURSION_LIMIT

Set the recursion depth limit. Setting this option too low may result in RecursionError. The
default is 1000.

--hillclimb-max-iterations HILLCLIMB_MAX_ITERATIONS

Set the maximum number of iterations the Hill Climb tensor allocator will run. The default is
99999.

For a detailed explanation of all the available options, see Vela Options: Command Line Interface.

4.1.4 Command examples

The following example shows a typical command-line usage for Vela, using a configuration file
vela.ini to describe various properties of the Ethos-U embedded system:

vela --config vela.ini my_model.tflite --accelerator-config ethos-u55-128 --memory-
mode Shared_Sram --optimise Performance

See Configuration File Reference for a detailed explanation of all configuration file options.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/4.2.0/OPTIONS.md?ref_type=tags#command-line-interface
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/4.2.0/OPTIONS.md?ref_type=tags#configuration-file

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

The following is an example configuration file:

; Ethos-U55 High-End Embedded: SRAM (4 GB/s) and Flash (0.5 GB/s)
[System_Config.Ethos_U55_High_End_Embedded]
core_clock=500e6
axi0_port=Sram
axi1_port=OffChipFlash
Sram_clock_scale=1.0
Sram_burst_length=32
Sram_read_latency=32
Sram_write_latency=32
OffChipFlash_clock_scale=0.125
OffChipFlash_burst_length=128
OffChipFlash_read_latency=64
OffChipFlash_write_latency=64

4.1.5 Optimization considerations for the Vela compiler

The Ethos-U Vela compiler documentation provides complete information about how to run the
tool. This section provides additional information related to optimization choices.

4.1.5.1 Vela schedulers and implications on memory footprint

The Vela compiler supports two optimization strategies, each using a different scheduling algorithm:

• --optimise Performance optimizes a neural network for maximum performance, measured
by the number of inferences per second. This is the default scheduler when using the Vela
compiler.

• --optimise Size optimizes a neural network for minimum peak SRAM usage during an
inference. This option lets you benefit from hardware acceleration even with a low SRAM
budget. Vela reduces the peak SRAM usage by reusing tensors with cascading. This results in
slightly lower performance and requires some weights to be re-read from the memory.

On the Ethos-U55, you can also optimize a network for performance within a specified memory
limit. For example, consider a scenario where the key model for your design is the TFLM person
detection model. You would like to know the amount of SRAM memory required by the Ethos-U to
accelerate the inference. Compile the model for Ethos-U with the following command:

vela person_detect.tflite --accelerator-config=ethos-u55-128 --config <path to your
 vela.ini> --memory-mode=Shared_Sram --system-config=Ethos_U55_High_End_Embedded

Vela produces a memory footprint summary as follows:

Total SRAM used 72.72 KiB
Total Off-chip Flash used 263.55 KiB

Total Off-chip Flash used shows the size of the Read-Only data stored in the Flash in the case of
the Ethos-U55, 263.55 KiB.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela/-/blob/4.2.0/README.md?ref_type=tags
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/models/person_detect.tflite
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/models/person_detect.tflite

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

Total SRAM used shows the peak SRAM usage of the Ethos-U NPU for the inference, 72.72 KiB.
However, the Vela compiler only has visibility of the input, output, and intermediate tensors of the
model running on the Ethos-U NPU. The compiler does not know anything about other memory
usage in your system, for example the kernels used to compile TFLM, RTOS memory usage, or
memory allocated by the embedded application code. The system needs enough memory for both
the inference itself and the rest of the software stack. This means that the SoC needs more than
72.72 KiB of SRAM.

However, it is possible to accelerate the inference with a smaller amount of SRAM by using the –
arena-cache-size option. For example, imagine you do not want to sacrifice 72.72 KiB of your
memory budget solely for the inference. You want to perform the inference in no more than 60
KiB. You can schedule the execution of the network in less than 60 KiB by using the --arena-
cache-size 61440 Vela command-line option when optimizing the model.

Note that with lower SRAM usage, the NPU must re-read more weights from the memory wired to
AXI1. You should therefore ensure that your memory can deliver the required bandwidth on AXI1.
To help designers get better insight of the memory access throughput, the Ethos-U NPU provides a
Performance Monitoring Unit (PMU).

4.1.5.2 PMU counters in the Ethos-U NPU

The PMU provides counters for measuring hardware events such as memory accesses on specific
memory interfaces. For example, if you run the ML model on the Corstone-300 FVP or FPGA you
can read the following PMU counters after processing is complete:

• axi0_rd_data_beat_received

• axi0_wr_data_beat_written

• axi1_rd_data_beat_received

These performance counters report the number of beats that were transferred on the two AXI
interfaces, allowing you to deduce the expected bandwidth. When the Ethos-U carries out a
memory transaction, for example a read request, it reads data in beats. The size of each beat is
configurable, as follows:

• The Ethos-U55 can be configured to use either 64-byte or 128-byte beats.

• The Ethos-U65 can be configured to use 64-byte, 128-byte, or 256-byte beats.

• The Ethos-U85 can be configured to use 64-byte, 128-byte, or 256-byte beats.

The number of beats is configured via the max_beats field of the AXI_LIMIT registers.

For example, if you configure an Ethos-U55 to access memory in 64-byte beats, and the NPU
needs to read 50 bytes of data, the system must still perform a 64-byte transaction. However, the
Ethos-U is designed to issue memory transactions as close as possible to the maximum configured
beat size.

To enable the bus traffic to be analyzed, the Ethos-U provides counters in its Performance Monitor
Unit (PMU). Example of using PMU counters for this calculation is in the following section.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

4.1.5.3 Using PMU counters to determine memory bandwidth

Consider compiling a network that maps fully to the Ethos-U with Vela’s Performance scheduler.
The following performance data is obtained from the Ethos-U’s PMU:

PMU counter Value

ETHOSU_PMU_NPU_ACTIVE + ETHOSU_PMU_NPU_IDLE 649597

ETHOSU_PMU_AXI0_RD_DATA_BEAT_RECEIVED 222602

ETHOSU_PMU_AXI1_RD_DATA_BEAT_RECEIVED 56511

ETHOSU_PMU_AXI0_WR_DATA_BEAT_WRITTEN 88584

Assuming a frequency of 500MHz, the total number of NPU cycles translates to 500MHz /
649597 = 769 inferences per second.

The PMU counter results on AXI0 translate to an average bandwidth of 769 * (222602 + 88584) *
8 / (1024 * 1024) = 1825 MB/s.

Multiply by 8 to convert to bytes and divide by 1024 * 1024 to obtain MB

On AXI1, the average bandwidth is 769 * 56511 * 8 / (1024 * 1024) = 331 KB/s.

Compiling the same network with the Size scheduler results in the following performance results:

PMU counter Value

ETHOSU_PMU_NPU_ACTIVE + ETHOSU_PMU_NPU_IDLE 1111167

ETHOSU_PMU_AXI0_RD_DATA_BEAT_RECEIVED 97227

ETHOSU_PMU_AXI1_RD_DATA_BEAT_RECEIVED 146649

ETHOSU_PMU_AXI0_WR_DATA_BEAT_WRITTEN 32504

This time, again assuming a frequency of 500MHz, we see approximately 449 inferences per
second with an average bandwidth of 444MB/s on AXI0 and 502KB/s on AXI1. The SoC designer
must ensure that the system is capable of delivering these bandwidths to achieve 449 inferences
per second.

4.1.5.4 Memory modes

From the application’s point of view, TFLM provides two memory regions that you can control:

• The tensor arena, containing read/write data

• The model, containing constant read-only data such as the weights or biases of the neural
network

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

The Ethos-U55 supports the following placements of the tensor arena and the model:

1. The tensor arena is in the memory connected to the AXI0 interface, usually SRAM. The model
is in the memory connected to AXI1, usually flash memory. This memory configuration is called
Shared_Sram.

2. The tensor arena and the model are both placed in the same memory. This configuration is
called Sram_Only. Note that from the hardware standpoint, the AXI0 and AXI1 interfaces are
also both connected to the same memory.

The Ethos-U65 supports the following placements of the tensor arena and the model:

1. The tensor arena and the constant data both reside in the memory connected to AXI1, usually
DRAM. The memory connected to the AXI0 interface, usually SRAM, is only used as a cache
to store the most frequently accessed tensors when performing the inference. Note that this
memory mode is only available for the Ethos-U65. This memory mode is called Dedicated_Sram
when compiling a network with Vela. In this memory mode, the –arena-cache-size parameter
specifies the amount of SRAM available on your system.

2. The tensor arena and the model are both connected to the memory using the AXI0 interface.
This configuration is called Sram_Only.

For the Ethos-U55, the AXI1 interface is read-only and therefore the tensor arena
must be placed in the memory wired to AXI0. On an Ethos-U65, the AXI1 interface
is read/write, so the tensor arena can be placed in the memory connected to AXI1.
The benefit of this is that you can store larger models in the DRAM and still obtain
acceleration. For Ethos-U85, there can be up to 6 AXI interfaces and all of them
support read/write. These interfaces are divided into two types: AXI_EXT for flash
and DDR, and AXI_SRAM for on chip SRAM. For best performance, tensor arena
should be placed in SRAM connected to AXI_SRAM.

4.2 Machine Learning Inference Advisor
Machine Learning Inference Advisor (MLIA) is currently an experimental software tool. MLIA is
provided as-is, without any guarantees or warranties of its functionality, reliability, or suitability for
any specific purpose.

The Machine Learning Inference Advisor (MLIA) helps developers design and optimize neural
network models for efficient inference on Arm targets by enabling performance analysis and
providing actionable advice early in the model development cycle. This advice includes information
about supported operators, performance analysis, and suggestions for model optimizations such as
pruning, clustering, and so on.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

4.2.1 Requirements

Arm recommends using a virtual environment for MLIA installation. A typical setup for MLIA
requires the following:

• Ubuntu 20.04.03 LTS

• Python 3.8.1 or higher

• Ethos-U Vela compiler

4.2.2 Installation

To install MLIA, run the following command:

pip install mlia

4.2.3 Usage

The command-line syntax for MLIA is as follows:

mlia [-h] [-v]

mlia check [-h] [--output-dir OUTPUT_DIR] -t TARGET_PROFILE
 [-b {armnn-tflite-delegate,vela}] [--performance]
 [--compatibility] [--json] [-d]
 model

mlia optimize [-h] [--output-dir OUTPUT_DIR] -t TARGET_PROFILE [-b {vela}]
 [--pruning] [--clustering]
 [--pruning-target PRUNING_TARGET]
 [--clustering-target CLUSTERING_TARGET] [--json] [-d]
 model

Where the options are as follows:

-h, --help

Show this help message and exit

-v, --version

Show the program’s version number and exit

check

Generate a full report on the input model

optimize

Show the performance improvements (if any) after applying the optimizations

model

TensorFlow Lite model or Keras model.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

--output-dir OUTPUT_DIR

Specifies the directory where MLIA creates output directory mlia-output for storing artifacts
such as logs, target profiles, and model files. The default is the current working directory.

--performance

Perform performance checks.

--compatibility

Perform compatibility checks. This is the default for check.

-b {armnn-tflite-delegate,vela}, --backend {armnn-tflite-delegate,vela}

Backends to use for evaluation.

--json

Print the output in JSON format.

-d, --debug

Produce verbose output

-t TARGET_PROFILE, --target-profile TARGET_PROFILE

Built-in target profile or path to the custom target profile. Built-in target profiles are cortex-a,
ethos-u55-128, ethos-u55-256, ethos-u65-256, ethos-u65-512, and tosa.

--pruning

Apply pruning optimization.

--clustering

Apply clustering optimization.

--pruning-target PRUNING_TARGET

Sparsity to be reached during optimization. The default is 0.5.

--clustering-target CLUSTERING_TARGET

Number of clusters to reach during optimization. The default is 32.

Run mlia -h, mlia check -h, or mlia optimize -h to see complete descriptions of these options.

The help output also shows which targets and backends are supported, as follows:

Supported Targets/Backends:

┌─────────────┬────────────────────────┬───────────────┬───────────────────────┐
│ Target │ Backend(s) │ Status │ Advice: comp/perf/opt │
╞═════════════╪════════════════════════╪═══════════════╪═══════════════════════╡
│ Cortex-A │ Arm NN TensorFlow Lite │ BUILTIN │ YES/NO/NO │
│ <cortex-a> │ delegate │ │ │
│ │ <armnn-tflite-delegat... │ │ │
├─────────────┼────────────────────────┼───────────────┼───────────────────────┤
│ Ethos-U55 │ Vela │ BUILTIN │ YES/YES/YES │
│ <ethos-u55> │ <vela> │ │ │
│ │ Corstone-310 │ NOT INSTALLED │ │
│ │ <corstone-310> │ │ │
│ │ Corstone-300 │ NOT INSTALLED │ │
│ │ <corstone-300> │ │ │
├─────────────┼────────────────────────┼───────────────┼───────────────────────┤
│ Ethos-U65 │ Vela │ BUILTIN │ YES/YES/YES │
│ <ethos-u65> │ <vela> │ │ │
│ │ Corstone-310 │ NOT INSTALLED │ │

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

│ │ <corstone-310> │ │ │
│ │ Corstone-300 │ NOT INSTALLED │ │
│ │ <corstone-300> │ │ │
├─────────────┼────────────────────────┼───────────────┼───────────────────────┤
│ TOSA │ TOSA Checker │ NOT INSTALLED │ YES/NO/NO │
│ <tosa> │ <tosa-checker> │ │ │
└─────────────┴────────────────────────┴───────────────┴───────────────────────┘

Use the mlia-backend command to install backends.

4.2.4 Command examples

Run mlia -h first, to validate that you have the necessary backends installed:

mlia -h

The following example shows how to invoke MLIA for Ethos-U on a Corstone-300 based device,
using the --backend option to specify the backend:

mlia check ~/models/ds_cnn_large_fully_quantized_int8.tflite \
 --target-profile ethos-u55-256 \
 --performance \
 --backend "vela" \
 --backend "corstone-300"

4.3 Arm Virtual Hardware
For detailed information about Arm Virtual Hardware (AVH), its capabilities, and how to utilize
them effectively, refer to the AVH Solutions Overview. It provides a comprehensive walkthrough
of the setup process, explains the navigational structure of the AVH platform, and offers essential
technical details to make best use of the system.

The AVH Solutions Overview includes the Get Started Example, which provides a step-by-step
guide to setting up a Continuous Integration (CI) workflow for testing and debugging embedded
applications using Arm Virtual Hardware (AVH).

The Get Started Example includes the following contents:

• Overview: Overview of the common steps in the CI workflow, including local development
using a toolchain such as Keil MDK and Arm Fixed Virtual Platforms, setup of a CI pipeline
using GitHub Actions, automated program build and testing in the cloud with AVH, and failure
analysis and local debugging.

• Prerequisites: Outlines the prerequisites required to run the example project.

• Develop tests: Introduces the concept of developing unit tests using the Unity Framework,
including an example project.

◦ Create repository on GitHub: Explains the process of creating a GitHub repository by either
creating a new one or forking one from the AVH-GetStarted repository.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 103

https://arm-software.github.io/AVH/main/overview/html/index.html
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#GS_Prerequisites
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#GS_DevelopTest
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#autotoc_md0

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

◦ Setup local project on your PC: Provides instructions on setting up the local project on your
PC. This includes cloning the repository onto your local PC and setting up the project in Keil
MDK.

◦ Implement tests: Describes how to implement tests using the Unity Framework, how to
redirect standard output to be visible during the debug session, and how to build and
execute the program in Keil MDK.

• Setup CI pipeline: Provides information about setting up the CI pipeline which is triggered
on every code change using push and pull requests. The CI implementation in the example is
implemented with GitHub Actions.

◦ AWS setup: Explains the process of setting up AWS to enable the execution of the example
CI pipeline on a cloud-hosted Arm Virtual Hardware instance.

◦ GitHub Actions setup: Explains how to run Arm Virtual Hardware with GitHub Actions.

• Execute CI: Describes how you can manually trigger execution of the configured workflow.

• Analyze failures: Explains how to view and analyze the example workflow execution to identify
and fix problems.

4.4 SDS Framework
A large set of representative and qualified data is a pre-requisite for effective ML algorithm
selection, training, and validation.

As explained in Overview of the ML development process, ML algorithms can only make correct
decisions in areas where training data exists. Capturing a large body of real-world data is therefore
an important task.

Arm developed the Synchronous Data Stream (SDS) Framework to capture real-world data from
sensors and audio sources. The SDS Framework contains the following components:

• SDS Recorder Interface provides methods to record real-world data in SDS data files for
analysis and development of DSP and ML algorithms.

• SDS Metadata describes the content of SDS data files along with scaling and formatting
information.

• SDS Utilities are tools to record, convert, and display SDS data files.

• SDS Playback uses Arm Virtual Hardware with the Virtual Streaming Interfaces (VSI) to
stimulate algorithms under development with real-world data.

4.4.1 SDS Recorder Interface

The SDS Recorder Interface allows real-world data to be captured and recorded in SDS data
files. SDS Recorder forms part of the target application and enables data streaming using various
interfaces such as TCP/IP over Ethernet, UART, or USB. SDS Recorder can also capture data in

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 103

https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#autotoc_md1
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#autotoc_md2
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#GS_SetupCI
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#GS_ExecuteCI
https://arm-software.github.io/AVH/main/examples/html/GetStarted.html#GS_AnalyseFailure

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

a deployed IoT endpoint device to report situations where the current ML model has gaps in the
training data.

The following diagram shows an example system using the SDS Recorder Interface:

Figure 4-2: SDS Recorder Interface

M
CU

D
ev

ic
e

So
ft

w
ar

e
on

Ph
ys

ic
al

 B
oa

rd

Microcontroller Hardware

SDS Recorder
Interface

SDS Recorder
connects via

different channels

Algorithm under Development

SDS Data Files
*.gyroscope.sds

Audio
Interface

Microphone
Input

SDS Data Files
*.microphone.sds

z
yx

MEMS Sensor
Interface

Gyroscope
Sensor

In this example, the SDS Recorder Interface captures real-world data from the gyroscope and
microphone sensors on the device. SDS Recorder connects using multiple different channels and
records the data in separate SDS data files.

4.4.2 SDS Metadata

The SDS Metadata file provides information about the content of SDS data files. This metadata
information is used to display meaningful information to the user. SDS Metadata also identifies

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

the data streams for input to DSP design utilities, MLOps development workflows, and AVH data
playback.

Figure 4-3: SDS Metadata file

SDS Data Files

SensorX<idx0>.sds
SensorX<idx1>.sds

SDS Metadata File

SensorX.sds.yml

Gyroscope

Seconds

 dp

s

0.0

0.2

0.4

0.6

0.8

1.0

2000

1000

0

-

1000

-

2000

The SDS data files have multiple uses, including the following:

• Input to Digital Signal Processing (DSP) development tools, such as filter designers

• Input to ML model classification, training, and performance optimization

• Verifying the execution of DSP algorithms on Cortex-M targets with off-line tools

• Playback of real-world SDS data files for algorithm validation using Arm Virtual Hardware

Sensors may have independent clock sources with different tolerances which can result in different
size records for block procession algorithms. The following diagram shows how this is possible, with
data blocks 1 and 2 containing different numbers of samples:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

Figure 4-4: SDS sample frequencies

t

S(t)

S

i

Audio signal capturing with 8kHz

MEMS capturing with 3.5kHz

±

5%

t

Data block #1

Data block #2

X

Y

Z

T

1

…

i

4

5

6

7

8

9

10

11

12

13

0

SDS Recorder is a flexible software component that can be connected to various output channels.
The table below shows the different communication speeds that can be achieved depending on the
output channel.

Development Board Output Channel Measured speed Comment

NXP IMXRT1050-EVKB TCP/IP via Ethernet 2 MB/s

NXP IMXRT1050-EVKB File System 2.85 MB/s MicroSD card

NXP IMXRT1050-EVKB VCOM (High-Speed) 11.8 MB/s

ST B-U585I-IOT02A VCOM (Full-Speed) 600 kB/s

ST B-U585I-IOT02A UART 80 kB/s Baud Rate: 921600

See SDS Recorder in the GitHub repository for access to examples.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 103

https://github.com/ARM-software/SDS-Framework/blob/main/sds/README.md#synchronous-data-stream-recorder
https://github.com/ARM-software/SDS-Framework/blob/main/sds/README.md#synchronous-data-stream-recorder

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

4.4.3 SDS Utilities

The SDS Utilities let you analyze and convert SDS data files.

See SDS Utilities in the GitHub repository for more information about and access to these utilities.

4.4.4 SDS Playback

Arm Virtual Hardware (AVH) is available in multiple deployments such as GitHub, Qeexo AutoML,
Keil Studio Cloud, and AWS AMI for flexible cloud access. In the desktop version of Keil MDK,
AVH supports test case development and verification of algorithms. With DevOps systems such as
GitHub Actions, AVH supports continuous integration workflows for build and test automation.

AVH provides virtual streaming interfaces that playback SDS data to an algorithm under
development. This is useful for repeatable validation tests or ML model verification. AVH also
supports A/B comparisons of ML algorithms and helps therefore to select the best matching
algorithm for an application. As it is part of some MLOps systems, it helps to validate ML models
before deploying it to physical hardware devices.

The following diagram shows how AVH can use SDS data files to stimulate an algorithm under
development:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 103

https://github.com/ARM-software/SDS-Framework/tree/main/utilities

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Tool support for the Arm Ethos-U NPU

Figure 4-5: SDS on Arm Virtual Hardware

 A
V

H

 VS
I

 So

ft
w

ar
e

on

 A
rm

 V
irt

ua
l H

ar
dw

ar
e

Arm Virtual

Hardware

(AVH)

Algorithm under Development

VSI

Audio

Interface

Virtual Streaming

Interface #2

VSI

Sensor

Interface

Virtual Streaming

Interface #1

SDS Data Files
*.

microphone.sds

SDS Data Files
*.

gyroscope.sds

The SDS framework can also support sensor fusion applications, which combine data from multiple
different sources. For example, combining an audio signal with information from a MEMS sensor
might provide better prediction for machine failures. However, when combining data from multiple
sources, tolerances of independent clock sources should be considered. The SDS framework has
provisions to cope with such situations and provides independent clock information for multiple
data streams.

See SDS Playback in the GitHub repository for more information.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 103

https://github.com/ARM-software/SDS-Framework/blob/main/sds/README.md#synchronous-data-stream-player

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

The Arm ML Zoo

5. The Arm ML Zoo
Creating a new Neural Network (NN) model for an application is an expensive process. It requires
a deep understanding of Machine Learning (ML), and it can take a very long time to optimize the
network for a specific use case.

Fortunately, many different NN models have already been developed for a variety of different
applications, and many of these models are available in online databases called model zoos. These
models can provide a useful starting point for further development. When an application developer
needs to create an ML application, it might not be necessary to create a new NN model from
scratch.

The ARM ML Zoo repository hosts a variety of ML models that are optimized for ARM IP. The
models cover a range of different applications, including the following:

Anomaly Detection
Includes three MicroNet models (Large, Medium, Small) that are optimized for INT8 and are
compatible with TensorFlow Lite. They are particularly suitable for Cortex-M, Mali GPU, and
Ethos U.

Image Classification
MobileNet v2 models optimized for INT8 and UINT8. They are compatible with TensorFlow
Lite and are suitable for Cortex-A, Cortex-M, Mali GPU, and Ethos U.

Keyword Spotting
Includes CNN models (Large, Medium, Small), DNN models (Large, Medium, Small), and DS-
CNN models (Large Clustered in FP32 and INT8, Large in INT8). They are optimized for INT8
or FP32 and are compatible with TensorFlow Lite. They are suitable for Cortex-A, Cortex-M,
Mali GPU, and Ethos U, with some variations depending on the model.

Noise Suppression
RNNoise is a noise reduction network, that helps to remove noise from audio signals while
maintaining any speech. This is a TFLite quantized version that takes traditional signal
processing features and outputs gain values that can be used to remove noise from audio.

Object Detection
Two ML models are available: SSD MobileNet v1 (with variants for various data types: fp32,
int8, uint8) and Yolo v3 Tiny (fp32). SSD MobileNet v1 is an object detection network, that
localizes and identifies objects in an input image of 300x300 pixels. Yolo v3 Tiny is an object
detection network (using the fp32 data type) that takes an image of 416x416 pixels and
outputs detections for the image.

Speech Recognition
This includes Wav2letter models (standard and pruned) and Tiny Wav2letter models
(standard and pruned). They are optimized for INT8 and are compatible with TensorFlow Lite.
They are suitable for Cortex-A, Cortex-M, Mali GPU, and Ethos U.

Superresolution
This includes the SESR model optimized for INT8 and compatible with TensorFlow Lite. It is
suitable for Cortex-A and Mali GPU.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 103

https://github.com/ARM-software/ML-zoo

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

The Arm ML Zoo

Visual Wake Words
This includes three MicroNet models (VWW-2, VWW-3, VWW-4) optimized for INT8 and
compatible with TensorFlow Lite. They are particularly suitable for Cortex-M, Mali GPU, and
Ethos U.

In most cases, software developers still need to re-train the ML model to fit the specific needs of
their ML applications.

5.1 Integrating an Arm ML-Zoo model
The content for this section is currently under development and will be added in the near future.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

6. ML Embedded Evaluation Kit
The Arm ML Evaluation Kit is a tool designed to help developers build and deploy ML applications
for the Arm Cortex-M55 and Arm Ethos-U55 NPU. It provides ready-to-use software applications
for Ethos-U55 systems, including image classification, keyword spotting, automated speech
recognition, anomaly detection, and person detection.

The kit allows developers to evaluate the performance metrics of networks running on the Cortex-
M CPU and Ethos-U NPU. It also includes a generic inference runner that can be used to develop
custom ML applications for Ethos-U. The kit is based on the Arm Corstone-300 reference package,
which is designed to help SoC designers build secure systems faster. The platform is available as an
Ecosystem FPGA (MPS3) and Fixed Virtual Platform (FVP) to allow development ahead of hardware
availability.

The Arm ML Evaluation Kit runs in a Linux environment, although it is possible to use Windows
Subsystem for Linux.

Another option for evaluating the Ethos-U NPUs is the CMSIS-Pack based Machine
Learning Examples. This contains several examples which use CMSIS-Pack to handle
software integration. The CMSIS-Pack based Machine Learning Examples can be
used in both Linux and Windows environments.

6.1 Getting started with the ML Embedded Evaluation Kit
This guide shows you how to build the examples in the ML Embedded Evaluation Kit.

For a list of the examples contained in the ML Embedded Evaluation Kit, see Use case APIs in the
Git repository.

A Quick Start Guide is also available, which shows you how to build and run the keyword spotting
example application.

6.1.1 Supported platforms

The Machine Learning Evaluation Kit is compatible with several different platforms. These platforms
range from physical hardware such as the Arm MPS3 FPGA board, to virtual environments such as
the Fixed Virtual Platform (FVP) and Arm Virtual Hardware (AVH). Each of these platforms offers
different capabilities and advantages, making the ML Evaluation Kit a versatile tool for a variety of
ML explorations.

The supported platforms are as follows:

• Arm MPS3 FPGA board with one of the following FPGA images:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 103

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/Arm-Examples/mlek-cmsis-pack-examples/
https://github.com/Arm-Examples/mlek-cmsis-pack-examples/
https://developer.arm.com/ml-embedded-evaluation-kit
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/tree/25.03/source/application/api/use_case?ref_type=tags
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/quick_start.md
https://developer.arm.com/Tools%20and%20Software/MPS3%20FPGA%20Prototyping%20Board

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

◦ AN552 FPGA image. AN552 is based on the Corstone-300 subsystem containing the Arm
Cortex-M55 processor and the Ethos-U55 NPU.

◦ AN555 FPGA image. AN555 is based on the Corstone-310 subsystem containing the Arm
Cortex-M85 processor and the Ethos-U55 NPU.

You can download these FPGA images from Arm Developer.

• Fixed Virtual Platform (FVP) for Corstone-300

• Arm Virtual Hardware (AVH) for Corstone-300

• Arm Virtual Hardware (AVH) for Corstone-310

6.1.2 System and software requirements

See the Arm ML Embedded Evaluation Kit documentation to read full details of the prerequisites
for running the ML Embedded Evaluation Kit.

The key requirements are as follows:

1. An x86 Linux system or Windows Subsystem for Linux.

2. Python version 3.9 or newer.

You can check the version of Python on your system using the following command:

python3 --version

If the Python version on your system is 3.8 or earlier, you can update the Python version by
following the instructions in the Arm ML Embedded Evaluation Kit documentation.

3. Several common software tools, which can be installed using the following commands:

sudo apt install -y cmake make python3 git curl unzip xxd
sudo apt install -y python3-pip
python3 -m pip install pillow

4. Python virtual environment.

To install Python virtual environment for python 3.9, run the following command:

sudo apt install -y python3.9-venv

To install Python virtual environment for python 3.10, run the following command:

sudo apt install -y python3.10-venv

5. A compilation tool chain, one of the following:

• Arm Compiler for Embedded 6.16 or later

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 103

https://developer.arm.com/documentation/dai0552/
https://developer.arm.com/Processors/Corstone-300
https://developer.arm.com/Processors/Cortex-M55
https://developer.arm.com/Processors/Cortex-M55
https://developer.arm.com/Processors/Ethos-U55
https://developer.arm.com/documentation/107642/B/?lang=en
https://developer.arm.com/Processors/Corstone-310
https://developer.arm.com/Processors/Cortex-M85
https://developer.arm.com/Processors/Cortex-M85
https://developer.arm.com/Processors/Ethos-U55
https://developer.arm.com/downloads/-/download-fpga-images
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/Processors/Corstone-300
https://www.arm.com/products/development-tools/simulation/virtual-hardware
https://developer.arm.com/Processors/Corstone-300
https://www.arm.com/products/development-tools/simulation/virtual-hardware
https://developer.arm.com/Processors/Corstone-310
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/documentation.md?ref_type=tags#prerequisites
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/troubleshooting.md?ref_type=tags#how-to-update-python3-package-to-newer-version

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

For more information about Arm Compiler for Embedded, see Arm Developer. Arm
Compiler for Embedded requires a valid license.

• GNU Arm Embedded toolchain 10.2.1 or later

If you need to install the GNU Arm Embedded toolchain, download a suitable version from
one of the following locations:

◦ https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads (for versions
11.2, 11.3 12.2 or later)

◦ https://developer.arm.com/downloads/-/gnu-rm (for version 10.3 or earlier)

Do not install the GNU Arm Embedded toolchain 10.3.1 20210621 using sudo apt
install gcc-arm-none-eabi. There is a known issue for that release that results in a
compilation error in the ML embedded evaluation kit.

After the toolchain is installed, add the toolchain binary path to the search path.

For users running Windows Subsystem for Linux (WSL), Windows paths in the
$PATH variable might contain unescaped space characters, for example /mnt/c/
Program Files/Microsoft VS Code/bin. This causes problems with the build
script. To solve the problem, you can use one of the following workarounds:

• Create a bash script to remove Windows paths from the $PATH variable

• Add escape characters \ before all spaces in the path variable

• Enclose the paths with quotes

6.1.3 Check out the repository

Run the following commands to check out the repository:

git clone "https://git.gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-
evaluation-kit.git"
cd ml-embedded-evaluation-kit
git submodule update --init

6.1.4 Compile the default projects

Run the compilation script using one of the following commands, depending on the toolchain you
are using:

• GNU Arm Embedded toolchain (gcc):

python3 ./build_default.py

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 103

https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/gnu-rm
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/troubleshooting.md?ref_type=tags#build-issues-with-wsl2
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/troubleshooting.md?ref_type=tags#build-issues-with-wsl2

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

• Arm Compiler for Embedded:

python3 ./build_default.py --toolchain arm

After the compilation finishes, the executables are located in cmake-build-XXXXXX/bin.

To run the example projects, follow these instructions in the Arm ML Embedded Evaluation Kit
documentation.

The build_default.py script builds the tests for the default configuration. The script supports
several command line options. For example, to specify the configuration of the Ethos-U55
hardware to be 32 MAC, you can use one of the following commands:

• GNU Arm Embedded toolchain (gcc):

python3 ./build_default.py --npu-config-name ethos-u55-32

• Arm Compiler for Embedded:

python3 ./build_default.py --npu-config-name ethos-u55-32 --toolchain arm

The following are valid options for the Ethos-U configurations:

• ethos-u55-32

• ethos-u55-64

• ethos-u55-128

• ethos-u55-256

• ethos-u65-256

• ethos-u65-512

For a complete list of the build_default.py script command-line options, see the Arm ML
Embedded Evaluation Kit documentation.

6.1.5 Additional resources

There are a number of documents available in the ML Embedded Evaluation Kit git repository:

• Home page

• Quick Start Guide

• Documentation

• Building the ML embedded code sample applications from sources

• Deployment

• Customizing (Implementing custom ML application)

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/deployment.md?ref_type=tags
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/deployment.md?ref_type=tags
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#building-for-default-configuration
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#building-for-default-configuration
https://developer.arm.com/ml-embedded-evaluation-kit
https://developer.arm.com/ml-embedded-evaluation-kit
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/quick_start.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/documentation.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/deployment.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/customizing.md

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

• FAQ

• Troubleshooting

• Memory considerations

• Testing and benchmark

• Timing adapter

• CMAKE presets

• Coding standards and guidelines

• Appendix

The following Arm blogs provide useful information about the Arm Machine Learning Evaluation
Kit:

• Optimize a ML model for fast inference on Ethos-U microNPU

• Vela Compiler: The first step to deploy your NN model on the Arm Ethos-U microNPU

• Blog: Arm ML Embedded Evaluation Kit

The following Arm Learning Paths are related to the Arm Machine Learning Evaluation Kit:

• Navigate Machine Learning development with Ethos-U processors

• Build and run the Arm Machine Learning Evaluation Kit examples

6.2 Beyond the basics
This section of the guide provides the following information:

• An overview of the software components of the kit, including the TensorFlow Lite Micro
runtime and the Ethos-U driver.

• The structure of the repository

• The build process and the key actions performed by the compilation script.

• Available build options and how they can be customized according to the user’s needs.

Getting started with the ML Embedded Evaluation Kit introduced the ML Evaluation Kit, its
purpose, and its potential applications. This guide also explains the fundamental concepts of
machine learning that are crucial for understanding the workings of the ML Embedded Evaluation
Kit.

6.2.1 The build process

Several existing resources describe the build process:

• The structure of the repository

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/faq.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/troubleshooting.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/memory_considerations.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/testing_benchmarking.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/timing_adapters.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/cmake_presets.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/coding_guidelines.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/appendix.md
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/optimize-a-ml-model-for-inference-on-ethos-u-micronpu
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/vela-compiler-deploy-your-nn-model-on-the-arm-ethos-u-micronpu
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/arm-machine-learning-embedded-evaluation-kit
https://learn.arm.com/learning-paths/microcontrollers/nav-mlek/
https://learn.arm.com/learning-paths/microcontrollers/mlek/
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/documentation.md#additional-reading

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

• Build process

◦ Preparing Build environment

◦ Create a build directory

◦ Configuring the build for the platform chosen

▪ Configuring the build for MPS3 SSE-300

▪ Configuring the build for MPS3 SSE-310

▪ Configuring native unit-test build

▪ Configuring the build for simple platform

◦ Build the application

The compilation script build_default.py performs the following key actions:

1. Download the TFLM models for each use case and optimize them using Vela, as shown in the
following diagram:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#build-process
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#preparing-build-environment
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#create-a-build-directory
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#configuring-the-build-for-mps3-sse_300
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#configuring-the-build-for-mps3-sse_310
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#configuring-native-unit_test-build
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#configuring-the-build-for-simple_platform
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#building-the-configured-project

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

Figure 6-1: Model download and optimize

Model (.tflite)
Input shape(ifm0.npy)

Output shape (ofm0.npy)

Download

ml_embedded_evaluation_kit /
resources_downloaded /{use_case}

(.tflite)

Vela Parameters

ml_embedded_evaluation_kit /
resources_downloaded /{use_case}/

xxx_vela.tflite

Rename

ml_embedded_evaluation_kit /
resources_downloaded /{use_case}/

xxx_vela_{config}.tflite

2. Download additional software components, unpack them, and patch them if needed.

These software components include the following:

• The FlatBuffers library from TensorFlow Lite Micro

• kissfft, a Fast Fourier Transform library

• pigweed, a collection of embedded-targeted libraries

• gemmlowp, a general matrix multiplication library

• ruy, a matrix multiplication library

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

3. Setup the build environment for each use case

This process includes setting up directories, creating the MAKEFILEs, and carrying out
conversion processes to enable the models and data to be included in the C++ compilation:

Input file Conversion script

Models for TensorFlow Lite Micro .tflite ml-embedded-evaluation-kit/scripts/py/gen_model_cpp.py

ML data labels .txt ml-embedded-evaluation-kit/scripts/py/gen_labels_cpp.py

Audio input data .wav) ml-embedded-evaluation-kit/scripts/py/gen_audio_cpp.py

Image input data .bmp) ml-embedded-evaluation-kit/scripts/py/gen_rgb_cpp.py

The output of the converted C++ source and header files is in ml-embedded-evaluation-kit/
cmake-build-{target}-{configs}/generated/{use-case}/

You can also use the xxd utility to convert .tflite model files to a byte array in
C/C++.

4. Build the executables

The source codes are compiled at this stage. If needed, additional software components such as
the CMSIS-DSP library source are downloaded.

6.2.2 Build options for build_default.py

For a complete list of build options, see the Arm ML Embedded Evaluation Kit documentation.

For example, you can use the following ETHOS_U_NPU_MEMORY_MODE settings to define the memory
type used by Ethos-U NPU:

• Shared_Sram. This is the default for Ethos-U55 NPU, and is available for both Ethos-U55 &
Ethos-U65.

• Dedicated_Sram. This is the default for Ethos-U65 NPU, and is available for Ethos-U65 only.

• Sram_Only. This is only available for Ethos-U55 only.

If it is necessary to use different build options, instead of executing the build steps manually, it is
easier to use the default build script as a starting point and modify the cmake_command in the script
to use customized build options.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#build-options

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

6.2.3 Software components

This section explores the software components of the Machine Learning Evaluation Kit. Key
software components of the Machine Learning Evaluation Kit include the following:

TensorFlow Lite Micro, which provides the runtime for the executable program, the Ethos-U Driver,
and platform codes that offer flexibility to support multiple hardware targets.

TensorFlow Lite Micro
The executable program image contains the TensorFlow Lite Micro runtime, which is
downloaded by the build_default.py script. After being downloaded, the files are located in
the ml-embedded-evaluation-kit/dependencies/tensorflow directory.

The TensorFlow Lite Micro kernel provides support for Ethos-U. For information about
software integration and initialization, see ml-embedded-evaluation-kit/dependencies/
tensorflow/tensorflow/lite/micro/kernels/ethos_u/README.md.

In order to invoke the TensorFlow Lite Micro interpreter, the application code must
include several header files and setup the model before invoking the micro-interpreter. For
information about the minimal code required to setup and execute TensorFlow Lite Micro,
see Get started with microcontrollers, in the TensorFlow documentation. It contains a good
overview of the TensorFlow Lite Micro low-level operations.

Ethos-U Driver
The Ethos-U driver can be found in the following location: ml-embedded-evaluation-kit/
dependencies/core-driver

Platform code
The platform support code can be confusing, because the evaluation kit contains files from
multiple repositories, and some of them have their own platform driver codes. The ML
Embedded Evaluation Kit does not use the driver code from the third-party repository
because it needs extra flexibility to support multiple hardware targets such as Corstone-300
and Corstone-310. Platform support code can be found in the following locations:

Location Note

ml-embedded-evaluation-kit/source/hal/source/platform/
mps3/

The platform code used by the example projects.

ml-embedded-evaluation-kit/dependencies/tensorflow/
tensorflow/lite/micro/cortex_m_corstone_300

From Google TensorFlow. Not used.

ml-embedded-evaluation-kit/dependencies/core-platform/
targets/corstone-300

From gitlab.arm.com/artificial-intelligence/ethos-
u/ethos-u-core-platform. Not used.

Details of Ethos-U integration, for example the base address and IRQ assignments,
are available in this file: ml-embedded-evaluation-kit/source/hal/source/platform/
{platform}/CMakeLists.txt.

The linker scripts are in this location: ml-embedded-evaluation-kit/scripts/cmake/
platforms/{platform}.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 103

https://www.tensorflow.org/lite/microcontrollers/get_started_low_level

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

ML Embedded Evaluation Kit

6.2.4 Creating custom applications with the ML Embedded Evaluation Kit

For information about creating custom applications running in the ML Embedded Evaluation Kit,
see Implementing custom ML application.

You can also add custom platform support.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/customizing.md#implementing-custom-ml-application
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/customizing.md#adding-custom-platform-support

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

7. CMSIS-Pack based ML examples
In addition to the ML Embedded Evaluation Kit, which provides a quick path for users when trying
out the Ethos-U55/U65 NPUs, Arm also provides a set of examples based on CMSIS-Pack, a
software component packaging solution. You can download the CMSIS-Pack based ML examples
from the Arm-Examples Github repository.

The CMSIS-Pack based ML examples provide the following benefits:

• Uses CMSIS-Pack as a software integration mechanism, which is more suitable for IDE
development environments.

• Provides a greater choice of hardware support.

• Supports the Windows environment.

Note that the CMSIS-Pack based ML examples repository is a work-in-progress. Current limitations
include the following:

• ML use cases are limited to Key Word Spotting (KWS) and Object Detection

• Only supports Arm Compiler 6

• Ethos-U NPU is not configurable

7.1 Prerequisites
The CMSIS-Pack based ML examples require the following tools:

• Arm Compiler for Embedded

Download Arm Compiler for Embedded and refer to the Release Notes for installation
information.

• CMSIS-Toolbox

To install CMSIS-ToolBox, download release 2.0 or higher and refer to the installation
documentation.

After installing CMSIS-Toolbox, ensure that:

◦ The CMSIS-Toolbox binaries are in the search path.

◦ The environment variables for the toolchain installation path is set, for example
AC6_TOOLCHAIN_6_19_0=C:/Keil_v5/ARM/ARMCLANG/bin.

◦ The environment variable CMSIS_PACK_ROOT contains the path to the CMSIS-Pack root
directory containing the software packs.

◦ The CMSIS-Pack Root directory is initialized. See the cpackget documentation for more
information. For example, cpackget init --pack-root path/to/new/pack-root https://
www.keil.com/pack/index.pidx.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit
https://github.com/Arm-Examples/mlek-cmsis-pack-examples
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded
https://developer.arm.com/documentation/ka005061/latest
https://github.com/Open-CMSIS-Pack/cmsis-toolbox
https://artifacts.keil.arm.com/cmsis-toolbox/
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md
https://github.com/Open-CMSIS-Pack/cpackget

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

◦ The environment variable CMSIS_COMPILER_ROOT contains the path to the etc directory in
CMSIS-Toolbox, for example {install_path}/etc.

• git, cmake, make, and ninja

On a Linux system, install the tools with the following command:

sudo apt install -y cmake make git ninja-build

On a Windows system, install the utilities using installers from the following websites:

Utility website

git https://git-scm.com/download/win

cmake https://cmake.org/download/

GNU make http://gnuwin32.sourceforge.net/packages/make.htm

Ninja-build https://github.com/ninja-build/ninja/releases

• A suitable IDE

Arm recommends that you use Visual Studio Code IDE with Keil Studio Pack Extension.

Alternatively, you can also use Keil Studio Cloud.

7.2 Compiling the CMSIS-Pack based ML examples
The CMSIS-Pack based ML examples workflow uses CMSIS-Toolbox to generate compilation
setups from each example’s Yaml file. The flow consists of the following steps:

1. Analyze the Yaml file to produce a list of any missing CMSIS-Packs:

csolution list packs mlek.csolution.yml -m > packlist.txt

2. Install any missing CMSIS-Packs:

cpacket add -f packlist.txt

3. Generate the .cprj files from the main Yaml file for each of the example use-cases:

csolution convert ./mlek.csolution.yml

By default, this command generates several .cprj files for different configuration combinations.
There are many combinations because:

• The examples support a number of ML use-cases.

• The examples support a number of target platforms.

• The build type can be either Debug or Release.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 103

https://git-scm.com/download/win
https://cmake.org/download/
http://gnuwin32.sourceforge.net/packages/make.htm
https://github.com/ninja-build/ninja/releases
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Arm.keil-studio-pack
https://studio.keil.arm.com/?import=https://github.com/Arm-Examples/mlek-cmsis-pack-examples.git

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

If required, you can generate one specific combination using the -c options, as follows:

csolution convert ./mlek.csolution.yml -c object_detection.Release+AVH-SSE-300-
U55

4. Compile the project, using either cbuild or an IDE.

For example, to compile the KWS example using cbuild:

cbuild ./kws/kws.Debug+AVH-SSE-300-U55.cprj -g "Unix Makefiles" -j 4

The following diagram shows this workflow:

Figure 7-1: Software workflow for the CMSIS-Pack based ML examples

Step 1: If needed, install the missing CMSIS-Pack
mlek.csolution.yml

Yaml file format

csolution
(CMSIS-Toolbox)

packlist.txt

List of CMSIS-Packs to install

csolution list packs –s mlek.csolution.yml –m > packlist.txt

cpackget

cpackget add –f packlist

Install missing CMSIS-Packs

Step 2: Generate the .cprj project files
mlek.csolution.yml

Yaml file format

csolution
(CMSIS-Toolbox)

csolution convert –s ./mlek.csolution.yml

.cprj
project files for various

configuration combinations

Step 3: Compile the project

Take one of the .cprj files
uVision in Keil MDK

csolution
(CMSIS-Toolbox)

Example:
cbuild ./kws/kws.Debug+AVH-SSE-300-U55.cprj –g “Unix Makefiles” –j 4

Using an IDE
for example Keil MDK

Usingcbuildand cmake

Executable
program image

Test on hardware or simulation
(for example, FVP)

(CMSIS-Toolbox)

The generated executable can be tested on either target hardware or in a simulation environment.
For more information, see the CMSIS-Pack based ML examples documentation.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 103

https://github.com/Arm-Examples/mlek-cmsis-pack-examples#execute-project

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

Note that the MPS3 FPGA image for Cortex-M55 (AN552) is not supported because the Ethos-
U configuration in the FPGA image (128 MAC/cycle) does not match the NN model (256 MAC/
cycle). However, you can still test the generated application using Arm Virtual Hardware (AVH) or
Fixed Virtual Platform (FVP).

Unlike the ML Embedded Evaluation Kit, the ML models and input samples have
already been converted to C++:

• KWS

• Object detection).

There is therefore no need to use the Vela Compiler. Because of this, the Ethos-U
configurations supported by the ML models are fixed.

7.3 Using TFLM CMSIS-Packs in your own project
The information in this section of the guide helps you to integrate TensorFlow Lite Micro (TFLM),
the Ethos-U driver and ML model into your own project.

The steps in the process are as follows:

• Add the TFLM software components

• Add the ML model to your project

• Use the TFLM API

These steps are discussed further in the following sections.

7.3.1 Add the TFLM software components

The TFLM software packs are available from the CMSIS-Pack web page:

• pack: tensorflow::flatbuffers

• pack: tensorflow::gemmlowp

• pack: tensorflow::kissfft

• pack: tensorflow::ruy

• pack: tensorflow::tensorflow-lite-micro

These packs are built from sources that are maintained and versioned by Arm on gitlab.arm.com.

Add the components as shown below, for example by using the Manage Software Components in
Keil Studio.

• The most important component is:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 103

https://github.com/Arm-Examples/mlek-cmsis-pack-examples/tree/main/kws/src
https://github.com/Arm-Examples/mlek-cmsis-pack-examples/tree/main/kws/src
https://www.keil.arm.com/packs/?q=tensorflow&pack-search=
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-software
https://developer.arm.com/documentation/102497/1-5/Work-with-standalone-CMSIS-projects-and-CMSIS-solutions/Manage-a-CMSIS-solution-and-its-software-components

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

◦ component: Machine Learning:TensorFlow:Kernel&Ethos-U

• This component with the variant Ethos-U requests several the following software components.
The dependencies can be resolved in the IDE:

◦ component: Arm::Machine Learning:NPU Support:Ethos-U Driver&Generic U55

◦ component: ARM::CMSIS:DSP&Source

◦ component: ARM::CMSIS:NN Lib

◦ component: tensorflow::Data Exchange:Serialization:flatbuffers

◦ component: tensorflow::Data Processing:Math:gemmlowp fixed-point

◦ component: tensorflow::Data Processing:Math:kissfft

◦ component: tensorflow::Data Processing:Math:ruy

◦ component: tensorflow::Machine Learning:TensorFlow:Kernel Utils

The Ethos-U Driver default variant shown here is Generic U55. Depending on your
target device, a different driver variant may be available from the device vendor, and
should be selected.

7.3.2 Add the ML model to your project

There are two options to store your ML model on the embedded target:

• Store the ML model on an existing filesystem.

The TensorFlow library can interpret .tflite files as they are stored on filesystem. This is
useful if you need to handle multiple models, and want to update them independently from the
application.

The Keil Middleware File System provides a set of APIs to interact with a file system on a
storage device like an SD card or USB flash drive. The following simple code snippet shows
how to load a .tflite file from an SD card:

#include "rl_fs.h"
...

FILE *f;
char *buffer;
size_t buffer_size;

// Open the file for reading
f = fopen("/sdcard/my_model_vela.tflite", "r");
if (f == NULL) {
 // Error handling
}

// Get the size of the file and allocate a buffer
fseek(f, 0, SEEK_END);
buffer_size = ftell(f);
rewind(f)
buffer = malloc(buffer_size + 1); // +1 for the null terminator

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

if (buffer == NULL) {
 // Error handling
 fclose(f);
 return;
}

// Read the file into the buffer
size_t num = fread(buffer, 1, buffer_size, f);
if (num != buffer_size) {
 printf("Failed to read file\n");
} else {
 buffer[buffer_size] = '\0'; // Null-terminate the string
 printf("File contents: %s\n", buffer);
fclose(f);

const tflite::Model* model = ::tflite::GetModel(buffer);
free(buffer);

...

Loading model files requires a significant amount of RAM and is not suitable for all system
designs. A typical scenario for this usage model is a test system based on Arm Virtual
Hardware, where you load many different model variants for profiling. Even if a file system is
available on your hardware target, you may want to store the model in ROM alongside the
application.

• Compile the model into the firmware image and flash it together with the application.

To compile the content of a .tflite file into your firmware image, it needs to be represented as
an array in C language syntax. Use a hexdump utility such as xxd to convert the binary .tflite
file into a header file my_network_model.h to include in your project, as follows:

xxd -i my_model_vela.tflite my_network_model.h

To ensure that the data is stored in ROM memory and starts at a 16 byte alignment boundary,
define the data array as follows:

const unsigned char network_model __ALIGNED(16) {
 ...
}

In the application code, include my_network_model.h and load the model with TensorFlow:

#include "my_network_model.h"
...
const tflite::Model* model = ::tflite::GetModel(network_model);
...

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

7.3.3 Use the TFLM API

The following section explains how to use the TensorFlow Lite Micro C++ API for a typical
implementation. Input tensors, preprocessing, and output interpretation depends on your model
and may be different.

First, we must initialize the Ethos-U NPU. The function ethosu_init initializes the Ethos-U NPU.
In the ML Embedded Evaluation Kit, this function is executed during hardware initialization in the
platform initialization code as follows:

• int platform_init() in source/hal/source/platform/mps3/source/platform_drivers.c calls:

◦ int arm_ethosu_npu_init() in source/hal/source/components/npu/ethosu_npu_init.c.

◦ int ethosu_init() in ethosu_driver.c

Once the Ethos-U NPU is initialized, we can access the Ethos-U using the TensorFlow Lite runtime.
Ethos-U support is integrated into the TFLM runtime. The application code therefore calls the
TFLM interpreter to use the Ethos-U NPU, as follows:

#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/micro/tflite_bridge/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"

// Include your model data. Replace this with the header file for your model.
#include "model.h"

// Define the number of elements in the input tensor
#define INPUT_SIZE 300*300

using MyOpResolver = tflite::MicroMutableOpResolver<10>;

// Replace this with your model's input and output tensor sizes
const int tensor_arena_size = 2 * 1024;
uint8_t tensor_arena[tensor_arena_size] __align(16);

void RunModel(int8_t* input_data) {
 tflite::MicroErrorReporter micro_error_reporter;
 tflite::ErrorReporter* error_reporter = µ_error_reporter;

 const tflite::Model* model = ::tflite::GetModel(g_model);

 MyOpResolver op_resolver;
 // Register your model's operations here

 tflite::MicroInterpreter interpreter(model, op_resolver, tensor_arena,
 tensor_arena_size, error_reporter);

 interpreter.AllocateTensors();

 TfLiteTensor* input = interpreter.input(0);
 // Add checks for input tensor properties here if needed

 // Copy image data to model's input tensor
 for (int i = 0; i < INPUT_SIZE; ++i) {
 input->data.int8[i] = input_data[i];
 }

 TfLiteStatus invoke_status = interpreter.Invoke();
 // Add checks for successful inference here if needed

 TfLiteTensor* output = interpreter.output(0);
 // Add checks for output tensor properties here if needed

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/source/hal/source/platform/mps3/source/platform_drivers.c?ref_type=tags
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/source/hal/source/components/npu/ethosu_npu_init.c?ref_type=tags
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-driver/-/blob/25.02/src/ethosu_driver.c?ref_type=tags

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

CMSIS-Pack based ML examples

 // Process your output value here
 // For example, SSD models typically produce an array of bounding boxes
}

The template requires C++17 as the minimum language standard, which complies to the standard
used by TensorFlow.

If you need to create your own model, refer to the TensorFlow Guide for more information about
the workflow.

Once you have created your ML application, the next step you take might be to profile and
optimize the ML model. Arm provides several tools to help you test and improve your model’s
performance running on Ethos-U NPUs. For more information, see Profiling and optimizing ML
models.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 103

https://www.tensorflow.org/lite/microcontrollers/build_convert

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Profiling and optimizing ML models

8. Profiling and optimizing ML models
The memory requirements and code size of a TensorFlow Lite Micro (TFLM) model depend on the
model’s parameters, layers, and the hardware platform on which it runs. To estimate the model’s
memory requirement and code size, use the following tools:

1. Model analysis.

Begin by examining the structure of the TFLM model itself. This includes the number and
type of layers, the input and output shapes, and the size of the model parameters. The model
parameters consist of the weights and biases associated with each layer. A helpful tool can be
visualization, like that provided by Netron App

2. TFLM Profiler.

TFLM provides a profiler tool that lets you measure memory usage and code size. You can find
example code and instructions in the TFLM documentation.

3. Performance counters.

Ethos-U provides performance counters that let you analyze code and memory usage.

4. Memory estimation functions.

TFLM provides memory estimation functions that let you estimate memory requirements
programmatically. These functions help you calculate memory usage based on model
parameters and tensor shapes.

5. Compilers and linkers.

Arm Compiler, LLVM, and GCC can all produce reports about code and object sizes.

6. Static analysis.

Static analysis tools can provide information about the code size and memory usage of your
TFLM model without running it.

8.1 Ethos-U Vela optimizations
The Ethos-U Vela compiler optimizes neural network models. Vela provides several command-line
options that influence model optimization. For more information, see Optimize custom model with
Vela compiler in the Arm ML Evaluation Kit documentation.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 103

https://netron.app/
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#optimize-custom-model-with-vela-compiler
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit/-/blob/25.03/docs/sections/building.md#optimize-custom-model-with-vela-compiler

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Profiling and optimizing ML models

8.2 Operator mapping and usage
Running Ethos-U Vela with the --verbose-performance option displays information about
TensorFlow operator usage in your model.

These data values are estimates and are not cycle-accurate numbers based on
running the inference on silicon.

The following is example output from Vela with the --verbose-performance option:

Figure 8-1: Vela verbose output example

In this example:

• Cycles and Network% give a good indication of which layers are compute- and memory-
intensive.

• A MAC Count of 0 indicates that an operator was not off-loaded to the Ethos-U NPU. These
operators are still optimized by CMSIS-NN typically, but consume CPU processing time. If this
is the case for the majority of your network, the model used is not suitable for Ethos-U.

8.3 MLIA guided optimizations (Experimental)
ML Inference Advisor (MLIA) is a tool that assists AI developers in designing and optimizing neural
network models for efficient inference on Arm targets. MLIA is ideal for evaluating whether
a network maps fully to Ethos-U. In addition, MLIA enables performance analysis, providing
actionable advice early in the model development cycle. The advice can cover supported operators,
performance analysis, and suggestions for model optimization, such as pruning and clustering.

MLIA provides the following sub-commands:

• check to perform compatibility or performance checks on the model.

• optimize to apply specified optimizations. Optimization is only available for the Keras .h5 model
format, not .tflite.

When MLIA is setup with a performance model such as the Corstone Fixed Virtual Platform (FVP),
it provides performance information about the inference. In the case where the Corstone-300 FVP
is used and when all of the inference operations are running on the Ethos-U55, the result value is
accurate to within +/-10%. The error margin can be higher when other performance models, such
as the Corstone-310 FVP, is used.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 103

https://pypi.org/project/mlia/
https://pypi.org/project/mlia/

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Profiling and optimizing ML models

MLIA is a wrapper around other tools and components, and does not include its own performance
model. This is why an FVP is needed to obtain performance data. In contrast, Vela includes
a performance estimator, but the performance estimation in Vela is not cycle-accurate. Vela
performance estimate values are intended to be used for relative comparisons with other Vela
performance estimate values, but should not be used in situations where accuracy is needed.

For an in-depth evaluation, for example, to understand the full software flow and experiment with
memory layout arrangements, or even to prototype a full application with pre- and post-processing,
then the ML Embedded Evaluation Kit or the CMSIS-Pack based example could be more suitable.

8.4 Ethos-U performance profiling
The content for this section is currently under development and will be added in the near future.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

MLOps systems

9. MLOps systems
Arm provides a set of foundation tools and software components to enable MLOps systems and
the overall development flow for machine learning applications. Arm is also working with several
MLOps partners to integrate these components into established MLOps systems. The Arm Partner
Ecosystem Catalog provides a searchable list of AI partners.

For an introduction to the MLOps process steps for developing machine learning applications, see
Overview of the ML development process.

The following diagram outlines the tools and template projects provided by Arm to optimize MLOps
processes for Cortex-M and Ethos-U processors.

Figure 9-1: MLOps Components

Container with tools

- AC6, (GCC, LLVM)

- AVH FVP

- Vela Compiler

- CMSIS-Toolbox, CMake

License entitlement file

Template project

-

Model Library

-

Test Framework

An MLOps system typically uses a container with all required development tools.

The Github repository Arm-Software/AVH-MLOps contains:

• Setup of MLOps foundation tools, exemplified by using Docker. Most of the tools are
downloaded from the Arm Tools Artifactory.

• Template project that generates a ML Model library and verifies execution using Arm Virtual
Hardware (AVH-FVP). It supports all relevant Cortex-M and Ethos-U targets and can be used
with different toolchains.

• GitHub actions that exemplify typical MLOps operations.

• Software Pack delivery of the ML Model library using Open-CMSIS-Pack technology.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 103

https://www.arm.com/partners/ai-ecosystem-catalog
https://www.arm.com/partners/ai-ecosystem-catalog
https://github.com/Arm-Software/AVH-MLOps

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

MLOps systems

9.1 License activation
To activate the Arm development tools in an MLOps system a license is required. Contact Arm for
further details, and for information about how to become an Arm MLOps partner.

The following command, run outside of the container, activates the MLOps system license:

armlm activate --code <license-code-here> --as-user arm_mlops --to-file
 arm_mlops_license

The activate command generates a license file that is imported into the container with the
command armlm import. See User-based Licensing User Guide for more information.

The activate command must be run at least once every 24 hours to keep the
license up-to-date.

9.2 Example projects
The repository contains several example projects that show how to create a library with a trained
ML model, and how to evaluate the performance.

The example projects use the MLOps.csolution.yml file in CMSIS-Toolbox format.

The MLOps.csolution.yml file uses following sub-projects:

• ML_Model.cproject.yml creates a library of the trained ML model.

• ML_Test.cproject.yml creates a model evaluation test using the ML model library. It reports
timing using AVH in combination with CMSIS-View and the eventlist utility.

MLOps.csolution.yml supports several different compilers, including Arm Compiler 6, GCC, and
LLVM. It defines target-types and build-types that represent different processors as follows.

target-type Selects the target processor

+CM0 Cortex-M0

+CM0plus Cortex-M0+

+CM3 Cortex-M3

+CM4 Cortex-M4

+CM4_FP Cortex-M4 with FPU

+CM7 Cortex-M7

+CM23 Cortex-M23

+CM33 Cortex-M33

+CM55 Cortex-M55

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 103

https://www.arm.com/company/contact-us
https://developer.arm.com/documentation/102516
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/README.md#cmsis-toolbox

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

MLOps systems

target-type Selects the target processor
+CM85 Cortex-M85

+CM55_Ethos Cortex-M55 with Ethos-U

+CM85_Ethos Cortex-M85 with Ethos-U

build-type Selects the code optimization

.speed Optimize for speed

.size Optimize for size

.balanced Balanced optimization for speed and size

These target-type and build-type definitions can be used together with the --toolchain option
to create libraries for different processors and compiler toolchains. For example, the following
CMSIS-Toolbox cbuild command creates a library for a Cortex-M7 processor, optimizing for code
size, using the GCC toolchain:

cbuild MLOps.csolution.yml --context +CM7.size --toolchain GCC

The example projects show how to run the test process using the AVH VSI interfaces for Audio,
SDS, Video.

A CMSIS-Pack template shows how to deliver the Model Library to IDEs for integrating the ML
model in embedded projects. This pack contains source code templates that ease integration with
application programs.

9.3 vcpkg
You can also use the Microsoft tool vcpkg to manage tools. See “Install tools on the command line
using vcpkg” for further details.

The following diagram shows how you can use vcpkg to manage consistent tool installation from
the Arm tools artifactory:

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 103

https://arm-software.github.io/AVH/main/simulation/html/group__arm__vsi.html
https://learn.arm.com/learning-paths/microcontrollers/vcpkg-tool-installation/
https://learn.arm.com/learning-paths/microcontrollers/vcpkg-tool-installation/

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

MLOps systems

Figure 9-2: Arm Tools Artifactory

Consistent tool setup shared across development environments

Git
Repository

MDK6
(VS Code)

SaaS CI System
(i.e. GitHub)

MLOps System
(i.e. Qeexo)

vcpkg enabled vcpkg enabled vcpkg enabled

vcpkg
configuration

User
Code

ML
Model

consistent, project-specific setup
Tools installed on
demand based on

vcpkg configuration
Arm
tools

artifactory

Currently the vcpgk process is experimental and we therefore recommend that you
download and install the tools for MLOps systems with native OS commands.

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 103

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Resources for Ethos-U

10. Resources for Ethos-U
The following resources are available for Ethos-U:

• Product pages

• Product document

• Software and examples

• Other resources

• Partner solutions

10.1 Product pages
The following product pages are available for Ethos-U:

Product Resource

Ethos-U55 https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55

https://developer.arm.com/Processors/Ethos-U55

Ethos-U65 https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u65

https://developer.arm.com/Processors/Ethos-U65

Ethos-U85 https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85

https://developer.arm.com/Processors/Ethos-U85

10.2 Product document
The following product documentation is available for Ethos-U:

Product Resource

Ethos-U Arm Ethos-U Processor Series

Ethos-U55 Technical Reference Manual

Ethos-U55 Product Brief

Ethos-U65 Technical Reference Manual

Ethos-U65 Product Brief

Ethos-U55/U65 Arm Ethos-U NPU Application development overview

Ethos-U85 Product Brief

Ethos-U85 Technical Reference Manual

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 103

https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://developer.arm.com/Processors/Ethos-U55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u65
https://developer.arm.com/Processors/Ethos-U65
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
https://developer.arm.com/Processors/Ethos-U85
https://armkeil.blob.core.windows.net/developer/Files/pdf/datasheets/arm-ethos-u-processor-series-product-brief.pdf
https://developer.arm.com/documentation/102420/0200/?lang=en
https://armkeil.blob.core.windows.net/developer/Files/pdf/ML%20on%20Arm/Arm_Ethos_U55_Product_Brief_v4.pdf
https://developer.arm.com/documentation/102023/0000/?lang=en
https://armkeil.blob.core.windows.net/developer/Files/pdf/arm-ethos-u65-product-brief-v2.pdf
https://developer.arm.com/documentation/101888/0500/?lang=en
https://armkeil.blob.core.windows.net/developer/Files/pdf/datasheets/arm-ethos-u85-product-brief.pdf
https://developer.arm.com/documentation/102685/latest/

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Resources for Ethos-U

10.3 Software and examples
Open-source software components and documentation for developing Ethos-U NPU software:

• https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u

In addition, the following resources are available:

• Vela compiler

• TensorFlow Lite for Microcontrollers

• Arm Model Zoo

• ML Inference Advisor (MLIA)

• Ethos-U ML Embedded Evaluation kit

• Using the Arm Corstone-300 with Arm Cortex-M55 and Arm Ethos-U55 NPU - Jupyter
notebook

• Ethos-U Core Platform

• CMSIS-Pack based Machine Learning Examples

• CMSIS-NN

• Additional ML examples for Arm processors

• learn.arm.com: Navigate Machine Learning development with Ethos-U processors

• learn.arm.com: Build and run the Arm Machine Learning Evaluation Kit examples

• Running TVM on bare metal Arm Cortex-M55 CPU, Ethos-U55 NPU and CMSIS-NN

◦ Documentation: Running TVM on bare metal Arm Cortex-M55 CPU and Ethos-U55 NPU
with CMSIS-NN

• Benefit of pruning and clustering a neural network for before deploying on Arm Ethos-U NPU

• Enabling AI at the Edge with Himax WE2 AI Processor

• Case study - A Family Trip, Endangered Species Sparks Innovative Arm-based Solution

10.4 Other resources
The following resources are available:

Product Resource

Ethos-U55 Technical Overview of Ethos-U55 (video)

Ethos-U55 Running Machine Learning on Arm’s Ethos-U55 NPU (slides)

Cortex-M55 + Ethos-U55 Arm M55 and U55 Performance Optimization for Edge-based Audio and Machine Learning
Applications

TFLM TFLM low-level operations

ML model optimization Optimize a ML model for fast inference on Ethos-U microNPU

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 103

https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-vela
https://www.tensorflow.org/lite/microcontrollers
https://github.com/ARM-software/ML-zoo
https://pypi.org/project/mlia/
https://gitlab.arm.com/artificial-intelligence/ethos-u/ml-embedded-evaluation-kit
https://github.com/ARM-software/ML-examples/blob/main/ethos-u-corstone-300/README.md
https://github.com/ARM-software/ML-examples/blob/main/ethos-u-corstone-300/README.md
https://gitlab.arm.com/artificial-intelligence/ethos-u/ethos-u-core-platform
https://github.com/Arm-Examples/mlek-cmsis-pack-examples
https://github.com/ARM-software/CMSIS-NN
https://github.com/ARM-software/ML-examples
https://learn.arm.com/learning-paths/microcontrollers/nav-mlek/
https://learn.arm.com/learning-paths/microcontrollers/mlek/
https://github.com/apache/tvm/tree/main/apps/microtvm/ethosu
https://tvm.apache.org/docs/how_to/work_with_microtvm/micro_ethosu.html
https://tvm.apache.org/docs/how_to/work_with_microtvm/micro_ethosu.html
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/pruning-clustering-arm-ethos-u-npu
https://armkeil.blob.core.windows.net/developer/Files/pdf/case-study/arm-himax-edge-ai-case-study.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/case-study/grovety-case-study.pdf
https://developer.arm.com/Additional%20Resources/Video%20Tutorials/Technical%20Overview%20of%20Ethos-U55
https://developer.arm.com/Additional%20Resources/AITechTalk-Slides-Getting%20started%20with%20running%20ML%20on%20Arm%20Ethos-U55
https://developer.arm.com/Additional%20Resources/Video%20Tutorials/Arm%20Cortex-M55%20and%20Ethos-U55%20Performance%20Optimization%20for%20Edge-based%20Audio%20and%20ML%20Applications
https://developer.arm.com/Additional%20Resources/Video%20Tutorials/Arm%20Cortex-M55%20and%20Ethos-U55%20Performance%20Optimization%20for%20Edge-based%20Audio%20and%20ML%20Applications
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/optimize-a-ml-model-for-inference-on-ethos-u-micronpu

ML Developers Guide for Cortex-M Processors and Ethos-U
NPU

Document ID: 109267_0102_01_en
Version 1.2

Resources for Ethos-U

Product Resource
Vela compiler Vela Compiler: The first step to deploy your NN model on the Arm Ethos-U microNPU

Arm ML Embedded Evaluation
Kit

Blog: Arm ML Embedded Evaluation Kit

Using uTVM with Ethos-U tinyML Summit 2023: Arm Ethos-U support in TVM ML framework (video)

10.5 Partner solutions
The following resources are available:

Partner Product/solution

Sensory Sensory Speech Technologies on Arm IP

Arcturus Energy-Efficient ML Vision App Development with Ethos-U65/i.MX 93

Nota.AL Nota AI’s Collaboration with Arm’s AVH Corstone-300 Ethos-U65

Edge Impulse Announcing Official Support for the Alif Ensemble E7 Development Kit

Copyright © 2023–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 103

https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/vela-compiler-deploy-your-nn-model-on-the-arm-ethos-u-micronpu
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/arm-machine-learning-embedded-evaluation-kit
https://www.youtube.com/watch?v=u-BVSvzK3_Q
https://www.sensory.com/sensory-speech-technologies-on-arm-ip-cortex-m-ethos-u-micronpu/
https://www.youtube.com/watch?v=vtCluX9HmnE
https://www.nota.ai/partner-arm-avhethosu65
https://www.edgeimpulse.com/blog/announcing-official-support-for-the-alif-ensemble-e7-development-kit/

	ML Developers Guide for Cortex-M Processors and Ethos-U NPU
	Contents
	1. Overview
	1.1 Target audience
	1.2 Machine Learning on edge devices
	1.2.1 ML compute requirements

	1.3 Overview of the ML development process
	1.4 Tools and software for ML development
	1.5 Targeting Ethos-U NPUs

	2. ML software development for Arm Cortex-M processors
	2.1 ML software framework options
	2.2 Example software development flow using TFLM
	2.2.1 Create a TensorFlow Lite model file
	2.2.2 Convert the model file to a C/C++ header file
	2.2.3 Identify the inputs and outputs of the NN model
	2.2.4 Integrate the TFLM runtime library
	2.2.5 Integrate the inference functions
	2.2.6 Run the inference and process the results

	2.3 Re-training an ML model
	2.4 Further information

	3. Arm Ethos-U NPU
	3.1 Ethos-U hardware architecture
	3.1.1 Ethos-U performance configuration
	3.1.2 Ethos-U bus manager interfaces
	3.1.3 Differences between Ethos-U55, Ethos-U65 and Ethos-U85
	3.1.4 Power, security, and performance analysis

	3.2 Ethos-U system integration
	3.2.1 Ethos-U integration in a Cortex-M system
	3.2.2 Ethos-U integration with an Ethos-U subsystem
	3.2.3 Ethos-U85 system integration

	3.3 Corstone reference designs
	3.4 ML software support for Ethos-U
	3.4.1 Ethos-U custom operators
	3.4.2 ML software for microcontrollers with Cortex-M and Ethos-U NPU
	3.4.3 ML software for ML subsystems in a larger SoC

	3.5 Software architecture scenarios and use cases
	3.6 Additional software and tools for Ethos-U
	3.7 Porting Ethos-U software to a new hardware platform
	3.7.1 Security configuration for Ethos-U in a TrustZone system
	3.7.2 An example of Ethos-U initialization
	3.7.3 Software integration for the Ethos-U micro NPU in custom designs
	3.7.4 Linker script design

	3.8 Customizing the Ethos-U driver and RTOS integration
	3.8.1 Putting the processor to sleep while the Ethos-U NPU is running
	3.8.2 Adding RTOS support
	3.8.3 Ethos-U driver configuration

	4. Tool support for the Arm Ethos-U NPU
	4.1 Ethos-U Vela compiler
	4.1.1 Requirements
	4.1.2 Installation
	4.1.3 Usage
	4.1.4 Command examples
	4.1.5 Optimization considerations for the Vela compiler
	4.1.5.1 Vela schedulers and implications on memory footprint
	4.1.5.2 PMU counters in the Ethos-U NPU
	4.1.5.3 Using PMU counters to determine memory bandwidth
	4.1.5.4 Memory modes

	4.2 Machine Learning Inference Advisor
	4.2.1 Requirements
	4.2.2 Installation
	4.2.3 Usage
	4.2.4 Command examples

	4.3 Arm Virtual Hardware
	4.4 SDS Framework
	4.4.1 SDS Recorder Interface
	4.4.2 SDS Metadata
	4.4.3 SDS Utilities
	4.4.4 SDS Playback

	5. The Arm ML Zoo
	5.1 Integrating an Arm ML-Zoo model

	6. ML Embedded Evaluation Kit
	6.1 Getting started with the ML Embedded Evaluation Kit
	6.1.1 Supported platforms
	6.1.2 System and software requirements
	6.1.3 Check out the repository
	6.1.4 Compile the default projects
	6.1.5 Additional resources

	6.2 Beyond the basics
	6.2.1 The build process
	6.2.2 Build options for build_default.py
	6.2.3 Software components
	6.2.4 Creating custom applications with the ML Embedded Evaluation Kit

	7. CMSIS-Pack based ML examples
	7.1 Prerequisites
	7.2 Compiling the CMSIS-Pack based ML examples
	7.3 Using TFLM CMSIS-Packs in your own project
	7.3.1 Add the TFLM software components
	7.3.2 Add the ML model to your project
	7.3.3 Use the TFLM API

	8. Profiling and optimizing ML models
	8.1 Ethos-U Vela optimizations
	8.2 Operator mapping and usage
	8.3 MLIA guided optimizations (Experimental)
	8.4 Ethos-U performance profiling

	9. MLOps systems
	9.1 License activation
	9.2 Example projects
	9.3 vcpkg

	10. Resources for Ethos-U
	10.1 Product pages
	10.2 Product document
	10.3 Software and examples
	10.4 Other resources
	10.5 Partner solutions

