ARM® Compiler

Version 5.05

Software Development Guide

ARM

Copyright © 2010-2014 ARM. Al rights reserved.
ARM DUI0471K

ARM® Compiler

ARM® Compiler
Software Development Guide
Copyright © 2010-2014 ARM. All rights reserved.

Release information

Document History

Issue Date Confidentiality Change

A 28 May 2010 Non-Confidential ARM Compiler v4.1 Release

B 30 September 2010 Non-Confidential Update 1 for ARM Compiler v4.1

C 28 January 2011 Non-Confidential Update 2 for ARM Compiler v4.1 Patch 3
D 30 April 2011 Non-Confidential ARM Compiler v5.0 Release

E 29 July 2011 Non-Confidential Update 1 for ARM Compiler v5.0

F 30 September 2011 Non-Confidential ARM Compiler v5.01 Release

G 29 February 2012 Non-Confidential Document update 1 for ARM Compiler v5.01 Release
H 27 July 2012 Non-Confidential ARM Compiler v5.02 Release

I 31 January 2013 Non-Confidential ARM Compiler v5.03 Release

J 27 November 2013 Non-Confidential ARM Compiler v5.04 Release

K 10 September 2014 Non-Confidential ARM Compiler v5.05 Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or

other rights.
This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at

any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2
Non-Confidential

ARM® Compiler

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective

owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php
Copyright © [2010-2014], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product status

The information in this document is Final, that is for a developed product.
Web address

http://'www.arm.com

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com

Contents

ARM® Compiler Software Development Guide

Preface
ADBDOUL TRIS DOOK ... ettt 12
FEEADACK ... 14

Chapter 1 Key Features of ARM Architecture Versions

1.1 About the ARM arcChiteCtUIESoooiiueeiiee e e 1-16
1.2 MUltiDrOCESSING SYSTEIMS ..ot e 1-18
1.3 Considerations when designing software for a multiprocessing system 1-19
1.4 Tightly coOUPIEAd MEMOIYccoiieeeeeeeee e e 1-20
1.5 MemMOry ManNAGEMENLccccueiieie et 1-21
1.6 TRUMBD-2 LECANOIOGY ... ettt a e 1-22
1.7 ARM architeCture Profilesccoueeeeeeeeeiee e ettt 1-23
1.8 ARM QrCRITECIUIE VAT ..ot a e 1-24
1.9 ARM architeCture VOTEc...ooiiiee e e 1-26
1.10 ARM @ICRAIEECIUIE VB ..ot ettt aeaaa e 1-28
1.11 ARM @rchiteCture VB-Mooooueeieee et 1-31
112 ARM @rChIECIUIE VT -A ...t e 1-32
113 ARM @rChiteCtUure V7-Rooo e e 1-34
1.14 ARM architeCture V7-M ... 1-36
1.156 Build options for floating-point arithmetic and linkagec.cccce coveeeeeevciveennnn. 1-38
1.16 Floating-point build options in ARMv6 and earlierc.ccccccee oveiiiieneeaaee 1-39
1.17 Floating-point build options in ARMV7 and [atercccceevoeieesciiiiiciiea 1-40
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4

Non-Confidential

Chapter 2

Embedded Software Development

2.1 About embedded software developmentcccceeeeies ciiieieieeeaeaaaaaaaan 2-43
2.2 Default compilation t00l BERAVIOKc.cccooouiiiiiiiiiie e 2-44
2.3 C lIDrary SIFUCEUIEooeeeie et ettt 2-45
2.4 Default MEMOIY IM@Peeeeeeeeeee ettt et eenee e 2-46
2.5 APPLICAION SEAITUD ...ttt ettt ettt e aaaaaaaaaaas 2-48
2.6 Tailoring the C library to your target hardwareccccvceeivceeesciieiscieci 2-49
2.7 Tailoring the image memory map to your target hardwareccccccoveveenvinenns 2-51
2.8 About the scatter-loading description SYNtaxccccccoovevvees vevieeieiesieeee e 2-52
2.9 ROOE FEQUONS ...t ettt a e e 2-53
2.10 Placing the Stack and REAPccccuiiiuiieiiiiiieciiits e 2-54
2.11 RUN-EtIME MEMOIY MOUEIS ...t e 2-55
2.12 Scatter file with link to bit-band ObJECEScceeeeeeecvieiiees e, 2-57
2.13 Reset and initialiZationcocceiiiiiiiiiiii s e 2-58
2.14 TRE VECIOI LADIE ...t et 2-59
2.15 ROM and RAM r€mMaPPINgccuueeeeeeeeeeeeeeeeeeee e e 2-60
2.16 Local memory setup CONSIAEIatiONScccueeiieiiiiiiaeeee e 2-61
2.17 Stack pointer initialiZationuuuueieieeeeeieie et 2-62
2.18 Hardware initialiZationccueeiiiiiiiiieeciie et et 2-63
2.19 Execution mode cONSIderationsc.ccccucueeiiiiieiics et 2-64
2.20 Target hardware and the MemOry MaPceuiiieciiiiieiiie e 2-65
2.21 EXE@CULE-ONIY MEIMOIY ... e e e 2-66
2.22 Building applications for execute-only MemOrYcccccevviiies covieeeiiieesaieee 2-67
Chapter 3 Mixing C, C++, and Assembly Language
3.1 Instruction intrinsics, inline and embedded assemblerccccccccoeeeeeeeieeieennnnnn.. 3-69
3.2 Access to C global variables from assembly COdeccccovvoeevicievicieeieeeaieene 3-71
3.3 Including system C header files from CH++oooiiiiiiiiiies e 3-72
3.4 Including your own C header files from C++cocoviiiiiiiiiies e 3-73
3.5 Mixed-language Programimingcooeeeeeeueeiriiiiiiies eaeeeeeeeaeeeassssssssinsnnennes 3-74
3.6 Rules for calling between C, C++, and assembly languageccc.ccceeeveeennnee. 3-75
3.7 Rules for calling C++ functions from C and assembly language 3-76
3.8 Information SPECIfiC t0 CH+oiieiieeeeee e 3-77
3.9 Calls to assembly [anguage from Ccc.oeeeeeeeceieeeeeeiis e 3-78
3.10 Calls to C from assembly [anNQUAGEccewueeeeeeeaeiaese e 3-79
3.11 Calls 10 C FrOM CH oot e 3-80
3.12 Calls to assembly language from CH++c..coceviiiiiiieiiiiie e 3-81
313 Calls t0 CHHOM € ... et 3-82
3.14 Calls to C++ from assembly [anqUAQEcceeeiieeeeeiees e 3-83
3.15 Passing a reference between C and C++cccooviiiriiiiiiiieeecee e 3-84
3.16 Calls to C++ from C or assembly 1anguageccoeeiieeass evseeeiieeee e 3-85
Chapter 4 Interworking ARM and Thumb
4.1 ADOUL INEEIWOIKING .ot ete et e e e e e e e e e e e e e e e e e s s s nsnsannenes 4-88
4.2 When {0 USE INTEIWOIKINGcooee i e 4-89
4.3 Assembly language INterWOIKINGcooueucrieeiiiiieiiies e 4-90
4.4 C and CH+ INEEIWOIKINGveeeiiiieeiie et et 4-91
4.5 Pointers to functions in TAUMD Stateccccccvevviiiiiiiiict e 4-92
4.6 Assembly language interworking eXampleccoooeeeiees i 4-93
4.7 INtErWOrKiNG USING VENEEIS ...t et 4-95
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5

Non-Confidential

4.8 C and C++ language iNterWOrKINGccouciiieiiiiiiieaeie e 4-97
4.9 C, C++, and assembly language interworking using VENEers coccocevvcue.n. 4-99
Chapter 5 Handling Processor Exceptions
5.1 ADOUL PrOCESSOr @XCEPLIONS ...ttt e e e e e e e arareaaaaaaaaaeas 5-103
5.2 Exception handling PrOCESSueei e e e 5-104
5.3 Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles 5-105
5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles 5-106
5.5 Processor modes and registers in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
.. 5-107
5.6 Use of System mode for exception handlingccccoccevvoiis vveeesiiicniiees 5-108
5.7 The processor response t0 an €XCEPHONccceeeeeeiiis ciiiiiieeeeaeaeaaaaenns 5-109
5.8 Return from an exception Randlercccceeeeeevieeiees oo 5-110
5.9 RESEE NANAIELS ..o e 5-111
5.10 Data ADOIt NANAIETooeeeeeeee et e 5-112
5.11 Interrupt handlers and levels of external interruptccccceees veeevceveeeeeesnn 5-113
5.12 Reentrant interrupt RANGIEIScoeeeeee et a e e e e e e e e eeeeaeans 5-114
5.13 Single-channel DMA tranSTerooo oo e 5-116
5.14 Dual-channel DMA transferoccceeeee oot et 5-117
5.15 Interrupt PrioritiZAtIONcoeeueeieeeeeeeei e e et e s 5-118
5.16 CONLEXE SWIECH ...t et e e e eneeeanns 5-119
5.17 Determining the SVC to be calledccccoomiiiiiiiiiies e 5-120
5.18 Determining the instruction set state from an SVC handlerc.ccccoceee.... 5-121
5.19 SVC handlers in assembly [aNgUAGEccccueeeeeeesiie ceieeeeeesiiieeeee e 5-122
5.20 SVC handlers in C and assembly 1anguagecccceeeeeeessieeseeeeie e 5-123
5.21 Using SVCSs in SUPEIrVISOr MOAEcccueeeiiaiiiiiieeeee e 5-125
5.22 Calling SVCs from an appliCationc.coccccuiiiieeisie s 5-126
5.23 Calling SVCs dynamically from an applicationcccccccceeeeeeeeessiienaeeeseinn. 5-128
5.24 Prefetch ABOIt NANGAIEKccceeeeeee e e 5-130
5.25 Undefined instruction hanalersccooooioiii oo e 5-131
526 ARMVE-M and ARMVT-M PrOfileSccccuimoieiiiiiieiiie s e 5-132
5.27 Main and ProCeSS STACKSceeieeeeeiee et e 5-133
5.28 Types of exceptions in the microcontroller profilesccccccueveeeeesceeaeeeen. 5-134
5.29 Vector table for ARMv6-M and ARMV7-M profilescccceeeeeevveeeeeeeeeeieeee, 5-135
5.30 Vector Table Offset Register (ARMV7-M ONIY)ccovueemioiiieie e 5-136
5.31 Writing the exception table for ARMv6-M and ARMv7-M profiles 5-137
5.32 The Nested Vectored Interrupt CONtrollerccooeeeeeeeecieeeeeeesiiieeeeeeseiieenn. 5-138
5.33 Handling @n @XCEPHONc..eeiieeieee e e 5-139
5.34 Configuring the System Control Space regiSterscccouvececes ceeeeeeeeiieeeeeene 5-140
5.35 Configuring individual IRQSoooiuiieeie e e 5-141
5.36 SUPEIVISOI CAIIS ...t ettt e et e e 5-142
5.37 SYSIEMI HIMEL ... 5-144
5.38 CONfIQUIING SYSTICK ... et 5-145
Chapter 6 Debug Communications Channel
6.1 About the Debug Communications Channelccccccccvvver wvvveeeeeeesiiieaeeesann, 6-147
6.2 DCC communication between target and host debug toolsccccvveeveenecen.. 6-148
6.3 Interrupt-driven debug commuUNICAtIONScccceveiiiiiscies e 6-149
6.4 ACCESS from TRUMD SEALEcooveeeeieieeeeeee e 6-151
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 6

Non-Confidential

Chapter 7

What is Semihosting?

7.1 WHhat iS SEMINOSHING? ... et 7-154
7.2 The semihoSting INEITACEcccueieiiiieeie et e 7-155
7.3 Can | change the semihosting operation NUMDBErs?cccccocveeieeeesieeesieeen. 7-156
7.4 Debug agent interaCtion SV CSuueeeeeeeeeeeeeeeeeeee e ettt 7-157
7.5 angel_SWireason_EnterSVC (OXT7) ... e 7-158
7.6 angel_SWireason_ReportException (0X18)cccuevoeeeasiiies i 7-159
7.7 SYS_CLOSE (0X02) ..ottt ettt 7-161
7.8 SYS_CLOCK (OXT0) ettt 7-162
7.9 SYS_ELAPSED (0X30) ..ottt 7-163
7.10 SYS_ERRNO (0XT3) oottt ettt 7-164
7.11 SYS_FLEN (OXOC) ..ottt ettt 7-165
7.12 SYS_GET_CMDLINE (0XT5)oeeieieeeei et e 7-166
7.13 SYS_HEAPINFO (0XT6) ..ottt ettt 7-167
7.14 SYS_ISERROR (0X08) ..ottt 7-168
715 SYS_ISTTY (0X09) ..o e 7-169
716 SYS_OPEN (0XO07) oottt et 7-170
717 SYS_READ (0X06) ...ttt et 7-171
7.18 SYS_READC (0XO7) ..ottt 7-172
7.19 SYS_REMOVE (OXOE)oooeeeeee et et 7-173
7.20 SYS_RENAME (OXOF)voeiiieiiieeeeeeet et ettt 7-174
7.21 SYS_SEEK (OXOA) ..ottt ettt 7-175
7.22 SYS_SYSTEM (OXT2) .ottt ettt 7-176
7.23 SYS_TICKFREQ (0X37) oottt ettt 7-177
7.24 SYS_TIME (OXTT) oot 7-178
7.25 SYS_TMPNAM (OXOD)cuoeoiiieiee e et 7-179
7.26 SYS_WRITE (0X05) ...t ettt 7-180
7.27 SYS_WRITEC (0X03) ..ot ettt 7-181
7.28 SYS_WRITEQD (0XO4) ...ttt et 7-182
Appendix A Software Development Guide Document Revisions
A.1 Revisions for Software Development GUIAEcccooveeiieiiiiiiee Appx-A-184
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7

Non-Confidential

List of Figures
ARM?® Compiler Software Development Guide

Figure 2-1 C lIBrary STFUCKUIEcoeeeeeeeeeeeee et e et e e e e a e e e e neeae e 2-45
Figure 2-2 Default MEMOIY IMAPoeeeeeeeeeeeee et 2-46
Figure 2-3 LINKEr PIACEMENTE FUIESoooeeeeeeeeeeeee et e e e e raaae e 2-47
Figure 2-4 Default initialization SEQUENCEccceeueeeeeeeeeeeee ettt esanaea s 2-48
Figure 2-5 Retargeting the C lIDFarYoo et 2-49
Figure 2-6 Scatter-loading deSCrPLON SYNEAXcccueeeieeeeee e 2-52
Figure 2-7 ONE-rEGION MOUEI ...ttt 2-55
Figure 2-8 (o (= (o) I g Lo T = S 2-56
Figure 2-9 INTHANZAtION SEQUENCE ...ttt e e eeee e 2-58
Figure 5-1 HanNdling @n @XCEOPLIONoooiieeeeeeeee e 5-104
Figure 5-2 PPCB IAYOUL ...ttt ettt 5-119
Figure 5-3 ARM SV C INSEUCHON ...ttt e e e et e e e e 5-120
Figure 5-4 TRUMD SV C INSEFUCHION ...ttt e e e e e 5-121
Figure 5-5 Accessing the SuperviSor MOAE STACKcccueeiieiiiiee e 5-124
Figure 6-1 DCC communication between target and host debug toOISccccoevieieicciisiiiieiiiean, 6-148
Figure 7-1 SEMINOSEING OVEIVIEW ...t ettt e et a e e e saseaa s 7-154
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 8

Non-Confidential

List of Tables
ARM® Compiler Software Development Guide

Table 1-1 KEY OALUIES ...ttt e et e e e e et e e e e eeeaeean 1-16
Table 1-2 Useful command-line options for ARMVATooo oo 1-24
Table 1-3 Useful command-line options for ARMVSTEcoooeeieeeeeeeeeeeeeeeee e 1-26
Table 1-4 Useful command-line options fOr ARMVEoeeeeeeeeeieeeeeeeeee ettt 1-28
Table 1-5 ONE-bYte @lIGNIMENT ...ttt e e 1-29
Table 1-6 Useful command-line options for ARMVG-Moomiimeiiieiiiiee e 1-31
Table 1-7 Useful command-line options fOr ARMVT=Aoue oot 1-32
Table 1-8 Useful command-line options fOr ARMVT=Rcueeeeeeeeeeeeeeeeeeee ettt 1-34
Table 1-9 Useful command-line options fOr ARMVT Meeeeeeeieiiieiiieeeeeee e eeeeeeeeeveaeaaaaaaan 1-36
Table 1-10 INEEITUPE INEIINSICS ..ottt ettt e e e e e e e e e e e e e e e e e e aaaas 1-36
Table 2-1 ARMV7-M bit-band regions @nd @li@SESceeeeeiueeiee e et 2-57
Table 3-1 Differences between instruction intrinsics, inline and embedded assembler 3-69
Table 5-1 Exception types in priority order for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles . 5-105
Table 5-2 Exception types in priority order for the microcontroller profilesccccccvvemiiviineeennnin. 5-134
Table 5-3 Registers available for configuring SYSTICKccueeiiuieiiii et 5-144
Table 7-1 Hardware Vector reaSON COUBSoouii et 7-159
Table 7-2 SOffWAIe MEASON COUES ...t e e e e 7-159
Table 7-3 ValUE OF MOAE ...t 7-170
Table A-1 Differences between issue J and iSSUE Kcccouueioieeiiiiiiisiieiieeeeee e Appx-A-184
Table A-2 Differences between issue | and iSSUE Jcccoevcuveeiieeiiiieiieeeeeiiiiee e Appx-A-184
Table A-3 Differences between issue H and iSSUE |cccoeeeeeeieiiiiiiiiiiiiiiiiieaeaee e, Appx-A-184
Table A-4 Differences between issue G and iSSUE Hccccoiieiiiiiiiieieee e Appx-A-185
Table A-5 Differences between issue F and iSSUE Gcccceiiviiieiiiiieeiieeeeeee e Appx-A-185
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 9

Non-Confidential

Table A-6 Differences between issue D and iSSUE Fccccoovvveieciiiniiiiiiiieeie e Appx-A-185
Table A-7 Differences between issue C and iSSUE Dccccueioieeiiciiisiieiiieesie e Appx-A-185
Table A-8 Differences between issue B and iSSUE Ccc.eeeeeeeecueeeeeeeeiiieeeeeeeiiiee e Appx-A-185
Table A-9 Differences between iSsue A and iSSUE Bueeeeeeeeiiieiiiaiaieeeeeeeeeeeeeeeeecccinnans Appx-A-186
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 10

Non-Confidential

Preface

This preface introduces the ARM® Compiler Software Development Guide.

It contains the following:

» About this book on page 12.
» Feedback on page 14.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

11

Preface
About this book

About this book

The ARM Compiler Software Development Guide provides tutorials and examples to develop code for
various ARM architecture-based processors. It also provides information on the Debug Communications
Channel (DCC) and semihosting.

Using this book
This book is organized into the following chapters:

Chapter 1 Key Features of ARM Architecture Versions
Describes the key features for each version of the ARM® architecture and identifies some of the
main points to be aware of when using .

Chapter 2 Embedded Software Development
Describes how to develop embedded applications with , with or without a target system present.

Chapter 3 Mixing C, C++, and Assembly Language
Describes how to write a mixture of C, C++, and assembly language code for the ARM
architecture.

Chapter 4 Interworking ARM and Thumb
Describes how to change between ARM state and Thumb state when writing code for processors
that implement the ARM and Thumb instruction sets.

Chapter 5 Handling Processor Exceptions
Describes how to handle the different types of exception supported by the ARM architecture.

Chapter 6 Debug Communications Channel
Describes how to use the Debug Communications Channel (DCC).

Chapter 7 What is Semihosting?
Describes the semihosting mechanism.

Appendix A Software Development Guide Document Revisions
Describes the technical changes that have been made to the Software Development Guide.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, © <Rd>, <CRn>, <CRm>, <Opcode_2>

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 12
Non-Confidential

Preface
About this book

SMALL CAPITALS
Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 13
Non-Confidential

Feedback

Preface
Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.
* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

* The title.

¢ The number ARM DUI0471K.

* The page number(s) to which your comments refer.
* A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 14
Non-Confidential

mailto:errata@arm.com

Chapter 1

Key Features of ARM Architecture Versions

Describes the key features for each version of the ARM® architecture and identifies some of the main
points to be aware of when using .

It contains the following sections:

1.1 About the ARM architectures on page 1-16.

1.2 Multiprocessing systems on page 1-18.

1.3 Considerations when designing software for a multiprocessing system on page 1-19.
1.4 Tightly coupled memory on page 1-20.

1.5 Memory management on page 1-21.

1.6 Thumb-2 technology on page 1-22.

1.7 ARM architecture profiles on page 1-23.

1.8 ARM architecture v4T on page 1-24.

1.9 ARM architecture v5TE on page 1-26.

1.10 ARM architecture v6 on page 1-28.

1.11 ARM architecture v6-M on page 1-31.

1.12 ARM architecture v7-A on page 1-32.

1.13 ARM architecture v7-R on page 1-34.

1.14 ARM architecture v7-M on page 1-36.

1.15 Build options for floating-point arithmetic and linkage on page 1-38.
1.16 Floating-point build options in ARMv6 and earlier on page 1-39.
1.17 Floating-point build options in ARMv7 and later on page 1-40.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

1.1 About the ARM architectures

The ARM architecture defines the ARM and Thumb® instruction sets, execution models, memory models
and debug models used by ARM processors.

1 Key Features of ARM Architecture Versions

1.1 About the ARM architectures

Variants of the memory models might include virtual memory, caches, Tightly Coupled Memory (TCM),
and memory protection. ARM architecture extensions define additional features such as floating-point
support, Single Instruction Multiple Data (SIMD) instructions, security extensions, Java bytecode
acceleration, and multiprocessing support.

The ARM architecture is constantly evolving to meet the increasing demands of leading edge
applications developers, while retaining the backwards compatibility necessary to protect investment in
software development. For more information, see the Technical Reference Manual for your processor.

The following table shows some key features for some of the ARM processors supported by ARM
Compiler.

Table 1-1 Key features

Processor Architecture Tightly Coupled Memory Thumb-2
Memory Management technology

ARM7TDMI® ARMvV4AT - - -

ARM920T™ ARMvVAT - MMU -

ARMO922T™ ARMvAT - MMU -

ARMO926EJ-S™ ARMVSTE] Yes MMU -

ARMO946E-S™ ARMVSTE Yes MPU -

ARMO966E-S™ ARMvVSTE Yes - -

ARMI1136J-S™/ ARMv6K Yes MMU -

ARMI1136JF-S™

ARMI1156T2-S™/ ARMvV6T2 Yes MPU Yes

ARMI1156T2F-S™

ARMI1176]JZ-S™/ ARMv6Z Yes MMU -

ARMI1176JZF-S™

ARMI11™ MPCore™ ARMv6K - MMU -

Cortex™-MO ARMv6-M - - Yes?

Cortex-MO+ ARMvV6-M - MPU (optional) Yes?

Cortex-M1 ARMv6-M Yes - Yes?

Cortex-M3 ARMvV7-M - MPU (optional) Yes, but without
ARM instruction set

Cortex-M4 ARMvV7E-M - MPU (optional) Yes, but without
ARM instruction set

Cortex-M7 ARMV7E-M Yes MPU (optional) Yes, but without
ARM instruction set

Cortex-AS5 ARMv7-A - MMU Yes

Cortex-A7 ARMvV7-A - MMU Yes

2 ARMv6-M supports a small number of the 32-bit instructions introduced in ARMvV6T2.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

1 Key Features of ARM Architecture Versions

1.1 About the ARM architectures

Table 1-1 Key features (continued)

Processor Architecture Tightly Coupled Memory Thumb-2
Memory Management technology
Cortex-A8 ARMvV7-A - MMU Yes
Cortex-A9 ARMv7-A - MMU Yes
Cortex-Al5 ARMvV7-A - MMU Yes
Cortex-A17 ARMvV7-A - MMU Yes
Cortex-R4, Cortex- ARMvV7-R Yes MPU Yes

R4F, and Cortex-R7

Related concepts

1.4 Tightly coupled memory on page 1-20.

1.5 Memory management on page 1-21.

1.6 Thumb-2 technology on page 1-22.
1.7 ARM architecture profiles on page 1-23.

Related information
ARM Architecture Reference Manual.

Further reading.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

1 Key Features of ARM Architecture Versions
1.2 Multiprocessing systems

1.2 Multiprocessing systems

The ARMv6K architecture introduces the first MPCore processor, supporting up to four CPUs and
associated hardware. Applications have to be specifically designed to run on multiprocessing systems to
optimize performance.

For example, a single threaded application can only be executed by a single CPU at a time, whereas a
multithreaded application can be executed by multiple processors in parallel. An efficient
multiprocessing system consumes less power, produces less heat and is more responsive than a system
with one CPU but is more complex and therefore more difficult to debug.

Related concepts

1.3 Considerations when designing software for a multiprocessing system on page 1-19.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-18
Non-Confidential

1 Key Features of ARM Architecture Versions
1.3 Considerations when designing software for a multiprocessing system

1.3 Considerations when designing software for a multiprocessing system

Consider these recommended guidelines when designing a multiprocessing system.

* Synchronize software execution on processors using LDREX and STREX to create a mutex or
semaphore to protect critical sections and non-shareable resources.

* Manage cache coherency for symmetrical and asymmetrical multiprocessing.

» Execute repetitive tasks in separate threads.

« Split a large task into several threads executing in parallel.

» Set up a primary CPU using the CP15 CPU ID register for initialization tasks.

* Prioritize interrupts.

» Use bit masking for interrupt pre-emption.

* Configure the cycle counts that trigger a timer or watchdog.

Note
These tasks are generally handled by an OS.

Related concepts

1.2 Multiprocessing systems on page 1-18.

Related information

LDREX.
STREX.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-19
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289875835.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289908049.html

1 Key Features of ARM Architecture Versions
1.4 Tightly coupled memory

1.4 Tightly coupled memory

The purpose of Tightly Coupled Memory (TCM) is to provide low-latency memory that the processor can
use without the unpredictability that is a feature of caches.

You can use TCM to hold time-critical routines, such as interrupt handling routines or real-time tasks
where the indeterminacy of a cache is highly undesirable. In addition, you can use it to hold ordinary
variables, data types whose locality properties are not well suited to caching, and critical data structures
such as interrupt stacks.

TCM is used as part of the physical memory map of the system, and does not have to be backed by a
level of external memory with the same physical addresses. In such regions, no external writes occur in
the event of a write to memory locations contained in the TCM.

For more information, see the Technical Reference Manual for your processor.
Related information

ARM Architecture Reference Manual.
Further reading.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-20
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

1 Key Features of ARM Architecture Versions
1.5 Memory management

1.5 Memory management

The ARM memory management options are the Memory Management Unit (MMU) and the Memory
Protection Unit (MPU).

MMU

MPU

The MMU allows fine-grained control of a memory system, which allows an operating system
to provide features such as demand memory paging. Most of the detailed control is provided
through translation tables held in memory. Entries in these tables define the properties for
different regions of memory. These include:

 virtual-to-physical address mapping
* memory access permissions
* memory types.

The MPU provides a considerably simpler alternative to the MMU. This allows both hardware
and software to be simplified in systems that do not require all facilities of the MMU. You can
use the MPU to partition external memory into separate contiguous regions with different sizes
and attributes. You can also control access permissions and memory characteristics for different
regions of memory.

An MPU does not require external memory for translation tables and helps to provide more
predictable performance than an MMU.

For more information, see the Technical Reference Manual for your processor.

Related information
ARM Architecture Reference Manual.
Further reading.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-21
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

1 Key Features of ARM Architecture Versions
1.6 Thumb-2 technology

1.6 Thumb-2 technology

Thumb-2 technology is a major enhancement to the Thumb instruction set. It adds 32-bit instructions that
can be freely intermixed with 16-bit instructions in a program.

Thumb-2 technology is available in the ARMv6T2 and later architectures.

The additional 32-bit encoded Thumb instructions enable Thumb to cover most of the functionality of
the ARM instruction set. The availability of 16-bit and 32-bit instructions enables Thumb-2 technology
to combine the code density of earlier versions of Thumb with the performance of the ARM instruction
set.

An important difference between the Thumb and ARM instruction sets is that most Thumb instructions
are unconditional, whereas most ARM instructions can be conditional. Thumb-2 technology introduces a
conditional execution instruction, IT, that is a logical if-then-else operation that you can apply to
subsequent instructions to make them conditional.

For more information, see the Technical Reference Manual for your processor.

Related information

ARM Architecture Reference Manual.
IT.

Further reading.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-22
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289872225.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

1 Key Features of ARM Architecture Versions
1.7 ARM architecture profiles

1.7 ARM architecture profiles
The ARM architecture defines different architectural profiles.
These are:

Application profile
Application profiles implement a traditional ARM architecture with multiple modes and support
a virtual memory system architecture based on an MMU. These profiles support both ARM and
Thumb instruction sets.

Real-time profile
Real-time profiles implement a traditional ARM architecture with multiple modes and support a
protected memory system architecture based on an MPU.

Microcontroller profile
Microcontroller profiles implement a programmers' model designed for fast interrupt
processing, with hardware stacking of registers and support for writing interrupt handlers in
high-level languages. The processor is designed for integration into an FPGA and is ideal for
use in very low power applications.

Related references
1.11 ARM architecture v6-M on page 1-31.
1.12 ARM architecture v7-A on page 1-32.
1.13 ARM architecture v7-R on page 1-34.
1.14 ARM architecture v7-M on page 1-36.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-23
Non-Confidential

1 Key Features of ARM Architecture Versions
1.8 ARM architecture v4T

1.8 ARM architecture v4T

The ARMvAT variant of the ARM architecture supports 16-bit Thumb instructions and the ARM
instruction set.

The following table shows useful command-line options.

Table 1-2 Useful command-line options for ARMv4T

Command-line option Description

--cpu=4T ARMv4 with 16-bit Thumb instructions.
- -cpu=name Where name is a specific ARM processor. For example ARM7TDMI.
--apcs=qualifier Where qualifier denotes one or more qualifiers for interworking and position independence.

For example --apcs=/interwork.

Key features

When compiling code for ARMvAT, the compiler supports the Thumb instruction set. This provides
greater code density, however:

* Thumb code usually uses more instructions for a given task, making ARM code best for maximizing
performance of time-critical code.

* ARM state and associated ARM instructions are required for exception handling

* ARM instructions are required for coprocessor accesses including cache configuration (on cached
processors) and VFP.

Alignment support

All load and store instructions must specify addresses that are aligned on a natural alignment boundary.
For example:

* LDR and STR addresses must be aligned on a word boundary
* LDRH and STRH addresses must be aligned on a halfword boundary
* LDRB and STRB addresses can be aligned to any boundary.

Accesses to addresses that are not on a natural alignment boundary result in UNPREDICTABLE behavior. To
control this you must inform the compiler, using __packed, when you want to access an unaligned
address so that it can generate safe code.

Note

Unaligned accesses, where permitted, are treated as rotated aligned accesses.

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMVAT supports the following endian modes:

LE

little-endian format
BE-32

legacy big-endian format.

Related information
Overview of the Compiler.

__packed.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-24
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124191020.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124968737.html

1 Key Features of ARM Architecture Versions
1.8 ARM architecture v4T

--apcs=qualifier...qualifier assembler option.
--cpu=name assembler option.

--bigend assembler option.

--littleend assembler option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-25
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html

1 Key Features of ARM Architecture Versions
1.9 ARM architecture v6TE

1.9 ARM architecture v5TE

The ARMvVSTE variant of the ARM architecture provides enhanced arithmetic support for Digital Signal
Processing (DSP) algorithms. It supports both ARM and Thumb instruction sets.

The following table shows useful command-line options.

Table 1-3 Useful command-line options for ARMv5TE

Command-line option Description

--cpu=5TE ARMVvS5 with 16-bit Thumb instructions, interworking, DSP multiply, and double-word
instructions

--cpu=5TEJ] ARMYVS with 16-bit Thumb instructions, interworking, DSP multiply, double-word
instructions, and Jazelle® extensions®

- -cpu=name Where name is a specific ARM processor. For example:

* ARM926EJ-S for ARMvVS with Thumb, Jazelle extensions, physically mapped caches and
MMU.

Key features

When compiling code for ARMvVS5TE, the compiler:

Supports improved interworking between ARM and Thumb, for example BLX.

Performs instruction scheduling for the specified processor. Instructions are re-ordered to minimize
interlocks and improve performance.

Uses multiply and multiply-accumulate instructions that act on 16-bit data items.

Uses instruction intrinsics to generate addition and subtraction instructions that perform saturated
signed arithmetic. Saturated arithmetic produces the maximum positive or negative value instead of
wrapping the result if the calculation overflows the normal integer range.

Uses load (LDRD) and store (STRD) instructions that act on two words of data.

Alignment support

All load and store instructions must specify addresses that are aligned on a natural alignment boundary.
For example:

LDR and STR addresses must be aligned on a word boundary

LDRH and STRH addresses must be aligned on a halfword boundary
LDRD and STRD addresses must be aligned on a doubleword boundary
LDRB and STRB addresses can be aligned to any boundary.

Accesses to addresses that are not on a natural alignment boundary result in UNPREDICTABLE behavior. To
control this you must inform the compiler, using __packed, when you want to access an unaligned
address so that it can generate safe code.

All LDR and STR instructions, except LDRD and STRD, must specify addresses that are word-aligned,
otherwise the instruction generates an abort.

Note

Unaligned accesses, where permitted, are treated as rotated aligned accesses.

b The compiler cannot generate Jazelle bytecodes.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-26
Non-Confidential

1 Key Features of ARM Architecture Versions
1.9 ARM architecture v6TE

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMVSTE supports the following endian modes:

LE

little-endian format
BE-32

legacy big-endian format.

For more information, see the Technical Reference Manual for your processor.

Related information

Compiler storage of data objects by natural byte alignment.
__packed.

--unaligned access, --no_unaligned access compiler options.
--cpu=name assembler option.

--bigend assembler option.

--littleend assembler option.

Further reading.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-27
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124228978.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124968737.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124947629.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

1 Key Features of ARM Architecture Versions
1.10 ARM architecture v6

1.10 ARM architecture v6

ARMYvo6 extends the original ARM instruction set to support multi-processing and adds some extra
memory model features. It supports the ARM and Thumb instruction sets.

The following table shows useful command-line options.

Table 1-4 Useful command-line options for ARMv6

Option Description

--cpu=6 ARMv6 with 16-bit encoded Thumb instructions, interworking, DSP multiply, doubleword instructions,
unaligned and mixed-endian support, Jazelle, and media extensions

--cpu=6Z ARMv6 with security extensions

--cpu=6T2 ARMVG6 with 16-bit encoded Thumb instructions and 32-bit encoded Thumb instructions

--cpu=name Where name is a specific ARM processor. For example:

* ARM11363-S to generate code for the ARM1136J-S with software VFP support.
* ARM1136JF-S to generate code for the ARM1136J-S with hardware VFP.

Key features

In addition to the features of ARMVSTE, when compiling code for ARMv6, the compiler:

Performs instruction scheduling for the specified processor. Instructions are re-ordered to minimize
interlocks and improve performance.

Generates explicit SXTB, SXTH, UXTB, UXTH byte or halfword extend instructions where appropriate.
Generates the endian reversal instructions REV, REV16 and REVSH if it can deduce that a C expression
performs an endian reversal.

Generates additional Thumb instructions available in ARMv6, for example CPS, CPY, REV, REV16,
REVSH, SETEND, SXTB, SXTH, UXTB, UXTH.

Uses some functions that are optimized specifically for ARMv®6, for example, memcpy ().

The compiler does not generate SIMD instructions automatically from ordinary C or C++ code because
these do not map well onto C expressions. You must use assembly language or intrinsics for SIMD code
generation.

Some enhanced instructions are available to improve exception handling:

SRS and RFE instructions to save and restore the Link Register (LR) and the Saved Program Status
Register (SPSR)

CPs simplifies changing state, and modifying the I and F bits in the Current Program Status Register
(CPSR)

architectural support for vectored interrupts with a vectored interrupt controller

low-latency interrupt mode

ARMI1156T2-S can enter exceptions in Thumb state.

Alignment support

By default, the compiler uses ARMv6 unaligned access support to speed up access to packed structures,
by allowing LDR and STR instructions to load from and store to words that are not aligned on natural word
boundaries. Structures remain unpacked unless explicitly qualified with __packed. The following table
shows the effect of one-byte alignment when compiling for ARMv6 and earlier architectures.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-28
Non-Confidential

1 Key Features of ARM Architecture Versions
1.10 ARM architecture v6

Table 1-5 One-byte alignment

__packed struct

int i;

char ch;

short sh;
} foo;

Compiling for pre-ARMv6: Compiling for ARMv6 and later:

MOV R4,RO LDR RO, [R4,#0]
BL _ aeabi_uread4 LDRB R1,[R4,#4]
LDRB R1, [R4,#4] LDRSH R2, [R4,#5]

LDRSB R2, [R4,#5]
LDRB R12, [R4,#6]
ORR R2,R12,R2 LSL#8

Code compiled for ARMv6 only runs correctly if you enable unaligned data access support on your
processor. You can control alignment by using the U and the A bits in the CP15 register c1, or by tying
the UBITINIT input to the processor HIGH.

Code that uses the behavior of pre-ARMv6 unaligned data accesses can be generated by using the
compiler option --no_unaligned_access.

Note

Unaligned data accesses are not available in BE-32 endian mode.

LDRD and STRD must be word-aligned.

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMUv6 supports the following endian modes:

LE
little-endian format
BE-8
big-endian format
BE-32
legacy big-endian format.

Mixed endian systems are also possible by using SETEND and REV instructions.

Compiling for ARMv6 endian mode BE-8
By default, the compiler generates BE-8 big-endian code when compiling for ARMv6 and big-
endian. The compiler sets a flag in the code that labels the code as BE-8. Therefore, to enable
BE-8 support in the ARM processor you normally have to set the E-bit in the CPSR.

It is possible to link legacy code with ARMv6 code for running on an ARMv6 based processor.
However, in this case the linker switches the byte order of the legacy code into BE-8 mode. The
resulting image is in BE-8 mode.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-29
Non-Confidential

1 Key Features of ARM Architecture Versions
1.10 ARM architecture v6

Compiling for ARMvé6 legacy endian mode BE-32
To use the pre-ARMV6 or legacy BE-32 mode you must tie the BIGENDINIT input into the
processor HIGH, or set the B bit of CP15 register c1.

Note

You must link BE-32 compatible code using the linker option --be32. Otherwise, the ARMvo6
attributes causes a BE-8 image to be produced.

Related information
--cpu=name assembler option.
--bigend assembler option.
--littleend assembler option.
--littleend compiler option.
--unaligned_access, --no_unaligned_access compiler options.
--be8 linker option.
--be32 linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-30
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124930765.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124947629.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075413615.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075414240.html

1 Key Features of ARM Architecture Versions
1.11 ARM architecture v6-M

1.1 ARM architecture v6-M

ARMv6-M is a variant of the ARMv6 architecture targeted at the microcontroller profile. It supports the
Thumb instruction set only.

The following table shows useful command-line options.

Table 1-6 Useful command-line options for ARMv6-M

Command-line option Description

--cpu=6-M ARMvV6 microcontroller profile with Thumb only (no ARM instructions), and processor state
instructions
--cpu=6S-M ARMYV6 microcontroller profile with Thumb only (no ARM instructions), plus processor state

instructions and OS extensions

- -cpu=name Where name is a specific ARM processor. For example:

* Cortex-M1 for ARMv6 with Thumb only, plus processor state instructions, OS extensions
and BE-8 and LE data endianness support.

Key features
Key features for ARMv6-M:

* The compiler can generate instructions available on this architecture.

Alignment support

By default, the compiler uses ARMv6 unaligned access support to speed up access to packed structures,
by allowing LDR and STR instructions to load from and store to words that are not aligned on natural word
boundaries.

Unaligned data accesses are converted into two or three aligned accesses, depending on the size and
alignment of the unaligned access. This stalls any subsequent accesses until the unaligned access has
completed. You can control alignment by using the DCode and System bus interfaces.

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMVv6-M supports the following endian modes:

LE

little-endian format
BE-8

big-endian format.

Related information
--unaligned_access, --no_unaligned_access compiler options.
--cpu=name assembler option.
--bigend assembler option.
--littleend assembler option.
ARMv6-M Architecture Reference Manual.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-31
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124947629.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419-/index.html

1 Key Features of ARM Architecture Versions
1.12 ARM architecture v7-A

1.12 ARM architecture v7-A
ARMv7-A is a variant of the ARMv7 architecture targeted at the application profile.

The following table shows useful command-line options.

Table 1-7 Useful command-line options for ARMv7-A

Command-line option Description

--cpu=7 ARMyV7 with Thumb instructions only (no ARM instructions), and without hardware divide®

--cpu=7-A ARMV7 application profile supporting virtual MMU-based memory systems, with ARM,
Thumb, and ThumbEE instructions, NEON™ support, and 32-bit SIMD support

- -cpu=name Where name is a specific ARM processor. For example:

e Cortex-A8 for ARMv7 with ARM and Thumb instructions, hardware VFP, NEON
support, and 32-bit SIMD support.

Key features

Key features for ARMv7-A:

* Supports the advanced SIMD extensions.

* Supports the Thumb Execution Environment (ThumbEE).
Alignment support

The data alignment behavior supported by the ARM architecture is significantly different between
ARMv4 and ARMv7. An ARMv7 implementation must support unaligned data accesses. You can
control the alignment requirements of load and store instructions by using the A bit in the CP15 register
cl.

Note
ARMYv7 architectures do not support pre-ARMv6 alignment.

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMv7-A supports the following endian modes:

LE
little-endian format
BE-8
big-endian format used by ARMv6 and ARMv7.

ARMYv7 does not support the legacy BE-32 mode. If you have legacy code for ARMv7 processors that
contain instructions with a big-endian byte order, then you must perform byte order reversal.

Related concepts
1.7 ARM architecture profiles on page 1-23.

Related information
Compiler storage of data objects by natural byte alignment.
--unaligned_access, --no_unaligned_access compiler options.

¢ ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A, ARMv7-R, and ARMv7-M
architectures.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-32
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124228978.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124947629.html

1 Key Features of ARM Architecture Versions
1.12 ARM architecture v7-A

--cpu=name assembler option.

--bigend assembler option.

--littleend assembler option.

ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-33
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html
http://infocenter/help/topic/com.arm.doc.ddi0406-/index.html

1 Key Features of ARM Architecture Versions
1.13 ARM architecture v7-R

113 ARM architecture v7-R

ARMv7-R is a variant of the ARMv7 architecture targeted at the real-time profile. The ARMv7-R
architecture supports the ARM and Thumb instruction sets.

The following table shows useful command-line options.

Table 1-8 Useful command-line options for ARMv7-R

Command-line option Description

--cpu=7 ARMv7 with Thumb instructions only (no ARM instructions) but without hardware divide?

--cpu=7-R ARMVT7 real-time profile with ARM instructions, 16-bit encoded Thumb instructions, 32-bit
encoded Thumb instructions, VFP, 32-bit SIMD support, and hardware divide

- -cpu=name Where name is a specific ARM processor. For example:

e Cortex-R4F for ARMv7 with ARM and Thumb instructions, hardware VFP, hardware
divide, and SIMD support.

Key features
Key features for ARMv7-R:

* Supports the SDIV and UDIV instructions.

Alignment support

The data alignment behavior supported by the ARM architecture has changed significantly between
ARMv4 and ARMv7. An ARMv7 implementation provides hardware support for some unaligned data
accesses using LDR, STR, LDRH, and STRH. Other data accesses must maintain alignment using LDM, STM,
LDRD, STRD, LDC, STC, LDREX, STREX, and SWP.

You can control the alignment requirements of load and store instructions by using the A bit in the CP15
register cl.

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMv7-R supports the following endian modes:

LE

little-endian format
BE-8

big-endian format.

ARMV7 does not support the legacy BE-32 mode. If you have legacy code for ARM v7 processors that
contain instructions with a big-endian byte order, then you must perform byte order reversal.

ARMv7-R supports optional byte order reversal hardware as a static option from reset.

Related concepts
1.7 ARM architecture profiles on page 1-23.

Related information
Compiler storage of data objects by natural byte alignment.
--unaligned_access, --no_unaligned_access compiler options.

4 ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A, ARMv7-R, and ARMv7-M
architectures.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-34
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124228978.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124947629.html

1 Key Features of ARM Architecture Versions
1.13 ARM architecture v7-R

--cpu=name assembler option.

--bigend assembler option.

--littleend assembler option.

ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-35
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html
http://infocenter/help/topic/com.arm.doc.ddi0406-/index.html

1 Key Features of ARM Architecture Versions
1.14 ARM architecture v7-M

114 ARM architecture v7-M

ARMv7-M is a variant of the ARMv7 architecture targeted at the microcontroller profile. It implements a
variant of the ARMv7 protected memory system architecture and supports the Thumb instruction set
only.

The following table shows useful command-line options.

Table 1-9 Useful command-line options for ARMv7-M

Command-line option Description

--cpu=7 ARMvV7 with Thumb instructions only and without hardware divide®
--cpu=7-M ARMYV7 microcontroller profile with Thumb instructions only and hardware divide
--cpu=name Where name is a specific ARM processor. For example:

* Cortex-M3 for ARMv7 with Thumb instructions only, hardware divide, ARMV6 style
BE-8 and LE data endianness support, and unaligned accesses.

Key features
Key features for ARMv7-M:

» Supports the SDIV and UDIV instructions.

* Supports bit-banding to enable atomic accesses to single bit values.

» Uses interrupt intrinsics to generate CPSIE or CPSID instructions that change the current pre-emption
priority (see the following table). For example, when you use a __disable_irq intrinsic, the
compiler generates a CPSID i instruction, which sets PRIMASK to 1. This raises the execution priority
to @ and prevents exceptions with a configurable priority from entering. The following table shows
interrupt intrinsics.

Table 1-10 Interrupt intrinsics

Intrinsic Opcode PRIMASK FAULTMASK
__enable_irq CPSIE i 0

__disable_irq CPSID i 1

__enable_fiq CPSIE f 0
__disable_fiq CPSID f 1

Alignment support

The data alignment behavior supported by the ARM architecture has changed significantly between
ARMv4 and ARMv7. An ARMv7 implementation must support unaligned data accesses. You can
control whether alignment checking is enabled or disabled by setting or unsetting the UNALIGN_TRP bit,
bit 3, in the Configuration and Control Register (CCR).

Note
ARMV7 architectures do not support pre-ARMv6 alignment.

¢ ARM v7 is not a recognized ARM architecture. Rather, it denotes the features that are common to all of the ARMv7-A, ARMv7-R, and ARMv7-M
architectures.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-36
Non-Confidential

1 Key Features of ARM Architecture Versions
1.14 ARM architecture v7-M

Endian support

You can produce either little-endian or big-endian code using the compiler command-line options
--littleend and --bigend respectively.

ARMV7-M supports the following endian modes:

LE

little-endian format
BE-8

big-endian format.

The ARMv7 architecture does not support the legacy BE-32 mode. If you have legacy code for ARM v7
processors that contain instructions with a big-endian byte order, then you must perform byte order
reversal.

Related concepts
1.7 ARM architecture profiles on page 1-23.

Related information
--cpu=name assembler option.
--bigend assembler option.
--littleend assembler option.
--bitband compiler option.
ARMv7-M Architecture Reference Manual.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 1-37
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822343.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289819854.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289833591.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903074.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403-/index.html

1 Key Features of ARM Architecture Versions
1.15 Build options for floating-point arithmetic and linkage

1.15 Build options for floating-point arithmetic and linkage

To build code that carries out floating-point operations, you need to specify some floating-point build
options.

You can compile your code to use either hardware or software floating-point arithmetic. To choose
hardware floating-point arithmetic, specify a floating-point architecture, either explicitly, using the - -
fpu option, or implicitly in your choice of - -cpu option.

When using hardware floating-point arithmetic, you also need to choose whether to use hardware or
software floating-point procedure call linkage.

Hardware floating-point linkage means that floating-point arguments are passed to and returned from
functions in floating-point registers. This is the most efficient choice.

Software floating-point linkage means that floating-point arguments are passed to and returned from
functions in ARM integer registers. On architectures that support hardware floating-point arithmetic, this
adds an overhead compared to hardware linkage because values must be transferred between integer and
floating-point registers, which requires additional instructions. On architectures that do not support
hardware floating-point arithmetic, software linkage is the only option.

The ARM software floating-point library, fplib, provides a set of floating-point functions that are built
with software linkage. The variants of fplib divide into two main categories. The software variants use
integer registers to perform floating-point arithmetic. The hardware variants transfer floating-point
parameters from integer registers into floating-point registers then use a hardware floating-point
instruction before moving the result back into an integer register. They give improved performance and
reduced code size compared to the software variants.

It is important to ensure that the same linkage type is used consistently throughout your program. For
example, if your code links with generic libraries, for example fplib, or legacy code that was built with
software floating-point linkage, then your code also needs to be built with software linkage. This ensures
that floating-point values can be passed to and returned from these libraries. You can specify the linkage
type by using the --fpu option, but ARM recommends you use the --apcs option.

Related references

1.16 Floating-point build options in ARMv6 and earlier on page 1-39.
1.17 Floating-point build options in ARMv7 and later on page 1-40.

Related information

--fpu=name.
--apcs=qualifier...qualifier.

About floating-point support.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-38
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938940990.html

1 Key Features of ARM Architecture Versions
1.16 Floating-point build options in ARMv6 and earlier

1.16 Floating-point build options in ARMv6 and earlier

In ARMv6 and earlier, the Thumb instruction set does not include VFP instructions and therefore cannot
access VFP registers. When choosing the floating-point linkage option you therefore need to consider
whether your code contains Thumb instructions.

ARM only
Choose options such as --fpu vfpv2 --apcs=/hardfp to have the compiler generate ARM
code only for functions containing floating-point operations.

When you select the option --fpu vfpv2, the compiler generates ARM code for any function
containing floating-point operations, regardless of whether the compiler is compiling for ARM
or Thumb. This is because the Thumb instruction set in ARMv6 and earlier does not contain
VFP instructions and therefore cannot access VFP registers.

Specifying hardware linkage using - -apcs=/hardfp avoids the overhead of software linkage.

Mixed ARM/Thumb
Choose options such as --fpu vfpv2 --apcs=/softfp to have the compiler generate mixed
ARM/Thumb code.

When you select the option --apcs=/softfp, all functions are compiled using software
floating-point linkage.

When you compile for Thumb, selecting these options enables the use of ARM Compiler
libraries that use VFP registers, using software linkage.

The option that provides the best code size or performance depends on the code being compiled. When
compiling for ARM, experiment with the options - -apcs=/softfp and --apcs=/hardfp to determine
which provides the required code size and performance attributes.

If you have a mix of ARM and Thumb then you might want to experiment with the - -fpu option to get
the best results.

For more information, see the Technical Reference Manual for your processor.

Related information

ARM Architecture Reference Manual.
--fpu=name.
--apcs=qualifier...qualifier.

Further reading.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-39
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

1 Key Features of ARM Architecture Versions
1.17 Floating-point build options in ARMv7 and later

117 Floating-point build options in ARMv7 and later

In ARMvV7 and later, you can choose the floating-point build options independently of whether the code
you are building is ARM only, Thumb only, or mixed, because floating point instructions are available in
both the ARM and Thumb instruction sets.

To select hardware floating-point arithmetic with hardware linkage, use an option such as --fpu vfpv3
--apcs=/hardfp or --fpu vfpv4d --apcs=/hardfp.

To select hardware floating-point arithmetic with software linkage, use an option such as --fpu vfpv3
--apcs=/softfp or --fpu vfpv4d --apcs=/softfp.
Note

When specifying floating-point build options for M profile processors, the argument names start with FP
instead of VFP, for example - -fpu=FPv4-SP.

For more information, see the Technical Reference Manual for your processor.

Related information

ARM Architecture Reference Manual.
--fpu=name.
--apcs=qualifier...qualifier.

Further reading.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 1-40
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124920656.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

Chapter 2
Embedded Software Development

Describes how to develop embedded applications with , with or without a target system present.

It contains the following sections:

2.1 About embedded software development on page 2-43.
2.2 Default compilation tool behavior on page 2-44.

2.3 C library structure on page 2-45.

2.4 Default memory map on page 2-46.

2.5 Application startup on page 2-48.

2.6 Tailoring the C library to your target hardware on page 2-49.
2.7 Tailoring the image memory map to your target hardware on page 2-51.

2.8 About the scatter-loading description syntax on page 2-52.
2.9 Root regions on page 2-53.

2.10 Placing the stack and heap on page 2-54.

2.11 Run-time memory models on page 2-55.

2.12 Scatter file with link to bit-band objects on page 2-57.
2.13 Reset and initialization on page 2-58.

2.14 The vector table on page 2-59.

2.15 ROM and RAM remapping on page 2-60.

2.16 Local memory setup considerations on page 2-61.
2.17 Stack pointer initialization on page 2-62.

2.18 Hardware initialization on page 2-63.

2.19 Execution mode considerations on page 2-64.

2.20 Target hardware and the memory map on page 2-65.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

2-41

2 Embedded Software Development

o 2.2] Execute-only memory on page 2-66.
* 2.22 Building applications for execute-only memory on page 2-67.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-42
Non-Confidential

2 Embedded Software Development
2.1 About embedded software development

21 About embedded software development

When developing embedded applications, the resources available in the development environment
normally differ from those on the target hardware.

It is important to consider the process involved in moving an embedded application from the
development or debugging environment to a system that runs standalone on target hardware.

When developing embedded software, you must consider the following:

* Understand the default compilation tool behavior and the target environment so that you appreciate
the steps necessary to move from a debug or development build to a fully standalone production
version of the application.

* Some C library functionality executes by using debug environment resources. If used, you must re-
implement this functionality to make use of target hardware.

* The toolchain has no inherent knowledge of the memory map of any given target. You must tailor the
image memory map to the memory layout of the target hardware.

* An embedded application must perform some initialization, such as stack and heap initialization,
before the main application can be run. A complete initialization sequence requires code that you
implement in addition to the ARM Compiler C library initialization routines.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-43
Non-Confidential

2 Embedded Software Development
2.2 Default compilation tool behavior

2.2 Default compilation tool behavior

It is useful to be aware of the default behavior of the compilation tools if you do not yet know the full
technical specifications of the target hardware.

For example, when you start work on software for an embedded application, you might not know the
details of target peripheral devices, the memory map, or even the processor itself.

To enable you to proceed with software development before such details are known, the compilation
tools have a default behavior that enables you to start building and debugging application code
immediately. It is useful to be aware of this default behavior, so that you appreciate the steps necessary
to move from a default build to a full standalone application.

In the ARM C library, support for some ISO C functionality, for example program I/O, is provided by
the host debugging environment. The mechanism that provides this functionality is known as
semihosting. When semihosting is executed, the debug agent suspends program execution. The debug
agent then uses the debug capabilities of the host (for example printf output to debugger console) to
service the semihosting operation before code execution is resumed on the target. The task performed by
the host is transparent to the program running on the target.

Related references

7 What is Semihosting? on page 7-152.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-44
Non-Confidential

2.3

C library structure

2 Embedded Software Development
2.3 C library structure

Conceptually, the C library can be divided into functions that are part of the ISO C standard, for example
printf(), and functions that provide support to the ISO C standard.

For example, the following figure shows the C library implementing the function printf() by writing to
the debugger console window. This implementation is provided by calling _sys_write(), a support
function that executes a semihosting call, resulting in the default behavior using the debugger instead of

target peripherals.
Functions called by
ISOC your application,
for example, printf()
. A A A A
L : : : :
C Library ¥ v v v
stack and Device driver level.
input/ error Use semihosting,
ouF’:put handling hetap other | for example, 9
Setup _sys_write()
S S S
v v v v
Debug _ _ Implemented by
Agent Semihosting Support the debugging
environment

Related information

The ARM C and C++ libraries.
The C and C++ library functions.

Figure 2-1 C library structure

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

2-45

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938908603.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1359122846404.html

2 Embedded Software Development
2.4 Default memory map

24 Default memory map

In an image where you have not described the memory map, the linker places code and data according to
a default memory map.

From
Semihosting
STACK call
HEAP Calculated
by the linker
VA
RW
RO
0x8000

Figure 2-2 Default memory map

Note

The processors based on ARMv6-M and ARMv7-M architectures have fixed memory maps. This makes
porting software easier between different systems based on these processors.

The default memory map is described as follows:

* The image is linked to load and run at address 0x8000. All Read Only (RO) sections are placed first,
followed by Read-Write (RW) sections, then Zero Initialized (Z1) sections.

* The heap follows directly on from the top of ZI, so the exact location is decided at link time.

» The stack base location is provided by a semihosting operation during application startup. The value
returned by this semihosting operation depends on the debug environment.

The linker observes a set of rules to decide where in memory code and data are located:

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-46
Non-Confidential

ZI

RW " pata

RO CODE

2 Embedded Software Development
2.4 Default memory map

/| section A
/7 |from file2.0

Section A

{ from file1.o

Figure 2-3 Linker placement rules

Generally, the linker sorts the input sections by attribute, by name, and then by position in the input list.

To fully control the placement of code and data you must use the scatter-loading mechanism.

Related concepts

2.6 Tailoring the C library to your target hardware on page 2-49.

Related information
The image structure.
Section placement with the linker.
About scatter-loading.
Scatter file syntax.
Cortex-M1 Technical Reference Manual.
Cortex-M3 Technical Reference Manual.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

2-47

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065899168.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065910731.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065969526.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075650322.html
http://infocenter/help/topic/com.arm.doc.ddi0413-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337-/index.html

2 Embedded Software Development
2.5 Application startup

2.5 Application startup

In most embedded systems, an initialization sequence executes to set up the system before the main task
is executed.

The following figure shows the default initialization sequence.

C Library User Code

Image .
g€ __main

entry point = copy code and data

= copy or decompress RW

data main()
* Initialize ZI data to » = causes the linker to link
zeros in library initialization
code
v
_ rt_entry

= set up application stack
and heap

= initialize library functions

= call top-level
constructors (C++)

A

= Exit from application

Figure 2-4 Default initialization sequence

__main is responsible for setting up the memory and __rt_entry is responsible for setting up the run-
time environment.

__main performs code and data copying, decompression, and zero initialization of the ZI data. It then
branches to __rt_entry to set up the stack and heap, initialize the library functions and static data, and
call any top level C++ constructors. __rt_entry then branches to main(), the entry to your application.
When the main application has finished executing, _ rt_entry shuts down the library, then hands
control back to the debugger.

The function label main() has a special significance. The presence of a main() function forces the linker
to link in the initialization code in __main and __rt_entry. Without a function labeled main() the
initialization sequence is not linked in, and as a result, some standard C library functionality is not
supported.

Related information

--startup=symbol, --no_startup linker options.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-48
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075583122.html

2 Embedded Software Development
2.6 Tailoring the C library to your target hardware

2.6 Tailoring the C library to your target hardware

You can provide your own implementations of C library functions to override the default behavior.

By default, the C library uses semihosting to provide device driver level functionality, enabling a host
computer to act as an input and an output device. This is useful because development hardware often
does not have all the input and output facilities of the final system.

You can provide your own implementation of C library functions to make use of target hardware. These
are automatically linked in to your image in favor of the C library implementations. The following figure
shows this process, known as retargeting the C library.

ISO C ISO C

C Library ¢ ¢ gser
Retarget
Input/ Input/
Output Output
Debug | Semihosting Target
Agent Support Hardware

Figure 2-5 Retargeting the C library

For example, you might have a peripheral I/O device such as an LCD screen, and you might want to
override the library implementation of fputc(), that writes to the debugger console, with one that
outputs to the LCD. Because this implementation of fputc() is linked in to the final image, the entire
printf() family of functions prints out to the LCD.

Example implementation of fputc()

In this example implementation of fputc(), the function redirects the input character parameter of
fputc() to a serial output function sendchar () that is assumed to be implemented in a separate source
file. In this way, fputc() acts as an abstraction layer between target dependent output and the C library
standard output functions.

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
/* e.g. write a character to an LCD screen */
char tempch = ch;
sendchar (&tempch);
return ch;

}

In a standalone application, you are unlikely to support semihosting operations. Therefore, you must
remove all calls to semihosting functions or re-implement them with non semihosting functions.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-49
Non-Confidential

2 Embedded Software Development
2.6 Tailoring the C library to your target hardware

Related information
Using the libraries in a nonsemihosting environment.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-50
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938917495.html

2 Embedded Software Development
2.7 Tailoring the image memory map to your target hardware

2.7 Tailoring the image memory map to your target hardware

You can use a scatter file to define a memory map, giving you control over the placement of data and
code in memory.

In your final embedded system, without semihosting functionality, you are unlikely to use the default
memory map. Your target hardware usually has several memory devices located at different address
ranges. To make the best use of these devices, you must have separate views of memory at load and run-
time.

Scatter-loading enables you to describe the load and run-time memory locations of code and data in a
textual description file known as a scatter file. This file is passed to the linker on the command line using
the --scatter option. For example:

armlink --scatter scatter.scat filel.o file2.o

Scatter-loading defines two types of memory regions:

* Load regions containing application code and data at reset and load-time.

» Execution regions containing code and data when the application is executing. One or more execution
regions are created from each load region during application startup.

A single code or data section can only be placed in a single execution region. It cannot be split.

During startup, the C library initialization code in __main carries out the necessary copying of code/data
and zeroing of data to move from the image load view to the execute view.

Note

The overall layout of the memory maps of devices based around the ARMv6-M and ARMv7-M
architectures are fixed. This makes it easier to port software between different systems based on these
architectures.

Related concepts

2.12 Scatter file with link to bit-band objects on page 2-57.

Related information

Information about scatter files.
--scatter=filename linker option.
ARMv7-M Architecture Reference Manual.
ARMv6-M Architecture Reference Manual.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-51
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065968963.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075565889.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419-/index.html

2 Embedded Software Development
2.8 About the scatter-loading description syntax

2.8 About the scatter-loading description syntax

In a scatter file, each region is defined by a header tag that contains, as a minimum, a name for the region
and a start address. Optionally, you can add a maximum length and various attributes.

The scatter-loading description syntax shown in the following figure reflects the functionality provided
by scatter-loading:

name of region start address

N/

MY_REGION 0x0000 0x2000
{

contents of region

optional length
parameter

Figure 2-6 Scatter-loading description syntax

The contents of the region depend on the type of region:
* Load regions must contain at least one execution region. In practice, there are usually several
execution regions for each load region.

« Execution regions must contain at least one code or data section, unless a region is declared with the
EMPTY attribute. Non-EMPTY regions usually contain object or library code. You can use the wildcard
(*) syntax to group all sections of a given attribute not specified elsewhere in the scatter file.

Related concepts
2.12 Scatter file with link to bit-band objects on page 2-57.

Related information
Information about scatter files.

Scatter-loading images with a simple memory map.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-52
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065968963.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065973150.html

2 Embedded Software Development
2.9 Root regions

29 Root regions

A root region is an execution region with an execution address that is the same as its load address. A
scatter file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for creating execution
regions cannot be copied to another location. As a result, the following sections must be included in a
root region:

* _ _main.oand _ scatter*.o containing the code that copies code and data
e _ dc*.o that performs decompression
* Region$$Table section containing the addresses of the code and data to be copied or decompressed.

Because these sections are defined as read-only, they are grouped by the * (+R0) wildcard syntax. As a
result, if * (+R0O) is specified in a non-root region, these sections must be explicitly declared in a root
region using InRoot$$Sections.

Related information

About placing ARM C and C++ library code.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-53
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362066004603.html

2 Embedded Software Development
2.10 Placing the stack and heap

2.10 Placing the stack and heap

The scatter-loading mechanism provides a method for specifying the placement of the stack and heap in
your image.

The application stack and heap are set up during C library initialization. You can tailor stack and heap
placement by using the specially named ARM_LIB_HEAP, ARM_LIB_STACK, or ARM_LIB_STACKHEAP
execution regions. Alternatively you can re-implement the __user_setup_stackheap() function if you
are not using a scatter file.

Related concepts
2.11 Run-time memory models on page 2-55.

Related information
Tailoring the C library to a new execution environment.
Specifying stack and heap using the scatter file.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-54
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938921910.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065977713.html

2 Embedded Software Development
2.11 Run-time memory models

211 Run-time memory models

ARM Compiler toolchain provides one- and two-region run-time memory models.

One-region model

The application stack and heap grow towards each other in the same region of memory, see the following
figure. In this run-time memory model, the heap is checked against the value of the stack pointer when
new heap space is allocated, for example, when malloc() is called.

Stack Base 0x40000

STACK

HEAP
0x20000

Heap Base

Figure 2-7 One-region model

One-region model routine
LOAD_FLASH ...
{

ARM_LTB_STACKHEAP @x20008 EMPTY 0x20000 ; Heap and stack growing towards
{1} ; each other in the same region

Two-region model

The stack and heap are placed in separate regions of memory, see the following figure. For example, you
might have a small block of fast RAM that you want to reserve for stack use only. For a two-region
model you must import __use_two_region_memory.

In this run-time memory model, the heap is checked against the heap limit when new heap space is
allocated.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-55
Non-Confidential

Heap
Limit

Heap
Base

Stack
Base

Two-region model routine

LOAD_FLASH ...

2 Embedded Software Development
2.11 Run-time memory models

0x28080000
HEAP

0x28000000
STACK 0x40000

Figure 2-8 Two-region model

ARM_LTB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down

}
ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up

{1
,

In both run-time memory models, the stack grows unchecked.

Related information

Stack pointer initialization and heap bounds.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

2-56

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938929242.html

2 Embedded Software Development
2.12 Scatter file with link to bit-band objects

212 Scatter file with link to bit-band objects

In devices with the ARMv7-M architecture, the SRAM and Peripheral regions each have a bit-band
feature.

You can access each bit in the bit-band region individually at a different address, called the bit-band
alias. For example, to access bit[13] of the word at ©x20000001, you can use the address 0x22000054.

The following table shows the bit-band regions and aliases within the SRAM and Peripheral memory
regions.

Table 2-1 ARMv7-M bit-band regions and aliases

Memory region Description Address range

SRAM Bit-band region 0x20000000-0x200FFFFF
Bit-band alias 0x22000000-0x23FFFFFF
Peripheral Bit-band region 0x40000000-0x400FFFFF

Bit-band alias 0x42000000-0x43FFFFFF

The following is an example scatter file that links bit-band objects.

FLASH_LOAD ©x20000000
RW 0x20000000 ; RW data at the start of bit band region
* (+RW-DATA)
RO +0@ FIXED ; Followed by the RO Data
* (+RO-DATA)
gODEDATA +0 ; Followed by everything else

* (+RO-CODE)
* (+2I) ; ZI follows straight after

ARM_LIB_HEAP +0 EMPTY 0x10000 ; heap starts after that
)
ARM_LIB_STACK ©x20100000 EMPTY -0x10000 ; stack starts at the
; top of bit band region
{
X
}

Related concepts
2.7 Tailoring the image memory map to your target hardware on page 2-51.

2.8 About the scatter-loading description syntax on page 2-52.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-57
Non-Confidential

2 Embedded Software Development
2.13 Reset and initialization

213 Reset and initialization

The entry point to the C library initialization routine is __main. However, an embedded application on
your target hardware performs some system-level initialization at startup.

Embedded system initialization sequence

The following figure shows a possible initialization sequence for an embedded system based on an ARM

architecture:
C Library User Code
Image
) < 1 reset handler ° Entry
—main » initialize stack pointers Point
« copy code and data = configure MMU/MPU
. copy/decompress RW = setup cache/enable TCM
data
= initialize ZI data to zeros
3 __user_setup_stackheap()
1 ® » setup application stack
y 2 and heap
__rt_entry
= initialize library functions - $Sub$$main()
= call top-level 4 = enable caches and
constructors (C++) interrupts
» Exit from application _ 5
A main() |
6 = causes the linker to link
in library initialization
code

Figure 2-9 Initialization sequence

If you use a scatter file to tailor stack and heap placement, the linker includes a version of the library
heap and stack setup code using the linker defined symbols, ARM_LIB_*, for these region names.
Alternatively you can create your own implementation.

The reset handler is normally a short module coded in assembler that executes immediately on system
startup. As a minimum, your reset handler initializes stack pointers for the modes that your application is
running in. For processors with local memory systems, such as caches, TCMs, MMUs, and MPUs, some
configuration must be done at this stage in the initialization process. After executing, the reset handler
typically branches to __main to begin the C library initialization sequence.

There are some components of system initialization, for example, the enabling of interrupts, that are
generally performed after the C library initialization code has finished executing. The block of code
labeled $Sub$$main() performs these tasks immediately before the main application begins executing.

Related information
About using $Super$$ and $Sub3$ to patch symbol definitions.
Specifying stack and heap using the scatter file.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-58
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065967698.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065977713.html

214 The vector table

2 Embedded Software Development
2.14 The vector table

All ARM systems have a vector table. It does not form part of the initialization sequence, but it must be
present for an exception to be serviced.

It must be placed at a specific address, usually ©x0. To do this you can use the scatter-loading +FIRST
directive, as shown in the following example.

Placing the vector table at a specific address

ROM_LOAD 0x0000 0x4000{
ROM_EXEC 0x0000 0x4000 3
{
vectors.o (Vect, +FIRST)
* (InRoot$$Sections)

Ceve e e

}
RAM 0x10000 ©x8000
* (+RO, +RW, +ZI) ;

}

root region

Vector table

All library sections that must be in a
root region, for example, _ main.o,
__scatter*.o, _ dc*.o, and * Region$$Table

all other sections

The vector table for the microcontroller profiles is very different to most ARM architectures.

Related concepts

5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 5-106.
5.29 Vector table for ARMv6-M and ARMv7-M profiles on page 5-135.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-59

Non-Confidential

2 Embedded Software Development
2.15 ROM and RAM remapping

215 ROM and RAM remapping

You must consider what sort of memory your system has at address 0x®, the address of the first
instruction executed.

Note
This information does not apply to ARMv6-M and ARMv7-M profiles.

Note

This information assumes that an ARM processor begins fetching instructions at @x0. This is the standard
behavior for systems based on ARM processors. However, some ARM processors can be configured to
begin fetching instructions from @xFFFF000e0.

There has to be a valid instruction at ©xe at startup, so you must have nonvolatile memory located at 0x@
at the moment of power-on reset. One way to achieve this is to have ROM located at 9x0. However,
there are some drawbacks to this configuration.

Example ROM/RAM remapping

This example shows a solution implementing ROM/RAM remapping after reset. The constants shown
are specific to the Versatile board, but the same method is applicable to any platform that implements
remapping in a similar way. Scatter files must describe the memory map after remapping.

; System memory locations

Versatile_ctl_reg EQU 0x101EQ000 ; Address of control register
DEVCHIP_Remap_bit EQU ©x100 ; Bit 8 is remap bit of control register
ENTRY

; Code execution starts here on reset
; On reset, an alias of ROM is at 0x@, so jump to 'real' ROM.
LDR pc, =Instruct_2
Instruct_2
; Remap by setting remap bit of the control register
; Clear the DEVCHIP_Remap_bit by writing 1 to bit 8 of the control register

LDR R1, =Versatile_ ctl_reg
LDR RO, [R1]

ORR RO, RO, #DEVCHIP_Remap_bit
STR RO, [R1]

; RAM is now at @x@.

; The exception vectors must be copied from ROM to RAM

; The copying is done later by the C library code inside _ main
; Reset_Handler follows on from here

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-60
Non-Confidential

2 Embedded Software Development
2.16 Local memory setup considerations

2.16 Local memory setup considerations

Many ARM processors have on-chip memory management systems, such as MMUs or MPUs. These
devices are normally set up and enabled during system startup.

Therefore, the initialization sequence of processors with local memory systems requires special
consideration.

The C library initialization code in __main is responsible for setting up the execution time memory map
of the image. Therefore, the run-time memory view of the processor must be set up before branching to
__main. This means that any MMU or MPU must be set up and enabled in the reset handler.

TCMs must also be enabled before branching to __main, normally before MMU/MPU setup, because
you generally want to scatter-load code and data into TCMs. You must be careful that you do not have to
access memory that is masked by the TCMs when they are enabled.

You also risk problems with cache coherency if caches are enabled before branching to __main. Code in
__main copies code regions from their load address to their execution address, essentially treating
instructions as data. As a result, some instructions can be cached in the data cache, in which case they are
not visible to the instruction path.

To avoid these coherency problems, enable caches after the C library initialization sequence finishes
executing.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-61
Non-Confidential

2 Embedded Software Development
2.17 Stack pointer initialization

217 Stack pointer initialization

As a minimum, your reset handler must assign initial values to the stack pointers of any execution modes
that are used by your application.

Example stack pointer initialization

In this example, the stacks are located at stack_base:

; 3k 3k 3k >k ok 3k 3k %k %k 3k 5k 3k 5k 3k 3k %k %k >k 5k >k 3k 3k %k %k >k >k 5k 3k 3k %k %k >k >k 5k 3k 3k >k %k >k >k >k 3k 3k %k %k >k >k >k 3k %k %k %k >k >k >k >k %k %k %k %k >k >k k

; This example does not apply to ARMv6-M and ARMv7-M profiles
o3k 3k 3k 3k ok ok Sk 3k 3k 3k ok 3k 3k 3k ok ok 3k 3k 3k ok sk Sk 3k 3k 3k 5k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k >k 3k 3k 3k 3k >k 3k 3k 3k >k %k 3k 5k 3k k % >k %k k k

len FIQ Stack EQU 256
Len IRQ Stack EQU 256

stack_base DCD 0x18000

ﬁeset_Handler
; stack_base could be defined above, or located in a scatter file

LDR RO, stack_base ;

; Enter each mode in turn and set up the stack pointer

MSR CPSR_c, #Mode FIQ:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MoV sp, Reo

SUB RO, RO, #lLen_FIQ Stack

MSR CPSR_c, #Mode_ IRQ:OR:I Bit:OR:F_Bit ; Interrupts disabled
MoV sp, Re

SUB RO, RO, #Len_IRQ Stack

MSR CPSR_c, #Mode SVC:OR:I_Bit:OR:F_Bit ; Interrupts disabled
MoV sp, Re

; Leave processor in SVC mode

The stack_base symbol can be a hard-coded address, or it can be defined in a separate assembler source
file and located by a scatter file.

The example allocates 256 bytes of stack for Fast Interrupt Request (F1Q) and Interrupt Request (IRQ)
mode, but you can do the same for any other execution mode. To set up the stack pointers, enter each
mode with interrupts disabled, and assign the appropriate value to the stack pointer.

The stack pointer value set up in the reset handler is automatically passed as a parameter to
__user_initial_stackheap() by C library initialization code. Therefore, this value must not be
modified by __user_initial_stackheap().

Related information

Specifying stack and heap using the scatter file.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-62
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065977713.html

2 Embedded Software Development
2.18 Hardware initialization

218 Hardware initialization

In general, it is beneficial to separate all system initialization code from the main application. However,
some components of system initialization, for example, enabling of caches and interrupts, must occur
after executing C library initialization code.

Note
This does not apply to ARMv6-M and ARMv7-M profiles.

Use of $Sub and $Super

You can make use of the $Sub and $Super function wrapper symbols to insert a routine that is executed
immediately before entering the main application. This mechanism enables you to extend functions
without altering the source code.

This example shows how $Sub and $Super can be used in this way:
extern void $Super$$main(void);
void $Sub$$main(void)
{

cache_enable(); // enables caches
int_enable(); // enables interrupts
$Super$$main(); // calls original main()

The linker replaces the function call to main() with a call to $Sub$$main(). From there you can call a
routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main().

Related information

About using $Super$3 and $Sub3$ to patch symbol definitions.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-63
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065967698.html

2 Embedded Software Development
2.19 Execution mode considerations

219 Execution mode considerations

You must consider the mode in which the main application is to run. Your choice affects how you
implement system initialization.

Note
This does not apply to ARMv6-M and ARMv7-M profiles.

Much of the functionality that you are likely to implement at startup, both in the reset handler and Sub
$main, can only be done while executing in privileged modes, for example, on-chip memory
manipulation, and enabling interrupts.

If you want to run your application in a privileged mode, this is not an issue. Ensure that you change to
the appropriate mode before exiting your reset handler.

If you want to run your application in User mode, however, you can only change to User mode after
completing the necessary tasks in a privileged mode. The most likely place to do this is in Sub
$main().

Note

The C library initialization code must use the same stack as the application. If you need to use a non-
User mode in $Sub$$main and User mode in the application, you must exit your reset handler in System
mode, which uses the User mode stack pointer.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 2-64
Non-Confidential

2 Embedded Software Development
2.20 Target hardware and the memory map

2.20 Target hardware and the memory map

It is better to keep all information about the memory map of a target, including the location of target
hardware peripherals and the stack and heap limits, in your scatter file, rather than hard-coded in source
or header files.

Mapping to a peripheral register

Conventionally, addresses of peripheral registers are hard-coded in project source or header files. You
can also declare structures that map on to peripheral registers, and place these structures in the scatter
file.

For example, if a target has a timer peripheral with two memory mapped 32-bit registers, a C structure
that maps to these registers is:

__attribute__ ((zero_init)) struct
volatile unsigned ctrl; /* timer control */

volatile unsigned tmr; /* timer value */
} timer_regs;

Placing the mapped structure

To place this structure at a specific address in the memory map, you can create an execution region
containing the module that defines the structure. The following example shows an execution region
called TIMER that locates the timer_regs structure at ©x40000000:

ROM_LOAD 0x24000000 0x04000000
{

TIMER 0x40000000 UNINIT

timer_regs.o (+ZI)

}

It is important that the contents of these registers are not zero initialized during application startup,
because this is likely to change the state of your system. Marking an execution region with the UNINIT
attribute prevents ZI data in that region from being zero initialized by __main.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-65
Non-Confidential

2 Embedded Software Development
2.21 Execute-only memory

2.21 Execute-only memory
Execute-only memory (XOM) allows only instruction fetches. Read and write accesses are not allowed.

Execute-only memory allows you to protect your intellectual property by preventing executable code
being read by users. For example, you can place firmware in execute-only memory and load user code

and drivers separately. Placing the firmware in execute-only memory prevents users from trivially
reading the code.

Note

The ARM architecture does not directly support execute-only memory. Execute-only memory is
supported at the memory device level.

Related tasks
2.22 Building applications for execute-only memory on page 2-67.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-66
Non-Confidential

2 Embedded Software Development
2.22 Building applications for execute-only memory

2.22 Building applications for execute-only memory
Placing code in execute-only memory prevents users from trivially reading that code.

To build an application with code in execute-only memory:

Procedure

1. Compile your C or C++ code or assemble your ARM assembly code using the --execute_only
option
armcc -c --execute_only test.c -o test.o
The --execute_only option prevents the compiler from generating any data accesses to the code
sections.

To keep code and data in separate sections, the compiler disables the placement of literal pools inline
with code.

Compiled code sections have the EXECONLY attribute:
AREA ||.text||, CODE, EXECONLY, ALIGN=1
The assembler faults any attempts to define data in an EXECONLY code section.
2. Specify the memory map to the linker using either of the following:

e The +X0 selector in a scatter file.
e The armlink --xo-base option on the command-line.

armlink --xo-base=0x8000 test.o -o test.axf
The XO execution region is placed in a separate load region from the RO, RW, and ZI execution
regions.

Note
If you do not specify --xo-base, then by default:

* The XO execution region is placed immediately before the RO execution region, at address
0x8000.

* All execution regions are in the same load region.

Related concepts
2.21 Execute-only memory on page 2-66.

Related information
--execute_only compiler option.
--execute_only assembler option.
AREA.

--xo_base=address linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 2-67
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1374678975931.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1372847845314.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290002714.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1368715109023.html

Chapter 3
Mixing C, C++, and Assembly Language

Describes how to write a mixture of C, C++, and assembly language code for the ARM architecture.

It contains the following sections:

3.1 Instruction intrinsics, inline and embedded assembler on page 3-69.

3.2 Access to C global variables from assembly code on page 3-71.

3.3 Including system C header files from C++ on page 3-72.

3.4 Including your own C header files from C++ on page 3-73.

3.5 Mixed-language programming on page 3-74.

3.6 Rules for calling between C, C++, and assembly language on page 3-75.
3.7 Rules for calling C++ functions from C and assembly language on page 3-76.
3.8 Information specific to C++ on page 3-77.

3.9 Calls to assembly language from C on page 3-78.

3.10 Calls to C from assembly language on page 3-79.

3.11 Calls to C from C++ on page 3-80.

3.12 Calls to assembly language from C++ on page 3-81.

3.13 Calls to C++ from C on page 3-82.

3.14 Calls to C++ from assembly language on page 3-83.

3.15 Passing a reference between C and C++ on page 3-84.

3.16 Calls to C++ from C or assembly language on page 3-85.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-68
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.1 Instruction intrinsics, inline and embedded assembler

3.1 Instruction intrinsics, inline and embedded assembler

Instruction intrinsics, and inline and embedded assembler are built into the compiler to enable the use of
target processor features that cannot normally be accessed directly from C or C++.

Examples of such features are:

Saturating arithmetic.
Custom coprocessors.
The Program Status Register (PSR).

Instruction intrinsics

Instruction intrinsics provide a way of easily incorporating target processor features in C and
C++ source code without resorting to complex implementations in assembly language. They

have the appearance of a function call in C or C++, but are replaced during compilation by

assembly language instructions.

Inline assembler

The inline assembler supports interworking with C and C++. Any register operand can be an
arbitrary C or C++ expression. The inline assembler also expands complex instructions and
optimizes the assembly language code.

Note

The output object code might not correspond exactly to your input because of compiler
optimization.

Embedded assembler

The embedded assembler enables you to use the full ARM assembler instruction set, including
assembler directives. Embedded assembly code is assembled separately from the C and C++
code. A compiled object is produced that is then combined with the object from the compilation
of the C and C++ source.

The following table summarizes the main differences between instruction intrinsics, inline assembler,
and embedded assembler.

Table 3-1 Differences between instruction intrinsics, inline and embedded assembler

Feature Instruction Intrinsics Inline assembler Embedded assembler

Instruction set ARM and Thumb. ARM and Thumb. ARM and Thumb.

ARM assembler None supported. None supported. All supported.

directives

C/C++ expressions Full C/C++ expressions. Full C/C++ expressions. Constant expressions only.

Optimization of Full optimization. Full optimization. No optimization.

assembly code

Inlining Automatically inlined. Automatically inlined. Can be inlined by linker if it is
the right size and linker inlining
is enabled.

Register access Physical registers, Virtual registers except PC, LR Physical registers, including PC,

including PC, LR and SP. and SP. LR and SP.

f The inline assembler supports Thumb instructions in ARMv6T2 and later.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-69
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.1 Instruction intrinsics, inline and embedded assembler

Table 3-1 Differences between instruction intrinsics, inline and embedded assembler (continued)

Feature Instruction Intrinsics Inline assembler Embedded assembler

Return instructions Generated automatically. Generated automatically. BX, = You must add them in your
BX3J, and BLX instructions are code.
not supported.

BKPT instruction Supported. Not supported. Supported.

Related information
Using the Inline and Embedded Assemblers of the ARM Compiler.
Compiler intrinsics.
Saturating instructions.

Instruction intrinsics.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-70
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124245889.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124210895.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289860307.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124993137.html

3 Mixing C, C++, and Assembly Language
3.2 Access to C global variables from assembly code

3.2 Access to C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a global variable, use
the IMPORT directive to do the import and then load the address into a register.

You can then access the global variable using load and store instructions, depending on its type.
For unsigned variables, for example, use:

e LDRB/STRB for char
e LDRH/STRH for short
e LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and STM instructions.
Individual members of structures can be accessed by a load or store instruction of the appropriate type.
You must know the offset of a member from the start of the structure in order to access it.

The following example loads the address of the integer global variable globvar into R1, loads the value
contained in that address into RO, adds 2 to it, then stores the new value back into globvar.

Accessing global variables

PRESERVES8

AREA globals, CODE
EXPORT asmsubroutine
IMPORT globvar

asmsubroutine
LDR R1, =globvar ; read address of globvar into R1
LDR RO, [R1] ; load value of globvar
ADD RO, RO, #2
STR RO, [R1] ; store new value into globvar
BX 1r
END

Related information

ARM and Thumb Instructions.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-71
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289850039.html

3 Mixing C, C++, and Assembly Language
3.3 Including system C header files from C++

3.3 Including system C header files from C++

When including C header files in C++, the #include syntax used determines what namespace to use and
therefore the type of access you have.

C header files must be wrapped in extern "C" directives before they are included from C++. Standard
system C header files already contain the appropriate extern "C" directives so you do not have to take
any special steps to include such files.

For example:

#include <stdio.h>
int main()

e // C++ code
return 0;

}
If you include headers using this syntax, all library names are placed in the global namespace.

The C++ standard specifies that the functionality of the C header files is available through C++ specific
header files. These files are installed in install_directory\include, together with the standard C
header files, and can be referenced in the usual way. For example:

#include <cstdio>

In ARM C++, these headers #include the C headers. If you include headers using this syntax, all C++
standard library names are defined in the namespace std, including the C library names. This means that
you must qualify all the library names by using one of the following methods:

» specify the standard namespace, for example:

std: :printf("example\n");

» use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

* use the compiler option --using_std.

Related information

--using_std, --no_using_std compiler options.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-72
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124948721.html

3 Mixing C, C++, and Assembly Language
3.4 Including your own C header files from C++

3.4 Including your own C header files from C++

To include your own C header files, you must wrap the #include directive in an extern "C" statement.
You can do this in the following ways:

when you #include the file, as shown in the following example:

// C++ code
extern "C" {
#include "my-headerl.h"
#include "my-header2.h"

int main()

7 oo

return 0;

by adding the extern "C" statement to the header file, as shown in the following example:

/* C header file */

#ifdef _ cplusplus /* Insert start of extern C construct */
extern "C" {
#endif

/* Body of header file */

#ifdef _ cplusplus /* Insert end of extern C construct. */
/* The C header file can now be */

#endif /* included in either C or C++ code. */

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-73
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.5 Mixed-language programming

3.5 Mixed-language programming

You can mix calls between C and C++ and assembly language routines provided you comply with the
Procedure Call Standard for the ARM Architecture (AAPCS).

Note

The information in this section is implementation dependent and might change in future releases.

The embedded assembler and compliance with the Base Standard Application Binary Interface for the
ARM Architecture (BSABI) make mixed language programming easier to implement. These assist you
with:

Name mangling, using the __cpp keyword.

The way the implicit this parameter is passed.

The way virtual functions are called.

The representation of references.

The layout of C++ class types that have base classes or virtual member functions.
The passing of class objects that are not Plain Old Data (POD) structures.

Related concepts

3.6 Rules for calling between C, C++, and assembly language on page 3-75.
3.7 Rules for calling C++ functions from C and assembly language on page 3-76.

Related information
The compiler.

Base Standard Application Binary Interface for the ARM Architecture.
Procedure Call Standard for the ARM Architecture.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-74
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124192377.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html

3 Mixing C, C++, and Assembly Language
3.6 Rules for calling between C, C++, and assembly language

3.6 Rules for calling between C, C++, and assembly language
Some general rules apply when calling between C, C++, and assembly language.

* Use C calling conventions.

¢ C header files must be wrapped in extern "C" directives before they are included from C++.

* In C++, nonmember functions can be declared as extern "C" to specify that they have C linkage.
Having C linkage means that the symbol defining the function is not mangled. You can use C linkage
to implement a function in one language and call it from another.

Note

Functions that are declared extern "C" cannot be overloaded.

* Assembly language modules must conform to the appropriate AAPCS standard for the memory
model used by the application.

Related concepts
3.5 Mixed-language programming on page 3-74.
3.7 Rules for calling C++ functions from C and assembly language on page 3-76.

Related information
The compiler.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-75
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124192377.html

3 Mixing C, C++, and Assembly Language
3.7 Rules for calling C++ functions from C and assembly language

3.7 Rules for calling C++ functions from C and assembly language
Some rules apply when calling C++ functions from C and assembly language.

* To call a global C++ function, declare it extern "C" to give it C linkage.

* Member functions, both static and non static, always have mangled names. Using the __ cpp keyword
of the embedded assembler means that you do not have to find the mangled names manually.

¢ C++ inline functions cannot be called from C unless you ensure that the C++ compiler generates an
out-of-line copy of the function. For example, taking the address of the function results in an out-of-
line copy.

» Nonstatic member functions receive the implicit this parameter as a first argument in RO, or as a
second argument in R1 if the function returns a non int-like structure. Static member functions do
not receive an implicit this parameter.

Related concepts
3.5 Mixed-language programming on page 3-74.
3.6 Rules for calling between C, C++, and assembly language on page 3-75.

Related information

The compiler.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-76
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124192377.html

3 Mixing C, C++, and Assembly Language
3.8 Information specific to C++

3.8 Information specific to C++

These are some characteristics of ARM C++ to be aware of when combining it with ARM C.

C++ calling conventions
ARM C++ uses the same calling conventions as ARM C with one exception:

» Nonstatic member functions are called with the implicit this parameter as the first argument, or as
the second argument if the called function returns a non int-like struct. This might change in future
implementations.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and additions:

* C++ objects of type struct or class have the same layout that is expected from ARM C if they have
no base classes or virtual functions. If such a struct has neither a user-defined copy assignment
operator nor a user-defined destructor, it is a Plain Old Data (POD) structure.

» References are represented as pointers.

* No distinction is made between pointers to C functions and pointers to C++ nonmember functions.
Symbol name mangling

The linker unmangles symbol names in messages.

C names must be declared as extern "C" in C++ programs. This is done already for the ARM ISO C
headers.

Related concepts
3.5 Mixed-language programming on page 3-74.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-77
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.9 Calls to assembly language from C

3.9 Calls to assembly language from C

You can call an assembly language routine from C by exporting the assembly function symbol and
declaring the routine as extern in C.

Assembly language string copy subroutine

You must use the EXPORT directive to export the function symbol:

PRESERVES8

AREA SCopy, CODE

EXPORT strcopy
strcopy RO points to destination string.
R1 points to source string.
Load byte and update address.

Store byte and update address.

LDRB R2, [R1],#1
STRB R2, [Re],#1

L T VP

CMP R2, #0 Check for null terminator.
BNE strcopy Keep going if not.

BX 1r Return.

END

Calling assembly language from C

To call this assembly language subroutine from C, declare it with extern:

#include <stdio.h>
extern void strcopy(char *d, const char *s);

int main()
{ const char *srcstr = "First string - source ";
char dststr[] = "Second string - destination ";

/* dststr is an array since we’re going to change it */
printf("Before copying:\n");
printf(" %s\n %s\n",srcstr,dststr);
strcopy(dststr,srcstr);
printf(“After copying:\n");
printf(" %s\n %s\n",srcstr,dststr);
return (9);

Related concepts
3.10 Calls to C from assembly language on page 3-79.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-78
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.10 Calls to C from assembly language

3.10 Calls to C from assembly language

You can call a C function from assembly code by using the IMPORT directive.

Defining the function in C

The following example is a C function that is to be called from assembly code:

int g(int a, int b, int c, int d, int e)

return a + b + c + d + e;

Assembly language call

To call this C function from assembly code, import the g function symbol using the IMPORT directive:

; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }
PRESERVES8

EXPORT f

AREA f, CODE

IMPORT g ; 1 is in Re

STR 1r, [sp, #-4]! ; preserve 1lr

ADD R1, RO, RO ; compute 2*i (2nd param)
ADD R2, R1, RO ; compute 3*i (3rd param)
ADD R3, R1, R2 ; compute 5*i

STR R3, [sp, #-4]! ; 5th param on stack

ADD R3, R1, R1 ; compute 4*i (4th param)
BLX g ; branch to C function
ADD sp, sp, #4 ; remove 5th param

LDR pc, [sp], #4 ; return

END

Related concepts
3.9 Calls to assembly language from C on page 3-78.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-79
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.11 Calls to C from C++

3.1 Calls to C from C++

You can call a C function from C++ by declaring it with extern "C".

Defining the function in C

The following example is a C function that is to be called from C++:

struct S {
int i;

vé)id cfunc(struct S *p)

/* the definition of the C function to be called from C++ */
p->i += 5;

Calling a C function from C++

To call this C function from C++, declare it with extern "C":

struct S { // has no base classes
// or virtual functions
S(in‘g s) : i(s) { }

int i;

}.
/7 declare the C function to be called from C++
extern "C" void cfunc(S *);

int £(){
S s(2); // initialize 's’
cfunc(&s); // call 'cfunc' so it can change 's'

return s.i * 3;

Related concepts

3.12 Calls to assembly language from C++ on page 3-81.
3.13 Calls to C++ from C on page 3-82.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-80
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.12 Calls to assembly language from C++

3.12 Calls to assembly language from C++

You can call an assembly language routine from C++ by exporting the assembly function symbol and
declaring the routine as extern "C" in C++.

Defining the assembly language function

To be able to call an assembly language routine from C++, you must use the EXPORT directive to export
the function symbol:

PRESERVES
AREA Asm, CODE
EXPORT asmfunc
asmfunc ; the definition of the Asm
LDR R1, [RO] ; function to be called from C++
ADD R1, R1, #5
STR R1, [R@]
BX 1r
END

Calling assembly language from C++

To call the assembly language routine from C++, declare it with extern "C":

struct S { // has no base classes
// or virtual functions
S(int s) : i(s) { }
int i;
}s
extern "C" void asmfunc(S *); // declare the Asm function
// to be called

int f() {
S s(2); // initialize 's'
asmfunc(&s); // call 'asmfunc' so it can change 's'

return s.i * 3;

Related concepts
3.11 Calls to C from C++ on page 3-80.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-81
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.13 Calls to C++ from C

3.13 Calls to C++ from C

You can call a C++ function from C by defining it with extern "C" and declaring it as extern in C.

Defining the C++ function to be called from C

To call a C++ function from C, define the C++ function with extern "C":

struct S { // has no base classes or virtual functions
S(int s) : i(s) { }
int i;

}s

extern "C" void cppfunc(S *p) {

// Definition of the C++ function to be called from C.

// The function is written in C++, only the linkage is C.
p->i += 5;

Declaring and calling the function in C

In C, declare the C++ function with extern:

struct S {
int i;
¥s
/* Declaration of the C++ function to be called from C */
extern void cppfunc(struct S *p);
int f(void) {
struct S s;
s.i=2; /* initialize 's' */
cppfunc(&s); /* call 'cppfunc' so it */
/* can change 's' */
return s.i * 3;

Related concepts
3.9 Calls to assembly language from C on page 3-78.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-82
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.14 Calls to C++ from assembly language

3.14 Calls to C++ from assembly language

You can call a C++ function from assembly code by defining it as extern "C" and using the IMPORT

directive.

Defining the C++ function to be called

To be able to call a C++ function from assembly code, use the extern "C" declaration:

struct S {

int i;

s

// has no base classes or virtual functions
S(int s) : i(s) { }

extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C.

p->i += 5;

Defining the calling function in assembly language

In ARM assembly language, import the name of the C++ function using the IMPORT directive and use a
BLX instruction to call it:

PRESERVES
AREA Asm, CODE

IMPORT
EXPORT

STMFD
MoV
STR
MoV
BLX
LDR
ADD
LDMFD
END

cppfunc H
.F

sp!,{1r}

RO, #2

RO, [Spl#_4]! B
R@,sp 5
cppfunc

RO, [sp], #4
RO, RO, RO,LSL #1

sp!,{pc}

Related concepts
3.12 Calls to assembly language from C++ on page 3-81.

import the name of the C++
function to be called from Asm

initialize struct
argument is pointer to struct

; call 'cppfunc' so it can change the struct

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-83

Non-Confidential

3 Mixing C, C++, and Assembly Language
3.15 Passing a reference between C and C++

3.15 Passing a reference between C and C++

When calling a C function from C++, declare the function using extern "C". When calling a C++
function from C, declare the function using extern and define it as extern "C".

To pass references between C and C++:

Procedure

1. Use the extern "C" declaration for the C function. Also, define the C++ function as extern "C" to
specify that the function has C linkage. For example:

// Declaration of the C function to be called from C++
extern "C" int cfunc(const int&);
extern "C" int cppfunc(const int& r) {
// Definition of the C++ function to be called from C.
return 7 * r;

¥
int f() {
int i = 3;
return cfunc(i); // passes a pointer to ‘i’

2. In the C function, declare the C++ reference with extern. For example:

/* declaration of the C++ function to be called from C */
extern int cppfunc(const int*);
int cfunc(const int *p) {
/* definition of the C function to be called from C++ */
int k = *p + 4;
return cppfunc(&k);

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 3-84
Non-Confidential

3 Mixing C, C++, and Assembly Language
3.16 Calls to C++ from C or assembly language

3.16 Calls to C++ from C or assembly language

You can call a C++ member function from C, assembly language, or embedded assembly.

Calling a C++ member function

This example shows how to call a non static, non virtual C++ member function from C.

struct T {

T(int 1) : t(i) { }

int t;

int f(int i);
// Definition of the C++ member function to be called from C.
int T::f(int i) { return i + t; }

// Declaration of the C function to be called from C++.
extern "C" int cfunc(T*);

int £() {

T t(5); // create an object of type T
return cfunc(&t);

}

Use the assembler output from the compiler to locate the mangled name of the function. For example, if
this code is in the file test. cpp, enter the command:

armcc -c --cpp --asm test.cpp

This produces the assembler file test.s containing:

AREA ||.text||, CODE, READONLY, ALIGN=2

_Z1fv PROC
PUSH {r3,1r}
MoV re,#5
STR re, [sp,#90]
MoV ro,sp
BL cfunc
POP {r3,pc}
ENDP

_ZN1T1fEi PROC
LDR ro,[ro,#0]
ADD ro,ro,rl
BX 1r
ENDP

Defining the C function

The C function calls the C++ member function using its mangled name _ZN1T1fEi. The C function is
defined as follows:

struct T;

extern int _ZN1T1fEi(struct T*, int);
/* the mangled name of the C++ */
/* function to be called */

int cfunc(struct T* t) {

/* Definition of the C function to be called from C++. */
return 3 * _ZN1T1fEi(t, 2); /* like '3 * t->f(2)' */

Implementing the function in assembly language

To implement in assembly language the function that calls the C++ member function:

PRESERVES8
EXPORT cfunc

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 3-85
Non-Confidential

3 Mixing C, C++, and Assembly Language

3.16 Calls to C++ from C or assembly language

AREA foo, CODE
IMPORT _ZN1T1fEi

cfunc
STMFD sp!,{r1, 1r} ; save 1r for the call and preserve stack alignment
MOV ri1, #2 ; r@ already contains the object pointer

BLX _ZN1T1fEi

ADD r@, ro, re, LSL #1 ; multiply by 3
LDMFD sp!,{r1, pc}

END

Implementing the function in embedded assembly

Alternatively, you can implement the call to a C++ member function in assembly language using
embedded assembly. In this example, use the __cpp keyword to reference the C++ member function.
This means that you do not have to know the mangled name of the function.

struct T {
T(int 1) : t(i) { }
int t;
int f(int i);

}s
int T::f(int i) { return i + t; }
// Definition of asm function called from C++
__asm int asm_func(T*) {
PRESERVES

STMFD sp!, {ri, 1lr} ; save 1lr for the call and preserve stack alignment
MOV rl, #2; ; r@ already contains the object pointer

BLX __cpp(T::f);
ADD re, ro, ro, LSL #1 ; multiply by 3
LDMFD sp!, {rl1, pc}

}

int £() {
T t(5); // create an object of type T
return asm_func(&t);

}

Related concepts

3.9 Calls to assembly language from C on page 3-78.
3.10 Calls to C from assembly language on page 3-79.
3.12 Calls to assembly language from C++ on page 3-81.
3.14 Calls to C++ from assembly language on page 3-83.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

3-86

Chapter 4
Interworking ARM and Thumb

Describes how to change between ARM state and Thumb state when writing code for processors that
implement the ARM and Thumb instruction sets.

Note
These topics do not apply to ARMv6-M and ARMv7-M.

It contains the following sections:

* 4.1 About interworking on page 4-88.

* 4.2 When to use interworking on page 4-89.

* 4.3 Assembly language interworking on page 4-90.

* 4.4 Cand C++ interworking on page 4-91.

* 4.5 Pointers to functions in Thumb state on page 4-92.

* 4.6 Assembly language interworking example on page 4-93.

* 4.7 Interworking using veneers on page 4-95.

* 4.8 Cand C++ language interworking on page 4-97.

* 4.9C, C++, and assembly language interworking using veneers on page 4-99.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-87
Non-Confidential

4 Interworking ARM and Thumb
4.1 About interworking

4.1 About interworking

Interworking enables you to mix ARM and Thumb code.
This means that:

¢ ARM routines can return to a Thumb state caller
e Thumb routines can return to an ARM state caller.

This has the benefit that if you compile or assemble code for interworking, your code can call a routine
in a different module without considering which instruction set it uses. The compiler and assembler both
use the --apcs=/interwork command-line option to enable interworking.

You can freely mix code compiled or assembled for ARM and Thumb, provided that the code conforms
to the AAPCS.

An error is generated if the linker detects:

* adirect ARM or Thumb interworking call where the callee routine is not built for interworking
+ assembly language source files using incompatible AAPCS options.

The ARM linker detects when an interworking function is being called from a different state. Call and
return instructions are changed, and small code segments called veneers, are inserted to change
instruction set state where necessary.

The ARM architecture v5T and later provide methods to change instruction set state without using any
extra instructions. There is almost no cost associated with interworking on ARMv5T and later
processors.

Note

Compiling for ARMvST and later architectures, automatically assumes interworking and always
produces code that is interworking safe. However, assembly code built for ARMvV5T does not imply
interworking, so you must build assembly code with the --apcs=/interwork assembler option.

Related information

--apcs=qualifier...qualifier assembler option.
Overview of veneers.
Procedure Call Standard for the ARM Architecture.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 4-88
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065913746.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html

4 Interworking ARM and Thumb
4.2 When to use interworking

4.2 When to use interworking

There are several reasons for choosing to switch between ARM and Thumb state.

When you write code for an ARM processor that supports Thumb instructions, you probably build most
of your application to run in Thumb state. This gives the best code density. With 8-bit or 16-bit wide
memory, it also gives the best performance. However, you might want parts of your application to run in
ARM state for reasons such as:

Speed
Some parts of an application might be speed critical. These sections might be more efficient
running in ARM state than in Thumb state.
Some systems include a small amount of fast 32-bit memory. ARM code can be run from this
without the overhead of fetching each instruction from 8-bit or 16-bit memory.
Functionality

Thumb instructions are less flexible than their equivalent ARM instructions. Some operations
are not possible in Thumb state. A state change to ARM is required to carry out the following
operations:

* accesses to CPSR to enable or disable interrupts, and to change mode.
* accesses to coprocessors

+ execution of Digital Signal Processor (DSP) math instructions that can not be performed in
C language.

Exception handling
The processor automatically enters ARM state when a processor exception occurs. This means
that the first part of an exception handler must be coded with ARM instructions, even if it
reenters Thumb state to carry out the main processing of the exception. At the end of such
processing, the processor must be returned to ARM state to return from the handler to the main
application.

Standalone Thumb programs
An ARM processor that supports Thumb instructions always starts in ARM state. To run simple
Thumb assembly language programs, add an ARM header that carries out a state change to
Thumb state and then calls the main Thumb routine.

Note

Changing to ARM state for speed or functionality reasons is mainly a concern on processors that support
Thumb without the 32-bit encoded Thumb instructions. On processors that support the 32-bit encoded
Thumb instructions, the Thumb instruction set provides almost the same functionality as the ARM
instruction set, and similar performance in some cases.

Related concepts

4.3 Assembly language interworking on page 4-90.

Related information

CPS.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 4-89
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289869176.html

4 Interworking ARM and Thumb
4.3 Assembly language interworking

4.3 Assembly language interworking

There are several assembly language instructions that can cause a change between ARM and Thumb
state.

The --apcs=/interwork command-line option enables the ARM assembler to assemble code that can be
called from another instruction set state:

armasm --thumb --apcs=/interwork
armasm --arm --apcs=/interwork

In an assembly language source file, you can have several areas. These correspond to ARM Executable

and Linkable Format (ELF) sections. Each area can contain ARM instructions, Thumb instructions, or
both.

You can use the linker to fix up calls to routines that use a different instruction set from the caller. To do
this, use BL to call the routine.

If you prefer, you can write your code to make the instruction set changes explicitly. In some
circumstances you can write smaller or faster code by doing this. You can use BX, BLX, LDR, LDM, and POP
instructions to perform the instruction set state changes.

The ARM assembler can assemble both Thumb code and ARM code. By default, it assembles ARM
code unless it is invoked with the --thumb option.

The ARM and THUMB directives instruct the assembler to assemble instructions from the appropriate
instruction set.

Related concepts

4.6 Assembly language interworking example on page 4-93.
4.7 Interworking using veneers on page 4-95.

Related information

--apcs=qualifier...qualifier assembler option.
--arm assembler option.

--thumb assembler option.

B.

ARM, THUMB, THUMBX, CODE16 and CODE32.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 4-90
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818694.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289843800.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289863797.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361290003124.html

4 Interworking ARM and Thumb
4.4 C and C++ interworking

4.4 C and C++ interworking

The compiler can compile code for interworking on ARMvVAT and later.

The - -apcs=interwork command-line option enables the compiler to compile C and C++ code that can
be called from another instruction set state:

armcc --thumb --apcs=interwork
armcc --arm --apcs=interwork

In a leaf function, which is a function whose body contains no function calls, the compiler generates the
return instruction BX 1r.

In a non-leaf function built for ARMv4T in Thumb state, the compiler must replace, for example, the
single return instruction:

POP {R4-R7,pc}
with the sequence:
POP {R4-R7}

PoP {R3}
BX R3

This has a small impact on performance.

The --apcs=interwork option also sets the interwork attribute for the code area the modules are
compiled into. The linker detects this attribute and inserts the appropriate veneers. To find the amount of
space taken by the veneers you can use the linker command-line option - -info=veneers.

It is recommended that you compile all source modules for interworking, unless you are sure they are
never going to be used with interworking.

Note
ARM code compiled for interworking can only be used on ARMvVAT and later, because earlier processors
do not implement the BX instruction.

Also, interworking is the default for ARMvVS5TE and later processors, so you do not have to explicitly
specify this.

Related information

--apcs=qualifier...qualifier compiler option.
--arm compiler option.

--thumb compiler option.
--info=topic/,topic,...] linker option.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 4-91
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124900125.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075490033.html

4 Interworking ARM and Thumb
4.5 Pointers to functions in Thumb state

4.5 Pointers to functions in Thumb state

A Thumb function is a function that consists of Thumb code and so must run in Thumb state. Any
pointer to that function must have the least significant bit set to ensure that interworking works correctly.

If you are taking the address of a function, the toolchain automatically handles this for you. If you are
constructing a function pointer by casting an integer value then you need to set the least significant bit
yourself, as shown in the following example.

Absolute addresses of Thumb functions

typedef int (*FN)();
myfunc() {
FN fnptrs[] = {
(FN)(ox8084 + 1), // Valid Thumb address
(FN) (ox8074) // Invalid Thumb address

Flil* myfunctions = fnptrs;
myfunctions[0](); // Call OK
myfunctions[1](); // Call fails

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-92
Non-Confidential

4 Interworking ARM and Thumb
4.6 Assembly language interworking example

4.6 Assembly language interworking example

The BX instruction can carry out an instruction set change. When changing to Thumb state, you must
ensure that the least significant bit in the address is set.

This example implements a short header section (SECTION1) followed by an ADR instruction to get the
address of the label THUMBProg, and sets the least significant bit of the address. The BX instruction
changes the state to Thumb state.

In SECTION2, the Thumb code adds the contents of two registers together, using an ADR instruction to get
the address of the label ARMProg, leaving the least significant bit clear. The BX instruction changes the
state back to ARM state.

In SECTION3 the ARM code adds together the contents of two registers and ends.
Assembly language interworking

o kckkokokokkk

; addreg.s

; 3 3k >k %k %k %k %k k

PRESERVES8

AREA AddReg,CODE,READONLY ; Name this block of code.

ENTRY ; Mark first instruction to call.
; SECTION1
start

ADR RO, ThumbProg:OR:1 Generate branch target address
and set bit @, hence arrive
at target in Thumb state.

O

BX RO Branch exchange to ThumbProg.
5 SECTION2

THUMB ; Subsequent instructions are Thumb
ThumbProg

MOVS R2, #2 ; Load R2 with value 2.

MOVS R3, #3 ; Load R3 with value 3.

ADDS R2, R2, R3 ; R2 = R2 + R3

ADR RO, ARMProg

BX RO ; Branch exchange to ARMProg.
5 SECTION3

ARM ; Subsequent instructions are ARM
ARMProg

MOV R4, #4

MOV R5, #5

ADD R4, R4, R5
; SECTION 4
stop MOV RO, #0x18 ; angel_SWIreason_ReportException

LDR R1, =0x20026
SVC 0x123456
END

ADP_Stopped_ApplicationExit
ARM semihosting
Mark end of this file.

Ceveue

Building the example
Follow these steps to build and link the modules:

1. To assemble the source file for interworking, type:

armasm --debug --apcs=/interwork addreg.s
2. To link the object files, type:
armlink addreg.o -o addreg.axf
Alternatively, to view the size of the interworking veneers, type:

armlink addreg.o -o addreg.axf --info=veneers

3. Run the image using a compatible debugger with an appropriate debug target.

Related concepts

4.7 Interworking using veneers on page 4-95.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-93
Non-Confidential

4 Interworking ARM and Thumb
4.6 Assembly language interworking example
4.8 C and C++ language interworking on page 4-97.
4.9 C, C++, and assembly language interworking using veneers on page 4-99.

Related information
--apcs=qualifier...qualifier assembler option.
--debug assembler option.
--info=topic/,topic,...] linker option.
--output=filename linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-94
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822713.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075490033.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075533406.html

4 Interworking ARM and Thumb
4.7 Interworking using veneers

4.7 Interworking using veneers

When branching between ARM and Thumb state using the BL instruction, the instruction set state change
can be handled by an interworking veneer.

This example shows interworking in assembly source code to set registers RO to R2 to the values 1, 2, and
3 respectively. Registers R@ and R2 are set by ARM code. R1 is set by Thumb code. The linker
automatically adds an interworking veneer. To use veneers:

* you must assemble the code with the - -apcs=/interwork option
e use aBX 1r instruction to return, instead of MOV pc, 1r.

Example of assembly language interworking using veneers

H % %k %k

; arm.s

H % %k k k

PRESERVES8

AREA Arm, CODE, READONLY ; Name this block of code.

IMPORT ThumbProg

ENTRY ; Mark 1st instruction to call.
ARMProg

MOV RO, #1 Set RO to show in ARM code.

BL ThumbProg Call Thumb subroutine.

MOV R2,#3 Set R2 to show returned to ARM.

MOV RO, #06x18
LDR R1, =0x20026

Terminate execution.
angel_SWIreason_ReportException
ADP_Stopped_ApplicationExit

LV VR

SVC 0x123456 ARM semihosting (formerly SWI)

END
; 3k %k 3k 5k >k ok k
; thumb.s
H 3 %k 5k k ok k
AREA Thumb, CODE,READONLY ; Name this block of code.
THUMB ; Subsequent instructions are Thumb.
EXPORT ThumbProg
ThumbProg
MOVS R1, #2 ; Set R1 to show reached Thumb code.
BX 1r ; Return to the ARM function.
END ; Mark end of this file.

Building the example
Follow these steps to build and link the modules:

1. To assemble the ARM code for interworking, type:

armasm --debug --apcs=/interwork arm.s

2. To assemble the Thumb code for interworking, type:

armasm --thumb --debug --apcs=/interwork thumb.s

3. To link the object files, type:

armlink arm.o thumb.o -o count.axf

Alternatively, to view the size of the interworking veneers, type:

armlink arm.o thumb.o -o count.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.

Related concepts
4.6 Assembly language interworking example on page 4-93.
4.8 C and C++ language interworking on page 4-97.
4.9 C, C++, and assembly language interworking using veneers on page 4-99.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-95

Non-Confidential

4 Interworking ARM and Thumb
4.7 Interworking using veneers

Related information
Overview of veneers.
--apcs=qualifier...qualifier assembler option.
--debug assembler option.
--thumb assembler option.
--info=topic/,topic,...] linker option.

--output=filename linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-96
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065913746.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822713.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289843800.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075490033.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075533406.html

4 Interworking ARM and Thumb
4.8 C and C++ language interworking

4.8 C and C++ language interworking

When compiling C or C++ modules for interworking, you must specify the - -apcs=/interwork
compiler option.

C and C++ language interworking

This example shows a main() function implemented in Thumb that carries out an interworking call to an
ARM subroutine. The ARM subroutine makes an interworking call to printf() in the Thumb library.

/*********************

& thumbmain.c *
**********************/

#include <stdio.h>

extern void arm_function(void);

int main(void)
printf(“Hello from Thumb\n");
arm_function();
printf("And goodbye from Thumb\n");
return (9);

/*********************

& armsub.c &
**********************/

#include <stdio.h>
void arm_function(void)

printf("Hello and Goodbye from ARM\n");

Building the example
Follow these steps to compile and link the modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb -c --debug --apcs=/interwork thumbmain.c -o thumbmain.o

2. To compile the ARM code for interworking, type:

armcc -c --debug --apcs=/interwork armsub.c -o armsub.o

3. To link the object files, type:

armlink thumbmain.o armsub.o -o thumbtoarm.axf

Alternatively, to view the size of the interworking veneers, type:

armlink armsub.o thumbmain.o -o thumbtoarm.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.

Related concepts
4.6 Assembly language interworking example on page 4-93.
4.7 Interworking using veneers on page 4-95.
4.9 C, C++, and assembly language interworking using veneers on page 4-99.

Related information
--apcs=qualifier...qualifier compiler option.
-c compiler option.
--debug, --no_debug compiler options.
-0 filename compiler option.

--thumb compiler option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-97
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124909829.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935523.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html

4 Interworking ARM and Thumb
4.8 C and C++ language interworking

--info=topic/,topic,...] linker option.
--output=filename linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-98
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075490033.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075533406.html

4 Interworking ARM and Thumb
4.9 C, C++, and assembly language interworking using veneers

4.9 C, C++, and assembly language interworking using veneers

When compiling or assembling modules written in C, C++, or assembly language for interworking, you
must specify the - -apcs=/interwork compiler or assembler option.

C, C++, and assembly language interworking using veneers

This example shows interworking between Thumb code generated from C and ARM code written in
assembly language, using veneers.

/**********************

& thumb.c &
**********************/
#include <stdio.h>

extern int arm_function(int);
int main(void)

int 1 = 1;

printf("i = %d\n", i);

printf("And i+4 = %d\n", arm_function(i));
return (9);

o kkkkok
3

; arm.s
; %k k% k
PRESERVES8
AREA Arm,CODE,READONLY ; Name this block of code.
EXPORT arm_function

arm_function

ADD RO,RO,#4 ; Add 4 to first parameter.
BX 1r ; Return
END

Building the example
Follow these steps to build and link the modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb --debug -c --apcs=/interwork thumb.c

2. To assemble the ARM code for interworking, type:

armasm --debug --apcs=/interwork arm.s

3. To link the object files, type:

armlink arm.o thumb.o -o add.axf

Alternatively, to view the size of the interworking veneers, type:

armlink arm.o thumb.o -o add.axf --info=veneers

4. Run the image using a compatible debugger with an appropriate debug target.

Related concepts
4.6 Assembly language interworking example on page 4-93.
4.7 Interworking using veneers on page 4-95.

4.8 C and C++ language interworking on page 4-97.

Related information
--apcs=qualifier...qualifier compiler option.
-c compiler option.
--debug, --no_debug compiler options.
-0 filename compiler option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-99
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124899798.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124903885.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124909829.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124935523.html

4 Interworking ARM and Thumb
4.9 C, C++, and assembly language interworking using veneers

--thumb compiler option.
--apcs=qualifier...qualifier assembler option.
--debug assembler option.
--info=topic/,topic,...] linker option.
--output=filename linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 4-100
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0472-/chr1359124945944.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289818214.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822713.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075490033.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075533406.html

Chapter 5
Handling Processor Exceptions

Describes how to handle the different types of exception supported by the ARM architecture.
It contains the following sections:

o 5.1 About processor exceptions on page 5-103.

* 5.2 Exception handling process on page 5-104.

o 5.3 Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 5-105.

* 5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 5-106.

o 5.5 Processor modes and registers in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
on page 5-107.

* 5.6 Use of System mode for exception handling on page 5-108.

* 5.7 The processor response to an exception on page 5-109.

e 5.8 Return from an exception handler on page 5-110.

* 5.9 Reset handlers on page 5-111.

* 5.10 Data Abort handler on page 5-112.

o 5.11 Interrupt handlers and levels of external interrupt on page 5-113.

* 5.12 Reentrant interrupt handlers on page 5-114.

o 5.13 Single-channel DMA transfer on page 5-116.

* 5.14 Dual-channel DMA transfer on page 5-117.

» 5.15 Interrupt prioritization on page 5-118.

» 5.16 Context switch on page 5-119.

e 5.17 Determining the SVC to be called on page 5-120.

* 5.18 Determining the instruction set state from an SVC handler on page 5-121.

o 5.19 SVC handlers in assembly language on page 5-122.

e 5.20 SVC handlers in C and assembly language on page 5-123.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-101
Non-Confidential

5 Handling Processor Exceptions

* 5.21 Using SVCs in Supervisor mode on page 5-125.

o 5.22 Calling SVCs from an application on page 5-126.

* 5.23 Calling SVCs dynamically from an application on page 5-128.

* 5.24 Prefetch Abort handler on page 5-130.

* 5.25 Undefined instruction handlers on page 5-131.

o 5.26 ARMv6-M and ARMv7-M profiles on page 5-132.

* 5.27 Main and Process stacks on page 5-133.

* 5.28 Types of exceptions in the microcontroller profiles on page 5-134.
o 5.29 Vector table for ARMv6-M and ARMv7-M profiles on page 5-135.
o 5.30 Vector Table Offset Register (ARMv7-M only) on page 5-136.

* 5.31 Writing the exception table for ARMv6-M and ARMv7-M profiles on page 5-137.
* 5.32 The Nested Vectored Interrupt Controller on page 5-138.

* 5.33 Handling an exception on page 5-139.

* 5.34 Configuring the System Control Space registers on page 5-140.

* 5.35 Configuring individual IRQOs on page 5-141.

* 5.36 Supervisor calls on page 5-142.

» 5.37 System timer on page 5-144.

o 5.38 Configuring SysTick on page 5-145.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-102
Non-Confidential

5 Handling Processor Exceptions
5.1 About processor exceptions

51 About processor exceptions

A processor exception is an event that interrupts the normal flow of instruction execution.

During the normal flow of execution through a program, the Program Counter (PC) increases
sequentially through the address space, with branches to nearby labels or branch with links to
subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to enable the processor to
handle events generated by internal or external sources. Examples of such events are:

+ externally generated interrupts
» an attempt by the processor to execute an undefined instruction
» accessing privileged operating system functions.

Related concepts

5.2 Exception handling process on page 5-104.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-103
Non-Confidential

5.2 Exception handling process

5 Handling Processor Exceptions
5.2 Exception handling process

The exception handling model used by ARMv7-A, ARMv7-R, ARMvo6 and earlier architectures is
different from the model used by the microcontroller profiles ARMv7-M and ARMv6-M.

The following figure shows the exception handling process.

Application
code

Exception occurs

Vector

table

Save CPU and
register state

N

Handle
the
exception

Restore CPU
and
register state

Figure 5-1 Handling an exception

When an exception occurs, control passes through an area of memory called the vector table. This is a
reserved area usually at the bottom of the memory map. Within the table one word is allocated to each of
the various exception types. This word contains either a form of a branch instruction or, in the case of
ARMvV7-M and ARMv6-M, an address to the relevant exception handler.

You can write the exception handlers in either ARM or Thumb code if the processor supports the
respective instruction set. For the ARMv7-M and ARMv6-M profiles, the processor enters the exception
handler that is specified in the vector table. For all other ARM processors, you must branch from the top-
level handler to the code that handles the exception. Use a Branch and exchange (BX) if state change is
required. When handling exceptions, the current processor mode, state, and registers must be preserved
so that the program can resume when the appropriate exception handling routine completes.

Related concepts

5.26 ARMv6-M and ARMv7-M profiles on page 5-132.

Related references
5.3 Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 5-105.
4 Interworking ARM and Thumb on page 4-87.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.

Non-Confidential

5-104

5 Handling Processor Exceptions
5.3 Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

5.3 Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
Exceptions are handled in turn before returning to the original application. When exceptions occur
simultaneously, they are handled in a fixed order of priority, depending on their type.

The following table shows the different types of exception recognized by ARMv6 and earlier, the
ARMv7-A and ARMv7-R profiles. It is not possible for all exceptions to occur concurrently. For
example, the undefined instruction (Undef) and supervisor call (SVC) exceptions are mutually exclusive
because they are both triggered by executing an instruction.

On entry to an exception:

* interrupt requests (IRQs) are disabled for all exceptions

* fast interrupt requests (F1Qs) are disabled for FIQ and Reset exceptions.

Table 5-1 Exception types in priority order for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

Priority Exception Exception Description

(1=high, type mode

6=low)

1 Reset Supervisor Occurs when the processor reset pin is asserted. This exception is
only expected to occur for signaling power-up, or for resetting if the
processor is already powered up. A soft reset can be done by
branching to the reset vector.

2 Data Abort Abort Occurs when a data transfer instruction attempts to load or store data
at an illegal address.

3 FIQ FIQ Occurs when the processor external fast interrupt request pin is
asserted (LOW) and the F bit in the CPSR is clear.

4 IRQ IRQ Occurs when the processor external interrupt request pin is asserted
(LOW) and the I bit in the CPSR is clear.

5 Prefetch Abort Abort Occurs when the processor attempts to execute an instruction that
was not fetched, because the address was illegal®.

6 SvC Supervisor This is a user-defined synchronous interrupt instruction. It enables a
program running in User mode, for example, to request privileged
operations that run in Supervisor mode, such as an RTOS function.

6 Undefined Undef Occurs if neither the processor, nor any attached coprocessor,

Instruction recognizes the currently executing instruction.

Because the Data Abort exception has a higher priority than the FIQ exception, the Data Abort is actually
registered before the FIQ is handled. The Data Abort handler is entered, but control is then passed
immediately to the FIQ handler because the FIQ remains enabled when handling a Data Abort. When the
FIQ has been handled, control returns to the Data Abort Handler. This means that data transfer errors do
not escape detection as they would if the FIQ was handled first.

Related concepts

5.26 ARMv6-M and ARMv7-M profiles on page 5-132.

¢ An illegal virtual address is one that does not currently correspond to an address in physical memory, or one that the memory management subsystem has
determined is inaccessible to the processor in its current mode.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-105
Non-Confidential

5 Handling Processor Exceptions
5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

The vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles consists of branch or load
PC instructions to the relevant handlers.

If required, you can include the FIQ handler at the end of the vector table to ensure it is handled as
efficiently as possible, see the following example. Using a literal pool means that addresses can easily be
modified later if necessary.

Typical vector table using a literal pool

AREA vectors, CODE, READONLY
ENTRY
Vector_Table
LDR pc, Reset_Addr
LDR pc, Undefined_Addr
LDR pc, SVC_Addr
LDR pc, Prefetch_Addr
LDR pc, Abort_Addr
NOP ;Reserved vector
LDR pc, IRQ_Addr

FIQ Handler
; FIQ handler code - max 4kB in size
Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
IRQ_Addr DCD IRQ_Handler

END
This example assumes that you have ROM at location ©x@ on reset. Alternatively, you can use the

scatter-loading mechanism to define the load and execution address of the vector table. In that case, the C
library copies the vector table for you.

Note

The vector table for ARMv6 and earlier architectures supports ARM instructions only. ARMv6T2 and
later architectures support both Thumb instructions and ARM instructions in the vector table. This does
not apply to the ARMv6-M and ARMv7-M profiles.

Related information

Information about scatter files.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-106
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065968963.html

5 Handling Processor Exceptions
5.5 Processor modes and registers in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles

5.5 Processor modes and registers in ARMv6 and earlier, ARMv7-A and ARMv7-
R profiles

The ARM architecture defines an unprivileged User mode containing 15 general purpose registers, a PC,
and a CPSR. In addition, there are privileged modes, each containing a SPSR and a number of banked
out registers.

Typically, an application runs in User mode, but handling exceptions requires a privileged mode. An
exception changes the processor mode, and this in turn means that each exception handler has access to a
certain subset of the banked out registers:

* its own Stack Pointer (SP)

* itsownLR

+ its own SPSR

» five additional general purpose registers (FIQ only).

Each exception handler must ensure that other registers are restored to their original contents on exit.

You can do this by saving the contents of any registers that the handler requires onto its stack and restore
them before returning.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-107
Non-Confidential

5 Handling Processor Exceptions
5.6 Use of System mode for exception handling

5.6 Use of System mode for exception handling

Corruption of the link register can be a problem when handling multiple exceptions of the same type.
ARMv4 and later architectures include a privileged mode called System mode, to overcome this
problem.

System mode shares the same registers as User mode, it can run tasks that require privileged access, and
exceptions no longer overwrite the link register.

Note

System mode cannot be entered by an exception. The exception handlers modify the CPSR to enter
System mode.

Related concepts
5.5 Processor modes and registers in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
on page 5-107.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-108
Non-Confidential

5 Handling Processor Exceptions
5.7 The processor response to an exception

5.7 The processor response to an exception

An exception handler must save the system state when an exception occurs and restore it on return.

Processors that support Thumb state use the same basic exception handling mechanism as processors that
do not support Thumb state. An exception causes the next instruction to be fetched from the appropriate
vector table entry.

When an exception is generated, the processor performs the following actions:

1.

Copies the CPSR into the appropriate SPSR. This saves the current mode, interrupt mask, and
condition flags.

Switches state automatically if the current state does not match the instruction set used in the
exception vector table.

Changes the appropriate CPSR mode bits to:

* Change to the appropriate mode, and map in the appropriate banked out registers for that mode.

» Disable interrupts. IRQs are disabled when any exception occurs. FIQs are disabled when an FIQ
occurs and on reset.

Sets the appropriate LR to the return address.
Sets the PC to the vector address for the exception.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-109
Non-Confidential

5 Handling Processor Exceptions
5.8 Return from an exception handler

5.8 Return from an exception handler

After it has handled an exception, the exception handler must return execution to the main program. The
method used to return depends on whether or not the exception handler uses stack operations.

In both cases, to return execution to the place where the exception occurred, an exception handler must:

+ restore the CPSR from the appropriate SPSR
+ restore the PC using the return address from the appropriate LR.

For a simple return that does not require the destination mode registers to be restored from the stack, the
exception handler carries out these operations by performing a data processing instruction with:The
return instruction required depends on the type of exception.

* the S flag set

* the PC as the destination register.

Note

You do not have to return from the reset handler because the reset handler executes your main code
directly.

If the exception handler entry code uses the stack to store registers that must be preserved while it
handles the exception, it can return using a load multiple instruction with the ” qualifier. For example, an
exception handler can return in one instruction using:

LDMFD sp!,{R@-R12,pc}*

To do this, the exception handler must save the following onto the stack:

+ all the work registers in use when the handler is invoked
* the link register, modified to produce the same effect as the data processing instructions.

The ~ qualifier specifies that the CPSR is restored from the SPSR. It must be used only from a privileged
mode.

Note

You cannot use any 16-bit Thumb instruction to return from exceptions because these are unable to
restore the CPSR.

Related information

Stack implementation using LDM and STM.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-110
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1359731152499.html

5 Handling Processor Exceptions
5.9 Reset handlers

5.9 Reset handlers

The operations carried out by the Reset handler depend on the system that the software is being
developed for.

For example, it might:

set up exception vectors

initialize stacks and registers

initialize the memory system, if using an MMU

initialize any critical I/O devices

enable interrupts

change processor mode and/or state

initialize variables required by C and call the main application.

Related concepts
5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 5-106.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-111
Non-Confidential

5 Handling Processor Exceptions
5.10 Data Abort handler

5.10 Data Abort handler

If there is no MMU, the Data Abort handler must report the error and quit. If there is an MMU, the
handler must deal with the virtual memory fault.

The instruction that caused the abort is at 1r_ABT-8 because 1r_ABT points two instructions beyond the
instruction that caused the abort.

The following types of instruction can cause this abort:

Single Register Load or Store
The response depends on the processor type:

+ If the abort takes place on an ARM7™, including the ARM7TDMI, the base register,
specified in the instruction, has been updated and the change must be undone.

+ If the abort takes place on an ARM9™ or later processor, the address is restored by the
processor to the value it had before the instruction started. No code is required to undo the
change.

Swap (SWP)

There is no address register update involved with this instruction.
Load Multiple or Store Multiple

The response depends on the processor type:

+ If the abort takes place on an ARM7 processor, and writeback is enabled, the base register is
updated as if the whole transfer had taken place.

In the case of an LDM with the base register in the register list, the processor replaces the
overwritten value with the modified base value so that recovery is possible. The original
base address can then be recalculated using the number of registers involved.

+ Ifthe abort takes place on an ARM9 or later processor and writeback is enabled, the base
register is restored to the value it had before the instruction started.

In each of the three cases, the MMU can load the required virtual memory into physical memory. The
MMU Fault Address Register (FAR) contains the address that caused the abort. When this is done, the
handler can return and try to execute the instruction again.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-112
Non-Confidential

5 Handling Processor Exceptions
5.11 Interrupt handlers and levels of external interrupt

5.11 Interrupt handlers and levels of external interrupt

The ARM processor has two levels of external interrupt, FIQ and IRQ. FIQs have higher priority than
IRQs.

Both FIQ and IRQ are level-sensitive active LOW signals into the processor. For an interrupt to be taken,
the appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in the following ways:

* FIQs are handled first when multiple interrupts occur.

* Handling an FIQ causes IRQs and subsequent FIQs to be disabled, preventing them from being
handled until after the FIQ handler enables them. This is usually done by restoring the CPSR from
the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table so that the FIQ handler can be placed directly at the
vector location and run sequentially from that address. This removes the requirement for a branch and its
associated delay, and also means that if the system has a cache, the vector table and FIQ handler might
all be locked down in one block within it. This is important because FIQs are designed to handle
interrupts as quickly as possible. The five extra FIQ mode banked registers enable status to be held
between calls to the handler, again increasing execution speed.

Note

An interrupt handler must contain code to clear the source of the interrupt.

Related concepts

5.12 Reentrant interrupt handlers on page 5-114.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-113
Non-Confidential

5 Handling Processor Exceptions
5.12 Reentrant interrupt handlers

5.12 Reentrant interrupt handlers

You must follow some steps to enable interrupts safely in an IRQ handler.

If an interrupt handler enables interrupts before calling a subroutine and another interrupt occurs, the
return address of the subroutine stored in the IRQ mode LR is corrupted when the second IRQ is taken.
This is because the processor automatically saves the return address into the IRQ mode LR for the new
interrupt overwriting the return address for the subroutine. This results in an infinite loop when the
subroutine in the original interrupt tries to return.

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save the state for the
new processor mode before branching to a nested subroutine or C function. It must also ensure that the
stack is eight-byte aligned for the new processor mode before calling AAPCS-compliant compiled C
code that might use LDRD or STRD instructions or eight-byte aligned stack-allocated data.

Using the __irq keyword in C does not cause the SPSR to be saved and restored, as required by
reentrant interrupt handlers, so you must write your top level interrupt handler in assembly language.

In ARMv4 or later you can switch to System mode if you require privileged access.

Note

This method works for both IRQ and FIQ interrupts. However, because FIQ interrupts are meant to be
handled as quickly as possible there is normally only one interrupt source, so it might not be necessary to
provide for reentrancy.

To enable interrupts safely in an IRQ handler:

Construct the return address and save it on the IRQ stack.

Save the work registers, non callee-saved registers and IRQ mode SPSR.
Clear the source of the interrupt.

Switch to System mode, keeping IRQs disabled.

Check that the stack is eight-byte aligned and adjust if necessary.

Save the User mode LR and the adjustment, 0 or 4 for Architectures v4 or vSTE, used on the User
mode SP.

7. Enable interrupts and call the C interrupt handler function.

AR e

8. When the C interrupt handler returns, disable interrupts.

9. Restore the User mode LR and the stack adjustment value.
10. Readjust the stack if necessary.

11. Switch to IRQ mode.

12. Restore other registers and IRQ mode SPSR.

13. Return from the IRQ.

The following examples show how this works for System mode. These examples assume that FIQ
remains permanently enabled.

Reentrant interrupt handler for ARMv4/v5TE

PRESERVES

AREA INTERRUPT, CODE, READONLY
IMPORT C_irg_handler

IMPORT identify_and_clear_source

IRQ_Handler

SUB 1r, 1lr, #4 ; construct the return address
PUSH {1r} ; and push the adjusted 1lr_IRQ
MRS 1r, SPSR ; copy spsr_IRQ to 1lr
PUSH {RO-R4,R12,1r} ; save AAPCS regs and spsr_IRQ
BL identify_and_clear_source
MSR CPSR_c, #Ox9F ; switch to SYS mode, IRQ is

; still disabled. USR mode

; registers are now current.
AND R1, sp, #4 ; test alignment of the stack

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-114
Non-Confidential

SuB
PUSH
MSR
BL
MSR
POP
ADD
MSR

POP
MSR
LDM
END

sp, sp, Rl

5 Handling Processor Exceptions
5.12 Reentrant interrupt handlers

remove any misalignment (@ or 4)

{R1,1r} ; store the adjustment and 1lr_USR
CPSR_c, #0x1F enable IRQ

C_irqg_handler
CPSR_c, #Ox9F
{R1,1r}

sp, sp, Rl
CPSR_c, #0x92

“e

disable IRQ, remain in SYS mode

switch to IRQ mode and keep IRQ
disabled. FIQ is still enabled.
restore registers and

spsr_IRQ

return from IRQ.

{RB-R4,R12,1r}
SPSR_cxsf, 1r
sp!, {pc}*

L A VR

Reentrant Interrupt for ARMv6 (non vectored interrupts)

PRESERVES8

AREA INTERRUPT, CODE, READONLY
IMPORT C_irg_handler

IMPORT identify_and_clear_source

IRQ_Handler

SUB
SRSDB
CPS
PUSH
AND
SUB
PUSH
BL
CPSIE
BL
CPSID
POP
ADD
POP
RFEIA
END

1r, 1r, #4

sp!,#31 ; Save LR_irqg and SPSR_irqg to System mode stack
#031 ; Switch to System mode

{R@-R3,R12} ; Store other AAPCS registers

R1, sp, #4

Sp) Sp; R1

{R1, 1r}

identify_and_clear_source

i ; Enable IRQ

C_irqg_handler

i ; Disable IRQ

{R1,1r}

sp, sp, Rl

{RO-R3, R12} ; Restore registers

sp! ; Return using RFE from System mode stack

Related concepts
5.6 Use of System mode for exception handling on page 5-108.

Related information

ABI for the ARM Architecture Advisory Note 1- SP must be 8-byte aligned on entry to AAPCS-

conforming functions.

Application Note 30: Software Prioritization of Interrupts.

restore stack adjustment and 1lr_USR
add the stack adjustment (@ or 4)

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

5-115

http://infocenter/help/topic/com.arm.doc.ihi0046-/index.html
http://infocenter/help/topic/com.arm.doc.ihi0046-/index.html
http://infocenter/help/topic/com.arm.doc.dai0030-/index.html

5 Handling Processor Exceptions
5.13 Single-channel DMA transfer

5.13 Single-channel DMA transfer
An FIQ handler for a single channel uses a sequence of four instructions to handle a normal data transfer.

The following example shows an interrupt handler that performs interrupt driven I/O to memory
transfers, soft DMA. The code is an FIQ handler. It uses the banked FIQ registers to maintain state
between interrupts. This code is best situated at location @x1C.

In the example code:

RS
Points to the base address of the I/O device that data is read from.
IOData
Is the offset from the base address to the 32-bit data register that is read. Reading this register
clears the interrupt.
R9
Points to the memory location to which that data is being transferred.
R10
Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Insert code after the conditional
return to signal that the transfer is complete.

FIQ handler
LDR R11, [R8, #IOData] Load port data from the IO device.
STR R11, [R9], #4 Store it to memory: update the pointer.
CMP R9, R10 Reached the end ?

SUBLSS pc, 1lr, #4 No, so return.
Insert transfer complete

code here.

Lo W

Byte transfers can be made by replacing the load instructions with load byte instructions. Transfers from
memory to an I/O device are made by swapping the addressing modes between the load instruction and
the store instruction.

Related concepts
5.14 Dual-channel DMA transfer on page 5-117.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-116
Non-Confidential

5 Handling Processor Exceptions
5.14 Dual-channel DMA transfer

5.14 Dual-channel DMA transfer

An FIQ handler for two channels uses a sequence of nine instructions to handle a normal data transfer.

The example shown below handles two channels. The code is an FIQ handler. It uses the banked FIQ
registers to maintain state between interrupts. It is best situated at location ©x1C.

In the example code:

RS
Points to the base address of the I/O device from which data is read.

I0Stat
Is the offset from the base address to a register indicating which of two ports caused the
interrupt.

IOPortlActive
Is a bit mask indicating if the first port caused the interrupt. Otherwise it is assumed that the
second port caused the interrupt.

IOPortl

IOPort2
Are offsets to the two data registers to be read. Reading a data register clears the interrupt for the
corresponding port.

R9
Points to the memory location to which data from the first port is being transferred.

R10
Points to the memory location to which data from the second port is being transferred.

R11

R12

Point to the last address to transfer to. This is R11 for the first port, R12 for the second.

The entire sequence to handle a normal transfer takes nine instructions. Insert code after the conditional
return to signal that the transfer is complete.

FIQ handler
LDR sp, [R8, #IOStat] ; Load status register to find which
; port caused the interrupt.
TST sp, #IOPortlActive

LDREQ sp, [R8, #IOPorti]
LDRNE sp, [R8, #IOPort2]
STREQ sp, [R9], #4 Store to buffer 1.
STRNE sp, [R10], #4 Store to buffer 2.

; Load port 1 data.
;
:
cvp RO, R11 : Reached the end?
:
:
;

Load port 2 data.

CMPLE R10, R12 On either channel?
SUBSNE pc, 1lr, #4 Return
Insert transfer complete code here.

Byte transfers can be made by replacing the load instructions with load byte instructions. Transfers from
memory to an I/O device are made by swapping the addressing modes between the conditional load
instructions and the conditional store instructions.

Related concepts

5.13 Single-channel DMA transfer on page 5-116.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-117
Non-Confidential

5 Handling Processor Exceptions
5.15 Interrupt prioritization

Interrupt prioritization

Shows the sequence of instructions to dispatch the highest priority active interrupt to its handler.
Because it is designed for use with the normal interrupt vector, IRQ, it is branched to from location 0x18.

Use external Vectored Interrupt Controller (VIC) hardware to prioritize the interrupt and present the
high-priority active interrupt in an I/O register.

In the example code:

IntBase

Holds the base address of the interrupt controller.
IntLevel

Holds the offset of the register containing the highest-priority active interrupt.
R13

Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered, with all registers preserved on the stack, after two more
instructions.

In addition, the last three instructions of each handler are executed with interrupts turned off again, so
that the SPSR can be safely recovered from the stack.

Dispatching interrupts to handlers

; first save the critical state

SUB 1r, 1r, #4 ; Adjust the return address
; before we save it.
STMDB sp!, {1r} ; Stack return address
MRS 1r, SPSR ; get the SPSR ...
PUSH {R12,1r} 8 . and stack that plus a
; working register too.
; Now get the priority level of the
; highest priority active interrupt.
MOV R12, #IntBase ; Get the interrupt controller's
; base address.
LDR R12, [R12, #IntLevel] ; Get the interrupt level (@ to 31).
; Now read-modify-write the CPSR
; to enable interrupts.
MRS 1r, APSR ; Read the status register.
BIC 1r, 1r, #0x80 ; Clear the I bit
; (use x40 for the F bit).
MSR CPSR_c, 1r ; Write it back to re-enable
; interrupts and
LDR pc, [pc, R12, LSL #2] ; jump to the correct handler.
; PC base address points to this
; instruction + 8
NOP ; pad so the PC indexes this table.
; Table of handler start addresses
DCD Priority@Handler
DCD PrioritylHandler
DCD Priority2Handler
§ ooo
Priority@Handler
PUSH {RO-R11} ; Save other working registers.
; Insert handler code here.
8 ooo
POP {RO-R11} ; Restore working registers (not R12).
; Now read-modify-write the CPSR
; to disable interrupts.
MRS R12, APSR ; Read the status register.
ORR R12, R12, #0x80 ; Set the I bit
; (use x40 for the F bit).
MSR CPSR_c, R12 ; Write it back to disable interrupts.
; Now that interrupt disabled, can
; safely restore SPSR then return.
POP {ri12,1r} ; Restore R12 and get SPSR.
MSR SPSR_cxsf, 1lr ; Restore status register from R14.
LDM sp!, {pc}i* ; Return from handler.
PrioritylHandler
5
ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-118

Non-Confidential

5 Handling Processor Exceptions
5.16 Context switch

5.16 Context switch
Shows how to perform a context switch on the User mode process.

The code is based around a list of pointers to Process Control Blocks (PCBs) of processes that are ready
to run.

This figure shows the layout of the PCBs that the example expects.

r14
r13
r12
r11

r10
9 User

8 mode

r7 registers
ré
r5
r4
r3
r2

r1
PCB 0

L —> _
pointer Ir
spsr

Figure 5-2 PCB layout

The pointer to the PCB of the next process to run is pointed to by R12, and the end of the list has a zero
pointer. Register R13 is a pointer to the PCB, and is preserved between time slices, so that on entry it
points to the PCB of the currently running process.

Context switch on the User mode process

STM sp,{RO-1r}» ; Dump user registers above R13.

MRS RO, SPSR ; Pick up the user status

STMDB sp, {R@, 1r} ; and dump with return address below.
LDR sp, [R12], #4 ; Load next process info pointer.
CMP sp, #0

LDMDBNE sp, {R@, 1r}
MSRNE SPSR_cxsf, RO
LDMNE sp, {R@ - 1lr}~
NOP
SUBSNE pc, 1lr, #4 ; and return and restore CPSR.

; Insert "no next process code" here.

; Pick up status and return address.
; Restore the status.

)

B

)

)

; If it is zero, it is invalid
)

)

; Get the rest of the registers

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-119
Non-Confidential

5 Handling Processor Exceptions
5.17 Determining the SVC to be called

5.17 Determining the SVC to be called
When an SVC handler is entered, it must establish which SVC is being called.

For the ARM SVC instruction, this information can be stored in bits 0-23 of the instruction itself, as
shown in the following figure, or passed in an integer register, usually one of R@-R3.

31 28 27 26 25 24 23 0
cond (1 1 1 1 24 bit immediate

comment field

Figure 5-3 ARM SVC instruction

The top-level SVC handler can load the SVC instruction relative to the LR. Do this in assembly language,
C/C++ inline, or embedded assembler.

The handler must first load the SVC instruction that caused the exception into a register. At this point, the
SVC LR holds the address of the instruction that follows the SVC instruction, so the SVC is loaded into the
register, in this case R@, using:

LDR RO, [1r,#-4]

The handler can then examine the comment field bits, to determine the required operation. The SVC
number is extracted by clearing the top eight bits of the opcode:

BIC RO, RO, #0OxFF000000

The following example shows how you can put these instructions together to form a top-level SVC
handler, for exceptions that occur in ARM state only.

Top-level SVC handler

PRESERVES8

AREA ToplLevelSVC, CODE, READONLY ; Name this block of code.

EXPORT SVC_Handler

SVC_Handler

PUSH {RO-R12,1r} ; Store registers.

LDR RO, [1r,#-4] ; Calculate address of SVC
; instruction and load it
; into Re.
B

BIC RO, RO, #0xFF000000 ; Mask off top 8 bits of
B

instruction to give SVC number.
; Use value in RO to determine which SVC routine to execute.
EBIS sp!, {R@-R12,pc}* ; Restore registers and return.
Related concepts
5.18 Determining the instruction set state from an SVC handler on page 5-121.
5.19 SVC handlers in assembly language on page 5-122.
5.20 SVC handlers in C and assembly language on page 5-123.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-120
Non-Confidential

5 Handling Processor Exceptions
5.18 Determining the instruction set state from an SVC handler

5.18 Determining the instruction set state from an SVC handler

An exception handler might have to determine whether the processor was in ARM or Thumb state when
the exception occurred.

SVC handlers, especially, might have to read the instruction set state. This is done by examining the
SPSR T-bit. This bit is set for Thumb state and clear for ARM state.

Both ARM and Thumb instruction sets have the SVC instruction. When calling SVCs from Thumb state,
you must consider the following:

e The instruction address is at Ir-2, rather than Ir—4.
* The instruction itself is 16-bit, and so requires a halfword load, see the following figure.
* The SVC number is held in 8 bits instead of the 24 bits in ARM state.

1514131211109 8 7 0
171011111 8_bit_ immediate

\ |
comment field

Figure 5-4 Thumb SVC instruction

The following example shows ARM code that handles an SVC exception. The range of SVC numbers
accessible from Thumb state can be increased by calling SVCs dynamically.

SVC handler for exceptions in either ARM or Thumb state

PRESERVES8
AREA SVC_Area, CODE, READONLY
EXPORT SVC_Handler IMPORT C_SVC_Handler
T bit EQU 0x20 ; Thumb bit (5) of CPSR/SPSR.
SVC_Handler
STMFD sp!, {r@-r3, ri2, 1lr}
MoV rl, sp
MRS re, spsr
STMFD sp!, {ro@, r3}

; Store registers

; Set pointer to parameters
; Get spsr

; Store spsr onto stack and another
; register to maintain

; 8-byte-aligned stack

; Occurred in Thumb state?
; Yes: Load halfword and...
; ...extract comment field
; No: Load word and...

; ...extract comment field

TST re, #T_bit

LDRNEH re, [1r,#-2]

BICNE ro, ro, #0xFFoo
LDREQ ro, [lr,#-4]

BICEQ ro, ro, #0xFF000000
; r@ now contains SVC number
; rl now contains pointer to stacked registers

BL C_SVC_Handler ; Call main part of handler
LDMFD sp!, {roe, r3} ; Get spsr from stack

MSR SPSR_cxsf, re ; Restore spsr

LDMFD sp!, {re-r3, ri12, pc}” ; Restore registers and return
END

Related concepts
5.17 Determining the SVC to be called on page 5-120.
5.19 SVC handlers in assembly language on page 5-122.
5.20 SVC handlers in C and assembly language on page 5-123.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-121
Non-Confidential

5 Handling Processor Exceptions
5.19 SVC handlers in assembly language

5.19 SVC handlers in assembly language

The easiest way to call the handler for the requested SVC number is to use a jump table.

SVC jump table

AREA SVC_Area, CODE, READONLY

PRESERVES

IMPORT SVCOutOfRange

IMPORT MaxSVC

CMP RO, #MaxSVC ; Range check
LDRLS pc, [pc,Re,LSL #2]

B SVCOutOfRange

SVCJumpTable

DCD SVCnhum@
DCD SVCnuml
; DCD for each of other SVC routines

SVCnumo ; SVC number @ code

B EndofSVC

SVCnuml ; SVC number 1 code

B EndofSVC
; Rest of SVC handling code

EndofSVC

; Return execution to top level

; SVC handler so as to restore

; registers and return to program.
END

If R contains the SVC number, the code in the preceding example can be inserted into the following
example, after the BIC instruction.

Top-level SVC handler

PRESERVES8
AREA ToplLevelSVC, CODE, READONLY ; Name this block of code.
EXPORT SVC_Handler

SVC_Handler

PUSH {RO-R12,1r} ; Store registers.

LDR RO, [1r,#-4] ; Calculate address of SVC
; instruction and load it
; into Re.
5

BIC RO, RO, #0xFF000000 ; Mask off top 8 bits of
5

instruction to give SVC number.
H
; Use value in RO to determine which SVC routine to execute.

)
LDM sp!, {R@-R12,pc}” ; Restore registers and return.
END

Related concepts

5.17 Determining the SVC to be called on page 5-120.
5.18 Determining the instruction set state from an SVC handler on page 5-121.
5.20 SVC handlers in C and assembly language on page 5-123.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-122
Non-Confidential

5 Handling Processor Exceptions
5.20 SVC handlers in C and assembly language

5.20 SVC handlers in C and assembly language

Although the top-level handler must always be written in ARM assembly language, the routines that
handle each SVC can be written in either assembly language or in C.

The top-level handler uses a BL instruction to jump to the appropriate C function. For example:

BL C_SVC_Handler ; Call C routine to handle the SVC

You can add this instruction to the SVC_Handler routine, after the BIC instruction, shown in the
following example:

Top-level SVC handler

PRESERVES8

AREA ToplLevelSVC, CODE, READONLY ; Name this block of code.

EXPORT SVC_Handler

SVC_Handler

PUSH {RO-R12,1r} ; Store registers.

LDR RO, [1r,#-4] ; Calculate address of SVC
; instruction and load it
; into Re.
B

BIC RO, RO, #0XxFF000000 ; Mask off top 8 bits of
B

instruction to give SVC number.
5
; Use value in RO to determine which SVC routine to execute.

5
LDM sp!, {R@-R12,pc}* ; Restore registers and return.
END

Because the SVC number is loaded into R@ by the assembly routine, this is passed to the C function as
the first parameter. The function can use this value in, for example, a switch() statement, see the
following example:

SVC handler in C function

void C_SVC_Handler (unsigned number)

switch (number)

case 0 : /* SVC number @ code */
Bééak;
case 1 : /* SVC number 1 code */
Bééak;
aé%ault 5 /* Unknown SVC - report error */

}

The Supervisor mode stack space might be limited, so avoid using functions that require a large amount
of stack space.

MOV R1, sp ; Second parameter to C routine...
5 ...1s pointer to register values.
BL C_SVC_Handler ; Call C routine to handle the SVC.

You can pass values in and out of an SVC handler written in C, provided that the top-level handler
passes the stack pointer value into the C function as the second parameter, in R1, and the C function is
updated to access it:

void C_SVC_Handler(unsigned number, unsigned *reg)

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-123
Non-Confidential

5 Handling Processor Exceptions

5.20 SVC handlers in C and assembly language

The C function can now access the values contained in the registers at the time the SVC instruction was
encountered in the main application code, see the following example. It can read from them:

value_in_reg © = reg [0];
value_in_reg_ 1 = reg [1];
value_in_reg 2 = reg [2];
value_in_reg 3 = reg [3];

and also write back to them:

reg [0] = updated_value_0;
reg [1] = updated_value_1;
reg [2] = updated_value_2;
reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then restored into the

register by the top-level handler.

Previous sp_SVC

\4

Ir_SVC

r12

r3

«—reg [3]

r2

r1

sp_SVC > r0

l«——reg [0]

Figure 5-5 Accessing the Supervisor mode stack

Related concepts

5.17 Determining the SVC to be called on page 5-120.

5.18 Determining the instruction set state from an SVC handler on page 5-121.

5.19 SVC handlers in assembly language on page 5-122.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

5-124

5 Handling Processor Exceptions
5.21 Using SVCs in Supervisor mode

5.21 Using SVCs in Supervisor mode

If you call an SVC while in Supervisor mode you must store SVC LR and SPSR to ensure that their
original values are not lost.

When an SVC instruction is executed:

1. The processor enters Supervisor mode.
2. The CPSR is stored into the SVC SPSR.
3. The return address is stored in the SVC LR.

If the processor is already in Supervisor mode, the SVC LR and SPSR are corrupted, unless you store
them.

For example, if the handler routine for a particular SVC number calls another SVC, you must ensure that
the handler routine stores both SVC LR and SPSR on the stack. This guarantees that each invocation of
the handler saves the information required to return to the instruction following the SVC that invoked it.
The following example shows how to do this.

SVC Handler

AREA SVC_Area, CODE, READONLY
PRESERVES
EXPORT SVC_Handler
IMPORT C_SVC_Handler
T_bit EQU 0x20
SVC_Handler

PUSH {R@-R3,R12,1r} Store registers.

MoV R1, sp Set pointer to parameters.

MRS RO, SPSR Get SPSR.

PUSH {RO,R3} Store SPSR onto stack and another
register to maintain
8-byte-aligned stack. Only
required for nested SVCs.

TST RO, #0x20 Occurred in Thumb state?

LDRHNE RO, [1r,#-2]

BICNE Re,RO,#0OxFFo0
LDREQ RO, [1lr,#-4]

BICEQ Re,R@,#0xFFo00e00

Yes: load halfword and...
...extract comment field.

No: load word and...

...extract comment field.

RO now contains SVC number

R1 now contains pointer to stacked
registers.

L oV VS VR

BL C_SVC_Handler Call C routine to handle the SVC.
POP {RO,R3} Get SPSR from stack.

MSR SPSR_cf, R@ Restore SPSR.

LDM sp!, {R@-R3,R12,pc}” ; Restore registers and return.
END

Nested SVCs in C and C++

You can write nested SVCs in C or C++. Code generated by the compiler stores and reloads 1r_SVC as
necessary.

Related concepts

5.7 The processor response to an exception on page 5-109.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-125
Non-Confidential

5 Handling Processor Exceptions
5.22 Calling SVCs from an application

5.22 Calling SVCs from an application

You can call an SVC from assembly language or C/C++.

In assembly language, set up any required register values and issue the relevant SVC. For example:

MOV RO, #65 ; load RO with the value 65
SvC ('C] ; Call SVC o0x0 with parameter value in RO

The SVC instruction can be conditionally executed, as can almost all ARM instructions.

From C/C++, declare the SVC as an __SVC function, and call it. For example:

__svc(@) void my_svc(int);

ﬁy_svc(GS);
This enables an SVC to be compiled inline, without additional calling overhead, provided that:

* any arguments are passed in R@-R3 only
+ any results are returned in R@-R3 only.

The parameters are passed to the SVC as if the SVC were a real function call. However, if there are
between two and four return values, you must tell the compiler that the return values are being returned
in a structure, and use the __value_in_regs directive. This is because a struct-valued function is
usually treated as if it were a void function whose first argument is the address where the result structure
must be placed.

The following examples show an SVC handler that provides SVC numbers 0x0, 0x1, 8x2 and 0x3. SVC
ox@ and SVC @x1 each take two integer parameters and return a single result. SVC 0x2 takes four
parameters and returns a single result. SVC 0x3 takes four parameters and returns four results.

main.c

#include <stdio.h>

#include "svc.h"

unsigned *svc_vec = (unsigned *)0x08;
extern void SVC_Handler(void);

int main(void)

int resultl, result2;

struct four_results res_3;

Install_Handler((unsigned) SVC_Handler, svc_vec);

printf("resultl = multiply two(2,4) = %d\n", resultl = multiply_two(2,4))
printf("result2 = multiply_two(3,6) = %d\n", result2 = multiply two(3,6))
printf("add_two(resultl, result2) = %d\n", add_two(resultl, result2))
printf(“"add_multiply two(2,4,3,6) = %d\n", add_multiply two(2,4,3,6));
res_3 = many_operations(12, 4, 3, 1);

printf("res_3.a = %d\n", res_3.a);

printf(“"res_3.b = %d\n", res_3.b);

printf("res_3.c = %d\n", res_3.c);

printf("res_3.d = %d\n", res_3.d);

return 0;

3
E}

3

svc.h

__svc(@) int multiply two(int, int);

__svc(1l) int add_two(int, int);

__svc(2) int add_multiply_two(int, int, int, int);
struct four_results

.
int a;
int b;
int c;
int d;
s

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-126
Non-Confidential

5 Handling Processor Exceptions
5.22 Calling SVCs from an application

__svc(3) _ value_in_regs struct four_results
many_operations(int, int, int, int);

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-127
Non-Confidential

5 Handling Processor Exceptions
5.23 Calling SVCs dynamically from an application

5.23 Calling SVCs dynamically from an application
In some circumstances it might be necessary to call an SVC whose number is not known until run-time.

This situation might occur, for example, when there are a number of related operations that can be
performed on an object, and each operation has its own SVC. In this case, the methods described in this
topic are appropriate.

There are several ways of dealing with this, for example:

* Construct the SVC instruction from the SVC number, store it somewhere, then execute it.

» Use a generic SVC that takes, as an extra argument, a code for the actual operation to be performed
on its arguments. The generic SVC decodes the operation and performs it.

The second mechanism can be implemented in assembly language by passing the required operation
number in a register, typically R0 or R12. You can then rewrite the SVC handler to act on the value in the
appropriate register.

Because some value has to be passed to the SVC in the comment field, it is possible for a combination of
these two methods to be used.

For example, an operating system might make use of only a single SVC instruction and employ a register
to pass the number of the required operation. This leaves the rest of the SVC space available for
application-specific SVCs. You can use this method if the overhead of extracting the operation number
from the instruction is too great in a particular application. This is how the ARM and Thumb semihosted
instructions are implemented.

The following example shows how to use __svc to map a C function call onto a semihosting call:

Mapping a C function onto a semihosting call

#ifdef __thumb

/* Thumb Semihosting */

#define SemiSVC OxAB

#else

/* ARM Semihosting */

#define SemiSVC 0x123456

#endif

/* Semihosting call to write a character */
__svc(SemiSVC) void Semihosting(unsigned op, char *c);
#tdefine WriteC(c) Semihosting (@x3,c)

void write_a_character(int ch)

char tempch = ch;
WriteC(&tempch);
}

The compiler includes a mechanism to support the use of R12 to pass the value of the required operation.
Under the AAPCS, R12 is the ip register and has a dedicated role only during function calls. At other
times, you can use it as a scratch register. The arguments to the generic SVC are passed in registers Ro-
R3 and values are optionally returned in R@-R3. The operation number passed in R12 can be the number of
the SVC to be called by the generic SVC. However, this is not required.

The following example shows a C fragment that uses a generic, or indirect SVC.

Using indirect SVC

__svc_indirect(0x80)
unsigned SVC_ManipulateObject(unsigned operationNumber,
unsigned object,unsigned parameter);
unsigned DoSelectedManipulation(unsigned object,
unsigned parameter, unsigned operation)

return SVC_ManipulateObject(operation, object, parameter);

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-128
Non-Confidential

5 Handling Processor Exceptions
5.23 Calling SVCs dynamically from an application

This produces the following code:

DoSelectedManipulation

PUSH {R4,1r}
MoV R12,R2
SVC #0x80
POP {R4,pc}
END

It is also possible to pass the SVC number in RO from C using the __svc mechanism. For example, if SVC
0x0 is used as the generic SVC, operation 0 is a character read, and operation 1 is a character write, you
can set up the following:

__svc (@) char __ReadCharacter (unsigned op);
__svc (@) void _ WriteCharacter (unsigned op, char c);

These can be used in a more reader-friendly way by defining the following:

#tdefine ReadCharacter () _ ReadCharacter (©0);
#define WriteCharacter (c) _ WriteCharacter (1, c);

However, if you use R@ in this way, then only three registers are available for passing parameters to the
SVC. Usually, if you have to pass more parameters to a subroutine in addition to R@-R3, you can do this
using the stack. However, stacked parameters are not easily accessible to an SVC handler, because they
typically exist on the User mode stack rather than the Supervisor mode stack employed by the SVC
handler.

Alternatively, you can use one of the registers, typically R1, to point to a block of memory storing the
other parameters.

Related concepts

5.22 Calling SVCs from an application on page 5-126.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-129
Non-Confidential

5 Handling Processor Exceptions
5.24 Prefetch Abort handler

5.24 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can report the error and quit. Otherwise the
address that caused the abort must be restored into physical memory.

1r_ABT points to the instruction at the address following the one that caused the abort, so the address to
be restored is at 1r_ABT-4. The virtual memory fault for that address can be dealt with and the
instruction fetch retried. The handler therefore returns to the same instruction rather than the following
one, for example:

SUBS pc,1lr,#4

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-130
Non-Confidential

5 Handling Processor Exceptions
5.25 Undefined instruction handlers

5.25 Undefined instruction handlers

In some cases, an undefined instruction exception can be handled by a software emulator for a
COoprocessor.

An undefined instruction exception is generated in the following cases:

+ if the processor does not recognize an instruction

+ if the processor recognizes an instruction as a coprocessor instruction, but no coprocessor recognizes
it.

It might be that the instruction is intended for a coprocessor, but the relevant coprocessor, for example
VFP, is not attached to the system, or is disabled. However, a software emulator for such a coprocessor
might be available.

Such an emulator must:

1. Attach itself to the undefined instruction vector and store the old contents.

2. Examine the undefined instruction to see if it has to be emulated. This is similar to the way in which
an SVC handler extracts the number of an SVC, but rather than extracting the bottom 24 bits, the
emulator must extract bits [27:24].

These bits determine whether the instruction is a coprocessor operation in the following way:

o Ifbits [27:24] = b1110 or b110x, the instruction is a coprocessor instruction.

» Ifbits [8:11] show that this coprocessor emulator has to handle the instruction, the emulator must
process the instruction and return to the user program.

3. Otherwise the emulator must pass the exception onto the original handler, or the next emulator in the
chain, using the vector stored when the emulator was installed.

When a chain of emulators is exhausted, the undefined instruction handler must report an error and quit.

Note

The pre-ARMv6T2 Thumb instruction set does not have coprocessor instructions, so there is no
requirement for the undefined instruction handler to emulate such instructions.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-131
Non-Confidential

5 Handling Processor Exceptions
5.26 ARMv6-M and ARMv7-M profiles

5.26 ARMv6-M and ARMv7-M profiles

The microcontroller profiles use a different exception handling model from that used by other
architectures and profiles.

The microcontroller profiles support:

* two operation modes, Thread mode and Handler mode
* two execution modes, Privileged mode and User mode.

Thread mode is entered on reset and normally on return from an exception. When in thread mode, code
can be executed in either Privileged or User mode.

Handler mode is entered as a result of an exception. All code is executed as Privileged. The processor
automatically switches to Privileged mode when exceptions occur.

Privileged mode has full access rights.
User mode has limited access rights. The limitations include restrictions on:

* instruction use, for example which fields can be used in MSR instructions
+ the use of certain coprocessor registers

* access to memory and peripherals based on system design

» access to memory and peripherals imposed by the MPU configuration.

You can change from Privileged Thread to User Thread mode by clearing CONTROL[0] using an MSR
instruction. However, you cannot directly change to privileged mode from user mode without going
through an exception,

Related concepts

5.36 Supervisor calls on page 5-142.

Related references

5.3 Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles on page 5-105.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-132
Non-Confidential

5 Handling Processor Exceptions
5.27 Main and Process stacks

5.27 Main and Process stacks

The microcontroller profiles support two different stacks, a main stack and a process stack.

There are two stack pointers in a microcontroller profile, one for each stack. Only one stack pointer is
visible at a time, depending on the stack in use.

The main stack is used at reset, and on entry to an exception handler. To use the process stack it must be
selected. You can do this while in Thread Mode, by writing to CONTROL[1] using an MSR instruction.

Note

Your initialization or context switching code must initialize the process stack pointer.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-133
Non-Confidential

5 Handling Processor Exceptions
5.28 Types of exceptions in the microcontroller profiles

5.28 Types of exceptions in the microcontroller profiles
The microcontroller profiles recognize a different set of exceptions from other profiles and architectures.
The following table shows the different types of exception recognized by the microcontroller profiles.
Each exception is handled in turn before returning to the original application. When multiple exceptions
occur simultaneously, they are handled in a fixed order of priority.
Table 5-2 Exception types in priority order for the microcontroller profiles
Position Exception Priority Disable Description
1 Reset -3 No
2 NMI -2 No Non-Maskable Interrupt (NMI)
3 HardFault -1 No All faults not covered by other exceptions
4 MemManage configurable Canbe Memory protection errors (ARMv7-M only)
5 BusFault configurable Canbe Other memory faults (ARMv7-M only)
6 UsageFault configurable Canbe Instruction execution faults other than memory faults
(ARMvV7-M only)
7-10 Reserved - -
11 SVCall configurable Canbe Synchronous SVC call caused by execution of SVC instruction
12 Debug Monitor configurable Canbe Synchronous debug event (ARMv7-M only)
13 Reserved - -
14 PendSV configurable Canbe Asynchronous SVC call
15 SysTick configurable Canbe System timer tick

16 and above External Interrupt configurable Canbe External interrupt

Exceptions with a lower priority number have a higher priority status. For example, if a processor is in
Handler mode, an exception is taken if it has a lower priority number than the exception currently being
handled. Any exception with the same priority number or higher is pended.

When an exception handler terminates:

» If there are no exceptions pending, the processor returns to Thread mode, and execution returns to the
application program.

+ If there are any exceptions pending, execution passes to the handler of the pending exception with the
lowest priority number. If there are two pending exceptions with the same lowest priority number, the
exception with the lowest exception number is handled first.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-134

Non-Confidential

5 Handling Processor Exceptions
5.29 Vector table for ARMv6-M and ARMv7-M profiles

5.29 Vector table for ARMv6-M and ARMv7-M profiles
The vector table for the microcontroller profiles consists of addresses to the relevant handlers.
The handler for exception number n is held at (vectorbaseaddress + 4 * n).

In ARMv7-M processors you can specify the vectorbaseaddress in the Vector Table Offset Register
(VTOR) to relocate the vector table. The default location on reset is 0x0 (CODE space). For ARMv6-M,
the vector table base address is fixed at 0x0. The word at vectorbaseaddress holds the reset value of
the main stack pointer.

Note
The least significant bit, bit[0] of each address in the vector table must be set or a HardFault exception is

generated. ARM Compiler toolchain normally enables this for you if Thumb symbol names are used in
the table.

Related concepts
5.30 Vector Table Offset Register (ARMv7-M only) on page 5-136.
5.31 Writing the exception table for ARMv6-M and ARMv7-M profiles on page 5-137.

Related references
5.28 Types of exceptions in the microcontroller profiles on page 5-134.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-135
Non-Confidential

5 Handling Processor Exceptions
5.30 Vector Table Offset Register (ARMv7-M only)

5.30 Vector Table Offset Register (ARMv7-M only)
The Vector Table Offset Register locates the vector table in CODE or SRAM space.

When setting a different location, the offset must be aligned based on the number of exceptions in the
table. This means that the minimal alignment is 32 words that you can use for up to 16 interrupts. For
more interrupts, you must adjust the alignment by rounding up to the next power of two. For example, if
you require 21 interrupts, the alignment must be on a 64-word boundary because table size is 37 words,
next power of two is 64.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-136
Non-Confidential

5.31 Writing the exception table for ARMv6-M and ARMv7-M profiles

5 Handling Processor Exceptions
5.31 Writing the exception table for ARMv6-M and ARMv7-M profiles

The easiest way to populate the vector table is to use a scatter file to place a C array of function pointers

at memory address 0x@.

You can use the C array to configure the initial stack pointer, image entry point and the addresses of the
exception handlers, see the following example.

Note

Some features shown in this example are not available in ARMv6-M. To maintain alignment you must
reserve the space by entering 0 in the vector table.

Example C structure for exception handlers

/* Filename: exceptions.c */

typedef void(* const ExecFuncPtr)(void);

/* Place table in separate section */

#pragma arm section rodata="exceptions_area"

ExecFuncPtr exception_table[] = {

(ExecFuncPtr)&Image$$ARM_LIB_ STACKHEAP$$ZI$$Limit,
/* Initial Stack Pointer, from linker-generated symbol

(ExecFuncPtr)&_ main,

&NMIException,
&HardFaultException,
&MemManageException, /&
&BusFaultException, Ve
&UsageFaultException, Vs
9, 0, 0, 0, /*
&SVCHandler, /*
&DebugMonitor, Vs
9, /*
&PendSVC, [

(ExecFuncPtr)&SysTickHandler, /*
/* Configurable interrupts start
&InterruptHandler,
&InterruptHandler,
&InterruptHandler

/*

i
s

#pragma arm section

Related concepts
5.29 Vector table for ARMv6-M and ARMv7-M profiles on page 5-135.
5.30 Vector Table Offset Register (ARMv7-M only) on page 5-136.

Related information

Information about scatter files.

ARMv7-M only (@ for
ARMv7-M only (@ for
ARMv7-M only (@ for
Reserved */

Only available with
ARMv7-M only (@ for
Reserved */

Only available with
Only available with
here...*/

/* Initial PC, set to entry point

ARMV6-M)
ARMV6-M)
ARMV6-M)

0S extensions
ARMv6-M)

0S extensions
0S extensions

*/
*/
*/
*/
*/
*/
*/
*/

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

5-137

http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362065968963.html

5 Handling Processor Exceptions
5.32 The Nested Vectored Interrupt Controller

5.32 The Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller, NVIC is the interrupt controller used in the microcontroller
profiles.

Depending on the implementation, the NVIC can support:

ARMv6-M
1, 8, 16, or 32 external interrupts with 4 different priority levels.

ARMvV7-M
up to 240 external interrupts with up to 256 different priority levels that can be dynamically
reprioritized. The NVIC also supports the tail-chaining of interrupts.

The microcontroller profiles support both level and pulse interrupt sources. The processor state is saved
automatically by hardware on interrupt entry and is restored on interrupt exit.

The use of an NVIC in the microcontroller profiles means that the vector table is very different from
other ARM processors, because it consists of addresses not instructions. The initial stack pointer and the
address of the reset handler must be located at x@ and @x4 respectively. These addresses are loaded into
the SP and PC registers by the processor at reset.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-138
Non-Confidential

5 Handling Processor Exceptions
5.33 Handling an exception

5.33 Handling an exception

In microcontroller profiles, exception prioritization, nesting of exceptions, and saving of corruptible
registers are handled entirely by the processor to provide efficiency and to minimize interrupt latency.

Interrupts are automatically enabled on entry to every exception handler which means that you must
remove any top-level reentrant code from projects written for other processors. If you require interrupts
to be disabled then you must handle this in your code and ensure that they are enabled on return from an
exception.

Note

Exception handlers must clear the interrupt source.

Microcontroller profiles have no FIQ input. Any peripheral that signals an FIQ on projects from other
processors must be moved to a high-priority external interrupt. It might be necessary to check that the
handler for this kind of interrupt does not expect to use the banked FIQ registers, because
microcontroller profiles do not have banked registers, and you must stack R8-R12 as for any other
normal IRQ handler.

Microcontroller profiles also provide a high priority Non Maskable Interrupt (NMI) which you cannot
disable.

Simple C exception handler example

Exception handlers for microcontroller profiles are not required to save or restore the system state and
can be written as ordinary, ABI-compliant C functions. However, it is recommended that you use the
__irqg keyword to identify the function as an interrupt routine, see the following example.

__irq void SysTickHandler(void)

printf("----- SysTick Interrupt ----- ")

8 byte stack alignment

The Application Binary Interface (ABI) for the ARM Architecture requires that the stack must be 8-byte
aligned on all external interfaces, such as calls between functions in different source files. However, code
does not have to maintain 8-byte stack alignment internally, for example in leaf functions. This means
that when an IRQ occurs the stack might not be correctly 8-byte aligned.

ARMV7-M processors can automatically align the stack pointer when an exception occurs. You can
enable this behavior by setting STKALIGN (bit 9) in the Configuration Control Register at address
OXEQQOED14.

ARMV6-M processors always enable this behavior however, it is recommended that you manually set
STKALIGN (bit 9) so that your image is forward compatible with ARMv7-M processors.

Note

If you are using a revision 0 Cortex-M3 processor STKALIGN is not supported, therefore the adjustment
is not performed in hardware and needs to be done by software. The compiler can generate code in your
IRQ handlers that correctly aligns the stack. To do this you must prefix your IRQ handlers with __irq
and use the - -cpu=Cortex-M3-reve compiler switch, not - -cpu=Cortex-M3.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-139
Non-Confidential

5.34

5 Handling Processor Exceptions

5.34 Configuring the System Control Space registers

Configuring the System Control Space registers

The System Control Space (SCS) is an address space that provides registers for system control and

configuration.

The System Control Space (SCS) registers are located at 9xE@0OE000. You can use a structure to
represent such a large number of individual registers and related offsets, see the following example. You
can then position the structure in the correct memory location using a scatter file, using a similar method

to the vector table.

The following example shows code for both the Cortex-M1 and Cortex-M3 processors:

SCS register structure and definition

typedef volatile struct {
int MasterCtrl;
int IntCtrlType;

int zReservedoe8_0oc[2]; /* Reserved space */

struct {

int Ctrl;

int Reload;

int Value;

int Calibration;
} SysTick;

int zReserved020_ofc[(0x100-0x20)/4]; /* Reserved space */

/* Offset 0x0100
* Additional space allocated to ensure alignment
*/
struct {
int Enable[32];
int Disable[32];
int Set[32];
int Clear[32];
int Active[64]; /* ARMvV7-M
int Priority[64];
} NVIC;

int zReservedox500_oxcfc[(0xde0-0x500)/4]; /* Reserved space

/* Offset 0x0doo */

int CPUID;

int IRQcontrolState;

int ExceptionTableOffset;

int AIRC;

int SysCtrl; /* ARMvV7-M
int ConfigCtrl; /* ARMvV7-M
int SystemPriority[3]; /* ARMv7-M

int zReservedoxd40_0xd90[(0xd90-0xd40)/4]; /* Reserved space

/* Offset oxed9o */

struct {
int Type; /* ARMv7-M
int Ctrl; /* ARMv7-M
int RegionNumber; /* ARMvV7-M
int RegionBaseAddr; /* ARMv7-M
int RegionAttrSize; /* ARMvV7-M
} MPU; /* ARMv7-M
} SCS_t;
/* Place SCS registers struct in a separate section so it
file */
#pragma arm section zidata="scs_registers"
SCS_t SCS;

#pragma arm section

Note

only

only
only
only

only
only
only
only
only
only

*/

*/

can be located using a scatter

The contents of the SCS registers might be different for your implementation. For example, there might
be no SysTick registers if the Operating System extension is not implemented.

ARM DUI0471K

Non-Confidential

Copyright © 2010-2014 ARM. All rights reserved.

5-140

5 Handling Processor Exceptions
5.35 Configuring individual IRQs

5.35 Configuring individual IRQs

Each IRQ has an individual enable bit in the Interrupt Set Enable Registers, part of the NVIC registers.
To enable or disable an IRQ, you must set the corresponding enable bit to either 1 or 0 respectively.

See the reference manual for the device you are using for specific information about the Interrupt Set
Enable Register.

The following example shows a typical function that enables an IRQ for an SCS structure.

IRQ Enable Function

void NVIC_enableISR(unsigned isr)
/* The isr argument is the number of the interrupt to enable. */

SCS.NVIC.Enable[(isr/32)] = 1<<(isr % 32);
}

Note

Some registers in the NVIC region can only be accessed from Privileged mode.

You can assign a priority level to each individual interrupt using the Interrupt Priority Registers apart
from Hard Fault, Non Maskable Interrupt (NMI), and reset which have fixed priorities.

Related concepts
5.34 Configuring the System Control Space registers on page 5-140.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-141
Non-Confidential

5 Handling Processor Exceptions
5.36 Supervisor calls

5.36 Supervisor calls

The SVC instruction generates an SVC. A typical use for SVCs is to request privileged operations or
access to system resources from an operating system.

The SVC instruction has a number embedded within it, often referred to as the SVC number. On most
ARM processors, the SVC number indicates the service that is being requested. On microcontroller
profiles, the processor saves the argument registers to the stack on the initial exception entry.

A late-arriving exception, taken before the first instruction of the SVC handler executes, might corrupt
the copy of the arguments still held in RO to R3. This means that the stack copy of the arguments must be
used by the SVC handler. Any return value must also be passed back to the caller by modifying the
stacked register values. In order to do this, a short piece of assembly code must be implemented at the
start of the SVC handler. This identifies where the registers are saved, extracts the SVC number from the
instruction, and passes the number, and a pointer to the arguments, to the main body of the handler
written in C.

The following example shows an example SVC handler. This code tests the EXC RETURN value set by
the processor to determine which stack pointer was in use when the SVC was called. This can be useful
for reentrant SVCs, but is unnecessary on most systems because in a typical system design, SVCs are
only called from user code that uses the process stack. In such cases, the assembly code can consist of a
single MSR instruction followed by a tail calling branch (B instruction) to the C body of the handler.

Example SVC Handler

__asm void SVCHandler(void)

IMPORT SVCHandler_main
TST 1r, #4

ITE EQ

MRSEQ RO, MSP

MRSNE RO, PSP

B SVCHandler_main

void SVCHandler_main(unsigned int * svc_args)
unsigned int svc_number;
*

* Stack contains:

* RO, R1, R2, R3, R12, R14, the return address and xPSR
* First argument (RO) is svc_args[0]

*/

svc_number = ((char *)svc_args[6])[-2];
switch(svc_number)

case SVC_00:
/* Handle SVC @0 */
break;

case SVC_01:
/* Handle SVC 01 */
break;

default:
/* Unknown SVC */
break;

}

The following example shows how you can make different declarations for a number of SVCs. __svc is
a compiler keyword that replaces a function call with an SVC instruction containing the specified number.

Example of calling an SVC from C code

#define SVC_00 0x00

#define SVC_01 0x01

void _ svc(SVC_00) svc_zero(const char *string);
void _ svc(SVC_01) svc_one(const char *string);
int call_system_func(void)

svc_zero("String to pass to SVC handler zero");

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-142
Non-Confidential

5 Handling Processor Exceptions
5.36 Supervisor calls

svc_one("String to pass to a different 0S function");

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-143
Non-Confidential

5 Handling Processor Exceptions
5.37 System timer

5.37 System timer

The SCS includes a system timer, SysTick, that an operating system can use to ease porting from another
platform.

Software can poll SysTick, or you can configure it to generate an interrupt. The SysTick interrupt has its
own entry in the vector table and therefore can have its own handler.

The following table describes the registers that you use to configure SysTick.

Table 5-3 Registers available for configuring SysTick

Name Address Description

SysTick Control and Status ©xE@@0E@10 Basic control of SysTick: enable, clock source, interrupt, or poll.

SysTick Reload Value OxEQ0OE@14 Value to load Current Value register when 0 is reached.

SysTick Current Value OxE@QELR18 The current value of the count down.

SysTick Calibration Value ©xE@00EQ1C Contains the current value of the count down.

Related concepts
5.38 Configuring SysTick on page 5-145.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 5-144
Non-Confidential

5 Handling Processor Exceptions
5.38 Configuring SysTick

5.38 Configuring SysTick

To configure SysTick, load the interval required between SysTick events to the SysTick Reload Value
register.

The timer interrupt, or COUNTFLAG bit in the SysTick Control and Status register, is activated on the
transition from 1 to 0, therefore it activates every n+1 clock ticks. If you require a period of 100, write 99
to the SysTick Reload Value register. The SysTick Reload Value register supports values between 0x1
and @x@OFFFFFF.

If you want to use SysTick to generate an event at a timed interval, for example 1ms, you can use the
SysTick Calibration Value Register to scale your value for the Reload register. The SysTick Calibration
Value Register is a read-only register that contains the number of pulses for a period of 10ms, in the
TENMS field, bits[23:0].

This register also has a SKEW bit. Bit[30] == 1 indicates that the calibration for 10ms in the TENMS
section is not exactly 10ms due to clock frequency. Bit[31] == 1 indicates that the reference clock is not
provided.

Note
For Cortex-M1 processors, the TENMS field reads as zero because the calibration value is unknown.

The Control and Status Register can poll the timer either by reading COUNTFLAG, bit[16] and the
SysTick generating an interrupt.

By default, SysTick is configured for polling mode. In this mode, user code polls COUNTFLAG, to
ascertain if the SysTick event had occurred. This is indicated by COUNTFLAG being set. Reading the
Control and Status register clears COUNTFLAG. To configure SysTick to generate an interrupt, set
TICKINT, bit[1] of the SysTick Control and Status register, to 1. You must also enable the appropriate
interrupt in the NVIC, and select the clock source using CLKSOURCE, bit[2]. Setting this to 1 selects
the processor clock, and 0 selects the external reference clock.

Note

For ARMv6-M processors, the CLKSOURCE bit is set because SysTick always uses the processor
clock.

You can enable the timer by setting bit[0] of the SysTick Status and Control register.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 5-145
Non-Confidential

Chapter 6
Debug Communications Channel

Describes how to use the Debug Communications Channel (DCC).
It contains the following sections:

o 6.1 About the Debug Communications Channel on page 6-147.

* 6.2 DCC communication between target and host debug tools on page 6-148.
* 6.3 Interrupt-driven debug communications on page 6-149.

* 0.4 Access from Thumb state on page 6-151.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 6-146
Non-Confidential

6 Debug Communications Channel
6.1 About the Debug Communications Channel

6.1 About the Debug Communications Channel

The EmbeddedICE® logic in ARM processors contains a debug communications channel. This enables
data to be passed between the target and the host debug tools.

Related concepts
6.2 DCC communication between target and host debug tools on page 6-148.
6.3 Interrupt-driven debug communications on page 6-149.
6.4 Access from Thumb state on page 6-151.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 6-147
Non-Confidential

6 Debug Communications Channel
6.2 DCC communication between target and host debug tools

6.2 DCC communication between target and host debug tools
The DCC can be accessed by a program running on the target, and by the host debugger.

The target accesses the DCC as coprocessor 14 on the processor using the ARM instructions MCR and
MRC. The following figure shows three DCC registers to control and transfer data between the target and
host debug tools.

Read register
For the target to read data sent from the host debug tools.
Write register
For the target to write messages to the host debug tools.
Control register
To provide handshaking information for the target and the host debug tools.

For pre-ARMv6 processors:

Bit 1 (W bit)
Clear when the target can send data.
Bit 0 (R bit)
Set when there is data for the target to read.

For ARMv6 and later processors:

Bit 29 (W bit)
Clear when the target can send data.
Bit 30 (R bit)
Set when there is data for the target to read.
DCC Host debug
tools

Write register

<JTAG»| DSTREAM

<——{Control register >

apoo j10bie]

Z uleyo uesg

Read register [#——

Figure 6-1 DCC communication between target and host debug tools
For more information, see the Technical Reference Manual for your processor.

Related information
Further reading.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 6-148
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0529-/pge1362395719869.html

6.3 Interrupt-driven debug communications

DCC communication between target and host debug tools

6 Debug Communications Channel
6.3 Interrupt-driven debug communications

Shows a simple DCC routine in which text sent from the debug tools is echoed back from the target with
a change of case.

Build an executable image from this example and run it on your target using the JTAG port. See your
debugger documentation for instructions on how to communicate with your target through DCC.

; Copyright ARM Ltd 2008. All rights reserved.

AREA DCC, CODE, READONLY

; Global Variables (for assembly time substitution)
; Debug Status and Control Register name

; Data Register name (same for reading and writing)

; R bit mask for testing whether the data register is ready to

ENTRY

GBLS SCReg

GBLS DReg

GBLS TestFull
; read from.

GBLS TestEmpty

; W bit mask for testing whether the data register is ready to

E}

; select which architecture group to assemble for

write to.

IF :DEF:pre_v6
INFO @, "Assembling for pre_vé6..."

; assemble for v6 and earlier processors

; assemble for v6 and onward processors

If the inverter pattern is non-zero there
are more chars, so branch to do the next

SCReg SETS "co,co"
DReg SETS "cl,co"
TestFull SETS "#1"
TestEmpty SETS "#2"
ELIF :DEF:v6_onward
INFO @, "Assembling for v6_onward..."
SCReg SETS "co,c1"”
DReg SETS "co,c5"
TestFull SETS "#0x40000000"
TestEmpty SETS "#0x20000000"
ELSE
INFO 1, "No target architecture specified. See the readme for more details."
ENDIF
IF :DEF:pre_vé6 || :DEF:v6_onward
; Code
pollin
MRC pl4,0,r3,$SCReg,0 ; Read Debug Status and Control Register
TST r3, $TestFull
BEQ pollin ; If R bit clear then loop
read
MRC pl4,0,r0,$DReg,® ; read word into ro
char_masks
MOV r4, #0x20 ; EOR mask to invert case of a char by
; flipping bit 6.
MOV r5, #0xCo ; AND mask to clear all but top 2 bits of
; each char.
changeCase
TST ro, r5 ; Check whether character value is >@x3F
EORNE ro, ro, r4 ; If character value >0x3F, flip bit 6
; of the character to invert case
MOV r5, r5, LSL #0x8 ; Shift the character mask left by 1 char
MOVS r4, r4, LSL #0x8 ; Shift the case inverter pattern left by
; 1 char.
BNE changeCase H
Bl
; one.
pollout
MRC pl4,0,r3,$SCReg,0 ; Read Debug Status and Control Register
TST r3, $TestEmpty
BNE pollout ; 1f W set, register still full
write
MCR pl4,0,r0,$DReg,® ; Write word from re
B pollin ; Loop for more words to read
ENDIF
END

You can convert this type of polled example to an interrupt-driven example if COMMRX and COMMTX signals
from the Embedded ICE logic are connected to your interrupt controller. The read and write code can
then be used in an interrupt handler.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.
Non-Confidential

6-149

6 Debug Communications Channel
6.3 Interrupt-driven debug communications

The following examples show how to build this code:

* To build for v6 and later output:

armasm --predefine "v6_onward SETL {TRUE}" -g dcc.s
armlink dcc.o -o dcc.axf --ro-base=0x8000

* To build for pre-v6 output:

armasm --predefine "pre_v6 SETL {TRUE}" -g dcc.s
armlink dcc.o -o dcc.axf --ro-base=0x8000

Related concepts
5.11 Interrupt handlers and levels of external interrupt on page 5-113.

Related information
--debug assembler option.
-g assembler option.
--predefine "directive" assembler option.
--output=filename linker option.
--ro_base=address linker option.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 6-150
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289822713.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289829972.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473-/dom1361289840200.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075533406.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0474-/pge1362075557124.html

6 Debug Communications Channel
6.4 Access from Thumb state

6.4 Access from Thumb state

In architectures before ARMv6T2, you cannot use the debug communications channel while the
processor is in Thumb state, because there are no Thumb coprocessor instructions.

There are the following ways around this:

* You can write each polling routine in a SVC handler, which can then be invoked while in either
ARM or Thumb state. Entering the SVC handler immediately puts the processor into ARM state
where the coprocessor instructions are available.

* Thumb code can make interworking calls to ARM subroutines that implement the polling.

» Use interrupt-driven communication rather than polled communication. The interrupt handler runs in
ARM state, so the coprocessor instructions can be accessed directly.

Related references

4 Interworking ARM and Thumb on page 4-87.
5 Handling Processor Exceptions on page 5-101.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 6-151
Non-Confidential

Chapter 7
What is Semihosting?

Describes the semihosting mechanism.

It contains the following sections:

7.1 What is semihosting? on page 7-154.
7.2 The semihosting interface on page 7-155.

7.3 Can I change the semihosting operation numbers? on page 7-156.

7.4 Debug agent interaction SVCs on page 7-157.
7.5 angel SWilreason EnterSVC (0x17) on page 7-158.

7.6 angel SWireason_ReportException (0x18) on page 7-159.

7.7 SYS _CLOSE (0x02) on page 7-161.

7.8 SYS CLOCK (0x10) on page 7-162.

7.9 SYS ELAPSED (0x30) on page 7-163.
7.10 SYS ERRNO (0x13) on page 7-164.
7.11 SYS FLEN (0x0C) on page 7-165.

7.12 SYS GET CMDLINE (0x15) on page 7-166.
7.13 SYS HEAPINFO (0x16) on page 7-167.
7.14 SYS ISERROR (0x08) on page 7-168.
7.15 SYS _ISTTY (0x09) on page 7-169.

7.16 SYS_OPEN (0x01) on page 7-170.

7.17 SYS READ (0x06) on page 7-171.

7.18 SYS READC (0x07) on page 7-172.
7.19 SYS REMOVE (0x0E) on page 7-173.
7.20 SYS _RENAME (0x0F) on page 7-174.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved.

Non-Confidential

7-152

7 What is Semihosting?

o 7.218YS SEEK (0x0A) on page 7-175.

o 7.228YS SYSTEM (0x12) on page 7-176.

o 7.238YS TICKFREQ (0x31) on page 7-177.
o 7.24 SYS TIME (0x11) on page 7-178.

o 7.258YS TMPNAM (0x0D) on page 7-179.
o 7.26 SYS WRITE (0x05) on page 7-180.

o 7.278YS WRITEC (0x03) on page 7-181.

o 7.28 SYS WRITEO (0x04) on page 7-182.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-153
Non-Confidential

7 What is Semihosting?
7.1 What is semihosting?

71 What is semihosting?

Semihosting is a mechanism that enables code running on an ARM target to communicate and use the
Input/Output facilities on a host computer that is running a debugger.

Examples of these facilities include keyboard input, screen output, and disk I/O. For example, you can
use this mechanism to enable functions in the C library, such as printf() and scanf(), to use the screen
and keyboard of the host instead of having a screen and keyboard on the target system.

This is useful because development hardware often does not have all the input and output facilities of the
final system. Semihosting enables the host computer to provide these facilities.

Semihosting is implemented by a set of defined software instructions, for example SVCs, that generate
exceptions from program control. The application invokes the appropriate semihosting call and the debug
agent then handles the exception. The debug agent provides the required communication with the host.

The semihosting interface is common across all debug agents provided by ARM. Semihosted operations
work when you are debugging applications on your development platform, as shown in the following
figure:

printf(“hello\n”); Application Code

A

Target printf() |

SvC C Library Code

A

SVC handled by
debug agent

4

Communication
debugger with debugger
running on host

Host [

Text displayed
hello on host screen

Figure 7-1 Semihosting overview

In many cases, semihosting is invoked by code within library functions. The application can also invoke
the semihosting operation directly.

Note

ARM processors use the SVC instructions, formerly known as SWI instructions, to make semihosting
calls. However, if you are compiling for an ARMv6-M or ARMv7-M, for example a Cortex-M1 or
Cortex-M3 processor, semihosting is implemented using the BKPT instruction.

Related concepts
7.2 The semihosting interface on page 7-155.
7.3 Can I change the semihosting operation numbers? on page 7-156.
7.4 Debug agent interaction SVCs on page 7-157.

Related information
The ARM C and C++ libraries.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-154
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0475-/chr1358938908603.html

7 What is Semihosting?
7.2 The semihosting interface

7.2 The semihosting interface

The ARM and Thumb SVC instructions contain a field that encodes the SVC number used by the
application code.

Note

If you are compiling for the ARMv6-M or ARMv7-M, the Thumb BKPT instruction is used instead of the
Thumb SVC instruction. Both BKPT and SVC take an 8-bit immediate value. In all other respects,
semihosting is the same for all supported ARM processors.

The system SVC handler can decode the SVC number. Semihosting operations are requested using a
single SVC number, leaving the other numbers available for use by the application or operating system.
The SVC number used for semihosting depends on the target architecture or processor:

SVC 0x123456
In ARM state for all architectures.
SVC OxAB
In ARM state and Thumb state, excluding ARMv6-M and ARMv7-M. This behavior is not
guaranteed on all debug targets from ARM or from third parties.
BKPT OxAB
For ARMv6-M and ARMv7-M, Thumb state only.

The SVC number indicates to the debug agent that the SVC instruction is a semihosting request. To
distinguish between operations, the operation type is passed in R@. All other parameters are passed in a
block that is pointed to by R1.

The result is returned in RO, either as an explicit return value or as a pointer to a data block. Even if no
result is returned, assume that R is corrupted.

The available semihosting operation numbers passed in R are allocated as follows:

0x00-0x31
Used by ARM.
0x32-0xFF
Reserved for future use by ARM.
0x100-0x1FF
Reserved for user applications. These are not used by ARM.

If you are writing your own SVC operations, however, you are advised to use a different SVC
number rather than using the semihosted SVC number and these operation type numbers.

0x200-OXFFFFFFFF
Undefined and currently unused. It is recommended that you do not use these.

In the following sections, the number in parentheses after the operation name is the value placed into Re,
for example SYS_OPEN (0x01).

If you are calling SVCs from assembly language code ARM recommends that you define the
semihosting operation names, to their respective operation numbers, with the EQU directive. For example:

SYS_OPEN EQU ©0x01
SYS_CLOSE EQU 0x02

Related concepts
7.1 What is semihosting? on page 7-154.
7.3 Can I change the semihosting operation numbers? on page 7-156.
7.4 Debug agent interaction SVCs on page 7-157.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-155
Non-Confidential

7 What is Semihosting?
7.3 Can | change the semihosting operation numbers?

7.3 Can | change the semihosting operation numbers?
ARM strongly recommends that you do not change the semihosting operation numbers.

However, if you have to do this, you must:

+ change all the code in your system, including library code, to use the new number
* reconfigure your debugger to use the new number.

Related concepts
7.1 What is semihosting? on page 7-154.
7.2 The semihosting interface on page 7-155.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-156
Non-Confidential

7 What is Semihosting?
7.4 Debug agent interaction SVCs

7.4 Debug agent interaction SVCs
In addition to the C library semihosted functions, some other SVCs support interaction with the debug
agent.

These are:

* angel_SWIreason_EntersvcC (0x17)
* angel_SWIreason_ReportException (0x18).

Related references
7.5 angel SWireason_EnterSVC (0x17) on page 7-158.
7.6 angel SWilreason_ReportException (0x18) on page 7-159.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-157
Non-Confidential

7 What is Semihosting?
7.5 angel_SWireason_EnterSVC (0x17)

7.5 angel_SWIreason_EnterSVC (0x17)

Sets the processor to Supervisor mode and disables all interrupts by setting both interrupt mask bits in
the new CPSR.

With a debug hardware unit, such as ARM RVI™ debug unit or ARM DSTREAM™ debug and trace unit:

» the User stack pointer, R13_USR, is copied to the Supervisor mode stack pointer, R13_SVC
* the I and F bits in the current CPSR are set, which disables normal and fast interrupts.

Entry

Register R1 is not used. The CPSR can specify User or Supervisor mode.

Return

On exit, RO contains the address of a function to be called to return to User mode. The function has the
following prototype:

void ReturnToUSR(void)

If EntersSVC is called in User mode, this routine returns the caller to User mode and restores the interrupt
flags. Otherwise, the action of this routine is undefined.

If entered in User mode, the Supervisor mode stack is lost as a result of copying the user stack pointer.
The return to User routine restores R13_SVC to the Supervisor mode stack value, but this stack must not
be used by applications.

After executing the SVC, the current link register is R14_SVC, not R14_USR. If the value of R14_USR is
required after the call, it must be pushed onto the stack before the call and popped afterwards, as for a BL
function call.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 7-158
Non-Confidential

7 What is Semihosting?
7.6 angel_SWireason_ReportException (0x18)

7.6 angel_SWIreason_ReportException (0x18)

This SVC can be called by an application to report an exception to the debugger directly. The most
common use is to report that execution has completed, using ADP_Stopped_ApplicationExit.

Entry

On entry R1 is set to one of the values listed in the following tables. These values are defined in
angel reasons.h.

The hardware exceptions are generated if the debugger variable vector_catch is set to catch that
exception type, and the debug agent is capable of reporting that exception type. The following table
shows the hardware vector reason codes:

Table 7-1 Hardware vector reason codes

Name Hexadecimal value
ADP_Stopped_BranchThroughZero 0x20000
ADP_Stopped_UndefinedInstr 0x20001
ADP_Stopped_SoftwareInterrupt 0x20002
ADP_Stopped_PrefetchAbort 0x20003
ADP_Stopped_DataAbort 0x20004
ADP_Stopped_AddressException 0x20005
ADP_Stopped_IRQ 0x20006
ADP_Stopped_FIQ 0x20007

Exception handlers can use these SVCs at the end of handler chains as the default action, to indicate that
the exception has not been handled. The following table shows the software reason codes:

Table 7-2 Software reason codes

Name Hexadecimal value
ADP_Stopped_BreakPoint 0x20020
ADP_Stopped_WatchPoint 0x20021
ADP_Stopped_StepComplete 0x20022
ADP_Stopped_RunTimeErrorUnknown *9x20023
ADP_Stopped_InternalError *0x20024
ADP_Stopped_UserInterruption 0x20025
ADP_Stopped_ApplicationExit 0x20026
ADP_Stopped_StackOverflow *0x20027
ADP_Stopped_DivisionByZero *09x20028
ADP_Stopped_0SSpecific *@x20029

In this table, a * next to a value indicates that the value is not supported by the ARM debugger. The
debugger reports an Unhandled ADP_Stopped exception for these values.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-159
Non-Confidential

7 What is Semihosting?
7.6 angel_SWireason_ReportException (0x18)

Return

No return is expected from these calls. However, it is possible for the debugger to request that the
application continue by performing an RDI_Execute request or equivalent. In this case, execution

continues with the registers as they were on entry to the SVC, or as subsequently modified by the
debugger.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 7-160
Non-Confidential

7 What is Semihosting?
7.7 SYS_CLOSE (0x02)

7.7 SYS_CLOSE (0x02)

Closes a file on the host system. The handle must reference a file that was opened with SYS_OPEN.

Entry
On entry, R1 contains a pointer to a one-word argument block:

word 1
contains a handle for an open file.

Return
On exit, RO contains:
e 0 if the call is successful

e —1 if the call is not successful.

Related references
7.16 SYS OPEN (0x01) on page 7-170.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-161
Non-Confidential

7 What is Semihosting?
7.8 SYS_CLOCK (0x10)

7.8 SYS_CLOCK (0x10)

Returns the number of centiseconds since the execution started.

Values returned by this SVC can be of limited use for some benchmarking purposes because of
communication overhead or other agent-specific factors. For example, with a debug hardware unit such
as RVI or DSTREAM, the request is passed back to the host for execution. This can lead to
unpredictable delays in transmission and process scheduling.

Use this function to calculate time intervals, by calculating differences between intervals with and
without the code sequence to be timed.
Entry

Register R1 must contain zero. There are no other parameters.

Return
On exit, RO contains:
» the number of centiseconds since some arbitrary start point, if the call is successful

o —1 if the call is not successful, for example, because of a communications error.

Related references
7.9 SYS ELAPSED (0x30) on page 7-163.
7.23 SYS TICKFREQ (0x31) on page 7-177.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-162
Non-Confidential

7 What is Semihosting?
7.9 SYS_ELAPSED (0x30)

7.9 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since execution started.

Use SYS_TICKFREQ to determine the tick frequency.

Entry

On entry, R1 points to a two-word data block to be used for returning the number of elapsed ticks:

word 1

the least significant word and is at the low address
word 2

the most significant word and is at the high address.
Return

On exit:

* On success, R1 points to a doubleword that contains the number of elapsed ticks. On failure, R1
contains -1.

* On success, RO contains 0. On failure, RO contains -1.

Note

Some debuggers might not support this SVC when connected though RVI or DSTREAM, and they
always return —1 in Re.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-163
Non-Confidential

7 What is Semihosting?
7.10 SYS_ERRNO (0x13)

710 SYS_ERRNO (0x13)

Returns the value of the C library errno variable associated with the host implementation of the
semihosting SVCs.

Entry

Return

The errno variable can be set by a number of C library semihosted functions, including:

SYS_REMOVE
SYS_OPEN
SYS_CLOSE
SYS_READ
SYS_WRITE
SYS_SEEK

Whether errno is set or not, and to what value, is entirely host-specific, except where the ISO C standard
defines the behavior.

There are no parameters. Register R1 must be zero.

On exit, RO contains the value of the C library errno variable.

Related references

7.7 SYS CLOSE (0x02) on page 7-161.
7.16 SYS_OPEN (0x01) on page 7-170.
7.17 SYS READ (0x06) on page 7-171.
7.19 SYS REMOVE (0x0E) on page 7-173.
7.21 SYS SEEK (0x0A) on page 7-175.
7.26 SYS WRITE (0x05) on page 7-180.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 7-164
Non-Confidential

7 What is Semihosting?
7.11 SYS_FLEN (0x0C)

7141 SYS_FLEN (0x0C)
Returns the length of a specified file.

Entry
On entry, R1 contains a pointer to a one-word argument block:
word 1
A handle for a previously opened, seekable file object.
Return

On exit, RO contains:

+ the current length of the file object, if the call is successful
« -1 if an error occurs.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-165
Non-Confidential

7 What is Semihosting?
7.12 SYS_GET_CMDLINE (0x15)

742 SYS_GET_CMDLINE (0x15)

Returns the command line used for the call to the executable, that is, argc and argv.

Entry
On entry, R1 points to a two-word data block to be used for returning the command string and its length:
word 1
a pointer to a buffer of at least the size specified in word two
word 2
the length of the buffer in bytes.
Return
On exit:

+ Register R1 points to a two-word data block:The debug agent might impose limits on the maximum
length of the string that can be transferred. However, the agent must be able to transfer a command
line of at least 80 bytes.

word 1

a pointer to null-terminated string of the command line
word 2

the length of the string.

* Register R@ contains an error code:

— 0 if the call is successful
— —1 if the call is not successful, for example, because of a communications error.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-166
Non-Confidential

7 What is Semihosting?
7.13 SYS_HEAPINFO (0x16)

743 SYS_HEAPINFO (0x16)

Returns the system stack and heap parameters.

The values returned are typically those used by the C library during initialization. For a debug hardware
unit, such as RVI or DSTREAM, the values returned are the image location and the top of memory.

The C library can override these values.

The host debugger determines the actual values to return by using the top_of_memory debugger variable.

Entry

On entry, R1 contains the address of a pointer to a four-word data block. The contents of the data block
are filled by the function. The following example shows the structure of the data block and return values.

struct block {
int heap_base;
int heap_limit;
int stack_base;
int stack_limit;

s%r‘uct block *mem_block, info;

mem_block = &info;

AngelSWI(SYS_HEAPINFO, (unsigned) &mem_block);
Note

If word one of the data block has the value zero, the C library replaces the zero with Image$$zI$$Limit.
This value corresponds to the top of the data region in the memory map.

Return
On exit, R1 contains the address of the pointer to the structure.

If one of the values in the structure is 0, the system was unable to calculate the real value.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-167
Non-Confidential

7 What is Semihosting?
7.14 SYS_ISERROR (0x08)

714 SYS_ISERROR (0x08)

Determines whether the return code from another semihosting call is an error status or not.

This call is passed a parameter block containing the error code to examine.

Entry
On entry, R1 contains a pointer to a one-word data block:
word 1
The required status word to check.
Return

On exit, RO contains:

e 0 if the status word is not an error indication
e anonzero value if the status word is an error indication.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-168
Non-Confidential

7 What is Semihosting?
7.15 SYS_ISTTY (0x09)

745 SYS_ISTTY (0x09)

Checks whether a file is connected to an interactive device.

Entry
On entry, R1 contains a pointer to a one-word argument block:

word 1
A handle for a previously opened file object.

Return
On exit, RO contains:

e 1 if the handle identifies an interactive device
» 0 if the handle identifies a file
e avalue other than 1 or 0 if an error occurs.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-169
Non-Confidential

7 What is Semihosting?
7.16 SYS_OPEN (0x01)

716 SYS_OPEN (0x01)

Opens a file on the host system.

The file path is specified either as relative to the current directory of the host process, or absolute, using
the path conventions of the host operating system.

ARM targets interpret the special path name :tt as meaning the console input stream, for an open-read
or the console output stream, for an open-write. Opening these streams is performed as part of the
standard startup code for those applications that reference the C stdio streams.

Entry
On entry, R1 contains a pointer to a three-word argument block:
word 1
A pointer to a null-terminated string containing a file or device name.
word 2
An integer that specifies the file opening mode. The following table gives the valid values for
the integer, and their corresponding ISO C fopen () mode.
word 3
An integer that gives the length of the string pointed to by word 1.
The length does not include the terminating null character that must be present.
Table 7-3 Value of mode
mode 0123 45 6 7 89 10 11
ISO C fopen mode” r rb r+ r+b w wb w+ w+b a ab a+ a+tb
Return

On exit, RO contains:

* anonzero handle if the call is successful
e —1 if the call is not successful.

" The non-ANSI option t is not supported.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 7-170
Non-Confidential

7 What is Semihosting?
7.17 SYS_READ (0x06)

747 SYS_READ (0x06)

Reads the contents of a file into a buffer.
The file position is specified either:

» explicitly by a SYS_SEEK
+ implicitly one byte beyond the previous SYS_READ or SYS_WRITE request.
The file position is at the start of the file when it is opened, and is lost when the file is closed. Perform

the file operation as a single action whenever possible. For example, do not split a read of 16KB into
four 4KB chunks unless there is no alternative.

Entry
On entry, R1 contains a pointer to a four-word data block:
word 1
contains a handle for a file previously opened with SYS_OPEN
word 2
points to a buffer
word 3
contains the number of bytes to read to the buffer from the file.
Return
On exit:

¢ RO contains zero if the call is successful.
< If RO contains the same value as word 3, the call has failed and EOF is assumed.

» If Re contains a smaller value than word 3, the call was partially successful. No error is assumed, but
the buffer has not been filled.

If the handle is for an interactive device, that is, SYS_ISTTY returns —1. A nonzero return from SYS_READ
indicates that the line read did not fill the buffer.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 7-171
Non-Confidential

7 What is Semihosting?
7.18 SYS_READC (0x07)

718 SYS_READC (0x07)

Reads a byte from the console.

Entry

Register R1 must contain zero. There are no other parameters or values possible.

Return

On exit, RO contains the byte read from the console.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-172
Non-Confidential

7 What is Semihosting?
7.19 SYS_REMOVE (0x0E)

719 SYS_REMOVE (0x0E)
Deletes a specified file on the host filing system.

Entry
On entry, R1 contains a pointer to a two-word argument block:

word 1

points to a null-terminated string that gives the path name of the file to be deleted
word 2

the length of the string.

Return
On exit, RO contains:

* 0 if the delete is successful
* anonzero, host-specific error code if the delete fails.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-173
Non-Confidential

7 What is Semihosting?
7.20 SYS_RENAME (0xOF)

7.20 SYS_RENAME (0xOF)

Renames a specified file.

Entry
On entry, R1 contains a pointer to a four-word data block:

word 1

a pointer to the name of the old file
word 2

the length of the old filename
word 3

a pointer to the new filename
word 4

the length of the new filename.

Both strings are null-terminated.

Return
On exit, RO contains:

+ 0 if the rename is successful
* anonzero, host-specific error code if the rename fails.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-174
Non-Confidential

7 What is Semihosting?
7.21 SYS_SEEK (0x0A)

7.21 SYS_SEEK (0x0A)

Seeks to a specified position in a file using an offset specified from the start of the file.

The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, R1 contains a pointer to a two-word data block:

word 1
a handle for a seekable file object
word 2

the absolute byte position to search to.

Return
On exit, RO contains:

+ 0 if the request is successful

* A negative value if the request is not successful. Use SYS_ERRNO to read the value of the host errno
variable describing the error.

Note

The effect of seeking outside the current extent of the file object is undefined.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-175
Non-Confidential

7 What is Semihosting?
7.22 SYS_SYSTEM (0x12)

7.22 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter.

This enables you to execute a system command such as dir, 1s, or pwd. The terminal I/O is on the host,
and is not visible to the target.

Caution

The command passed to the host is executed on the host. Ensure that any command passed has no
unintended consequences.

Entry
On entry, R1 contains a pointer to a two-word argument block:

word 1

points to a string to be passed to the host command-line interpreter
word 2

the length of the string.

Return

On exit, RO contains the return status.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-176
Non-Confidential

7 What is Semihosting?
7.23 SYS_TICKFREQ (0x31)

7.23 SYS_TICKFREQ (0x31)
Returns the tick frequency.

Entry

Register R1 must contain 0 on entry to this routine.

Return
On exit, RO contains either:

» the number of ticks per second

» —1 if the target does not know the value of one tick. Some debuggers might not support this SVC
when connected though RVI or DSTREAM and they always return —1 in Re.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-177
Non-Confidential

7 What is Semihosting?
7.24 SYS_TIME (0x11)

7.24 SYS_TIME (0x11)
Returns the number of seconds since 00:00 January 1, 1970.

This is real-world time, regardless of any debug agent configuration, such as RVI or DSTREAM.

Entry

There are no parameters.

Return

On exit, RO contains the number of seconds.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-178
Non-Confidential

7 What is Semihosting?
7.25 SYS_TMPNAM (0x0D)

7.25 SYS_TMPNAM (0x0D)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, R1 contains a pointer to a three-word argument block:

word 1
A pointer to a buffer.
word 2
A target identifier for this filename. Its value must be an integer in the range 0 to 255.
word 3
Contains the length of the buffer. The length must be at least the value of L_tmpnam on the host
system.

Return

On exit, RO contains:

* 0 if the call is successful
e —1ifan error occurs.

The buffer pointed to by R1 contains the filename, prefixed with a suitable directory name.

If you use the same target identifier again, the same filename is returned.

Note

The returned string must be null-terminated.

ARM DUI0471K

Copyright © 2010-2014 ARM. All rights reserved. 7-179
Non-Confidential

7 What is Semihosting?
7.26 SYS_WRITE (0x05)

7.26 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position.
The file position is specified either:

» explicitly, by a SYS_SEEK
» implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the file is closed.

Perform the file operation as a single action whenever possible. For example, do not split a write of
16KB into four 4KB chunks unless there is no alternative.

Entry
On entry, R1 contains a pointer to a three-word data block:

word 1
contains a handle for a file previously opened with SYS_OPEN
word 2
points to the memory containing the data to be written
word 3
contains the number of bytes to be written from the buffer to the file.

Return
On exit, RO contains:

+ 0 ifthe call is successful
+ the number of bytes that are not written, if there is an error.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-180
Non-Confidential

7 What is Semihosting?
7.27 SYS_WRITEC (0x03)

7.27 SYS_WRITEC (0x03)
Writes a character byte, pointed to by R1, to the debug channel.

When executed under an ARM debugger, the character appears on the host debugger console.

Entry

On entry, R1 contains a pointer to the character.

Return

None. Register RO is corrupted.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-181
Non-Confidential

7 What is Semihosting?
7.28 SYS_WRITEO (0x04)

7.28 SYS_WRITEO (0x04)

Writes a null-terminated string to the debug channel.

When executed under an ARM debugger, the characters appear on the host debugger console.

Entry

On entry, R1 contains a pointer to the first byte of the string.

Return

None. Register RO is corrupted.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. 7-182
Non-Confidential

Appendix A
Software Development Guide Document Revisions

Describes the technical changes that have been made to the Software Development Guide.
It contains the following sections:

* A.l Revisions for Software Development Guide on page Appx-A-184.

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. Appx-A-183
Non-Confidential

A Software Development Guide Document Revisions
A.1 Revisions for Software Development Guide

A1 Revisions for Software Development Guide

The following technical changes have been made to the Software Development Guide.

Table A-1 Differences between issue J and issue K

Change Topics affected
Re-organized the topics about floating-point build e 1.15 Build options for floating-point arithmetic and
options, and corrected the description of floating-point linkage on page 1-38

build options in ARMv7 and later. » 1.16 Floating-point build options in ARMv6 and earlier

on page 1-39
e [.17 Floating-point build options in ARMv7 and later
on page 1-40

Improved the description of the example. 4.5 Pointers to functions in Thumb state on page 4-92

Removed a statement that implied that ARMv7 does not 7.7 What is semihosting? on page 7-154
use the SVC instruction.

Corrected the description of how to control alignment 1.14 ARM architecture v7-M on page 1-36
checking in ARMv7-M.

Removed topic Using two versions of the same function.
Support for this feature was removed in ARM Compiler

v4.1.

Table A-2 Differences between issue | and issue J
Change Topics affected
Added a topic describing execute-only memory. 2.21 Execute-only memory on page 2-66

Added a topic describing how to build an application with 2.22 Building applications for execute-only memory
code in execute-only memory. on page 2-67

Table A-3 Differences between issue H and issue |

Change Topics affected

Where appropriate, changed the terminology that implied that 16-bit Various topics
Thumb and 32-bit Thumb are separate instruction sets.

Where appropriate, changed the term processor state to instruction set Various topics

state.

Added Cortex-MO+ to the table of key features for the current ARM 1.1 About the ARM architectures on page 1-16
processors.

Added topic to describe the ARM architecture profiles. 1.7 ARM architecture profiles on page 1-23

Moved the definitions of the ARM architecture profiles to the new topic. « 7 77 ARM architecture v6-M on page 1-31
* [.12 ARM architecture v7-A on page 1-32

» 1.13 ARM architecture v7-R on page 1-34
» [.14 ARM architecture v7-M on page 1-36

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. Appx-A-184
Non-Confidential

A Software Development Guide Document Revisions
A.1 Revisions for Software Development Guide

Table A-4 Differences between issue G and issue H

Change Topics affected
Added Cortex-MO+ to the table of key features for the current ARM 1.1 About the ARM architectures on page 1-16
processors.

Table A-5 Differences between issue F and issue G

Change Topics affected
Added Cortex-A7 to the table of key features for the current ARM 1.1 About the ARM architectures on page 1-16
processors.

Table A-6 Differences between issue D and issue F

Change Topics affected

Where appropriate: Various topics

» prefixed Thumb with 16-bit
» changed Thumb-2 to 32-bit Thumb
* changed Thumb-2EE to ThumbEE.

Table A-7 Differences between issue C and issue D

Change Topics affected

Added Cortex-A15 and Cortex-R7 to 1.1 About the ARM architectures on page 1-16
the processor list.

Removed ARMulator ISS from e 7.5 angel SWlreason EnterSVC (0x17) on page 7-158
document for ARM Compiler 5.0. . 7 ;3 oy¢ HEAPINFO (0x16) on page 7-167
o 7.2 The semihosting interface on page 7-155

Removed DCD 0 for reserved vector. 5.4 Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
on page 5-106

Table A-8 Differences between issue B and issue C

Change Topics affected
Abbreviated RealView ICE to RVI. Also, mentioned 7.5 angel SWlreason_EnterSVC (0x17) on page 7-158
DSTREAM when mentioning RVI. . 7.8 SYS CLOCK (0x10) on page 7-162

o 7.98YS ELAPSED (0x30) on page 7-163

e 7.138YS HEAPINFO (0x16) on page 7-167
o 7.238YS TICKFREQ (0x31) on page 7-177
o 7.24 SYS TIME (0Ox11) on page 7-178

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. Appx-A-185
Non-Confidential

A Software Development Guide Document Revisions
A.1 Revisions for Software Development Guide

Table A-9 Differences between issue A and issue B

Change

Topics affected

Added note that the overall layout of the memory maps of devices based
around the ARMv6-M and ARMv7-M architectures are fixed.

2.7 Tailoring the image memory map to your
target hardware on page 2-51

Added links to Scatter file with link to bit-band objects, ARMARMv7-M,
and ARMARMv6-M.

2.7 Tailoring the image memory map to your
target hardware on page 2-51

Added links to Scatter file with link to bit-band objects.

2.8 About the scatter-loading description
syntax on page 2-52

Added a new topic called Scatter file with link to bit-band objects.

2.12 Scatter file with link to bit-band objects
on page 2-57

For SYS_ELAPSED, clarified that RO contains 0 on success and -1 on
failure.

7.9 SYS_ELAPSED (0x30) on page 7-163

Clarified that the linker uses a version of the library setup code rather
than the __user_initial_stackheap() function when tailoring the
stack and heap placement in the scatter file.

2.13 Reset and initialization on page 2-58

ARM DUI0471K Copyright © 2010-2014 ARM. All rights reserved. Appx-A-186

Non-Confidential

	ARM® Compiler Software Development Guide
	Contents
	Preface
	About this book
	Using this book
	Typographic conventions

	Feedback
	Feedback on this product
	Feedback on content

	1 : Key Features of ARM Architecture Versions
	1.1 : About the ARM architectures
	1.2 : Multiprocessing systems
	1.3 : Considerations when designing software for a multiprocessing system
	1.4 : Tightly coupled memory
	1.5 : Memory management
	1.6 : Thumb-2 technology
	1.7 : ARM architecture profiles
	1.8 : ARM architecture v4T
	1.9 : ARM architecture v5TE
	1.10 : ARM architecture v6
	1.11 : ARM architecture v6-M
	1.12 : ARM architecture v7-A
	1.13 : ARM architecture v7-R
	1.14 : ARM architecture v7-M
	1.15 : Build options for floating-point arithmetic and linkage
	1.16 : Floating-point build options in ARMv6 and earlier
	1.17 : Floating-point build options in ARMv7 and later

	2 : Embedded Software Development
	2.1 : About embedded software development
	2.2 : Default compilation tool behavior
	2.3 : C library structure
	2.4 : Default memory map
	2.5 : Application startup
	2.6 : Tailoring the C library to your target hardware
	2.7 : Tailoring the image memory map to your target hardware
	2.8 : About the scatter-loading description syntax
	2.9 : Root regions
	2.10 : Placing the stack and heap
	2.11 : Run-time memory models
	2.12 : Scatter file with link to bit-band objects
	2.13 : Reset and initialization
	2.14 : The vector table
	2.15 : ROM and RAM remapping
	2.16 : Local memory setup considerations
	2.17 : Stack pointer initialization
	2.18 : Hardware initialization
	2.19 : Execution mode considerations
	2.20 : Target hardware and the memory map
	2.21 : Execute-only memory
	2.22 : Building applications for execute-only memory

	3 : Mixing C, C++, and Assembly Language
	3.1 : Instruction intrinsics, inline and embedded assembler
	3.2 : Access to C global variables from assembly code
	3.3 : Including system C header files from C++
	3.4 : Including your own C header files from C++
	3.5 : Mixed-language programming
	3.6 : Rules for calling between C, C++, and assembly language
	3.7 : Rules for calling C++ functions from C and assembly language
	3.8 : Information specific to C++
	3.9 : Calls to assembly language from C
	3.10 : Calls to C from assembly language
	3.11 : Calls to C from C++
	3.12 : Calls to assembly language from C++
	3.13 : Calls to C++ from C
	3.14 : Calls to C++ from assembly language
	3.15 : Passing a reference between C and C++
	3.16 : Calls to C++ from C or assembly language

	4 : Interworking ARM and Thumb
	4.1 : About interworking
	4.2 : When to use interworking
	4.3 : Assembly language interworking
	4.4 : C and C++ interworking
	4.5 : Pointers to functions in Thumb state
	4.6 : Assembly language interworking example
	4.7 : Interworking using veneers
	4.8 : C and C++ language interworking
	4.9 : C, C++, and assembly language interworking using veneers

	5 : Handling Processor Exceptions
	5.1 : About processor exceptions
	5.2 : Exception handling process
	5.3 : Types of exception in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
	5.4 : Vector table for ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
	5.5 : Processor modes and registers in ARMv6 and earlier, ARMv7-A and ARMv7-R profiles
	5.6 : Use of System mode for exception handling
	5.7 : The processor response to an exception
	5.8 : Return from an exception handler
	5.9 : Reset handlers
	5.10 : Data Abort handler
	5.11 : Interrupt handlers and levels of external interrupt
	5.12 : Reentrant interrupt handlers
	5.13 : Single-channel DMA transfer
	5.14 : Dual-channel DMA transfer
	5.15 : Interrupt prioritization
	5.16 : Context switch
	5.17 : Determining the SVC to be called
	5.18 : Determining the instruction set state from an SVC handler
	5.19 : SVC handlers in assembly language
	5.20 : SVC handlers in C and assembly language
	5.21 : Using SVCs in Supervisor mode
	5.22 : Calling SVCs from an application
	5.23 : Calling SVCs dynamically from an application
	5.24 : Prefetch Abort handler
	5.25 : Undefined instruction handlers
	5.26 : ARMv6-M and ARMv7-M profiles
	5.27 : Main and Process stacks
	5.28 : Types of exceptions in the microcontroller profiles
	5.29 : Vector table for ARMv6-M and ARMv7-M profiles
	5.30 : Vector Table Offset Register (ARMv7-M only)
	5.31 : Writing the exception table for ARMv6-M and ARMv7-M profiles
	5.32 : The Nested Vectored Interrupt Controller
	5.33 : Handling an exception
	5.34 : Configuring the System Control Space registers
	5.35 : Configuring individual IRQs
	5.36 : Supervisor calls
	5.37 : System timer
	5.38 : Configuring SysTick

	6 : Debug Communications Channel
	6.1 : About the Debug Communications Channel
	6.2 : DCC communication between target and host debug tools
	6.3 : Interrupt-driven debug communications
	6.4 : Access from Thumb state

	7 : What is Semihosting?
	7.1 : What is semihosting?
	7.2 : The semihosting interface
	7.3 : Can I change the semihosting operation numbers?
	7.4 : Debug agent interaction SVCs
	7.5 : angel_SWIreason_EnterSVC (0x17)
	7.6 : angel_SWIreason_ReportException (0x18)
	7.7 : SYS_CLOSE (0x02)
	7.8 : SYS_CLOCK (0x10)
	7.9 : SYS_ELAPSED (0x30)
	7.10 : SYS_ERRNO (0x13)
	7.11 : SYS_FLEN (0x0C)
	7.12 : SYS_GET_CMDLINE (0x15)
	7.13 : SYS_HEAPINFO (0x16)
	7.14 : SYS_ISERROR (0x08)
	7.15 : SYS_ISTTY (0x09)
	7.16 : SYS_OPEN (0x01)
	7.17 : SYS_READ (0x06)
	7.18 : SYS_READC (0x07)
	7.19 : SYS_REMOVE (0x0E)
	7.20 : SYS_RENAME (0x0F)
	7.21 : SYS_SEEK (0x0A)
	7.22 : SYS_SYSTEM (0x12)
	7.23 : SYS_TICKFREQ (0x31)
	7.24 : SYS_TIME (0x11)
	7.25 : SYS_TMPNAM (0x0D)
	7.26 : SYS_WRITE (0x05)
	7.27 : SYS_WRITEC (0x03)
	7.28 : SYS_WRITE0 (0x04)

	A : Software Development Guide Document Revisions
	A.1 : Revisions for Software Development Guide

