
LISA+ Language for Fast Models
Version 1.0

Reference Guide

Non-Confidential
Copyright © 2014–2018, 2020–2025 Arm Limited (or
its affiliates).
All rights reserved.

Issue 15
101092_0100_15_en

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ Language for Fast Models Reference Guide

This document is Non-Confidential.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (101092_0100_15_en) was issued on 2025-02-19. There might be a later issue at
https://developer.arm.com/documentation/101092

The product version is 1.0.

See also: Proprietary Notice | Product and document information | Useful resources

Start Reading
If you prefer, you can skip to the start of the content.

Intended audience
This document is written for software developers writing models of components and systems using
the LISA+ language.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 74

https://developer.arm.com/documentation/101092
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Contents

Contents

1. Introduction to LISA+ for Fast Models..6
1.1 Design methodology of System Canvas and LISA+... 6
1.2 Terminology of LISA+...7

2. LISA+ components..8
2.1 About LISA+ components...8
2.2 LISA+ integer types and state variables..9
2.3 The LISA+ message function and debugging.. 10
2.3.1 About the LISA+ message function and debugging... 10
2.3.2 LISA+ message C++ prototype..10
2.3.3 LISA+ message C prototype...11
2.4 Component resources section...12
2.4.1 About the component resources section..12
2.4.2 Plain C/C++ variable declarations...12
2.4.3 Annotated resources.. 12
2.4.4 Accessing resources..27
2.4.5 Obsolete resources constructs.. 27
2.5 Component includes section... 28
2.6 Component composition section..28
2.6.1 About the component composition section... 28
2.6.2 Overriding component parameter attributes..29
2.7 Component behavior sections.. 31
2.7.1 About the component behavior sections..31
2.7.2 Special-purpose behaviors.. 31
2.7.3 Mapping SystemC callbacks to LISA behaviors... 33
2.7.4 Hierarchical behavior of special-purpose behaviors... 33
2.7.5 Controlling simulation from behaviors... 34
2.7.6 LISA+ elements in behaviors..35
2.7.7 Scope of behaviors...37
2.8 Component port declarations..38
2.8.1 About component port declarations.. 38
2.8.2 Master, slave, and internal ports...39

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Contents

2.8.3 Port arrays.. 40
2.8.4 Internal ports..40
2.9 Component connection section..41
2.9.1 About the component connection section... 41
2.9.2 Hierarchy in port connections... 43
2.9.3 Port array connections.. 43
2.10 Component properties section... 45
2.11 Component debug section.. 46
2.12 Component parameter export list..47

3. Communication with C++ code.. 49
3.1 Accessing C++ constructs from LISA+..49
3.1.1 About accessing C++ constructs from LISA+...49
3.1.2 Changes required to your source code... 49
3.1.3 Changes required to your Fast Models project... 50
3.1.4 LISA+ example of accessing C++ constructs... 51
3.2 Calls to LISA+ behaviors from C++ code...52
3.2.1 About calls to LISA+ behaviors from C++ code..52
3.2.2 Requirements for importing models with callbacks.. 53
3.2.3 getAbstractInterface()...53
3.2.4 Abstract interface header file.. 54
3.3 Third party model import... 55

4. LISA+ protocols...57
4.1 About LISA+ protocols..57
4.2 LISA+ protocol includes section..57
4.3 LISA+ protocol properties section..58
4.3.1 LISA+ protocol properties section syntax and properties..58
4.3.2 LISA+ protocol properties for SystemC export..59
4.4 LISA+ protocol behavior prototypes..59
4.4.1 About LISA+ protocol behavior prototypes..59
4.4.2 LISA+ protocol behavior prototype syntax... 59
4.4.3 LISA+ protocol behavior prototype attributes... 60
4.4.4 LISA+ protocol behavior ADDRESS arguments...63

A. LISA+ preprocessor..64
A.1 About the LISA+ preprocessor... 64

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Contents

A.2 LISA+ preprocessor scopes..64
A.3 LISA+ preprocessing according to scope..65
A.4 Predefined LISA+ symbols and macros...65
A.5 LISA+ preprocessor statements..66

Proprietary Notice... 68

Product and document information..70
Product status... 70
Revision history...70
Conventions... 72

Useful resources...74

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Introduction to LISA+ for Fast Models

1. Introduction to LISA+ for Fast Models
Language for Instruction Set Architectures (LISA) is a language that specifically targets the description
of instruction set architectures. LISA+ is an enhanced version of LISA that describes components
and systems.

System Canvas and LISA+ provide an environment for the development of peripheral components
or system designs. Their benefits are:

• Early software development.

• Hardware and software co-design.

• Dramatically shortened system exploration turnaround time.

• Highly accurate and non-ambiguous system specification.

• Maintainable system design.

1.1 Design methodology of System Canvas and LISA+
System Canvas uses systems and components to create library objects or executables. It translates
LISA+ source code for model components or systems into C++ source code, and compiles that into
library objects.

Figure 1-1: Fast Models Tools design flow for processor model development

Fast Models
Portfolio component

libraries

Component source

System
Generator
(SimGen)

C++

CADI or Iris-
enabled

debuggerSystemC ISIM
(executable)

CT models

Model Shell
(deprecated)

CADI library
(.so or .dll)

System Canvas

Project file (.sgproj)

EVS library
(.so or .dll)

Generate
and

export

 SystemC
system

Peripherals

Other

LISA+

Generate

Generate

Load

RPC

Load

Link

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Introduction to LISA+ for Fast Models

1.2 Terminology of LISA+
The meanings of LISA+ terms.

Table 1-1: LISA+ terminology

Term Definition

Behavior Each LISA+ component or protocol can have multiple behavior sections. These sections describe the behavior code in C.

Component An individual sub-system element, for example core, memory, bus, or peripheral, or a complete system or sub-system.

Connection A link between two components. The connection is between a master port on one component and a slave port on the
second component.

Code
translation

Instruction set simulation technology. Functional accuracy and execution speed are key performance criteria.

CT core A model of an Arm® core that makes use of code translation technology. CT core models translate instructions dynamically
and cache the translation to enable fast execution of code.

External
port

A port that connects the subsystem to other components within a higher-level system.

Internal
port

Internal ports communicate with subcomponents and are not visible if the component is in a higher-level system. Unlike
hidden external ports, they are permanently hidden.

Protocol A protocol defines ports in components that use the protocol to communicate with other components. To connect, ports
must use the same protocol.

Resource A section for declaring private C/C++ variables, for example registers, within a component. You can expose these variables if
required.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2. LISA+ components
This chapter describes the sections within the component declaration.

2.1 About LISA+ components
A component is the fundamental LISA+ construct that describes components and systems.

Components can have subcomponents and form a hierarchy. The top level component of a system,
the component that does not have any parent component, is sometimes also referred to as a
system. There is, however, nothing special about it, and you declare it in the same way as any other
component.

Systems that have external ports can be used as components in a higher-level system. The term
system can mean a collection of connected components with no external ports.

Component definitions can contain these sections:

• Resources.

• Includes.

• Composition.

• Behavior.

• Port.

• Connection.

• Properties.

• Debug.

• Parameter export list.

Except for the behavior and port sections, there can be only one of each section type in a
component.

Component names and keywords are case sensitive.

A component declaration uses the component keyword and can contain any of the sections listed in
any order.

Component declaration
component MyComponent
{
 includes
 {

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

 // ...
 }

 resources
 {
 // ...
 }

 internal port<MyProtocol> port0
 {
 // ...
 }

 behavior init
 {
 // ...
 }
}

A component can be declared as extern. This means that the component is
implemented in C++ and the LISA+ file only defines the interface, for example the
ports and parameters.

2.2 LISA+ integer types and state variables
LISA+ uses C/C++ code to describe the behavior and the state variables of a component. Although
you can use native C integer types like int and char in the description, it is often desirable to use
integer types with a defined bitwidth that is independent of the host architecture.

LISA defines these integer types:

uint8_t

8-bit unsigned integer value.

int8_t

8-bit signed integer value.

uint16_t

16-bit unsigned integer value.

int16_t

16-bit signed integer value.

uint32_t

32-bit unsigned integer value.

int32_t

32-bit signed integer value.

uint64_t

64-bit unsigned integer value.

int64_t

64-bit signed integer value.
Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 9 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

These types are efficient because they have no overhead over native C data types.

2.3 The LISA+ message function and debugging
This section describes debugging with the LISA+ message function.

2.3.1 About the LISA+ message function and debugging

Printing output to a window or to the console is often useful for debugging components. LISA+ has
a message() function that prints messages to the output window. It forwards messages through
CADISimulationCallback::simMessage().

Message handling does not work in the terminate() simulation phase because the
callback has already been disconnected.

Messages are system wide and are forwarded without instance names. To indicate the originator of
the message, prefix the message with the string returned by:

• getInstanceName() to include the name of the component in its parent component.

• getInstancePath() to include the component instance name from the top component. The
top component name is not included. If this is called for a top component, an empty string is
returned.

The message() function has C++ and C style prototypes.

2.3.2 LISA+ message C++ prototype

The C++ style prototype has two parameters.

message(const std::string &msg, MessageType type);

msg
is the message to display.

type
characterizes the purpose or nature of the message.

Pass one of these LISA+ symbols as the type parameter:

MSG_FATAL_ERROR:
signals a fatal error. The error message is printed in the output window preceded with
the text FATAL ERROR.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

If the simulation is running, this stops it in the same way as the simHalt() function.
Note that the simulation does not stop immediately.

If the simulation is in the init() or reset() phase, the simulation is prevented from
running.

In SystemC systems, this maps to SC_REPORT_FATAL().

MSG_ERROR
indicates an error in the simulation. The message is displayed in the output window
preceded by the text ERROR.

In SystemC systems, this maps to SC_REPORT_ERROR().

MSG_WARNING
indicates that the message is a warning. The message string is printed in the output
window preceded by the text WARNING.

In SystemC systems, this maps to SC_REPORT_WARNING().

MSG_INFO
indicates that the message string is printed in the output window.

In SystemC systems, this maps to SC_REPORT_INFO().

MSG_DEBUG
indicates a debug message, which is only printed if the debug version of build is used.
The message is preceded with the text DEBUG.

In SystemC systems, this maps to SC_REPORT_INFO_VERB(SC_DEBUG, ...).

2.3.3 LISA+ message C prototype

The C-style prototype has a variable parameter list.

message(MessageType type, const char *fmt, ...);

type
indicates the error type and has the same options as for the C++ prototype.

fmt
is a format specification string. The options are the same as those used with the printf()
family of functions.

An example is:

message(MSG_INFO, "%s - caused this message \n", getInstanceName().c_str());

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.4 Component resources section
This section describes the resources section within the component declaration.

2.4.1 About the component resources section

The resources section adds local declarations to a component.

• Variable declarations, which use the C/C++ syntax.

• Annotated resources, which use the LISA+ syntax and parameters.

2.4.2 Plain C/C++ variable declarations

Declare plain C/C++ variables in the resources section in the same way as member variables of a C
++ class. They usually contain the hidden state of the component. The state is hidden because this
state is not visible in a debugger connected to this component.

To see certain state variables in the debugger, annotate these state variables with REGISTER or
MEMORY keywords.

Related information
Annotated resources - register parameters on page 13
Annotated resources - memory parameters on page 21

2.4.3 Annotated resources

This section describes register, memory, and parameter annotated resources.

2.4.3.1 Syntax of annotated resources

Use the REGISTER, MEMORY, and PARAMETER keywords to specify annotated resources in the resources
section.

The resource annotation has the following forms for defining single instances or arrays:

<resource_class> [<parameters>] identifier “;”

<resource_class> [<parameters>] identifier “[“ <size> “]” “;”

Related information
Annotated resources - registers on page 13
Annotated resources - memory on page 20
Annotated resources - parameters on page 25

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.4.3.2 Annotated resources - registers

This section describes LISA+ component registers.

2.4.3.2.1 Annotated resources - about registers

Registers are resources that store data.

You can specify a bit width and type for the register. The default data type is unsigned int and the
default bit width is 32.

Register resource definition
Register set R consists of 32 registers that are 32 bits wide and a register file using the
default types.
resources
{
 REGISTER { bitwidth(32) } R[32];
 int a, b; // not visible in a debugger
 REGISTER { is_program_counter(true) } pc;
 REGISTER gpr[32];
 REGISTER { bitwidth(64), type(int) } accu;
 REGISTER { type(float) } fpr[16];
}

2.4.3.2.2 Annotated resources - register parameters

Parameter names, types, default values, and descriptions of LISA+ component registers.

Table 2-1: Optional parameters for REGISTER resources

Name Type Default Description

address Integer none Address maps to a unique register ID.

attribute Access
type

read_write read_write, read_only, or write_only.

bitwidth Integer 32 Data type bit-width:

Integer
8, 16, 32, 64.

Floating point
32, 64.

Boolean
1.

String
-.

description String "" Description of the resource.

display_float_format String "%g" printf() format string for debugger display for floating point registers, only for
type(float) and display_format(float).

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

Name Type Default Description

display_format String "hex" Default display format for debuggers, supported formats are: hex, uint, int,
bool, float, and string. Debuggers can always override this setting.

display_symbols String-
list

- Comma-separated list of strings replacing the numerical display. Not all tools
implement this feature.

dwarf_id Integer - Dwarf register ID. If not set, the register does not have a DWARF register ID.
Typically, the architecture ABI defines these.

groups String-
list

- Comma-separated list of register groups that the register is assigned to.

has_side_effects Boolean false Set to true if register access has side effects.

is_program_counter Boolean false Set to true if the resource is the program counter.

lsb_offset(Bit) - - Bit offset in the parent register.

name String resource
name

Register name to display in, for example, a debugger. By default:

Non-array resources
“R” for register R, for example.

Array resources
Resource name then the decimal index. For example, R[0], R[1], … R[7]
for register array R[8]. The name string can contain one printf() integer
specifier. For example, REGISTER { name("R%u") } a[4]; results in
registers R0, R1, R2, and R3 in the debugger.

name_index_base Integer 0 For register arrays with format specifiers in the name, for example name(“R
%u”), this parameter specifies the start index. For example, name(“R%u”) and
name_index_base(3) sets the first register array element to R3.

partof(ParentReg) - - Parent register.

pv_port Integer none Internal pv_port used to map read and write access to peripheral registers. The port
must be a slave port of type PVDevice. If only one unique port of type PVDevice
exists, you can omit this parameter.

read_behavior String none Read behavior that you define in case the automated mechanisms are not sufficient.
Use of this behavior depends on the internal state.

read_function String none Name of the debug read access behavior.

read_mask Integer none Value for read accesses.

read_sec_mask Integer none Value for read accesses. For secure accesses, this value overwrites other masks.

reg_number Integer auto CADI register ID. The value of reg_number can be any 32-bit unsigned integer
constant except for the reserved value 0xFFFFFFFF.

reg_number_increment Integer 1 reg_number increment between array elements, starting with reg_number.
Applies only to register arrays and if reg_number is specified.

reset_value <type> 0, 0.0, "", or
false

Reset value for bool, int, uint, float, or string. The value specified by the
parameter is assigned to the register at initialization and reset execution. To avoid
register initialization on reset, use UNINITIALIZED as the parameter argument.

type <type> uint Data type: bool, int, uint, float, or string.

virtual Boolean false Optimizes code generation by preventing the allocation of host memory for
the resource. If virtual is true, no variable is generated for the register or
memory, the resource must have read and write access functions, and must not be
referenced in LISA+ code. virtual does not apply to parameters.

visible_in_debugger Boolean true Debug switch. true shows the register in the debugger, false hides it.

write_behavior String none Write behavior that you define in case the automated mechanisms are not
sufficient. Use of this behavior depends on the internal state.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

Name Type Default Description

write_function String none Name of the debug write access behavior. The access functions must match the
arguments and return type.

write_mask Integer none Value for write accesses.

write_sec_mask Integer none Value for write accesses. For secure accesses, this value overwrites other masks.

Related information
Annotated resources - component registers on page 16

2.4.3.2.3 Annotated resources - IDs in register arrays

If a register array has an ID, the first register receives the value of the ID. The ID of each
subsequent register in the array is the ID of the previous register plus one.

 REGISTER { reg_number(5) } R[32];

Register R[0] has ID 5, R[1]has ID 6, R[2] has ID 7, and so forth. Use the reg_number_increment
parameter to step between registers in an array, starting with reg_number. For example, if
reg_number_increment is set to 2, R[1] is not used.

2.4.3.2.4 Annotated resources - virtual registers

The virtual parameter enables the abstract declaration of a resource. If you use the LISA+
virtual parameter, you must implement a read and a write access behavior and not rely on the
existence of a variable that has the resource name.

Use of virtual parameter
component foo
{
 resources
 {
 REGISTER { type(uint32_t), virtual(true), read_function(GetStatus),
 write_function(SetStatus) } STATUS;
 REGISTER { type(uint32_t) } ENABLED;
 REGISTER { type(uint32_t) } ACTIVE;
 }

 behavior GetStatus(uint32_t id, uint64_t *data, bool doSideEffects) :
 AccessFuncResult
 {
 *data = ENABLED & ACTIVE;
 return ACCESS_FUNC_OK;
 }

 behavior SetStatus(uint32_t id, const uint64_t *data, bool doSideEffects) :
 AccessFuncResult
 {
 return ACCESS_FUNC_OK;
 }
}

Component foo has registers STATUS, ENABLED and ACTIVE:

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

• STATUS is visible to the debugger as a value that is the bit-wise AND operation of ACTIVE and
ENABLED.

• There is no reason to access STATUS from LISA+ code, so the design is enforced.

• There is also no reason to write a value to STATUS, so using SetStatus returns the success flag.

2.4.3.2.5 Annotated resources - register access

Access registers in the same way as C variables.

Register assignment
behavior xxx_func
{
 R[4] = a;
 R[b] = gpr[a];
}

2.4.3.2.6 Annotated resources - component registers

LISA+ supports registers that are embedded within other registers. That is, they are a component,
or child, of a parent register.

The implementation of component registers requires:

• Component registers must be wholly embedded in their parent register. Each bit of the child
register is found in the parent. Each component register therefore has exactly one parent.

• Component registers must have the same bit sequence as the parent. The bits of the
component register are in the same order as the corresponding bits of the parent register. You
can shift the bit sequence, but cannot split or manipulate it in any other way.

The parameters that specify the component register are:

partof(Parent)

Parent is the name of the parent register. This parameter is represented in LISA+ by the
partof resource attribute. The value specified in partof is the name of the parent register.

lsb_offset(Bit)

Bit is the Least Significant Bit (LSB) offset of the child in the parent register. This parameter is
represented by the lsb_offset attribute that contains the LSB offset, in bits, of the child in
the parent register. Specifying the LSB offset is optional and the default value is zero.

The registers behave like an integer of the size specified in the bitwidth attribute. However,
all modifications on a child or parent register affect the value of the corresponding parent or
child registers. This is handled automatically. A child register can also be a parent. This enables
component register relationships to extend to component register hierarchies. The consistency of
the hierarchies is enforced automatically.

Component register resource definition
REGISTER { bitwidth(64) } RAX;
REGISTER { bitwidth(32), partof(RAX) } EAX;
REGISTER { bitwidth(16), partof(EAX) } AX;

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

REGISTER { bitwidth(8), partof(AX) } AL;
REGISTER { bitwidth(8), partof(AX), lsb_offset(8) } AH;

2.4.3.2.7 Annotated resources - debugger register access functions

Override the default functions that a debugger calls to access registers, by using behaviors that
conform to a specific prototype.

Table 2-2: Prototypes of debugger register access functions

Name Prototype

Register read function1 behavior <name>(uint32_t reg_id, uint64_t *data, bool side_effects) :
AccessFuncResult

Register write function2 behavior <name>(uint32_t reg_id, const uint64_t *data, bool side_effects) :
AccessFuncResult

String register read
function

behavior <name>(uint32_t reg_id, string &data, bool side_effects) :
AccessFuncResult

String register write
function

behavior <name>(uint32_t reg_id, const string &data, bool side_effects) :
AccessFuncResult

reg_id

holds the register ID of the register that is being accessed, that is, the argument used in the
reg_number attribute. Modify the array index step size by using reg_number_increment if
there is a register array.

For each register with name name, a constant REGISTER_ID_name is generated. An array
register has one id for the base and one for each index. Form the index ID by appending an
"_" and the index of the array entry.

data

is a buffer that read access functions must export to and write access functions must import
from:

• If the bitwidth is less than or equal to 64, the data pointer points to a single 64 bit
quantity.

• For larger registers, the data pointer points to an array of uint64_ts that holds the entire
register value, starting with the Least Significant Bit (LSB) in data[0].

• The write access function prototypes declare the data parameter as const.

• A separate pair of prototypes exists specifically for registers of type
string. The data parameter is a reference to a std::string for these
functions.

side_effects

is a parameter indicating whether side effects of the access are enforced.

1 See the CADIRegRead function description.
2 See the CADIRegWrite function description.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

The side_effects parameter specifies whether a read or write involving a register or
memory invokes specific side effects associated with that particular register or memory. The
semantics of the side_effects parameter differ for read_function and write_function. For
read_function, the semantics for side_effects are:

side_effects == false

The read must only return the value of the register and not cause any other side
effects. The debugger calls the function with side_effects == false to display the
value of the register.

side_effects == true

The read returns the value of the register and causes side effects that are associated
with reading the register. Invoking side effects while reading a register is not common.
Only make the debugger call read_function with side_effects == true if you want to
trigger side effects.

For write_function, the semantics for side_effects are:

side_effects == false

The function might or might not cause side effects, depending on what the component
can handle. Some side effects are required even if side_effects == false to keep the
component in a consistent state. The only side effects invoked are those required to
retain consistency.

The side effects are highly dependent on the modeled hardware. For example, if writing
to a SIZE register adjusts the ENDPTR register, update the value of SIZE must reasonably
also cause the side effect of updating ENDPTR. For this example, the side_effects
parameter must be ignored for writes.

side_effects == true

The function causes all side effects that a normal bus write would cause. Invoking side
effects for register writes is the most common use case.

Register and memory access functions use these LISA+ symbols to inform the calling code whether
or not the access operation succeeded:

ACCESS_FUNC_OK

The call was successful.

ACCESS_FUNC_GeneralError

An error that the other error return values do not explain.

ACCESS_FUNC_UnknownCommand

The command is not recognized.

ACCESS_FUNC_IllegalArgument

At least one of the argument values is illegal.

ACCESS_FUNC_CmdNotSupported

The command is recognized but not supported.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

ACCESS_FUNC_ArgNotSupported

An argument to the command is recognized but not supported. For example, the target does
not support a particular type of complex breakpoint.

ACCESS_FUNC_InsufficientResources

Not enough memory or other resources exist to fulfill the command.

ACCESS_FUNC_TargetNotResponding

A time out has occurred across the CADI interface and the target did not respond to the
command.

ACCESS_FUNC_TargetBusy

The target received a request, but is unable to process the command. The call can be
attempted again after some time.

ACCESS_FUNC_BufferSize

Buffer too small, for char* types.

ACCESS_FUNC_SecurityViolation

Request was not fulfilled because of a security violation.

ACCESS_FUNC_PermissionDenied

Request was not fulfilled because permission was denied.

Read access function
Registers R1 and R2 receive CADI IDs and a shared read access function. The access function
returns one's complement for R1 and two's complement for R2. If the access function is
assigned to a different register, it reports an illegal argument.
resources
{
 REGISTER { read_function(my_read), reg_number(1) } R1;
 REGISTER { read_function(my_read), reg_number(2) } R2;
}

behavior my_read(uint32_t id, uint64_t *data, bool se) : AccessFuncResult
{
 if (id == 1)
 *data = ~R1;
 else if (id == 2)
 *data = ~R2 + 1;
 else
 return ACCESS_FUNC_IllegalArgument;
 return ACCESS_FUNC_OK;
}

Related information
Model Debugger
Component Architecture Debug Interface User Guide

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 74

https://developer.arm.com/documentation/109415/1128/Model-Debugger/
https://developer.arm.com/documentation/100963/

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.4.3.2.8 Annotated resources - memory-mapped register access

PV peripherals implement a memory-mapped register by connecting an external slave port of type
PVBus to an internal slave port of type PVDevice.

Register IDs are specified explicitly. They have the same value as the address offset. An internal
read/write behavior implements the register accesses. Memory-mapped port accesses and debug
accesses are directed to this behavior.

If a unique internal port of type PVDevice exists, all memory-mapped register read and write
operations over this port are directed to the automatically generated access functions.

If not already overwritten by read_function and write_function parameters, the new access
functions are also used for debug accesses.

Masks are used to influence the register access:

• There are masks for read and write operations.

• If the device distinguishes between Secure and Non-secure accesses, an additional set of read
and write masks can be provided for secure accesses.

• If the mask parameter is omitted, full access is permitted.

• A zero mask ignores the access but returns a complete response.

Two additional tokens can be used to generate error responses:

• ABORT for an abort error response.

• DECODEABORT for a decode error response.

If the automatic mechanisms are not sufficient, you can provide a local implementation that
overrides the access behaviors. The arguments for the access behaviors are:

register_read_behavior(uint32_t reg_id, pv::ReadTransaction tx) :
 pv::Tx_Result

register_write_behavior(uint32_t reg_id, pv::WriteTransaction tx) :
 pv::Tx_Result

Use the ID of a register resource in the read and write behaviors.

Using memory-mapped register access features requires the Fast Models include
files.

Related information
Annotated resources - debugger register access functions on page 17

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.4.3.3 Annotated resources - memory

This section describes memory resources.

2.4.3.3.1 Annotated resources - about memory

Memory resources are C-array-like constructs that make their contents visible to a debugger.
Declare them using the array syntax, where the size of the array is the size of the memory.

2.4.3.3.2 Annotated resources - memory parameters

Parameter names, types, default values, and descriptions for memories, buses, and address spaces.

Table 2-3: Parameters for MEMORY resources

Name Type Default Description

allow_
unaligned_access

Boolean false Permit unaligned access. If this is true then accesses that are not naturally aligned, for
example a 32-bit access on a non-32-bit boundary, are permitted and have the expected
result. If this is false such unaligned accesses are not permitted.

attribute Access
type

read_write read_write, read_only, or write_only.

description String "" Description of the space.

endianness Big or
little

little Select between little and big endianness.

executable Boolean false true for memory blocks that can hold executable code.

mau_size Integer 8 Size of the Minimum Addressable Unit (MAU) in bits. Admissible values are 8, 16, 32, and
64.

paged Boolean true Permit use of true paged memory. This means memory is not allocated completely at
instantiation-time, but instead in pages on demand. This typically results in lower overall
memory usage but leads to slower memory access. If the array size is > 0x10000, paging
is enforced for the memory and the parameter is ignored.

read_function String none Name of the debug read access behavior.

space_id Integer -1 Specifies the memory space id. If not defined, space_id is automatically generated.

supported_
multiples_of_mau

String 1 Permitted multiples of MAU for memory accesses. Multiple values must be separated by
commas.

virtual Boolean false Optimizes code generation by avoiding the allocation of host memory for the resource.
The resource must have read and write access functions and must not be referenced in
LISA+ code. If virtual is true, no variable is generated for this parameter. The read
and write functions provide and store the value. The parameter is virtual because the
read and write functions model it.

write_function String none Name of the debug write access behavior.

Specify the array size using:

• Pure integer values.

• Suffixes for Kilo, Mega, Giga, Tera, or Peta, that is, 1K, 1M, 1G, 1T, or 1P relative to the
mau_size. These suffixes indicate multipliers of 210, 220, 230, 240, and 250, respectively.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

• Expressions, for example 2k-1.

Memory resource definition
resources
{
 MEMORY { mau_size(8) } progmem[64k];
 MEMORY { mau_size(32) } datamem[128k-100];
}

2.4.3.3.3 Annotated resources - read and write accesses

Access memory resources using C-array like syntax.

C array memory accesses
behavior load(uint32_t address, uint8_t &data)
{
 data = dmem[address];
}

behavior store(uint32_t address, uint8_t data)
{
 dmem[address] = data;
}

The size of the memory access is always one Minimum Addressable Unit (MAU). A 32-bit unsigned
integer, for example, is the access size for a memory with a mau_size of 32.

The memory access functions are:

Read and write accesses
resource.read8(uint32_t address, uint8_t & destination);
resource.read16(uint32_t address, uint16_t & destination);
resource.read32(uint32_t address, uint32_t & destination);
resource.read64(uint32_t address, uint64_t & destination);
resource.write8(uint32_t address, uint8_t source);
resource.write16(uint32_t address, uint16_t source);
resource.write32(uint32_t address, uint32_t source);
resource.write64(uint32_t address, uint64_t source);

Use these access functions to read or write 8, 16, 32 and 64-bit quantities from or to memory. The
function name implies the size of the access. Only functions with a bitwidth greater than or equal
to the mau_size of the memory can be used on a memory. If the bitwidth of the access is greater
than the mau_size the result depends on the endianness of the memory.

Mixed bitwidth accesses
behavior load(uint32_t address, uint8_t &data)
{
 dmem.read8(address, data);
}

behavior store(uint32_t address, uint8_t data)
{
 dmem.write8(address, data);
}

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.4.3.3.4 Annotated resources - debugger memory read- and write-access functions

The access functions for memory are similar to the access functions for registers. You can attach
debugger access functions to REGISTER and MEMORY resources.

The component that holds the memory resource implements the access functions as LISA+
behaviors. The read_function and write_function resource parameters designate the access
functions. Define the debugger access functions as behaviors, but attach them in the resources
statements (REGISTER or MEMORY), as here. See the CADIMemRead and CADIMemWrite function
descriptions for more information.

resources
{
 MEMORY { mau_size(8), read_function(<my_read>) } progmem[64];
 MEMORY { mau_size(32), write_function(<my_write>) } datamem[64];
}

The access functions must conform to these prototypes:

Read function
behavior <read_function_name> (uint32_t space_id,
 uint32_t block_id,
 uint64_t offset,
 uint32_t size_in_maus,
 uint64_t *data,
 bool side_effects,
 sg::MemoryAccessContext *mac) : AccessFuncResult

Write function
behavior <write_function_name> (uint32_t space_id,
 uint32_t block_id,
 uint64_t offset,
 uint32_t size_in_maus,
 const uint64_t *data,
 bool side_effects,
 sg::MemoryAccessContext *mac) : AccessFuncResult

space_id

an integer value that is a unique identifier for a memory space.

block_id

an integer value that, for the specified memory space, is a unique identifier for a memory
block. This is unused and always 0.

offset

an absolute numerical offset into the space and block denoted by the space_id and block_id
parameters. It designates the starting address for the memory access.

size_in_maus

the size of the access relative to the size of the MAU. A memory access might involve reading
or writing multiple MAU quantities.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

data

the buffer from which data is read or to which data is written. Its type is a pointer to a 64-
bit unsigned integer. This size is equal to the largest MAU size currently supported and
effectively eliminates endianness concerns. In the implementation, data is actually an array of
size_in_maus size. Write functions protect this array by declaring the data pointer const.

side_effects

a parameter that indicates whether the side effects for the access must be enforced. The
use of this parameter with memory reads and writes is completely analogous to its use with
registers.

MemoryAccessContext

a pointer to a MemoryAccessContext object. This provides extensibility to the prototype, and
the MemoryAccessContext class can be enriched if required. The current interfaces are:

GetAccessSizeInMaus()

returns how many MAUs of memory area have to be read/written.

GetMauInBytes()

returns the size of a MAU, measured in bytes.

GetMauInBits()

returns the size of a MAU, measured in bits.

Accessing these values though MemoryAccessContext, rather than by coding
them as constants, lowers the maintenance hazard arising from a memory
attribute change.

Read and write access functions
behavior my_read(uint32_t space_id,
 uint32_t block_id,
 uint64_t offset,
 uint32_t size_in_maus,
 uint64_t *data,
 bool side_effects,
 MemoryAccessContext *mac) : AccessFuncResult
{
 *data = progmem[offset];
 return ACCESS_FUNC_OK;
}

behavior my_write(uint32_t space_id,
 uint32_t block_id,
 uint64_t offset,
 uint32_t size_in_maus,
 const uint64_t *data,
 bool side_effects,
 MemoryAccessContext *mac) : AccessFuncResult
{
 datamem[offset] = (uint32_t) *data;
 return ACCESS_FUNC_OK;
}

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

Implementation of a read access function
Here are declarations of two memory resources, m1 and m2, and a read access function,
my_read, for them. It is possible for multiple memory spaces and blocks to share an access
function because the distinction between them can be made at run-time by means of the
space_id and block_id parameters. Here, a simple if / else sequence distinguishes them.

After determining the resource to be accessed, data is copied into the data buffer. The for
loop runs for size_in_maus times, copying one MAU quantity on each iteration and checking
whether the accesses are within bounds or not.

resources
{
 MEMORY { space_id(1), mau_size(8), read_function(my_read) } m1[64];
 MEMORY { space_id(2), mau_size(32), read_function(my_read) } m2[64];
}

behavior my_read(uint32_t space_id,
 uint32_t block_id,
 uint64_t offset,
 uint32_t size_in_maus,
 uint64_t *data,
 bool side_effects,
 MemoryAccessContext *mac) : AccessFuncResult
{
 if (space_id == 1)
 {
 for (int i = 0; (i < size_in_maus) && (offset + i < 64); ++i)
 data[i] = m1[offset + i];
 }
 else if (space_id == 2)
 {
 for (int i = 0; i < (size_in_maus) && (offset + i < 64); ++i)
 data[i] = m2[offset + i];
 }
 else
 return ACCESS_FUNC_IllegalArgument;
 return ACCESS_FUNC_OK;
}

If you set the virtual resource parameter to true, you prevent memory allocation
at run-time. A virtual memory resource must provide debug read and write
functions and cannot be directly accessed from LISA+ source code. If you do not
define valid read and write access functions, or attempt to access the resource
through LISA+ code, a build failure occurs.

Related information
Annotated resources - debugger register access functions on page 17
Model Debugger

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 74

https://developer.arm.com/documentation/109415/1128/Model-Debugger/

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.4.3.4 Annotated resources - parameters

Parameters permit component configuration and parameterization of the system model at
initialization time or runtime. They do not support array syntax.

Table 2-4: Parameters for PARAMETER resources

Parameter Type Default Description

default Integer
or string

0 or "" Default value is 0 for integers and the empty string for string parameters.

description String "" Plain text single-line description of the parameter. The debugger might display
this string next to the parameter to provide additional information about a
parameter.

max Integer 0x7FFFFFFFFFFFFFFF Maximum admissible value.

min Integer 0x8000000000000000 Minimum admissible value. The maximum ranges are:

• [0x0, 0x7FFFFFFFFFFFFFFF] for unsigned parameters.

• [0x8000000000000000, 0x7FFFFFFFFFFFFFFF] for signed
parameters.

name String "" A text tag for the parameter that is displayed in the GUI. Any printable symbol
except for “#”, “.”, and “=” can be used in name. Double quote characters
within the tag must be escaped with “\”. If no name is specified, the parameter
identifier is used.

type Integer,
Boolean,
or string

int Data type. The type can also be intx_size or uintx_size where size is
one of 8, 16, 32, or 64.

read_function String none Name of the read access behavior.

write_function String none Name of the write access behavior.

runtime Boolean false Switch between instantiation-time and runtime parameters. You can set
instantiation-time parameters before the system instantiates. You cannot change
them afterwards, or query them with a debugger. This is the default. You can
change runtime parameters during runtime.

The access functions have similar semantics to those of registers. The access function prototypes
are:

• Integer and bool parameters:

behavior my_read(uint32_t id, int64_t *data) : AccessFuncResult

behavior my_write(uint32_t id, const int64_t *data) : AccessFuncResult

• String parameters:

behavior my_read(uint32_t id, string &data) : AccessFuncResult

behavior my_write(uint32_t id, const string &data) : AccessFuncResult

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

For each parameter with name name, a constant PARAMETER_ID_name is generated. This is passed as
id when the PARAMETER is read from or written to.

The default behavior for the read_function is to return the current value of the PARAMETER. The
default behavior for the write_function is to set the value of the PARAMETER. If a write_function is
specified, the parameter is no longer updated automatically. This update must be done in the write
function.

Parameter resource definition
resources
{
 PARAMETER {typ(int), min(0), max(0xFFFF), default(0x80), name(”Base Address”)}
 baseAddress;
}

The parameter in the example would default to being called baseAddress if a name tag was not
declared. When choosing parameter names or tags, you are strongly advised to adhere to the
naming rules for C++ identifiers. This means you can use upper and lower case letters, numbers,
and underscore characters. Avoid using hyphens, "-" in parameter names or tags. If you are
supporting legacy code that uses hyphens in parameter names, you can use these old names within
the name tag. However, the parameter name outside the braces must conform to C++ naming rules,
and is what you must use in your LISA+ code.

Integer parameters in decimal format can contain binary multiplication suffixes. These left-shift the
bits in parameter value by the corresponding power of two.

Table 2-5: Suffixes for parameter values

Suffix Name Multiplier

K Kilo 210

M Mega 220

G Giga 230

T Tera 240

P Peta 250

2.4.4 Accessing resources

Access the resources in the component behavior by using the name of the resource.

2.4.5 Obsolete resources constructs

The connection section of components completely replaces the resource_mapping section in the
resource section of components.

The connection section enables using hierarchical systems in a clean way. System Generator
(SimGen) does not use resource_mapping sections, but issues a warning.

Related information
About the component connection section on page 41

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.5 Component includes section
The includes section is a dedicated place for #include preprocessor statements.

The declarations that result from the #include statements are visible in the bodies of the
component behaviors. However, the #include statements are not expanded into the LISA+ code
itself. This means that #defines coming from the #include statements are not visible in the LISA+
code and the included header files must not contain any LISA+ code.

Declarations in the includes sections can be made visible globally to other components.
Arm recommends using unique names in the includes section that do not conflict with other
component declarations, for example in shared component header files.

Related information
Communication with C++ code on page 49
LISA+ preprocessor on page 64

2.6 Component composition section
This section describes the component composition section.

2.6.1 About the component composition section

The composition section enables hierarchical description of components.

The section lists all subcomponents of a component or system and defines the values of
initialization-time and run-time parameters of the contained subcomponents.

Initialize parameters of subcomponents in the composition section by specifying a comma-
separated list of name=value statements in parentheses following the component type name. The
name must be a published name. The name attribute is relevant for published names. The value can
be:

• A constant.

• The parameter identifier of the enclosing component. In this case, SimGen forwards the value
of the parameter from a component to its subcomponent. The parameter identifier is the
identifier of the parameter in the resources section, not its name attribute.

Composition section
MyComponent has two subcomponents mem1 and mem2 that are both of type MyMemory. The
expression size=0x1000 sets compile-time parameter size of component mem1 to 0x1000.
component MyComponent
{
 resources
 {
 PARAMETER mem2size;

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

 }

 composition
 {
 mem1: MyMemory(size=0x1000);
 mem2: MyMemory(size=mem2size, id=0x7000);
 }
 ...
}

Related information
Annotated resources - parameters on page 25

2.6.2 Overriding component parameter attributes

In Fast Models, you can override the default value for a parameter and, for integer parameters, the
min and max values.

About this task
Parameters of subcomponents that are set in the composition section of their parent component
cannot be set or configured in the debugger or run-time environment. They are hard-coded in the
system. All other parameters can be configured in the debugger or when starting the run-time
environment.

When setting parameters in this way, you must ensure that the value you assign is
within the allowed range. SimGen does not report a warning when such hard-coded
parameters are out of range.

You can use the component instantiation statement to override the parameters of subcomponents,
using this syntax:

parameter_name.attribute_name=attribute_value

Include the override assignments in the normal parameter assignments in an instantiation
statement.

Parameter overriding example
component Core
{
 resources
 {
 PARAMETER { default(0x8a0000) } itcm_size;
 PARAMETER { default(0xda0000), min(0x450000), max(0xff0000) } dtcm_size;
 }
}

component Board
{
 composition
 {
 core : Core(itcm_size=0x440000, dtcm_size.default=0xaa0000, dtcm_size.min=0x600000);
 }
}

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

The code overrides the default value of dtcm_size and its min boundary. This means that the
parameter is published and you can set it, but:

• You cannot specify a value less than 0x600000.

• The parameter is initialized with 0xaa0000 if you do not specify anything.

For min and max attributes of integer parameters, the global rule also applies to the overridden
variants. If the value specified during system instantiation is not within the [min, max] range, it is
truncated to fit.

If a component overrides the min or max attribute of a parameter in a subcomponent, the new value
can only restrict the [min, max] range:

• min can only be overridden with a greater value.

• max can only be overridden with a smaller value.

If an integer parameter forwards another, whose [min, max] range is not identical, then the
resulting range is the intersection of the restrictions:

• If this intersection is not identical to that of the forwarder, a warning is issued.

• If the intersection is void, an error is issued.

Range restriction warning
The LISA+ parser warns that the range of parameter b_dtcm_size is being restricted to
[0x450000, 0xef0000].

component Core
{
 resources
 {
 PARAMETER { default(0x8a0000) } itcm_size;
 PARAMETER { default(0xda0000), min(0x450000), max(0xff0000) } dtcm_size;
 }
}

component Board
{
 resources
 {
 PARAMETER { default(0xda0000), min(0x350000), max(0xef0000) } b_dtcm_size;
 }

 composition
 {
 // b_dtcm_size is the forwarder
 core : Core(dtcm_size=b_dtcm_size);
 }
}

As is the case with parameter fixing and forwarding, an override assignment must use the name
attribute of the parameter on the left-hand side, if specified. If the name is not a valid C identifier,
enclose it in double quotes:

core : Core("semihosting-enable".default=true);

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.7 Component behavior sections
This section describes the behavior section within the component declaration.

2.7.1 About the component behavior sections

Component descriptions can comprise multiple named behavior sections that specify the behavior
of the component model. Behaviors are similar to functions.

Behaviors of components always have a name and can also have an optional list of formal
parameters and an optional return type.

init behavior
component MyComponent
{
 // this behavior does not have parameters and has no return type
 behavior init
 {
 // initialize component
 }

 // this behavior has two parameters
 // the syntax is C-like
 behavior setPixel(uint32_t x, uint32_t y)
 {
 }

 // this behavior has a parameter and return a value of type 'bool'
 // the syntax for return types differs from C
 behavior isValidAddress(uint32_t address): bool
 {
 return address < memorySize;
 }
}

The C/C++ code in a behavior body can directly access all resources declared in the resource
section. You cannot have behaviors with different signatures but the same name.

2.7.2 Special-purpose behaviors

System Generator (SimGen) calls these behaviors implicitly in different simulation phases, on every
component in the platform.

The ordering of these calls among components is not guaranteed to be
deterministic. It generally does not follow declaration order.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

behavior init()

This behavior is called during elaboration, before the start of the simulation, from the
SystemC before_end_of_elaboration() callback. The corresponding code is called once and
is used for resource allocation.

Do not perform the following actions within behavior init():

• Event signaling, including setting timers or changing signal values

• Terminate a thread

• Call any port behavior, as port connection may not be completed at that time

behavior interconnect()

This behavior is called after behavior init(), from the SystemC
before_end_of_elaboration() callback. Code here allows for custom port connections that
are not handled by the static connections defined in the connection section. Do not drive
ports from within behavior interconnect().

behavior reset(int level)

This behavior is called at the start of the simulation, from the SystemC
start_of_simulation() callback. The corresponding code resets simulated state and
previously-allocated resources to their initial state.

behavior reset() might be called multiple times during simulation execution,
so in general do not allocate resources within it.

Do not perform the following actions within behavior reset():

• Instantiate components

• Connect ports

• Terminate a thread

There are two reset levels:

0
Hard reset, also known as Power-on reset.

1
Soft reset, also known as Warm reset.

For example, see $PVLIB_HOME/examples/LISA/FVP_MPS2/LISA/FVP_MPS2_DMA350.lisa.

• All registers are normally reset to the values specified by their
reset_value parameters immediately before behavior reset() is run.

• You can use reset_value(UNINITIALIZED) to prevent the register values
being overwritten.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

behavior loadApplicationFile(const string& filename)

SimGen invokes this behavior whenever you load an application file into a component using a
debugger. The implementation of this behavior must load the application file.

behavior terminate()

This behavior is called at the end of the simulation, from the SystemC end_of_simulation()
callback, and is the counterpart to behavior init(). The corresponding code is called once
and is used for freeing any resources that behavior init() allocated.

Do not perform the following actions within behavior terminate():

• Instantiate components

• Spawn threads

• Signal events

behavior setupGlobalSystemAttributes()

Use this behavior to define a parameter export list. This behavior is only applicable to the
top-level component. It is only generated for CADI DSO targets, not for ISIM executable
targets.

Related information
Mapping SystemC callbacks to LISA behaviors on page 33
Component parameter export list on page 47
Controlling simulation from behaviors on page 34
Annotated resources - register parameters on page 13

2.7.3 Mapping SystemC callbacks to LISA behaviors

This table shows how the SystemC simulation callbacks that are called during elaboration and
simulation map to LISA behaviors.

Table 2-6: Mapping SystemC callbacks to LISA behaviors

SystemC simulator callbacks LISA

before_end_of_elaboration() • resources and composition sections

• behavior init()

• behavior interconnect()

end_of_elaboration() N/A

start_of_simulation() behavior reset()

end_of_simulation() behavior terminate()

2.7.4 Hierarchical behavior of special-purpose behaviors

Special purpose behaviors are optional. If they are missing from a component, the corresponding
behaviors of all subcomponents of the component are called recursively. If you specify a special

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

purpose behavior, it is responsible for explicitly calling the subcomponents, using the composition
keyword.

Calling a subcomponent
behavior reset(int level)
{
 // reset subcomponents
 composition.reset(level);
 // reset state variables
 status = 0;
 counter = 0;
 control = 0;
}

A missing special purpose behavior B is equivalent to:

behavior B
{
 composition.B();
}

• If the composition statement is not present in a special purpose behavior, the
corresponding behaviors of the subcomponents are never called and this might
have undesirable effects.

• A missing special purpose behavior is not equivalent to an empty special
purpose behavior.

2.7.5 Controlling simulation from behaviors

Any LISA+ behavior can use one of a set of function calls to detect and control the simulation
environment.

Peripheral components do not normally use these behaviors. Normally, the user controls the state
of the simulation through a debugger.

simRun()

Start the simulation. This might be used from, for example, the gui_callback() function.

simHalt()

Stop the simulation. This might be used if, for example, an error is detected.

The simulation does not stop immediately. The actual shutdown might be as
much as 200 instructions after the call to simHalt().

simShutdown()

Stop the simulation and exit.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

simIsRunning()

Returns true if the simulation is currently running. This might be used from, for example, the
gui_callback() function.

cadiRefresh()

Notifies attached debuggers to refresh their state. The parameter is an int that combines
one or more of the CADI_REFRESH_REASON_X flags (see the CADITypes.h file for details).

behavior myBehavior()
{
 // do something that changes model state when in stop mode
 // ...
 cadiRefresh(eslapi::CADI_REFRESH_REASON_REGISTERS
 | eslapi::CADI_REFRESH_REASON_OTHER);
}

• Do not call this function from behaviors that can be triggered as a
response for refresh, for example a register read. An endless loop results.

• This function only has effect if the simulation has stopped.

Related information
Special-purpose behaviors on page 31

2.7.6 LISA+ elements in behaviors

Behaviors contain C/C++ code and additional syntactic constructs that have a special meaning in
LISA+ that they do not have in C/C++.

These are the types of behavior:

Port behaviors
are declared inside a port.

Component behaviors and local behaviors
are not declared inside a port.

Special-purpose behaviors
are component behaviors, for example init(), reset(), and terminate().

The following types of function call can occur in component and port behavior sections, to:

• Local behavior, for example foo().

• Local port behavior, for example myport.foo().

• Port behavior of a subcomponent, for example subcomp.aport.foo().

• Special-purpose behaviors of a subcomponent, for example subcomp.init().

• Special-purpose behaviors of all subcomponents, for example composition.init().

• getInstanceName() to return the instance name of the component.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

• getInstancePath() to return the instance name relative to the top-level component.

Special-purpose behavior calls
The use of the composition keyword to call a special-purpose behavior for all
subcomponents recursively.
Behavior reset(int level)
{
 // reset subcomponents
 composition.reset(level);
 // reset state variables
 status = 0;
 counter = 0;
 control = 0;
}

SimGen calls the subcomponents in the order of declaration in the composition section. SimGen
calls local behaviors, that is, non-port behaviors in the same component, by using the name of the
local behavior.

2.7.6.1 Subcomponent special-purpose behaviors

Call the special-purpose behaviors of subcomponents by putting the subcomponent instance name
and a dot before the behavior name.

Always call subcomponent special-purpose behaviors from the corresponding special-purpose
behavior in the parent component. Otherwise, the results are undefined.

Calling subcomponent behaviors explicitly enables defining a specific initialization order.

Initialization order
component MyComponent
{
 composition
 {
 subcomp0: AnotherComponent
 subcomp1: AnotherComponent
 subcomp2: AnotherComponent
 }
 behavior init
 {
 // explicit initialization order
 subcomp2.init();
 subcomp0.init();
 subcomp1.init();
 }
}

2.7.6.2 Port behavior access

Access local ports (ports of the same component) by using the name of the port.

Access ports of subcomponents by using the syntax:

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

subcomponent_name.port_name.behavior

Subcomponent port access
How to call a subcomponent port behavior.
component MyComponent
{
 composition { subcomp: AnotherComponent }
 behavior set42_on_subcomp
 {
 subcomp.port0.set(42);
 }
}

2.7.6.3 Component instance name behavior access

Use the getInstanceName() function to get the component instance name of the component. It
returns the instance name of the component in its parent component as a std::string. The system
component has no parent so the result is undefined, but most implementations return a generic
string like "system".

This function is slow, so Arm does not recommend it for simulation of a component that
implements normal functionality. It might, however, be useful in component error messages and
debugging output.

Component error message display
component MyComponent
{
 behavior init
 {
 cout << "initializing '" << getInstanceName() << "'" << endl;
 }
}

2.7.7 Scope of behaviors

Component behaviors and port behaviors are both in the scope of the component and can directly
access the resources of the component.

Behaviors that want to return pointers or instances of types that are defined in the resources
section of the same component must use the COMPONENT_CLASS_NAME() construct to access the
type in the resource section. COMPONENT_CLASS_NAME(x) represents the scope of component x,
and when returning a pointer or an instance of a type that is declared in the resources section
of component x, you must explicitly specify this scope when specifying the return type of the
behavior.

Component scope with COMPONENT_CLASS_NAME(x)
component MyComponent
{
 resources
 {
 struct status_t
 {

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

 int i;
 };
 status_t status;
 }

 behavior getStatus():status_t // Incorrect: status_t is unknown outside the behavior.
 {
 return status;
 }

 behavior getStatus(): COMPONENT_CLASS_NAME(MyComponent)::status_t // Correct: prefix the
 return type with the scope.
 {
 return status;
 }
}

2.8 Component port declarations
This section describes component port declarations.

2.8.1 About component port declarations

Communication between components is done with master and slave ports using Transaction Level
Modeling (TLM). The ports use standard protocols or protocols you define to communicate between
components. Read and write accesses are always initiated from master ports.

The processors use these interfaces to communicate with the peripherals. Peripherals can use them
to communicate with each other. The communication connections are defined in the connection
section of each component.

This kind of communication encapsulates each component behind an abstract interface.
Components can easily replace each other, and it is generally easier to modify the structure of a
system and to reuse components in other systems.

Components must interact during the simulation and this communication must be based on a
defined protocol. LISA+ has the ability to define customized protocols that are tailored to the
specific components and offer a clean interface. Ports of components can only be connected if
they implement the same protocol.

A port declaration has the format:

port_attributes port<protocol_name> instanceName[, instanceName2 …];

port_attributes

a combination of the attributes master, slave, internal and addressable.

protocol_name

the name of a protocol. In a sense, a port type.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

If a port has behavior that implements one or more protocol functions, the port declaration also has
a body containing behavior declarations:

port_attributes port<protocol_name> instanceName
{
 behavior f { }
 behavior g { }
 // …
}

Related information
About the component connection section on page 41
LISA+ protocols on page 57

2.8.2 Master, slave, and internal ports

Ports have a master side and a slave side. Ports must be master, slave or internal.

Some ports of a component are exposed to the system as master ports, for example a memory port
of a processor. Such ports have the master port attribute.

Some ports are intended to be exposed to the outside system as slave ports, for example an
interrupt request port of a processor. Such ports have the slave attribute.

Some ports are only used internally in a component, for example to receive callbacks from a
subcomponent. Such ports neither expose their master side nor their slave side. Such ports have
the internal attribute.

A port cannot be master and slave at the same time, meaning it can not expose the master and the
slave side at the same time to the outside world.

You can add the master or slave attribute to the internal keyword to indicate how the internal
port is to be used, but this is not required.

Master ports always only implement the master behaviors of a protocol and slave ports always
implement the slave behaviors of a protocol. Because most protocols only have slave behaviors,
typically only the slave port has behaviors.

The implementation of protocol behaviors must be done inside the scope of the
port declaration. All resources that have been declared within the component scope
can be directly accessed.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.8.3 Port arrays

A LISA+ component can contain arrays of ports, for example multiple interrupt ports in an IRQ
controller.

It is useful to declare multiple instances of a port at the same time using the array construct:

slave port<MyType> access[2];

This declares two slave ports using the protocol MyType. In the behavior that implements the
protocol MyType, an additional parameter of type unsigned int is available and denotes the port
index. As an example protocol MyType has a behavior read:

protocol MyType
{
 slave behavior read(uint32_t addr, uint32_t &data)
}

Implementing read() for a port vector
The parameter list and implementation of a read method, which uses the portIndex
parameter to distinguish between the ports.
slave port <MyType> access[2]
{
 behavior read(/* additional parameter */ unsigned int portIndex,
 uint32_t addr, uint32_t &data)
 {
 // implementation of read behavior
 if (portIndex == 0)
 // do something for port 0
 ;
 else
 // do something for port 1
 ;
 }
}

The length of the port must be a literal number. Expressions and parameter references are not
permitted.

Related information
Port array connections on page 43

2.8.4 Internal ports

Internal ports are: normal ports that are not accessible from outside of the component, not visible
in the component, not a part of the component interface, an internal implementation detail of a
component.

Internal ports typically handle signals coming from master ports of subcomponents in the parent
component.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

It is not necessary to declare an internal port to call port behaviors of a subcomponent. Do this
directly using the syntax:

asubcomponent.aport.abehavior (..)

Internal port
component MyComponent
{
 internal slave port<MyProtocol>
 {
 // …
 }
}

2.9 Component connection section
This section describes the component connection section.

2.9.1 About the component connection section

The connection section is for connecting component ports with each other.

The composition section defines the scope of the connection section. You can only connect the
ports of the component itself and ports of components declared in the composition section in the
connection section.

The connection section contains a list of connection statements. The connection section syntax is:

masterComponent.masterPort[MAR] => slaveComponent.slavePort[SAR];

MAR, SAR
the optional Master Address Range and Slave Address Range. The address range includes
both the low address and high address.

All addresses in the master and slave address ranges, if present, must be plain
numeric constants, that is, either hex or decimal. Do not use expressions,
enums or preprocessor symbols.

masterComponent and slaveComponent
the instance name of any subcomponent, as defined in the composition section, or the
keyword self that stands for the component that contains the connection section.
masterComponent is always the transaction initiator (master) and slaveComponent is the
transaction receiver (slave).

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

Specify an address range for addressable ports. You cannot specify an address range, however, for
non-addressable ports.

The following rules apply for address ranges:

• If a range is only for the master, the range of the slave has the same size as the address range
of the master and always starts from 0.

• If the address range of the slave is smaller then the address range of the master port, multiple
addresses of the master port link to the same slave port address.

If, for example, the master port has range 0 to 0x1FFF and the slave port range is from 0 to
0xFFF, the master port addresses 0x0001 and 0x1001 both link to address 0x0001 of the
slave port.

• You can overlap address ranges but the order of the connection statements is significant. Later
connection statements override earlier connection statements. The first connection statement,
therefore, has the lowest priority. The priority of connections simplifies creating a default bus
slave that covers the whole address space of the bus.

Connecting ports
How to connect ports in the connection section.
component MyComponent
{
 composition
 {
 mem: MyMemory(size=0x1000);
 mem2: MyMemory(size=0x1000);
 otherComp: MyOtherComp;
 probe: MyProbe;
 }
 addressable master port<MyMemProtocol> memport;
 master port<MyOtherProtocol> otherPort;

 connection
 {
 // default bus slave comes first and gets all addresses that
 // are not overridden by the other connection statements
 self.memport[0..0xffffffff] => probe.access;
 // addressable master ports can have address ranges
 self.memport[0..0xfff] => mem.access[0..0xfff];
 // this is equivalent to => mem2.access[0..0xfff]
 self.memport[0x1000..0x1fff] => mem2.access;
 self.otherPort => otherComp.otherPort;
 }
}

The port memport is an external port and probe is a component. The keyword self identifies
that the external port memport connects to the access port of the probe component.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.9.2 Hierarchy in port connections

Components that have subcomponents might require exposing master ports of the subcomponent.
This is possible for both slave and master ports.

Component hierarchy
This example assumes a component parent with a subcomponent sub.
component parent
{
 composition { subcomponent: sub }
 master port<masterType> forwardedMaster;
 slave port<slaveType> forwardedSlave;
 connection
 {
 subcomponent.subMaster => self.forwardedMaster;
 self.forwardedSlave => subcomponent.subSlave;
 }
}

component sub
{
 master port<masterType> subMaster;
 slave port<slaveType> subSlave;
}

The subcomponent ports subMaster and subSlave are forwarded and are visible to the
outside with the names forwardedMaster and forwardedSlave. The keyword self is used
to identify the external ports forwardedSlave and forwardedMaster. This might seem to
contradict the principle that master ports can only be connected to slave ports, and the
reverse. Both ports, however, have two sides, a master port also has a slave side where the
method is being initiated. The same is true for slave ports that receive some kind of signal
and then act as a master within the component.

2.9.3 Port array connections

LISA+ simplifies connecting port arrays by permitting port arrays in connection statements. Each
connection statement consists of a left and right-hand side.

There are these combinations:

• Single port to single port.

• Port array to single port.

• Single port to port array.

• Port array to port array.

A single port can be either a port declared as single or a single element of a port array. Port arrays
are used in connection statements as the array identifier without an index.

Port array connections
protocol MyProtocol { /* protocol behaviors */ }
component Foo
{

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

 master port<MyProtocol> mPortArray[4];
}

component Bar
{
 slave port<MyProtocol> sPort;
 slave port<MyProtocol> sPortArray[4];
}

component MyComponent
{
 composition
 {
 foo : Foo;
 bar : Bar;
 }

 connection
 {
 // single port to single port
 foo.mPortArray[2] => bar.sPort;
 foo.mPortArray[2] => bar.sPortArray[3];
 // single port to port array
 foo.mPortArray[2] => bar.sPortArray;
 // port array to single port
 foo.mPortArray => bar.sPortArray[3];
 // port array to port array
 foo.mPortArray => bar.sPortArray;
 }
}

These rules apply:

Single-to-array connections
The master port is connected to every element of the slave port array.

Array-to-single connection
Every element of the master port array is connected to the slave port.

SimGen issues warning W7538 when it detects all elements of a master port
array are connected to a single slave port. Such fan-ins are valid, but are
usually unintentional and can cause significant performance problems. To
suppress the warning, denote the fan-in as explicit by adding [*] to the left
side of the connection statement, for example:

a[*] => b;

Array-to-array connections
Each element of the master port array is connected to the element of the slave port array
that has the same index. The master must be equal to or smaller than the slave, otherwise an
error is raised.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.10 Component properties section
The properties section of a component describes the properties of the component, for example
version or component type. Some properties might only be relevant to a specific tool.

Properties section
component MyComponent
{
 ...
 properties
 {
 version = “1.1.1”;
 component_type = “Peripheral”;
 description = “my component”;
 ...
 }
}

Table 2-7: Component properties

Property Default Description

component_type "" A string of free-form text describing the type of component.

component_name "" A string containing the name of the component.

default_view auto The System Canvas view is block diagram (auto) or source (source).

deprecated false Marks a component as deprecated. Platforms using this component must be built using the --
allow-deprecated SimGen switch.

description "" A description of the component.

documentation_file "" Filename or http link for the component documentation. For filenames, the path can be absolute
or relative to the LISA+ file for the component. Supported file formats are pdf, txt, and html.
Filenames can contain the * and ? wildcards.

dso_safe true If set, the component can be placed in the shared library part of the generated model. Otherwise, the
component is placed in a static library.

executes_software 0 This Boolean property indicates that the component executes software and that application files can
be loaded into this type of component.

has_cadi 1 If set to 1 (true), a CADI interface is generated for this component that enables connection of
the target with a CADI-compliant debugger. If set to 0, no CADI interface is generated for this
component.

hidden 0 If set to 1 (true), the component is hidden. A hidden component is not shown in the System Canvas
component list and cannot be added to a block diagram.

icon_file "" File containing the logo in xpm format. This icon is displayed in the System Canvas block diagram
editor. The path is relative to the LISA+ file.

loadfile_extension "" Application filename extension for this target. Example: ".elf" or ".elf;*.hex"

small_icon_file "" File containing icon shown in System Canvas list view. The component is displayed as a 12x12 pixel
icon. The path is relative to the LISA+ file.

version "1.0" The version number of the component.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

2.11 Component debug section
The debug section enables control of the published and imported Component Architecture Debug
Interface (CADI) interfaces.

By default, all components publish CADI interfaces in the CADI factory to enable connecting
CADI-compliant debuggers. By default, components do not import the CADI interfaces of their
subcomponents.

A debug section
component MyComponent
{
 composition { a:comp_A; b:comp_B; c:comp_C;}
 debug
 {
 composition.publish; // publish all components CADI ...
 a.unpublish; // ... but do NOT publish CADI of ‘a’
 composition.unimport; // do NOT import any CADI info ...
 b.import; // ... but import CADI info of ‘b’
 }
}

The keywords are:

publish

The CADI of the subcomponent is published in the CADI factory and a CADI-compliant
debugger can connect to the component.

unpublish

The CADI of the subcomponent is not published in the CADI factory and it is not possible for
a CADI-compliant debugger to connect to the component.

import

The CADI information of the subcomponent is imported into the CADI interface of the
component containing the debug section.

unimport

The CADI information of the subcomponent is not imported into the CADI interface of the
component containing the debug section.

composition

All subcomponents of the component are affected by the statement.

These rules apply:

• unpublish and unimport also affect all subcomponents of the components.

• The top-level component cannot be unpublished or unimported.

Using unpublish and publish
The CADIs of aa and dd are not published because the unpublish command issued to aa
applies to the CADI of dd, even though aa publishes dd in its debug section.
component MyComponent
{
 composition { aa:comp_A; bb:comp_B; cc:comp_C;}

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

 debug
 {
 composition.publish; // publish all components CADI ...
 aa.unpublish; // ... but do NOT publish CADI of ‘aa’
 }
}

component Comp_A
{
 composition { dd:comp_D}
 debug
 {
 dd.publish; // publish CADI of component dd
 }
}

Empty or missing debug section
debug
{
 composition.publish;
 composition.unimport;
}

2.12 Component parameter export list
Use the parameter export list to limit the exposed set of CADI parameters of a virtual platform. It is
a special purpose behavior. Place it in the top component as setupGlobalSystemAttributes().

This behavior is only generated for CADI DSO targets, not for ISIM executable
targets.

A parameter export list
behavior setupGlobalSystemAttributes()
{
 // hide parameters of 'processor' and its subcomponents
 hideParameter("*.processor.*");

 // but expose all parameters of component processor.core0
 exposeParameter("*.processor.core0.*");

 // but do not expose its semihosting parameters.
 hideParameter("*.processor.core0.semihosting*");
}

The methods for exposing and hiding parameters are:

exposeParameter()

Expose the given parameters.

hideParameter()

Hide the given parameters.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ components

These rules apply:

• By default all parameters are exposed.

• The filtering patterns given as the parameters of exposeParameter and hideParameter
can either contain fully qualified parameter names (including instance names) or wild card
expressions.

• Filter patterns are evaluated in the order of their calls.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

3. Communication with C++ code
This chapter describes how to call custom C++ code from LISA+ behavior code and how to call
LISA+ behavior code from C++ code.

3.1 Accessing C++ constructs from LISA+
This section describes the changes needed to access C++ constructs from LISA+, and an example.

Related information
LISA+ example of accessing C++ constructs on page 51

3.1.1 About accessing C++ constructs from LISA+

You can use C++ constructs without special syntax inside behavior bodies, including ports, of
a component, if the includes section of a component includes a header file that declares the
constructs.

LISA+ behaviors contain C++ code, so the syntax for accessing C++ functions and types is the
same as for normal C++ code.

3.1.2 Changes required to your source code

To make C++ class declarations and definitions visible in LISA+ behaviors, add #include statements,
referencing the C++ header files, to the includes section of the component.

Everything defined in these header files is visible inside the bodies of all behaviors of the
component. However, #defines defined in these headers are not visible outside of the behavior
bodies and cannot affect conditional compilation of LISA+ code.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

Figure 3-1: Relationship between LISA+ and C++ source

LISA+ wrapper

C++ component

*mycomp class MyCPPComponent {
public:
 MyCPPComponent
 (callback.getAbstractInterface();)
 int reset()
};a = mycomp->reset()

includes {
 #include "MyCPPComponent.h"
}
resources {
 MyCPPComponent *mycomp;
}
behavior init {
 mycomp = new MyCPPComponent(callback.getAbstractInterface());
}

The figure shows an example where the LISA+ code for MyComponent imports a C++ component,
MyCPPComponent. The LISA+ wrapper code references the C++ header for the MyCPPComponent
model in the includes section. To access the C++ object, use pointers. A pointer, *mycomp, gives
access to the reset function of MYCPPComponent.

3.1.3 Changes required to your Fast Models project

Configure your System Canvas project to locate C++ object header files.

Procedure
1. Open the Projects Settings dialog by clicking Project > Project Settings . Add the path to your

C++ header files in the Include Directories field in the Compiler parameter category.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

Figure 3-2: System Canvas Project Settings dialog

2. Include a path to the library file that contains your C++ object. Click Project > Add Files... to
open the Add Files dialog. Change the File type to Library and Object Files (*.lib; *.obj) and
locate your C++ object. Click Open to add the object to your Fast Models project.

Related information
Fast Models Tools User Guide

3.1.4 LISA+ example of accessing C++ constructs

A commented LISA+ example demonstrating the concepts necessary to communicate with C++.

component MyComponent{
includes
 {
 // make C++ declarations visible in behaviors and resources
 #include "MyCPPComponent.h"
 }

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 74

https://developer.arm.com/documentation/109415/1128/

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

 resources
 {
 MyCPPComponent *mycomp; // declare a pointer to a C++ class
 }

 // use this internal port to allow the C++ code to talk to us
 internal port<MyInterface> callback
 {
 behavior signal()
 {
 // the C++ code can call this behavior
 }
 }

 behavior init
 {
 // create instance of C++ class. We pass a pointer to the 'callback'
 // port to allow the C++ code to call us back
 mycomp = new MyCPPComponent(callback.getAbstractInterface());
 }

 behavior reset(int level)
 {
 // LISA+ code can call C++ code directly without any special
 // syntax
 mycomp->reset();
 }

 behavior terminate
 {
 delete mycomp; // delete instance of C++ class
 }
}

// use this protocol to allow the C++ code to call the LISA code protocol
MyInterface{
 behavior signal();
}

3.2 Calls to LISA+ behaviors from C++ code
This section describes how to call LISA+ behaviors from C++ code.

3.2.1 About calls to LISA+ behaviors from C++ code

Call back into LISA+ code from component C++ code by passing a pointer to a pure virtual
interface class, the abstract interface, from the LISA+ code to the C++ code in init. During
simulation, the C++ code can use this pointer to call back into the LISA+ code.

The C++ code can call every port, be it internal, master, or slave. However, it cannot call non-port
component behaviors directly using this approach.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

3.2.2 Requirements for importing models with callbacks

Callbacks provide a method that permits a C++ object to call LISA+ behaviors. It must fulfill two
conditions for callbacks to work.

1. The LISA+ object must implement the necessary callback functions, through the
getAbstractInterface() function.

2. You must pass the address of the LISA+ object to the C++ object, using a C++ header file.

Figure 3-3: Relationship between C++ and LISA+ components in callbacks

getAbstractInterface()

C++ component: protocol_myInterface*

#include "protocol_myInterface.h"
class CPP {
public:
 CPP(protocol_myInterface *in)
 { ptr_myInterface = in; }
private:
 protocol_myInterface
*ptr_myInterface;
};

slave port<myInterface> mySlave

internal slave port<myInterface> mySlave{…}
resources {
CPP *cpp;
protocol_myInterface *ptr;
}
behavior init {
 ptr = mySlave.getAbstractInterface();
 cpp = new cpp(ptr);
}

*ptr

*cpp

Use the LISA+ construct mySlave.getAbstractInterface() to get the pointer
*protocol_myInterface to the mySlave port.

The C++ component header file is protocol_myInterface.h.

3.2.3 getAbstractInterface()

Use this function to call between C++ and LISA+ components.

LISA+ component ports implement the function, which:
Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 53 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

• Passes the port address of a LISA+ component to the C++ object.

• Returns a pointer of the type protocol_ProtocolName to the C++ component.

You can use the LISA+ construct portinstance.getAbstractInterface() in component behaviors
to get a pointer to the abstract interface class instance for a specific port portinstance. It returns
a non-const pointer to a class named protocol_ProtocolName, where ProtocolName is the name
of the protocol of the port. The LISA+ code can pass a pointer to this class to the C++ code on
component initialization, and the C++ code can call the LISA+ code back through the abstract
interface class and the port behaviors.

3.2.4 Abstract interface header file

System Generator (SimGen) automatically generates the definition of the abstract interface class into
the directory that contains all of the source files that System Canvas generates.

To call methods of the abstract interface class, the C++ code must know the class declaration of
the abstract interface class. The name of the header file and the name of the abstract interface
class are protocol_ProtocolName.h and protocol_ProtocolName, where ProtocolName is the name
of the protocol for this abstract interface. There is one generated header file for each protocol in
the system. The header file is always generated, even if it is not used by C++ code.

SimGen generates the abstract interface class and the header file directly from the protocol
definition in the LISA+ file. The interface class contains all behaviors of the protocol (master or
slave) as virtual member functions that are in the same order as in the LISA+ protocol definition.
The function names, parameters, return type, and order are exactly the same in the LISA+ protocol
definition and in the generated abstract interface class.

C++ code that is to be compiled independently of the LISA+ code can take a copy of this generated
header file. By taking a copy of the header file, both the C++ code and the LISA+ code agree on
the interface. This is exactly the same as the interface agreement between two C++ modules.

Whenever you change the LISA+ protocol definition, the abstract interface class also changes and
you must also update the interface header file that the C++ code uses.

If the C++ code includes the abstract interface header file and receives a pointer to such an
interface, it can call any of the interface methods. The call semantics depend on the type of port
the abstract interface belongs to and the implementation of the port.

Invoking a function in the abstract interface typically has the same semantics as if the LISA+
component containing the port invoked the corresponding behavior locally.

If the abstract interface belongs to a slave port, or an internal port that is not connected to any
other ports, and the port implements the slave behaviors of the protocol, the C++ code can call all
the slave behaviors on the port. This is the most typical use case.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

For example, the LISA+ component can use a specific protocol to communicate with the C++
component. It can also provide access functions for the C++ code to certain resources in the
protocol. The only purpose of such a protocol would be to communicate with C++ code.

If the abstract interface belongs to a master port that connects to one or more slave ports, invoking
a function on the abstract interface results in calls to all slaves connected to the master port. If no
slave is connected to the master port, or if none of the connected slaves implement the behavior
being called, the results are undefined.

3.3 Third party model import
You can include third party C++ models in your Fast Models system.

To include third party C++ models without access to the C++ source, you require:

• Compiled library files for the models.

• The model interfaces.

• A callback interface for the models.

To use a third party model in your system, you might require to implement your own callback class
to bridge the third party model and your LISA+ system. For example, if your third party model
callback interface does not match the LISA+ protocols.

Figure 3-4: Third party model callback relationships

C++ callback: myCallBack

+ myCallBack(protocol_myInterface*): void
+ func_1() : int
+ func_2() : int
+ func_3() : void

slave port<myInterface> mySlave

Third Party C++ model foo
+ foo(callback*) : void
+ foofunc_1() : void
+ foofunc_2() : int

Third Party callback
+ func_1() : int
+ func_2() : int
+ func_3() : void

myCallBack
derived from
Third Party

callback

protocol_myInterface

In the figure, the myCallBack callback class derives from the callback class of the third party model
and interfaces with your LISA+ protocol. A pointer to the myCallBack class passes to the third

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Communication with C++ code

party model. The myCallBack class communicates with the C++ model using a LISA+ callback,
protocol_myInterface.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

4. LISA+ protocols
This chapter describes the syntax of the LISA+ protocol section.

4.1 About LISA+ protocols
The LISA+ keyword protocol declares a protocol.

protocol MyProtocol
{
 // protocol definition
}

Define protocols on the top level in the LISA+ code. By convention, each protocol MyProtocol has a
separate LISA+ file MyProtocol.lisa to define it.

MyProtocol can be any valid C identifier. A protocol defines ports in components that use this
protocol to communicate with other components, including parent-, sibling- and sub-components.
You can think of protocols as port types because only ports that use the same protocol can connect.

A protocol definition can contain:

• An includes section.

• A possibly empty list of behavior prototypes.

• A properties section.

4.2 LISA+ protocol includes section
The includes section includes C/C++ type declarations and constants from external C/C++ header
files. It is optional, and sits inside the protocol definition.

The contents and semantics of this includes section are the same as for the includes section
of components. It usually contains a list of preprocessor #include statements. These #include
statements do not expand into the LISA+ code. The #include statements associate with the
protocol definition and you can use the types declared in the included header files in the protocol
definition.

The scope of the declarations made directly or indirectly in the includes section can extend
beyond the protocol definition that contains the includes section. The scope can span all LISA+
files of a subsystem, including all other component and protocol definitions, but is only guaranteed
to span the protocol definition itself.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

4.3 LISA+ protocol properties section
This section describes the properties section.

4.3.1 LISA+ protocol properties section syntax and properties

The properties section of a protocol describes properties, for example version and base class.
Some properties might only be relevant for a specific tool. All are optional.

LISA+ properties section syntax
protocol MyProtocol
{
 ...
 properties
 {
 version = “1.1.1”;
 description = “my protocol”;
 ...
 }
}

Table 4-1: LISA+ protocol properties

Property Default Description

description "" Description of the protocol.

version "1.0" Version number of the protocol.

documentation_file "" Filename or http link for the protocol documentation.

For filenames, the path can be absolute or relative to the LISA+ file for the protocol.
Supported file formats are pdf, txt, and html. Filenames can contain the * and ?
wildcards.

dso_safe true If set, the component can be placed in the shared library part of the generated model.
Otherwise, the component is placed in a static library.

sc_slave_base_class_name "" Name of the SystemC base class for slave ports (slave exports and sockets for both TLM1
and TLM2).

sc_slave_export_class_name "" Name of the SystemC class for slave ports (slave exports for TLM1 only).

sc_master_port_class_name "" Name of the SystemC class for master ports (TLM1 only).

sc_master_base_class_name "" Name of the SystemC base class for master ports (master sockets for TLM2 only).

sc_
master_socket_class_name

"" Name of the SystemC class for master ports (master sockets for TLM2 only).

sc_slave_socket_class_name "" Name of the SystemC class for slave ports (master sockets for TLM2 only).

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

4.3.2 LISA+ protocol properties for SystemC export

Use the properties sc_slave_base_class_name, sc_slave_export_class_name and
sc_master_port_class_name if exporting a System Canvas generated system to SystemC.

These properties are for protocols that declare SystemC ports in the top level component of the
system that is to be exported to SystemC. They describe the mapping from System Canvas ports to
the SystemC port classes.

System Generator (SimGen) ignores them if you instantiate a port of this protocol outside of the top
level component of a system or if no SystemC component is generated.

If a SystemC component is generated but you do not set these properties for the ports of protocols
in the top level component, SimGen ignores the ports and issues a warning.

Related information
Fast Models Tools User Guide

4.4 LISA+ protocol behavior prototypes
This section describes LISA+ protocol behavior prototypes, which declare a behavior of the
enclosing protocol.

4.4.1 About LISA+ protocol behavior prototypes

A protocol definition can contain zero or more behavior prototypes. Each behavior prototype
declares a behavior of the enclosing protocol.

The behavior prototypes are the main part of the protocol definition and define:

• The interface of the protocol.

• The interface of the ports and components that use this protocol.

4.4.2 LISA+ protocol behavior prototype syntax

The syntax of behavior prototypes is similar to the syntax of behaviors in components. The main
differences are that behavior prototypes can have specific attributes, and do not require a body.

attributes behavior name[(formal_args)][:return_type];

attributes behavior name[(formal_args)][:return_type]
{
 // Default implementation. Can be empty
}

attributes

a combination of optional, master, and slave. There are restrictions.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 74

https://developer.arm.com/documentation/109415/1128/

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

name

the name of the protocol behavior, any C identifier. Each name can only occur once in the
protocol definition. Overloaded behavior prototypes are not permitted.

formal_args

the formal arguments of the behavior. The syntax is the same as for C++ function
declarations. If you define types, define them in a header file that you include in the includes
section.

You can use the native C/C++ types and the native LISA+ types without an include
statement. Behaviors can optionally mark one argument as an address parameter by placing
the ADDRESS keyword before the type of the formal argument.

If the argument list is empty, you can omit the opening and closing parentheses. You can also
omit the names of the formal arguments. Variable number of arguments and default values
are not permitted.

return_type

the type of the return value of that behavior. You can omit the return type if it is void. In this
case, also omit the colon, :.

4.4.3 LISA+ protocol behavior prototype attributes

This section describes behavior prototype attributes.

4.4.3.1 About LISA+ protocol behavior prototype attributes

In most cases, a protocol behavior is a slave or optional slave behavior. Master behaviors are not
common.

If set, the attribute specifier for the behavior must be one of:

master
You must implement a behavior for a master port. A default implementation is not permitted.

slave
You must implement a behavior for a slave port. A default implementation is not permitted.

optional master
You do not have to implement this behavior for a master port. A default implementation can
be provided as part of the prototype definition.

optional slave
You do not have to implement this behavior for a slave port. A default implementation can be
provided as part of the prototype definition.

The attribute specifier for the behavior in the protocol definition must:

• Exactly match the attributes in the port definition section.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

• Be omitted from the port behavior definition.

• If there is no attribute specifier, none of these constraints apply. That is, the
behavior is optional, and you can specify a default implementation if required.

• The presence of default behaviors is part of the protocol definition.

4.4.3.2 Mandatory LISA+ protocol behavior

A description of mandatory behavior.

For this behavior declaration in a protocol:

slave behavior f();

• All slave ports using this protocol must implement this behavior f().

• Calling f() invokes all behaviors f() in all slave ports connected to the same port.

• Master ports might not implement behavior f().

• The slave must provide read and write functions to access resources.

• Without the optional keyword, you must not specify a default implementation. The presence
of a default implementation causes an error.

4.4.3.3 Optional LISA+ protocol behavior without default implementation

A description of optional behavior without default implementation.

For this optional behavior declaration in a protocol:

optional slave behavior f();

• Not all slave ports that use this protocol have to implement behavior f(). There is no default
behavior, so a call to a missing behavior results in an error.

• Calling f() invokes all behaviors f() in all slave ports connected to the same port. A master
might, for example, notify or query information from all connected slaves, but the handling of
this is optional.

• A master must check whether at least one behavior is connected to a behavior in the specified
port:

if (myport.f.implemented()) myport.f();

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

Arm recommends the use of the implemented() test only if the default
implementation in the protocol is not usable. Ensure that optional behaviors in
new code have default implementations. However, if you are using unmodified
legacy code and the called behavior has the optional keyword but no default
implementation, you must test for an implementation.

• Calling a behavior on a port that none of the slaves implements causes a run-time error.

4.4.3.4 Optional LISA+ protocol behavior with default implementation

A description of optional behavior with default implementation.

For this optional behavior definition in a protocol:

optional slave behavior f()
{
// default implementation. Can be empty
}

• Not all slave ports that use this protocol have to implement behavior f(). If a slave does not
implement the behavior, the default implementation is used instead. The default can be {} if no
action is required.

• If the port implements behavior f(), that implementation is used instead of the default
implementation.

• Calling f() invokes all behaviors f() in all slave ports connected to the same port. A master
might, for example, notify or query information from all connected slaves, but the handling of
this is optional.

• A master does not have to use the form:

if (myport.f.implemented()) myport.f();

to test for implementation of the behavior in a port. The default implementation means that
f.implemented() returns true whether or not there is a local implementation.

• If a behavior returns a value, the default implementation can return 0 or any another value that
is valid in the context of the calling function.

optional slave behavior f() : uint8_t
{
 // additional code can be present here, but is not required
 return 0;
}

If the return value is undefined, the compiler generates a warning if you enable such warnings.
System Canvas does not issue a warning.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ protocols

4.4.4 LISA+ protocol behavior ADDRESS arguments

A description of the ADDRESS keyword.

A protocol is a bus protocol if it enables a single master port to connect to multiple slave ports and
the address of the access determines the selection of the slave port.

The simulator must inspect the address of the access to determine the destination slave. Specify
the address as a parameter of the protocol behavior annotated with the ADDRESS keyword:

LISA+ protocol behavior ADDRESS syntax
protocol MyBusProtocol
{
 includes
 {
 // declare your own types
 #include "TransactionMode.h"
 }
 slave behavior read(ADDRESS uint32_t addr): uint8_t;
 slave behavior write(ADDRESS uint32_t addr, uint8_t data);
 slave behavior setMode(const TransactionMode *mode);
}

• You can omit the ADDRESS attribute from the parameter list for the protocol behaviors.

• If present, only use the ADDRESS attribute with a single parameter of each protocol behavior.

• The ADDRESS parameter can be at any position in the argument list.

• ADDRESS is not a type specifier. Explicitly specify the type of the address as an integer type of
any size.

• Match the size of the integer type for each ADDRESS parameter for all of the behaviors in a
protocol.

• It is valid to have behaviors with and without an ADDRESS parameter in the same protocol:

◦ A behavior with an ADDRESS parameter is read(), which selects the slave based on the
address.

◦ A behavior without an ADDRESS parameter is reset(), which calls all connected slaves.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ preprocessor

Appendix A LISA+ preprocessor
This appendix describes the C-like preprocessor statements that you can use in LISA+ source code,
and how the LISA+ preprocessor works.

A.1 About the LISA+ preprocessor
The LISA+ preprocessor is like the C preprocessor, but not identical.

As in C, the LISA+ preprocessor processes the source code before the underlying LISA+ parser sees
the source code. The preprocessor statements are not part of formal LISA+, but are like a layer on
top of LISA+.

Unlike C, however, the LISA+ preprocessor interacts with the actual LISA+ constructs. Deliberately,
the preprocessor disables some features, for example macro expansion and includes, in certain
contexts so that tools that read, modify and write LISA+ code work correctly. Consequently there
are subtle restrictions to using preprocessor statements in LISA+ code. This appendix covers them.

The preprocessor generally ignores instructions on the very first line of a LISA file.

A.2 LISA+ preprocessor scopes
LISA+ source code has different preprocessor scopes.

LISA+ top-level
All LISA+ code that is not behavior, includes, or resources section code is LISA+ top-level
code. This code consists only of LISA+ keywords and LISA+ constructs.

includes and resources
All of the code between but not including the outermost opening and the closing braces, of
includes and resources sections.

behavior

All of the code between but not including the outermost opening and the closing braces, of
behavior sections. All bodies of behavior definitions are behavior code. The code is C/C++
with LISA+ keyword extensions.

Each character of LISA+ source code belongs to one of these scopes.

These scopes affect macro expansion and impose restrictions on some preprocessor statements.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ preprocessor

A.3 LISA+ preprocessing according to scope
The LISA+ preprocessor treats the scopes differently.

• It never replaces or executes any #includes.

• It replaces macros only inside behavior code, nowhere else.

• It evaluates conditional compilation everywhere and macros evaluated in #if expressions.

• It ignores the preprocessor constructs (#include, #define, #if) in non-behavior sections,
passing them on intact to the C++ compiler, which deals with them. It makes sure that the C++
compiler sees the same set of preprocessor symbols that it saw, so that the LISA+ preprocessor
and the C++ compiler perform this conditional compilation in the same way.

Use LISA+ features rather than preprocessor macros to avoid redundancy in the
code.

A.4 Predefined LISA+ symbols and macros
Arm defines these preprocessor version symbols for all LISA+ files in all scopes, for Fast Models
Tools versions greater than or equal to 2.2.024, but not for earlier versions.

SYSTEM_GENERATOR_MAJOR_VERSION

Major version of the Fast Models Tools. The value is an unsigned integer, for example 2 in
System Generator (SimGen) 2.3.044.

SYSTEM_GENERATOR_MINOR_VERSION

Minor version of the Fast Models Tools. The value is an unsigned integer, for example 3 in
SimGen 2.3.044.

SYSTEM_GENERATOR_REVISION

Revision of the Fast Models Tools. The value is an unsigned integer, for example 44 in
SimGen 2.3.044.

SYSTEM_GENERATOR_VERSION

Fast Models Tools version as string constant, for example "2.3.044" for version 2.3.044.

SYSTEM_GENERATOR_VERSION_AT_LEAST(major,minor,revision)

true (1) if the Fast Models Tools version is at least major.minor.revision.

For example, SYSTEM_GENERATOR_AT_LEAST(2,1,57) evaluates to 1 for SimGen 2.3.044
because 2.3.044 is greater than 2.1.057.

SYSTEM_GENERATOR_VERSION_EQUALS(major,minor,revision)

true (1) if the Fast Models Tools version is exactly major.minor.revision.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ preprocessor

linux

true (1) if parsing LISA+ files or generating a simulator on Linux host systems. Arm does not
define it on other host platforms.

WIN32

true (1) if parsing LISA+ files or generating a simulator on Windows host systems. Arm does
not define it on other host platforms.

Arm does not define preprocessor symbols that C/C++ compilers typically predefine on certain
host platforms for LISA+ files, not even in behavior bodies. For example, Arm does not define
the symbols __cplusplus or __GNUC__ for the preprocessing of LISA+ files. However, you can set
preprocessor symbols manually in the project settings for specific host platforms.

A.5 LISA+ preprocessor statements
LISA+ preprocessor statements have the same syntax and semantics as the corresponding C
preprocessor statements.

#define

Define a macro. Macros can have arguments. Converting to strings (# operator) and
concatenating (## operator) are supported. The macro is defined in all LISA+ source in the
same file that follows the #define statement unless it is explicitly #undefined.

Macros can be redefined several times without warning if the redefinition is identical. Macro
expansion is disabled in LISA+ top-level code because of scope. Macros defined on the LISA+
top-level do not affect conditional statements in the includes and resources sections.

#undef

Undefine a macro. The macro is undefined in all LISA+ code in the same file that follows this
statement. It is not an error if the macro was not defined before this statement.

#if, #elif, #else, #endif
Enable or disable the code enclosed by #if, #elif, #else, or #endif blocks, depending on the
value of the expression following the #if and #elif statements. If the expression evaluates
to 0 the code is disabled, for all other values the code is enabled.

Undefined identifiers in the expression have a numerical value of 0. The expression
defined(SYM) evaluates to 1 if the preprocessor symbol SYM is defined or 0 if it is not defined.

#ifdef, #ifndef
Shortcuts for the #if defined(SYM) and #if !defined(SYM) statements, respectively.

#include

Include statements are ignored by the LISA+ preprocessor because of scope. However,
#include statements in the includes sections of components have the required effect of
making the declarations in the header files visible in the behavior code.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

LISA+ preprocessor

#error

Print the error message that follows the #error statement. Processing of the LISA+ code by
the tool is unsuccessful and the tool performs as if an error has occurred.

#warning

Print the warning message that follows the #warning statement. Processing of the LISA+
code by the tool is successful and the tool performs as normal.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 74

https://www.arm.com/company/policies/trademarks

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in the Arm documents.

Product status
All products and Services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0100-
15

19 February
2025

Non-
Confidential

Update for v11.28.

0100-
14

19 June 2024 Non-
Confidential

Update for v11.26.

0100-
13

13 March 2024 Non-
Confidential

Update for v11.25.

0100-
12

13 September
2023

Non-
Confidential

Update for v11.23.

0100-
11

7 December
2022

Non-
Confidential

Update for v11.20.

0100-
10

14 September
2022

Non-
Confidential

Update for v11.19.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Issue Date Confidentiality Change

0100-
09

15 June 2022 Non-
Confidential

Update for v11.18.

0100-
08

16 February
2022

Non-
Confidential

Update for v11.17.

0100-
07

6 October 2021 Non-
Confidential

Update for v11.16.

0100-
06

29 June 2021 Non-
Confidential

Update for v11.15.

0100-
05

9 December
2020

Non-
Confidential

Update for v11.13

0100-
04

23 November
2018

Non-
Confidential

Update for v11.5.

0100-
03

22 June 2018 Non-
Confidential

Update for v11.4.

0100-
02

23 February
2018

Non-
Confidential

Update for v11.3.

0100-
01

17 November
2017

Non-
Confidential

Update for v11.2.

0100-
00

31 August 2017 Non-
Confidential

Document number has changed. Version number
changed to 1.0.

1100-
00

31 May 2017 Non-
Confidential

Update for v11.0. Document numbering scheme has
changed.

L 17 February
2017

Non-
Confidential

Update for v10.3.

K 11 November
2016

Non-
Confidential

Update for v10.2.

J 31 August 2016 Non-
Confidential

Update for v10.1.

I 31 May 2016 Non-
Confidential

Update for v10.0.

H 29 February
2016

Non-
Confidential

Update for v9.6.

G 30 November
2015

Non-
Confidential

Update for v9.5.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Issue Date Confidentiality Change

F 31 August 2015 Non-
Confidential

Update for v9.4.

E 31 May 2015 Non-
Confidential

Update for v9.3.

D 28 February
2015

Non-
Confidential

Update for v9.2.

C 30 November
2014

Non-
Confidential

Update for v9.1.

B 30 June 2014 Non-
Confidential

Replacement of Chapter 2.

A 31 May 2014 Non-
Confidential

New document for Fast Models v9.0, from DUI0372O
for v8.2.

For information about the functional changes to Fast Models, see the Fast Models Release Notes.

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 74

https://developer.arm.com/documentation/108086/1128/
https://developer.arm.com/glossary

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Convention Use
<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
of harming yourself.

This information is important and needs your attention.

This information might help you perform a task in an easier, better, or faster way.

This information reminds you of something important relating to the current
content.

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 74

LISA+ Language for Fast Models Reference Guide Document ID: 101092_0100_15_en
Issue 15

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Table 1: Arm publications

Document name Document ID Licensee only

Component Architecture Debug Interface User Guide 100963 No

Fast Models Tools User Guide 109415 No

Table 2: Arm publications

Document name Document ID Licensee only

Arm® Architecture Reference Manual for A-profile architecture DDI 0487 No

Copyright © 2014–2018, 2020–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 74

http://developer.arm.com/documentation
https://developer.arm.com/documentation/100963/
https://developer.arm.com/documentation/109415/1128/
https://developer.arm.com/documentation/ddi0487/

	LISA+ Language for Fast Models Reference Guide
	Contents
	1. Introduction to LISA+ for Fast Models
	1.1 Design methodology of System Canvas and LISA+
	1.2 Terminology of LISA+

	2. LISA+ components
	2.1 About LISA+ components
	2.2 LISA+ integer types and state variables
	2.3 The LISA+ message function and debugging
	2.3.1 About the LISA+ message function and debugging
	2.3.2 LISA+ message C++ prototype
	2.3.3 LISA+ message C prototype

	2.4 Component resources section
	2.4.1 About the component resources section
	2.4.2 Plain C/C++ variable declarations
	2.4.3 Annotated resources
	2.4.3.1 Syntax of annotated resources
	2.4.3.2 Annotated resources - registers
	2.4.3.2.1 Annotated resources - about registers
	2.4.3.2.2 Annotated resources - register parameters
	2.4.3.2.3 Annotated resources - IDs in register arrays
	2.4.3.2.4 Annotated resources - virtual registers
	2.4.3.2.5 Annotated resources - register access
	2.4.3.2.6 Annotated resources - component registers
	2.4.3.2.7 Annotated resources - debugger register access functions
	2.4.3.2.8 Annotated resources - memory-mapped register access

	2.4.3.3 Annotated resources - memory
	2.4.3.3.1 Annotated resources - about memory
	2.4.3.3.2 Annotated resources - memory parameters
	2.4.3.3.3 Annotated resources - read and write accesses
	2.4.3.3.4 Annotated resources - debugger memory read- and write-access functions

	2.4.3.4 Annotated resources - parameters

	2.4.4 Accessing resources
	2.4.5 Obsolete resources constructs

	2.5 Component includes section
	2.6 Component composition section
	2.6.1 About the component composition section
	2.6.2 Overriding component parameter attributes

	2.7 Component behavior sections
	2.7.1 About the component behavior sections
	2.7.2 Special-purpose behaviors
	2.7.3 Mapping SystemC callbacks to LISA behaviors
	2.7.4 Hierarchical behavior of special-purpose behaviors
	2.7.5 Controlling simulation from behaviors
	2.7.6 LISA+ elements in behaviors
	2.7.6.1 Subcomponent special-purpose behaviors
	2.7.6.2 Port behavior access
	2.7.6.3 Component instance name behavior access

	2.7.7 Scope of behaviors

	2.8 Component port declarations
	2.8.1 About component port declarations
	2.8.2 Master, slave, and internal ports
	2.8.3 Port arrays
	2.8.4 Internal ports

	2.9 Component connection section
	2.9.1 About the component connection section
	2.9.2 Hierarchy in port connections
	2.9.3 Port array connections

	2.10 Component properties section
	2.11 Component debug section
	2.12 Component parameter export list

	3. Communication with C++ code
	3.1 Accessing C++ constructs from LISA+
	3.1.1 About accessing C++ constructs from LISA+
	3.1.2 Changes required to your source code
	3.1.3 Changes required to your Fast Models project
	3.1.4 LISA+ example of accessing C++ constructs

	3.2 Calls to LISA+ behaviors from C++ code
	3.2.1 About calls to LISA+ behaviors from C++ code
	3.2.2 Requirements for importing models with callbacks
	3.2.3 getAbstractInterface()
	3.2.4 Abstract interface header file

	3.3 Third party model import

	4. LISA+ protocols
	4.1 About LISA+ protocols
	4.2 LISA+ protocol includes section
	4.3 LISA+ protocol properties section
	4.3.1 LISA+ protocol properties section syntax and properties
	4.3.2 LISA+ protocol properties for SystemC export

	4.4 LISA+ protocol behavior prototypes
	4.4.1 About LISA+ protocol behavior prototypes
	4.4.2 LISA+ protocol behavior prototype syntax
	4.4.3 LISA+ protocol behavior prototype attributes
	4.4.3.1 About LISA+ protocol behavior prototype attributes
	4.4.3.2 Mandatory LISA+ protocol behavior
	4.4.3.3 Optional LISA+ protocol behavior without default implementation
	4.4.3.4 Optional LISA+ protocol behavior with default implementation

	4.4.4 LISA+ protocol behavior ADDRESS arguments

	A. LISA+ preprocessor
	A.1 About the LISA+ preprocessor
	A.2 LISA+ preprocessor scopes
	A.3 LISA+ preprocessing according to scope
	A.4 Predefined LISA+ symbols and macros
	A.5 LISA+ preprocessor statements

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

