
Fast Models
Version 11.28

User Guide

Non-Confidential
Copyright © 2017–2025 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
100965_1128_00_en

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Fast Models User Guide

This document is Non-Confidential.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (100965_1128_00_en) was issued on 2025-02-19. There might be a later issue at
https://developer.arm.com/documentation/100965

The product version is 11.28.

See also: Proprietary Notice | Product and document information | Useful resources

Start Reading
If you prefer, you can skip to the start of the content.

Intended audience
This document is written for software developers using Fast Models to build and run custom
platform models.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 144

https://developer.arm.com/documentation/100965
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Contents

Contents

1. Introduction to Fast Models...8
1.1 What is Fast Models?.. 8
1.2 What does Fast Models consist of?...9
1.2.1 Fast Models tools.. 9
1.2.2 Fast Models portfolio...10
1.2.3 Other Fast Models products.. 11
1.3 Fast Models glossary... 12
1.4 Security assumptions for Fast Models.. 16

2. Installing Fast Models..17
2.1 Requirements for Fast Models.. 17
2.2 Installation.. 20
2.3 Uninstallation... 21
2.4 Dependencies for Red Hat Enterprise Linux... 22

3. Building Fast Models... 24
3.1 Build targets...24
3.2 Building an ISIM..25
3.3 Building an EVS.. 27
3.4 Building an EVS on Windows... 29
3.5 Linking against the SystemC library...30
3.6 Libraries required to run the platform...31
3.7 Building an SVP.. 32

4. Optimizing runtime performance of Fast Models.. 33
4.1 Use a suitable host machine... 33
4.2 Configure the model using options and parameters..33
4.3 Make the platform faster..34
4.4 Make the workload faster.. 35

5. SystemC Export with Multiple Instantiation... 36
5.1 About SystemC Export with Multiple Instantiation..36
5.2 Auto-bridging...37

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Contents

5.3 SystemC Export generated ports... 39
5.3.1 Protocol definition...39
5.3.2 TLM 1.0 protocol for an exported SystemC component.. 39
5.3.3 TLM 2.0 bus protocol for an exported SystemC component...40
5.3.4 Properties for TLM 1.0 based protocols... 40
5.3.5 Properties for TLM 2.0 based protocols... 42
5.4 SystemC Export API...43
5.4.1 SystemC Export header file..44
5.4.2 scx::scx_initialize.. 44
5.4.3 scx::scx_set_single_evs... 44
5.4.4 scx::scx_load_application..45
5.4.5 scx::scx_load_application_all..45
5.4.6 scx::scx_load_data..45
5.4.7 scx::scx_load_data_all..46
5.4.8 scx::scx_set_parameter...46
5.4.9 scx::scx_get_parameter...47
5.4.10 scx::scx_get_parameter_list...48
5.4.11 scx::scx_get_parameter_infos... 48
5.4.12 scx::scx_get_cadi_parameter_infos..49
5.4.13 scx::scx_set_cpi_file...49
5.4.14 scx::scx_cpulimit.. 49
5.4.15 scx::scx_timelimit...50
5.4.16 scx::scx_add_breakpoint.. 50
5.4.17 scx::scx_set_start_pc...50
5.4.18 scx::scx_dump.. 51
5.4.19 scx::scx_load_params_file.. 51
5.4.20 scx::scx_list_instances...51
5.4.21 scx::scx_list_registers.. 52
5.4.22 scx::scx_check_registers...52
5.4.23 scx::scx_list_memory.. 52
5.4.24 scx::scx_parse_and_configure...52
5.4.25 scx::scx_register_synchronous_thread..55
5.4.26 scx::scx_get_error_count... 56
5.4.27 scx::scx_get_exitcode_list.. 56
5.4.28 scx::scx_exitcode_entry..57
5.4.29 scx::scx_start_cadi_server..57

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Contents

5.4.30 scx::scx_enable_cadi_log..58
5.4.31 scx::scx_print_port_number.. 58
5.4.32 scx::scx_print_statistics.. 59
5.4.33 scx::scx_register_cadi_target...59
5.4.34 scx::scx_unregister_cadi_target.. 59
5.4.35 scx::scx_load_trace_plugin...60
5.4.36 scx::scx_load_plugin..60
5.4.37 scx::scx_get_global_interface..60
5.4.38 scx::scx_enable_iris_server.. 61
5.4.39 scx::scx_set_iris_server_port_range...61
5.4.40 scx::scx_get_iris_server_port...62
5.4.41 scx::scx_set_iris_server_port... 62
5.4.42 scx::scx_enable_iris_log..62
5.4.43 scx::scx_get_iris_connection_interface... 63
5.4.44 scx::scx_evs_base.. 63
5.4.45 scx::load_application...63
5.4.46 scx::load_data...64
5.4.47 scx::set_parameter.. 64
5.4.48 scx::get_parameter..65
5.4.49 scx::get_parameter_list...65
5.4.50 scx::scx_evs_base constructor... 65
5.4.51 scx::scx_evs_base destructor..66
5.4.52 scx::before_end_of_elaboration... 66
5.4.53 scx::end_of_elaboration... 66
5.4.54 scx::start_of_simulation..66
5.4.55 scx::end_of_simulation... 67
5.4.56 scx::scx_simcallback_if..67
5.4.57 scx::notify_running..67
5.4.58 scx::notify_stopped...67
5.4.59 scx::notify_debuggable...68
5.4.60 scx::notify_idle... 68
5.4.61 scx::scx_simcallback_if destructor... 68
5.4.62 scx::scx_simcontrol_if... 68
5.4.63 scx::get_scheduler...69
5.4.64 scx::get_report_handler..69
5.4.65 scx::run.. 70

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Contents

5.4.66 scx::stop.. 70
5.4.67 scx::is_running..70
5.4.68 scx::stop_acknowledge...70
5.4.69 scx::process_debuggable... 71
5.4.70 scx::notify_pending_debug..71
5.4.71 scx::process_idle.. 71
5.4.72 scx::shutdown.. 72
5.4.73 scx::add_callback... 72
5.4.74 scx::remove_callback.. 72
5.4.75 scx::scx_simcontrol_if destructor...72
5.4.76 scx::scx_get_default_simcontrol... 73
5.4.77 scx::scx_get_curr_simcontrol...73
5.4.78 scx::scx_report_handler_if... 73
5.4.79 scx::scx_get_default_report_handler... 74
5.4.80 scx::scx_get_curr_report_handler...74
5.4.81 scx::scx_sync.. 74
5.4.82 scx::scx_set_min_sync_latency... 75
5.4.83 scx::scx_get_min_sync_latency...75
5.4.84 scx::scx_simlimit...75
5.4.85 scx::scx_create_default_scheduler_mapping... 76
5.4.86 scx::scx_get_curr_scheduler_mapping.. 76
5.5 Scheduler API.. 76
5.5.1 Accessing SchedulerInterfaceForComponents from a modeling component..............................77
5.5.2 Intended mapping of the Scheduler API onto SystemC/TLM..78
5.5.3 sg::SchedulerInterfaceForComponents class.. 79
5.5.4 sg::SchedulerRunnable class... 89
5.5.5 sg::SchedulerThread class..92
5.5.6 sg::ThreadSignal class... 94
5.5.7 sg::Timer class.. 95
5.5.8 sg::TimerCallback class...96
5.5.9 sg::FrequencySource class...97
5.5.10 sg::FrequencyObserver class..97
5.5.11 sg::SchedulerObject class..97
5.5.12 sg::scx_create_default_scheduler_mapping...98
5.5.13 sg::scx_get_curr_scheduler_mapping.. 98
5.6 SystemC Export limitations.. 98

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Contents

5.6.1 SystemC Export limitation on reentrancy... 98
5.6.2 SystemC Export limitation on calling wait().. 99
5.6.3 SystemC Export limitation on code translation support for external memory............................99
5.6.4 SystemC Export limitation on Fast Models versions for MI platforms..99

6. Timing annotation..100
6.1 CPI files.. 100
6.2 CPI file syntax...102
6.3 BNF specification for CPI files..107
6.4 Instruction and data prefetching..108
6.4.1 Configuring instruction prefetching..108
6.4.2 Configuring data prefetching... 109
6.5 Configuring cache and TLB latency...111
6.6 Timing annotation tutorial... 111
6.6.1 Setting up the environment...111
6.6.2 Modeling Cycles Per Instruction (CPI)...114
6.6.3 Modeling branch prediction... 121

7. FastRAM... 131
7.1 Introducing FastRAM, a bus optimization for Fast Models.. 131
7.2 How to enable FastRAM..131
7.3 FastRAM configuration file syntax... 132
7.4 FastRAM configuration file example..133
7.5 FastRAM limitations...134

A. SystemC Export generated ports.. 136
A.1 About SystemC Export generated ports..136

Proprietary Notice...138

Product and document information... 140
Product status...140
Revision history.. 140
Conventions...142

Useful resources.. 144

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

1. Introduction to Fast Models
This chapter provides a general introduction to Fast Models.

1.1 What is Fast Models?
The Fast Models product comprises a library of Programmer's View (PV) models and tools that
enable partners to build, execute, and debug virtual platforms. Virtual platforms enable the
development and validation of software without the need for target silicon. The same virtual
platform can be used to represent the processor or processor subsystem in SoC validation.

Fast Models are delivered in two ways:

• As a portfolio of models of Arm® IP and tools to let you build a custom model of your exact
system.

• As standalone models of complete Arm® platforms that run out-of-the-box to let you test your
code on a generic system quickly. These pre-built platform models are built by Arm using Fast
Models components and are called Fixed Virtual Platforms, or FVPs.

The benefits of using Fast Models include:

Develop code without hardware
Fast Models provides early access to Arm® IP, well ahead of silicon being available. Virtual
platforms are suitable for OS bring-up and for driver, firmware, and application development.
They provide an early development platform for new Arm® technology and accelerate time-
to-market.

High performance
Fast Models uses Code Translation (CT) processor models, which translate Arm® instructions
into the instruction set of the host dynamically, and cache translated blocks of code. This and
other optimization techniques, for instance temporal decoupling and Direct Memory Interface
(DMI), produce fast simulation speeds for generated platforms, between 20-200 MIPS on a
typical workstation, enabling an OS to boot in tens of seconds.

Customize to model your exact system
Fast Models provides a portfolio of models that are flexible and can easily be customized
using parameters to test different configurations. Using the System Canvas tool you can
model your own IP and integrate it with existing model components.

You can also export components and subsystems from the Fast Models portfolio to SystemC
for use in a SystemC environment. Such an exported component is called an Exported
Virtual Subsystem (EVS). EVSs are compliant with SystemC TLM 2.0 specifications to provide
compatibility with Accellera SystemC and a range of commercial simulation solutions.

Run standalone or debug using development tools
Generated platform models are equipped with Component Architecture Debug Interface
(CADI). This allows them to be used standalone or with development tools such as Arm®

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

Development Studio or Arm® Keil® MDK, as well as providing an API for third party tool
developers.

Test architecture compliance
Fast Models provides Architecture Envelope Models (AEMs) for Arm®v8‑A, Arm®v9‑A,
Arm®v8‑R, and Arm®v8‑M. These are specialist architectural models that are used by Arm
and by Arm® architecture licensees to validate that implementations are compliant with the
architecture definition.

Trace and debug interfaces
Fast Models provides the Model Trace Interface (MTI) and CADI for trace and debug. These
APIs enable you to write plug-ins to trace and debug software running on models. Fast
Models also provides some pre-built MTI plug-ins, for example Tarmac Trace, that you can
use to output trace information.

Build once, run anywhere
Since the same binary runs on the model, the target development hardware, and the final
product, you only need to build it using the Arm® toolchain.

Host platform compatibility
Fast Models supports x86-64 host platforms running Linux or Microsoft Windows, and Arm®

AArch64 hosts running Linux. For details, see 2.1 Requirements for Fast Models on page
17.

Related information
System Canvas GUI
LISA+ Language for Fast Models Reference Guide
Model Debugger

1.2 What does Fast Models consist of?
The Fast Models package contains the tools and model components that are needed to model
a system. The tools and the portfolio of models are installed under separate directories,
FastModelsTools_n.n and FastModelsPortfolio_n.n respectively, where n.n is the Fast Models
version number.

Arm also supplies a wide range of pre-built Fixed Virtual Platforms (FVPs), including some free of
charge FVPs, separately from the Fast Models package.

1.2.1 Fast Models tools

Fast Models tools enable you to create custom system models from the Fast Models portfolio of
component models, and debug them.

System Generator or simgen
A backend tool that handles system model generation. System Generator can either be
invoked from the System Canvas GUI, or by using the simgen command-line utility. System

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 144

https://developer.arm.com/documentation/109415/1128/System-Canvas/System-Canvas-GUI/
https://developer.arm.com/documentation/101092/0100/
https://developer.arm.com/documentation/109415/1128/Model-Debugger/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

models that are created using System Generator can be used with other Arm® development
tools, for example Arm® Development Studio or Model Debugger, or can be exported to
SystemC for integration with proprietary models.

System Canvas or sgcanvas
A GUI design tool for developing new model components written in LISA+ and for creating
and building system models. To launch System Canvas from the command line, type
sgcanvas. The GUI displays the model as either LISA+ source code, or graphically, in a block
diagram editor.

Iris Monitor
A browser-based GUI debugger for Fast Models that lets you debug and view the state of
the Fast Models components in a system. It is the successor to Model Debugger.

Model Debugger
A symbolic debugger with a GUI that communicates with models using the Component
Architecture Debug Interface (CADI). It enables you to launch a model or connect to a
running model, and debug it. It has been replaced by Iris Monitor.

Model Shell
A command-line tool for launching simulations that are implemented as CADI libraries. It can
also run a CADI debug server to enable CADI-enabled debuggers to connect to the model.

Arm deprecates Model Shell. Instead, we recommend you use Integrated
SIMulators (ISIMs), which are standalone executables that do not require
Model Shell.

Related information
System Generator
System Canvas
Model Debugger
Model Shell

1.2.2 Fast Models portfolio

Fast Models portfolio is a library of component models of Arm® IP.

It includes the following:

• A collection of models and protocols, provided as LISA+ components. You can use them to
create a system using the Fast Models tools. Ports and protocols are used for communication
between components. Some models are of Arm® IP, while others are not. Examples of Arm® IP
models include:

◦ Processors, including models of all Arm® Cortex® and Neoverse™ processors, and
architectural models, called AEMs.

◦ Models of Arm® media IP such as GPUs, video processors, and display processors.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 144

https://developer.arm.com/documentation/109415/1128/System-Generator/
https://developer.arm.com/documentation/109415/1128/System-Canvas/
https://developer.arm.com/documentation/109415/1128/Model-Debugger/
https://developer.arm.com/documentation/109415/1128/Model-Shell/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

◦ Peripherals, for instance Arm® CoreLink™ interconnect, interrupt controllers, and memory
management units.

Some models are abstract components that do not model specific Arm® IP, but are required by
the software modeling environment. For example:

◦ PVBus components to model bus communication between components.

◦ Emulated I/O components to allow communication between the simulation and the host,
such as a terminal, a visualization window, and an ethernet bridge.

• Platform model examples that show how to integrate the model components. They are supplied
as project files, so must first be built using System Generator. Examples are provided for both
standalone simulation and for SystemC export, and include:

◦ Base Platform systems for Arm®v8‑A, Arm®v8‑R, and Arm®v9-A.

◦ Systems based on Arm® Versatile™ Express development boards for Arm®v7‑A and
Arm®v7‑R processors.

◦ Systems based on MPS2 development boards for Arm®v6‑M, Arm®v7‑M, and Arm®v8‑M
processors.

• Accellera SystemC and TLM header files and libraries, which are required to build FVPs and the
platform model examples.

• Model Trace Interface (MTI) plug-ins. MTI is the interface used by Fast Models to emit trace
events during execution of a program, for example branches, exceptions, and cache hits and
misses. Fast Models provides some pre-built MTI plug-ins that you can load into a model to
capture trace data, without having to write your own plug-ins. For example:

◦ TarmacTrace can trace all processor activity or a subset of it, for instance only branch
instructions or memory accesses.

◦ GenericTrace allows you to trace any of the MTI trace sources that the models can
produce.

Some trace plug-ins are provided in source form as programming examples.

• Some ELF images that you can run on models for evaluation purposes.

• Networking setup scripts to bridge network traffic from the simulation to the host machine’s
network.

1.2.3 Other Fast Models products

The following Fast Models products are available separately from the main Fast Models package:

Fixed Virtual Platforms (FVPs)
FVPs are models of Arm® platforms, including processors, memory, and peripherals. They are
supplied as pre-built executables for Linux and Windows. Their composition is fixed, although
you can configure their behavior using parameters.

Arm provides different types of FVP, based on the following platforms:

• Base Platform, for A-profile architectures.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

• BaseR Platform for Arm®v8‑R.

• Arm® Versatile™ Express development boards.

• Arm® MPS2 or Arm® MPS2+ platforms, for Cortex®‑M series processors.

FVPs are available for all Cortex®‑A, Cortex®‑R, and Cortex®‑M processors, and they support
the CADI, MTI, and Iris interfaces, so can be used for debugging and for trace output.

The most commonly-used FVPs are supplied in a single package which is downloadable from
Arm Developer, see Fixed Virtual Platforms.

Arm provides validated Linux and Android deliverables for the AEM Base Platform FVP and
for the Foundation Platform. These are available on the Arm Development Platforms wiki on
Arm Community.

To get started with Linux on Arm®v8‑A FVPs, see FVPs on Arm Community.

Foundation Platform
A simple FVP that includes an AEM that supports both Arm®v8‑A and Armv9-A
architectures, that is suitable for running bare-metal applications and for booting Linux. It
is available for Linux hosts only and can be downloaded free of charge from Fixed Virtual
Platforms on Arm Developer. Registration and login are required.

System Guidance platforms
These FVPs include documentation to guide SoC design and a reference software stack
that is validated on the FVP. They are also known as Reference Design FVPs. For more
information, see Reference Design on Arm Developer.

Third party IP
A package that contains third party add-ons for Fast Models. These include some additional
ELF images, including Dhrystone.

1.3 Fast Models glossary
This glossary defines some Arm-specific technical terms and acronyms that are used in the Fast
Models documentation.

AMBA-PV
A set of classes and interfaces that model AMBA® buses. They are implemented as an
extension to the TLM v2.0 standard.

See AMBA-PV extensions.

Architecture Envelope Model (AEM)
A fully-configurable, generic model of an Arm® architecture. It aims to expose software bugs
by modeling the range of behavior that the architecture allows. Fast Models provides AEMs
for Arm®v8‑A, Arm®v8‑R, Arm®v8‑M, and Arm®v9‑A. For example, AEMvACT models both
Arm®v8‑A and Arm®v9‑A.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 144

https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://community.arm.com/dev-platforms/
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/509/fvps
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
https://developer.arm.com/ip-products/system-ip/reference-design
https://developer.arm.com/documentation/100962/latest/Introduction-to-AMBA-PV-Extensions-to-TLM-2-0/
https://developer.arm.com/documentation/100964/1128/Fast-Models-components/Core-components/AEMvACT/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

Auto-bridging
A Fast Models feature that SimGen uses to automatically convert between LISA+ protocols
and their SystemC equivalents. It helps to automate the generation of SystemC wrappers for
LISA+ subsystem models.

See 5.2 Auto-bridging on page 37.

Auto-bridging is deprecated in Fast Models 11.27 and will be removed in a
future release.

Base Platform
A range of example Fast Models platforms that can boot a full OS, including Linux and
Android images that can be downloaded from Linaro. Base Platforms support the Arm®v8
and Arm®v9 architectures, replacing VE platforms, which support Arm®v7.

See Base Platform.

Component Architecture Debug Interface (CADI)
A legacy C++ debug interface that enables run control and inspection of models. It has been
replaced by Iris.

See Introduction to the Component Architecture Debug Interface.

Code Translation (CT)
A technique that processor models use to enable fast execution of code. CT models translate
code dynamically and cache translated code sequences to achieve fast simulation speeds.

Exported Virtual Subsystem (EVS)
A Fast Models component or subsystem that is built by SimGen from a LISA+ model
description as a SystemC shared library. The library can be incorporated into a SystemC
platform.

See 5.1 About SystemC Export with Multiple Instantiation on page 36.

Fast Models
High performance software models of components of Arm® SoCs, for example processors,
system IP, and bus infrastructure. Fast Models components can be connected together and
configured to build a platform model, for example an FVP.

Fixed Virtual Platform (FVP)
A pre-built platform model composed of Fast Models components. FVPs enable applications
and operating systems to be written and debugged without the need for real hardware. FVPs
are also referred to as Fixed Virtual Prototypes.

See Introduction to FVPs.

Foundation Model
See Foundation Platform.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 144

https://www.linaro.org/
https://developer.arm.com/documentation/100964/1128/Base-Platform/
https://developer.arm.com/documentation/100963/latest/Introduction-to-the-Component-Architecture-Debug-Interface--CADI-/
https://developer.arm.com/documentation/100966/1128/Introduction-to-FVPs/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

Foundation Platform
A freely available, easy-to-use FVP for application developers that supports the Arm®v8‑A
and Arm®v9-A architectures. It can be downloaded from Fixed Virtual Platforms on Arm
Developer, registration and login are required.

IMP DEF
Used in register descriptions in the Fast Models Reference Guide to indicate behavior that the
architecture does not define. Short for Implementation Defined.

Integrated Simulator (ISIM)
A simulation executable generated by SimGen from a LISA+ model description. SimGen links
the executable against a SystemC shared library.

See Building a SystemC ISIM target.

Iris
An interface for debugging and tracing model behavior. Iris is the replacement for CADI.

See Iris User Guide

Language for Instruction Set Architectures (LISA, LISA+)
LISA is a language that describes instruction set architectures. LISA+ is an extended form
of LISA that supports peripheral modeling. LISA+ is used for creating and connecting model
components. The Fast Models documentation does not always distinguish between the two
terms, and sometimes uses LISA to mean both.

See LISA+ Language for Fast Models Reference Guide.

Microcontroller Prototyping System (MPS2)
Arm® Versatile™ Express V2M-MPS2 and V2M-MPS2+ are motherboards that enable
software prototyping and development for Cortex®‑M processors. The MPS2 FVP models a
subset of the functionality of this hardware.

See MPS2.

Model Debugger
A Fast Models debugger that enables you to execute, connect to, and debug any CADI-
compliant model. You can run Model Debugger using a GUI or from the command line.

See Model Debugger.

Model Shell
A command-line utility for configuring and running CADI-compliant models. Arm deprecates
Model Shell. Use ISIM executables instead.

See Model Shell.

Model Trace Interface (MTI)
A trace interface that is used by Fast Models to expose real-time information from the model.

See Model Trace Interface Reference Manual.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 144

https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
https://developer.arm.com/documentation/109415/1128/System-Canvas/System-Canvas-tutorial/Building-a-SystemC-ISIM-target/
https://developer.arm.com/documentation/101196/0100/
https://developer.arm.com/documentation/101092/0100/
https://developer.arm.com/documentation/100964/1128/Microcontroller-Prototyping-System-2/MPS2/
https://developer.arm.com/documentation/109415/1128/Model-Debugger/
https://developer.arm.com/documentation/109415/1128/Model-Shell/
https://developer.arm.com/documentation/dui0819/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

Platform Model
A model of a development platform, for example an FVP.

Programmers' View (PV) Model
A high performance, functionally accurate model of a hardware platform. It can be used for
booting an operating system and executing software, but not to provide hardware-accurate
timing information.

PVBus
An abstract, programmers view model of the communication between components. Bus
masters generate transactions over the PVBus and bus slaves fulfill them.

See PVBus components.

Real-Time System Model (RTSM)
An obsolete term for Fixed Virtual Platform (FVP).

SimGen
An alternative name for System Generator.

Synchronous CADI (SCADI)
An interface that provides a subset of CADI functions to synchronously read and write
registers and memory. You can only call SCADI functions from the model thread itself, rather
than from a debugger thread. SCADI is typically used from within MTI or by peripheral
components to access the model state and to perform run control.

See SCADI.

syncLevel
Each processor model has a syncLevel with four possible values. It determines when a
synchronous watchpoint or an external peripheral breakpoint can stop the model, and the
accuracy of the model state when it is stopped.

See syncLevel definitions.

System Canvas
An application that enables you to manage and build model systems using components. It has
a block diagram editor for adding and connecting model components and setting parameters.

See System Canvas.

SystemC Virtual Platform (SVP)
A Fast Models platform that consists of components and subsystems that are individually
exported to SystemC as a collection of multiple EVSs.

System Generator
A utility that generates a platform model by processing LISA files. You can run System
Generator from the command line by invoking simgen, or from the System Canvas GUI. It is
also referred to as SimGen.

See System Generator.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 144

https://developer.arm.com/documentation/100964/1128/Fast-Models-components/Bus-components/
https://developer.arm.com/documentation/100964/1128/About-the-models/SCADI/
https://developer.arm.com/documentation/100964/1128/About-the-models/Non-CADI-sync-watchpoints/syncLevel-definitions/
https://developer.arm.com/documentation/109415/1128/System-Canvas/
https://developer.arm.com/documentation/109415/1128/System-Generator/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Introduction to Fast Models

System Model
An alternative term for Platform Model.

Tarmac trace
A format for tracing the execution on code on an Arm® core. Fast Models includes a
TarmacTrace plug-in that can consume and display tarmac trace.

See TarmacTrace.

Timing Annotation
A Fast Models feature that adds delays to transactions in the platform, enabling timing
configuration for various operations, for instance branch prediction. It also supports setting
Cycles Per Instruction (CPI) values not equal to one.

See 6. Timing annotation on page 100.

Versatile™ Express (VE)
A family of Arm® hardware development boards targeting the Arm®v7 architecture. The term
is abbreviated to VE when used in names of FVPs, for example, FVP_VE_Cortex-A5x1. For
Arm®v8 and Arm®v9 support, VE platform models have been replaced by Base Platform
models.

Related information
Arm Glossary

1.4 Security assumptions for Fast Models
The threat model for Fast Models is very permissive. We make the following assumptions about
how you use Fast Models with respect to security.

• We expect you not to run Fast Models with elevated privileges, for example as root on Linux or
administrator on Windows.

• If you build your own virtual platform using the Fast Models portfolio and distribute it within
your own environment or to third parties, the integrity of the platform is your responsibility. For
example it is up to you to ensure that the platform is not inadvertently modified.

• Fast Models does not provide a sandbox environment. We expect code running on the model
to be able to trivially interact with the host environment for ease of use or during development,
for example through semihosting. It is your responsibility to verify the integrity and validity of
any code you run on the model.

• Similarly, plug-ins that you create are not isolated in any way. It is your responsibility to verify
the integrity and validity of plug-ins that you use with a model, or any other code that you
integrate with the model.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 144

https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/TarmacTrace/
https://developer.arm.com/documentation/105565/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

2. Installing Fast Models
This chapter describes the system requirements for Fast Models and how to install and uninstall
Fast Models.

2.1 Requirements for Fast Models
This section describes the host hardware and software requirements for using Fast Models.

Host machine
Architecture

x86-64 and Arm® AArch64 host platforms are supported.

Minimum specification
At least 2GB RAM, preferably 4GB.

2GHz Intel Core2Duo, or similar, that supports the MMX, SSE, SSE2, SSE3, and SSSE3
instruction sets.

Recommended specification
At least double the RAM of the platform you intend to simulate. For example, a simulated
platform containing 8GB of DRAM should be run on a 16GB host machine.

Fast Models and associated FVPs benefit most from high single-threaded performance. For
example, a high frequency (4-5GHz) Intel Core i9 or i7 or AMD Ryzen 9 or 7 host CPU gives
a significant improvement, between 30-60%, over Intel Xeon cores (2-3 GHz).

Linux
Operating system

Red Hat Enterprise Linux 7 or 8 (for 64-bit architectures), Ubuntu 20.04 or 22.04 Long Term
Support (LTS).

Shell
A shell compatible with sh, such as bash or tcsh.

Compiler
GCC 9.3.0 (x86-64 and Arm® AArch64 hosts), GCC 10.3.0 (x86-64 and Arm® AArch64
hosts), GCC 12.3.0 (x86-64 and Arm® AArch64 hosts).
The following table shows the supported GCC versions on a Linux x86 host:

Table 2-1: Supported GCC versions on Linux (x86 host)

OS GCC versions supported

RHEL 7 GCC 9.3.0

RHEL 8 GCC 9.3.0, GCC 10.3.0, GCC 12.3.0

Ubuntu 20.04 LTS GCC 9.3.0

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

OS GCC versions supported

Ubuntu 22.04 LTS GCC 10.3.0

The following table shows the supported GCC versions on a Linux Arm® AArch64 host:

Table 2-2: Supported GCC versions on Linux (Arm® AArch64 host)

OS GCC versions supported

RHEL 8 GCC 9.3.0, GCC 10.3.0, GCC 12.3.0

Ubuntu 20.04 LTS GCC 9.3.0

Ubuntu 22.04 LTS GCC 10.3.0

For full compatibility, it is highly recommended that all code that links against
the Fast Models is compiled with C++14 support enabled. There are no
known issues when linking non-C++14 code with the Fast Models. However,
the compiler does not guarantee that the ABI is the same for both types
of code. Compiling models with C++14 support disabled might cause data
corruption or other issues when using them.

The following combinations of GCC and GNU binutils were used to build Fast Models
libraries:

Table 2-3: GCC and binutils versions

GCC version GNU binutils version

9.3.0 2.32

10.3.0 2.38

12.3.0 2.38

PDF Reader
Adobe does not support Adobe Reader on Linux. Arm recommends system provided
equivalents, such as Evince, instead.

Microsoft Windows
Operating system

Microsoft Windows 10 64-bit.

Compiler
Microsoft Visual Studio 2019 version 16.11 or later.
The following Visual Studio components are required:

• Visual C++ ATL for x86 and x64.

• Windows SDK version 10.0.16299.0 or later.

PDF Reader
Adobe Reader 8 or higher.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

• To build models using Visual Studio requires you to install the Visual Studio
redistributable package which contains the runtime libraries for Visual Studio.
Fast Models does not provide these libraries. Download the libraries for Visual
Studio free of charge from Microsoft, from https://www.microsoft.com/en-gb/
download/details.aspx?id=48145.

• On Windows, Fast Models libraries are built with one of the following MSVC
compiler options:

◦ /MD for release builds

◦ /MDd for debug builds

Any objects or libraries that link against the Fast Models libraries must also be
built with the same /MD or /MDd option.

• Fast Models does not support Express or Community editions of Visual Studio.

Licensing
Fast Models use either User-Based Licensing or FlexNet Licensing:

• Arm user-based licensing is only available to customers with a user-based licensing license.
Documentation for user-based licensing is available at https://lm.arm.com. For assistance with
user-based licensing issues, visit https://developer.arm.com/support and open a support case.

• For FlexNet Publisher node-locked or floating licensing, the latest version of the FlexNet
software is available for download from License Server Management Software.

◦ Set up a single armlmd license server. Spreading Fast Models license features
over servers can cause feature denials.

◦ To run armlmd and lmgrd on Linux, install these libraries:
Red Hat

lsb, lsb-linux
Ubuntu

lsb

◦ If you use Microsoft Windows Remote Desktop (RDP) to access System
Canvas or a simulation that it generated, your license type can restrict you:

▪ Floating licenses require a license server, and have no RDP restrictions.
Arm issues them on purchase.

▪ Node locked licenses apply to specific workstations. Existing node locked
licenses and evaluation licenses do not support running the product over
RDP connections. Visit https://developer.arm.com/support for more
information.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 144

https://support.microsoft.com/en-gb/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-gb/help/2977003/the-latest-supported-visual-c-downloads
https://lm.arm.com
https://developer.arm.com/support
https://developer.arm.com/tools-and-software/software-development-tools/license-management/downloads
https://developer.arm.com/support

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

2.2 Installation
This section describes how to install the Fast Models package.

Before you begin
The Windows and Linux installers for Fast Models might be vulnerable to some permission-based
attacks. For more information, see Installer vulnerabilities CVE-2022-43701, CVE-2022-43702,
and CVE-2022-43703.

Procedure
1. Unpack the installation package, if necessary, and execute ./setup.sh on Linux or run

Setup.exe as administrator on Windows.
To install the package without the need for user interaction or a GUI, use the --i-accept-the-
end-user-license-agreement command-line option.

Using this option means you have read and accepted the terms and conditions
of the End User License Agreement for the product and version installed.

This option can be followed by either or both of these options:

--basepath <path>
Set the base directory for the installation.

--licpath <path>
Set the location of the license file.

On Linux, setup.sh displays a list of any missing prerequisite packages that must be installed
before installation can continue.

On Windows, the installer automatically defines the following environment variables:

MAXCORE_HOME
Points to the installation directory of the Fast Models Tools.

PVLIB_HOME
Points to the installation directory of the Fast Models Portfolio.

SYSTEMC_HOME
Points to the Accellera SystemC library installation directory. This package includes the
SystemC and TLM header files and libraries that you need to build an EVS, FVP, or SVP.

IRIS_HOME
Points to the %PVLIB_HOME%\Iris directory, which contains Iris headers, examples, and the
iris.debug Python module.

PYTHONPATH
To use the iris.debug Python module, the PYTHONPATH environment variable is updated
to include %IRIS_HOME%\Python.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 144

https://developer.arm.com/documentation/ka005596/latest
https://developer.arm.com/documentation/ka005596/latest

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

On Windows, the Fast Models examples are installed in %PVLIB_HOME%
\examples\. The installer makes a copy of them in %USERPROFILE%\ARM
\FastModelsPortfolio_%FM-VERSION%\examples\. This copy allows you to
save configuration changes to these examples without requiring administrator
permissions.

2. On Linux, after the installation has completed, source the appropriate script for your shell to
set up these environment variables. Ideally, include it for sourcing into the user environment on
log-in:

bash/sh
. <install_directory>/FastModelTools_x.x/etc/setup_all.sh

csh
source <install_directory>/FastModelTools_x.x/etc/setup_all.csh

3. The Fast Models Arm Virtual Hardware (AVH) peripherals require the standard Python libraries.
These libraries are provided in the Fast Models package. Before you run a platform model that
uses the AVH peripherals, for example an MPS2 platform, set the PYTHONHOME environment
variable to the location of these libraries.

• On Linux:

$PVLIB_HOME/lib/Linux64_<compiler>/python

• On Windows:

%PVLIB_HOME%\lib\Win64_<compiler>\<regime>\python

4. Optionally, download and install the Third-Party IP (TPIP) add-on package from Product
Download Hub. It contains third party add-ons for Fast Models, including ELF images that you
can run on the example platforms for evaluation purposes and the GDB Remote Connection
plug-in.

Related information
GDBRemoteConnection

2.3 Uninstallation
On Linux, uninstall Fast Models Tools and Fast Models Portfolio by deleting the installation
directories.

On Windows, uninstall Fast Models Tools and Fast Models Portfolio by selecting the Uninstall
option for each product from the Start > Settings > Apps > Apps & features list.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 144

https://developer.arm.com/downloads
https://developer.arm.com/downloads
https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/GDBRemoteConnection/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

2.4 Dependencies for Red Hat Enterprise Linux
Fast Models requires some packages that are part of Red Hat Enterprise Linux, which you might
need to install.

Some packages might depend on other packages. If you install with the Add/Remove software GUI
tool or the yum command line tool, these dependencies resolve automatically. If you install packages
directly using the rpm command, you must resolve these dependencies manually.

To display the package containing a library file on your installation, enter:

rpm -qf library_file

For example, to list the package containing /lib/tls/libc.so.6, enter the following on the
command line:

rpm -qf /lib/tls/libc.so.6

The following output indicates that the library is in version 2.3.2-95.37 of the glibc package:

glibc-2.3.2-95.37

Table 2-4: Dependencies for Red Hat Enterprise Linux

Package Required for

alsa-lib Fast Models virtual platforms

gcc-toolset-10 Fast Models tools

gcc-toolset-10-libatomic-devel.x86_64 Fast Models tools

glibc Fast Models tools and virtual platforms

glibc-devel Fast Models tools

libgcc Fast Models tools and virtual platforms

libstdc++ Fast Models tools and virtual platforms

libstdc++-devel Fast Models tools

libXext Fast Models tools and virtual platforms

libX11 Fast Models tools and virtual platforms

libXau Fast Models tools and virtual platforms

libxcb Fast Models tools and virtual platforms

libSM Fast Models tools and virtual platforms

libICE Fast Models tools and virtual platforms

libuuid Fast Models tools and virtual platforms

libXcursor Fast Models tools and virtual platforms

libXfixes Fast Models tools and virtual platforms

libXrender Fast Models tools and virtual platforms

libXft Fast Models tools and virtual platforms

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Installing Fast Models

Package Required for

libXrandr Fast Models tools and virtual platforms

libXt Fast Models tools and virtual platforms

make Fast Models tools

telnet Fast Models virtual platforms

xterm Fast Models virtual platforms

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

3. Building Fast Models
This chapter describes how to use Fast Models tools to build model components and platforms.

It describes the following types of model:

• Integrated SIMulators (ISIMs)

• Exported Virtual Subsystem (EVS) components and platforms

The example command lines shown use a Linux host and GCC 9.3. Other hosts and GCC versions
are also supported, see 2.1 Requirements for Fast Models on page 17 for details.

Fast Models includes source code for a range of example platforms, under $PVLIB_HOME/examples/.
For instructions on building and running them, see the Fast Models Reference Guide:

• For an ISIM, see Build and run an FVP example.

• For an EVS platform, see Build and run an EVS platform example.

3.1 Build targets
Models are built using a tool called System Generator, also called SimGen. To configure the build,
SimGen uses a project file, with a .sgproj extension.

SimGen supports different build targets, which you specify either in the .sgproj file or in the
System Canvas Project Settings dialog.

This chapter describes the following build targets:

Integrated SIMulator (ISIM)
A simulation executable generated by SimGen from a LISA+ model description. SimGen links
the executable against a SystemC shared library.

The build target name in the .sgproj file for an ISIM is TARGET_SYSTEMC_ISIM.

Exported Virtual Subsystem (EVS)
An EVS can either be a component or a platform:

• An EVS component is a simulation shared library and associated C++ generated
by SimGen from a LISA+ model description. You can incorporate the shared library
into your own SystemC platform. SimGen links the shared library against a shared
SystemC library but it can optionally be linked against a static SystemC library, by setting
USE_STATIC_SYSTEMC_LIB=1 in the .sgproj file.

• An EVS platform is an example SystemC platform which provides reference code to
demonstrate building a simulation executable by instantiating an EVS component in a
hand-coded SystemC main (sc_main()).

The build target name in the .sgproj file for an EVS is TARGET_SYSTEMC.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 144

https://developer.arm.com/documentation/100964/1128/Fast-Models-examples/Build-and-run-an-FVP-example/
https://developer.arm.com/documentation/100964/1128/Fast-Models-examples/Build-and-run-an-EVS-platform-example/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

For more information about SimGen and System Canvas, see Fast Models Tools User Guide.

3.2 Building an ISIM
You can build an ISIM either entirely within System Canvas or by invoking SimGen on the command
line.

Select ISIM as the build target in either of the following ways:

• In System Canvas, under Project > Project Settings > Targets , select SystemC integrated
simulator:

• Figure 3-1: Selecting an ISIM build target in System Canvas

• If invoking SimGen directly, use this statement in the .sgproj file's active configuration:
TARGET_SYSTEMC_ISIM = "1";

There is no default build target, so you must specify one, or simgen returns an error.

For more information about .sgproj files, see SimGen project (sgproj) file format in the Fast
Models Tools User Guide or see the .sgproj files for the ISIM platform examples installed
under $PVLIB_HOME/examples/LISA/.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 144

https://developer.arm.com/documentation/109415/1128/
https://developer.arm.com/documentation/109415/1128/System-Generator/SimGen-project--sgproj--file-format/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

For information on how to build the ISIM platform examples, see Build and run an
FVP example in the Fast Models Reference Guide.

The following diagram shows the process for building an ISIM. The shaded area represents the
work that SimGen does for you:

Figure 3-2: Build process for an ISIM

Fast Models
Portfolio

components

Component
source

C++

Project file
(.sgproj)

EVS library

Fast Models
and SystemC

libraries

Generated
header

#include

Peripherals

Other

Cores

LISA+

 Generated
sc_main()

GCC
ISIM

executable
(isim_system)

System Canvas or System
Generator (SimGen)

SimGen takes as input the LISA+ or C++ source code for the platform and its components, and the
.sgproj file.

It generates:

• An EVS library.

• The EVS header file, for example ./Linux64-Release-GCC-9.3/gen/
scx_evs_<top_level_component>.h, which defines the SystemC wrapper.

• A SystemC source file, ./Linux64-Release-GCC-9.3/gen/scx_main_system.cpp which defines
a default sc_main() function. This function is the entry point for the simulation. It initializes the
simulation, constructs the SystemC wrapper, parses the command-line options, and starts the
simulation.

SimGen then links the EVS library with the Fast Models and SystemC libraries, and outputs the
executable, named isim_system.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 144

https://developer.arm.com/documentation/100964/1128/Fast-Models-examples/Build-and-run-an-FVP-example/
https://developer.arm.com/documentation/100964/1128/Fast-Models-examples/Build-and-run-an-FVP-example/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

3.3 Building an EVS
SimGen builds an Exported Virtual Subsystem (EVS) as a single, shared library.

Select EVS as the build target in either of the following ways:

• In System Canvas, under Project > Project Settings > Targets , select SystemC component:
Figure 3-3: Selecting an EVS build target in System Canvas

• If invoking SimGen directly, use the following statement in the .sgproj file's active
configuration:
TARGET_SYSTEMC = "1";

There is no default build target, so you must specify one, or simgen returns an error.

For more information about .sgproj files, see SimGen project (sgproj) file format in the Fast
Models Tools User Guide or see the example .sgproj files installed under $PVLIB_HOME/
examples/SystemCExport/EVS_Components/.

When building the EVS, it must link against the SystemC library. Select the library to link against in
one of the following ways:

• Link against the dynamic SystemC shared library whose location is given by the SYSTEMC_HOME
environment variable. This is the default.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 144

https://developer.arm.com/documentation/109415/1128/System-Generator/SimGen-project--sgproj--file-format/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

• Link against a static SystemC shared library by setting the .sgproj configuration parameter
USE_STATIC_SYSTEMC_LIB. By default, SimGen links against the library located in SYSTEMC_HOME.

• Link against either a static or dynamic SystemC library in a different location to SYSTEMC_HOME.
To do this, set the USER_SYSTEMC_DYNLIB .sgproj configuration parameter to the full path of the
library.

For more information, see 3.5 Linking against the SystemC library on page 30.

The following diagram shows the build process for an EVS. The shaded area represents SimGen
and its output. The rest of the diagram is the responsibility of the user. Because the platform must
provide its own sc_main(), unlike an ISIM, you cannot build it entirely within System Canvas:

Figure 3-4: Build process for an EVS

Fast Models
Portfolio

components

Component
source

System Generator
(SimGen)

C++

Project file
(.sgproj)

EVS library

Fast Models
and SystemC

libraries

Generated
header

#include

Peripherals

Other

Cores

LISA+

 SystemC
source

(sc_main())

GCC SystemC
executable

The Fast Models EVS platform examples are located in $PVLIB_HOME/examples/SystemCExport/
EVS_Platforms/.

Their purpose is to demonstrate how to instantiate an EVS component, including:

• The generated header file to include, ./Linux64-Release-GCC-9.3/gen/
scx_evs_<top_level_component>.h

• The EVS shared library name to link against

• The component port names for the SystemC exported components

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

They are built using a Makefile whose target configuration has the pattern:

<release>_<compiler_version>_<arch_bits>

For instance, to build an example platform in release mode using a model library built with GCC
9.3, as a 64-bit binary, use this command:

make rel_gcc93_64

Or on Windows:

nmake rel_vs142_64

For more information on how to build an EVS platform example, see Build and run
an EVS platform example in the Fast Models Reference Guide.

3.4 Building an EVS on Windows
When building an EVS on Windows, there are a few extra considerations to be aware of.

• On Windows, SimGen generates a solution containing several project files. For example, the
following command outputs Dhrystone.sln, where Dhrystone is the name of the top-level
component, and the following project files, which must be built in the order in which they are
listed here:

"%MAXCORE_HOME%"\bin\simgen -b -p EVS_Dhrystone_Cortex-A65x1.sgproj --configuration Win64-
Release-VC2019 …

When invoking SimGen on Windows, you might need to use the --devenv-path
option to specify the path to devenv.

1. scx.vcxproj. This project builds the static library scx.lib containing default
implementations of the SystemC report handler, simulation controller, and scheduler.

2. Dhrystone_scx_wrapper_Win64-Release-VC2019.vcxproj. This project builds the dynamic
library Dhrystone-Win64-Release-VC2019.dll, which is required when you launch the
platform.

3. For an ISIM, an extra project is created, called scx_isim_<top-
component>_<config>.vcxproj. This file is the SystemC project that creates the executable,
isim_system_<config>.exe.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 144

https://developer.arm.com/documentation/100964/1128/Fast-Models-examples/Build-and-run-an-EVS-platform-example/
https://developer.arm.com/documentation/100964/1128/Fast-Models-examples/Build-and-run-an-EVS-platform-example/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

• On Windows, any SystemC code that instantiates an exported Fast Model must include
%PVLIB_HOME%\include\fmruntime\sg\IncludeMeFirst.h before any other include files. If not,
the compiler throws an error.

This file is used to check the underlying Windows API version. It is automatically included in
EVSs generated by SimGen, but SystemC models that use Fast Models libraries can be built
without using SimGen.

• On Windows, Fast Models libraries are built with one of the following MSVC compiler options:

◦ /MD for release builds.

◦ /MDd for debug builds.

Any objects or libraries that link against the Fast Models libraries must also be built with the
same /MD or /MDd option.

• For a list of additional libraries that are needed when building the EVS, see %PVLIB_HOME%
\examples\SystemCExport\Common\nMakefile.common.

• Use the /vmg compiler option to correctly compile source code for use with SystemC on
Windows.

3.5 Linking against the SystemC library
To build an ISIM or EVS, you must have installed SystemC 2.3.4 and the ISIM or EVS must link
against the SystemC library at build time.

When you install the main Fast Models package, you have the option of also installing Accellera
SystemC 2.3.4. On Windows, the installer automatically sets the SYSTEMC_HOME environment
variable to the location of the SystemC installation. On Linux, you need to run the appropriate
setup script.

By default, SimGen uses the Accellera SystemC dynamic library that is located in SYSTEMC_HOME.
You might want to use a library stored in a different location, for example if SYSTEMC_HOME is not
available. You can do this in the following ways:

• In System Canvas, specify the absolute path to the SystemC library, including the library name,
in the User specified SystemC shared library path field in Project > Project Settings >
Targets .

• If invoking SimGen directly, provide the path and filename of the SystemC library to SimGen in
either of the following ways:

◦ Use the .sgproj configuration parameter USER_SYSTEMC_DYNLIB. For example, on Linux:
config "Linux64-Release-GCC-9.3"
{
 …
 USER_SYSTEMC_DYNLIB = "/path/to/libname_of_systemc.so";
}

On Windows:
config "Win64-Release-VC2019"
{

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

 …
 USER_SYSTEMC_DYNLIB = "C:\\path\\to\\import_library_name_of_systemc.lib";
}

◦ Use the SimGen command-line option --override-config-parameter. For example, on
Linux:

--override-config-parameter USER_SYSTEMC_DYNLIB="/path/to/libname_of_systemc.so"

On Windows:
--override-config-parameter USER_SYSTEMC_DYNLIB="C:\\path\\to\
\import_library_name_of_systemc.lib"

• To link against a static SystemC library, set the .sgproj configuration parameter
USE_STATIC_SYSTEMC_LIB to 1. The static library can either be located in the default location,
SYSTEMC_HOME, or in a different location, defined by the parameter USER_SYSTEMC_DYNLIB.

For a CADI library, whose build target is TARGET_SYSTEMC_MAXVIEW, USE_STATIC_SYSTEMC_LIB is
set by default and cannot be unset.

Related information
SimGen command-line options

3.6 Libraries required to run the platform
When you run a platform model, some shared libraries must be present in the same directory as
the model, or a diagnostic message is given and the model might fail to run.

If you build a model using SimGen, it can copy the required shared libraries into the location of the
generated model. If you then copy the model elsewhere, then you must also copy these shared
libraries to the new location.

The list of libraries and executables evolves over time and can vary depending on the IP included in
the platform, but might include the following:

• armlm-ipc or armlm-ipc.exe

• arm_singleton_registry.so on Linux or arm_singleton_registry.dll on Windows

This is the singleton registry library, which enables multiple simultaneous
simulations on the same host platform. If it is not located in the same directory
as the executable, set the FASTSIM_SINGLETON_REGISTRY environment variable
to the full path of the library. If the library is not found, a warning is reported. In
this case, a single simulation can still run, but multiple simultaneous simulations
might lead to a crash.

• libarmctmodel.so or armctmodel.dll

• libarmlm.so or armlm.dll

• libMAXCOREInitSimulationEngine.3.so or libMAXCOREInitSimulationEngine.3.dll

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 144

https://developer.arm.com/documentation/109415/1128/System-Generator/SimGen-command-line-options/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Building Fast Models

• libscxframework.so or scxframework.dll

• libSDL2-2.0.so.0.10.0 or SDL2.dll

• newt.so or newt.dll

The libraries libarmlm.so or armlm.dll and armlm-ipc or armlm-ipc.exe are
required by User Based Licensing (UBL). For more information, see the Knowledge
Base Article How do I ensure my Fast Model works with User Based Licensing
(UBL)?

3.7 Building an SVP
An SVP (SystemC Virtual Platform) is a platform model that consists of LISA+ components
or subsystems that are individually exported to SystemC as multiple EVSs, using the Multiple
Instantiation (MI) feature.

The build process for an SVP is the same as for an EVS platform, except you must build and link
multiple EVS libraries.

SVPs can provide more flexibility than EVS platforms because components in an SVP can be
replaced without the need to modify any LISA+ code.

For more information, see the SVP examples under $PVLIB_HOME/examples/SystemCExport/
SVP_Platforms/.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 144

https://developer.arm.com/documentation/ka005524/
https://developer.arm.com/documentation/ka005524/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Optimizing runtime performance of Fast Models

4. Optimizing runtime performance of Fast
Models

Fast Models platforms have many configuration options and parameters. The default ones are
reasonable for most workloads on most platforms but there are a few you can change to make the
model run as fast as possible.

4.1 Use a suitable host machine
The choice of processor and the amount of RAM available on the machine on which you run the
Fast Model can significantly affect its performance.

The Fast Models simulation code runs primarily on a single thread. Arm FVPs and platforms built
against the reference SystemC scheduler do not directly support multithreading. As a result,
the single-threaded performance of the host machine matters much more than the number of
processors it has. The choice of processor can influence model runtime by 1.5x, or more, so use
the fastest possible single-threaded processor. As chip manufacturers make improvements, later
generations of chips tend to be faster than previous ones.

The amount of memory that a Fast Model uses is unbounded. It allocates enough virtual memory
to simulate the platform. If you add the --stat option to your FVP command line, on exit, as well
as printing the performance statistics for the run, it prints the maximum amount of virtual memory
that the platform used. Performance is greatly affected if this figure is greater than the physical
memory available to the Fast Model process. We recommend host RAM to be at least 2.5x the
amount of RAM the hosted workload uses.

4.2 Configure the model using options and parameters
Some command-line options and parameters should always be set to improve performance. Others
should be configured depending on the workload.

These options are recommended:

• If you are targeting performance, always turn cache state modeling off. Running the model with
cache state modeling on can slow down the model by more than an order of magnitude. See
also Caches in PV models in the Fast Models Reference Guide.

• Platforms that support FastRAM always run faster with FastRAM enabled. For more
information, see 7. FastRAM on page 131.

• Fast Models implements a large suite of trace sources. MTI trace plug-ins, for example
TarmacTrace or GenericTrace, can subscribe to these trace sources, but this has an overhead
as some trace fields, for example instruction disassembly, can be expensive to produce. For
maximum speed, run the model with no trace plug-ins loaded.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 144

https://developer.arm.com/documentation/100964/1128/About-the-models/Processor-implementation/Caches-in-PV-models/
https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/TarmacTrace/
https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/GenericTrace/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Optimizing runtime performance of Fast Models

• Some architectural features can be expensive to simulate and might not be required
for development purposes. In such cases, a parameter might be present that treats the
architectural feature as a NOP, which can improve performance. For example, to disable pointer
authentication, use the treat_PAC_as_NOP parameter. To discover whether a feature can
be treated as a NOP in this way, print a list of the available model parameters using the -l
command-line option.

• Disable Memory Tagging Extension (MTE) if your workload allows it, or set
force_mte_tag_access_razwi_and_ignore_tag_checks to true.

• To reduce overhead caused by the scheduler in a Fast Models simulation, use experimentation
to tune the quantum and the minimum synchronization latency to your workload. In general,
the longer the quantum, the faster the model runs, although this reduces latency which can
result in lower performance. A PE can only see changes in the platform when it yields to the
scheduler. So the quantum must be short enough that the PE does not spend time on work
that will be superceded by other work happening in the platform. To configure the quantum
and the minimum synchronization latency, use the options --quantum (-Q for short) and --min-
sync-latency (-M for short).

• To significantly improve the performance of the Ethos models, set the ethosu.extra_args="--
fast" parameter.

• If you are using a CPU AEM:

◦ Disable the check_memory_attributes parameter.

◦ Increase the stage12_tlb_size parameter to 1024.

Related information
FVP command-line options

4.3 Make the platform faster
If you can customize your platform, or are implementing your own components, use these
techniques to make the platform run faster.

• For speed, it is essential that your platform uses DMI (Direct Memory Interface). Fast Models
aggressively attempts to use DMI for all load and store operations. A DMI memory operation
is often two orders of magnitude faster than a memory transaction that walks the bus to the
memory device. If possible, all memory-like components should provide DMI to the Fast Model.
Since DMI is so important, invalidation of DMI should be done carefully.

• The Fast Models portfolio contains an MMC component which is based on an old MMC
standard and takes a lot of wall clock time to load a large file. If possible, use the Virtio model in
the Fast Models portfolio for storage instead.

Related information
MMC component
VirtioP9Device

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 144

https://developer.arm.com/documentation/100966/1128/Getting-Started-with-Fixed-Virtual-Platforms/FVP-command-line-options/
https://developer.arm.com/documentation/100964/1128/Fast-Models-components/SystemIP-components/MMC/
https://developer.arm.com/documentation/100964/1128/Fast-Models-components/Peripheral-components/VirtioP9Device/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Optimizing runtime performance of Fast Models

4.4 Make the workload faster
If possible, ensure your workload avoids busy loops.

Fast Models uses a cooperative scheduler so when a PE is running a busy loop, nothing else can
run. The following techniques can avoid this problem:

• Busy loops waiting on time are faster if the GenericTimers and WFE/WFI are used instead. The
Fast Model can advance time faster than real time if all PEs are in a WFI/WFE state, skipping
over time when no instructions need to run.

• Busy loops waiting on DRAM memory to change should use the Exclusive loads and stores
mechanism, so the core can go into WFE, yielding to the scheduler, and wait for the exclusive
monitor to wake them.

• You should check busy loops that are part of peripheral initialization to make sure that the
peripheral is modeled by the Fast Models platform. If Linux/Android has stalled for many
minutes, it could be waiting on peripherals present in the OS device tree and memory map, but
which are not modeled.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5. SystemC Export with Multiple
Instantiation

This chapter describes the Fast Models SystemC Export feature with Multiple Instantiation (MI)
support.

5.1 About SystemC Export with Multiple Instantiation
SystemC Export wraps the components of a SystemC-based virtual platform into an Exported
Virtual Subsystem (EVS). Multiple Instantiation (MI) enables the generation and integration of multiple
EVS instances into a single SystemC simulation.

SystemC Export with MI enables the generation of EVSs as first-class SystemC components:

• Capable of running any number of instances, alongside other EVSs.

• Providing one SC_THREAD per core component (that is, one SC_THREAD per core component in a
cluster Code Translation (CT) model).

MI enables the generation and integration of multiple EVS instances into a virtual platform with
SystemC as the single simulation domain. A single EVS can appear in multiple virtual platforms.
Equally, multiple EVSs can combine to create a single platform. A platform that consists of multiple
EVSs is called an SVP (SystemC Virtual Platform).

SystemC components (including Fast Models ones) can exchange data via the Direct Memory
Interface (DMI) or normal (blocking) Transaction Level Modeling (TLM) transactions.

Fast Models supports SystemC 2.3.4, including integrated TLM 2.0.6. In this version, the TLM and
SystemC headers are in the same place, and some filenames are different.

Before using SimGen to build a SystemC simulation, the environment variable SYSTEMC_HOME must
be set to the directory containing the Accellera SystemC library installation.

When running a SystemC simulation, the following environment variables might be useful:

SCX_EVS_VERBOSE

Set to 1 to enable tracing of the default scheduler mapping implementation.

FM_SCX_VERBOSITY_LEVEL

Set to one of the following values to set the verbosity level for debug messages from the
SystemC simulation:

0 None
100 Low
200 Medium
300 High

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

400 Full
500 Debug

When loading an image on an EVS, you might see the following warning:

Warning: Base.cluster0.cpu0: Uncaught exception, thread terminated
In file: gen/scx_scheduler_mapping.cpp:523
In process: Base.thread_p_5 @ 0 s

This warning means that the image is attempting to run from DRAM, but this is
access-controlled by the TZC_400 component. To disable security checking by the
TZC_400, specify -C Base.bp.secure_memory=false when running the EVS.

Related information
Fast Models Reference Guide
Accellera Systems Initiative (ASI)
IEEE Std 1666-2005, SystemC Language Reference Manual, 31 March 2006
Accellera, TLM 2.0 Language Reference Manual, July 2009

5.2 Auto-bridging
Auto-bridging is a Fast Models feature that SimGen uses to automatically convert between LISA+
protocols and their SystemC equivalents. It helps to automate the generation of SystemC wrappers
for LISA+ subsystem models.

Auto-bridging is deprecated in Fast Models 11.27 and will be removed in a future
release.

A bridge is a LISA component that converts transactions from one protocol to another. A wide
variety of bridges are available to convert between LISA+ protocols and their SystemC equivalents.
For example, PVBus2AMBAPV converts from PVBus to AMBA-PV protocols.

When auto-bridging is enabled, you do not need to manually add bridges to your LISA+ file.
Auto-bridging causes SimGen to apply the protocol-to-bridge mappings that are defined in a
configuration file to the LISA+ components and generate a single EVS component.

Enable auto-bridging by selecting both the TARGET_SYSTEMC and TARGET_SYSTEMC_AUTO build targets
in the .sgproj file. Or, in System Canvas Project Settings, select both targets SystemC component
and SystemC component with auto-bridging.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 144

https://developer.arm.com/documentation/100964/1128/
http://www.accellera.org/
http://standards.ieee.org/findstds/standard/1666-2005.html
http://www.accellera.org/downloads/standards/systemc/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Use the --bridge-conf-file SimGen command-line option to select your own auto-bridging
configuration file. Alternatively, edit the file $PVLIB_HOME/etc/bridges_conf.json, which SimGen
uses if you do not specify this option. The syntax is:

 "<protocol_name>" : {
 "master" : {
 "name" : "<bridge_name>"
 },
 "slave" : {
 "name" : "<bridge_name>"
 },
 "peer" : {
 "name" : "<bridge_name>"
 }
 },

• SimGen ignores any bridges whose name is empty in the configuration file.

• Auto-bridging is not applied to any ports that are marked as internal in the LISA+ file.

• SimGen reports an error if auto-bridging is enabled and a top-level port in a LISA+ component
uses a protocol that is not listed in the configuration file.

• SimGen reports an error if auto-bridging is enabled and it cannot find the configuration file.

• You do not need to specify bridges for the following LISA+ protocols. When ports that use
these protocols are exported to SystemC, SimGen can automatically generate the TLM sockets
for them, without the need for bridging:

◦ AudioControl

◦ ClockRateControl

◦ ClockSignal

Do not export the ClockSignal port if your intention is to drive a clock from
an external SystemC source. The ClockSignal should be driven from the
MasterClock in the Fast Model, not from the external SystemC source.

◦ CounterInterface

◦ GICv3Comms

◦ InstructionCount

◦ KeyboardStatus

◦ LCD

◦ MouseStatus

◦ PChannel

◦ SystemCoherencyInterface

◦ VECBProtocol

◦ VirtualEthernet

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

To access the generated TLM sockets from SystemC, you must #include the appropriate
header files from under $PVLIB_HOME/examples/SystemCExport/Common/Protocols/.

5.3 SystemC Export generated ports
This section describes the generated ports and the associated port protocols.

Related information
About SystemC Export generated ports on page 136

5.3.1 Protocol definition

The ports of the top level Fast Models component, used to create SystemC ports, have protocols.

The behaviors in a Fast Models protocol definition must match exactly the functions in the
SystemC port class. System Canvas does not check this for consistency, but the C++ compiler can
find inconsistencies when compiling the generated SystemC component.

The set of functions and behaviors, their arguments, and their return value must be the same. The
order of the functions and behaviors does not matter.

All behaviors in the Fast Models protocol must be slave behaviors. There is no corresponding
concept of master behaviors.

The protocol definition also contains a properties section that contains the properties that describe
the SystemC C++ classes that implement the corresponding ports on the SystemC side.

Related information
LISA+ Language for Fast Models Reference Guide

5.3.2 TLM 1.0 protocol for an exported SystemC component

Here is an example of a TLM 1.0 signal protocol.

protocol MySignalProtocol
{
 includes
 {
 #include <mySystemCClasses.h>
 }
 properties
 {
 sc_master_port_class_name = "my_signal_base<bool>";
 sc_slave_base_class_name = "my_slave_base<bool>";
 sc_slave_export_class_name = "my_slave_export<bool>";
 }
 slave behavior set_state(const bool & state);
}

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 144

https://developer.arm.com/documentation/101092/0100/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.3.3 TLM 2.0 bus protocol for an exported SystemC component

Here is an example of a TLM 2.0 bus protocol.

protocol MyProtocol
{
 includes
 {
 #include <mySystemCClasses.h>
 }
 properties
 {
 sc_master_base_class_name = "my_master_base";
 sc_master_socket_class_name = "my_master_socket<64>";
 sc_slave_base_class_name = "my_slave_base<64>";
 sc_slave_socket_class_name = "my_slave_socket<64>";
 }
 slave behavior read(uint32_t addr, uint32_t &data);
 slave behavior write(uint32_t addr, uint32_t data);
 master behavior invalidate_dmi(uint32_t addr);
}

This protocol enables declaring ports that have read() and write() functions. This protocol can
declare master and slave ports.

5.3.4 Properties for TLM 1.0 based protocols

TLM 1.0 based protocols map to their SystemC counterparts using properties in the LISA protocol
definition. The protocol description must set these properties.

sc_master_port_class_name
The sc_master_port_class_name property is the class name of the SystemC class that the generated
SystemC component instantiates for master ports on the SystemC side. This class must implement
the functions defined in the corresponding protocol, for example:

void my_master_port<bool>::set_state(bool state)

sc_slave_base_class_name
The sc_slave_base_class_name property is the class name of the SystemC class that the generated
SystemC component specializes for slave ports on the SystemC side. This class must declare the
functions defined in the corresponding protocol, for example:

void my_slave_base<bool>::set_state(const bool &state)

The SystemC component must define it to forward the protocol functions from the SystemC
component to the Fast Models top level component corresponding port. It must also provide a
constructor taking the argument:

const std::string &name

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

sc_slave_export_class_name
The sc_slave_export_class_name property is the class name of the SystemC class that the
generated SystemC component instantiates for slave ports (exports) on the SystemC side. The
component binds to the derived sc_slave_base_class_name SystemC class, and forwards calls from
the SystemC side to the bound class.

AMBAPV Signal protocol in Fast Models
protocol AMBAPVSignal {

 includes {
 #include <amba_pv.h>
 }

 properties {
 description = "AMBA-PV signal protocol";
 sc_master_port_class_name = "amba_pv::signal_master_port<bool>";
 sc_slave_base_class_name = "amba_pv::signal_slave_port<bool>";
 sc_slave_export_class_name = "amba_pv::signal_slave_export<bool>";
 }
...

sc_slave_export_class_name and sc_master_port_class_name describe the type of the port
instances in the SystemC domain.

sc_slave_base_class_name denotes the base class from which the SystemC component publicly
derives.

AMBAPV Signal protocol in SystemC component class
The SystemC module ports must use the corresponding names in the SystemC code.

class pv_dma: public sc_module,
 public amba_pv::signal_slave_base<bool> {

 /* Module ports */
 amba_pv::signal_master_port<bool> signal_out;
 amba_pv::signal_slave_export<bool> signal_in;
 ...

The SystemC port names must also match the Fast Models port names. For example, signal_out
is the instance name for the master port in the Fast Models AMBAPVBus component and the
SystemC port.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Figure 5-1: SGSignal component in System Canvas

5.3.5 Properties for TLM 2.0 based protocols

The TLM 2.0 protocol provides forward and backward paths for master and slave sockets. Protocols
that use TLM 2.0 must specify properties in the protocol declaration.

sc_master_socket_class_name
This is the class name of the SystemC class that the generated SystemC component
instantiates for master sockets on the SystemC side. The component binds to the derived
sc_master_base_class_name SystemC class and forwards calls from:

• The bound class to SystemC (forward path).

• The SystemC side to the bound class (backward path).

sc_master_base_class_name
This is the class name of the SystemC class that the generated SystemC component specializes for
master sockets on the SystemC side. This class must declare the master behavior functions defined
in the corresponding protocol, for example:

my_master_base::invalidate_dmi(uint32_t addr)

The SystemC component must define it to forward the protocol functions from the SystemC
component (backward path) to the System Generator top level component corresponding socket. It
must also provide a constructor taking the argument:

const std::string &

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

sc_slave_socket_class_name
This is the class name of the SystemC class that the generated SystemC component
instantiates for slave sockets on the SystemC side. The component binds to the derived
sc_slave_base_class_name SystemC class and forwards calls from:

• The bound class to SystemC (backward path).

• The SystemC side to the bound class (forward path).

sc_slave_base_class_name
This is the class name of the SystemC class that the generated SystemC component specializes for
slave sockets on the SystemC side. It must also provide a constructor taking the argument:

const std::string &

AMBAPV protocol in System Generator
protocol AMBAPVSignal {
 includes {
 #include <amba_pv.h>
 }

 properties {
 description = "AMBA-PV protocol";
 sc_master_base_class_name = "amba_pv::amba_pv_master_base";
 sc_master_socket_class_name = "amba_pv::amba_pv_master_socket<64>";
 sc_slave_base_class_name = "amba_pv::amba_pv_slave_base<64>";
 sc_slave_socket_class_name = "amba_pv::amba_pv_slave_socket<64>";
 }

AMBAPV protocol in SystemC component class
The SystemC module sockets must use the corresponding names in the SystemC code.

class pv_dma: public sc_module,
 public amba_pv::amba_pv_slave_base<64>,
 public amba_pv::amba_pv_master_base {

/* Module ports */
 amba_pv::amba_pv_slave_socket<64> amba_pv_s;
 amba_pv::amba_pv_master_socket<64> amba_pv_m;
 ...
}

5.4 SystemC Export API
This section describes the SystemC eXport (SCX) API provided by Fast Models Exported Virtual
Subsystems (EVSs). Each description of a class or function includes the C++ declaration and the use
constraints.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.1 SystemC Export header file

To use the SystemC Export feature, an application must include the C++ header file scx.h at
appropriate positions in the source code as required by the scope and linkage rules of C++.

The header file $PVLIB_HOME/include/fmruntime/scx/scx.h adds the namespace scx to the
declarative region that includes it. This inclusion declares all definitions related to the SystemC
Export feature of Fast Models within that region.

#include "scx.h"

5.4.2 scx::scx_initialize

This function initializes the simulation.

Initialize the simulation before constructing any exported subsystem.

void scx_initialize(const std::string &id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

id

an identifier for this simulation.

ctrl

a pointer to the simulation controller implementation. It defaults to the one provided with
Arm® models.

Arm recommends specifying a unique identifier across all simulations running on the
same host.

5.4.3 scx::scx_set_single_evs

Sets the simulation engine to accept a single EVS only.

void scx_set_single_evs();

The EVS name will be stripped from CADI parameters.

Call this function immediately after calling scx_initialize().

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.4 scx::scx_load_application

This function loads an application in the memory of an instance.

void scx_load_application(const std::string &instance,
 const std::string &application);

instance

the name of the instance to load into. The parameter instance must start with an EVS
instance name, or with "*" to load the application into the instance on all EVSs in the
platform. To load the same application on all cores of an SMP processor, specify "*" for the
core instead of its index, in parameter instance.

application

the application to load.

The loading of the application happens at start_of_simulation() call-back, at the
earliest.

5.4.5 scx::scx_load_application_all

This function loads an application in the memory of instances that execute software, across all
EVSs in the platform.

void scx_load_application_all(const std::string &application);

application

the application to load.

The loading of the application happens at start_of_simulation() call-back, at the
earliest.

5.4.6 scx::scx_load_data

This function loads binary data in the memory of an instance at a memory address.

void scx_load_data(const std::string &instance,
 const std::string &data,
 const std::string &address);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

instance

the name of the instance to load into. The parameter instance must start with an EVS
instance name, or with "*" to load data into the instance on all EVSs in the platform. On an
SMP processor, if instance specifies "*" for the core instead of its index, the binary data
loads only on the first processor.

data

the filename of the binary data to load.

address

the memory address at which to load the data. The parameter address might start with a
memory space specifier.

The loading of the binary data happens at start_of_simulation() call-back, at the
earliest.

5.4.7 scx::scx_load_data_all

This function loads binary data in the memory of instances that execute software, across all EVSs in
the platform, at a memory address. On SMP processors, the data loads only on the first core.

void scx_load_data_all(const std::string &data,
 const std::string &address);

data

the filename of the binary data to load.

address

the memory address at which to load the data. The parameter address might start with a
memory space specifier.

The loading of the binary data happens at start_of_simulation() call-back, at the
earliest.

5.4.8 scx::scx_set_parameter

This function sets the value of a parameter in components present in EVSs or in plug-ins.

• bool scx_set_parameter(const std::string &name, const std::string &value);

• template<class T>

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

bool scx_set_parameter(const std::string &name, T value);

name

the name of the parameter to change. The parameter name must start with an EVS instance
name for setting a parameter on this EVS, or with "*" for setting a parameter on all EVSs in
the platform, or with a plug-in prefix (defaults to "TRACE") for setting a plug-in parameter.

value

the value of the parameter.

This function returns true when the parameter exists, false otherwise.

• Changes made to parameters within System Canvas take precedence over
changes made with scx_set_parameter().

• You can set parameters during the construction phase, and before the
elaboration phase. Calls to scx_set_parameter() after the construction phase
are ignored.

• You can change run-time parameters after the construction phase with the
debug interface.

• Specify plug-ins before calling the platform parameter functions, so that the
plug-ins load and their parameters are available. Any plug-in that is specified
after the first call to any platform parameter function is ignored.

5.4.9 scx::scx_get_parameter

This function retrieves the value of a parameter from components present in EVSs or from plug-ins.

• bool scx_get_parameter(const std::string &name, std::string &value);

• template<class T>
bool scx_get_parameter(const std::string &name, T &value);

• bool scx_get_parameter(const std::string &name, int &value);

• bool scx_get_parameter(const std::string &name, unsigned int &value);

• bool scx_get_parameter(const std::string &name, long &value);

• bool scx_get_parameter(const std::string &name, unsigned long &value);

• bool scx_get_parameter(const std::string &name, long long &value);

• bool scx_get_parameter(const std::string &name, unsigned long long &value);

• std::string scx_get_parameter(const std::string &name);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

name

the name of the parameter to retrieve. The parameter name must start with an EVS instance
name for retrieving an EVS parameter or with a plug-in prefix (defaults to "TRACE") for
retrieving a plug-in parameter.

value

a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

Specify plug-ins before calling the platform parameter functions, so that the plug-ins
load and their parameters are available. Any plug-in that is specified after the first
call to any platform parameter function is ignored.

5.4.10 scx::scx_get_parameter_list

This function retrieves a list of all parameters in all components present in all EVSs and from all
plug-ins.

std::map<std::string, std::string> scx_get_parameter_list();

The parameter names start with an EVS instance name for EVS parameters or with a plug-in prefix
(defaults to "TRACE") for plug-in parameters.

• Specify plug-ins before calling the platform parameter functions, so that the
plug-ins load and their parameters are available. Any plug-in that is specified
after the first call to any platform parameter function is ignored.

• If scx_set_parameter() is called after the simulation elaboration
phase, the new value is not set in the model, although it is returned by
scx_get_parameter_list().

5.4.11 scx::scx_get_parameter_infos

Retrieve a list of descriptions for all parameters within the simulation.

std::map<std::string, std::string> scx_get_parameter_infos();

The list includes parameters for all components present in all EVSs and for all plug-ins.

The names of EVS parameters start with an EVS instance name and the names of plug-in
parameters start with a plug-in prefix, which defaults to TRACE.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Plug-ins must be specified before calling any of the platform parameter functions,
otherwise plug-ins are not loaded and their parameters are not available. Any plug-
in specified after the first call to any platform parameter function is ignored.

5.4.12 scx::scx_get_cadi_parameter_infos

Retrieve a vector of CADIParameterInfo_t objects for all the parameters in the simulation.

std::vector<eslapi::CADIParameterInfo_t> scx_get_cadi_parameter_infos();

Use this function to get CADI parameter objects with all the relevant fields present for all EVSs,
external SystemC modules, and loaded plug-ins.

Plug-ins must be specified before calling any of the platform parameter functions,
otherwise plug-ins are not loaded and their parameters are not available. Any plug-
in specified after the first call to any platform parameter function is ignored.

5.4.13 scx::scx_set_cpi_file

Sets the Cycles Per Instruction (CPI) file for CPI class functionality.

void scx_set_cpi_file(const std::string & cpi_file_path);

cpi_file_path

the path to the CPI file.

Use this function to activate the CPI class functionality.

This function must be called before any call to a platform parameter function.

5.4.14 scx::scx_cpulimit

Sets the maximum number of CPU (User + System) seconds to run, excluding startup and
shutdown.

void scx_cpulimit(double t);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

t

the number of seconds to run. Defaults to unlimited.

5.4.15 scx::scx_timelimit

Sets the maximum number of seconds to run, excluding startup and shutdown.

void scx_timelimit(double t);

t

the number of seconds to run. Defaults to unlimited.

5.4.16 scx::scx_add_breakpoint

Set a breakpoint at a specific address.

void scx_add_breakpoint(std::string instance, uint64_t addr,
bool perthread, uint32_t threadid);

instance

Name of the core target instance.

addr

Address at which to set the breakpoint.

perthread

If true, the breakpoint only hits if threadid matches the current thread.

threadid

Thread ID for the breakpoint. Only used if perthread is true.

5.4.17 scx::scx_set_start_pc

Set the initial value of the PC register for a specific instance.

void scx_set_start_pc(std::string instance, uint64_t addr);

instance

Name of the core target instance.

addr

Start PC address.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.18 scx::scx_dump

Set the details of a memory dump to be written to a file.

void scx_dump(std::string instance, std::string filename, std::string memSpace,
 uint64_t addr, uint64_t size);

instance

Name of the target instance to dump memory from.

filename

The path to the file to dump memory to.

memSpace

The name or ID of the memory space.

addr

Start address from which to dump.

size

Number of bytes of memory to dump.

5.4.19 scx::scx_load_params_file

Load parameter values from a configuration file.

void scx_load_params_file(const std::string& filename);

filename

The name of the configuration file to load.

Plug-ins must be specified before calling any of the platform parameter functions,
otherwise these plug-ins will not be loaded and their parameters will not be
available.

5.4.20 scx::scx_list_instances

List all instances in the simulation.

void scx_list_instances(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.21 scx::scx_list_registers

List all simulation registers.

void scx_list_registers(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

5.4.22 scx::scx_check_registers

List all simulation registers and perform extra consistency checks on the CADI register API.

void scx_check_registers(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

5.4.23 scx::scx_list_memory

List all simulation memory.

void scx_list_memory(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

5.4.24 scx::scx_parse_and_configure

This function parses command-line options and configures the simulation accordingly.

void scx_parse_and_configure(int argc,
 char *argv[],
 const char *trailer = NULL,
 bool sig_handler = true);

argc

the number of command-line options listed with argv[].

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

argv

command-line options.

trailer

a string that follows the option list when printing the help message (--help option).

sig_handler

whether to enable signal handler function. true to enable (default), false to disable.

The application must pass the values of the options from function sc_main() as arguments to this
function.

-a, --application
application to load, format: -a [INST=]FILE. For SMP cores: -a INST*=FILE.

-A, --iris-allow-remote
allow remote connections from another machine to the Iris server. Defaults to not allowed.

-b, --break
set a breakpoint, format: -b [INST=]ADDRESS. This option can be specified multiple times.

-C, --parameter
set a parameter, format: -C INST.PARAM=VALUE. This option can be specified multiple times.

--check-regs

the same as --list-regs but does more consistency checks on the CADI register API.

--cpi-file

use FILE to set Cycles Per Instruction (CPI) classes, format: --cpi-file FILE

--cpulimit

maximum number of CPU (User + System) seconds to run, excluding startup and shutdown,
format: --cpulimit NUM. Defaults to unlimited.

--cyclelimit

number of cycles to run, ignored if the debug server has started, format: --cyclelimit NUM.
Defaults to unlimited.

-D, --allow-debug-plugin
allow a plug-in to debug the simulation.

--data

raw data to load, format: --data [INST=]FILE@[MEMSPACE:]ADDRESS

--dump

dump a section of memory into FILE, format: --dump
[INST=]FILE@[MEMSPACE:]ADDRESS,SIZE. This option can be specified multiple times.

--dump-params

dump the list of model parameters into a JSON file and exit.

-f, --config-file
load model parameters from configuration file FILE, format: --config-file FILE

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

-h, --help
print help message and exit.

--iris-connect

start an Iris server. Format: --iris-connect CONSPEC where CONSPEC is a structured string
argument which can contain flags and parameters:

• An empty string is an error.

• help prints a list of supported connection types.

Command line options --iris-server, --iris-allow-remote, --iris-port, and --iris-
port-range are ignored when using --iris-connect.

-i, --iris-log
Iris log level. This option can be specified multiple times, for example: -ii for log level 2.

-I, --iris-server
start an Iris server, allowing debuggers to connect to targets in the simulation.

--iris-port

set a specific port to use for the Iris server, format: --iris-port PORT

--iris-port-range

set the range of ports to scan when starting an Iris server. The first available port found is
used, format: --iris-port-range MIN:MAX

-K, --keep-console
keep the console window open after completion. This option applies to Microsoft Windows
only.

-l, --list-params
print the list of available model parameters and their default values to standard output and
exit.

--list-set-params

save the list of model parameters for each component in the model and the values that are
set to a file or print to standard output. Format: --list-set-params FILE or --list-set-
params - to print to stdout.

-L, --cadi-log
log all CADI calls to XML log files.

--list-instances

print list of target instances to standard output.

--list-memory

print model memory information to standard output.

--list-regs

print model register information to standard output.

-o, --output
redirect parameters, memory and instance lists to output file FILE, format: --output FILE

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

-p, --print-port-number
print the TCP port number the CADI server is listening to.

-P, --prefix
prefix semihosting output with the name of the instance.

--plugin

plug-in to load, format: --plugin [NAME=]FILE

-q, --quiet
suppress informational output.

-R, --run
run the simulation immediately after the CADI server starts.

-S, --cadi-server
start a CADI server, allowing debuggers to connect to targets in the simulation.

--simlimit

maximum number of seconds to simulate, ignored if the debug server has started, format: --
simlimit NUM. Defaults to unlimited.

--start

set initial PC to application start address, format: --start [INST=]ADDRESS

--stat

print run statistics on simulation exit.

-T, --timelimit
maximum number of seconds to run, excluding startup and shutdown, ignored if the debug
server has started, format: --timelimit NUM. Defaults to unlimited.

--trace-plugin

deprecated, use --plugin instead.

This function treats all other command-line arguments as applications to load.

This function calls std::exit(EXIT_SUCCESS) to exit, for options --list-params and --help. It calls
std::exit(EXIT_FAILURE) if there was an error in the parameter specification, or an invalid option
was specified, or if the application or plug-in was not found.

5.4.25 scx::scx_register_synchronous_thread

This function registers a new thread in the simulation engine which is implicitly synchronized with
the simulation thread.

void scx_register_synchronous_thread(std::thread::id thread_id);

thread_id

ID of the newly registered thread.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

The caller must make sure that the simulation thread and the newly registered thread do not run
concurrently.

Calling this function for a thread X completely disables the thread synchronization for thread X, that
is, marshaling of function calls from the calling thread onto the simulation thread, for example Iris
calls.

This function is useful for debugger threads which are blocking the simulation thread and which still
want to issue Iris calls while the simulation thread is blocked.

5.4.26 scx::scx_get_error_count

This function returns the number of errors recorded by the simulation engine.

The count includes internal errors recorded by the simulation engine, some of which
are not reported as errors by scx_report_handler.

size_t scx_get_error_count();

5.4.27 scx::scx_get_exitcode_list

This function returns the list of exit codes that were logged by the simulation engine.

The returned list is a std::vector that contains the logged exit codes in order. Each entry in the list
is a struct of type 5.4.28 scx::scx_exitcode_entry on page 56. The last entry is the most recent.

• If no exit code was logged, the returned list is empty.

• This function only produces valid output after sc_start() has returned. It must
not be called beforehand.

const scx_exitcode_list_t & scx_get_exitcode_list();

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.28 scx::scx_exitcode_entry

Represents an entry in the exit code list.

The exit code list is returned by 5.4.27 scx::scx_get_exitcode_list on page 56.

struct scx_exitcode_entry
{
 scx_exitcode_entry(int exitcode_, std::string component_name_, std::string
 kind_, std::string reason_)
 : exitcode(exitcode_)
 , component_name(component_name_)
 , kind(kind_)
 , reason(reason_)
 {}

 int exitcode;
 std::string component_name;
 std::string kind;
 std::string reason;
};

exitcode
The exit code that was logged.

component_name
The name of the component that generated the exit code. This name is auto-generated by
the simulation engine at the time of logging.

kind
The type of component that generated the exit code.

reason
Optional field that provides a human-readable string explaining why the exit code was
logged. If this field is empty, then no reason was given and this field can be ignored.

5.4.29 scx::scx_start_cadi_server

This function specifies whether to start a CADI server.

void scx_start_cadi_server(bool start = true, bool run = true, bool debug = false);

start

true to start a CADI server, false otherwise.

run

true to run the simulation immediately after the CADI server has been started, false
otherwise.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

debug

true to enable debugging through a plug-in, false otherwise.

Starting a CADI server enables the attachment of a debugger to debug targets in the simulation.

When debug is set to true, the CADI server does not start, but a plug-in can implement an
alternative debugging mechanism in place of it.

When start is set to true, it overrides debug.

• A CADI server cannot start after simulation starts.

• You do not need to call this function if you have called
scx_parse_and_configure() and parsed at most one of -S or -D into sc_main().

5.4.30 scx::scx_enable_cadi_log

This function specifies whether to log all CADI calls to XML files.

void scx_enable_cadi_log(bool log = true);

log

true to log CADI calls, false otherwise.

You cannot enable logging once simulation starts.

5.4.31 scx::scx_print_port_number

This function specifies whether to enable printing of the TCP port number that the CADI server is
listening to.

void scx_print_port_number(bool print = true);

print

true to enable printing of the TCP port number, false otherwise.

You cannot enable printing of the TCP port number once simulation starts.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.32 scx::scx_print_statistics

This function specifies whether to enable printing of simulation statistics at the end of the
simulation.

void scx_print_statistics(bool print = true);

print

true to enable printing of simulation statistics, false otherwise.

• You cannot enable printing of statistics once simulation starts.

• The statistics include LISA reset() behavior run time and application load time.
A long simulation run compensates for this.

5.4.33 scx::scx_register_cadi_target

Register a CADI target info and interface into the simulation.

void scx_register_cadi_target(eslapi::CADITargetInfo_t * info, eslapi::CAInterface *
 caif = NULL);

info

Points to an eslapi::CADITargetInfo_t structure describing this CADI target.

caif

Points to an eslapi::CAInterface of this CADI target.

Use this function to register a target into the simulation. The target is then accessible through a
CADI debugger attached to the simulation.

Registering a target must be perfomed before the end of elaboration.

5.4.34 scx::scx_unregister_cadi_target

Unregister a specific CADI target from the simulation.

void scx_unregister_cadi_target(const std::string &);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

name

Instance name of this CADI target.

Use this function to unregister a target from the simulation. After calling this function, the target
will not be accessible through a CADI debugger.

5.4.35 scx::scx_load_trace_plugin

Arm deprecates this function. Use scx_load_plugin() instead.

5.4.36 scx::scx_load_plugin

This function specifies a plug-in to load.

void scx_load_plugin(const std::string &file);

file

the file of the plug-in to load.

The plug-in loads at end_of_elaboration(), at the latest, or as soon as a platform parameter
function is called.

Specify plug-ins before calling the platform parameter functions, so that the plug-ins
load and their parameters are available. Any plug-in that is specified after the first
call to any platform parameter function is ignored.

5.4.37 scx::scx_get_global_interface

This function accesses the global interface.

eslapi::CAInterface *scx_get_global_interface();

The global interface allows access to all of the registered interfaces in the simulation.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.38 scx::scx_enable_iris_server

Starts or stops the Iris server.

void scx_enable_iris_server(const std::string& connection_spec)

void scx_enable_iris_server(bool enable = true);

connection_spec

String that specifies the type of server to start and its parameters. For example:

• For a TCP server: tcpserver,port=7100,endport=7163,allowRemote

• For a UNIX domain socket connection: socketfd=42

• To stop a running Iris server, use an empty string.

• To display all supported connection types, specify help.

enable

true to start an Iris server (default), false to stop it.

Starting the Iris server puts the simulation into a wait state, until a client connects to
the server.

5.4.39 scx::scx_set_iris_server_port_range

Set the range of ports to scan. The Iris server uses the first available port found in the range.

void scx_set_iris_server_port_range(uint16_t port_min, uint16_t port_max);

port_min

the port number at the start of the range.

port_max

the port number at the end of the range.

This function only takes effect if you call it before starting the Iris server.

Related information
scx::scx_enable_iris_server on page 60

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.40 scx::scx_get_iris_server_port

Return the Iris TCP port number that is assigned when the Iris server starts, or zero if the Iris server
has not yet started.

uint16_t scx_get_iris_server_port();

5.4.41 scx::scx_set_iris_server_port

Set a specific port for the Iris server to listen on.

inline void scx_set_iris_server_port(uint16_t port)

port

The port number for the Iris server to listen on.

This function only takes effect if you call it before starting the Iris server.

Related information
scx::scx_enable_iris_server on page 60

5.4.42 scx::scx_enable_iris_log

This function sets the Iris message log level.

void scx_enable_iris_log(unsigned level = 0);

level

the log level. The possible values are:

0
Logging is disabled. This is the default value.

1
Log messages use a compact, single-line format.

2
Log messages use a single-line, pseudo-JSON format.

3
Log messages use a more readable multi-line, pseudo-JSON format.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

4
As 3 but also prints the U64JSON hex value of the message.

An alternative way to set the Iris log level is to use the
IRIS_GLOBAL_INSTANCE_LOG_MESSAGES environment variable.

5.4.43 scx::scx_get_iris_connection_interface

Return the IrisConnectionInterface for the simulation. This can be used to create and register
IrisInstances.

iris::IrisConnectionInterface *scx_get_iris_connection_interface();

5.4.44 scx::scx_evs_base

This class is the base class for EVSs. EVSs are the principal subsystems of the Fast Models SystemC
Export feature.

class scx_evs_base {
 public:
 void load_application(const std::string &, const std::string &);
 void load_data(const std::string &, const std::string &, const std::string &);
 bool set_parameter(const std::string &, const std::string &);
 template<class T>
 bool set_parameter(const std::string &, T);
 bool get_parameter(const std::string &, std::string &) const;
 template<class T>
 bool get_parameter(const std::string &, T &) const;
 std::string get_parameter(const std::string &) const;
 std::map<std::string, std::string> get_parameter_list() const;
 protected:
 scx_evs_base(const std::string &, sg::ComponentFactory *);
 virtual ~scx_evs_base();
 void before_end_of_elaboration();
 void end_of_elaboration();
 void start_of_simulation();
 void end_of_simulation();
};

5.4.45 scx::load_application

This function loads an application in the memory of an instance.

void load_application(const std::string &instance, const std::string &application);

instance

the name of the instance to load into.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

application

the application to load.

The application loads at start_of_simulation(), at the earliest.

5.4.46 scx::load_data

This function loads raw data in the memory of an instance at a memory address.

void load_data(const std::string &instance,
 const std::string &data,
 const std::string &address);

instance

the name of the instance to load into.

data

the file name of the raw data to load.

address

the memory address at which to load the raw data. The parameter address might start with a
memory space specifier.

The raw data loads at start_of_simulation(), at the earliest.

5.4.47 scx::set_parameter

This function sets the value of a parameter from components present in the EVS.

• bool set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool set_parameter(const std::string &name, T value);

name

the name of the parameter to change.

value

the value of the parameter.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

This function returns true when the parameter exists, false otherwise.

• Changes made to parameters within System Canvas take precedence over
changes made with set_parameter().

• You can set parameters during the construction phase, and before the
elaboration phase. Calls to set_parameter() after the construction phase are
ignored.

• You can change run-time parameters after the construction phase with the
debug interface.

5.4.48 scx::get_parameter

This function retrieves the value of a parameter from components present in the EVS.

• bool get_parameter(const std::string &name, std::string &value) const;

• template<class T>
bool get_parameter(const std::string &name, T &value) const;

• std::string get_parameter(const std::string &name);

name

the name of the parameter to retrieve.

value

a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

5.4.49 scx::get_parameter_list

This function retrieves a list of all parameters in all components present in the EVS.

std::map<std::string, std::string> get_parameter_list();

5.4.50 scx::scx_evs_base constructor

This function constructs an EVS.

scx_evs_base(const std::string &, sg::ComponentFactory *);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

name

the name of the EVS instance.

factory

the sg::ComponentFactory to use to instantiate the corresponding LISA subsystem. The
factory initializes within the generated derived class.

EVS instance names must be unique across the virtual platform. The EVS instance name initializes
using the value passed as an argument to the constructor of the generated derived class.

5.4.51 scx::scx_evs_base destructor

This function destroys an EVS including the corresponding subsystem, and frees the associated
resources.

~scx_evs_base();

5.4.52 scx::before_end_of_elaboration

This function calls the instantiate(), configure(), init(), interconnect(), and
populateCADIMap() LISA behaviors of the corresponding exported subsystem.

void before_end_of_elaboration();

The generated derived class calls this function, after the SystemC simulation call-backs.

5.4.53 scx::end_of_elaboration

This function initializes the simulation framework.

void end_of_elaboration();

The generated derived class calls this function, after the SystemC simulation call-backs.

5.4.54 scx::start_of_simulation

This function calls the reset() LISA behaviors of the corresponding exported subsystem. It then
loads applications.

void start_of_simulation();

The generated derived class calls this function, after the SystemC simulation call-backs.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.55 scx::end_of_simulation

This function shuts down the simulation framework.

void end_of_simulation();

The generated derived class calls this function, after the SystemC simulation call-backs.

5.4.56 scx::scx_simcallback_if

This interface is the base class for simulation control call-backs.

class scx_simcallback_if {
 public:
 virtual void notify_running() = 0;
 virtual void notify_stopped() = 0;
 virtual void notify_debuggable() = 0;
 virtual void notify_idle() = 0;
 protected:
 virtual ~scx_simcallback_if() {
 }
};

The simulation framework implements this interface. The simulation controller uses the interface to
notify the simulation framework of changes in the simulation state.

5.4.57 scx::notify_running

This function notifies the simulation framework that the simulation is running.

void notify_running();

The simulation controller calls this function to notify the simulation framework that the simulation
is running. The simulation framework then notifies debuggers of the fact.

5.4.58 scx::notify_stopped

This function notifies the simulation framework that the simulation has stopped.

void notify_stopped();

The simulation controller calls this function to notify the simulation framework that the simulation
has stopped. The simulation framework then notifies debuggers of the fact.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.59 scx::notify_debuggable

This function notifies the simulation framework that the simulation is debuggable.

void notify_debuggable()

The simulation controller periodically calls this function to notify that the simulation is debuggable.
This typically occurs while the simulation is stopped, to allow clients to process debug activity, for
instance memory or breakpoint operations.

This version of the function does nothing.

5.4.60 scx::notify_idle

This function notifies the simulation framework that the simulation is idle.

void notify_idle();

The simulation controller periodically calls this function to notify the simulation framework that the
simulation is idle, typically while the simulation is stopped, to allow clients to process background
activity, for example, GUI events processing or redrawing.

5.4.61 scx::scx_simcallback_if destructor

Destructor.

~scx_simcallback_if();

This version of the function does not allow destruction of instances through the interface.

5.4.62 scx::scx_simcontrol_if

This is the simulation control interface.

class scx_simcontrol_if {
 public:
 virtual eslapi::CAInterface *get_scheduler() = 0;
 virtual scx_report_handler_if *get_report_handler() = 0;
 virtual void run() = 0;
 virtual void stop() = 0;
 virtual bool is_running() = 0;
 virtual void stop_acknowledge(sg::SchedulerRunnable *runnable) = 0;
 virtual void process_debuggable();
 virtual void notify_pending_debug();
 virtual void process_idle() = 0;
 virtual void shutdown() = 0;
 virtual void add_callback(scx_simcallback_if *callback_obj) = 0;
 virtual void remove_callback(scx_simcallback_if *callback_obj) = 0;

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

 protected:
 virtual ~scx_simcontrol_if();
};

The simulation controller, which interacts with the simulation framework, must implement this
interface. The simulation framework uses this interface to access current implementations of the
scheduler and report handler, as well as to request changes to the state of the simulation.

Unless otherwise stated, requests from this interface are asynchronous and can return immediately,
whether the corresponding operation has completed or not. When the operation is complete,
the corresponding notification must go to the simulation framework, which in turn notifies all
connected debuggers to allow them to update their states.

Unless otherwise stated, an implementation of this interface must be thread-safe, that is it must
not make assumptions about threads that issue requests.

The default implementation of the simulation controller provided with Fast Models is at:
$MAXCORE_HOME/lib/template/tpl_scx_simcontroller.{h,cpp}.

5.4.63 scx::get_scheduler

This function returns a pointer to the implementation of the simulation scheduler.

eslapi::CAInterface *get_scheduler();

The simulation framework calls the get_scheduler() function to retrieve the scheduler
implementation for the simulation at construction time.

Implementations of this function need not be thread-safe.

5.4.64 scx::get_report_handler

This function returns a pointer to the current implementation of the report handler.

scx_report_handler_if *get_report_handler();

scx_initialize() calls the get_report_handler() function to retrieve the report handler
implementation for the simulation at construction time.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Implementations of this function need not be thread-safe.

5.4.65 scx::run

This function requests to run the simulation.

void run();

The simulation framework calls run() upon receipt of a CADI run request from a debugger.

5.4.66 scx::stop

This function requests to stop the simulation as soon as possible, that is at the next wait().

void stop();

The simulation framework calls stop() upon receipt of a CADI stop request from a debugger, a
component, or a breakpoint hit.

5.4.67 scx::is_running

This function returns whether the simulation is running.

bool is_running();

The return value is true when the simulation is running, false when it is paused or stopped.

The simulation framework calls is_running() upon receipt of a CADI run state request from a
debugger.

5.4.68 scx::stop_acknowledge

This function blocks the simulation while the simulation is stopped.

void stop_acknowledge(sg::SchedulerRunnable *runnable);

runnable

a pointer to the scheduler thread calling stop_acknowledge().

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

The scheduler thread calls this function to effectively stop the simulation, as a side effect of calling
stop() to request that the simulation stop.

An implementation of this function must call clearStopRequest() on runnable (when not NULL).

5.4.69 scx::process_debuggable

This function processes debug activity while the simulation is at a debuggable point.

void process_debuggable()

This function is called by the scheduler thread whenever the simulation is at a debuggable point, to
enable debug activity to be processed.

An implementation of this function might simply call scx_simcallback_if::notify_debuggable()
on all registered clients.

This version of the function does nothing.

5.4.70 scx::notify_pending_debug

Notifies the simulation controller that debug requests are pending and need processing as soon as
possible while the simulation is stopped.

virtual void notify_pending_debug()

An implementation of this behavior might simply call scx_simcontrol::process_debuggable() on
all registered clients, while the simulation is stopped in scx_simcontrol::stop_acknowledge().

5.4.71 scx::process_idle

This function processes idle activity while the simulation is stopped.

void process_idle();

The scheduler thread calls this function whenever idle to enable the processing of idle activity.

An implementation of this function might simply call scx_simcallback_if::notify_idle() on all
registered clients.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.4.72 scx::shutdown

This function requests to stop the simulation.

void shutdown();

The simulation framework calls shutdown() to notify itself that it wants the simulation to stop.
Once the simulation has shut down it cannot run again.

There are no call-backs associated with shutdown().

5.4.73 scx::add_callback

This function registers call-backs with the simulation controller.

void add_callback(scx_simcallback_if *callback_obj);

callback_obj

a pointer to the object whose member functions serve as call-backs.

Clients call this function to register with the simulation controller a call-back object that handles
notifications from the simulation.

5.4.74 scx::remove_callback

This function removes call-backs from the simulation controller.

void remove_callback(scx_simcallback_if *callback_obj);

callback_obj

a pointer to the object to remove.

Clients call this function to unregister a call-back object from the simulation controller.

5.4.75 scx::scx_simcontrol_if destructor

Destructor.

~scx_simcontrol_if();

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

This version of the function does not allow destruction of instances through the interface.

5.4.76 scx::scx_get_default_simcontrol

This function returns a pointer to the default implementation of the simulation controller provided
with Fast Models.

scx_simcontrol_if *scx_get_default_simcontrol();

5.4.77 scx::scx_get_curr_simcontrol

Return a pointer to the current simulation controller implementation.

extern scx_simcontrol_if * scx_get_curr_simcontrol();

5.4.78 scx::scx_report_handler_if

This interface is the report handler interface.

class scx_report_handler_if {
 public:
 virtual void set_verbosity_level(int verbosity) = 0;
 virtual int get_verbosity_level() const = 0;
 virtual void report_info(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_info_verb(int verbosity,
 const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_warning(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_error(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_fatal(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 protected:
 virtual ~scx_report_handler_if() {
 }
};

This interface provides run-time reporting facilities, similar to the ones provided by SystemC. It has
the additional ability to specify a format string in the same way as the std::vprintf() function,
and associated variable arguments, for the report message.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

The Fast Models simulation framework for SystemC Export uses this interface to report various
messages at run-time.

The default implementation of the report handler provided with Fast Models is in: $MAXCORE_HOME/
lib/template/tpl_scx_report.cpp.

Related information
IEEE Std 1666-2005, SystemC Language Reference Manual, 31 March 2006

5.4.79 scx::scx_get_default_report_handler

This function returns a pointer to the default implementation of the report handler provided with
Fast Models.

scx_report_handler_if *scx_get_default_report_handler();

5.4.80 scx::scx_get_curr_report_handler

This function returns a pointer to the current implementation of the report handler.

scx_report_handler_if *scx_get_curr_report_handler();

5.4.81 scx::scx_sync

This function adds a future synchronization point.

void scx_sync(double sync_time);

sync_time

the time of the future synchronization point relative to the current simulated time, in
seconds.

SystemC components call this function to hint to the scheduler when a system synchronization
point will occur.

The scheduler uses this information to determine the quantum sizes of threads.

Threads that have run their quantum are unaffected; all other threads (including the current thread)
run to the sync_time synchronization point.

Calling scx_sync() again adds another synchronization point.

Synchronization points automatically vanish when the simulation time passes.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 144

http://standards.ieee.org/findstds/standard/1666-2005.html

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Arm deprecates this function. Use IEEE 1666 SystemC 2011
sc_core::sc_prim_channel::async_request_update() instead.

5.4.82 scx::scx_set_min_sync_latency

This function sets the minimum synchronization latency for this scheduler.

void scx_set_min_sync_latency(double t);
void scx_set_min_sync_latency(sg::ticks_t t);

t

the minimum synchronization latency. Measured in seconds.

The minimum synchronization latency helps to ensure that sufficient simulated time has passed
between two synchronization points for synchronization to be efficient.

A small latency increases accuracy but decreases simulation speed.

A large latency decreases accuracy but increases simulation speed.

The scheduler uses this information to compute the next synchronization point as returned by
sg::SchedulerInterfaceForComponents::getNextSyncPoint().

Related information
scx::scx_get_min_sync_latency on page 75

5.4.83 scx::scx_get_min_sync_latency

This function returns the minimum synchronization latency, measured in seconds, for this
scheduler.

double scx_get_min_sync_latency();
sg::ticks_t scx_get_min_sync_latency(sg::Tag<sg::ticks_t> *);

Related information
scx::scx_set_min_sync_latency on page 75

5.4.84 scx::scx_simlimit

This function sets the maximum number of seconds to simulate.

void scx_simlimit(double t);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

t

the number of seconds to simulate. Defaults to unlimited.

5.4.85 scx::scx_create_default_scheduler_mapping

This function returns a pointer to a new instance of the default implementation of the scheduler
mapping that is provided with Fast Models.

sg::SchedulerInterfaceForComponents *
 scx_create_default_scheduler_mapping(scx_simcontrol_if * simcontrol);

simcontrol

pointer to an existing simulation controller. When this is NULL, this function returns NULL.

5.4.86 scx::scx_get_curr_scheduler_mapping

This function returns a pointer to the current implementation of the scheduler mapping interface.

sg::SchedulerInterfaceForComponents * scx_get_curr_scheduler_mapping();

5.5 Scheduler API
The Fast Models Scheduler API makes modeling components and systems accessible in different
environments, with or without a built-in scheduler. Examples are a SystemC environment or a
standalone simulator.

The Fast Models Scheduler API is a C++ interface consisting of a set of abstract base
classes. The header file that defines them is $PVLIB_HOME/include/fmruntime/sg/
SGSchedulerInterfaceForComponents.h. This header file depends on other header files under
$PVLIB_HOME/include.

All Scheduler API constructs are in the namespace sg.

The interface decouples the modeling components from the scheduler implementation. The
parts of the Scheduler API that the modeling components use are for the scheduler or scheduler
adapter to implement. The parts that the scheduler or scheduler adapter use are for the modeling
components to implement.

class SchedulerInterfaceForComponents

The scheduler (or an adapter to the scheduler) must implement an instance of this interface
class for Fast Models components to work. Fast Models components use this interface to talk
to the scheduler, for example, to create threads and timers. This class is the main part of the
interface.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

class SchedulerThread

An abstract Fast Models thread class, which createThread() creates instances of. For
example, CT core models use this class. The scheduler implements it. Threads have co-
routine semantics.

class SchedulerRunnable

The counterpart of the SchedulerThread class. The modeling components, which contain the
thread functionality, implement it.

class ThreadSignal

A class of event that threads can wait on. It has wait() and notify() but no timing functions.
The scheduler implements it.

class Timer

An abstract interface for one-shot or continuous timed events, which createTimer() creates
instances of. The scheduler implements it.

class TimerCallback

The counterpart of the Timer class. The modeling components, which contain the
functionality for the timer callback, implement it. Arm deprecates this class.

class SchedulerCallback

A callback function class. The modeling components, which use addCallback()
(asynchronous callbacks), implement it.

class FrequencySource

An abstract interface class that provides a frequency in Hz. The modeling components
implement it. The scheduler uses it to determine the time intervals for timed events. Arm
deprecates this class.

class FrequencyObserver

An abstract interface class for observing a FrequencySource and changes to the frequency
value. The scheduler implements it for objects that have access to a FrequencySource (Timer
and SchedulerThread). Arm deprecates this class.

class SchedulerObject

The base class for all scheduler interface objects, which provides getName().

5.5.1 Accessing SchedulerInterfaceForComponents from a modeling
component

This topic shows ways of accessing the SchedulerInterfaceForComponents interface from a LISA, C
++, and SystemC component.

LISA component
includes
{
 #include "sg/SGSchedulerInterfaceForComponents.h"
 #include "sg/SGComponentRegistry.h"
}

behavior init

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

{
 sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (getGlobalInterface(), "scheduler");
}

C++ component
C++ components have an sg::SimulationContext pointer passed into their constructor.

#include "sg/SGSchedulerInterfaceForComponents.h"
#include "sg/SGComponentRegistry.h"

sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (simulationContext->getGlobalInterface(), "scheduler");

SystemC component
#include "sg/SGSchedulerInterfaceForComponents.h"
#include "sg/SGComponentRegistry.h"

sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (scx::scx_get_global_interface(), "scheduler");

5.5.2 Intended mapping of the Scheduler API onto SystemC/TLM

How Scheduler API functionality might map onto SystemC functionality.

sg::SchedulerInterfaceForComponents::wait(time)

Call sc_core::wait(time) and handle all pending asynchronous events that are scheduled
with sg::SchedulerInterfaceForComponents::addCallback() before waiting.

sg::SchedulerInterfaceForComponents::wait(sg::ThreadSignal)

Call sc_core::wait(sc_event) on the sc_event in sg::ThreadSignal
and handle all pending asynchronous events that are scheduled with
sg::SchedulerInterfaceForComponents::addCallback() before waiting.

sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime()

Return the current SystemC scheduler time in seconds as in
sc_core::sc_time_stamp().to_seconds().

sg::SchedulerInterfaceForComponents::addCallback(), removeCallback()
SystemC has no way to trigger simulation events from alien (non-SystemC) host threads in a
thread-safe way: buffer and handle these asynchronous events in all regularly re-occurring
scheduler events. Handling regular simulation wait() and timerCallback()calls is sufficient.

sg::SchedulerInterfaceForComponents::stopRequest(), stopAcknowledge()
Pause and resume the SystemC scheduler. This function is out of scope of SystemC/TLM
functionality, but in practice every debuggable SystemC implementation has ways to pause
and resume the scheduler. Do not confuse these functions with sc_core::sc_stop(), which

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

exits the SystemC simulation loop. They work with the sg::SchedulerRunnable instances and
the scx::scx_simcontrol_if interface.

sg::SchedulerInterfaceForComponents::createThread(), createThreadSignal(), createTimer()
Map these functions onto SystemC threads created with sc_spawn() and sc_events. You can
create and destroy sg::SchedulerThread, sg::ThreadSignal, and sg::Timer objects during
elaboration, and delete them at runtime, unlike their SystemC counterparts. This process
requires careful mapping. For example, consider what happens when you remove a waited-
for sc_event.

sg::ThreadSignal

Map onto sc_event, which is notifiable and waitable.

sg::SchedulerThread

Map onto a SystemC thread that was spawned with sc_core::sc_spawn(). The thread
function can call sg::SchedulerThread::threadProc().

sg::QuantumKeeper

Map onto the tlm_quantumkeeper utility class because the semantics of these classes are
similar. Arm deprecates this class.

sg::Timer

Map onto a SystemC thread that, after the timer is set(), issues calls to the call-backs in the
intervals (according to the set() interval).

5.5.3 sg::SchedulerInterfaceForComponents class

The modeling components use this interface class, which gives access to all other parts of the
Scheduler API, directly or indirectly. The scheduler must implement this class.

// Main scheduler interface class
class sg::SchedulerInterfaceForComponents
{
public:
 static eslapi::if_name_t IFNAME() { return
 "sg.SchedulerInterfaceForComponents"; }
 static eslapi::if_rev_t IFREVISION() { return 1; }
 virtual eslapi::CAInterface * ObtainInterface(eslapi::if_name_t,
 eslapi::if_rev_t, eslapi::if_rev_t *) = 0;
 virtual sg::Timer * createTimer(const char *, sg::TimerCallback *) = 0;
 virtual sg::SchedulerThread * createThread(const char *, sg::SchedulerRunnable
 *) = 0;
 virtual sg::SchedulerThread * currentThread();
 virtual sg::ThreadSignal * createThreadSignal(const char *) = 0;
 virtual void wait(sg::ticks_t);
 virtual void wait(sg::ThreadSignal *) = 0;
 virtual void setGlobalQuantum(sg::ticks_t);
 virtual sg::ticks_t getGlobalQuantum(sg::Tag<sg::ticks_t> *);
 virtual double getGlobalQuantum();
 virtual void setMinSyncLatency(sg::ticks_t);
 virtual sg::ticks_t getMinSyncLatency(sg::Tag<sg::ticks_t> *);
 virtual double getMinSyncLatency();
 virtual void addSynchronisationPoint(sg::ticks_t);
 virtual sg::ticks_t getNextSyncPoint(sg::Tag<sg::ticks_t> *);
 virtual double getNextSyncPoint();
 virtual void getNextSyncRange(sg::ticks_t &, sg::ticks_t &);
 virtual void getNextSyncRange(double&, double&);
 virtual void addCallback(sg::SchedulerCallback *) = 0;

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

 virtual void removeCallback(sg::SchedulerCallback *) = 0;
 virtual sg::ticks_t getCurrentSimulatedTime(sg::Tag<sg::ticks_t> *);
 virtual double getCurrentSimulatedTime();
 virtual double getSimulatedTimeResolution();
 virtual void setSimulatedTimeResolution(double resolution);
 virtual void stopRequest() = 0;
 virtual void stopAcknowledge(sg::SchedulerRunnable *) = 0;
 };

Pass a null pointer to the extra Tag<> argument in getGlobalQuantum(),
getMinSyncLatency(), getNextSyncPoint(), and getCurrentSimulatedTime().

Arm deprecates these API functions:

virtual void wait(sg::ticks_t, sg::FrequencySource *)
virtual void setGlobalQuantum(sg::ticks_t, sg::FrequencySource *)
virtual void setMinSyncLatency(sg::ticks_t, sg::FrequencySource *)
virtual void addSynchronisationPoint(sg::ticks_t, sg::FrequencySource *)

Arm deprecates classes sg::FrequencySource and sg::FrequencyObserver. Modeling components
must not use these classes to directly communicate with the Scheduler API. Use the sg::Time class
instead.

Modeling components use this interface to create threads, asynchronous and timed events, system
synchronization points, and to request a simulation stop. Examples of components that access this
interface are:

• CT core models.

• Timer peripherals.

• Peripheral components with timing or that indicate system synchronization points.

• Peripheral components that can stop the simulation for certain conditions (external
breakpoints).

• GUI components.

Passive components that do not interact with the scheduler (and that do not need explicit
scheduling) usually do not access this interface.

Related information
Accessing SchedulerInterfaceForComponents from a modeling component on page 77

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.3.1 eslapi::CAInterface and eslapi::ObtainInterface

The CAInterface base class and the ObtainInterface() function make the interface discoverable
at runtime through a runtime mechanism. All interfaces in Fast Models that must be discoverable at
runtime derive from CAInterface.

The functions IFNAME(), IFREVISION(), and ObtainInterface() belong to the base class
eslapi::CAInterface. IFNAME() and IFREVISION() return static information (name and revision)
about the interface (not the interface implementation). An implementation of the interface cannot
re-implement these functions. To access this interface, code must pass these two values to the
ObtainInterface() function to acquire the SchedulerInterfaceForComponents.

Use ObtainInterface() to access the interfaces that the scheduler provides. As a
minimum requirement, the implementation of ObtainInterface() must provide the
SchedulerInterfaceForComponents interface itself and also the eslapi::CAInterface interface.
The easiest way to provide these interfaces to use the class eslapi::CAInterfaceRegistry and
register these two interfaces and forward all ObtainInterface() calls to this registry. See the
default implementation of the Scheduler API over SystemC for an example.

CAInterface and ObtainInterface() are not part of the scheduler functionality but
rather of the simulation infrastructure. The information here is what is necessary
to understand and implement ObtainInterface(). For more details on the
eslapi::CAInterface class, see the header file $PVLIB_HOME/include/fmruntime/
eslapi/CAInterface.h.

5.5.3.2 sg::SchedulerInterfaceForComponents::addCallback

This method schedules a callback in the simulation thread. AsyncSignal uses it.

virtual void addCallback(SchedulerCallback *callback)=0;

callback

Callback object to call. If callback is NULL, the call has no effect.

Any host thread can call this method. It is thread safe. It is always the simulation thread
(host thread which runs the simulation) that calls the callback function (callback-
>schedulerCallback()). The scheduler calls the callback function when it can respond to the
addCallback() function.

Multiple callbacks might be pending. The scheduler can call them in any order. Do not call
addCallback() or removeCallback() from a callback function.

Callbacks automatically vanish once called. Removing them deliberately is not necessary unless
they become invalid, for example on the destruction of the object implementing the callback
function.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Related information
sg::SchedulerInterfaceForComponents::removeCallback on page 85

5.5.3.3 sg::SchedulerInterfaceForComponents::addSynchronisationPoint

This method adds synchronization points.

virtual void addSynchronisationPoint(ticks_t ticks);

ticks

Simulated time for synchronization relative to the current simulated time, in ticks relative to
simulated time resolution.

Modeling components can call this function to hint to the scheduler when a potentially useful
system synchronization point will occur. The scheduler uses this information to determine the
quantum sizes of threads.

Calling this function again adds another synchronization point.

Synchronization points automatically vanish when reached.

5.5.3.4 sg::SchedulerInterfaceForComponents::createThread

CT core models and modeling components call this method to create threads. This method returns
an object implementing SchedulerThread. (Not NULL except when runnable is NULL.)

virtual SchedulerThread *createThread(const char *name, SchedulerRunnable
 *runnable)=0;

name

Instance name of the thread. Ideally, the hierarchical name of the component that owns the
thread is included in the name. If name is NULL, it receives the name '(anonymous thread)'. The
function makes a copy of name.

runnable

Object that implements the SchedulerRunnable interface. This object is the one that contains
the actual thread functionality. The returned thread uses this interface to communicate with
the thread implementation in the modeling component. If runnable is NULL, the call returns
NULL, which has no effect.

Having created the thread, start it with a call to SchedulerThread::start().

Destroying the returned object with the SchedulerThread destructor might not kill the thread.

Related information
sg::SchedulerInterfaceForComponents::currentThread on page 83

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

sg::SchedulerRunnable class on page 88
sg::SchedulerThread class on page 92
sg::SchedulerThread::destructor on page 92
sg::SchedulerThread::start on page 93

5.5.3.5 sg::SchedulerInterfaceForComponents::createThreadSignal

CT core models use this method to create thread signals. A thread signal is a nonschedulable event
that threads wait for. Giving the signal schedules all waiting threads to run.

virtual ThreadSignal* createThreadSignal(const char* name)=0;

name

Instance name of the thread. Ideally, the hierarchical name of the component that owns
the thread is included in the name. If name is NULL, it receives the name '(anonymous thread
signal)'. The function makes a copy of name.

Destroying the returned object while threads are waiting for it leaves the threads unscheduled.

5.5.3.6 sg::SchedulerInterfaceForComponents::createTimer

Modeling components call this method to create objects of class Timer. They use timers to trigger
events in the future (one-shot or repeating events).

virtual Timer* createTimer(const char* name, TimerCallback* callback)=0;

5.5.3.7 sg::SchedulerInterfaceForComponents::currentThread

This method returns the currently running scheduler thread, which createThread() created, or null
if not in any threadProc() call.

virtual SchedulerThread* currentThread();

Related information
sg::SchedulerInterfaceForComponents::createThread on page 82

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.3.8 sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime

This method returns the simulated time in ticks relative to simulated
time resolution, since the creation of the scheduler. ClockDivider and
MasterClock(ClockSignalProtocol::currentTicks()) use it.

virtual ticks_t getCurrentSimulatedTime(Tag<ticks_t>*);

This clock accurately reflects the time on the last timer callback invocation or the last return from
SchedulerThread::wait(), whichever was last. The return values monotonically increase over (real
or simulated) time.

5.5.3.9 sg::SchedulerInterfaceForComponents::getGlobalQuantum

This method returns the global quantum in ticks relative to simulated time resolution.

virtual ticks_t getGlobalQuantum(Tag<ticks_t>*);

Related information
sg::SchedulerInterfaceForComponents::setGlobalQuantum on page 85

5.5.3.10 sg::SchedulerInterfaceForComponents::getMinSyncLatency

This method returns the minimum synchronization latency in ticks relative to simulated time
resolution.

virtual ticks_t getMinSyncLatency(Tag<ticks_t>*);

Related information
sg::SchedulerInterfaceForComponents::setMinSyncLatency on page 85

5.5.3.11 sg::SchedulerInterfaceForComponents::getNextSyncPoint

This method returns the next synchronization point relative to the current simulated time. The next
synchronization point is expressed in ticks relative to simulated time resolution.

virtual ticks_t getNextSyncPoint(Tag<ticks_t>*);

Modeling components can call this function for a hint about when a potentially useful system
synchronization point will occur. Core threads use this information to determine when to
synchronize.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.3.12 sg::SchedulerInterfaceForComponents::getSimulatedTimeResolution

This method returns the simulated time resolution in seconds.

virtual double getSimulatedTimeResolution();

5.5.3.13 sg::SchedulerInterfaceForComponents::removeCallback

This method removes all callbacks that are scheduled using addCallback() for this callback object.
AsyncSignal uses it.

virtual void removeCallback(SchedulerCallback *callback)=0;

callback

The callback object to remove. If callback is NULL, an unknown callback object, or a called
callback, then the call has no effect.

Any host thread can call this method. It is thread safe.

The scheduler will not call the specified callback after this function returns. It can, however, call it
while execution control is inside this function.

Callbacks automatically vanish after being called. Removing them deliberately is not necessary
unless they become invalid, for example on the destruction of the object implementing the callback
function.

Related information
sg::SchedulerInterfaceForComponents::addCallback on page 81

5.5.3.14 sg::SchedulerInterfaceForComponents::setGlobalQuantum

This method sets the global quantum.

virtual void setGlobalQuantum(ticks_t ticks);

ticks

Global quantum value, relative to simulated time resolution. The global quantum is the
maximum time that a thread can run ahead of simulation time.

All threads must synchronize on timing points that are multiples of the global quantum.

Related information
sg::SchedulerInterfaceForComponents::getGlobalQuantum on page 84

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.3.15 sg::SchedulerInterfaceForComponents::setMinSyncLatency

This method sets the minimum synchronization latency.

virtual void setMinSyncLatency(ticks_t ticks);

ticks

Minimum synchronization latency value, relative to simulated time resolution.

The minimum synchronization latency helps to ensure that sufficient simulated time has passed
between two synchronization points for synchronization to be efficient. A small latency increases
accuracy but decreases simulation speed. A large latency decreases accuracy but increases
simulation speed.

The scheduler uses this information to set the minimum synchronization latency of threads with
sg::SchedulerRunnable::setThreadProperty(), and to compute the next synchronization point as
returned by getNextSyncPoint().

Related information
sg::SchedulerInterfaceForComponents::getMinSyncLatency on page 84

5.5.3.16 sg::SchedulerInterfaceForComponents::setSimulatedTimeResolution

This method sets the simulated time resolution in seconds.

virtual void setSimulatedTimeResolution(double resolution);

resolution

Simulated time resolution in seconds.

Setting simulated time resolution after the start of the simulation or after setting timers is not
possible.

5.5.3.17 sg::SchedulerInterfaceForComponents::stopAcknowledge

This function blocks the simulation thread until being told to resume.

virtual void stopAcknowledge(SchedulerRunnable *runnable)=0;

runnable

Pointer to the runnable instance that called this function, or NULL when not called from a
runnable instance. If not NULL this function calls runnable->clearStopRequest() once it is
safe to do so (with respect to non-simulation host threads).

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

CT core models call this function from within the simulation thread in response to a call to
stopRequest() or spontaneously (for example, breakpoint hit, debugger stop). The call must always
be from the simulation thread. The scheduler must block inside this function. The function must
return when the simulation is to resume.

The scheduler usually implements a thread-safe mechanism in this function that allows blocking
and resuming of the simulation thread from another host thread (usually the debugger thread).

Calling this function from a nonsimulation host thread is wrong by design and is forbidden.

This function must clear the stop request that led to calling this function by calling runnable-
>clearStopRequest().

This function must have no effects other than blocking the simulation thread.

5.5.3.18 sg::SchedulerInterfaceForComponents::stopRequest

This function requests the simulation of the whole system to stop (pause).

virtual void stopRequest()=0;

You can call this function from any host thread, whether the simulation is running or not. The
function returns immediately, possibly before the simulation stops. This function will not block
the caller until the simulation stops. The simulation stops as soon as possible, depending on the
syncLevel of the threads in the system. The simulation calls the function stopAcknowledge(),
which blocks the simulation thread to pause the simulation. This function must not call
stopAcknowledge() directly. It must only set up the simulation to stop at the next sync point,
defined by the syncLevels in the system. Reset this state with stopAcknowledge(), which calls
SchedulerRunnable::clearStopRequest().

Debuggers and modeling components such as CT cores and peripherals use this function to stop
the simulation from within the simulation thread (for example for external breakpoints) and also
asynchronously from the debugger thread. Calling this function again (from any host thread) before
stopAcknowledge() has reset the stop request, using SchedulerRunnable::clearStopRequest() is
harmless. The simulation only stops once.

The simulation can stop (that is, call stopAcknowledge()) spontaneously without
a previous stopRequest(). This stop happens for example when a modeling
component hits a breakpoint. A stopRequest() is sufficient, but not necessary, to
stop the simulation.

The scheduler implementation of this function is to forward this stopRequest() to the running
runnable object, but only for stopRequest() calls from the simulation thread. When the
runnable object accepts the stopRequest() (SchedulerRunnable::stopRequest() returns
true), the scheduler need do nothing more because the runnable object will respond
with a stopAcknowledge() call. If the runnable object did not accept the stopRequest()

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

(SchedulerRunnable::stopRequest() returns false) or if this function call is outside of the
context of a runnable object (for example, from a call-back function) or from a non-simulation
host thread, then the scheduler is responsible for handling the stopRequest() itself by calling
stopAcknowledge() as soon as possible.

The stop handling mechanism should not change the scheduling order or model behavior (non-
intrusive debugging).

Related information
sg::SchedulerRunnable::stopRequest on page 91

5.5.3.19 sg::SchedulerInterfaceForComponents::wait(ThreadSignal)

This method waits on a thread signal.

virtual void wait(ThreadSignal* threadSignal)=0;

threadSignal

Thread signal object to wait for. A call with threadSignal of NULL is valid, but has no effect.

wait() blocks the current thread until it receives ThreadSignal::notify(). This function returns
when the calling thread can continue to run.

Only call this method from within a SchedulerRunnable::threadProc() context. Calling this
method from outside of a threadProc() context is valid, but has no effect.

5.5.3.20 sg::SchedulerInterfaceForComponents::wait(ticks_t)

This method blocks the running thread and runs other threads for a specified time.

virtual void wait(ticks_t ticks);

ticks

Time to wait for, in timebase units. ticks can be 0.

Only call this method from within a SchedulerRunnable::threadProc() context. Calls from outside
of a threadProc() context are valid, but have no effect.

This method blocks a thread for a time while the other threads run. It returns when the calling
thread is to continue, at the co-routine switching point. Typically, a thread calls wait(ticks) in its
loop when it completes ticks ticks of work. ticks is a “quantum”.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.4 sg::SchedulerRunnable class

This class is a thread interface on the runnable side. The modeling components create and
implement SchedulerRunnable objects and pass a pointer to a SchedulerRunnable interface to
SchedulerInterfaceForComponents::createThread(). The scheduler uses this interface to run the
thread.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 82

5.5.4.1 sg::SchedulerRunnable::breakQuantum

This function breaks the quantum. Arm deprecates this function.

5.5.4.2 sg::SchedulerRunnable::clearStopRequest

This function clears stop request flags.

void clearStopRequest();

Only SchedulerInterfaceForComponents::stopAcknowledge() calls this function, so calls are
always from the simulation thread.

Related information
sg::SchedulerRunnable::stopRequest on page 91

5.5.4.3 sg::SchedulerRunnable::getName

This function returns the name of the instance that owns the object.

const char *getName() const;

By convention, this is the name that createThread() received. SchedulerRunnable inherits this
function from sg::SchedulerObject.

5.5.4.4 sg::SchedulerRunnable::setThreadProperty,
sg::SchedulerRunnable::getThreadProperty

These functions set and get thread properties.

bool setThreadProperty(ThreadProperty property, uint64_t value);
bool getThreadProperty(ThreadProperty property, uint64_t &valueOut);

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Scheduler-configures-runnable properties
TP_BREAK_QUANTUM

Arm deprecates this property.
SchedulerInterfaceForComponents::getNextSyncPoint() gives the next quantum size.

TP_DEFAULT_QUANTUM_SIZE

Arm deprecates this property. Use SchedulerInterfaceForComponents::set/
getGlobalQuantum().

TP_COMPILER_LATENCY

set

Compiler latency, the maximum interval in which generated straight-line code
checks for signals and the end of the quantum.

get

Compiler latency.

default

1024 instructions.

TP_MIN_SYNC_LATENCY

set

Synchronization latency, the minimum interval in which generated straight-line
code inserts synchronization points.

get

Synchronization latency.

default

64 instructions.

TP_MIN_SYNC_LEVEL

set

syncLevel to at least N (0-3).

get

Minimum syncLevel.

default

min_sync_level CADI parameter and the syncLevel* registers also determine
the syncLevel. If nothing else is set, the default is 0 (SL_OFF).

TP_LOCAL_TIME

set

Local time of temporally decoupled thread.

get

Current local time.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

TP_LOCAL_QUANTUM

set

Local quantum of temporally decoupled thread.

get

Current local quantum.

The temporally decoupled thread usually retrieves the local quantum by
calling SchedulerInterfaceForComponents::getNextSyncPoint().

Runnable-configures-scheduler properties
TP_STACK_SIZE

set

Return false and ignore the value. Not for a scheduler to call.

get

Intended stack size for the thread in bytes. If this field returns false or a low
value, this field uses the default stack size that the scheduler determines. Not
all schedulers use this field. If a scheduler supports setting the stack size, it
requests this field from SchedulerInterfaceForComponents::createThread() or
SchedulerThread::start(). Is to return a constant value.

default

2MB.

Schedulers need not use all fields, and runnable objects need not provide all fields. If a runnable
object does not support a property or value, it must return false.

Related information
sg::SchedulerRunnable::breakQuantum on page 89

5.5.4.5 sg::SchedulerRunnable::stopRequest

This function requests the simulation of the whole system to stop (pause) as soon as possible by
setting a request flag. This might be to inspect a runnable, for example to pause at an instruction
boundary to inspect a processor component with a debugger.

bool stopRequest();

You can call this function from any host thread, whether the simulation is running
or not. The function returns immediately, before the simulation stops. This function
will not block the caller until the simulation stops. The simulation stops as soon as
possible, depending on the syncLevel of the runnable.The simulation calls the function
SchedulerInterfaceForComponents::stopAcknowledge(), which blocks the simulation thread to

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

pause the simulation. The function must not call stopAcknowledge() directly but only set up a state
such that the simulation stops at the next sync point, defined by the syncLevel of this runnable.
Reset this state with stopAcknowledge(), which calls clearStopRequest().

Modeling components use this function to stop the simulation from within the simulation thread
(for example for external breakpoints) and also asynchronously from from the debugger thread.
Calling this function again (from any host thread) before stopAcknowledge() has reset the stop
request using clearStopRequest() is harmless. The simulation only stops once.

Returns true when the runnable accepts the stop request and will stop later. Returns false when
the runnable does not accept the stop request. In this case, the scheduler must stop the simulation
when the runnable returns control to the scheduler (for example, by use of wait()).

Related information
sg::SchedulerRunnable::clearStopRequest on page 89

5.5.4.6 sg::SchedulerRunnable::threadProc

This is the main thread function, the thread entry point.

void threadProc();

When threadProc() returns, the thread no longer runs and this SchedulerThread instance will not
call threadProc() again. The thread usually does not return from this function while the thread is
running.

threadProc() is to call SchedulerInterfaceForComponents::wait(0, ...) after completing
initialization. threadProc() is to call SchedulerInterfaceForComponents::wait(t>=0, ...) after
completing t ticks worth of work.

Do not create/destroy any other threads or scheduler objects within the context of this function.

5.5.5 sg::SchedulerThread class

This class is a thread interface on the thread instance/scheduler side. The
SchedulerInterfaceForComponents::createThread() function creates the SchedulerThread
objects. Modeling components use this interface to talk to the scheduler.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 82

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.5.1 sg::SchedulerThread::destructor

This method destroys SchedulerThread objects.

~SchedulerThread();

This destructor kills threads if the underlying scheduler implementation supports it. Killing threads
without their cooperation is unclean because it might leak resources. To end a thread cleanly, signal
the thread to return from its threadProc() function, for example by using an exception that is
caught in threadProc(). Destroying this object before calling start() must not start the thread.
Destroying this object after calling start() might kill the thread immediately or leave it running
until it returns from its threadProc().

SchedulerThread inherits this method from sg::SchedulerObject.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 82

5.5.5.2 sg::SchedulerThread::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createThread() received.

SchedulerThread inherits this method from sg::SchedulerObject.

5.5.5.3 sg::SchedulerThread::setFrequency

This method sets the frequency source to be the parent clock for the thread. Arm deprecates this
function.

5.5.5.4 sg::SchedulerThread::start

This method starts the thread.

void start();

This method calls the threadProc() function immediately, which must call wait(0, ...) after
initialization in order for start() to return. start() only runs the threadProc() of the associated
thread and no other threads. Calling start() on a running thread has no effect. Calling start() on
a terminated thread (threadProc() returned) has no effect.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

The modeling component counterpart of the sg::SchedulerThread class is
sg::SchedulerRunnable. Runnable objects must call sg::QuantumKeeper::sync()
regularly to pass execution control on to other threads.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 82

5.5.6 sg::ThreadSignal class

This section describes the ThreadSignal class. It represents a nonschedulable event on which
threads can wait. When the event is signaled, all waiting threads can run.

5.5.6.1 sg::ThreadSignal::destructor

This method destroys ThreadSignal objects, thread signals.

~ThreadSignal();

Destroying these objects while threads are waiting for them leaves the threads unscheduled.

5.5.6.2 sg::ThreadSignal::notify

This method notifies the system of the event, waking up any waiting threads.

void notify();

SchedulerRunnable::threadProc() can call this method, but calls can come from outside of
threadProc(). Calling this method when no thread is waiting for the signal is valid, but has no
effect.

5.5.6.3 sg::ThreadSignal::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createThreadSignal() received.

ThreadSignal inherits this method from sg::SchedulerObject.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.7 sg::Timer class

This section describes the Timer interface class. The
SchedulerInterfaceForComponents::createTimer() method creates Timer objects.

5.5.7.1 sg::Timer::cancel

This method unsets the timer so that it does not fire.

void cancel();

If the timer is not set, this method has no effect.

5.5.7.2 sg::Timer::destructor

This method destroys Timer objects.

~Timer();

The timer must not call TimerCallback::timerCallback() after the destruction of this object.

5.5.7.3 sg::Timer::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createTimer() received.

Timer inherits this method from sg::SchedulerObject.

5.5.7.4 sg::Timer::isSet

This method returns true if the timer is set and queued for call-back, otherwise false.

bool isSet();

This method has no side effects.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.5.7.5 sg::Timer::remaining

This method requests the remaining number of ticks relative to simulated time resolution until a
timer makes a signal.

ticks_t remaining();

This method returns 0 if there are no ticks remaining or if the timer is not set.

This method has no side effects.

5.5.7.6 sg::Timer::set

This method sets a timer to make a signal.

bool set(ticks_t ticks);

ticks

the number of ticks after which the timer is to make a signal.

The signal that this method makes is a call to the user call-back function. If the return value t is 0,
the timer does not repeat, otherwise it repeats after t ticks. The latest set() overrides the previous
one.

This method returns false if ticks is too big to schedule the timer.

5.5.7.7 sg::Timer::setFrequency

This method sets the frequency source clock for the timer. Arm deprecates
this function. Simulated time is relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

5.5.8 sg::TimerCallback class

This section describes the TimerCallback base class. This interface does not allow object
destruction.

5.5.8.1 sg::TimerCallback::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

Conventionally, this is the name that createTimer() received.

TimerCallback inherits this method from sg::SchedulerObject.

5.5.8.2 sg::TimerCallback::timerCallback

The createTimer() method receives a timerCallback instance. This timerCallback() method
is called whenever the timer expires. This method returns a value t. If t is 0, the timer does not
repeat, otherwise it is to call timerCallback() again after t ticks.

ticks_t timerCallback();

5.5.9 sg::FrequencySource class

FrequencySource objects provide clock frequencies, and notify frequency
observers of frequency changes. This interface does not allow object destruction.
Arm deprecates this class. Simulated time is relative to global time resolution.
See SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

5.5.10 sg::FrequencyObserver class

FrequencySource instances notify FrequencyObserver instances of FrequencySource
instance changes. This interface does not allow object destruction. Arm
deprecates this class. Simulated time is relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

5.5.11 sg::SchedulerObject class

This section describes the SchedulerObject class. It is the base class for scheduler objects and
interfaces. This interface does not allow object destruction.

5.5.11.1 sg::SchedulerObject::getName

This method returns the name of the instance that implements the object or interface. The
intended use is debugging.

const char *getName() const;

Although Arm does not guarantee this name to be unique or hierarchical, Arm recommends
including or using the hierarchical component name. The caller must not free/delete the returned
string. This object owns the string. The pointer is valid as long as the object implementing this

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

interface exists. If the caller cannot track the lifetime of this object and wants to remember the
name, it must copy it.

5.5.12 sg::scx_create_default_scheduler_mapping

This function returns a pointer to a new instance of the default implementation of the scheduler
mapping provided with Fast Models.

sg::SchedulerInterfaceForComponents
 *scx_create_default_scheduler_mapping(scx_simcontrol_if *simcontrol);

simcontrol

a pointer to an existing simulation controller. If this is NULL, this function returns NULL.

5.5.13 sg::scx_get_curr_scheduler_mapping

This function returns a pointer to the scheduler mapping interface.

sg::SchedulerInterfaceForComponents *scx_get_curr_scheduler_mapping();

5.6 SystemC Export limitations
This section describes the limitations of the current release of SystemC Export.

The Exported Virtual Subsystems (EVSs) are deliberately not time or cycle accurate, although they
are accurate on a functional level.

5.6.1 SystemC Export limitation on reentrancy

Processor models, and the CCI400, MMU_400, and MMU_500 component models support
reentrancy.

Reentrancy occurs when a component in an EVS issues a blocking transaction to a SystemC
peripheral that in turn generates another blocking transaction back into the same component.
This generation might come directly or indirectly from a call to wait() or by another SystemC
peripheral.

Virtual platforms including EVSs that comprise a processor model do support such reentrancy.

For models that do not support reentrancy, the virtual platform might show unpredictable behavior
because of racing within the EVS component.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export with Multiple Instantiation

5.6.2 SystemC Export limitation on calling wait()

Arm only supports calling wait() on bus transactions.

When a SystemC peripheral must really issue a wait() in reaction to a signal that is changing,
buffer the signal in the bridge between the EVS and SystemC. On the next activation of the bridge,
set the signal with the thread context of the EVS.

The EVS runs in a temporally decoupled mode using a time quantum. Transaction
Level Modeling (TLM) 2.0 targets using the Loosely-Timed coding style do not call
wait().

5.6.3 SystemC Export limitation on code translation support for external
memory

EVS core components use code translation for speed. Not enabling Direct Memory Interface (DMI)
reduces performance.

The core components in EVSs use code translation for high simulation speed. Therefore they fetch
data from external memory to translate it into host machine code. Changing the memory contents
outside of the scope of the core makes the data inconsistent.

Enable DMI accesses to instruction memory to avoid dramatic performance reductions. Otherwise,
EVSs:

• Model all accesses.

• Perform multiple spurious transactions.

• Translate code per instruction not per block of instructions.

5.6.4 SystemC Export limitation on Fast Models versions for MI platforms

SystemC Export with Multiple Instantiation (MI) supports virtual platforms with multiple EVSs made
with the same version of Fast Models. Integrating EVSs from different versions of Fast Models
might result in unpredictable behavior.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6. Timing annotation
This chapter describes timing annotation, which enables you to perform high-level performance
estimation on Fast Models.

Fast Models are Programmers View (PV) models that are targeted at software development. They
sacrifice timing accuracy to achieve fast simulation execution speeds. By default, each instruction
takes a single simulator clock cycle, with no delays for memory accesses.

Timing annotation enables you to perform more accurate performance estimation on SystemC-
based models with minimal simulation performance impact. You can use it to show performance
trends and to identify test cases for further analysis on approximately timed or cycle-accurate
models.

Timing annotation is always enabled for Fast Models platforms.

You can configure the following aspects of timing annotation:

• The time that processors take to execute instructions. This can be modeled in either of the
following ways:

◦ As an average Cycles Per Instruction (CPI) value, using the cpi_mul and cpi_div model
parameters.

◦ By assigning CPI values to different instruction classes, using CPI files.

• Branch predictor type and misprediction latency. For details, see BranchPrediction in the Fast
Models Reference Guide

• Instruction and data prefetching.

• Cache and TLB latency.

• Latency caused by pipeline stalls. For details, see PipelineModel in the Fast Models Reference
Guide.

6.1 CPI files
Cycles Per Instruction (CPI) files define classes of instructions and assign CPI values to them. CPI
files give a more accurate estimate of the number of cycles required to run a program on the
model.

Arm does not provide CPI files, only some pre-defined CPI instruction classes which can help you
to create your own CPI files. To create a CPI file for a specific CPU:

1. Create a set of mappings between the instruction encodings for the instruction set and a set
of instruction classes or groups of classes. Arm provides pre-defined instruction classes and
groups for the A32, T32, and A64 instruction sets in $PVLIB_HOME/etc/CPIPredefines/. You
can include these pre-defined instruction classes in your CPI files, or you can define your own
classes.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 144

https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/BranchPrediction/
https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/PipelineModel/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

2. Create a file to map these instruction classes to CPI values. This is the CPI file. Calculate
the CPI values to use based on observations from a cycle accurate model, or see the Arm®

Software Optimization Guides, which are available on Arm Developer.

• An alternative to using CPI files is to use the cpi_mul and cpi_div parameters
on a core in the model. These parameters are integers that represent a CPI
multiplication or division factor for all instructions. They can also be used
together to represent non-integer values. For example, use cpi_mul = 5, cpi_div
= 4 for a CPI of 1.25.

• To calculate values for cpi_mul and cpi_div, experiment with running a
workload on a cycle accurate simulation to choose values that give the most
accurate results.

• If a CPI file is present, it overrides the cpi_mul and cpi_div parameters.

• If you do not set these parameters and do not specify a CPI file, a CPI value of
1.0 is used for all instructions.

A CPI file can support multiple instruction sets, including A64, A32, and T32. It can also support
multiple processor types, including pre-defined and user-defined types.

Specify a CPI file when launching a platform model by using the --cpi-file command-line
parameter, for example:

./isim_system … --cpi-file CPI_file.txt --stat

The --stat parameter displays timing statistics on simulation exit.

Alternatively, specify a CPI file in your SystemC code by calling the function 5.4.13
scx::scx_set_cpi_file on page 49.

CPIValidator is a command-line tool provided in $MAXCORE_HOME/bin/ to help you create valid
CPI files. Use the --help switch to list the available options. For example, the following command
parses and builds the evaluation tree for CPI_file.txt, and prints it in plain text to a file called
CPIEvaluationTree.txt:

$MAXCORE_HOME/bin/CPIValidator --input-file CPI_file.txt --output-file CPIEvaluationTree.txt

Related information
CPI file syntax on page 101
BNF specification for CPI files on page 107

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 144

https://developer.arm.com/documentation/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.2 CPI file syntax
CPI files are plain text files that contain a series of statements, one per line. Lines that begin with a
character are ignored.

In the following syntax definitions, square brackets [] enclose optional attributes. An ellipsis …
indicates attributes that can be repeated.

The valid statements in a CPI file are:

DefineCpi

Defines the CPI value to use for an instruction class or group. The syntax is:

DefineCpi class_or_group ISet=iset [CpuType=cputype] Cpi=cpi

where:

class_or_group

The name of an instruction class or group. This name can contain wildcards.

A decoded instruction is matched against all DefineCpi statements in the order they
appear in the CPI file from top to bottom. The first instruction class match is used and
all following statements are ignored.

ISet=iset

Specifies which instruction set this CPI value refers to. This parameter is one of A32,
A64, Thumb, or T2EE, or use the * character to specify all instruction sets.

CpuType=cputype

Specifies which Arm® processor type this CPI value refers to. This parameter can be a
user-defined type, or one of the following pre-defined types:

• ARM_Cortex-A12

• ARM_Cortex-A17

• ARM_Cortex-A15

• ARM_Cortex-A7

• ARM_Cortex-A5MP

• ARM_Cortex-M4

• ARM_Cortex-M7

• ARM_Cortex-A57

• ARM_Cortex-A72

• ARM_Cortex-A53

• ARM_Cortex-R7

• ARM_Cortex-R5

• ARM_Cortex-A9MP

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

• ARM_Cortex-A9UP

• ARM_Cortex-A8

• ARM_Cortex-R4

• ARM_Cortex-M3

• ARM_Cortex-M0+

• ARM_Cortex-M0

Use the * character to specify any processor type. Specifying no CpuType is equivalent
to specifying CpuType=*.

Cpi=cpi

The CPI value to assign to this instruction class or group.

For example:

DefineCpi Load_instructions ISet=A64 CpuType=ARM_Cortex-A53 Cpi=2.15

DefineClass

Defines an instruction class. The syntax is:

DefineClass class Mask=mask Value=value [ProhibitedMask=pmask

ProhibitedValue=pvalue …] ISet=iset [CpuType=cputype]

where:

class

The name of the instruction class to define. It must be unique in the CPI file. It can be
used in a subsequent DefineCpi statement.

Mask=mask

A bitmask to apply to an instruction encoding before comparing the result with the
Value attribute. This parameter identifies which bits in the encoding are relevant for
comparing with Value.

For example, the value 0000xxxx1xxx100x is represented as Mask=0xF08E
Value=0x0088.

Value=value

The binary value to compare with the instruction encodings. A match indicates
that the instruction belongs to this class, unless the encoding also matches the
ProhibitedValue.

ProhibitedMask=pmask

A bitmask to apply to an instruction encoding before comparing the result with the
ProhibitedValue attribute. It identifies which bits in the encoding are relevant for
comparing with ProhibitedValue.

ProhibitedValue=pvalue

The binary value to compare with the instruction encodings. A match indicates that the
instruction does not belong to this class.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

ISet=iset

Specifies which instruction set this class refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm® processor type this class refers to. See DefineCpi for the
possible values.

A DefineClass statement must include a single Mask and Value attribute
pair, but can include any number of ProhibitedMask and ProhibitedValue
attribute pairs.

For example:

DefineClass Media_instructions Mask=0x0E000010 Value=0x06000010
 ProhibitedMask=0xF0000000 ProhibitedValue=0xF0000000 ISet=A32

DefineGroup

Defines a group of instruction classes. The syntax is:

DefineGroup group Classes=class[,class,…] ISet=iset [CpuType=cputype]

[Mix=mix[,mix,…]]

where:

group

The name of the group to define. It must be unique in the CPI file. It can be used in a
subsequent DefineCpi statement.

Classes=class[,class,…]

A comma-separated list of instruction classes that belong to this group.

ISet=iset

Specifies which instruction set this group refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm® processor type this group refers to. See DefineCpi for the
possible values.

Mix=mix[,mix,…]

A comma-separated list of mixin names that cause additional instruction groups and
classes to be automatically defined.

For example:

DefineGroup Divide_instructions Classes=SDIV,UDIV CpuType=ARM_Cortex-A73
 ISet=A32

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

DefineMixIn

Defines a single mask/value pair and suffix that can optionally be used in DefineGroup
statements to automatically define new instruction groups and classes. Applying a mixin to
a group causes a new instruction group or class to be defined for every instruction group or
class that is included in the group, and also for the group itself. The names of these newly-
defined groups and classes is the original group or class name followed by an underscore
character, then the mixin suffix.

The syntax is:

DefineMixIn mix Mask=mask Value=value Suffix=suffix

where:

mix

The name of the mixin to define. It must be unique in the CPI file. It can be used in
subsequent DefineGroup statements.

Mask=mask

A bitmask to apply to an instruction encoding before comparing the result with the
Value attribute.

Value=value

The binary value to compare with the instruction encodings. A match indicates that the
instruction belongs to this group or class.

Suffix=suffix

After applying a mixin to a group, this suffix is appended to the names of the
automatically-defined groups and classes.

In the following example, the DefineGroup statement defines my_group, but also automatically
defines my_group_AL and my_class_AL:

DefineMixIn my_mixin Mask=0xF0000000 Value=0xE0000000 Suffix=AL
…
DefineClass my_class Mask=0x0FF00000 Value=0x03000000 ISet=A32
DefineGroup my_group Classes=my_class ISet=A32 Mix=my_mixin

DefineCpuType

Defines a processor type. The syntax is:

DefineCpuType cputype ISets=iset[,iset,…]

where:

cputype

The name of the processor type to define. It must be unique in the CPI file. It can be
used in subsequent DefineCpi, DefineClass, DefineGroup, and MapCpu statements.

ISets=iset[,iset,…]

A comma-separated list of instruction sets that this processor type supports. See
DefineCpi for the possible values.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

For example:

DefineCpuType ARM_Cortex-A73 ISets=*

MapCpu

Maps a CPU instance by name to a CPU type. The syntax is:

MapCpu cpuinstance ToCpuType=cputype

where:

cpuinstance

The name of the CPU instance to map to a processor type. It can contain wildcards.

ToCpuType=cputype

The processor type to map the CPU instance onto. See the list of CpuTypes in
DefineCpi for the possible values.

For example:

MapCpu FVP_Base_AEMvA_AEMvA.cluster0.cpu0 ToCpuType ARM_Cortex-A73

Defaults

Defines the default CPI value to be used for instructions that do not match any class or
group. This statement is optional and can occur more than once in the CPI file. The syntax is:

Defaults ISet=iset [CpuType=cputype] Cpi=cpi

where:

ISet=iset

Specifies which instruction set this value refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm® processor type this value refers to. See DefineCpi for the
possible values.

Cpi=cpi

The default CPI value for the specified instruction set and processor type.

For example:

Defaults ISet=* CpuType=* Cpi=0.82

Include

Includes a supplementary CPI file at this point in the file. This is equivalent to the #include
preprocessor directive in C. The evaluation of the FilePath attribute is to first treat it as an
absolute path, then as a relative path, and finally as relative to the PVLIB_HOME environment
variable. The syntax is:

Include FilePath=path

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

For example:

Include FilePath=etc/CPIPredefines/ARMv8A_A32_Mnemonics.txt

6.3 BNF specification for CPI files
CPI files have the following BNF specification:

 <CPIFile> ::= <Statements>
 <Statements> ::= <Statement> <Statements>
 | <Statement>
 <Statement> ::= <Comment>
 | <DefineCpiStatement>
 | <DefaultsStatement>
 | <DefineCpuTypeStatement>
 | <MapCpuStatement>
 | <DefineClassStatement>
 | <DefineGroupStatement>
 | <IncludeStatement>
 | <DefineMixInStatement>
 <DefineCpiStatement ::= "DefineCpi" <InstructionClassOrGroup>
 <DefineCpiAttributes> <EOL>
 <DefaultsStatement> ::= "Defaults" <DefineCpiAttributes> <EOL>
 <DefineCpuTypeStatement ::= "DefineCpuType" <UserCpuType>
 <DefineCpuTypeAttributes> <EOL>
 <MapCpuStatement ::= "MapCpu" <CpuInstance> <MapCpuAttributes> <EOL>
 <DefineClassStatement ::= "DefineClass" <InstructionClass>
 <DefineClassAttributes> <EOL>
 <DefineGroupStatement ::= "DefineGroup" <InstructionGroup>
 <DefineGroupAttributes> <EOL>
 <IncludeStatement> ::= "Include" <IncludeAttributes> <EOL>
 <DefineMixInStatement> ::= "DefineMixIn" <MixInType> <DefineMixInAttributes>
 <EOL>
 <DefineCpiAttributes> ::= <DefineCpiAttribute> <DefineCpiAttributes>
 | <DefineCpiAttribute>
 <DefineCpiAttribute> ::= <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 | <CpiAttribute> { Mandatory }
 <ISetAttribute> ::= "ISet" "=" <ISetOrStar>
 <ISetOrStar> ::= <ISet> | "*"
 <ISet> ::= "A32" | "A64" | "Thumb" | "T2EE"
 <CpuTypeAttribute> ::= "CpuType" "=" <CpuType>
 <CpuType> ::= "ARM_Cortex-A12" | "ARM_Cortex-A17"
 | "ARM_Cortex-A15" | "ARM_Cortex-A7"
 | "ARM_Cortex-A5MP" | "ARM_Cortex-M4"
 | "ARM_Cortex-M7" | "ARM_Cortex-A57"
 | "ARM_Cortex-A72" | "ARM_Cortex-A53"
 | "ARM_Cortex-R7" | "ARM_CortexR5"
 | "ARM_Cortex-A9MP" | "ARM_Cortex-A9UP"
 | "ARM_Cortex-A8" | "ARM_Cortex-R4"
 | "ARM_Cortex-M3" | "ARM_Cortex-M0+"
 | "ARM_Cortex-M0" | <UserCpuType> | "*"
 <CpiAttribute> ::= "Cpi" "=" <Cpi>
 <DefineCpuTypeAttributes> ::= <ISetsAttribute>
 <ISetsAttribute> ::= "ISets" "=" <ISetsOrStar>
 <ISetsOrStar> ::= <ISets> | "*"
 <ISets> ::= <ISet> "," <ISets> | <ISet>
 <MapCpuAttributes> ::= <ToCpuTypeAttribute>
 <ToCpuTypeAttribute> ::= "ToCpuType" "=" <CpuType>
 <DefineClassAttributes> ::= <DefineClassAttribute> <DefineClassAttributes>
 | <DefineClassAttribute>
 <DefineClassAttribute> ::= <MaskAttribute> { Mandatory }
 | <ValueAttribute> { Mandatory }

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

 | <ProhibitedPairsAttribute> { Optional }
 | <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 <MaskAttribute> ::= "Mask" "=" <Mask>
 <ValueAttribute> ::= "Value" "=" <Value>
<ProhibitedPairsAttribute> ::= <ProhibitedPairAttribute> <ProhibitedPairsAttribute>
 | <ProhibitedPairAttribute>
 <ProhibitedPairAttribute> ::= <ProhibitedMaskAttribute> <ProhibitedValueAttribute>
 <ProhibitedMaskAttribute> ::= "ProhibitedMask" "=" <Mask>
<ProhibitedValueAttribute> ::= "ProhibitedValue" "=" <Value>
 <DefineGroupAttributes> ::= <DefineGroupAttribute> <DefineGroupAttributes>
 | <DefineGroupAttribute>
 <DefineGroupAttribute> ::= <ClassesAttribute> { Mandatory }
 | <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 | <MixAttribute> { Optional }
 <ClassesAttribute> ::= "Classes" "=" <InstructionClassOrGroups>
 <MixAttribute> ::= "Mix" "=" <MixInTypes>
<InstructionClassOrGroups> ::= <InstructionClassOrGroup> ","
 <InstructionClassOrGroups>
 <instructionClasses> ::= <InstructionClass>
 <InstructionClassOrGroup> ::= <InstructionClass>
 | <InstructionGroup>
 <MixInTypes> ::= <MixInType> "," <MixInTypes>
 <MixInType> ::= <Symbol>
 <IncludeAttributes> ::= <FilePathAttribute>
 <FilePathAttribute> ::= "FilePath" "=" <FilePath>
 <DefineMixInAttributes> ::= <DefineMixInAttribute> <DefineClassAttributes>
 <DefineMixInAttribute> ::= <MaskAttribute>
 | <ValueAttribute>
 | <SuffixAttribute>
 <SuffixAttribute> ::= "Suffix" "=" <String>
 <FilePath> ::= <String>
 <InstructionClass> ::= <Symbol>
 <InstructionGroup> ::= <Symbol>
 <UserCpuType> ::= <Symbol>
 <CpuInstance> ::= <QuotedString> { Supports use of wild cards }
 <Cpi> ::= <Double>
 <Mask> ::= <UnsignedInteger>
 <Value> ::= <UnsignedInteger>

6.4 Instruction and data prefetching
Arm® Cortex®‑A series processors implement prefetching instructions and data into caches to
improve the cache hit rate and improve performance. Fast Models supports prefetching instructions
and data independently, by using model parameters.

6.4.1 Configuring instruction prefetching

Configure instruction cache prefetching by using the following cluster-level parameters.

icache-prefetch_enabled

true to enable simulation of instruction cache prefetching, false otherwise. Defaults to
false.
The execution of a branch instruction causes the model to prefetch instructions from the
memory region starting at the branch target address into a number of sequential cache lines.
If true, the following extra parameters are available:

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

icache-prefetch_level

Specifies the zero-indexed cache level into which instructions are prefetched. Defaults to 0,
which means L1.

icache-nprefetch

Specifies the number of additional, sequential instruction cache lines to prefetch. Defaults to
1.

These parameters only have an effect when cache state modeling is enabled,
which is controlled by the model parameter icache-state_modelled or
cache_state_modelled.

Example
The following command line enables instruction cache prefetching and prints WAYPOINT trace events
to the console. A WAYPOINT is a point at which instruction execution by the processor might change
the program flow.

./FVP_Base_AEMvA …
-C cache_state_modelled=1 \
-C cluster0.icache-prefetch_enabled=1 \
--plugin $PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=WAYPOINT

Related information
Loading a plug-in

6.4.2 Configuring data prefetching

The purpose of data prefetch modeling is to make the contents of the data cache more closely
resemble those on a system with a hardware prefetcher. A default data prefetcher is supplied,
which is relatively configurable. It is not intended to match any specific processor.

To run the model with data prefetch modeling enabled, using the default data prefetcher with
default parameters, use the following parameters:

-C cache_state_modelled=true --plugin "<<internal><DataPrefetch>>" -C cluster0.dcache-
prefetch_enabled=1

When the model exits, it reports how many prefetches were issued and how many cache hits
on recently-prefetched data were detected. The performance impact is about 10% compared to
running with cache state modeling enabled.

By default, a data prefetch plug-in attaches to all processors and clusters in a system, and maintains
independent internal state for each processor. To change this, for example if you want a different

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 144

https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/Loading-a-plug-in/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

number of tracked streams on big and LITTLE cores, load the plug-in twice and pass a different
.cluster parameter to each instance, for example:

--plugin "DP_BIG=<<internal><DataPrefetch>>" --plugin "DP_LITTLE=<<internal><DataPrefetch>>" \
 -C DataPrefetch.DP_BIG.cluster=0 -C DataPrefetch.DP_LITTLE.cluster=1 \
 -C DataPrefetch.DP_BIG.lfb_entries=16 -C DataPrefetch.DP_LITTLE.lfb_entries=4

The names DP_BIG and DP_LITTLE are examples. They can be any names you choose.

The example prefetcher is a basic stride-detecting prefetcher, but relatively configurable using the
following parameters:

Table 6-1: Parameters for the example prefetcher

Parameter Description

history_length Length of history to maintain.

history_threshold Number of misses to allow in history before issuing a prefetch.

lfb_entries Number of access streams to track.

mbs_expire Number of non-hitting loads to allow before the prefetcher stops tracking a potential access stream.

pf_count Number of prefetch streams available.

pf_tracker_count Number of prefetches tracked.

pf_initial_number Initial number of prefetches to issue for a new stream.

prefetch_all_levels Prefetch to all cache levels rather than just the lowest level.

An access stream is created whenever a load is made to an address that is not within three cache
lines of a previously observed load. This might overwrite a previously created access stream. When
a consistent stride has been observed, that is, when addresses N, N+delta, N+2*delta are seen, a
prefetch stream is allocated with stride delta and a lifetime of pf_initial_number.

Prefetches are issued in a round-robin fashion from active prefetch streams (the lifetime goes down
by one each time a prefetch is issued) whenever there have been fewer than history_threshold
cache misses among the last history_length loads. The rationale is that if lots of cache hits are
occurring, there should be available bandwidth on the memory interface to be used by prefetching.

Issued prefetches are tracked in a circular list of size pf_tracker_count, and if the prefetcher sees
a load to an address in this circular list, it increments the lifetime of the prefetch stream that issued
the successful prefetch.

Prefetches are to physical addresses, and as a result, a prefetch stream expires when
it reaches the end of a 4KB region.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.5 Configuring cache and TLB latency
You can configure latency for different cache operations for Cortex®‑A processor models by setting
model parameters.

The following parameters are available:

• Read access latency for L1 D-cache, L1 I-cache, or L2 cache. For example dcache-
read_access_latency.

• Separate latencies for read hits and misses in L1 D-cache, L1 I-cache, or L2 cache. For example
dcache-hit_latency and dcache-miss_latency. The total latency for a read access is the sum
of the read access latency and the hit or miss latency.

• Write access latency for L1 D-cache or L2 cache. For example dcache-write_access_latency.

• Latency for cache maintenance operations for L1 D-cache, L1 I-cache, or L2 cache. For
example dcache-maintenance_latency.

• Latency for snoop accesses that perform a data transfer for L1 D-cache or L2 cache. For
example dcache-snoop_data_transfer_latency.

• Latency for snoop accesses that are issued by L2 cache. For example l2cache-
snoop_issue_latency.

• TLB and page table walk latencies. For example tlb_latency.

• These parameters only take effect when cache state modeling is enabled. This is
controlled using parameters, for example dcache-state_modelled and icache-
state_modelled.

• All of these latency values are measured in clock ticks.

• For reads and writes, latency can be specified per access, for example dcache-
read_access_latency, or per byte, for example dcache-read_latency. If both
parameters are set, the per-access value takes precedence over the per-byte
value.

6.6 Timing annotation tutorial
This tutorial shows how to use the Cycles Per Instruction (CPI) specification and branch prediction
modeling features with a Fast Models example platform model, and how to measure their impact
on code execution time. The commands shown are for Linux, although the process is the same on
Windows.

6.6.1 Setting up the environment

This tutorial runs some example applications on the EVS_Base_Cortex-A75 example virtual platform
to show different timing annotation features.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.1.1 Prerequisites

To use timing annotation, you require the following:

• A SystemC-integrated virtual platform, for instance an ISIM or an EVS platform.

• An application that enables caches.

• A way of calculating the execution of time of individual instructions.

• A way of determining the total execution time of the simulation.

• A way of calculating the average Cycles Per Instruction (CPI) value for the simulation.

6.6.1.2 Building the EVS_Base_Cortex-A75 example platform

The EVS_Base_Cortex-A75 platform includes a single EVS that is connected to SystemC
components that model a timer, and an application memory component that supports individual
configuration of read and write latencies.

About this task
The platform is not provided pre-built in the Fast Models Portfolio installation, so you must first
build it, for example:

cd $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A75/
make rel_gcc93_64

6.6.1.3 Calculating the execution time of an instruction

The INST MTI trace source displays every instruction that is executed while running a program. It
also displays the current simulation time after an instruction has completed executing.

The number of ticks an instruction takes to execute is the difference between the times of two
consecutive instructions. The default is one tick (on the core) for each instruction. With the
default clock speed of 100MHz, this gives a default execution time for an instruction of 10000
picoseconds. Any changes to latency due to branch mispredictions, memory accesses, or CPI
specifications can be observed by comparison with this value.

This tutorial uses the INST trace source to measure the time it takes to execute an instruction. To
generate trace, it uses the GenericTrace plug-in. This plug-in allows you to output any number of
MTI trace sources to a text file.

Use the following extra parameters when launching the model to collect the INST trace source:

--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=/path/to/trace/file.txt

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

The trace that is produced for the first two instructions might look like this:

INST: PC=0x0000000080000000 OPCODE=0x58001241 SIZE=0x04 MODE=EL3h ISET=AArch64
PADDR=0x0000000080000000 NSDESC=0x00 PADDR2=0x0000000080000000 NSDESC2=0x00 NS=0x00
ITSTATE=0x00 INST_COUNT=0x0000000000000001 LOCAL_TIME=0x0000000000001388
CURRENT_TIME=0x0000000000001388 CORE_NUM=0x00 DISASS="LDR x1,{pc}+0x248 ;
0x80000248"

INST: PC=0x0000000080000004 OPCODE=0xd518c001 SIZE=0x04 MODE=EL3h ISET=AArch64
PADDR=0x0000000080000004 NSDESC=0x00 PADDR2=0x0000000080000004 NSDESC2=0x00 NS=0x00
ITSTATE=0x00 INST_COUNT=0x0000000000000002 LOCAL_TIME=0x0000000000003a98
CURRENT_TIME=0x0000000000003a98 CORE_NUM=0x00 DISASS="MSR VBAR_EL1,x1"

The CURRENT_TIME value for the first instruction is 0x1388, or 5000ps. This value shows that
the instruction took 0.5 ticks to execute. Timing annotation has halved the execution time of this
instruction.

The difference between the CURRENT_TIME values of the two instructions is 0x2710, or 10000
picoseconds. This value shows that the second instruction took one tick to execute.

Related information
MTI trace sources on page 123

6.6.1.4 Displaying the total execution time of the simulation

You can use MTI trace to calculate the execution time of individual instructions, but to determine
the overall simulation time, use the command-line option --stat instead.

This option causes the model to print performance statistics to the terminal on exiting. The
statistics include Simulated time, which is the total simulation time in seconds. For example:

--- Base statistics: --
Simulated time : 0.001206s
User time : 0.276000s
System time : 0.136000s
Wall time : 0.700834s
Performance index : 0.00
Base.cluster0.cpu0 : 0.42 MIPS (172289 Inst)

The MIPS value is based on the host system time, not the simulated time.

This tutorial uses the --stat option to compare the model's performance in different timing
annotation configurations.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.1.5 Calculating the average CPI value

Calculate the average CPI value for the simulation by using the instruction count and the simulated
time value, as displayed by the --stat option.

Use the following formula:

average_cpi = simulated_time_in_picoseconds / (10000 * instruction_count)

This example calculates an average CPI value of 0.69999:

average_cpi = (0.001206 * 10^12) / (10000 * 172289) = 0.69999

6.6.2 Modeling Cycles Per Instruction (CPI)

This section demonstrates how to precisely model the simulated time per instruction by using the
CPI timing annotation feature.

6.6.2.1 CPI parameters

You can specify a single CPI value for all instructions that execute within a cluster. This value is
referred to as a fixed CPI value. Alternatively, use a custom CPI file to define individual CPI values
for specific instructions. Use a fixed CPI value instead of a CPI file when precise per-instruction
modeling is not required.

When running a simulation with either of these options, you can calculate the average CPI value
using the formula that is shown in 6.6.1.5 Calculating the average CPI value on page 113.

You can combine the CPI specification with other timing annotation features.
Therefore, the average CPI value that you observe can be different from the fixed
CPI value that you specify.

6.6.2.2 Specifying a fixed CPI value

Specify a fixed CPI value by using the per-cluster model parameters cpi_mul and cpi_div. If you do
not set these parameters and do not specify a CPI file, a CPI value of 1.0 is used for all instructions.

These parameters are integers that represent a CPI multiplication or division factor that is applied
to all instructions during execution within that cluster.

They can be used together to represent non-integer values. For example, use cpi_mul = 5, cpi_div
= 4 for a CPI of 1.25.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

The fixed CPI value is used in a way that core_clock_period * fixed_cpi_value is rounded to the
nearest picosecond.

Related information
Running the example with a fixed CPI value on page 120

6.6.2.3 Example CPI file

CPI files can be large because they have to cover multiple encodings for many of the instructions
that are included. Various predefined encodings are provided under $PVLIB_HOME/etc/
CPIPredefines/ that can help you to create CPI files. This tutorial does not use predefined
encodings.

The following example defines CPI values for the instructions ADRP, ADR, ADD, CMP, ORR, LDP, STR,
branches, exception generating instructions, and system instructions. It defines a default CPI value
of 0.75 for all other instructions. It applies to the A64 instruction set, and does not restrict the
values to a specific core.

These CPI values are for demonstration purposes only. They are arbitrary and are
not representative of any Arm® processor.

Instruction classes

PC-relative addressing
DefineClass ADRP Mask=0x9F000000 Value=0x90000000 ISet=A64
DefineClass ADR Mask=0x9F000000 Value=0x10000000 ISet=A64
Arithmetic
DefineClass ADD_ext_reg Mask=0x7FE00000 Value=0x0B200000 ISet=A64
DefineClass ADD_sft_reg Mask=0x7F200000 Value=0x0B000000 ISet=A64
DefineClass ADD_imm Mask=0x7F000000 Value=0x11000000 ISet=A64
DefineClass CMP_ext_reg Mask=0x7FE0001F Value=0x6B20001F ISet=A64
DefineClass CMP_sft_reg Mask=0x7F20001F Value=0x6B00001F ISet=A64
DefineClass CMP_imm Mask=0x7F00001F Value=0x7100001F ISet=A64
Logical
DefineClass ORR_sft_reg Mask=0x7F200000 Value=0x2A000000 ISet=A64
DefineClass ORR_imm Mask=0x7F800000 Value=0x32000000 ISet=A64
Branches, exception generating and system instructions
DefineClass B_gen_except_sys Mask=0x1C000000 Value=0x14000000 ISet=A64
Load register pair
DefineClass LDP_post_idx Mask=0x7FC00000 Value=0x28C00000 ISet=A64
DefineClass LDP_pre_idx Mask=0x7FC00000 Value=0x29C00000 ISet=A64
DefineClass LDP_sgn_off Mask=0x7FC00000 Value=0x29400000 ISet=A64
Store register
DefineClass STR_reg Mask=0xBFE00C00 Value=0xB8200000 ISet=A64
DefineClass STR_imm_post_idx Mask=0xBFE00C00 Value=0xB8000400 ISet=A64
DefineClass STR_imm_pre_idx Mask=0xBFE00C00 Value=0xB8000C00 ISet=A64
DefineClass STR_imm_usg_off Mask=0xBFC00000 Value=0xB9000000 ISet=A64

Instruction groups

DefineGroup PC_rel_addr_instr Classes=ADRP,ADR ISet=A64
DefineGroup ADD_instr Classes=ADD_ext_reg,ADD_sft_reg,ADD_imm ISet=A64
DefineGroup CMP_instr Classes=CMP_ext_reg,CMP_sft_reg,CMP_imm ISet=A64
DefineGroup ORR_instr Classes=ORR_sft_reg,ORR_imm ISet=A64
DefineGroup B_gen_except_sys_instr Classes=B_gen_except_sys ISet=A64

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

DefineGroup LDP_instr Classes=LDP_post_idx,LDP_pre_idx,LDP_sgn_off ISet=A64
DefineGroup STR_instr
 Classes=STR_reg,STR_imm_post_idx,STR_imm_pre_idx,STR_imm_usg_off ISet=A64

CPI values

DefineCpi PC_rel_addr_instr ISet=A64 Cpi=0.25
DefineCpi ADD_instr ISet=A64 Cpi=0.50
DefineCpi CMP_instr ISet=A64 Cpi=0.75
DefineCpi ORR_instr ISet=A64 Cpi=0.50
DefineCpi B_gen_except_sys_instr ISet=A64 Cpi=1.00
DefineCpi LDP_instr ISet=A64 Cpi=2.00
DefineCpi STR_instr ISet=A64 Cpi=1.00

Defaults

Defaults ISet=* Cpi=0.75

Related information
CPI file syntax on page 101

6.6.2.4 Defining CPI values in a CPI file

To define CPI values in a CPI file, use the following procedure for each instruction or set of
instructions:

Procedure
1. Create an instruction class for each encoding of an instruction or set of instructions by using

the DefineClass keyword.
2. Group instruction classes by using the DefineGroup keyword.
3. Set a CPI value for each instruction class or group of classes by using the DefineCpi keyword.

Results
The encodings for each instruction in the A64 instruction set are provided by the Arm®v8‑A
Architecture Reference Manual, chapter 4. It also describes groups of instructions that share
encodings. You can use these encodings to define the Mask and Value fields in the CPI file.

The Mask field must cover all bits that are fixed in the encoding of an instruction. The Value
field must specify the value of these bits. For example, chapter 4 of the Arm®v8‑A Architecture
Reference Manual defines a set of instructions called PC-rel. addressing. In the example CPI file, the
following statements specify a common CPI value for these instructions:

DefineClass ADRP Mask=0x9F000000 Value=0x90000000 ISet=A64
DefineClass ADR Mask=0x9F000000 Value=0x10000000 ISet=A64
DefineGroup PC_rel_addr_instr Classes=ADRP,ADR ISet=A64
DefineCpi PC_rel_addr_instr ISet=A64 Cpi=0.25

For both instruction classes, the Mask value has bit[31] set to 0b1 and bits [28:24] set to 0b11111.
As shown in the reference manual, a value of 0b10000 for bits [28:24] identifies the instruction as
being ADR or ADRP. Therefore, both Value fields set bits [28:24] to 0b10000. Bit[31] distinguishes
between ADR and ADRP, so bit[31] in the Value field for ADR is set to 0b0 and to 0b1 for ADRP.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

This specification allows the model to specify a CPI value of 0.25 for the PC_rel_addr_instr group
of instructions. A similar process has been followed to determine the Mask and Value fields for the
other instructions in the CPI file example.

Related information
CPI file syntax on page 101
Arm Architecture Reference Manual for A-profile architecture

6.6.2.5 Validating a CPI file

To validate CPI files, use the CPIValidator tool. You can find this tool in a Fast Models Tools
installation under $MAXCORE_HOME/bin/. The tool can detect missing or incompatible instruction
groups and classes, but cannot validate the encodings themselves.

For example, if you remove the DefineClass statement for the B_gen_except_sys instruction class,
and validate the example CPI file by using the following command:

CPIValidator --input-file /path/to/custom_cpi.txt --output-file cpi_evaluation.txt

the tool produces the following output:

ERROR: Instruction Class 'B_gen_except_sys' has no definition, when Instruction Set
 is 'A64' and the CPU Type is 'Default ARM Core'.
ERROR: Processing error in file /path/to/custom_cpi.txt

Using the tool with the complete CPI file produces the following output:

Core Performance Profile: Default ARM Core
--
Instruction Set: A32 Default Cpi:0.75
Instruction Set: A64 Default Cpi:0.75
 (0x1c000000|0x14000000) Cpi:1 Name:B_gen_except_sys
 (0x7f000000|0x11000000) Cpi:0.5 Name:ADD_imm
 (0x7f00001f|0x7100001f) Cpi:0.75 Name:CMP_imm
 (0x7f200000|0x0b000000) Cpi:0.5 Name:ADD_sft_reg
 (0x7f200000|0x2a000000) Cpi:0.5 Name:ORR_sft_reg
 (0x7f20001f|0x6b00001f) Cpi:0.75 Name:CMP_sft_reg
 (0x7f800000|0x32000000) Cpi:0.5 Name:ORR_imm
 (0x7fc00000|0x28c00000) Cpi:2 Name:LDP_post_idx
 (0x7fc00000|0x29400000) Cpi:2 Name:LDP_sgn_off
 (0x7fc00000|0x29c00000) Cpi:2 Name:LDP_pre_idx
 (0x7fe00000|0x0b200000) Cpi:0.5 Name:ADD_ext_reg
 (0x7fe0001f|0x6b20001f) Cpi:0.75 Name:CMP_ext_reg
 (0x9f000000|0x10000000) Cpi:0.25 Name:ADR
 (0x9f000000|0x90000000) Cpi:0.25 Name:ADRP
 (0xbfc00000|0xb9000000) Cpi:1 Name:STR_imm_usg_off
 (0xbfe00c00|0xb8000400) Cpi:1 Name:STR_imm_post_idx
 (0xbfe00c00|0xb8000c00) Cpi:1 Name:STR_imm_pre_idx
 (0xbfe00c00|0xb8200000) Cpi:1 Name:STR_reg
Instruction Set: Thumb Default Cpi:0.75
Instruction Set: T2EE Default Cpi:0.75

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 144

https://developer.arm.com/documentation/ddi0487/latest/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.2.6 CPI class example program

This example program is designed to show the effect of the CPI values specified in the example CPI
file.

The example consists of two source files, main.c and asm_func.s.

main.c contains the following code:

#include <stdio.h>
#include <string.h>

extern void asm_cpi(volatile int *value0, volatile int *value2);

volatile int values[2] = {1, 2};

int main(void) {
 asm_cpi(&values[0], &values[1]);
 return 0;
}

asm_func.s defines an embedded assembly language function asm_cpi() which uses instructions
with defined CPI values:

 .section asm_func, "ax"
 .global asm_cpi
 .type asm_cpi, "function"
asm_cpi:
 ldp w1, w2, [x0]
 cmp w1, w2
 b.gt skip
 orr w1, w1, w2
 str w1, [x0]
skip:
 ret

This sequence of instructions checks if the second value in a two-element array pointed to by the
address in x0 is greater than the first value. If so, it performs a bitwise OR operation using the two
values, storing the result as the new first value. The rest of this section examines this sequence by
running this code on a platform model with the following CPI configurations:

• Using the default CPI value.

• Using the custom CPI file that was described earlier in the tutorial.

• Using a fixed CPI value.

Build the example using Arm Compiler for Embedded:

armclang -c --target=aarch64-arm-none-eabi -mcpu=cortex-a75 main.c -o main.o
armclang -c --target=aarch64-arm-none-eabi -mcpu=cortex-a75 asm_func.s -o asm_func.o
armlink main.o asm_func.o -o ta_cpi.axf

The name of the executable image used in these examples is ta_cpi.axf.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 144

https://developer.arm.com/documentation/101754/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.2.7 Running the example with the default CPI value

If you do not specify any CPI parameters, a default CPI value of 1.00 is used. This value establishes
a baseline to compare with the other CPI configurations.

To use the default CPI value of 1.00, launch the model using the following command:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A75/EVS_Base_Cortex-A75.x
 \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_cpi.axf \
--stat

In the trace file that the GenericTrace plug-in produces, find the instruction at address
0x800005a4. The trace for this instruction and the one before it is as follows:

INST: PC=0x00000000800005a0 OPCODE=0x910003fd SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x00000000800005a0 NSDESC=0x01 PADDR2=0x00000000800005a0 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000000b7bc LOCAL_TIME=0x0000000000007530
CURRENT_TIME=0x000000001c091fc0 CORE_NUM=0x00 DISASS="MOV x29,sp"

INST: PC=0x00000000800005a4 OPCODE=0x90000020 SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x00000000800005a4 NSDESC=0x01 PADDR2=0x00000000800005a4 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000000b7bd LOCAL_TIME=0x0000000000009c40
CURRENT_TIME=0x000000001c0946d0 CORE_NUM=0x00 DISASS="ADRP x0,{pc}+0x4000 ; 0x800045a4"

Using the CURRENT_TIME values, it can be observed that the instruction took 10000ps or 1 tick to
complete, which shows the default CPI value of 1.00 is being used. You can verify that all other
instructions are also using the default CPI value by examining the trace.

6.6.2.8 Running the example with a custom CPI file

To use the custom CPI file, launch the model using the following command:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A75/EVS_Base_Cortex-A75.x
 \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_cpi.axf \
--cpi-file $PVLIB_HOME/images/source/ta_cpi/custom_cpi.txt \
--stat

Using the trace output that the GenericTrace plug-in produces for the 10 instructions starting at
address 0x800005a4, and the --stat output, the following information can be obtained for the
embedded assembly code sequence in the example program:

Table 6-2: CPI values for embedded assembly instructions

Address Instruction Simulated time (ps) CPI value observed

0x800005a4 ADRP x0,{pc}+0x4000 2500 0.25

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

Address Instruction Simulated time (ps) CPI value observed

0x800005a8 ADD x0,x0,#0x9f0 5000 0.50

0x800005ac ADD x1,x0,#4 5000 0.50

0x800005b0 BL {pc}+0x4294 10000 1.00

0x80004844 LDP w1,w2,[x0,#0] 20000 2.00

0x80004848 CMP w1,w2 7500 0.75

0x8000484c B.GT {pc}+0xc 10000 1.00

0x80004850 ORR w1,w1,w2 5000 0.50

0x80004854 STR w1,[x0,#0] 10000 1.00

0x80004858 RET 10000 1.00

This table shows that the CPI values that are defined in the example CPI file have been applied to
the appropriate instructions.

The following information can be obtained for the simulation as a whole:

Table 6-3: Statistics for the whole simulation

Total number of instructions Overall simulated time in seconds Average CPI value

47701 0.000362 0.75889

The average CPI value being close to the default CPI value specified in the CPI file
does not signify anything by itself. To draw any conclusions from it, further analysis
on the distribution of instructions would be required.

6.6.2.9 Running the example with a fixed CPI value

The average CPI value that was observed when running the example program with the custom CPI
file is approximately 0.75889. Fractionally, the exact value is 36200/47701.

This fraction can be applied to the simulation by using the cpi_mul and cpi_div model parameters
as follows:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A75/EVS_Base_Cortex-A75.x
 \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-C Base.cluster0.cpi_mul=36200 \
-C Base.cluster0.cpi_div=47701 \
-a $PVLIB_HOME/images/ta_cpi.axf \
--stat

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

For each instruction, a simulated time of 7589ps or 0.7589 ticks can be observed using the
GenericTrace plugin. The --stat output is as follows and shows the same simulated time value as
that obtained using the custom CPI file:

--- Base statistics: --
Simulated time : 0.000362s
User time : 0.171601s
System time : 0.015601s
Wall time : 0.196000s
Performance index : 0.00
Base.cluster0.cpu0 : 0.25 MIPS (47701 Inst)

In this case, because the same application was run with the custom CPI file and with the average
CPI value, an approximation of the average CPI value shows the same overall simulated time.
However, the average CPI value for one application is not necessarily an accurate approximation of
the average CPI value for a different application.

For example, running the branch prediction example application, described in the next section,
clearly shows this difference. Specifying a branch misprediction latency increases the overall
simulated time, and therefore gives a different average CPI value to the fixed CPI value that was
specified. Using the custom CPI file produces a more accurate average CPI value for the branch
prediction example.

Table 6-4: CPI values for simulation with branch prediction latency

Branch prediction example CPI configuration Overall simulated time in seconds Average CPI value

Using the average CPI value that was observed in the CPI class example program. 0.001726 1.00754

Using the custom CPI file. 0.001945 1.13538

Related information
Branch prediction example program on page 125

6.6.3 Modeling branch prediction

This section demonstrates various techniques for measuring the effectiveness of different branch
prediction algorithms.

6.6.3.1 Branch predictor types and parameters

The BranchPrediction plug-in allows you to select the branch prediction algorithm to use, the type
of statistics to collect, and the misprediction latency.

The plug-in parameters that are used in this tutorial are as follows:

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

Table 6-5: BranchPrediction plug-in parameters

Plug-in
parameter

Purpose in this example Values that are used in this example

predictor-
type

Comparing the impact of different branch prediction algorithms. • FixedDirectionPredictor

• BiModalPredictor

• GSharePredictor

• CortexA53Predictor

mispredict-
latency

Simulating the additional latency due to a pipeline flush that is caused
by a branch misprediction.

11. This value is the minimum pipeline flush
length for a Cortex-A75 processor.

bpstat-
pathfilename

Providing statistics about the branch prediction behavior, to
determine per-branch and overall predictor accuracy.

stats.txt

The different predictor types that are used in this example behave as follows:

FixedDirectionPredictor

Always predicts branches as TAKEN.

BiModalPredictor

Uses a 2-bit state machine to classify branches as one of STRONGLY_NOT_TAKEN,
WEAKLY_NOT_TAKEN, WEAKLY_TAKEN, or STRONGLY_TAKEN, and predicts accordingly. Tracks up to
512 individual branch instructions by address.

GSharePredictor

Uses the history of the eight most recently executed branch instructions to classify a set
of branch instructions, based on the instruction address, as one of STRONGLY_NOT_TAKEN,
WEAKLY_NOT_TAKEN, WEAKLY_TAKEN, or STRONGLY_TAKEN, and predicts accordingly. Unlike the
BiModalPredictor, it is not limited to a specific number of branch instruction addresses, but
it is less precise than BiModalPredictor.

CortexA53Predictor

Implements the Cortex®‑A53 branch prediction algorithm.

Related information
BranchPrediction

6.6.3.2 Generating branch misprediction statistics

There are two ways to trace branch mispredictions when running an application:

• Use the statistics that are produced by the BranchPrediction plug-in to get an overall picture,
without context about the execution order.

• Load the BranchPrediction plug-in and use the MTI trace sources INST, BRANCH_MISPREDICT,
and WAYPOINT to see branch misprediction details for individual instructions in execution order.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 144

https://developer.arm.com/documentation/100964/1128/Plug-ins-for-Fast-Models/BranchPrediction/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.3.2.1 BranchPrediction plug-in statistics

The statistics feature of the BranchPrediction plug-in provides overall and per-branch statistics,
which are saved to a file when the model exits. You can specify the filename and location using the
bpstat-pathfilename parameter.

The overall branch prediction statistics are described in the following table:

Table 6-6: Overall statistics

Statistic Description Example

Processor Core Name of the core to which the branch prediction plug-in was connected. ARM_Cortex-A75

Cluster instance The cluster number in the processor. 0

Core instance The core number in the cluster. 0

Mispredict Latency The branch misprediction latency as specified using the mispredict-
latency parameter.

11

Image executed The name of the application file that was executed. ta_brpred.axf

PredictorType The branch prediction algorithm as specified using the predictor-type
parameter.

FixedDirectionPredictor

Total branch calls The total number of times all branch instructions were executed. 37434

Total
Mispredictions

The total number of mispredictions for all executed branch instructions. 5106

Average prediction
accuracy

The fraction of all branch instructions that were correctly predicted. 0.8636

Conditional
Branches

The total number of unique conditional branch instructions. This figure
does not include the instructions CBZ and CBNZ.

123

Total unique branch
instructions

The total number of unique conditional and unconditional branch
instructions.

300

The following table shows the BranchPrediction plug-in statistics for each unique branch
instruction. They can be used to analyze how a given branch prediction algorithm behaves with a
particular type of branch instruction. The branch prediction example program uses this information
to determine how effectively the different branch prediction algorithms predict different types of
branches.

Table 6-7: Per-branch statistics

Statistic Description Example

PC Addr The address of the branch instruction. 0x8000062c

Calls The total number of times the branch was called. 2100

Mispredict The total number of times the branch was mispredicted. 260

Accuracy The fraction of calls to the branch instruction that were correctly predicted. 0.87619

Related information
Branch prediction example program on page 125
Branch predictor types and parameters on page 121

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.3.2.2 MTI trace sources

INST, BRANCH_MISPREDICT, and WAYPOINT are trace sources that can be used in combination to get
useful information about branch mispredictions.

Whenever the BranchPrediction plug-in makes a branch misprediction, the BRANCH_MISPREDICT
trace source prints the address of the branch instruction that was mispredicted. This address can
be compared with the address from the corresponding INST trace event to determine the exact
branch instruction involved. The number of BRANCH_MISPREDICT entries for a given branch address
at the end of the simulation matches the Mispredict count for that address that is shown in the
BranchPrediction plug-in statistics file.

The WAYPOINT trace source prints an event whenever an effective branch operation takes place.
This event includes the address of the branch instruction, the target address of the branch,
whether the branch is conditional, and whether it was taken. This trace source requires instruction
prefetching to be enabled. Combined with a BRANCH_MISPREDICT trace event, it can be used to
determine whether a branch was mispredicted as TAKEN or NOT_TAKEN.

To collect trace from these sources, run the model with the GenericTrace and BranchPrediction
plug-ins. For example:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A75/EVS_Base_Cortex-A75.x
 \
-C Base.bp.secure_memory=0 \
-C Base.cache_state_modelled=1 \
-C Base.cluster0.icache-prefetch_enabled=1 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/BranchPrediction.so \
-C BranchPrediction.BranchPrediction.predictor-type=FixedDirectionPredictor \
-C BranchPrediction.BranchPrediction.mispredict-latency=11 \
-C BranchPrediction.BranchPrediction.bpstat-pathfilename=stats.txt \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST,BRANCH_MISPREDICT,WAYPOINT \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_brpred.axf \
--stat

Related information
Calculating the execution time of an instruction on page 112

6.6.3.2.3 Example trace for a branch misprediction

The following example trace is for a branch misprediction with a misprediction latency of 11 ticks:

INST: PC=0x0000000080000628 OPCODE=0x7100655f SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x0000000080000628 NSDESC=0x01 PADDR2=0x0000000080000628 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080b LOCAL_TIME=0x000000000003f7a0
CURRENT_TIME=0x000000002eab53a0 CORE_NUM=0x00 DISASS="CMP w10,#0x19"

INST: PC=0x000000008000062c OPCODE=0x54000168 SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x000000008000062c NSDESC=0x01 PADDR2=0x000000008000062c NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080c LOCAL_TIME=0x0000000000041eb0
CURRENT_TIME=0x000000002eab7ab0 CORE_NUM=0x00 DISASS="B.HI {pc}+0x2c ;
 0x80000658"

WAYPOINT: PC=0x000000008000062c ISET=AArch64 TARGET=0x0000000080000658

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

TARGET_ISET=AArch64 TAKEN=N IS_COND=Y CORE_NUM=0x00

BRANCH_MISPREDICT: PC=0x000000008000062c

INST: PC=0x0000000080000630 OPCODE=0x7100151f SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x0000000080000630 NSDESC=0x01 PADDR2=0x0000000080000630 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080d LOCAL_TIME=0x000000000005f370
CURRENT_TIME=0x000000002ead4f70 CORE_NUM=0x00 DISASS="CMP w8,#5"

The following information can be gathered from this trace:

• The branch instruction at address 0x8000062c was mispredicted, as shown by the
BRANCH_MISPREDICT trace event.

• The branch was conditional, and was incorrectly predicted as TAKEN, as shown by the TAKEN=N
field in the WAYPOINT trace event. The PC field value from this source must correspond to the PC
field value from the BRANCH_MISPREDICT source.

• As a result of the misprediction, the instruction following the branch instruction took 120,000
picoseconds, or 12 ticks to complete. The misprediction latency was defined as 11 ticks, so
the instruction would have taken only 1 tick to complete if the branch had been predicted
correctly. The execution time is the difference between:

◦ The CURRENT_TIME value for the INST trace before the BRANCH_MISPREDICT trace.

◦ The CURRENT_TIME value for the INST trace after the BRANCH_MISPREDICT trace.

The branch instruction itself took 10,000 picoseconds, or one tick to complete. This is
important, as it shows that the misprediction latency is added to the instruction after the
mispredicted branch instruction, not to the branch instruction itself. The execution time is the
difference between the CURRENT_TIME values for the INST traces corresponding to the branch
instruction and the instruction before.

The rest of this tutorial uses these techniques to compare the different branch prediction
algorithms.

6.6.3.3 Branch prediction example program

This example is designed to use various types of branch operations that can take place during the
execution of a program.

These operations are:

• A branch to skip a loop after a fixed number of iterations has completed.

• A branch to skip a code sequence, depending on the value of a variable.

• A branch to skip a code sequence, which can only be executed a limited number of times
consecutively, if a previous branch was taken.

• A branch for a condition that is always true if the conditions for two previous branches were
true.

• A branch for a condition that is always true if the conditions for two previous branches were
false.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

The code operation is trivial. It looks for acronyms within the following constant string, and loops
over this operation a set number of times:

Timing annotation can be used with an SVP, an EVS, or an ISIM.

The following code shows the branch operations of interest:

#define MAX_LENGTH 5
#define LOOP_COUNT 20
…
// A: loop not entered 1/LOOP_COUNT times
for(j = 0; j < LOOP_COUNT; j++) {
 printf("Starting iteration #%d\n", j);
 blockCount = 0;
 c = 0;
 resetOnly(&acronymLength, acronym);
 // B: loop not entered 1/length times
 for(i = 0; i < length; i++) {
 c = string[i];
 // C: condition true
 // (number_of_block_letters)/(total_characters_in_string) times
 if (c >= 'A' && c <= 'Z') {
 blockCount++;
 // D: condition true up to MAX_LENGTH times consecutively
 if (acronymLength < MAX_LENGTH) {
 acronym[acronymLength] = c;
 }
 // E: condition true up to MAX_LENGTH+1 times consecutively
 if (acronymLength <= MAX_LENGTH) {
 acronymLength++;
 }
 }
 else {
 // F: condition true if E was true then C was false
 if (acronymLength > 1 && acronymLength <= MAX_LENGTH) {
 printAndReset(&acronymLength, acronym);
 }
 // G: condition true if E was false then C was false
 else if (acronymLength != 0) {
 resetOnly(&acronymLength, acronym);
 }
 }
 }
}

The branch instructions that are assembled for the conditions A to G in this code snippet can be
examined using branch prediction statistics and trace sources.

The conditions are described in the following table. The branch behavior column describes the
relationship between the condition and the associated branch instruction.

Table 6-8: Branch behavior for each condition

Condition Description Compiled
instruction

Branch behavior

A Outer loop for processing string
LOOP_COUNT times. Loop not
entered 1/LOOP_COUNT times.

B.NE
0x800005f4
at address
0x80000698.

Backwards branch. Taken to start of loop if more iterations
remain.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

Condition Description Compiled
instruction

Branch behavior

B Inner loop for iterating through
characters in the string.

B.NE
0x80000618
at address
0x8000068c.

Backwards branch. Taken to start of loop if more iterations
remain.

C Condition true if the character being
processed is upper case.

B.HI
0x80000658
at address
0x8000062c.

Forwards branch. Taken if the condition is false. Skips code that
handles upper case characters.

D Condition true up to MAX_LENGTH
times consecutively.

B.GE
0x80000644
at address
0x80000634.

Forwards branch. Taken if the condition is false. Skips code that
appends a letter to an acronym.

E Condition true up to MAX_LENGTH+1
times consecutively.

B.GT
0x80000684
at address
0x80000648.

Forwards branch. Taken if the condition is false. Skips code that
increments the acronym length.

F Condition true if E was true, after
which C was false.

B.HI
0x80000674
at address
0x80000660.

Forwards branch. Never taken if the condition was true, that is,
branch E was not taken and then branch C was taken. Skips the
code to print a completed acronym.

G Condition true if E was false, after
which C was false.

CBZ
w8,0x80000684
at address
0x80000674.

Forwards branch. Never taken if the condition was true, that is,
branch E was taken then branch C was taken. Skips the code to
clear the saved acronym.

6.6.3.4 Running the simulation

To generate trace and statistics for comparing the performance of the different branch predictors,
run the simulation with the BranchPrediction plug-in parameters shown here.

For example, to use the FixedDirectionPredictor, launch the model using the following command,
where ta_brpred.axf is the name of the executable image and EVS_Base_Cortex-A75.x is the
platform executable:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A75/EVS_Base_Cortex-A75.x
 \
-C Base.bp.secure_memory=0 \
-C Base.cache_state_modelled=1 \
-C Base.cluster0.icache-prefetch_enabled=1 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/BranchPrediction.so \
-C BranchPrediction.BranchPrediction.predictor-type=FixedDirectionPredictor \
-C BranchPrediction.BranchPrediction.mispredict-latency=11 \
-C BranchPrediction.BranchPrediction.bpstat-pathfilename=stats.txt \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-9.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST,BRANCH_MISPREDICT,WAYPOINT \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_brpred.axf \
--stat

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

The program prints the following output to the terminal:

Looking for acronyms of maximum length 5 in the string:
Timing annotation can be used with an SVP, an EVS, or an ISIM.

Starting iteration #0
SVP
EVS
ISIM
…
Starting iteration #19
SVP
EVS
ISIM

Info: /OSCI/SystemC: Simulation stopped by user.

--- Base statistics: --
Simulated time : 0.002275s
User time : 0.343203s
System time : 0.202801s
Wall time : 0.642064s
Performance index : 0.00
Base.cluster0.cpu0 : 0.31 MIPS (171308 Inst)

You can now analyze the end of simulation statistics, the branch prediction statistics file stats.txt,
and the MTI trace file trace.txt, that are generated for each branch predictor type.

Related information
Branch predictor types and parameters on page 121

6.6.3.5 Comparison of branch predictor types

Statistics about the accuracy of the different branch predictors for the various types of branch
instructions can now be compared.

These statistics are shown in the following table:

Table 6-9: Comparison of branch predictor accuracy

Branch instruction

Branch predictor Statistic A B C D E F G

Calls 20 2100 2100 260 260 1840 1800

TAKEN 19 2080 1840 0 0 1800 1800

All

NOT_TAKEN 1 20 260 260 260 40 0

Mispredictions 1 20 260 260 260 40 0

Mispredicted as TAKEN 1 20 280 260 260 40 0

Mispredicted as NOT_TAKEN 0 0 0 0 0 0 0

FixedDirectionPredictor

Accuracy (%) 95* 99* 88* 0 0 98* 100*

Mispredictions 1 20 341 1 1 40 0

Mispredicted as TAKEN 1 20 220 1 1 40 0

BiModalPredictor

Mispredicted as NOT_TAKEN 0 0 121 0 0 0 0

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

Branch instruction

Branch predictor Statistic A B C D E F G

Accuracy (%) 95* 99* 84 100* 100* 98* 100*

Mispredictions 1 20 279 241 241 40 0

Mispredicted as TAKEN 1 20 260 241 241 40 0

Mispredicted as NOT_TAKEN 0 0 19 0 0 0 0

GSharePredictor

Accuracy (%) 95* 99* 87 7 7 98* 100*

Mispredictions 1 23 324 2 1 49 0

Mispredicted as TAKEN 1 20 221 2 1 40 0

Mispredicted as NOT_TAKEN 0 3 103 0 0 9 0

CortexA53Predictor

Accuracy (%) 95* 99* 85 99 100* 97 100*

The accuracy figures have been rounded to the nearest percentage. For each branch instruction
type, A to G, the entry for the best accuracy is shown with an asterisk. As expected, different
branch prediction algorithms are better suited to different types of branch instructions.

With the FixedDirectionPredictor, all branches are predicted as TAKEN, so the accuracy is equal to
the percentage of calls to that branch that were TAKEN.

With the BiModalPredictor and GSharePredictor algorithms, only the random branch C was
mispredicted both as TAKEN and NOT_TAKEN. With the other systematic branches, the misprediction
was always in one direction. The result is different for the more complex algorithm of the
CortexA53Predictor, which has mispredictions in both directions for systematic branches as well.

The BiModalPredictor is able to store the history of individual branches, and is therefore most
accurate with predicting branches with a deterministic ratio between the number of times they are
TAKEN and NOT_TAKEN. This accuracy can be seen with branches A, B, D, and E. With a more random
branch, such as C, which depends entirely on the contents of a user-defined string, relying on the
history of the branch proves ineffective.

Interestingly, the GSharePredictor appears to be highly inaccurate at predicting branches D and
E. These branches are NOT_TAKEN a fixed number of times consecutively. However, since there are
calls to many other branches between consecutive calls to these branches, the GSharePredictor’s
global history is not able to use the specific outcome of these branches to update their prediction
values effectively.

Overall, the BiModalPredictor and the CortexA53Predictor have predicted these branch
instructions most accurately, as shown in the following table:

Table 6-10: Overall branch predictor accuracy

Predictor type Overall accuracy (%)

FixedDirectionPredictor 86

BiModalPredictor 98

GSharePredictor 86

CortexA53Predictor 98

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Timing annotation

6.6.3.6 Impact of branch misprediction on simulation time

You can directly observe the impact of mispredictions on the overall simulation time, as shown in
the --stat output after the model exits.

The simulated execution times with the different branch predictors are shown in the following
table.

The execution times also include the impact of branch mispredictions that occur in
other parts of the code, as well as in the startup and shutdown sequences.

Table 6-11: Overall simulation time for each predictor type

Predictor type Simulation time with mispredict-latency=11 Simulation time with mispredict-latency=0

FixedDirectionPredictor 0.002275s 0.001713s

BiModalPredictor 0.001805s 0.001713s

GSharePredictor 0.002289s 0.001713s

CortexA53Predictor 0.001806s 0.001713s

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

FastRAM

7. FastRAM
FastRAM is a bus optimization for Fast Models that can bring significant speed improvements to
platform models.

7.1 Introducing FastRAM, a bus optimization for Fast
Models

FastRAM is a fast interface to simulated RAM which allows platform models to avoid using bus
models for most transactions.

FastRAM uses a cache of DMI pointers, each of which points to 64MB. This memory is tightly
coupled to the Fast Models bus masters and models of IP that are bus masters. When FastRAM is
enabled, accesses by Fast Models bus masters to platform RAM components do not use the PVBus
or TLM bus models. Accesses to other platform components and areas of RAM for which FastRAM
has not been enabled work as normal.

FastRAM can give significant speed improvements to large and complex platform models which can
spend a lot of time in the bus models. It can particularly benefit SystemC platforms that use TLM,
and multi-threaded platforms.

Most, but not all, platform models can safely use FastRAM. For conditions that can prevent its use,
see 7.5 FastRAM limitations on page 134.

The behavior of platform models is functionally equivalent whether FastRAM is enabled or
disabled. However, modeling bus transactions in a platform can lead to scheduling changes, so the
overall flow of execution by components in a platform might not be identical.

7.2 How to enable FastRAM
Enable FastRAM by launching the platform model with the command-line parameter --fast-ram
<config_file>.

The configuration file is an ASCII file located in the current working directory of the simulation that
specifies:

• One or more physical address ranges to enable for FastRAM.

• Details of any address aliasing for the enabled ranges.

• Which bus masters to enable to use FastRAM.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

FastRAM

7.3 FastRAM configuration file syntax
Each line in the configuration file starts with a single character option followed by the required
arguments, separated with whitespace.

The following options are available:

T
Enable FastRAM trace on stdout from this point in the file.

Q
Disable FastRAM trace on stdout from this point in the file.

The position of the T and Q options in the file is significant:

• To enable FastRAM trace during the entire initialization and runtime, start the
file with T and do not use Q.

• To enable FastRAM trace during runtime but not initialization, end the file with T
and do not use Q.

• To enable FastRAM trace during the initialization only, start the file with T and
end the file with Q.

• To enable FastRAM trace during specific parts of the initialization, use one or
more pairs of T and Q within the file.

S
Optimize FastRAM for single-threaded simulations.
In Fast Models 11.28, this option is deprecated. If used, FastRAM outputs a warning and
ignores it. It is unnecessary because FastRAM automatically detects and optimises for a
single-threaded context.

N
Disable MTE support with FastRAM if the platform has enabled the MTE feature. Enabled by
default. See 7.5 FastRAM limitations on page 134 for requirements on the tag store.

F
Disable atomic memory operations through FastRAM. Enabled by default.

M <string> | ALL
Identify the bus masters to use FastRAM. You can select either masters whose id contains
<string> or all masters. This option can be specified multiple times. For example, to enable
FastRAM use by all masters with A57 or R52 in their id, specify:

M A57
M R52

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

FastRAM

If the argument to M is not ALL and trace is enabled, then the ids of all masters
are shown on the console with a message stating whether the master is
enabled for FastRAM or not. To find the list of masters, use M foo then use
the list to select the masters required.

+ <base> <size>
Add the physical address range <base> to <base>+<size>.

- <base> <size>
Remove the physical address range <base> to <base>+<size>.

= <base-a> <base-b> <size>
Alias a physical address range.

<text>
Comment.

All addresses and sizes must be 64MB-aligned (0x4000000) hexadecimal.

7.4 FastRAM configuration file example
This example FastRAM configuration file is written for a Base Platform FVP.

It does the following:

• Uses the T option at the start of the file to enable FastRAM trace output from the start of the
FastRAM initialization.

• Enables FastRAM for the address range 0x08_00000000-0xff_ffffffff.

• Defines 0x00_80000000-0x00_ffffffff as an alias for the range
0x08_00000000-0x08_7fffffff.

• Uses the Q option at the end of the file to disable FastRAM trace output at the end of the
FastRAM initialization.

FastRAM config file for FVP Base
T
M ALL
+ 800000000 F800000000
= 80000000 800000000 80000000
Q

If FastRAM has been successfully enabled, it prints the following output:

FastRAM: CONSTRUCTED
FastRAM: Address space size = 40 bits

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

FastRAM

FastRAM: Slab size = 64 Mb
FastRAM: Page size = 4 kb
FastRAM: Singleton size = 147 kb
FastRAM: Number of monitors = 16
FastRAM: Enable ALL masters
FastRAM: Add range 0x08_00000000...ff_ffffffff
FastRAM: Add range 0x00_80000000...00_ffffffff
FastRAM: Alias range 0x00_80000000...00_ffffffff <=> 0x08_00000000...08_7fffffff

7.5 FastRAM limitations
FastRAM can be used with most, but not all, platform models.

It can be used in a platform in which all of the following conditions are true:

• The platform contains one or more very frequently accessed RAM components that are a
whole multiple of 64MB in size.

• These RAM components are always mapped to the same static physical range as seen by the
bus masters that frequently access the RAM.

• The physical ranges used to access the RAM components by the bus masters can include
aliased regions.

• The RAM components and the buses to them always give back DMI and for a given physical
address always give back exactly the same DMI pointer and never invalidate DMI.

• Either all the bus masters in the platform use FastRAM for the configured physical ranges or
you can identify the subset of masters that can use it by name. See 7.3 FastRAM configuration
file syntax on page 131 for how to find the list of bus masters.

• All the bus masters that use FastRAM use the same physical address map to access the RAM
components.

• If the RAM components internally allocate memory that is a whole multiple of 64MB, then
FastRAM can be used with RAM instances that are accessed by:

◦ Bus masters that are enabled to use FastRAM.

◦ Bus masters that are not, or cannot, be enabled to use FastRAM.

• If the RAM components internally allocate memory that is not a whole multiple of 64MB, for
example the RAMDevice LISA component, then FastRAM can only be used with RAM instances
that are accessed by masters that are enabled to use FastRAM.

It cannot be used in a platform if any of the following conditions are true:

• Cache state modeling is enabled.

• The physical address map used by the bus masters to access the RAM is dynamic and can
change at run time.

• The set of bus masters that will use FastRAM cannot be identified. See 7.3 FastRAM
configuration file syntax on page 131 for how to find the list of bus masters.

• There is System IP between the bus masters and the RAM that needs to provide functionality
other than a global monitor. However, a CCI or CCN with cache state modeling disabled is
allowed.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

FastRAM

• The platform RAM is mapped to an address greater than or equal to 0x100_0000_0000.

• The expected functionality of the platform depends on being able to invalidate DMI. FastRAM
ignores DMI invalidations other than what is required internally to support exclusives and
RevokeReadOnWrite behavior.

To enable MTE support through FastRAM:

• The platform must use a single system-wide tag store that returns DMI that can be safely
extrapolated to 64MB.

• If the platform uses a CI700, or a similar model, where each SN-F has its own tag store, these
must be disabled. See the bypass_tag_cache parameter on the model. Also, the platform must
have a PVMetaDataController close to the DRAM.

• FastRAM does not support platforms that use tag carveout.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export generated ports

Appendix A SystemC Export generated
ports

This appendix describes Fast Models SystemC Export generated ports.

A.1 About SystemC Export generated ports
The generated SystemC component must have SystemC ports to communicate with the SystemC
world. The SystemC Export feature automatically generates these ports from the Fast Models ports
of the top-level component.

Although it is possible to export your own protocols, Arm strongly recommends
using the AMBA-PV protocols provided and bridge from these in SystemC, if
needed.

The SystemC export feature automatically generates port wrappers that bind the SystemC domain
to the Fast Models virtual platform.

Figure A-1: Port wrappers connect Fast Models and SystemC components

Top-level system

MEM (SystemC
slave)

DMA (SystemC
master)

SystemC environmentSystem Generator virtual platform

MEM

CPU

Port
wrapper

Port
wrapperExternal

slave port

External
master port

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

SystemC Export generated ports

Each master port in the Fast Models top level component results in a master port on the SystemC
side. Each slave port in the Fast Models top level component results in a slave port (export) on the
SystemC side.

For Fast Models to instantiate and use the ports, it requires protocol definitions that:

• Correspond to the equivalent SystemC port classes.

• Refer to the name of these SystemC port classes.

This effectively describes the mapping from Fast Models port types (protocols) to SystemC port
types (port classes).

Related information
Fast Models Reference Guide

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 144

https://developer.arm.com/documentation/100964/1128/

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 144

https://www.arm.com/company/policies/trademarks

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in the Arm documents.

Product status
All products and Services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

1128-
00

19 February
2025

Non-
Confidential

Update for v11.28.

1127-
00

16 September
2024

Non-
Confidential

Update for v11.27.

1126-
00

19 June 2024 Non-
Confidential

Update for v11.26.

1125-
00

13 March 2024 Non-
Confidential

Update for v11.25.

1124-
00

6 December
2023

Non-
Confidential

Update for v11.24.

1123-
00

13 September
2023

Non-
Confidential

Update for v11.23.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Issue Date Confidentiality Change

1122-
00

14 June 2023 Non-
Confidential

Update for v11.22.

1121-
00

22 March 2023 Non-
Confidential

Update for v11.21.

1120-
00

7 December
2022

Non-
Confidential

Update for v11.20.

1119-
00

14 September
2022

Non-
Confidential

Update for v11.19.

1118-
00

15 June 2022 Non-
Confidential

Update for v11.18.

1117-
00

16 February
2022

Non-
Confidential

Update for v11.17.

1116-
00

6 October 2021 Non-
Confidential

Update for v11.16.

1115-
00

29 June 2021 Non-
Confidential

Update for v11.15.

1114-
00

17 March 2021 Non-
Confidential

Update for v11.14.

1113-
00

9 December
2020

Non-
Confidential

Update for v11.13.

1112-
00

22 September
2020

Non-
Confidential

Update for v11.12.

1111-
00

9 June 2020 Non-
Confidential

Update for v11.11.

1110-
00

12 March 2020 Non-
Confidential

Update for v11.10.

1109-
00

28 November
2019

Non-
Confidential

Update for v11.9.

1108-
01

3 October 2019 Non-
Confidential

Update for v11.8.1.

1108-
00

5 September
2019

Non-
Confidential

Update for v11.8.

1107-
00

17 May 2019 Non-
Confidential

Update for v11.7.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Issue Date Confidentiality Change

1106-
00

26 February
2019

Non-
Confidential

Update for v11.6.

1105-
00

23 November
2018

Non-
Confidential

Update for v11.5.

1104-
01

17 August 2018 Non-
Confidential

Update for v11.4.2.

1104-
00

22 June 2018 Non-
Confidential

Update for v11.4.

1103-
00

23 February
2018

Non-
Confidential

Update for v11.3.

1102-
00

17 November
2017

Non-
Confidential

Update for v11.2.

1101-
00

31 August 2017 Non-
Confidential

Update for v11.1.

1100-
00

31 May 2017 Non-
Confidential

Update for v11.0. Document numbering scheme has
changed.

For information about the functional changes to Fast Models, see the Fast Models Release Notes.

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 144

https://developer.arm.com/documentation/108086/1128/
https://developer.arm.com/glossary

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Convention Use
monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full

command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
of harming yourself.

This information is important and needs your attention.

This information might help you perform a task in an easier, better, or faster way.

This information reminds you of something important relating to the current
content.

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 144

Fast Models User Guide Document ID: 100965_1128_00_en
Issue 00

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Table 1: Arm publications

Document name Document ID Licensee only

Arm® Architecture Models - No

Download FlexNet Publisher - No

Fast Models Reference Guide 100964 No

Fixed Virtual Platforms - No

Fast Models Fixed Virtual Platforms Reference Guide 100966 No

Fast Models Tools User Guide 109415 No

How do I ensure my Fast Model works with User Based Licensing (UBL)? ka005524 No

Iris User Guide 101196 No

IrisSupportLib Reference Guide 101319 No

LISA+ Language for Fast Models Reference Guide 101092 No

Open Source Software and Platforms wiki on Arm® Community - No

Product Download Hub - No

User-based Licensing User Guide 102516 No

Table 2: Arm publications

Document name Document ID Licensee only

Arm® Architecture Reference Manual for A-profile architecture DDI 0487 Non-Confidential

Table 3: Other publications

Document ID Organization Document name

- Accellera Systems Initiative Accellera Systems Initiative (ASI)

- Android Open Source Project Android Partitions

IEEE 1666-2005 IEEE Standards association IEEE Standard SystemC(R) Language Reference Manual

- Microsoft Microsoft Visual C++ Redistributable

Copyright © 2017–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 144

http://developer.arm.com/documentation
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
https://developer.arm.com/tools-and-software/software-development-tools/license-management/downloads
https://developer.arm.com/documentation/100964/1128/
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://developer.arm.com/documentation/100966/1128/
https://developer.arm.com/documentation/109415/1128/
https://developer.arm.com/documentation/ka005524/
https://developer.arm.com/documentation/101196/0100/
https://developer.arm.com/documentation/101319/
https://developer.arm.com/documentation/101092/0100/
https://community.arm.com/oss-platforms/w/docs
https://developer.arm.com/downloads
https://lm.arm.com
https://developer.arm.com/documentation/ddi0487/
http://www.accellera.org
https://source.android.com/docs/core/bootloader/partitions
http://standards.ieee.org/findstds/standard/1666-2005.html
https://support.microsoft.com/en-gb/help/2977003/the-latest-supported-visual-c-downloads

	Fast Models User Guide
	Contents
	1. Introduction to Fast Models
	1.1 What is Fast Models?
	1.2 What does Fast Models consist of?
	1.2.1 Fast Models tools
	1.2.2 Fast Models portfolio
	1.2.3 Other Fast Models products

	1.3 Fast Models glossary
	1.4 Security assumptions for Fast Models

	2. Installing Fast Models
	2.1 Requirements for Fast Models
	2.2 Installation
	2.3 Uninstallation
	2.4 Dependencies for Red Hat Enterprise Linux

	3. Building Fast Models
	3.1 Build targets
	3.2 Building an ISIM
	3.3 Building an EVS
	3.4 Building an EVS on Windows
	3.5 Linking against the SystemC library
	3.6 Libraries required to run the platform
	3.7 Building an SVP

	4. Optimizing runtime performance of Fast Models
	4.1 Use a suitable host machine
	4.2 Configure the model using options and parameters
	4.3 Make the platform faster
	4.4 Make the workload faster

	5. SystemC Export with Multiple Instantiation
	5.1 About SystemC Export with Multiple Instantiation
	5.2 Auto-bridging
	5.3 SystemC Export generated ports
	5.3.1 Protocol definition
	5.3.2 TLM 1.0 protocol for an exported SystemC component
	5.3.3 TLM 2.0 bus protocol for an exported SystemC component
	5.3.4 Properties for TLM 1.0 based protocols
	5.3.5 Properties for TLM 2.0 based protocols

	5.4 SystemC Export API
	5.4.1 SystemC Export header file
	5.4.2 scx::scx_initialize
	5.4.3 scx::scx_set_single_evs
	5.4.4 scx::scx_load_application
	5.4.5 scx::scx_load_application_all
	5.4.6 scx::scx_load_data
	5.4.7 scx::scx_load_data_all
	5.4.8 scx::scx_set_parameter
	5.4.9 scx::scx_get_parameter
	5.4.10 scx::scx_get_parameter_list
	5.4.11 scx::scx_get_parameter_infos
	5.4.12 scx::scx_get_cadi_parameter_infos
	5.4.13 scx::scx_set_cpi_file
	5.4.14 scx::scx_cpulimit
	5.4.15 scx::scx_timelimit
	5.4.16 scx::scx_add_breakpoint
	5.4.17 scx::scx_set_start_pc
	5.4.18 scx::scx_dump
	5.4.19 scx::scx_load_params_file
	5.4.20 scx::scx_list_instances
	5.4.21 scx::scx_list_registers
	5.4.22 scx::scx_check_registers
	5.4.23 scx::scx_list_memory
	5.4.24 scx::scx_parse_and_configure
	5.4.25 scx::scx_register_synchronous_thread
	5.4.26 scx::scx_get_error_count
	5.4.27 scx::scx_get_exitcode_list
	5.4.28 scx::scx_exitcode_entry
	5.4.29 scx::scx_start_cadi_server
	5.4.30 scx::scx_enable_cadi_log
	5.4.31 scx::scx_print_port_number
	5.4.32 scx::scx_print_statistics
	5.4.33 scx::scx_register_cadi_target
	5.4.34 scx::scx_unregister_cadi_target
	5.4.35 scx::scx_load_trace_plugin
	5.4.36 scx::scx_load_plugin
	5.4.37 scx::scx_get_global_interface
	5.4.38 scx::scx_enable_iris_server
	5.4.39 scx::scx_set_iris_server_port_range
	5.4.40 scx::scx_get_iris_server_port
	5.4.41 scx::scx_set_iris_server_port
	5.4.42 scx::scx_enable_iris_log
	5.4.43 scx::scx_get_iris_connection_interface
	5.4.44 scx::scx_evs_base
	5.4.45 scx::load_application
	5.4.46 scx::load_data
	5.4.47 scx::set_parameter
	5.4.48 scx::get_parameter
	5.4.49 scx::get_parameter_list
	5.4.50 scx::scx_evs_base constructor
	5.4.51 scx::scx_evs_base destructor
	5.4.52 scx::before_end_of_elaboration
	5.4.53 scx::end_of_elaboration
	5.4.54 scx::start_of_simulation
	5.4.55 scx::end_of_simulation
	5.4.56 scx::scx_simcallback_if
	5.4.57 scx::notify_running
	5.4.58 scx::notify_stopped
	5.4.59 scx::notify_debuggable
	5.4.60 scx::notify_idle
	5.4.61 scx::scx_simcallback_if destructor
	5.4.62 scx::scx_simcontrol_if
	5.4.63 scx::get_scheduler
	5.4.64 scx::get_report_handler
	5.4.65 scx::run
	5.4.66 scx::stop
	5.4.67 scx::is_running
	5.4.68 scx::stop_acknowledge
	5.4.69 scx::process_debuggable
	5.4.70 scx::notify_pending_debug
	5.4.71 scx::process_idle
	5.4.72 scx::shutdown
	5.4.73 scx::add_callback
	5.4.74 scx::remove_callback
	5.4.75 scx::scx_simcontrol_if destructor
	5.4.76 scx::scx_get_default_simcontrol
	5.4.77 scx::scx_get_curr_simcontrol
	5.4.78 scx::scx_report_handler_if
	5.4.79 scx::scx_get_default_report_handler
	5.4.80 scx::scx_get_curr_report_handler
	5.4.81 scx::scx_sync
	5.4.82 scx::scx_set_min_sync_latency
	5.4.83 scx::scx_get_min_sync_latency
	5.4.84 scx::scx_simlimit
	5.4.85 scx::scx_create_default_scheduler_mapping
	5.4.86 scx::scx_get_curr_scheduler_mapping

	5.5 Scheduler API
	5.5.1 Accessing SchedulerInterfaceForComponents from a modeling component
	5.5.2 Intended mapping of the Scheduler API onto SystemC/TLM
	5.5.3 sg::SchedulerInterfaceForComponents class
	5.5.3.1 eslapi::CAInterface and eslapi::ObtainInterface
	5.5.3.2 sg::SchedulerInterfaceForComponents::addCallback
	5.5.3.3 sg::SchedulerInterfaceForComponents::addSynchronisationPoint
	5.5.3.4 sg::SchedulerInterfaceForComponents::createThread
	5.5.3.5 sg::SchedulerInterfaceForComponents::createThreadSignal
	5.5.3.6 sg::SchedulerInterfaceForComponents::createTimer
	5.5.3.7 sg::SchedulerInterfaceForComponents::currentThread
	5.5.3.8 sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime
	5.5.3.9 sg::SchedulerInterfaceForComponents::getGlobalQuantum
	5.5.3.10 sg::SchedulerInterfaceForComponents::getMinSyncLatency
	5.5.3.11 sg::SchedulerInterfaceForComponents::getNextSyncPoint
	5.5.3.12 sg::SchedulerInterfaceForComponents::getSimulatedTimeResolution
	5.5.3.13 sg::SchedulerInterfaceForComponents::removeCallback
	5.5.3.14 sg::SchedulerInterfaceForComponents::setGlobalQuantum
	5.5.3.15 sg::SchedulerInterfaceForComponents::setMinSyncLatency
	5.5.3.16 sg::SchedulerInterfaceForComponents::setSimulatedTimeResolution
	5.5.3.17 sg::SchedulerInterfaceForComponents::stopAcknowledge
	5.5.3.18 sg::SchedulerInterfaceForComponents::stopRequest
	5.5.3.19 sg::SchedulerInterfaceForComponents::wait(ThreadSignal)
	5.5.3.20 sg::SchedulerInterfaceForComponents::wait(ticks_t)

	5.5.4 sg::SchedulerRunnable class
	5.5.4.1 sg::SchedulerRunnable::breakQuantum
	5.5.4.2 sg::SchedulerRunnable::clearStopRequest
	5.5.4.3 sg::SchedulerRunnable::getName
	5.5.4.4 sg::SchedulerRunnable::setThreadProperty, sg::SchedulerRunnable::getThreadProperty
	5.5.4.5 sg::SchedulerRunnable::stopRequest
	5.5.4.6 sg::SchedulerRunnable::threadProc

	5.5.5 sg::SchedulerThread class
	5.5.5.1 sg::SchedulerThread::destructor
	5.5.5.2 sg::SchedulerThread::getName
	5.5.5.3 sg::SchedulerThread::setFrequency
	5.5.5.4 sg::SchedulerThread::start

	5.5.6 sg::ThreadSignal class
	5.5.6.1 sg::ThreadSignal::destructor
	5.5.6.2 sg::ThreadSignal::notify
	5.5.6.3 sg::ThreadSignal::getName

	5.5.7 sg::Timer class
	5.5.7.1 sg::Timer::cancel
	5.5.7.2 sg::Timer::destructor
	5.5.7.3 sg::Timer::getName
	5.5.7.4 sg::Timer::isSet
	5.5.7.5 sg::Timer::remaining
	5.5.7.6 sg::Timer::set
	5.5.7.7 sg::Timer::setFrequency

	5.5.8 sg::TimerCallback class
	5.5.8.1 sg::TimerCallback::getName
	5.5.8.2 sg::TimerCallback::timerCallback

	5.5.9 sg::FrequencySource class
	5.5.10 sg::FrequencyObserver class
	5.5.11 sg::SchedulerObject class
	5.5.11.1 sg::SchedulerObject::getName

	5.5.12 sg::scx_create_default_scheduler_mapping
	5.5.13 sg::scx_get_curr_scheduler_mapping

	5.6 SystemC Export limitations
	5.6.1 SystemC Export limitation on reentrancy
	5.6.2 SystemC Export limitation on calling wait()
	5.6.3 SystemC Export limitation on code translation support for external memory
	5.6.4 SystemC Export limitation on Fast Models versions for MI platforms

	6. Timing annotation
	6.1 CPI files
	6.2 CPI file syntax
	6.3 BNF specification for CPI files
	6.4 Instruction and data prefetching
	6.4.1 Configuring instruction prefetching
	6.4.2 Configuring data prefetching

	6.5 Configuring cache and TLB latency
	6.6 Timing annotation tutorial
	6.6.1 Setting up the environment
	6.6.1.1 Prerequisites
	6.6.1.2 Building the EVS_Base_Cortex-A75 example platform
	6.6.1.3 Calculating the execution time of an instruction
	6.6.1.4 Displaying the total execution time of the simulation
	6.6.1.5 Calculating the average CPI value

	6.6.2 Modeling Cycles Per Instruction (CPI)
	6.6.2.1 CPI parameters
	6.6.2.2 Specifying a fixed CPI value
	6.6.2.3 Example CPI file
	6.6.2.4 Defining CPI values in a CPI file
	6.6.2.5 Validating a CPI file
	6.6.2.6 CPI class example program
	6.6.2.7 Running the example with the default CPI value
	6.6.2.8 Running the example with a custom CPI file
	6.6.2.9 Running the example with a fixed CPI value

	6.6.3 Modeling branch prediction
	6.6.3.1 Branch predictor types and parameters
	6.6.3.2 Generating branch misprediction statistics
	6.6.3.2.1 BranchPrediction plug-in statistics
	6.6.3.2.2 MTI trace sources
	6.6.3.2.3 Example trace for a branch misprediction

	6.6.3.3 Branch prediction example program
	6.6.3.4 Running the simulation
	6.6.3.5 Comparison of branch predictor types
	6.6.3.6 Impact of branch misprediction on simulation time

	7. FastRAM
	7.1 Introducing FastRAM, a bus optimization for Fast Models
	7.2 How to enable FastRAM
	7.3 FastRAM configuration file syntax
	7.4 FastRAM configuration file example
	7.5 FastRAM limitations

	A. SystemC Export generated ports
	A.1 About SystemC Export generated ports

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

