
Introduction to SVE
Version 1.1

Non-Confidential
Copyright © 2022–2023, 2025 Arm Limited (or its
affiliates).
All rights reserved.

Issue 01
102476_0101_01_en

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Introduction to SVE

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0101-01 6 February 2025 Non-Confidential SVE vector length restricted to a power of two.

0100-02 6 January 2023 Non-Confidential Fix error in Figure 3-4 Per lane predication merging

0100-01 18 January 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 23

https://www.arm.com/company/policies/trademarks

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 23

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Contents

Contents

1. Overview...6
1.1 Before you begin.. 6

2. Introducing SVE...7

3. SVE architecture fundamentals...8
3.1 Scalable vector registers Z0-Z31..8
3.2 Scalable predicate registers P0-P15.. 10
3.3 Configurable vector length...11
3.4 SVE assembly syntax... 11
3.5 SVE architecture features...12

4. Programming with SVE... 18
4.1 Software and libraries support..18
4.2 How to program for SVE... 18
4.3 Write assembly..19
4.4 Use SVE instruction functions (instrinsics)... 19
4.5 Auto-vectorization..20
4.6 Use optimized libraries..21
4.7 How to run an SVE application.. 21

5. Check your knowledge... 22

6. Related information... 23

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Overview

1. Overview
This guide is a short introduction to the Scalable Vector Extension (SVE) for the Arm AArch64
architecture. In this guide, you can learn about the concepts and main features of SVE, the
application domains of SVE, and how SVE compares to Neon. We also describe how to develop a
program for an SVE-enabled target.

1.1 Before you begin
This article assumes you are already familiar with the following concepts:

• Single Instruction Multi Data (SIMD)

• Neon

If you are not familiar with these concepts, please read Introducing Neon for Armv8-A.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 23

https://developer.arm.com/documentation/102474/latest

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Introducing SVE

2. Introducing SVE
This section introduces the Scalable Vector Extension (SVE) of the Arm AArch64 architecture.

Following the development of the Neon architecture extension, which has a fixed 128-bit vector
length for the instruction set, Arm designed the Scalable Vector Extension (SVE) as a next-
generation SIMD extension to AArch64.

SVE allows flexible vector length implementations with a range of possible values in CPU
implementations. The vector length can vary from a minimum of 128 bits up to a maximum of
2048 bits, but must be a power of two. Valid vector length implementations are therefore 128,
256, 512, 1024, and 2048 bits.

The SVE design guarantees that the same application can run on different implementations
that support SVE, without the need to recompile the code. SVE improves the suitability of the
architecture for High Performance Computing (HPC) and Machine Learning (ML) applications,
which require very large quantities of data processing.

SVE introduces the following key features:

• Scalable vectors

• Per-lane predication

• Gather-load and scatter-store

• Speculative vectorization

• Horizontal and serialized vector operations

These features help vectorize and optimize loops when you process large datasets.

SVE is not an extension nor the replacement of the Neon instruction set. SVE is redesigned for
better data parallelism for HPC and ML.

SVE is specified in the Arm Architecture Reference Manual for A-profile
architecture.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 23

https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

3. SVE architecture fundamentals
This section introduces the basic architecture features of SVE.

SVE is based on a set of scalable vectors. SVE adds the following registers:

• 32 scalable vector registers, Z0-Z31

• 16 scalable predicate registers, P0-P15

• One First Fault predicate Register (FFR)

• Scalable vector system control registers ZCR_Elx

Let us look at each of these registers in turn.

3.1 Scalable vector registers Z0-Z31
The scalable vector registers Z0-Z31 can be implemented with 128-2048 bits in microarchitectures.
The bottom 128 bits are shared with the fixed 128-bit V0-V31 vectors of Neon.

The figure below shows the scalable vector registers Z0-Z31:

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

Figure 3-1: Scalable vector registers Z0-Z31

The scalable vectors:

• Can hold 64, 32, 16, and 8-bit elements

• Support integer, double-precision, single-precision, and half-precision floating-point elements

• Are configurable with the vector length for each Exception Level (EL)

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

3.2 Scalable predicate registers P0-P15
To govern which active elements are involved in the operations, the predicate registers are used
in many SVE instructions as masks, which also gives flexibility to the vector operation. The figure
below shows the scalable predicate registers P0-P15:

Figure 3-2: Scalable predicate registers P0-P15

The predicate registers are usually used as bit masks for data operations, where:

• Each predicate register is 1/8 of the Zx length.

• P0-P7 are governing predicates for load, store, and arithmetic.

• P8-P15 are extra predicates for loop management.

• First Fault Register (FFR) is a special predicate register, which is set by the first-fault load and
store instructions, to indicate how successful the load and store operation for each element
is. FFR is designed to support speculative memory accesses which make the vectorization, in
many situations, easier and safer.

The predicate registers can also be used as operands in various SVE instructions.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

3.3 Configurable vector length
Within the maximum implemented vector length, it is also possible to configure the length of the
vector for each Exception level through the ZCR_Elx registers. The vector length can be any power
of two from 128 bits up to the maximum implemented Non-streaming SVE vector length.

Privileged Exception levels can use the LEN fields of the scalable vector control registers ZCR_El1,
ZCR_El2, and ZCR_El3 to constrain the vector length at that Exception level and at less privileged
Exception levels:

Figure 3-3: Scalable vector control registers zcr-elx

ZCR LEN
LEN

LEN EL3
EL2

EL1

The scalable vector system control registers indicate the SVE implementation features:

• The ZCR_Elx.LEN field is for the vector length of the current and lower exception levels.

• Most bits are currently reserved for future use.

3.4 SVE assembly syntax
SVE assembly syntax format is composed of operation code, destination register, predicate register
(if the instruction supports predicate masks), and input operators. The following instruction
examples show the detail of this format.

Example 1:

LDFF1D {<Zt>.D}, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #3]

Where:

• <Zt> are the vectors, Z0-Z31

• <Zt>.D and <Zm>.D specify the element types of the destination and operand vectors and do
not need to specify the element numbers

• <Pg> are the predicates, P0-P15

• /Z is the zeroing predication

• <Zm> specifies the offset of the address mode for the gather-load

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

Example 2:

ADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Where:

• /M is the merging predication

• <Zdn> is both the destination register and one of the input operators. The instruction syntax
shows <Zdn> at both places for your convenience. In assembly encoding, they are encoded
once, for simplification.

Example 3

ORRS <Pd>.B, <Pg>.Z, <Pn>.B, <Pm>.B

Where:

• S is a new interpretation of predicate condition flags NZCV

• <Pg> is a governing predicate that acts a “bit mask” in the example operation.

3.5 SVE architecture features
SVE includes the following key architecture features:

• Per-lane predication

To allow flexible operations on selected elements, SVE introduces 16 governing predicate
registers, P0-P15, to indicate the valid operation on active lanes of the vectors. For example:

ADD Z0.D, P0/M, Z0.D, Z1.D // Add the active elements Z0 and Z1 and put the
 result in Z0. P0 indicates which elements of the operands are active and
 inactive. "M" after P0 refers to Merging, which indicates that the inactive
 element will be merged and as a result Z0 inactive element will remain its
 original value after the ADD operation. If it was "Z" after P0, which refers to
 Zeroing, then the inactive element of the destination register will be zeroed
 after the operation.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

Figure 3-4: Per lane predication merging

If the predicate specification is /Z, then the operation does zeroing to the results of the
corresponding elements of the destination vector, where the predicate elements are zero. For
example:

CPY Z0.B, P0/Z, #0xFF //Copy a signed integer 0xFF into Z0, where the inactive
 elements of Z0.B will be set to zero.

Figure 3-5: Per lane predication zeroing

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

Not all instructions have predicate options.

Also, not all predicate operations have both merging and zeroing options. You must refer to the
Arm Architecture Reference Manual for A-profile architecture for the specification details of
each instruction.

• Gather-load and scatter-store

The address mode in SVE allows the vector to be used as the base address and the offset in the
Gather-load and Scatter-store instructions, which enables non-contiguous memory locations.
For example:

LD1SB Z0.S, P0/Z, [Z1.S] // Gather load of signed bytes to active 32-bit
 elements of Z0 from memory addresses generated by 32-bit vector base Z1.

LD1SB Z0.D, P0/Z, [X0, Z1.D] // Gather load of signed bytes to active elements
 of Z0 from memory addresses generated by a 64-bit scalar base X0 plus vector
 index in Z1.D.

The following example shows the loading operation of LD1SB Z0.S, P0/Z, [Z1.S], where P0Z1
contains scattered addresses. After loading, the bottom byte of each Z0.S is updated with the
fetched data from the scattered memory location.

Figure 3-6: Gather-load and scatter-store example

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 23

https://developer.arm.com/documentation/ddi0487/latest/

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

• Predicate-driven loop control and management

As a key feature of SVE, predication does not only give the flexibility of controlling individual
elements of the vector operation, but also enables the predicate-driven loop control. Predicate-
driven loop control and management make the loop control efficient and flexible. This feature
removes the overhead of processing the extra loop heads and tails of partial vectors, by
registering the active and inactive elements index in the predicate registers. Predicate-driven
loop control and management means that, in the following loop iteration, only the active
elements do the expected options. For example:

WHILEL0 P0.S, x8, x9 // Generate a predicate in P0 that starting from the
 lowest numbered element is true while the incrementing value of the first,
 unsigned scalar X8 operand is lower than the second scalar operand X9 and false
 thereafter, up to the highest numbered element.

B.FIRST Loop_start // B.FIRST (equivalent to B.MI) or B.NFRST (equivalent to
 B.PL) are often used to branch based on the above instruction test results
 of whether the first element of P0 is true or false as an ending or continue
 condition of a loop.

Figure 3-7: Predicate-driven loop control and management example

• Vector partitioning for software-managed speculation

Speculative loads can cause challenges to the memory read of a traditional vector, where if
any fault occurs in some elements during the read, it is difficult to reverse the load operation
and track which elements failed the loading. Neon does not allow speculative load. To allow
speculative loads to vectors, for example LDRFF, SVE introduces the first-fault vector load
instructions. To allow vector accesses to cross into invalid pages, SVE also introduces the First-
Fault predicate Registers (FFRs). When loading to an SVE vector with first-fault vector load
instructions, the FFR register updates with the load success or fail result for each element.
When a load fault occurs, FFR immediately registers the corresponding element, registers
the rest of the elements as 0 or false, and does not trigger an exception. Commonly, RDFFR
instructions are used to read the FFR status. When the first element is false, RDFFR instructions
finish the iterations. If the first element is true, RDFFR instructions continue the iterations.
The length of FFR is the same as a predicate vector. The value can be initialized with SETFFR
instruction. The following example uses LDFF1D to read from memory, and the FFR updates
correspondingly:

LDFF1D Z0.D, P0/Z, [Z1.D, #0] // Gather load with first-faulting behaviour of
 doublewords to active elements of Z0 from memory addresses generated by the

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

 vector base Z1 plus 0. Inactive elements will not read Device memory or signal
 faults and are set to zero in the destination vector. Successful loads from the
 valid memory will set true to the elements in FFR. The first-faulting load will
 set false or 0 to the corresponding element and the rest of the elements in FFR.

Figure 3-8: Vector partitioning for software-managed speculation example

• Extended floating-point and horizontal reductions

To allow efficient reduction operations in a vector, and meet different requirements to the
accuracy, SVE enhances floating-point and horizontal reduction operations. The instructions
might have in-order (low to high) or tree-based (pairwise) floating-point reduction ordering,
where the operation ordering might result in different rounding results. These operations trade-
off repeatability and performance. For example:

FADDA D0, P0/M, D1, Z2.D // Floating-point add strictly-ordered reduction from
 low to high elements of the vector source, accumulating the result in a SIMD&FP
 scalar register. The example instruction adds D1 and all active elements of
 Z2.D and places the result in scalar register D0. Vector elements are processed
 strictly in order from low to high, with the scalar source D1 providing the
 initial value. Inactive elements in the source vector are ignored by FADDA,
 however FADDV would perform a recursive pairwise reduction and put the result in
 a scalar register.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

SVE architecture fundamentals

Figure 3-9: Extended floating-point and horizontal reductions example

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Programming with SVE

4. Programming with SVE
This section describes the software tools and libraries that support SVE application development.
This section also describes how to develop your application for an SVE-enabled target and run it
on SVE-enabled hardware, and describes how to run your application under SVE emulation on any
Armv8-A-based hardware.

4.1 Software and libraries support
To build an SVE application, you must choose a compiler that supports SVE features, such as:

• Version 8.0+ of the GNU tools support SVE optimization for C/C++/Fortran.

• Arm Compiler for Linux, a native compiler for Arm Linux. Arm Compiler for Linux versions
18.0+ supports SVE code generation for C, C++, and Fortran code. Arm Compiler for Linux is
part of the Arm Linux user-space tooling solution Arm Allinea Studio.

• Arm Compiler 6, a cross platform compiler for bare-metal application development, also
supports SVE code generation from version 6.12. In addition to the compilers, you can also rely
on some highly-optimized SVE libraries, such as:

• Arm Performance Libraries, a set of highly optimized math routines, can be linked to your
application. Arm Performance Libraries versions 19.3+ support math libraries for SVE. Arm
Performance Libraries is part of Arm Compiler for Linux.

• Other third-party math libraries.

4.2 How to program for SVE
There are a few ways to write or generate SVE code. In this section of the guide, we explore four
methods of programming for SVE:

• Write SVE assembly code

• Program with SVE intrinsics

• Auto-vectorization

• Using SVE optimized libraries

Let us look at these four options in more detail.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 23

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/embedded/arm-compiler
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Programming with SVE

4.3 Write assembly
You can write SVE instructions as inline assembly in your C/C++ code or as a complete function in
assembler source. For example:

 .globl subtract_arrays // -- Begin function
 .p2align 2
 .type subtract_arrays,@function
subtract_arrays: // @subtract_arrays
 .cfi_startproc
// %bb.0:
 orr w9, wzr, #0x400
 mov x8, xzr
 whilelo p0.s, xzr, x9
.LBB0_1: // =>This Inner Loop Header: Depth=1
 ld1w { z0.s }, p0/z, [x1, x8, lsl #2]
 ld1w { z1.s }, p0/z, [x2, x8, lsl #2]
 sub z0.s, z0.s, z1.s
 st1w { z0.s }, p0, [x0, x8, lsl #2]
 incw x8
 whilelo p0.s, x8, x9
 b.mi .LBB0_1
// %bb.2:
 ret
.Lfunc_end0:
 .size subtract_arrays, .Lfunc_end0-subtract_arrays
 .cfi_endproc T

If you are mixing functions that are written in a high-level language and in assembly, you must be
familiar with Application Binary Interface (ABI) standard, as updated for SVE. The Procedure Call
Standard for Arm Architecture (AAPCS) specifies the data types and register allocations and is most
relevant to programming in assembly. The AAPCS requires that:

• Z0-Z7 and P0-P3 are used for passing the scalable vector parameters and results.

• Z8-Z15 and P4-P15 are callee-saved.

• All the other vector registers (Z16-Z31) are corruptible by the callee function, where the caller
function is responsible for backing up and restoring them, when needed.

4.4 Use SVE instruction functions (instrinsics)
SVE intrinsics are functions supported by the compilers that can be replaced with corresponding
instructions. Programmers can directly call the instruction functions in high-level languages like C
and C++. The ACLE (Arm C Language Extension) for SVE defines which SVE instruction functions
are available, their parameters and what they do. Compilers which support the ACLE can replace
the intrinsics with mapped SVE instructions during the compilation. To use the ACLE intrinsics,
you must include the header file “arm_sve.h”, which contains a list of vector types and instruction
functions (for SVE) that can be used in C/C++. Each data type describes the size and datatype of
the elements in the vector:

• svint8_t svuint8_t

• svint16_t svuint16_t svfloat16_t

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 23

https://github.com/ARM-software/abi-aa/releases
https://developer.arm.com/documentation/ihi0055/latest
https://developer.arm.com/documentation/ihi0055/latest

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Programming with SVE

• svint32_t svuint32_t svfloat32_t

• svint64_t svuint64_t svfloat64_t

For example, svint64_t represents a vector of 64-bit signed integers, and svfloat16_t represents
a vector of half-precision floating-point numbers.

The following example C code has been manually optimized with SVE intrinsics:

//intrinsic_example.c
#include <arm_sve.h>
svuint64_t uaddlb_array(svuint32_t Zs1, svuint32_t Zs2)
{
 // widening add of even elements
 svuint64_t result = svaddlb(Zs1, Zs2);
 return result;
}

Source code, which includes arm_sve.h, can use the SVE vector types in the same way data types
can be used for variable declaration and function parameters. To compile the code using Arm C/C+
+ Compiler, and target the Armv8-A architecture that supports SVE, use:

armclang -O3 -S -march=armv8-a+sve -o intrinsic_example.s intrinsic_example.c

This command generates the following assembly code:

//instrinsic_example.s
uaddlb_array: // @uaddlb_array
 .cfi_startproc
// %bb.0:
 uaddlb z0.d, z0.s, z1.s
 ret

This example uses Arm Compiler for Linux 20.0.

4.5 Auto-vectorization
C/C++/Fortran compilers, for example the native Arm Compiler for Linux and GNU compilers
for Arm platforms, support vectorizing C, C++, and Fortran loops using SVE instructions. To
generate SVE code, select the appropriate compiler options. For example, when armclang uses
the -march=armv8-a+sve option, the armclang also uses the default options -fvectorize and -O2.
If you want to use the SVE-enabled version of the libraries, combine -march=armv8-a+sve with -
armpl=sve. For more information about the compiler optimization options, refer to the compiler
developer and reference guides, or the compiler man pages.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 23

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Programming with SVE

4.6 Use optimized libraries
Use libraries that are highly-optimized for SVE, for example Arm Performance Libraries and Arm
Compute Library. Arm Performance Libraries contain highly-optimized implementations for BLAS,
LAPACK, FFT, sparse linear algebra, and libamath-optimized mathematical functions. To be able
to link any of the Arm Performance Libraries functions, you must install Arm Allinea Studio and
include armpl.h in your code. To build the application with Arm Compiler for Linux and Arm
Performance Libraries, you must specify -armpl=<arg> on the command line. If you use the GNU
tools, you must include the Arm Performance Libraries installation path in the linker command line
with -L<armpl_install_dir>/lib, and specify the GNU-equivalent to the Arm Compiler for Linux
armpl=<arg> option, which is -larmpl_lp64. For more information, please reference to the Arm
Performance Libraries Get started guide.

4.7 How to run an SVE application
If you do not have access to SVE hardware, you can use models or emulators to run your code.
There are a few models and emulators to choose from:

• QEMU: Cross and native models, which support modeling on Arm AArch64 platforms with SVE

• Fast Models: Cross platform models, which support modeling Arm AArch64 platforms with SVE,
running on x86-based hosts.

• Arm Instruction Emulator (ArmIE): Native AArch64 emulator, which supports the emulation of
SVE instructions, and other new instructions, for future architectures.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 23

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/documentation/102574/latest/
https://developer.arm.com/documentation/102574/latest/

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Check your knowledge

5. Check your knowledge
The following questions will help you test your knowledge.

Which scalable vectors are introduced in SVE?
SVE introduces Z0- Z31 vectors, P0-P15 predicate registers, and an FFR predicate register.

How many bits can SVE vectors have?
Z0- Z31 can be any power of two from 128 bits to 2048 bits inclusive.

What are the advantages of SVE compared to a traditional SIMD instruction set, for example
Neon?

The advantages of SVE, compared to Neon, include:

• SVE programs can be vector-length agnostic; a single binary works on machines with different
hardware vector lengths.

• SVE has more vectorization flexibility.

• SVE is designed for HPC and ML. Compared to Neon-based targets, SVE enables application
performance advantages, even when the SVE-enabled targets use the same vector length (128-
bit) as Neon targets.

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 23

Introduction to SVE Document ID: 102476_0101_01_en
Version 1.1

Related information

6. Related information
Here are some resources that relate to the content in this guide:

• Arm architecture exploration tools

• Arm Architecture Reference Manual for A-profile architecture

• ACLE (Arm C Language Extensions (ACLE) for SVE

• Arm A64 Instruction Set Architecture: Future Architecture Technologies in the A architecture
profile

• The Procedure Call Standard for Arm Architecture (AAPCS)

• Vector Function Application Binary Interface Specification for AArch64

• Server and HPC Linux user space software tooling: Arm Linux Compiler, Arm Performance
Libraries

• Arm Instruction Emulator

• SVE Programmers Guide

• Arm SVE intrinsics coding considerations

• SVE and Neon coding compared

• Arm Community – Ask development questions and find articles and blogs on specific topics
from Arm experts.

• Arm Compiler 6 for bare-metal images

• Fast models

• Neon resources

• QEMU

Copyright © 2022–2023, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 23

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/docs/100987/latest
https://developer.arm.com/documentation/ddi0602/latest/SVE-Instructions
https://developer.arm.com/documentation/ddi0602/latest/SVE-Instructions
https://developer.arm.com/documentation/ddi0602/latest
https://developer.arm.com/documentation/101129/latest
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide
https://developer.arm.com/docs/100891/latest/coding-considerations/using-sve-intrinsics-directly-in-your-c-code
https://developer.arm.com/architectures/learn-the-architecture/sve-and-neon-coding-compared
https://community.arm.com/
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://www.qemu.org/docs/master/system/target-arm.html

	Introduction to SVE
	Contents
	1. Overview
	1.1 Before you begin

	2. Introducing SVE
	3. SVE architecture fundamentals
	3.1 Scalable vector registers Z0-Z31
	3.2 Scalable predicate registers P0-P15
	3.3 Configurable vector length
	3.4 SVE assembly syntax
	3.5 SVE architecture features

	4. Programming with SVE
	4.1 Software and libraries support
	4.2 How to program for SVE
	4.3 Write assembly
	4.4 Use SVE instruction functions (instrinsics)
	4.5 Auto-vectorization
	4.6 Use optimized libraries
	4.7 How to run an SVE application

	5. Check your knowledge
	6. Related information

