
Arm® GPU Best Practices
Revision 3.4

Developer Guide

Non-Confidential
Copyright © 2017, 2019–2025 Arm Limited (or its
affiliates).
All rights reserved.

Issue 10
101897_0304_10_en

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Arm® GPU Best Practices Developer Guide

This document is Non-Confidential.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (101897_0304_10_en) was issued on 2025-01-31. There might be a later issue at
https://developer.arm.com/documentation/101897

The product revision is 3.4.

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This guide is for experienced software engineers who want to optimize the performance of the
graphics in their application.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 135

https://developer.arm.com/documentation/101897
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Contents

Contents

1. Overview...7
1.1 Before you begin.. 7
1.2 Arm GPU datasheet and performance counters...7
1.3 The graphics rendering pipeline.. 8

2. Optimization basics..10
2.1 Optimization process... 10
2.2 Basic optimization checklist... 14
2.3 Memory bandwidth..15
2.4 Converting from desktop to mobile...16

3. Optimizing application logic.. 17
3.1 Basic application optimizations... 17
3.2 Draw call batching best practices.. 18
3.3 Draw call culling best practices.. 19
3.4 Optimizing the draw call render order..20
3.5 Avoid using depth prepasses...23
3.6 OpenGL ES GPU pipelining... 24
3.7 OpenGL ES Separate Shader Objects... 25
3.8 Vulkan GPU pipelining...26
3.9 Vulkan pipeline synchronization..28
3.10 Pipelined resource updates..31
3.11 Optimize attachment grouping... 32
3.12 Queries... 33

4. CPU overheads..34
4.1 Compiling shaders in OpenGL ES.. 34
4.2 Pipeline creation in Vulkan...34
4.3 Allocating memory in Vulkan...36
4.4 OpenGL ES CPU memory mapping...36
4.5 Vulkan CPU memory-mapping.. 37
4.6 Command pools for Vulkan... 39
4.7 Optimizing command buffers for Vulkan.. 40

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Contents

4.8 Secondary command buffers... 41
4.9 Optimizing descriptor sets and layouts for Vulkan...42

5. Vertex shading...44
5.1 Basic vertex shader optimizations..44
5.2 Index draw calls.. 45
5.3 Index buffer encoding... 46
5.4 Index sparsity...47
5.5 Attribute precision..48
5.6 Attribute layout...49
5.7 Varying precision...50
5.8 Triangle density... 51
5.9 Instanced vertex buffers... 51

6. Tessellation, geometry shading, and tiling... 53
6.1 Tessellation... 53
6.2 Geometry shading.. 54
6.3 Tiling and effective triangulation.. 55

7. Fragment shading... 56
7.1 Basic fragment shader optimizations...56
7.2 Efficient render passes with OpenGL ES..57
7.3 Efficient render passes with Vulkan...58
7.4 Multisampling for OpenGL ES...59
7.5 Multisampling for Vulkan..60
7.6 Multipass rendering..61
7.7 HDR rendering.. 65
7.8 Stencil updates..66
7.9 Blending.. 66
7.10 Transaction elimination... 67
7.11 Variable rate shading...69

8. Buffers and textures.. 72
8.1 Buffer update for OpenGL ES.. 72
8.2 Robust buffer access... 73
8.3 Staging buffers.. 74
8.4 Texture sampling performance.. 75

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Contents

8.5 Anisotropic sampling performance...78
8.6 Texture and sampler descriptors...79
8.7 sRGB textures..82
8.8 AFBC textures...82
8.9 AFBC textures for Vulkan.. 83
8.10 AFRC... 85
8.11 Runtime compression..87

9. Compute shading..89
9.1 Image processing.. 89
9.2 Workgroup sizes... 91
9.3 Shared memory...92

10. Shader code...94
10.1 Minimize precision... 94
10.2 Check precision.. 96
10.3 Vectorized arithmetic code..96
10.4 Vectorize memory access...97
10.5 Manual source code optimization.. 98
10.6 Generating SPIR-V...99
10.7 Instruction caches..100
10.8 Uniforms.. 101
10.9 Uniform subexpressions...102
10.10 Uniform control-flow..102
10.11 Branches..103
10.12 Discards... 104
10.13 Atomics..105
10.14 Multi-Draw Indirect.. 106

11. Ray tracing...107
11.1 Acceleration structures...107
11.2 Efficient ray tracing... 109
11.3 Ray query.. 113
11.4 Ray tracing pipeline...116

12. System integration...119
12.1 Using EGL buffer preservation in OpenGL ES... 119

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Contents

12.2 Android blob cache size in OpenGL ES...120
12.3 Optimizing the swapchain surface count for Vulkan.. 121
12.4 Optimizing the swap chain surface rotation for Vulkan... 122
12.5 Optimizing swapchain semaphores for Vulkan...123
12.6 Window buffer alignment..124
12.7 Vulkan private data... 124
12.8 Vulkan extensions to avoid... 125

Proprietary notice..126

Product and document information... 128
Product status...128
Revision history.. 128
Conventions...132

Useful resources.. 134

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Overview

1. Overview
Our guide provides recommendations on how to optimize your applications when developing for
Arm® Immortalis™ and Mali™ GPUs. The recommendations are intended for established developers
who want to begin working with Arm GPUs.

1.1 Before you begin
Real-world applications can be complicated and there are always exceptions to this generalized
advice. Therefore, we recommend that you regularly make measurements of any applied
optimizations to check that they are performing as intended on your target devices.

This guide is aimed at established developers. We therefore assume that you have
experience as a graphics developer, and that you have a general familiarity with the
underlying APIs.

1.2 Arm GPU datasheet and performance counters
Arm GPUs have evolved as technology has improved. Over time, new standards have been
supported, features added, and performance and efficiency improved.

The following recommendations are correct for Midgard, Bifrost, Valhall and 5th
Gen, which includes the Mali™-G725 and Immortalis™-G725. The recommendations
are also correct for DDK drivers up to the r54 release of OpenGL ES and also the
r54 release of Vulkan.

Arm GPU datasheet
For an overview of the different Arm GPU capabilities, see Arm® GPU Datasheet.

Arm GPU performance counters
Arm GPUs implement a comprehensive range of performance counters that enable you to closely
monitor GPU activity as your application runs.

To help you to identify the cause of bottlenecks or inefficient workloads, the Arm Streamline
profiler can capture and present Arm CPU and GPU performance counter data as a series of easy-
to-read charts.

For an overview of the performance counters, see Arm® GPU Performance Counters.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 135

https://developer.arm.com/documentation/102849/latest
https://developer.arm.com/documentation#q=Mali%20Performance%20Counter%20Reference

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Overview

1.3 The graphics rendering pipeline
Graphics processing can be represented as a pipeline of processing stages that includes the
application, the graphics driver, and the various hardware stages inside the GPU. Most stages
follow a strict architectural pipeline, with outputs from one stage becoming the inputs into the next
stage.

The following figure shows the graphics pipeline beginning at the application, and ending at the
depth, color, and stencil buffers:

Figure 1-1: The stages of the graphics pipeline

Application Graphics driver Vertex shader Primitive
assembly 1

Tessellation
control shaderTessellatorTessellation

evaluation shader
Primitive

assembly 2

Geometry shader Rasterizer Early fragment
operations Fragment shader

Late fragment
operations

Depth buffer

Color buffer

Stencil buffer

Compute shaders are the exception to this strict pipeline because shader results are written back
to system memory. Any stage of the pipeline that can consume a buffer or texture resource can use
the compute shader outputs.

Guide structure
This guide has been structured to follow the graphics rendering pipeline. Each topic gives
recommendations that can be applied to workloads that are running in that pipeline stage.

There are some generic topics, such as shader program authoring advice, that applies to multiple
pipeline stages.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Overview

We provide explanations for our recommendations, along with technical points that can be
considered during development. Where possible, we document the likely impact of ignoring the
advice and also which techniques to use when debugging.

We provide relatively specific advice in this guide. For example, we tell you not to use discard in
fragment shaders. There are use-cases where you must use a feature that we would otherwise
tell you not to use, because the feature is required for some algorithms. Therefore, make your
implementation decisions as per your specific use-case. However, always consider that there could
be an underlying performance risk with certain techniques.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

2. Optimization basics
This chapter covers general information on how to optimize for mobile GPUs.

2.1 Optimization process
You must have a good process to figure out what needs optimizing and to inspect your code and
shaders. It is important to follow best practices, however, there are some aspects that are more
important than others.

Prerequisites
You must understand the following concepts:

• Application code

• Vertex shaders

• Fragment shaders

Set a computation budget
First, try to set a computation budget to measure your performance against. There are multiple
measures you can set a budget for. For example:

• Frame time

• Triangle count

• Application processor cycles

• Vertex processing cycles

• Fragment processing cycles

• Memory bandwidth

The frame time is the key budget, however, measuring the other components helps you to locate
where other bottlenecks are. The bottlenecks highlight where you can find extra performance
gains.

Example: Fragment shader budget
The calculation to work out the fragment shader budget is the following:

• Multiply the number of GPU shader cores by the GPU clock speed. This gives the maximum
theoretical number of cycles per-second. Multiply this by 0.8 to give a more realistic number of
available fragment processing cycles per-second. This is result A.

• Multiply the frame height by the frame width. This gives the number of pixels per frame. Now
multiply this by the required frame rate. This gives the number of pixels required per-second.
To take account of average overdraw, multiply this number by 2.5. This gives the number of
fragments required per second. This is result B.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

• Divide the value of result A by the value of result B. The result is the average number of cycles
a fragment shader can take.

However, you do not have to make all of your fragment shaders take this number of cycles. For
example, you can use longer, more complex, shaders on objects closer to the camera as well as
shorter, and less complex, shaders on more distant objects.

Do not assume the number of fragment processing cycles equals the number of fragment
processing instructions. The processors in Arm GPUs can do many operations per cycle. You can
use the Mali Offline Compiler to determine the number of cycles a shader requires.

Basic optimization workflow
Try to repeat the following process until your application fulfills its computation budget:

• Take measurements.

• Locate the bottleneck.

• Determine and apply an optimization.

• Verify the optimization improves performance.

Measurements must be taken with real hardware, for example with the Arm GPU you want to test
the performance on. Verifying performance gains from an optimization is important because there
can be multiple bottlenecks, and some optimizations are context-dependent.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

Figure 2-1: Optimization process

Start

Take
Measurements

Analyze
Measurements

Locate bottleneck

Determine the
relevant optimization

Apply the optimization

Verify the optimization
 works

Performance acceptable?

Stop

Consider the following areas when determining where an optimization is needed:

• Application code.

• Misuse of API.

• Use of blocking API calls.

• Vertex processing.

• Triangle setup.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

• Fragment processing.

• Memory bandwidth.

Optimization pitfalls to avoid
There are several common pitfalls to be aware of when optimizing:

• Do not use frames per second as a measurement. Use frame times, because improvements are
linear and easier to interpret. Frames per second gives a skewed inverse measurement.

• Do not assume that because your GPU bottleneck is fixed that your CPU is running fast
enough, or too slow. Bottlenecks move between processors, so be sure to measure all of them
to monitor performance.

• Do not keep optimizing fragment shaders when the application is either vertex shader
or application-bound, or vice versa. Work on the bottleneck. Indeed, you can improve
performance by moving work to the less heavily loaded parts of the pipeline.

• Make sure VSYNC is off when taking measurements.

Negative impacts of incorrect optimization process
An inefficient optimization process means:

• You cannot find the correct performance bottlenecks that need fixing.

• You cannot reach the target performance that you want.

Debugging tools to use in your optimization process
Arm Performance Studio is available with various tools to help you in your optimization process:

• Streamline provides the performance profile needed for deep-dive analysis of your application’s
CPU usage, GPU usage, and memory bandwidth. Its Performance Advisor feature gives you
easy-to-read reports with actionable advice about how to optimize your application.

• RenderDoc for Arm GPUs lets you debug OpenGL ES and Vulkan API calls in your application.
It can visualize the GPU rendering and overdraw, as well as the API state and data resources
used, for each draw call.

• Mali Offline Compiler performs static analysis of your shader programs, for any current Arm
GPU, giving you resource usage and an approximate performance cost.

• Frame Advisor gives analysis of a problem frame, showing the API calls, rendering and
comprehensive geometry metrics to show what might be slowing your application.

For more about Arm Performance Studio, along with useful tutorials and training videos, see Arm®

Performance Studio.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 135

https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

2.2 Basic optimization checklist
This chapter contains a set of standard things to check to ensure your application is getting the
optimization basics correct.

Prerequisites
You must understand the following concepts:

• Application code

Checklist
There are many basic optimization approaches that you can try. These include:

• Ensure target display settings are correct: Check that you have requested a compatible
resolution and color depth for the screen, and a drawing surface format that works with the
framebuffer. Also check that what you have received from the API is what you requested.

• Build for the correct architecture: Work out which you are targeting and accept the limitations
of older chips if necessary.

• Use the latest tools: Improvements are always being added. Remember to rebuild after updating
your tools or targets.

• Use Neon or other hardware facilities that are available: Be aware of the abilities of the
hardware you are targeting and be sure to take full advantage of their features.

• Remove debugging information: Optimize on release builds, with a minimum of printf calls and
no more than one glGetError() call per-frame.

• Use VSYNC - but not while doing performance measurements. While enabling VSYNC reduces
power consumption in your final build, it ruins your optimization measurements.

• Use mipmapping for textures in 3D scenes: Mipmapping is a rare optimization that improves
both quality and performance. See Texture sampling performance for more information.

• Use texture compression, ideally ASTC: See Texture sampling performance for more
information.

• Use vertex buffers to save bandwidth: For more details on the best use of vertex buffers, see
Instanced vertex buffers.

• Ensure you are not CPU-bound. See Optimizing application logic and CPU overheads for more
information.

Avoid optimization pitfalls
There are also some things to avoid for optimal running performance:

• Avoid calls that stall the graphics pipeline. glReadPixels(), glCopyTexImage(), and
glTexSubImage() cause the entire image to be rendered if there are queued texture references.
See OpenGL ES GPU pipelining for more information.

• Do not compile shaders within a frame. It is more efficient to compile them on application start,
or ship pre-compiled shaders. If necessary, compile them asynchronously on a background
thread. See Compiling Shaders in OpenGL ES for more information.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

Negative impacts of non-optimized applications
Running non-optimized code results in increased power use and a less pleasant experience for
users.

Related information
Arm® GPU Training Series, on the Arm Software YouTube Channel.

2.3 Memory bandwidth
Memory bandwidth requires a lot of power. Therefore, memory bandwidth is more restricted in
mobile devices compared to desktop systems.

Prerequisites
You must understand the following concepts:

• Memory

• Caching

Reduce memory bandwidth
Memory bandwidth can easily become a bottleneck limiting the performance of your application.
Memory bandwidth is a shared resource, therefore using too much can affect the performance of
the system in unpredictable ways.

Accessing data in caches reduces power usage and improves performance. If you must read from
memory a lot, use techniques such as mipmapping, and texture compression to ensure your data is
cache-friendly. Other methods to reduce memory bandwidth use include:

• Activate back face culling.

• Use view frustum culling.

• Ensure textures are not too large.

• Use a texture resolution that fits the object on screen.

• Use low bit depth textures where possible.

• Use lower resolution textures if the texture does not contain sharp detail.

• Use fewer textures. Pre-bake effects in, utilize unused channels, and use texture atlases.

• Use texture compression.

• Only use trilinear filtering on specific objects.

• Only use anisotropic filtering on specific objects.

• Utilize Level of Detail (LOD) for meshes and mipmapping for textures.

Avoid overdraw
Overdraw causes excess memory bandwidth use, therefore, you must limit overdraw as much as
possible.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 135

https://www.youtube.com/playlist?list=PLKjl7IFAwc4QUTejaX2vpIwXstbgf8Ik7

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimization basics

Negative impacts of excess bandwidth use
Memory bandwidth impacts everything, which means that issues can appear anywhere. If it
seems that a processor is the bottleneck, but optimizations make no difference, it may in fact be
bandwidth issues.

Excess memory bandwidth use causes excess power use, so battery life becomes impacted.

Debugging memory bandwidth issues
To track memory bandwidth use, use Arm® Streamline Performance Analyzer to profile your
application.

2.4 Converting from desktop to mobile
When converting an application from desktop to mobile, there are several standard considerations
to improve how the application runs.

Prerequisites
You must understand the following concepts:

• Tile-based graphics processing

Use appropriate graphics assets
When porting to mobile, the whole Basic optimization checklist applies along with reducing
Memory bandwidth, but also ensure you use graphic assets that are appropriate for your platform.

It is also recommended on mobile to:

• Draw non-transparent objects in front-to-back order, before any transparent objects.

• Use texture compression.

Avoid inappropriate graphics assets
Large assets slow your application.

• Avoid high numbers of triangles. See Triangle density.

• Avoid long shaders.

• Avoid high bit depth and high-resolution textures.

• Avoid overly conservative Vulkan dependencies. These can block the pipeline on the tile-based
GPUs used in mobile. See Vulkan pipeline synchronization for how to handle different shader
stages dependencies.

Negative impacts of not considering mobile
Running desktop content on mobile leads to unnecessarily fast use of power, and a less smooth
experience for users.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 135

https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

3. Optimizing application logic
It is important to optimize application logic to minimize the CPU load that the graphics driver
generates.

The CPU is used to process the application logic, drive the graphics stack, and run the graphics
driver. The graphics driver is the first potential source of performance issues that your application
can run into.

3.1 Basic application optimizations
There are several standard practices to ensure the work being done on the CPU does not slow
down your application.

Prerequisites
You must understand the following concepts:

• Application code

• Caching

Common optimizations
When programming there are many ways of implementing solutions. It is worth spending time
thinking about whether there is a simpler way or an acceptable approximation. For instance, for 3D
collision detection it can be useful to use hierarchical bounding boxes to test against.

Other important considerations include:

• Align data: This makes it more cacheable and faster to copy between the application and the
graphics driver.

• Optimize loops: Move computations out of the loop where possible. Simplify the code and
minimize the blocks of data worked on. Where possible avoid branches and function calls,
especially in inner loops. Some level of unrolling can be useful.

• Use vector instructions: SIMD technologies like Neon allow the processor to do multiple
calculations simultaneously.

• Use fast data structures: Keep data together rather than using pointers, so it can be copied
from memory efficiently. Optimize the data elements to fit in a cache.

• Use multi-processing: Working on different threads can allow work to be done in parallel,
meaning a quicker execution time.

These tips, while often handy in themselves, can also mean the compiler is able to make further
optimizations.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

API optimizations
The main API optimization is to minimize draw calls, combining what you can. To aid optimization,
try combining textures in a texture atlas and multiple texture atlases together. Text textures can be
combined in a font atlas. For more on optimizing draw calls see Draw call batching best practices,
Draw call culling best practices and Optimizing the draw call render order.

Try minimizing API state changes. You can reduce state changes by:

• Grouping objects using the same texture, allowing shared texture binding calls.

• Grouping objects using the same state together, allowing shared state setting calls.

• Using texture atlases, allowing more grouping and reduced numbers of texturing binding calls.

• Keeping track of the current state, allowing only making necessary state changes.

• For OpenGL ES, removing redundant glEnable() and glDisable() calls if no state change
occurred.

Avoid the graphics pipeline stalling
Do not make API calls that cause the image to be rendered unnecessarily.

Negative consequences of inefficient application code
Inefficient application code results in a slower program.

3.2 Draw call batching best practices
Committing draw calls to the command stream is an expensive operation in terms of graphics driver
overheads on the application processor. Draw call runtime costs are higher on OpenGL ES than on
Vulkan.

Prerequisites
You must understand the following concepts:

• Draw calls.

• Instancing.

Batch rendering and command buffers to reduce draw calls
Draw calls that contain few vertices and fragments are quicker to process on the GPU, compared
to the CPU time that is required to dispatch the workload. Therefore, the performance of the
application is CPU-limited because the CPU is unable to keep the GPU busy.

These issues encourage draw call batching. Draw call batching merges rendering for multiple
objects that use the same render state into a single draw call. This reduces the total number of
draw calls required to render each frame, which lowers the CPU processing cost and energy
consumption.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

How to optimize draw call batching
Try using the following optimization techniques:

• Batch objects to reduce the draw call count.

• Use batches, even if not CPU-limited, to reduce system power consumption.

• Use instanced draw calls when drawing multiple copies of a mesh. Instancing allows the
application to test and cull individual instances that are, for example, outside the view frustum.

• For OpenGL ES, aim for fewer than 500 draw calls per frame.

• For Vulkan, aim for fewer than 1000 draw calls per frame.

Because CPU performance can vary widely between chipsets, these draw call count
recommendations are approximate guidelines for current Arm GPU hardware.

Behaviors to avoid when draw call batching
Arm recommends that you:

• Do not make batches so large that frustum culling, and sorting for front-to-back rendering
order, become inefficient.

• Do not request many small draw calls for rendering, for example single points or quads, without
batching.

Negative impacts of unoptimized draw call batches
The different types of impact you can see are:

• Higher application CPU load, because of a high draw call count.

• A reduction in overall performance if the application is CPU bound.

Debugging when draw call batching
Try the following debugging tips:

1. Profiling the application CPU load.

2. Counting the number of draw calls per frame.

3.3 Draw call culling best practices
The fastest draw calls that an application can process are the ones that are discarded before they
reach the graphics API.

Prerequisites
You must understand the following concepts:

• Culling.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

• Primitives.

• Vertex shading.

Minimizing the number of draw calls
Application culling of entire meshes is always more efficient than per-primitive culling in the GPU,
because it can exploit scene knowledge. GPU culling can only be performed after the primitive clip-
space coordinates are known. Therefore, the vertex shading must be executed even if the primitive
is eventually culled.

How to optimize culling draw calls
Try using the following optimization techniques:

• Cull objects that are out of frustum on the CPU. For example, by using bounding box frustum
checks.

• Cull objects that are known to be occluded on the CPU. For example, by using portal culling.

• Experiment to find a balance between batch size and culling efficiency.

Outcome to avoid when draw call culling
Do not send every object to the graphics API.

Negative impacts on the CPU and GPU
Unoptimized draw call culling can lead to the following problems:

• Higher application CPU load, because of unnecessary draw calls.

• High GPU vertex shading and memory bandwidth, because of redundant vertex shading.

Debugging draw call culling problems
Try the following debugging tips:

• Profile the application CPU load.

• Use GPU performance counters to verify tiler primitive culling rates. Expect around 50% of the
triangles to be culled because they are back-facing inside the frustum. Higher culling rates can
indicate that the application needs an improved draw call culling approach.

3.4 Optimizing the draw call render order
When rendering draw calls, the GPU can reject occluded fragments efficiently using the early ZS
test. An efficient draw call order can maximize the benefit of the early ZS test by removing as many
occluded fragments as possible.

Prerequisites
You must understand the following concepts:

• Command buffers.

• Draw calls.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

• Early and late ZS testing.

• Render targets.

• Geometry buffer (G-buffer).

Increasing culling rates using early ZS testing and Forward Pixel Kill
To get the highest fragment culling rate from the early ZS unit, first render all opaque meshes in a
front-to-back render order. To ensure blending works correctly, render all transparent meshes in a
back-to-front render order, over the top of the opaque geometry.

All Arm GPUs since the Mali-T620 GPU include the Forward Pixel Kill (FPK) optimization. FPK
provides automatic hidden surface removal of fragments that are occluded, which early ZS testing
does not kill.

The removal of occluded fragments occurs due to the use of a back-to-front render order for
opaque geometry. However, do not rely on the FPK optimization alone. An early ZS test is always
more energy-efficient, consistent, and works on older Arm GPUs that do not include hidden surface
removal.

Although it is best to utilize early ZS rather than FPK, it can be useful to know what stops FPK
working. Situations where FPK commonly fails include draw calls using:

• Alpha blended transparency

• Shader programmatic framebuffer access.

• Late ZS testing.

• Small triangles.

Fragment Prepass
From Mali-G725 and Immortalis-G925 onwards, there is a new feature called Fragment Prepass.
Fragment Prepass reliably removes overdrawn fragments, removing redundant shading which
improves performance and energy efficiency.

As long as there are no incompatible draw calls, Fragment Prepass’ culling efficiency is not sensitive
to application draw order, enabling applications to disable front-to-back sorting of objects in
software. This reduces the CPU cost of issuing draw calls to the GPU.

The prepass handles many common usage patterns. This includes arbitrary depth and stencil
testing, write-only side-effects, and modifing coverage with alpha-to-coverage or shader code
use of discard. Attachment read-back, including for depth and stencil, is handled well, meaning
in OpenGL ES framebuffer object use without clearing initial attachments, or in Vulkan initial
attachments using loadOp=LOAD.

However, you should still follow a number of best practices to get the most out of Fragment
Prepass.

The prepass terminates at the first incompatible draw in a tile. Incompatible draw calls are:

• Transparent draws that write ZS

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

• Draws that write ZS-only and are after a transparent draw.

• Draws with side-effects where the value read from memory is used for color computation.

• Draws that write to a subset of the previous draw’s render targets.

• Draws that have shader execution impacted by their coverage mask. This could be, for example,
using centroid mapping, using coverage in shader code, or reading from a color attachment for
cross-lane operations in shader code.

Avoid mid-frame depth clears, and avoid late-Z where possible, and failing that make late-Z
calculations small. Try to keep the G-buffer at 128 bits per pixel (bpp) or less, and if not keep it
within 256bpp.

Many general GPU best practices still apply and are even more important with the prepass:

• Simplify your geometry meshes as much as possible.

• Render transparents after opaques.

• Minimize the computations needed to compute vertex position.

• Minimize the computations needed to compute fragment depth and/or coverage, if it is
programmatically determined.

• Minimize the number of draws that would terminate the prepass, and if unavoidable draw them
as late as possible.

• Minimize use of modifiable coverage (discard, alpha-to-coverage).

How to optimize draw call render ordering
Try using the following optimization techniques:

• Render opaque objects in a front-to-back order.

• Render opaque objects with blending disabled.

Behaviors to avoid when optimizing draw call render ordering
Arm recommends that you:

• Do not use discard in the fragment shader, as it forces a late ZS test.

• Do not use alpha-to-coverage, as it forces a late ZS test.

• Do not write to fragment depth in the fragment shader, as it forces a late ZS test.

The negative impact of an unoptimized draw call render order
Using a suboptimal draw call render order and late ZS testing incurs a higher fragment shading
load. This occurs because of visually occluded fragments that were not killed before fragment
shading.

Debugging draw call render order problems
Try the following debugging techniques:

• Render your scene without your transparent elements. Now use GPU performance counters
to check the number of fragments that is being rendered per output pixel. If the number of

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

fragments is higher than 1, you have opaque fragment overdraw that the early ZS test can
remove.

• Use the GPU performance counters to check the number of fragments that require late ZS
testing. Also check the number of fragments that late ZS testing kills.

Further Reading
For more information on Fragment Prepass, see Arm Community blog: Hidden Surface Removal in
Immortalis-G925: The Fragment Prepass.

3.5 Avoid using depth prepasses
A depth prepass is a common technique in PC and console games development. It is used in
scenarios where there might be significant overdraw and expensive fragment shaders. It is also
used where you cannot reliably get front-to-back sorted opaque geometry.

Prerequisites
You must understand the following concepts:

• Early ZS testing.

• Render passes.

An optimization that reduces performance
The aim of a depth prepass is to quickly set the depth for all geometry, without incurring fragment
shading cost. The color shading pass, which follows the prepass, only shades the fragments
where the depth exactly matches. This gives the ideal of one fragment shader invocation per
pixel, minimizing the amount of redundant fragment processing that occurs. However, to gain this
behavior, depth prepasses must double the draw call count and the processed vertex count.

Arm GPUs already include optimizations, such as Forward Pixel Kill (FPK) hidden surface removal,
to reduce redundant fragment processing automatically. Therefore, the performance cost of the
additional draw calls, vertex shading, and memory bandwidth needed to implement a depth prepass
usually outweigh the benefits of reduced overdraw.

Behaviors to avoid when draw call batching
Do not use depth prepass algorithms to remove any fragment overdraw.

Negative impacts of using depth prepasses
The impact on performance when using depth prepasses are:

• The CPU incurs a higher load due to duplicated draw calls.

• There is a higher vertex shading and memory bandwidth cost due to duplicated geometry.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 135

https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/immortalis-g925-the-fragment-prepass
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/immortalis-g925-the-fragment-prepass

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

3.6 OpenGL ES GPU pipelining
OpenGL ES exposes a synchronous rendering model to users of the API, despite using
asynchronous execution on the GPU. Users must be aware of this to avoid stalling the GPU
rendering pipeline.

Prerequisites
You must understand the following concepts:

• The differences between synchronous and asynchronous execution.

• Pipeline draining

Keeping the GPU busy, fences, and queries
To get the best performance, the application must use the synchronous OpenGL ES API to keep
the GPU busy during asynchronous execution of the workloads. Therefore, avoid using operations
that cause the driver to drain the GPU pipeline and starve the GPU of work.

How to optimize OpenGL ES GPU pipelining on Arm GPUs
Try using the following optimization techniques:

• Do not use API calls that cause the driver to block and wait for the GPU.

• Pipeline use of fences and query objects, only waiting on them when you know the result will
already be available.

• Pipeline resource updates, avoiding modifications to textures and buffers that are referenced by
in-flight draws.

• Use GL_MAP_UNSYNCHRONIZED to enable the use of glMapBufferRange() on an buffer that is
referenced by and in-flight draw.

• Use asynchronous glReadPixels() calls to read data into a pixel buffer object.

Behaviors to avoid when optimizing OpenGL ES GPU pipelining on Arm GPUs
Arm recommends that you:

• Avoid using the following synchronous OpenGL ES operations:

◦ glFinish()

◦ glReadPixels()

◦ glCopyTexImage(), while the target texture is still referenced by an in-flight draw call.

◦ glTexSubImage(), while the target texture is still referenced by an in-flight draw call.

◦ glMapBufferRange(), without using GL_MAP_UNSYNCHRONIZED, while the target buffer is still
referenced by an in-flight draw call.

• Avoid using glMapBufferRange() with either GL_MAP_INVALIDATE_RANGE, or
GL_MAP_INVALIDATE_BUFFER. Both of these flags can trigger the creation of a resource ghost on
some Arm GPU driver versions.

• Avoid using glFlush() to split render passes because the driver automatically flushes when
needed.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

Negative impacts of inefficient OpenGL ES GPU pipelining
The different types of impact you can see are:

• If the pipeline is drained, the GPU becomes partially idle during the resulting bubble, causing a
loss of performance.

• Depending on the interaction with the system Dynamic Voltage and Frequency Scaling power
management logic, there might be some performance instability.

Debugging OpenGL ES issues for Arm GPUs
CPU and GPU activity can be monitored using system profilers. For example, the Arm® Streamline
Performance Analyzer. Pipeline drains are visible as periods of busy time oscillating between the
CPU and GPU, without the CPU or the GPU being fully utilized.

3.7 OpenGL ES Separate Shader Objects
OpenGL ES allows the use of Separate Shader Objects (SSOs), which allow a program pipeline to be
built at draw time rather than relying on full program linkage.

Prerequisites
You must understand the concept of Shader Objects.

Only use SSOs if necessary
Using SSOs prevents several link-time optimizations from being implemented, so the resulting
shaders can execute more slowly on the GPU. However, in some situations they can avoid a
substantial increase in the number of shader programs, which can help reduce CPU overhead.

If you do use SSOs, optimize your shader programs to manually implement the link-time
optimizations. For example, remove redundant outputs from a pipeline stage if later pipeline
stages do not consume them. For this use case, the developer takes on the added optimization
responsibility that the compiler and driver cannot do.

Behaviors to avoid
Arm recommends that you do not use SSOs.

How to optimize SSOs
If SSOs are needed, remove redundant computation, and ensure shader stages only pass on the
values that are needed by later pipeline stages.

Negative impacts of SSOs
Some shader optimizations are not available, and rendering performance may be impacted.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 135

https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer
https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

3.8 Vulkan GPU pipelining
Arm GPUs can run either compute or vertex work while the fragment processing from another
render pass is running. To ensure high performance, applications must not unnecessarily create
bubbles in this pipeline.

Prerequisites
You must understand the following concepts:

• Using command buffers.

• The different shader stages.

Pipeline bubbles

For Arm GPUs, it is important to overlap the vertex or compute work from one
render pass with the fragment work from earlier render passes.

When using Vulkan, the following reasons can lead to pipeline bubbles in applications:

1. Command buffers not submitted often enough. Not submitting command buffers often enough
reduces the amount of work in the GPU processing queue. Restricting the possible scheduling
opportunities.

2. Data dependency. For example, consider two render passes N and M. Render pass M occurs
at a later stage in the pipeline. Data dependency results when N is consumed earlier in the
pipeline by M. Data dependency causes a delay during which enough work must be done to
hide the latency in the result generation.

The following image is taken from our Streamline profiler. In the image, the targeted 60FPS is not
achieved. Instead, the CPU and the vertex and fragment activity in the GPU all have idle time.

This pattern of work and idle time oscillating between the processors is a good indicator of the
presence of API calls, or data dependencies that are limiting GPU scheduling opportunities.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

Figure 3-1: Pipeline bubble example

How to prevent pipeline bubbles
To prevent the occurrence of pipeline bubbles:

• Submit command buffers for processing frequently, for example, for each major render pass in a
frame.

• If you have a case that causes a bubble, experiment with bubble filling techniques. For example,
insert independent workloads between the two render passes.

• Consider generating dependent data in an earlier pipeline stage than the stage that consumes
it. For example, the compute stage is suited to generate input data for the vertex shading stage.
The fragment stage is poorly suited because it occurs later than the vertex shading stage in the
pipeline.

• Consider processing dependent data later in the pipeline. For example, fragment shading
consuming output from other fragment shading works better than compute shading consuming
fragment shading.

• Use fences to asynchronously read back data to the CPU. Do not block synchronously and
cause the pipeline to drain.

Actions to avoid while optimizing the GPU pipeline
We recommend that you do the following:

• Do not unnecessarily wait for GPU data anywhere in the pipeline.

• Do not wait until the end of the frame to submit all of the render passes.

• Do not create any backwards data dependencies in the pipeline without sufficient intervening
work to hide the result generation latency.

• Do not use either vkQueueWaitIdle() or vkDeviceWaitIdle().

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

Debugging your application
The Arm® Streamline Performance Analyzer system profiler visualizes the Arm CPU and GPU activity
on both GPU queues. The system profiler quickly shows bubbles in scheduling that occur in two
ways:

• Locally to the GPU queues. This type of bubble is indicative of a stage dependency issue.

• Globally across both the CPU and GPU. This type of bubble is indicative of a blocking CPU call
that is being used.

3.9 Vulkan pipeline synchronization
Arm GPUs expose two hardware processing slots. Each slot implements a subset of the rendering
pipeline stages and runs each slot in parallel with the other slot.

Prerequisites
You must understand the following concepts:

• Command synchronization barriers.

• Shader stages.

Using parallel processing with Vulkan
The GPU allows the maximum amount of parallel processing across the two hardware slots.

Arm tile-based GPUs differ from desktop intermediate-mode renderers because
tile-based GPUs have two independently scheduled hardware slots present for
different types of workload. Tune your pipeline to work well on a tile-based GPU
when porting content from a desktop GPU.

To get the maximum efficiency from your GPU, you must overlap vertex or compute processing
with fragment processing.

The following lists show the mappings of Vulkan stages to the Arm GPU processing slots:

Vertex or compute hardware slot
• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_VERTEX_*_BIT

• VK_PIPELINE_STAGE_TESSELLATION_*_BIT

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

• VK_PIPELINE_STAGE_TRANSFER_BIT

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 135

https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

Fragment hardware slot
• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

• VK_PIPELINE_STAGE_TRANSFER_BIT

Vulkan places the application in control of how dependencies between commands are expressed.
An application must make sure that a pipeline stage for one command has produced its results
before a later command can consume the results.

The API includes multiple primitives that are available for command synchronization, for example:

• Subpass dependencies, pipeline barriers, and events, which are used to express fine-grained
synchronization in a single queue.

• Semaphores, which are used to express heavier weight dependencies across queues.

All fine-grained dependency tools allow the application to specify a restricted scope for their
synchronization. The srcStage mask indicates which pipeline stages must be waited for. The
dstStage mask indicates which pipeline stages must wait for synchronization before processing
starts.

To get the best parallel processing across the two Arm GPU hardware processing slots, minimize
the scope for synchronization. Set srcStage as early as possible in the pipeline, and set dstStage as
late as possible.

Semaphores allow control when dependent commands run using pWaitDstStages. However,
semaphores assume that the srcStage is the worst case VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT.
Therefore, only use semaphores when no fine-grained alternative is available.

Synchronization at low levels
Two kinds of synchronization are needed at the low level:

• Synchronization in a single hardware processing slot.

• Synchronization across the two hardware processing slots.

As fragment shading always comes after vertex or compute in the Arm GPU rendering pipeline,
synchronization from a srcStage running in the vertex or compute processing slot to a dstStage
running in the fragment processing slot is low cost.

Synchronization from a srcStage in the fragment hardware slot to a dstStage in the vertex or
compute hardware slot is expensive. The synchronization creates a pipeline bubble unless the extra
latency for srcStage result generation is accounted for. For example, by having sufficient non-
dependent work to fill the bubble.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

The TRANSFER stage is an overloaded term in the Vulkan pipeline. The driver can implement
the transfer operations in either hardware processing slot. This means that the direction of a
dependency through the pipeline, either backwards or forwards, is not obvious.

Transfers from buffer-to-buffer are implemented in the vertex or compute processing slot. Other
transfers can be implemented in either processing slot and determining which hardware processing
slot is used depends on the state of the data resource that is being written at the time.

The processing slot that is used materially impacts the rendering workload of an application
pipeline. Therefore, always review the performance of transfer operations.

How to optimize your Vulkan pipeline synchronizations
Try using the following optimization techniques:

• Set up srcStageMask as early as possible in the pipeline.

• Set up dstStageMask as late as possible in the pipeline.

• Check whether dependencies point forwards, so source is vertex or compute and destination
is fragment, or backwards, so source is fragment and destination is vertex or compute, through
the pipeline. Minimize the use of backwards-facing dependencies.

• If backwards-facing dependency is needed, then add sufficient latency between the generation
and the consumption of the resource that is used to hide the added scheduling bubble.

• Use srcStageMask = ALL_GRAPHICS_BIT and dstStageMask = FRAGMENT_SHADER_BIT to
synchronize render passes with each other.

• Zero-copy algorithms are the most efficient, so minimize the use of TRANSFER copy operations.
Always review how TRANSFER copies are impacting the hardware pipelining.

• Only use intra-queue barriers when they are needed and put as much work as possible
between barriers.

Vulkan pipelining techniques to avoid
We recommend that you do the following:

• Do not leave the vertex or compute processing queue empty while doing fragment processing
or vice versa.

• Do not use the following srcStageMask to dstStageMask synchronization pairings because they
completely drain the pipeline:

◦ BOTTOM_OF_PIPE_BIT to TOP_OF_PIPE_BIT

◦ ALL_GRAPHICS_BIT to ALL_GRAPHICS_BIT

◦ ALL_COMMANDS_BIT to ALL_COMMANDS_BIT

• Be careful not to introduce false dependencies if merging pipeline barriers.

• Do not use more stages in masks for barriers than is necessary for synchronization.
Conservative masks may cause unexpected delays.

• Do not use more barriers than needed. Each barrier comes with some processing cost, so fewer
barriers are better if merging them does not cause synchronization delays.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

• Do not use VkEvent to signal completion, and then wait for that event right away. Use
vkCmdPipelineBarrier() instead. vkCmdPipelineBarrier2() can also be used, allowing several
vkCmdPipelineBarrier() calls to be rolled into one.

• Do not use VkSemaphore for dependency management in a single queue.

The negative impact of inefficient Vulkan pipelining
The wrong pipeline barrier can either starve the GPU of work with too much synchronization, or
cause rendering corruption with too little synchronization.

Debugging your Vulkan pipeline to identify bubbles
The Arm® Streamline Performance Analyzer system profiler tool quickly shows bubbles in scheduling
either locally to the GPU hardware, or globally across both the CPU and GPU. GPU local bubbles
are indicative of a stage dependency issue. Global bubbles suggest that a blocking CPU call is being
used.

Enabling the Vulkan Validation Layers while developing can highlight some inefficiencies in
synchronization as well as many other errors.

3.10 Pipelined resource updates
OpenGL ES must make sure that resources are in the correct state when the draw call is executed
on the GPU. Doing so correctly prevents the modification of resources that are still referenced by
in flight draw call.

Prerequisites
You must understand the following concepts:

• Resource ghosting.

• N-buffering.

Referencing resources

Depending on how the driver handles the conflict, if you attempt to modify a
resource that is still referenced, it can cause either pipeline bubbles, or increased
CPU load.

OpenGL ES presents a synchronous rendering model to the application developer, even though the
underlying execution is asynchronous. Rendering must reflect the state of the data resources at the
point that the draw call was made. If an application modifies a resource while a pending draw call is
still referencing it, then the driver must take some action to ensure correctness.

The Arm GPU driver avoids blocking and waiting for the resource reference count to hit zero,
because doing so drains the pipeline and leads to poor performance. To reflect the new state, the

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 135

https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer
https://github.com/KhronosGroup/Vulkan-ValidationLayers

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

driver creates a new version of the resource. The old, or ghost, version of the resource is kept until
the pending draw calls have completed and its reference count drops to zero.

This process is expensive because it requires memory allocation for the new resource, and
the cleaning up of the ghost resource when it is no longer needed. If the update is not a total
replacement, then a data copy from the old resource into the new one is also required.

How to optimize your pipelined resources
Try using the following optimization techniques:

• To prevent modifying resources that are referenced by the queued draw calls, use N-buffered
resources, and pipeline your dynamic resource updates.

• Use GL_MAP_UNSYNCHRONIZED to allow the use of glMapBufferRange() to patch an unreferenced
region of a buffer that is still referenced by in-flight draw calls.

Approaches to avoid when updating pipelined resources
We recommend that you:

• Do not modify resources that are still being referenced by in-flight draw calls.

• Do not use glMapBufferRange() with either GL_MAP_INVALIDATE_RANGE or
GL_MAP_INVALIDATE_BUFFER on some older Arm GPU driver versions. These flags trigger the
creation of an unnecessary resource ghost.

Negative impacts of unoptimized pipelined resource updates
Suboptimal resource update pipelining can result in the following negative impacts:

• Increased CPU load due to memory allocation overhead, and the copies needed to build new
versions of resources.

• Unstable memory footprint, due to the constant allocation and freeing of the ghost resources.

Debugging resource updates
The Arm® Streamline Performance Analyzer system profiler visualizes the Arm CPU and GPU activity.
Failing to pipeline resource updates normally show as elevated CPU activity.

3.11 Optimize attachment grouping
With Vulkan subpasses, attachment grouping is generally explicit. However, for OpenGL ES and
some other Vulkan uses, it is good to consider what attachments different groups of draw calls can
read and write to.

Prerequisites
You must understand the following concepts:

• Draw calls

• Attachments

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 135

https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Optimizing application logic

Parallel execution
For the Mali-G710 and later GPUs there is increased parallelization of draw calls, but consideration
of which attachments are read and written is required to make best use of that parallelization.

Parallelization is considered at attachment level, not channel level. This means that multiple draw
calls with reads of an attachment can be done in parallel, if there are no pending writes. It also
means that it can be worth splitting an attachment if there are separate reads and writes to
different channels, to allow parallelization of the reads.

Avoid overlapping writes
Try to avoid writing all draw calls to the same attachment, as that requires all calls to be executed
serially.

Negative consequences of non-optimal attachment grouping
If draw call attachments are not grouped optimally, more calls must be executed in series, rather
than in parallel, slowing down the execution.

3.12 Queries
OpenGL ES and Vulkan both have query objects that are used for such things as testing occlusion.
Using them correctly improves performance.

Prerequisites
You must understand the following concepts:

• Query objects.

How to optimize your queries
Try using the following optimization techniques:

• Pipeline the use of query objects, only reading the query result when you know that it is
already available.

• For occlusion queries, prefer use of any-samples queries, rather than the precise sample count
mode. Use GL_ANY_SAMPLES_PASSED for OpenGL ES, or VK_QUERY_CONTROL_PRECISE_BIT =
false for Vulkan, unless you must know the amount of occlusion.

The negative impacts of inefficient queries on Arm GPUs
The different types of impact you see are:

• If you wait too early for a query result, the pipeline will drain waiting for the result, which
wastes cycles.

• If you use a precise count occlusion query unnecessarily, the GPU does additional work, which
also wastes power and cycles.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

4. CPU overheads
There are various ways to reduce CPU overheads to increase efficiency and reduce software
processing costs.

4.1 Compiling shaders in OpenGL ES
Both shader compilation and program linkage are expensive operations. Generating new programs
while trying to render at high frame rates can cause dropped frames. Therefore, avoid shader
compilation and program linkage in the interactive part of your application.

Prerequisites
You must understand the following concepts:

• Compiling shaders.

• Linking programs.

How to optimize compiled shaders
Arm recommends that you:

• Compile all shaders, and link all programs, when starting an activity or when loading a level of a
game.

• Store program binaries back to disk, avoiding re-compilation on subsequent runs of the
application.

Behaviors to avoid when compiling shaders
Arm recommends that you:

• Do not attempt to compile shaders, or link programs, during interactive gameplay.

• Do not rely on the Android blob cache for program caching, because it is also often too small to
contain all shader programs for a complex application.

The negative impact of not compiling shaders correctly
The cost of trying to compile, and link, shaders during the interactive portions of the application is a
high CPU load and dropped frames.

4.2 Pipeline creation in Vulkan
Vulkan pipelines have similar compile requirements to OpenGL ES shaders. Vulkan also provides
no automatic caching that is equivalent to the Android blob cache that is available for OpenGL ES

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

programs. You are responsible for providing persistent storage of compiled programs for use across
program invocations.

Prerequisites
You must understand the following concepts:

• Vulkan pipelines.

How to optimize pipeline creation
To optimize pipeline creation, use the following optimization techniques:

• Create pipelines when starting an activity or loading a game level.

• Use a pipeline cache to speed up pipeline creation.

• Serialize the pipeline cache to disk and then reload it the next time the application is used,
providing end users with a faster load time.

Arm GPUs ignore the following flags: VK_PIPELINE_CREATE_DERIVATIVE_BIT,
VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT, and also
VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT.

Pipeline caches
As well as standard pipeline cache use, loading a whole pipeline from a previous run, pipeline
caches can be useful for partial loading.

A pipeline cache can help where there still needs a partial recompilation. For example, combining a
previously compiled vertex shader with a new fragment shader. This includes changes that requires
a recompilation from the API, but ultimately does not require a recompilation, like updating an
unused descriptor set.

Where pipeline caches risk becoming too large it is possible to request from the API a smaller size
than the full cache. In this case Arm’s Vulkan implementation will prioritize returning the entries
with the highest amount of hits.

Negative impacts on the application
Incorrect pipeline creation can have the following impacts on your application:

• Attempting to create pipelines during the interactive portions of your application increases the
CPU load and can cause skipped frames.

• Failure to serialize, and then reload, a pipeline cache increases load times on later application
runs.

Example
Example code of this best practice is available in the Vulkan samples repository on GitHub, see the
Vulkan Validation Layers.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/pipeline_cache/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

4.3 Allocating memory in Vulkan
For frequent allocations, do not use the vkAllocateMemory() allocator. All allocations by
vkAllocateMemory() are expensive kernel calls.

Prerequisites
You must understand the following concepts:

• Memory allocation.

How to optimize memory allocation
When allocating memory, use your own allocator to manage block allocations.

Dedicated allocations
For potential perfomance improvements, use the extension VK_KHR_dedicated_allocation to
determine when a dedicated allocation may be beneficial for your use-case.

Something to avoid when allocating memory
Do not use vkAllocateMemory() as a general-purpose allocator.

Negative impacts of suboptimal memory allocation
Using vkAllocateMemory() as a general-purpose allocator increases the load on the application
CPU load.

Debugging memory allocation issues
Monitor the frequency and allocation size of all calls to vkAllocateMemory() at runtime.

4.4 OpenGL ES CPU memory mapping
By using glMapBufferRange(), OpenGL ES provides direct access to buffer objects that are mapped
into the application address space. It is efficient to stream writes, but reads are expensive for
mapped buffers because they are uncached on the CPU.

Prerequisites
You must understand the following concepts:

• Buffers.

• Memory mapping.

How to optimize CPU memory mapping
To benefit from store merging in the CPU write buffer, make write-only buffer updates to
sequential addresses.

Outcome to avoid when using CPU memory mapping
Arm recommends that you do not read values from mapped buffers.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

Negative impacts of not using CPU memory mapping correctly
Reading from uncached buffers shows up as increased CPU load in the application functions that
read them.

4.5 Vulkan CPU memory-mapping
Vulkan gives applications support for multiple buffer memory types.

Prerequisites
You must understand the following concepts:

• CPU and GPU memory mapping.

• Cached versus uncached memory.

Memory Types
On Midgard architecture GPUs, the Arm GPU driver exposes the following memory types:

1. DEVICE_LOCAL_BIT | HOST_VISIBLE_BIT | HOST_COHERENT_BIT

2. DEVICE_LOCAL_BIT | HOST_VISIBLE_BIT | HOST_CACHED_BIT

3. DEVICE_LOCAL_BIT | LAZILY_ALLOCATED_BIT

On Bifrost and later architecture GPUs, the Arm GPU driver exposes the following memory types:

1. DEVICE_LOCAL_BIT | HOST_VISIBLE_BIT | HOST_COHERENT_BIT

2. DEVICE_LOCAL_BIT | HOST_VISIBLE_BIT | HOST_CACHED_BIT

3. DEVICE_LOCAL_BIT | HOST_VISIBLE_BIT | HOST_COHERENT_BIT | HOST_CACHED_BIT

4. DEVICE_LOCAL_BIT | LAZILY_ALLOCATED_BIT

The four memory types and their purposes
The purposes that these memory types are useful for are:

Not cached, coherent
The HOST_VISIBLE, HOST_COHERENT_BIT memory type:

• Is guaranteed to be supported.

• Provides uncached storage on the CPU.

• Avoids polluting the CPU caches with unnecessary data.

• Efficiently merges small writes that are then sent on to the external memory device by using
the CPU write buffer hardware.

• It is the optimal memory type for CPU write-only resources.

Cached, incoherent
The HOST_VISIBLE, HOST_CACHED memory type:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

• Provides cached storage on the CPU but does not guarantee that the CPU and the GPU get
coherent views of the underlying memory. The CPU view of the memory is not coherent with
the GPU view of the memory, therefore you must call:

◦ vkFlushMappedRanges() when the CPU has finished writing data for the GPU.

◦ vkInvalidateMappedRanges() when reading back the data that the GPU has written.

◦ However, both calls are expensive to use, so must be used sparingly.

◦ Must only be used for resources that are both mapped and read by the application software
on the CPU.

Cached, coherent
The HOST_VISIBLE, HOST_COHERENT, HOST_CACHED memory type:

• Provides cached storage on the CPU, which is also coherent with the GPU view of the memory
without needing manual synchronization.

• Supported by Arm Bifrost and later GPUs if the chipset supports the hardware coherency
protocol between the CPU and GPU.

• Due to hardware coherency, it avoids the overheads of manual synchronization operations.
Cached, coherent memory is preferred over the Cached, incoherent memory type when
available.

• Must be used for resources that are both mapped and read by the application software on the
CPU.

• Hardware coherency has a small power cost, so must not be used for resources that are write-
only on the CPU. For write-only resources, bypass the CPU cache by using the Not Cached,
coherent memory type.

Lazily allocated
The LAZILY_ALLOCATED memory type:

• It is a special memory type that is initially only backed by GPU virtual address space and not
physical memory pages. Physical backing pages are allocated on demand if the memory is
accessed.

• It must be used alongside transient image attachments created using
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT. Transient images are intended for use as
framebuffer attachments which only exist during a single render pass. Doing so avoids backing
the attachment with physical memory. You can do this by backing the attachment image with
a lazy allocation, and a VK_ATTACHMENT_STORE_OP_DONT_CARE storage operation. Common use
cases for this include depth or stencil buffers for simple renders. Another use case and G-buffer
attachments, that are used for deferred lighting, that are then consumed by a later subpass and
are not written back to memory.

• Must not be used to provide storage for resources that are expected to be written back to
memory.

How to optimize Vulkan CPU memory mapping
Try using the following optimization techniques:

• Use HOST_VISIBLE | HOST_COHERENT memory for immutable resources.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

• Use HOST_VISIBLE | HOST_COHERENT memory for resources which are write-only on the CPU.

• Use memcpy() to write updates to HOST_VISIBLE | HOST_COHERENT memory, or write
sequentially to get best efficiency from the CPU write-combine unit.

• Use HOST_VISIBLE | HOST_COHERENT | HOST_CACHED memory for resources which are read back
on to the CPU. Use HOST_VISIBLE | HOST_CACHED if it is not available.

• Use LAZILY_ALLOCATED memory for transient framebuffer attachments which only exist during a
single render pass.

• Only use LAZILY_ALLOCATED memory for TRANSIENT_ATTACHMENT framebuffer attachments.

• Mapping and unmapping buffers have a CPU cost. Therefore, persistently map buffers which
are accessed often. Example: uniform buffers, data buffers, or dynamic vertex data buffers.

• When using the VK_EXT_host_image_copy extension use HOST_CACHED flagged memory.

Vulkan CPU memory-mapping techniques to avoid
Arm recommends that you:

• Do not read back data from uncached memory on the CPU.

• Do not store suballocator metadata, which must be read on the CPU, inside an uncached
memory buffer.

Negative impacts of inefficient Vulkan CPU memory mapping
Uncached readbacks can be much slower than cached reads due to increased CPU processing
costs.

Debugging Vulkan CPU memory-mapping performance problems
There are a couple of techniques you can take:

• Check that all CPU-read buffers are using cached memory.

• Design interfaces for buffers to encourage implicit flushes or invalidates as needed. It is difficult
and time consuming to debug coherency failures due to missing maintenance operations
without this infrastructure already in place.

4.6 Command pools for Vulkan
Command pools do not automatically recycle memory from deleted command buffers unless
created with the RESET_COMMAND_BUFFER_BIT flag. Pools without this flag do not recycle their
memory until the application resets the pool.

Prerequisites
You must understand the following concepts:

• Command pools.

How to optimize command pools
Periodically call vkResetCommandPool() to release the memory.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

Command pool techniques to avoid
• Read Optimizing command buffers for Vulkan for an explanation why using

RESET_COMMAND_BUFFER_BIT is not recommended. However, using RESET_COMMAND_BUFFER_BIT is
better than not releasing memory.

• When creating command pools, Arm GPUs ignore the flag
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT. Arm GPUs also ignore the vkTrimCommandPool()
command.

The negative impact of inefficient Vulkan command pools
An increase in memory usage until a manual command pool reset is triggered.

4.7 Optimizing command buffers for Vulkan
Command buffer usage flags affect performance.

Prerequisites
You must understand the following concepts:

• Command buffers.

• Command pools.

How to optimize command buffers
Try using the following optimization techniques:

• For best performance set the ONE_TIME_SUBMIT_BIT flag.

• Build per-frame command buffers instead of using simultaneous command buffers.

• If the alternative is to replay the same command sequence every time in application logic,
then use SIMULTANEOUS_USE_BIT. It is more efficient than an application replaying commands
manually, but less efficient than a one-time submit buffer.

Command buffer techniques to avoid
Arm recommends that you:

• Do not set SIMULTANEOUS_USE_BIT, unless required to do so.

• Do not use command pools with RESET_COMMAND_BUFFER_BIT set. Doing so increases the
memory management overhead, as it prohibits the driver from using a single large allocator for
all command buffers in a pool.

Negative impacts of inefficient Vulkan command buffers
Keep the following points in mind:

• There is a risk of an increase in CPU load if inappropriate flags are used, or if command buffer
resets are too frequent.

• Avoid calling vkResetCommandBuffer() on a high frequency call path.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

Debugging your Vulkan command buffer performance problems
There are a couple of approaches you can try, to speed up your debugging process. These are:

• Review and evaluate the performance impact every use of any command buffer flag other than
ONE_TIME_SUBMIT_BIT.

• Evaluate every use of vkResetCommandBuffer() and assess if it could be replaced with
vkResetCommandPool() instead.

Example
Example code of command buffer usage and multi-threaded recording is available in the Vulkan
Samples repository on GitHub. For more information, see Vulkan Command Buffer usage tutorial.

4.8 Secondary command buffers
Arm GPU hardware prior to the Mali-G710 series does not have native support for invoking
commands in a secondary command buffer. Therefore, there is extra overhead that is incurred
when using secondary command buffers.

Prerequisites
You must understand the following concepts:

• Command buffers.

• Command pools.

Using secondary command buffers
It is expected that applications must use secondary command buffers, typically to allow multi-
threaded command buffer construction. However, the total number of secondary command
buffer invocations must be minimized. As with primary command buffers, we recommend avoiding
creating command buffers with the SIMULTANEOUS_USE_BIT due to increased overheads.

How to optimize secondary command buffers
Try using the following optimization techniques:

• Use secondary command buffers to allow multi-threaded render pass construction.

• Minimize the number of secondary command buffer invocations that are used per frame.

Secondary command buffer step to avoid
Do not set SIMULTANEOUS_USE_BIT on secondary command buffers.

The negative impact of inefficient secondary command buffers
Keep in mind that an increased CPU load is incurred.

Example
Example code of command buffer usage and multi-threaded recording is available in the Vulkan
samples repository on GitHub: Vulkan Command Buffer usage tutorial.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/command_buffer_usage/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/command_buffer_usage/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

4.9 Optimizing descriptor sets and layouts for Vulkan
Midgard and Bifrost Arm GPUs support four simultaneous bound descriptor sets at the API level.
However, they require a single physical descriptor table per draw call internally.

Prerequisites
You must understand the following concepts:

• Descriptor sets.

• Binding spaces.

• Uniform Buffer Objects (UBOs).

• Shader Storage Buffer Objects (SSBOs).

Descriptor sets and layouts
If any of the four source descriptor sets have changed, then the driver rebuilds the internal table
for a draw call. The first draw call, after a descriptor changes, has a higher CPU overhead than
following draw calls that reuse the same descriptor set. Larger descriptor sets cause a more
expensive rebuild. With current drivers, the descriptor set pool allocations are not pooled. Do not
call vkAllocateDescriptorSets() on a performance critical code path.

Before Valhall, descriptor set pool allocations were never pooled.

Table rebuilds are much smaller for Valhall Arm GPUs. However, our advice to not allocate on
critical code paths still applies.

For ease of programming, VkDescriptorSetLayoutBinding::stageFlags can always be set to
VK_SHADER_STAGE_ALL with no performance loss.

The vkDescriptorPool creation flag
Arm GPUs ignore the VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT
flag, but applications must still support the specification. This means that if
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT is set, then you must still check for pool
fragmentation. If the flag is not set, then you must not free individual descriptor sets, and only use
vkAllocateDescriptorSets() and vkResetDescriptorPool().

How to optimize descriptor sets and layouts
Try using the following optimization techniques:

• Pack the descriptor set binding space as much as possible.

• Instead of resetting descriptor pools and reallocating new descriptor sets, update descriptor
sets that are already allocated, but no longer referenced.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

CPU overheads

• Reuse pre-allocated descriptor sets and do not update them with the same information every
time.

• Use VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC to bind the same UBO or SSBO with different
offsets. The alternative is building more descriptor sets.

Descriptor indexing
Using the extension VK_EXT_descriptor_indexing allows the use of bindless resources. This
provides many useful functionality improvements, especially with regards to added flexibility and
reduced CPU load. When using VK_EXT_descriptor_indexing, try to use SSBOs instead of UBOs,
as SSBOs offer better performance.

Descriptor set and layout techniques to avoid
Arm recommends that you:

• Do not leave holes in the descriptor set.

• Do not leave unused entries as copying and merging still has a computational cost.

• Do not allocate descriptor sets from descriptor pools on performance critical code paths.

• Do not use DYNAMIC_OFFSET UBOs/SSBOs if you never plan on changing the binding offset, as
there is a small, extra, cost for handling the dynamic offset. The negative impact of inefficient
descriptor sets and layout unoptimized Vulkan descriptor sets and layout leads to a risk of
increased CPU load for draw calls.

Debugging your descriptor sets and layout performance problems
Ways to speed up your debugging process:

• Monitor the pipeline layout for unused entries.

• Monitor for contention-related performance problems on vkAllocateDescriptorSets().

Example and further information
Example code of descriptor and buffer management is available in the Vulkan Samples repository
on GitHub: Vulkan CDescriptor Management tutorial

For more information on VK_EXT_descriptor_indexing Arm Community blog: New game changing
Vulkan extensions for mobile: Descriptor Indexing provides further details.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/descriptor_management/README.adoc
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/vulkan-descriptor-indexing
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/vulkan-descriptor-indexing

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

5. Vertex shading
The efficiency of vertex processing, in terms of both buffer packing and vertex shading, is important
when rendering a scene. Avoid poor mesh selection and inefficient vertex data encoding on mobile
devices, because it can significantly increase DRAM bandwidth.

5.1 Basic vertex shader optimizations
Most of the basic vertex optimizations are implemented by making improvements in the input mesh
data, or in the application rendering logic.

Prerequisites
You must understand the following concepts:

• Vertices and meshes

Artistic improvements
There are various artistic optimizations to make for mobile that reduce the number of vertices
processed, making vertex shaders much faster.

• Reduce the number of vertices, using only the number of triangles needed to preserve the
desired object silhouette.

• Ensure that vertices are unnecessarily duplicated during asset creation.

• Use textures and normal maps to simulate fine details of color and lighting.

• Use dynamic level of detail for meshes that change distance from the camera.

Culling improvements
Try processing only those triangles that can be seen. There are several culling types that can be
used to reduce vertex cost:

• Use view frustum culling in the application, discarding all objects that are outside of the view
frustum. This type of testing can use simple bounding volumes around objects to make these
tests more efficient.

• Use portal culling in the application, discarding all objects that are inside the frustum but which
are inside a region of the level that can be easily proven to be occluded from the current
camera position.

• Enable back-face culling during rendering to avoid shading the occluded back faces of your
meshes.

Negative consequences of not making artistic optimizations
Processing more vertices takes more time, so the scene runs slower, consuming more bandwidth
and power.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

Reference
For more information, see Real-time 3D Art Best Practices - Geometry and Triangle density.

5.2 Index draw calls
Indexed draw calls allow for reuse of vertices and are more efficient than non-indexed draw calls.

Prerequisites
You must understand the following concepts:

• Draw calls.

• Index buffers.

How to optimize index draw calls
Try using the following optimization techniques:

• Use indexed draw calls whenever vertex reuse is possible.

• Optimize index locality for a post-transform cache.

• To minimize redundant processing and data fetch, ensure that the index buffer references the
entire range of index values.

• Create tightly packed vertex ranges for lower level of detail meshes.

• Use glDrawRangeElements() for volatile resources.

• To implement geometry Level of Detail (LOD), create a contiguous set of vertices for each detail
level.

Index draw call techniques to avoid
Arm recommends that you:

• Do not use client-side index buffers.

• Do not modify the contents of index buffers. Doing so causes the driver to rescan the index
buffer to determine the active index range.

• Do not use indices that sparsely access vertices in the vertex buffer.

• Do not use indexed draws for simple geometry which has no vertex reuse, such as simple
quads or point lists.

• Do not create a low detail mesh by sparsely sampling vertices from the full detail mesh.

Negative impacts of inefficient index draw calls
Unoptimized index draw calls can lead to the following problems:

• The use of client-side index buffers increases the CPU load. Client-side index buffers first
allocate server-side buffer storage, then copies the data, and finally, scans the contents to
determine the active index ranges.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 135

https://developer.arm.com/documentation/102448/0100

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

• The use of index buffers with frequently modified contents shows up as increased load on the
CPU. The increased load is due to the need to rescan the buffer to determine the active index
ranges.

• Inefficient mesh indexing that is due to index sparseness, or poor spatial locality. This shows
up as extra GPU vertex processing time or extra memory bandwidth that is being used. The
severity of the impact depends on the complexity of the mesh and the layout of the index
buffer that is in memory.

Debugging index draw calls issues
Scan through all index buffers before submission. Optimize any buffers that include any unused
indices.

5.3 Index buffer encoding
The index buffer data is one of the primary data sources into the primitive assembly and tiling
process in Arm GPUs. To minimize the cost of tiling, efficiently pack the index buffer.

Prerequisites
You must understand the following concepts:

• Index buffers.

• Strip formats and simple list formats.

How to optimize index buffer encodes
Try using the following optimization techniques:

• Use the lowest precision index data type possible to reduce index list size.

• To reduce index list size, use strip formats over simple list formats.

• To reduce index list size, use primitive restart instead of degenerate triangles.

• For a post-transform cache, optimize the index locally.

Index buffer encoding techniques to avoid
Arm recommends that you:

• Do not use 32-bit index values.

• Do not use index buffers with low spatial coherency because they hurt caching.

The negative impact of inefficient index buffer encoding
Inefficient index buffer encoding does not usually have a significant impact, but can be part of small
improvements that add up to improve application performance. A significant negative impact is
possible if draw calls are small, and vertex shading and tiling do not pipeline cleanly.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

5.4 Index sparsity
For Midgard and Bifrost, very sparse index references in indexed draw calls can cause Out Of
Memory (OOM) errors, leading to VK_ERROR_DEVICE_LOST.

Prerequisites
You must understand the following concepts:

• Index buffers.

• Draw calls.

Pack mesh indices
Arm GPUs have a memory region which is available to store the intermediate geometry output
from a render pass. The region is fixed to 180MB on the Midgard and Bifrost Arm GPUs that have
this issue, that is, before the Mali-G77.

For an indexed draw call, Midgard and Bifrost GPUs would allocate memory to span the highest
and lowest indices referenced. In extreme cases, this means that a draw call for a single triangle
with indices [0,1,100000] uses a substantial amount of memory. A second neighboring draw
call for another triangle with [0,2,100000] allocates the same amount again. A single draw call
covering the two triangles only allocates the memory once.

You can avoid this problem by:

• Ensuring that indices are spatially coherent. Ideally within the original meshes, or with a static
layer of indirection. Alternatively, a compute shader can be used to create a coherent mesh, at
the cost of performance.

• Ensure draw calls are combined when possible

• Splitting the render pass. Be warned that this has a performance cost, especially on bandwidth
with further readbacks, but it is another way around the issue.

Very large geometry
It is also possible to hit the OOM or VK_ERROR_DEVICE_LOST error if you have huge geometry that
exceeds the 180MB limit, even without indexing issues. Note that this limit has been significantly
increased on recent Valhall GPUs.

Avoid sparse mesh index references
To avoid memory issues, try to:

• Avoid sparse vertex index references in a draw call.

• Not have excessively large geometry.

• Avoid encoding metadata into index buffer values.

Negative impacts of index sparsity
For Midgard and Bifrost, very sparse index buffers can cause OOM errors, leading to
VK_ERROR_DEVICE_LOST.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

Further reading
For more information, see Arm Community blog: Vulkan Best Practices - Memory limits with Vulkan on
Mali GPUs.

5.5 Attribute precision
Full FP32 highp precision of vertex attributes is unnecessary for many uses of attribute data. For
example, color computation. Asset pipelines must keep the data at the minimum precision that is
required. Doing so reduces bandwidth and improves performance.

Prerequisites
You must understand the following concepts:

• Attribute data.

• Asset pipelines.

• FP32 and FP16.

• Vector types.

Attribute precision
OpenGL ES and Vulkan provide different attribute data types that fit every precision that is needed.
Lower precision attributes are available in 8-bit, 16-bit, and packed formats such as RGB10_A2.
Arm GPU hardware can convert attributes to FP16 and FP32 for free on data load. Therefore,
there is no shader processing overhead from using narrower data types.

How to optimize attribute precision
Try using the following optimization techniques:

• Stable geometry positioning needs extra precision, so use FP32 for computing vertex positions.

• Use low precision for other attributes, increasing to high precision only when it is needed.

• For integer vectors, prefer uvec over ivec as it enables extra compiler optimizations.

Relaxed precision FP16 outputs
If FP16 is sufficient for your vertex shader outputs, it is recommended to use the
RelaxedPrecision decoration to allow them to be FP16 on Arm GPUs. If the fragment shader
needs FP32 as input, then this is interpolated as needed, but still saves bandwidth. Note that doing
so can flag up some warnings in older validation layers, but this usage is now permitted by the
Vulkan specification.

Attribute precision techniques to avoid
Arm recommends that you:

• Do not use FP32 for everything.

• Do not upload FP32 data into a buffer and then read it as a mediump attribute. Doing so
wastes both memory storage and bandwidth as the extra precision is discarded.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 135

https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/memory-limits-with-vulkan-on-mali-gpus
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/memory-limits-with-vulkan-on-mali-gpus

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

Negative impacts of inefficient attribute precision
Higher memory bandwidth, large memory footprint, energy inefficiency, and reduced vertex shader
performance.

5.6 Attribute layout
Vertices are shaded using an Index Driven Vertex Shading (IDVS) flow on Bifrost Arm GPU
architectures and above.

Prerequisites
You must understand the following concepts:

• Vertices.

• Vertex buffers.

IDVS vertex shading order
The order in which vertices are shaded using the IDVS are as follows:

1. Positions.

2. Varyings of vertices of primitives which have survived culling.

Good buffer layout maximizes the benefit of this geometry pipeline.

How to optimize the attribute layout
Try using the following optimization techniques:

• Use a dedicated, tightly packed, vertex buffer for position data.

• Use a second dedicated vertex buffer for non-position data, if any exists.

• Remove unused attributes for specific uses to optimize the meshes. For example: Generating a
tightly packed buffer consisting of only position-related attributes for shadow mapping.

Attribute layout techniques to avoid
Arm recommends that you:

• Do not use one buffer per attribute as this wastes bandwidth by fetching data for culled
vertices when they share a cache line with visible vertices.

• Do not pad interleaved vertex buffer strides up to the power-of-two. Arm GPU hardware does
not require it, and doing so increases memory bandwidth.

• Do not store any constant data in attributes, use uniforms. For best performance in more
complicated cases, for example, where vertex color is constant at one Level of Detail (LoD)
and varies at another, write a custom shader. This creates a significant reduction in memory
bandwidth for the LoDs where data is constant.

The negative impacts of an inefficient attribute layout
Here are two potential problems that your application can experience:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

• Increased memory bandwidth due to redundant data fetches.

• Increased pressure on caches which cause loss of performance.

5.7 Varying precision
Vertex shader outputs are commonly called varying outputs. They are written back to main memory
before fragment shading commences.

Prerequisites
You must understand the following concepts:

• mediump.

• highp.

Vertex shader outputs
It is important to minimize the precision of varying outputs. Doing so reduces the amount of
memory storage and bandwidth that is needed for the varying output data.

Typical uses of varying data that usually have sufficient precision in mediump include:

• Normals.

• Vertex color.

• Texture coordinates for non-tiled textures that go up to 512x512 pixels.

Typical uses of varying data that need highp precision are:

• World-space positions.

• Texture coordinates for large textures, or textures with high levels of UV coordinate wrapping.

How to optimize varying outputs
Use the mediump qualifier on varying outputs if the precision is acceptable.

Varying output precision techniques to avoid
Arm recommends that you:

• Do not use varyings with more components and precision than is needed.

• Do not use vertex shaders with outputs that are left unused in the fragment shader.

The negative impacts of inefficient varying outputs
The different types of impact you can see are:

• Increased GPU memory bandwidth.

• Reduced vertex shader and fragment shader performance.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

5.8 Triangle density
A vertex requires more bandwidth and processing power to process than a fragment. Ensure that
there are many pixels worth of fragment work for each primitive that is rendered. Doing so spreads
the processing expense of the vertices over multiple pixels of output.

Prerequisites
You must understand the following concepts:

• Memory bandwidth and vertex processing costs.

• Mesh Levels of Detail (LOD).

How to optimize triangle density
Try using the following optimization steps:

• Use models that create at least 10-20 fragments per primitive.

• Use dynamic mesh level-of-detail, using simpler meshes when objects are further away from
the camera.

• Use techniques, such as normal mapping, to bake the required complex geometry during asset
creation. Turning the geometry into a simpler runtime mesh with a supplemental texture for
per-pixel lighting.

• To improve final image quality, favor improved lighting effects and textures instead of increased
geometry.

Vertex processing techniques to avoid
Do not generate micro triangles, as they increase bandwidth and processing power costs for little
visual benefit.

The negative impacts of inefficient vertex processing
If the triangle density of a mesh is not properly optimized, then high volumes of geometry cause
many problems for a tile-based renderer. For example: poor shading performance, high memory
bandwidth, and high system energy consumption due to the memory traffic.

5.9 Instanced vertex buffers
Both OpenGL ES and Vulkan have support for instanced drawing. Instanced drawing uses attribute
instance divisors to divide a buffer to locate the data for each instance. There are some hardware
limitations which determine the optimal usage of instanced vertex buffers.

Prerequisites
You must understand the following concepts:

• Instance divisors.

• Instanced vertex buffers.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Vertex shading

How to optimize the use of vertex buffers
Try using the following optimization techniques:

• Use a single interleaved vertex buffer for all instance data.

• Use instanced attributes to work around any uniform buffer size limitations. For example, 16KB
uniform buffers.

• Use several vertices per instance that are a power-of-two.

• Prefer indexed lookups using gl_InstanceID into uniform buffers or shader storage buffers.
Rather than per-instance attribute data.

Instanced vertex buffer techniques to avoid
Do not use more than one instanced vertex buffer per draw call.

The negative impacts of an inefficient instanced vertex buffer
If the vertex buffer is not properly optimized, then you can expect a reduced performance on all
impacted instanced draw calls.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Tessellation, geometry shading, and tiling

6. Tessellation, geometry shading, and tiling
This chapter covers ways on how to optimize tessellation, geometry shading, and tiling instances in
your application.

6.1 Tessellation
Tessellation is a powerful brute-force technique that creates higher-quality meshes, at the cost of
GPU memory bandwidth and power consumption. Therefore, tessellation can become expensive
to run on tile-based GPUs, like Arm’s, that write the output of the geometry processing back to
system memory.

Prerequisites
You must understand the following concepts:

• Tessellation.

• Using and optimizing mesh Levels of Details (LODs).

• How to monitor GPU memory bandwidth and power consumption.

Alternatives to using tessellation
Try using the following optimization techniques instead:

• Add more static mesh LoD to character meshes.

• Use the geo-mipmap morphing technique for terrain meshes.

However, if you must use tessellation:
• Only add geometry where it benefits most. For example, on the silhouette edges of your

meshes.

• Tessellation can also be used to reduce geometry complexity.

• Cull patches to avoid redundant evaluation shader invocations. In the control shader, use either
glPrimitiveBoundingBox(), or frustum cull patches.

• To ensure that there is a sensible upper-bound on complexity, clamp your maximum tessellation
factor.

• Pre-tessellate a new static mesh instead of using fixed tessellation factors.

Techniques to avoid when using tessellation
Arm recommends that you:

• Do not use tessellation until you have evaluated other options.

• Do not use tessellation together with geometry shaders in the same draw call.

• Do not use transform feedback with tessellation.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Tessellation, geometry shading, and tiling

• Do not use microtriangulation. There is little perceptual quality benefit from triangle densities of
fewer than ten fragments per primitive.

Negative impacts of unnecessarily implementing tessellation
Using tessellation to significantly increase triangle density leads to poor performance, high memory
bandwidth, and increased system power consumption.

Debugging tessellation issues
Try the following debugging tips:

• It is easy to overlook that tessellation is generating millions of triangles because it is
procedurally generated and is hidden from the application. Therefore, always check the GPU
performance counters to monitor the number of triangles that are being generated and the
number of ineffective microtriangles that are being generated.

• To perform a controlled exploration of the performance versus visual benefit trade-offs, apply
different levels of min() to the tessellation factors in the control shader.

6.2 Geometry shading
Before using geometry shading, keep in mind that tile-based GPU architecture is sensitive to
geometry bandwidth levels.

Prerequisites
You must understand the following concepts:

• Geometry shading.

How to optimize geometry shading
Use compute shaders instead of geometry shading, as compute shaders are more flexible and avoid
the unnecessary duplication of vertices that most geometry shaders trigger.

Techniques to avoid when using geometry shading
Arm recommends that you do not use:

• Geometry shaders.

• Geometry shaders to filter primitives, such as triangles, or to pass down more attributes to the
fragment stage.

• Geometry shaders to expand points to quads. Instance a quad instead.

• Transform feedback with geometry shaders.

• Primitive restart with geometry shading.

Negative impacts of implementing geometry shading
Using geometry shading leads to increased memory bandwidth. This reduces both performance and
energy efficiency.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Tessellation, geometry shading, and tiling

6.3 Tiling and effective triangulation
Tiling and rasterization both work on fragment patches that are larger than a single pixel. For Arm
GPUs, the tiling uses bins that are usually 16x16 pixels or more. Fragment rasterization emits 2x2
pixel quads for fragment shading.

Prerequisites
You must understand the following concepts:

• Tiling and rasterization techniques.

• Fragment quads.

Minimizing number of triangles needed
Optimal performance is achieved when mesh triangulation uses the minimum number of triangles
to cover the necessary pixels.

How to optimize tiling and effective triangulation
Use triangles that are almost equilateral. Using equilateral triangles maximizes the ratio of the area
to edge length. Doing so reduces the number of generated partial fragment quads.

Tiling and rasterization techniques to avoid
The center point of a triangle fan has a high triangle density for low pixel coverage per triangle
loaded. Therefore, avoid the use of fans or similar geometry layouts.

Negative impacts of inefficient tiling and rasterization
There is a risk of increasing the fragment shading overhead due to the triangle fetch and partial
sample coverage of the 2x2 pixel fragment quads.

Debugging triangulation issues
To debug triangulation issues, use RenderDoc for Arm® GPUs. RenderDoc contains mesh
visualization tools that allow the outline of the mesh, submitted to a draw call, to be visualized in
object-space.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 135

https://developer.arm.com/Tools%20and%20Software/RenderDoc%20for%20Arm%20GPUs

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

7. Fragment shading
This chapter provides multiple areas of guidance on how to optimize the fragment shading
elements of your application on Arm GPUs.

7.1 Basic fragment shader optimizations
Fragment shading can often be the bottleneck in graphics rendering. If that is the case, simplify
fragment shaders and textures.

Prerequisites
You must understand the following concepts:

• Fragment shading

Simplify the shader
Look to see if there is simpler arithmetic or acceptable approximations to achieve the required
shader effects. If work can be done in the vertex shader or application, it can be more efficient
or avoid a bottleneck. If bandwidth is not the problem, using textures instead of calculations is
another possible solution.

Reduce the number of branches. Branches are not expensive in themselves, but can lead to a
shader being too long and sections needing to be read from cache or RAM.

Reduce texture bandwidth. Textures can use a large amount of memory bandwidth. When too
much bandwidth is used the fragment shaders cannot get sufficient data, and stalls. Do not use
bigger textures than needed.

Avoid overdraw
Overdraw occurs when the GPU draws over the same pixel multiple times, wasting compute and
memory bandwidth. There are multiple things to do to avoid overdraw:

• Enable depth testing.

• Enable back face culling.

• Sort objects by distance to camera. Draw non-transparent objects in front-to-back order, and
then draw transparent objects from back-to-front.

• Optimize use of transparency. Transparent objects are more expensive, so minimize their use
and draw them last, if still visible.

Negative consequences of overdraw and complex shaders
Using complex shaders slows down performance, especially if they are long enough to have to be
read from RAM. If there is too much processing to be done, fragment shading is the bottleneck.

Overdraw causes an unnecessary slowdown of your application, as compute and memory
bandwidth resource is wasted drawing pixels that are overwritten before being seen.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

Debugging fragment processing
To find whether there is overdraw, or whether fragment shaders are your bottleneck, use Arm
Performance Studio to see what is happening on your Arm GPU.

Arm® Performance Studio

7.2 Efficient render passes with OpenGL ES
Tile-based rendering operates on the concept of render passes. Each render pass has an explicit
start and end and produces an output in memory only at the end of the pass.

Prerequisites
You must understand the following concepts:

• OpenGL ES rendering APIs.

• Render passes.

• Tile-based rendering.

Render pass handling
At the start of the pass, the tile memory is initialized inside the GPU. At the end of the pass, the
required outputs are written back to system memory. The intermediate framebuffer working state
lives entirely inside the tile memory.

Efficient render passes
The driver infers the OpenGL ES render passes based on framebuffer binding calls, as they
are not explicit in the API. A render pass for the framebuffer starts when it is bound as the
GL_DRAW_FRAMEBUFFER target. A render pass normally ends when the draw framebuffer binding
changes to another framebuffer.

How to optimize render passes
Try using the following optimization techniques:

• When starting a render pass, clear or invalidate every attachment. This does not apply if the
content of a render target is used as the starting point for rendering.

• To clear the tile memory quickly, clear the entire content of the attachment, ensuring that the
color, depth, or stencil writes are not masked.

• At the end of the render pass, invalidate any attachments that are not needed outside of the
pass, before changing the framebuffer binding to the next FBO.

• For rendering to a subregion of framebuffer, use a scissor box to restrict the area of clearing
and rendering required.

Render pass techniques to avoid
Arm recommends that you:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 135

https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

• Do not switch back and render to the same FBO multiple times in a frame. Complete each
of your render passes in a single glBindFramebuffer() call before moving on to the next.
On Valhall, it is especially important to minimize FBO switching as the driver does a flush in
glBindFramebuffer().

• Do not split a render pass by using either glFlush() or glFinish().

• Do not create a packed depth-stencil texture, D24_S8 or D32F_S8, and only attach one of the
two components as an attachment.

Negative impacts of inefficient render passes
Incorrect handling of render passes causes worse fragment shading performance and increased
memory bandwidth. Therefore, avoid lowering fragment shading performance and increasing
memory bandwidth. At the start of rendering, read non-cleared attachments into tile memory, and
then write out noninvalidated attachments at the end of rendering.

Debugging render pass issues
Review your API usage of framebuffer binding, clears, draws, and invalidates.

7.3 Efficient render passes with Vulkan
Tile-based rendering operates on the concept of render passes. Each render pass has an explicit
start and end and produces an output in memory only at the end of the pass.

Prerequisites
You must understand the following concepts:

• Vulkan rendering APIs.

• Render passes.

• Tile-based rendering.

Render pass handling
At the start of the pass, the tile memory is initialized inside the GPU. At the end of the pass, the
required outputs are written back to system memory. The intermediate framebuffer working state
lives entirely inside the tile memory.

Efficient render passes
Unlike with OpenGL ES, Vulkan render passes are explicit in the API. There are defined loadOp and
storeOp operations. loadOp defines how GPUs initialize the tile memory at the start of the pass.
storeOp defines what is written back at the end of a pass.

Vulkan introduces lazily allocated memory, meaning that transient attachments existent during a
single render pass do not need physical storage.

How to optimize render passes
Try using the following optimization techniques:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

• Clear or invalidate each attachment at the start of a render pass using loadOp = LOAD_OP_CLEAR
or loadOp = LOAD_OP_DONT_CARE.

• Set up any attachment that is only live during a single render pass as a TRANSIENT_ATTACHMENT
that is backed by LAZILY_ALLOCATED memory.

• Ensure that the contents are invalidated at the end of the render pass using storeOp =
STORE_OP_DONT_CARE.

• Ensure that the contents of read-only attachments that you did not modify during the
pass, but still need to keep, are not written at the end of the render pass using storeOp =
STORE_OP_NONE.

Render pass techniques to avoid
Arm recommends that you:

• Do not clear an attachment inside a render pass using vkCmdClearAttachments(). This is not
free, unlike a clear or invalidate loadOp operation.

• Do not write a constant color using a shader program to manually clear a render pass.

• Do not use loadOp = LOAD_OP_LOAD unless your algorithm relies on the initial framebuffer state.

• Do not set loadOp or storeOp for attachments that are not needed in the render pass to avoid
generating a needless round trip through the tile-memory for that attachment.

• Do not use vkCmdBlitImage() as a way of upscaling a low-resolution game frame to native
resolution. Especially if you render the UI or HUD directly on top of the frame with loadOp =
LOAD_OP_LOAD, as this is an unnecessary round trip to memory.

Negative impacts of inefficient render passes
Incorrect handling of render passes causes worse fragment shading performance and increased
memory bandwidth.

Debugging render pass issues
Review the API usage of render pass creation and any use of vkCmdClearColorImage(),
vkCmdClearDepthStencilImage(), and vkCmdClearAttachments().

7.4 Multisampling for OpenGL ES
For most multisampling, all data for the additional samples are kept in the tile memory, which is
inside the GPU. This data is resolved to a single pixel color as part of the tile write-back. This is
efficient because the bandwidth for the additional samples never enters the external main memory.

Prerequisites
You must understand the following concepts:

• Anti-aliasing.

• OpenGL ES APIs.

• The EXT_multisampled_render_to_texture extension

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 135

https://www.khronos.org/registry/gles/extensions/EXT/EXT_multisampled_render_to_texture.txt

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

Optimal multisampling performance
To get optimal render-to-texture multisampling performance, use the
EXT_multisampled_render_to_texture extension. This extension can render multisampled data
directly into a single-sampled image in memory, without needing a second pass.

How to optimize the use of MSAA
Try using the following optimization techniques:

• Use 4x MSAA because it is not expensive and provides good image quality improvements.

• Use the EXT_multisampled_render_to_texture extension render-to-texture multisampling.

MSAA techniques to avoid
Arm recommends that you:

• Do not use glBlitFramebuffer() to implement a multisample resolve.

• Do not use more than 4x MSAA without checking performance.

Negative impacts of implementing MSAA incorrectly
Failing to resolve multisampling inline results in higher memory bandwidth and reduced
performance. For example, manually writing and resolving a 4xMSAA 1080p surface at 60 FPS
requires 3.9GB/s of memory bandwidth. This is compared to 500MB/s when using the extension.

Debugging MSAA issues more effectively
Review any use of glBlitFramebuffer().

7.5 Multisampling for Vulkan
For most multisampling, all data for the additional samples are kept in the tile memory, which is
inside the GPU. This data is resolved to a value of a single pixel color as part of the tile write-back.
This is efficient because the bandwidth for the additional samples never enters the external main
memory.

Prerequisites
You must understand the following concepts:

• Anti-aliasing.

• Vulkan APIs.

Optimal multisampling performance for Vulkan
Multisampling is fully integrated with Vulkan render passes. Allowing the multisample resolve to be
explicitly specified at the end of the subpass using the end of pass resolveOp.

Be aware that subpasses with different Multisample Anti-Aliasing (MSAA) levels cannot be fused.
For example, in a scenario with 2 subpasses: Subpass 0 renders 4xMSAA to transient attachment;
Subpass 1 reads subpass 0 output and resolves to 1xMSAA output buffer which is written out. For

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

Arm GPUs, performance can be improved by making the second subpass also use 4xMSAA and
then using write out resolve to 1xMSAA.

How to optimize the use of MSAA with Vulkan
Try using the following optimization techniques:

• Use 4x MSAA as it is not expensive and provides good image quality improvements.

• Use loadOp = LOAD_OP_CLEAR or loadOp = LOAD_OP_DONT_CARE for the multisampled image.

• Use pResolveAttachments in a subpass to automatically resolve a multisampled color buffer
into a single-sampled color buffer.

• Use storeOp = STORE_OP_DONT_CARE for the multisampled image.

• Use LAZILY_ALLOCATED memory to back the allocated multisampled images. No physical backing
storage is required as they do not need to be stored in the main memory.

Vulkan MSAA steps to avoid
Arm recommends that you:

• Do not use vkCmdResolveImage(). Bandwidth and performance are negatively impacted.

• Do not use storeOp = STORE_OP_STORE for multisampled image attachments.

• Do not use storeOp = LOAD_OP_LOAD for multisampled image attachments.

• Do not use more than 4x MSAA without checking performance.

• Do not have subpasses with different MSAA levels unnecessarily.

The negative impact of implementing MSAA with Vulkan incorrectly
Failing to resolve multisampling inline results in higher memory bandwidth and reduced
performance. For example, manually writing and resolving a 4x MSAA 1080p surface at 60 FPS
requires 3.9GB/s of memory bandwidth. This is compared to 500MB/s when using an inline
resolve.

Vulkan MSAA example
Example code of MSAA is available in the Vulkan Samples repository on github. For more
information, see Vulkan MSAA example.

7.6 Multipass rendering
Multipass rendering is an important feature of Vulkan which enables applications to exploit the full
power of tile-based architectures using the standard API.

Prerequisites
You must understand the following concepts:

• Anti-aliasing.

• Vulkan APIs.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/msaa/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

• Using late ZS testing.

• Render passes and subpasses.

Enabling powerful algorithms
Arm GPUs can take color attachments and depth attachments from one subpass, and use them
as input attachments in a later subpass without going through the main memory. This enables
powerful algorithms, for example, deferred shading or programmable blending, to be used
efficiently. However, you must have the correct set up.

Per-pixel storage requirements
Most Arm GPUs are designed for rendering 16x16 pixel tiles, with older Arm GPUs having 128
bits per pixel of tile buffer color storage. From Mali-G72, this count increased to up to 256 bits per
pixel, and recent GPUs have up to 1024 bits per pixel. G-buffers, which require more color storage,
can be used at the expense of requiring smaller tiles during fragment shading, which can reduce
performance.

For example, a sensible G-buffer layout that fits neatly into a 128-bit budget could be:

• Light: B10G11R11_UFLOAT

• Albedo: RGBA8_UNORM

• Normal: RGB10A2_UNORM

• PBR material parameters/misc: RGBA8_UNORM

Image layouts
Multipass rendering is one of the few cases where image layout matters because it impacts driver-
enabled optimizations. Initial layouts should be “safe” layouts, see Transaction elimination for more
information.

Initial layouts
The following list is a sample multipass layout which hits all the good paths:

• Light: COLOR_ATTACHMENT_OPTIMAL

• Albedo: COLOR_ATTACHMENT_OPTIMAL

• Normal: COLOR_ATTACHMENT_OPTIMAL

• PBR: COLOR_ATTACHMENT_OPTIMAL

• Depth: DEPTH_STENCIL_ATTACHMENT_OPTIMAL

G-buffer pass (subpass #0) output attachments
• Light: COLOR_ATTACHMENT_OPTIMAL

• Albedo: COLOR_ATTACHMENT_OPTIMAL

• Normal: COLOR_ATTACHMENT_OPTIMAL

• PBR: COLOR_ATTACHMENT_OPTIMAL

• Depth: DEPTH_STENCIL_ATTACHMENT_OPTIMAL

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

To boost performance, the eventual output must occupy the first render target slot in the hardware,
in this case, the light attachment. To do this, light attachment must be attachment #0 in the
VkRenderPass.

To enable the render to write out emissive parameters from the opaque material, light is included
as an output from the G-buffer in this example. There is no extra bandwidth to write out an extra
render target because the subpasses are merged.

Unlike a desktop GPU, there is no need to invent schemes to forward emissive light contributions
through the other G-buffer attachments.

Lighting pass (subpass #1) input attachments
• Albedo: SHADER_READ_ONLY_OPTIMAL

• Normal: SHADER_READ_ONLY_OPTIMAL

• PBR: SHADER_READ_ONLY_OPTIMAL

• Depth: DEPTH_STENCIL_READ_ONLY

From the point that any pass starts to read from the tile buffer, optimize multipass performance by
marking every depth or stencil attachment as read-only. DEPTH_STENCIL_READ_ONLY is designed for
this read-only depth or stencil testing. You can use DEPTH_STENCIL_READ_ONLY concurrently as an
input attachment to the shader program for programmatic access to depth values.

Lighting pass (subpass #1) output attachments
• Light: COLOR_ATTACHMENT_OPTIMAL - Lighting that is computed during subpass #1, is blended on

top of the pre-computed emissive data from subpass #0. If needed, the application also blends
transparent objects after the lighting passes have completed.

Subpass dependencies
Dependencies between the subpasses use VkSubpassDependency which sets the
DEPENDENCY_BY_REGION_BIT flag. This dependency tells the driver that each subpass depends on
the previous subpasses at that pixel coordinate.

For the example above, the subpass dependency setup would look like:

VkSubpassDependency subpassDependency = {};
subpassDependency.srcSubpass = 0;
subpassDependency.dstSubpass = 1;
subpassDependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
subpassDependency.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
subpassDependency.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT
subpassDependency.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

subpassDependency.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;

Subpass merge considerations
The driver merges subpasses if the following conditions are met:

• Merging can save a write-out or read-back. Two unrelated subpasses which do not share any
data do not benefit from multipass and are not merged.

• The number of unique VkAttachments used for input and color attachments in all considered
subpasses is less than nine. However, keep in mind that depth or stencil does not count
towards this limit.

• The depth or stencil attachment does not change between subpasses.

• Multisample counts are the same for all attachments.

How to optimize the use of multipass rendering with Vulkan
Try using the following optimization techniques:

• Use multipass.

• Use a 128-bit G-buffer budget for color.

• Use by-region dependencies between subpasses.

• Use DEPTH_STENCIL_READ_ONLY image layout for depth after the G-buffer pass is done.

• Use LAZILY_ALLOCATED memory to back images for every attachment except for the light buffer,
which is the only texture that is written out to memory.

• Follow the basic render pass best practices, with LOAD_OP_CLEAR or LOAD_OP_DONT_CARE for
attachment loads, and STORE_OP_DONT_CARE for transient stores.

Multipass rendering techniques to avoid
You must not store G-buffer data to memory, only to write the final color output.

Dynamic Rendering incompatibility
From Vulkan 1.3, Arm GPUs supports the VK_KHR_dynamic_rendering extension. The
VK_KHR_dynamic_rendering extension simplifies renderpass building, but it also automatically
disables subpass fusion. This created a trade-off between ease of use and optimal performance,
that has been solved in driver version r50 with the VK_KHR_dynamic_rendering_local_read
extension. This extension enables similar functionality to subpass fusion, and shaders created
for a classic renderpass can be ported unmodified to dynamic rendering with tile buffer access
preserved.

The negative impact of implementing multipass rendering incorrectly
Not using multipass correctly forces the driver to use multiple physical passes, sending intermediate
image data back to the main memory between passes. In turn, losing all of the benefits of multipass
rendering.

How to debug multipass rendering issues more effectively
To debug potential issues you encounter, try the following techniques:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

• To determine if passes are being merged, refer to the GPU performance counters for
information about the number of physical tiles that are rendered.

• The GPU performance counters also provide information about the number of fragment
threads using late ZS testing. A high value in the late ZS test can be indicative of your
application not using DEPTH_STENCIL_READ_ONLY correctly.

Reference
To learn about the tile bits per pixel of particular Arm GPUs, see Arm® GPU Datasheet.

Example
Example code of render subpasses is available in the Vulkan Samples repository on GitHub, see
Vulkan Render Subpasses Tutorial for more information.

7.7 HDR rendering
For mobile content, the relevant formats for rendering HDR images are RGB10_A2, for unorm data,
and B10R11G11 and RGBA16F, for floating-point data.

Prerequisites
You must understand the following concepts:

• HDR rendering.

How to optimize the use of HDR rendering
Try using the following optimization techniques:

• Use RGB10_A2 UNORM formats for rendering where small increases in dynamic range are
required.

• Use B10G11R11 for floating-point rendering as it is only 32bpp, compared to 64bpp with full
fp16 float.

HDR rendering techniques to avoid
Arm recommends that you do not use RGBA16F unless:

- `B10G11R11` is not providing suitable image quality.
- Alpha is a requirement in the framebuffer.

Negative impacts of implementing HDR rendering incorrectly
The different types of impact you can see are:

• Increased bandwidth usage and reduced application performance.

• Fitting into 128bpp is difficult for multipass rendering to achieve efficiently.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 135

https://developer.arm.com/documentation/102849/latest
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/subpasses/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

7.8 Stencil updates
Many stencil masking algorithms toggle the stencil between a few values when creating and using a
mask. When designing a stencil mask algorithm that uses multiple draw calls, the aim is to minimize
the number of stencil buffer updates that occur.

Prerequisites
You must understand the following concepts:

• Stencil masking algorithms.

How to minimize stencil buffer updates
Try using the following optimization techniques:

• If the values are the same, then use KEEP rather than REPLACE.

• Some algorithms use pairs of draws: one to create the stencil mask, and one to color the
unmasked fragments. In this case, use the second draw to reset the stencil value so it is ready
for the next pair. Doing so avoids the need for a separate clear operation.

HDR rendering techniques to avoid
Do not waste performance by writing a new stencil value unnecessarily.

The negative impact of implementing stencil updates incorrectly
A fragment that writes a stencil value cannot be rapidly discarded. In turn, introducing an extra
fragment processing cost that affects the performance of your application.

7.9 Blending
Blending is efficient on Arm GPUs because the dstColor is available on-chip, inside the tile buffer.
However, it is important to remember that blending is more efficient for some formats than others.

Prerequisites
You must have a foundational knowledge of the following key graphics development concepts:

• Tile buffers.

• Blending.

• Forward Pixel Kill (FPK)

• Early ZS testing.

Optimized float blend modes
From Bifrost onwards, float blending is enabled but in Valhall GPUs there is accelerated hardware
blending for FP16 and R11G11B10 formats. Simple blends of those formats are accelerated, but
advanced blends are not. Advanced blends examples include those with logical operations or min/
max.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 135

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/killing-pixels---a-new-optimization-for-shading-on-arm-mali-gpus

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

If there is a costly blend, measure whether it is actually the bottleneck. If blending is the bottleneck,
before inspecting the blend steps, you should reduce overdraw where possible.

How to optimize blending
To optimize your application on Arm GPUs when using blending, you can try the following
optimizations:

• Use blending on unorm formats, rather than floating-point values.

• Always disable blending and alpha-to-coverage if an object is opaque.

• Monitor the number of blended layers that are being generated on a per-pixel basis. Even if the
shaders are simple, high layer counts quickly consume cycles due to the number of fragments
that must be processed.

• Consider splitting large UI elements into opaque and transparent portions. The opaque and
transparent portions can then be drawn separately, allowing either early ZS, or FPK, to remove
the overdraw beneath the opaque parts.

Avoiding suboptimal blending
We recommend that you:

• Do not use blending on floating-point framebuffers.

• Do not use blending on multisampled floating-point framebuffers.

• Do not generalize the user interface rendering code so that blending is always enabled.

• Do not just set alpha to 1.0 in the fragment shader to disable blending.

The negative impact of inefficient blending
Blending has a significant impact on performance because blending disables many of the important
optimizations that remove fragment overdraw, for example, early ZS testing and FPK. The negative
impact is especially noticeable for user interfaces and 2D games that use multiple layers of sprites.

Debugging OpenGL ES issues for Arm GPUs
When you need to debug any blending issues, use the RenderDoc for Arm® GPUs tool to step
through the construction of a frame. You must also monitor which draws calls are being blended
and the amount of overdraw that the blends create.

7.10 Transaction elimination
Transaction elimination is an Arm GPU technology that is used to avoid framebuffer write
bandwidth for static regions of the framebuffer. Transaction elimination is beneficial for games that
contain many static opaque overlays.

Prerequisites
You must understand the following concepts:

• Vulkan APIs.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 135

https://developer.arm.com/Tools%20and%20Software/RenderDoc%20for%20Arm%20GPUs

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

• Image layouts.

Avoiding framebuffer write bandwidth in Vulkan
Transaction elimination is used for an image if the following conditions are met:

• The sample count is 1.

• The mipmap level is 1.

• The image uses COLOR_ATTACHMENT_BIT.

• The image does not use TRANSIENT_ATTACHMENT_BIT.

• The effective tile size is 16x16 pixels. Pixel data storage determines the effective tile size.

For GPUs before Mali-G51 there was the additional condition that only a single color attachment is
being used.

The difference between safe and unsafe image layouts
Transaction elimination is a rare case where the driver uses the image layout. Whenever the image
transitions from a safe to an unsafe image layout, the driver invalidates the transaction elimination
signature buffer.

Safe image layouts are defined as image layouts that are either for read-only access or for color
attachment writes.

These layouts are:

• VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL.

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL.

• VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL.

• VK_IMAGE_LAYOUT_PRESENT_SRC_KHR.

• VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR.

• VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR.

All other layouts, including VK_IMAGE_LAYOUT_UNDEFINED, are considered unsafe as
they allow writes to an image that is outside of the write path of the tile. For instance,
VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR is unsafe because storage image operations are not
in the tile write path.

If the color attachment reference layout is different from the final layout, then the signature
buffer invalidation can happen as part of VkImageMemoryBarrier, vkCmdPipelineBarrier(),
vkCmdWaitEvents(), or VkRenderPass.

How to optimize transaction elimination on Arm GPUs
To optimize transaction elimination, try using the following optimization techniques:

• For color attachments, use the COLOR_ATTACHMENT_OPTIMAL image layout.

• To avoid unnecessary signature invalidation, use the safe image layouts for color attachments.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

• To skip unneeded render target writes, use storeOp=DONT_CARE rather than
VK_IMAGE_LAYOUT_UNDEFINED.

Vulkan input attachments requiring VK_IMAGE_LAYOUT_GENERAL
Some extensions, including VK_EXT_rasterization_order_attachment_access, require the input or
color attachments to be in the VK_IMAGE_LAYOUT_GENERAL image layout for certain operations. This
would normally stop transaction elimination. However, you can use the subpass layout functionality
with the latest Arm GPU drivers to keep transaction elimination. To keep transaction elimination:

• Enter the render pass with safe layouts.

• Use safe layouts everywhere possible - avoid VK_IMAGE_LAYOUT_GENERAL where possible.

• Make sure VK_IMAGE_LAYOUT_GENERAL is the only unsafe layout used.

• Leave the render pass with safe layouts.

VK_KHR_dynamic_rendering does not offer a similar implicit image transition path, so
there is no equivalent of this method for dynamic rendering.

Transaction elimination techniques to avoid
Do not transition color attachments from safe to unsafe, unless the algorithm requires it.

The negative impact of not using transaction elimination
The loss of transaction elimination increases external memory bandwidth for scenes with static
regions across frames. In turn, reducing the performance on systems that have limited memory
bandwidth.

Debugging transaction elimination
To determine if transaction elimination is triggered, make the GPU performance counters count the
number of tile writers that have been killed.

7.11 Variable rate shading
Variable Rate Shading (VRS) adds the ability to control the shading rate of fragment shaders. VRS
improves power consumption and also gives a performance increase when your application is
fragment bound.

You can specify the shading rate in the following ways:

• Drawcall level

• Primitive level

• Using screen-space attachments for the whole renderpass.

You can also use any combination of these three methods.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

Prerequisites
You must understand the following concepts:

• Fragment and compute shading

• Attachments, especially screen-space attachments

• Drawcalls

Explore whether attachment or drawcall VRS works best
Specifying VRS per drawcall, or per screen-space attachment, is use-case dependent. Use the
method that is appropriate for your usecase.

Specifying VRS per drawcall works well for the following cases:

• Fast-moving objects

• Out-of-focus objects

• With smoke and similar particle effects.

VRS screen-space attachments can involve combining a number of different factors. The following
examples are when you would specify VRS screen-space attachments:

• Luminance variance

• Depth discontinuities

• Motion vectors

• Many other features

You can combine drawcall-level and attachment-level VRS without issue.

Use compute or fragment shading to generate screen-space attachments for your
usecase
When generating screen-space attachments per frame, we generally advise to not use compute
shaders. However, VRS screen-space attachments cannot use Arm Frame Buffer Compression (AFBC)
because VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR disables AFBC. This means
there is no loss in using storage images for the attachments when written by compute shaders.
However, you must make sure that synchronization is handled correctly, so that compute jobs
overlap with the fragment shading of other passes.

Use subgroup operations to perform reductions
Generating VRS screen-space attachments often involves shaders that perform reductions. For
better performance, use subgroup operations instead of shared memory.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Fragment shading

Profile to find best shading rates and tile sizes
8x8 tile size for VRS screen-space attachments often gives better performance in its renderpass.
An 8x8 tile size gives better performance because it is more granular than bigger tile sizes, which is
especially important in lower resolutions. However, generating the VRS screen-space attachment
for an 8x8 tile size may be more costly, in terms of compute, compared to bigger tile sizes. For
these reasons, start with an 8x8 tile size but then also experiment with bigger tile sizes.

An 8x8 tile size for VRS screen-space attachments often gives the best performance because it is
more granular than bigger tile sizes. However, if the screen-space attachment is generated every
frame, then the higher cost of generating smaller tile sizes can be more significant. Additionally,
lower resolutions require a smaller tile size.

Similarly, shading rates greater than 2x2 do not always give the substantial improvement required
to justify the quality loss, although GPUs after the Immortalis-G720 have improved performance
at higher rates. To see what performance gains are achieved, experiment on the hardware you are
targeting.

Avoid reprojecting render targets
VRS screen-space attachments are often generated with data from the previous frame. In this case,
reprojecting the image from the previous frame is likely to be unnecessary overhead. If the lack of
reprojection causes artifacts, you can try limiting the shading rate to 2x2.

Negative consequences of incorrect VRS usage
You must profile and monitor the quality of your output. If you use the VRS effectively, it allows
significant performance gains without any noticeable loss of quality. However, if you use VRS
incorrectly, you can lose both quality and performance.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

8. Buffers and textures
This chapter contains information on how to optimize the performance of your in-game textures on
an Arm GPU.

8.1 Buffer update for OpenGL ES
OpenGL ES implements a synchronous programming model. Each API call behaves as if the
rendering triggered by earlier API calls has been completed. This is an illusion because rendering is
handled asynchronously, often completing milliseconds after the triggering API call was made.

Prerequisites
You must understand the following concepts:

• Buffers

• Pipeline draining

• Resource ghosting

• OpenGL ES APIs.

Buffer update
To maintain the illusion, the driver must track resources that are referenced by pending render
commands. The driver locks them to prevent modification until those rendering commands have
been completed.

If the application attempts to modify a locked resource, then the driver must take some evasive
action. Either draining the pipeline until the lock is released, or creating a new ghost copy of the
resource to contain the modifications. Both choices create an overhead that the application can
avoid.

How to optimize buffer updates
Try using the following optimization techniques:

• To explicitly bypass the synchronous rendering and resource lock semantics, perform
modification of buffers using glMapBufferRange() and MAP_UNSYNCHRONIZED.

• Design buffer use to cycle though N buffers. Where the value of N is high enough to ensure
that any resource locks have been released before a buffer is used again.

• Where possible, perform complete buffer replacement instead of partial buffer replacement.
Perform the complete buffer replacement using glBufferData().

• If a large buffer is used by glBufferSubData(), bind the buffer as GL_PIXEL_UNPACK_BUFFER.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

Buffer update techniques to avoid
Do not use glBufferSubData() to modify buffers that are still referenced by pending commands.
Practically this means not calling it more than once every frame or two for any given buffer. A
second call can stall the GPU until any updated objects are through the rendering pipeline.

The negative impacts of inefficient buffer updates
Keep the following points in mind:

• Pipeline draining stalls the application until the resource lock is released. Pipeline draining does
not increase CPU load however, it reduces GPU processing efficiency.

• CPU loads increase when resource ghosting requires a new allocated buffer and any parts that
are not overwritten are to be copied from the original.

8.2 Robust buffer access
Vulkan devices support bound checking to the GPU memory accesses by using
robustBufferAccess.

Prerequisites
You must understand the following concepts:

• Bounds checking.

• Vulkan APIs.

• Uniform buffers.

Adding bounds checking
Bounds checking ensures that accesses cannot fall outside of the buffer, preventing hard failure
modes such as a GPU segmentation fault. However, do note that out-of-bounds access behavior,
with bounds checking, is defined in the implementation. In turn, creating a render that cannot be
predicted.

Enabling bounds checking causes loss in performance for accesses to uniform
buffers and shader storage buffers.

How to optimize robust buffer access on Vulkan
Try using the following optimization techniques:

• Use robustBufferAccess as a debugging tool during development.

• Disable robustBufferAccess in release builds. Only leave it enabled if the application use-
case requires the additional level of reliability due to the use of unverified user-supplied draw
parameters.

• Push constants have no advantage over uniform buffers on Arm GPUs.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

• Avoid dynamic indexing where possible, whether using push constants, or uniform buffer
objects.

Robust buffer access techniques to avoid
Arm recommends that you do not enable:

• robustBufferAccess unless it is needed.

• robustBufferAccess without reviewing the performance impact that it can have on your
application.

The negative impact of using robust buffer access
Even though robustBufferAccess has advantages, the use of robustBufferAccess causes
measurable performance loss to both uniform buffers and shader storage buffers.

Debugging robust buffer access
Try the following debugging tips:

• To verify performance input, compare two test runs. One with robustBufferAccess enabled,
and one without.

• The robustBufferAccess feature is a useful debug tool during development. If the application
has problems with crashes or DEVICE_LOST errors being returned, then enable the robust access
feature and see if the problem stops. If the problem does stop, there is either a draw call, or
compute dispatch, that is making an out-of-bounds access.

8.3 Staging buffers
Most buffer use does not need staging buffers and you should avoid them when possible.
However, tiled-optimal content needs staging buffers, and there may be other staging buffer
requirements.

Prerequisites
You must understand the following concepts:

• Vulkan buffers

• Vulkan images

• Memory

VK_EXT_host_image_copy
The VK_EXT_host_image_copy extension is available from driver r50. The extension uses
the CPU to copy direct between host memory and an image, and image to image copy. The
VK_EXT_host_image_copy extension saves GPU memory and processor use by avoiding a staging
buffer between them.

Only certain image layouts are supported, and you can retrieve these from the API.

The currently supported layouts are the following:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

Copy source:

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL

• VK_IMAGE_LAYOUT_UNDEFINED

• VK_IMAGE_LAYOUT_PREINITIALIZED

Copy destination:

• VK_IMAGE_LAYOUT_GENERAL

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL

Because only a limited number of layouts are supported, you may need a device-side layout
transition with appropriate barriers.

Copying to or from host memory is most efficient with linear tiling. Image to image copy is fastest
with the same tiling used for source and destination. If you are using optimal tiling for source and
destination, we recommend to have the extents aligned with block size, or at least its subdivisions.
Block size will be 16x16 elements for uncompressed formats, or 4x4 for compressed ones like
ASTC; elements are 1 texel single format blocks for uncompressed and N texels for compressed.

Memory backing the images should be created with the
VK_MEMORY_PROPERTY_HOST_CACHED_BIT flag.

The VK_EXT_host_image_copy extension is not compatible with AFBC or AFRC.

How to optimize staging buffers
Avoid using staging buffers where possible. Use staging buffers mainly for tiled-optimal content.

The negative impact of using staging buffers incorrectly
Unnecessary staging buffer use will result in wasted GPU memory, processing, bandwidth and
power use.

8.4 Texture sampling performance
Depending on texture format and filtering mode, the Arm GPU texture unit can spend variable
amounts of cycles sampling a texture. The texture unit is designed to give full-speed performance
for both nearest sample and bilinear filtered, LINEAR_MIPMAP_NEAREST, texel sampling.

Prerequisites
You must understand the following concepts:

• Texture sampling.

• Texture formats.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

Cases where extra texture sampling cycles are required
Ignoring data cache effects, the cases that require extra cycles are:

• Trilinear, LINEAR_MIPMAP_LINEAR, filtering has a 2x cost.

• 3D formats have a 2x cost.

• FP32 formats have a 2x cost.

• Depth formats have a 2x cost for Midgard GPUs, but only a 1x cost on Bifrost GPUs. For Valhall
GPUs, Depth is generally a 1x cost. But, if there is a reference or comparison depth, then it is a
2x cost, for example Shadow Maps.

• Cubemap formats have a 1x cost per cube face that is accessed.

• For older Midgard, or first-generation Bifrost GPUs, YUV formats have an Nx cost, where N is
the number of texture planes that are required. For the second-generation Bifrost and Valhall
GPUs, meaning Mali-G51 onwards, YUV has a 1x cost, irrespective of the plane count.

For example, a trilinear filtered RGBA8 3D texture access takes four times longer to filter than a
bilinear 2D RGBA texture access.

How to optimize texture sampling performance
Try using the following optimization techniques:

• Use the lowest texture resolution that you can.

• Use the narrowest precision that still retains a level of texture quality that is acceptable to you.

• For static resources, use offline texture compression, such as Ericsson texture Compression (ETC),
Ericsson texture Compression 2 (ETC2), or ideally Adaptive Scaleable Texture Compression (ASTC).

• To improve both texture caching and image quality, always use mipmaps for textures that are in
3D scenes.

• Be careful to use trilinear filtering selectively if your content is texture-rate limited. Trilinear
filtering gives the most benefits to textures with fine detail, such as text rendering.

• Use texelFetch() or texture() instead of the slower imageLoad() wherever possible.

• Use mediump samplers. highp samplers can be half the speed due to their wider data path
requirements.

• If you need higher dynamic range, then consider using packed 32-bit formats. Such 32-bit
formats include RGB10_A2 or RGB9_E5, as an alternative to FP16 or FP32 textures.

• To lower the intermediate precision of the ASTC texture filtering, which can further improve
performance and energy efficiency.

◦ Use the EXT_texture_compression_astc_decode_modeextension for Open GLS.

◦ Use the VK_EXT_astc_decode_modeextension for Vulkan.

Texture sampling techniques to avoid
We recommend that you:

• Do not use wider data types unless essential.

• Do not use trilinear filtering for everything. Use it on a case-by-case basis only.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 135

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_astc_decode_mode.txt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_EXT_astc_decode_mode

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

• Do not use textureGrad() unless necessary. It is slower that texture() and textureLod().
Replace with trilinear or bilinear filtering where possible.

textureGrad() can be improved by ensuring the derivatives specified are the same
for all threads in an aligned 2x2 pixel-quad. Newer drivers will work faster with
dFdxCoarse() and dFdyCoarse() if you are calculating the derivatives yourself.

Negative impacts of unoptimized texture sampling
The different types of impact you can see are:

• Applications can experience problems due to either texture cache pressure, or general external
memory bandwidth issues when content is doing any of the following:

◦ Loading too much texture data.

◦ Is using sparse sampling due to missing mipmaps.

◦ Is using wide data types.

• Content that makes effective use of texture compression and mipmapping are typically limited
by filtering performance rather than external memory bandwidth. Such content only sees a
measurable impact if the texture unit is the critical path unit for the shaders. However, if a
shader is arithmetically expensive, then the texture filtering cost can be hidden beneath.

Debugging texture sampling
Try the following debugging tips:

• The GPU performance counters can show you the utilization of the texture unit to determine
if your application is texture filtering limited. Also, external bandwidth counters can monitor
traffic to the external system memory.

• Try disabling trilinear filtering to see if it improves the performance.

• Try clamping the texture resolution to see if the performance improves.

• Try narrowing the texture formats that you use to see if performance improves.

One final note
The Mali™ Offline Compiler can help you identify if your important shaders are texture-rate limited
through the statistics about functional unit usage that it presents. However, the texture cycle
counts from the tool assumes one cycle per texel performance. The compiler does not have
visibility of the precise sampler or format that you plan on using. You must manually de-rate the
texture performance and base the performance on your own texture and sampler usage.

Further reading
For different Arm GPUs capabilities, see Arm® GPU Datasheet.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 135

https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://developer.arm.com/documentation/102849/latest

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

8.5 Anisotropic sampling performance
When determining the sample pattern to use, anisotropic filtering enables the texture sampling
unit to account for the orientation of the triangle. Doing so improves image quality, in particular for
primitives that are viewed at a steep angle regarding the view plan. However, anisotropic filtering
comes at the cost of needing extra samples for a texture operation.

Prerequisites
You must understand the following concepts:

• Texture sampling.

• Bilinear filtering.

• Trilinear filtering.

Anisotropic Filtering (AF)
The following figure shows a cube that has been textured as a wooden crate. The image on the left
uses traditional trilinear filtering, and the image on the right uses a bilinear filter with 2x AF. You
can see the improved fidelity of the right-hand face of the cube when AF is used.

Figure 8-1: Trilinear vs Bilinear AF

From a performance perspective, the worst-case cost of AF is one sample per level of
maximum anisotropy, which the application controls. Samples can be bilinear and use
LINEAR_MIPMAP_NEAREST, or trilinear and use LINEAR_MIPMAP_LINEAR. Therefore, a 2x bilinear AF
makes up to two bilinear samples. One significant advantage of anisotropic filtering is that actual
number of samples that are made can be dynamically reduced. The reduction is based on the
orientation of the primitive under the current sample position.

How to optimize anisotropic filtering
Try using the following optimization techniques:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

• Start using a max anisotropy of two, and then assess if it provides sufficient quality. Higher
numbers of samples can improve quality, but they also give diminishing returns which are often
not worth the performance cost.

• Consider using 2x bilinear AF in preference to isotropic trilinear filtering. 2x bilinear is faster,
and has better image quality in regions of high anisotropy. Note, that by switching to bilinear
filtering, you can see some visible seams at the decision point between mipmap levels.

• Only use AF and trilinear filtering for objects that benefit from it the most.

Anisotropic filtering techniques to avoid
Arm recommends that you:

• Do not use higher levels of max anisotropy without reviewing performance. 8x bilinear AF costs
eight times more GPU computational power than a simple bilinear filter.

• Do not use trilinear AF without reviewing performance. 8x trilinear AF costs 16 times more
than a simple bilinear filter.

Negative impacts of using incorrect anisotropic filtering
The different types of impact you can see are:

• Using 2x bilinear AF, instead of trilinear filtering, increases image quality and can also improve
performance.

• Using high levels of max anisotropy can improve image quality, but at the cost of performance.

Debugging anisotropic filtering performance
Arm recommends that to debug a performance problem with texture filtering, first try disabling
AF completely and measuring any improvement. Then, incrementally increase the amount of
max anisotropy that is allowed, and assess whether the quality is worth the additional cost to
performance.

8.6 Texture and sampler descriptors
Arm GPUs cache texture and sampler descriptors in a control structure cache that can store a
variable number of descriptors, depending on their content.

Prerequisites
You must understand the following concepts:

• Texture caching.

• Sampler descriptors.

Directions for maximizing the cache capacity of descriptor entries
We recommend that you use the following descriptor settings. Using the descriptor settings
ensures that you reach the maximum cache capacity in terms of descriptor entries, and therefore,
the best performance:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

For OpenGL ES only
• Set GL_TEXTURE_WRAP_(S|T|R) to identical values

The OpenGL ES driver can specialize the sampler state that is based on the current
texture, unlike with Vulkan. Therefore, you do not need to set GL_TEXTURE_WRAP_R
for 2D textures.

• Do not use GL_CLAMP_TO_BORDER.

• Set GL_TEXTURE_MIN_LOD to the default of -1000.0

• Set GL_TEXTURE_MAX_LOD to the default of +1000.0

• Set GL_TEXTURE_BASE_LEVEL to the default of 0

• Set GL_TEXTURE_SWIZZLE_R to the default of GL_RED.

• Set GL_TEXTURE_SWIZZLE_G to the default of GL_GREEN.

• Set GL_TEXTURE_SWIZZLE_B to the default of GL_BLUE.

• Set GL_TEXTURE_SWIZZLE_A to the default of GL_ALPHA.

• If the EXT_texture_filter_anisotropic filtering extension is available, then set
GL_TEXTURE_MAX_ANISOTROPY_EXT to 1.0.

For Vulkan only
For Vulkan, when populating the VkSamplerCreateInfo structure:

• Set sampler addressMode(U|V|W) so they are all the same.

You must set addressModeW to be the same as U and V, even when sampling a 2D
texture.

• Set sampler mipLodBias to 0.0

• Set sampler minLod to 0.0

• Set sampler maxLod to VK_LOD_CLAMP_NONE

• Set sampler anisotropyEnable to VK_FALSE

• Set sampler maxAnisotropy to 1.0

• Set sampler borderColor to VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK

• Set sampler unnormalizedCoordinates to VK_FALSE.

When populating the VkImageViewCreateInfo structure:

• Set every field that is in a view component to either VK_COMPONENT_SWIZZLE_IDENTITY or to the
explicit per-channel identity-mapping equivalent.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

• Set view subresourceRange.baseMipLevel to 0.

Think whether it makes sense for you to have separate or combined texture and sampler
descriptors. Either works for Arm GPUs, so use separate texture and sampler descriptors if it
reduces the number of samplers.

Using the Nearest and Linear filters in OpenGL ES and Vulkan
For emulating GL_NEAREST and GL_LINEAR sampling for mipmapped textures, the requirements for
maximizing descriptor storage conflicts with the Vulkan recommended specification approach.

The Vulkan specification states that there are no Vulkan filter modes that directly correspond to
OpenGL minification filters of GL_LINEAR or GL_NEAREST. However, required filters can be emulated
using VK_SAMPLER_MIPMAP_MODE_NEAREST, minLod = 0, maxLod = 0.25, and using minFilter =
VK_FILTER_LINEAR or minFilter = VK_FILTER_NEAREST, respectively.

To emulate these two texture filtering modes for a texture with multiple mipmaps levels, while
also being compatible with the requirements for compact samplers, the recommended application
behavior is to create a unique VkImageView instance. The VkImageView instance references only the
level 0 mipmap and uses a VkSampler with pCreateInfo.maxLod setting to VK_LOD_CLAMP_NONE in
accordance with the compact sampler restrictions.

Direct access to textures through imageLoad() and imageStore() in shader programs, or the
equivalent in SPIR-V, are not impacted by this issue. However, remember to always prefer
texelFetch() over imageLoad() where possible.

Use tightly packed texture swizzles when sampling
For texture lookups in shaders use swizzles that return data tightly packed and starting from the
red component. Use .r for one channel, .rg for 2 channels, .rgb for 3 channels, and .rgba for 4
channels.

To access texture data that is not natively tightly packed, you can use a sampler swizzle to
rearrange the channel order seen by the shader code. For example , an ASTC normal map would
normally be accessed using a .ra swizzle in the shader, which is not tightly packed, so you should
use a sampler swizzle to remap into the preferred .rg order.

For OpenGL ES, use glTexParameter*() calls to set the appropriate GL_TEXTURE_SWIZZLE_* remap
values.

For Vulkan, use the vkCreateImageView() function pCreateInfo.components parameter structure
to set the appropriate remap values.

Behaviors to avoid when optimizing texture and sampler descriptors
Do not set maxLod to the maximum mipmap level in the texture chain. Instead, use
VK_LOD_CLAMP_NONE. Otherwise, you can experience a reduced texture filtering throughput.

The negative impact of unoptimized texture and sampler descriptors
Expect reduced texture filtering throughput.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

8.7 sRGB textures
sRGB textures are natively supported in Arm GPU hardware. Both sampling from and rendering
or blending to an sRGB surface comes at no performance cost. sRGB textures have a better
perceptual color resolution than non-gamma corrected formats at the same bit depth. Therefore,
Arm encourages the use of sRGB textures.

Prerequisites
You must understand the following concepts:

• sRGB textures.

• Color formats.

How to optimize sRGB texture performance
Try using the following optimization techniques:

• Use sRGB textures for improved color quality.

• Use sRGB framebuffers for improved color quality.

• Remember that Adaptive Scalable Texture Compression (ASTC) supports sRGB compression
modes for offline compressed textures.

Something to avoid when using sRGB textures
Do not use 16-bit linear formats to gain perceptual color resolution when 8-bit sRGB can suffice.

The negative impact of using an unoptimized texture format
The different types of impact you can see are:

• Not using sRGB textures, where appropriate, can reduce the quality of the image that is being
rendered.

• Using wider float formats in place of sRGB textures increases bandwidth and reduces
performance.

8.8 AFBC textures
Arm FrameBuffer Compression (AFBC) is a lossless image compression format, which is supported
from the Mali-T760 GPU onwards. AFBC can be used for compressing framebuffer outputs from
the GPU.

Prerequisites
You must understand the following concepts:

• Texture compression techniques.

• Framebuffer attachments.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

Using AFBC
When enabled, AFBC is automatic and functionally transparent to the application. However, be
aware of some areas where AFBC cannot be used, and others that can require the driver to insert
runtime decompression from AFBC back to an uncompressed pixel format.

How to optimize the use of AFBC textures
Try using the following optimization techniques:

• Use the texture() and texelFetch() functions in shaders to access textures and images that
the GPU previously rendered as framebuffer attachments.

• When packing data into color channels, to get the best compression rates, store the most
volatile bits in the least significant bits of the channel.

Something to avoid when using AFBC textures
Do not use imageLoad() or imageStore() to read or write into a texture or image that the GPU has
rendered as a framebuffer attachment. Doing so triggers decompression.

The negative impact of not using AFBC textures correctly
Arm recommends that you keep in mind that the incorrect use of AFBC can trigger decompression.
Decompression increases memory bandwidth usage and decreases performance.

8.9 AFBC textures for Vulkan
Arm FrameBuffer Compression (AFBC) is a lossless image compression format. AFBC can be used for
compressing framebuffer outputs from the GPU. Partial Vulkan support for AFBC is available from
Mali-G71 GPU onwards, and full support from Mali-G31 GPU, Mali-G51 GPU, and Mali-G76 GPU.

Prerequisites
You must understand the following concepts:

• Texture compression techniques.

• Framebuffer attachments.

Using AFBC
When enabled, AFBC is automatic and functionally transparent to the application. However, be
aware of some areas where AFBC cannot be used. And of others that can require the driver to
insert runtime decompression from AFBC back to an uncompressed pixel format.

For AFBC usage, VkImage requires:

• VkSampleCountFlagBits must be VK_SAMPLE_COUNT_1_BIT.

• VkImageType must be VK_IMAGE_TYPE_2D.

• VkImageTiling must be VK_IMAGE_TILING_OPTIMAL.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

As a rule, only enable image flags that are needed. Setting the VkImageUsageFlags
VK_IMAGE_USAGE_STORAGE_BIT or setting the VkImageCreateFlags
VK_IMAGE_CREATE_ALIAS_BIT stops AFBC being used. Similarly, setting
VkImageUsageFlags VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT or VkImageCreateFlags
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT stops AFBC use on GPUs before Valhall. Other VkImage
flags may also stop AFBC, depending on the device.

To query the compression properties of an image, add a VkImageCompressionPropertiesEXT
structure to the pNext chain of the VkSubresourceLayout2EXT structure in a call
to vkGetImageSubresourceLayout2KHR or vkGetImageSubresourceLayout2EXT.
VkImageCompressionPropertiesEXT::imageCompressionFlags will contain
VK_IMAGE_COMPRESSION_DEFAULT_EXT if AFBC is used, VK_IMAGE_COMPRESSION_DISABLED_EXT if there
was no compression, and VK_IMAGE_COMPRESSION_FIXED_RATE_EXPLICIT_EXT if Arm Fixed Rate
Compression (AFRC) is used.

From the Valhall generation of Arm GPUs, VkImage can have any VkFormat 32 bits or smaller. From
the Mali-G710 onwards, all VK_FORMAT_R16G16B16A16_* VkFormats are supported, including float.
For Arm GPUs released before Valhall, only a subset was supported.

The supported subset in Bifrost GPUs is as follows:

• VK_FORMAT_R4G4B4A4_UNORM_PACK16

• VK_FORMAT_B4G4R4A4_UNORM_PACK16

• VK_FORMAT_R5G6B5_UNORM_PACK16

• VK_FORMAT_R5G5B5A1_UNORM_PACK16

• VK_FORMAT_B5G5R5A1_UNORM_PACK16

• VK_FORMAT_A1R5G5B5_UNORM_PACK16

• VK_FORMAT_B8G8R8_UNORM

• VK_FORMAT_B8G8R8A8_UNORM

• VK_FORMAT_B8G8R8A8_SRGB

• VK_FORMAT_A8B8G8R8_UNORM

• VK_FORMAT_A8B8G8R8_SRGB

• VK_FORMAT_A8R8G8B8_SRGB

• VK_FORMAT_B10G10R10A2_UNORM

• VK_FORMAT_R4G4B4A4_UNORM

• VK_FORMAT_R5G6B5_UNORM

• VK_FORMAT_R5G5B5A1_UNORM

• VK_FORMAT_R8_UNORM

• VK_FORMAT_R8G8_UNORM

• VK_FORMAT_R8G8B8_UNORM

• VK_FORMAT_R8G8B8A8_UNORM

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

• VK_FORMAT_R8G8B8A8_SRGB

• VK_FORMAT_A8R8G8B8_UNORM

• VK_FORMAT_R10G10B10A2_UNORM

• VK_FORMAT_D24_UNORM_S8_UINT

• VK_FORMAT_D16_UNORM

• VK_FORMAT_D32_SFLOAT

How to optimize the use of AFBC textures
Try using the following optimization techniques:

• Only enable VkImage flags that are needed.

• Only use 2D images and optimal tiling, along with VK_SAMPLE_COUNT_1_BIT.

• Only use supported VkFormats.

• When packing data into color channels, to get the best compression rates, store the most
volatile bits in the least significant bits of the channel.

Something to avoid when using AFBC textures
Minimize use of storage images as they cannot use AFBC compression.

The negative impact of not using image flags correctly
Incorrect use of Vulkan image flags can cause AFBC to not be used or textures to be
decompressed. Decompression increases memory bandwidth usage and decreases performance.

Example
Example code for AFBC is available in the Vulkan samples repository on GitHub: Vulkan-AFBC-
Tutorial?

8.10 AFRC
Arm Fixed Rate Compression (AFRC) is a lossy image compression format. You can enable AFRC in
Vulkan and OpenGL ES with extensions.

Prerequisites
You must understand the following concepts:

• Texture compression techniques.

• Framebuffer attachments.

Using AFRC
AFRC is available in Arm Immortalis™ GPUs and in Arm Mali GPUs from the Mali-G510, Mali-G310
and Mali-G715 onwards, but it is not enabled by default.

You can enable AFRC for different GPU tasks:
Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 85 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

• To enable AFRC on display images, use the VK_EXT_image_compression_control_swapchain
extension in Vulkan, or the OpenGL ES equivalent EGL_EXT_surface_compression.

• To enable AFRC for render to texture usages, use VK_EXT_image_compression_control in
Vulkan, or the OpenGL ES equivalent GL_EXT_texture_storage_compression.

• To share AFRC images between GPU and ISP, use the VK_EXT_image_compression_control
extension or the OpenGL ES equivalent GL_EXT_EGL_image_storage_compression.

Using AFRC gives smaller and predictable memory footprints compared to Arm FrameBuffer
Compression (AFBC). However, AFRC is a lossy compression format, so you must use caution when
using AFRC for render to texture, for example, because losses are magnified with each compression
pass. The main, and safest, use of AFRC is for display images.

Table 8-1: Examples of what compression is achievable

Format Bitrates Vulkan setting Comp
Ratio

RGBA8 16 bpp 12
bpp 8 bpp

VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_3BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT

2:1
3:1
4:1

RGB8 15 bpp 12
bpp 6 bpp

VK_IMAGE_COMPRESSION_FIXED_RATE_5BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT

3:2
2:1
4:1

RG8 8 bpp 6 bpp
4 bpp

VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_3BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT

2:1
3:1
4:1

R8 4 bpp 3 bpp
2 bpp

VK_IMAGE_COMPRESSION_FIXED_RATE_4BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_3BPC_BIT_EXT
VK_IMAGE_COMPRESSION_FIXED_RATE_2BPC_BIT_EXT

2:1
3:1
4:1

AFRC support limitations
AFRC has the following limitations:

• Only works with 2D images

• Does not support mutable views.

• You cannot use AFRC for storage images

• It has no MSAA support.

• Only works on a subset of Vulkan formats, so you should always query supported compression
properties with VkImageCompressionPropertiesEXT before enabling. In OpenGL ES, you
can check supported compression properties using the SURFACE_COMPRESSION_EXT and
EGL_SURFACE_COMPRESSION_EXT attributes.

AFRC has all the restrictions of AFBC textures and AFBC textures for Vulkan. For example, to
access textures and images, you should use the texture() and texelFetch() functions in shaders.
Do not use imageLoad() or imageStore().

With EGL window surfaces in OpenGL ES, EGL_KHR_partial_update can cause visible corruption if
used with AFRC and so these commands should not be used together.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

Best practices when using AFRC textures
When turning off AFRC, do not accidentally turn off AFBC in the process. To turn off
AFRC in Vulkan, use the flag VK_IMAGE_COMPRESSION_DEFAULT_EXT. You must not use the
VK_IMAGE_COMPRESSION_DISABLED_EXT flag, because this deactivates AFBC.

The negative impact of using AFRC incorrectly
Overuse of AFRC on textures can lead to a loss of quality. However, if you do not use AFRC, you
can miss out on potential bandwidth and performance savings.

Example
Example code for AFRC is available in the Vulkan samples repository on GitHub, see Vulkan Image
Compression Control Tutorial for more information. There is also an Arm® Learning Path on AFRC.

8.11 Runtime compression
Where possible, use offline texture compression over runtime compression. If the offline approach
is not possible, for example, when texture data is generated at runtime, you can use Arm
compression technologies. A final option is implementing compression manually in a compute
shader.

Prerequisites
You must understand the following concepts:

• Texture compression formats:

◦ Adaptive Scalable Texture Compression (ASTC)

◦ Ericsson Texture Compression (ETC)

• Arm compression technologies:

◦ Arm Fixed Rate Compression (AFRC)

◦ Arm FrameBuffer Compression (AFBC)

Use offline compression if possible
Any static resources should be compressed offline. Only use runtime compression where offline
compression is not an option. For offline texture compression, we recommend ASTC, but ETC and
ETC2 are other available options. See Texture sampling performance.

Consider AFBC
If you are unable to use the offline approach, AFBC is lossless and can help reduce bandwidth, but
does not reduce the overall memory footprint. The driver automatically enables AFBC compression
when possible. See AFBC textures for Vulkan for more information about AFBC.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/image_compression_control/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/image_compression_control/README.adoc
https://learn.arm.com/learning-paths/smartphones-and-mobile/afrc/

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Buffers and textures

Consider AFRC
If a lossy compression is acceptable, AFRC is a good solution for this case. Because AFRC is fixed
rate, you get the benefit of reduced memory footprint as well as reduced brandwidth. See AFRC
for more information on using AFRC.

If the lossiness is an issue, or AFRC is not available, consider using AFBC instead.

Shader based compression
If AFBC or AFRC do not suit your usecase, you can implement an ASTC encoder in shader code.

ASTC is a complex format. We recommend that you pick a subset to implement to make the
encoder less complicated. Alternatively, you can try ETC2, which is less complex.

Implementing a shader is not a trivial task. The additional compute load may impact the
performance of your application. Consider how efficiently it can be done and what trade-offs are
necessary.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Compute shading

9. Compute shading
This chapter covers how to optimize workgroup sizes, how to correctly use shared memory on an
Arm GPU, and optimized ways to process images.

9.1 Image processing
One common use case for compute shaders is for image post-processing effects. However,
fragment shaders have access to many fixed-function features in the hardware.

Fixed-function features can speed up performance, reduce power, and even reduce bandwidth.
Ideally, use fragment shaders for image processing where possible.

Prerequisites
You must understand the following concepts:

• Fragment shading.

• Compute shading.

• Pipeline bubbles.

• Thread quads.

Image processing advantages
The following list shows some advantages to using fragment shading for image processing:

• Texture coordinates are interpolated using fixed function hardware when using varying
interpolation. This frees up shader cycles for more useful workloads.

• You can write out to memory using the tile-writeback hardware in parallel to the shader code.

• You do not need to range check imageStore() coordinates. Doing so can be a problem when
you are using workgroups that do not subdivide a frame completely.

• You can do framebuffer compression and transaction elimination.

The following list shows some advantages to using compute shading for image processing:

• It can be possible to exploit shared data sets between neighboring pixels. Doing so avoids extra
passes for some algorithms.

• It is easier to work with larger working sets per thread, avoiding extra passes for some
algorithms.

• For complicated algorithms, for example, Fast Fourier Transforms (FFTs), which require multiple
fragment render passes, it is often possible to merge into a single compute dispatch.

How to optimize the use of image processing
Try using the following optimization techniques:

• Use fragment shaders for simple image processing.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Compute shading

• For more complicated scenarios try using and monitoring the performance of compute shaders.

• To read read-only texture data, use texture() or texelFetch() instead of imageLoad().
texture() works with Arm FrameBuffer Compression (AFBC) textures that have been rendered
by previous fragment passes. Using texture() also load balances the GPU pipelines better
because texture() operations use the texture unit and both imageLoad() and imageStore()
use the load or store unit. The load/store units are often already being used in compute
shaders for generic memory accesses.

• To improve imageStore(), memory coherence across threads in a quad is important. Therefore,
make sure to group four adjacent lanes to use addresses in the same 64 byte cache line. For
compute shaders, threads are packed linearly across X then Y then Z. Correctly combining the
thread packing with the texture storage pattern allows you to layout your compute shader
thread group in the same shape as the imageStore() accesses. This more efficient memory use
provides a significant performance improvement. This is also true for imageLoad() if it cannot
be avoided.

For more detail on the last point, consider that for the storage pattern VK_IMAGE_TILING_LINEAR the
texture is laid out linearly. For a quad of threads, the y and z coordinates must stay the same and
only the x coordinate can vary, in groups of 0-3, 4-7, and so on. For VK_IMAGE_TILING_OPTIMAL the
texture is block-interleaved, which means the y co-ordinate can vary as well, and there are options
for your quad layout.

If there are 8 bytes per texel then y can only vary in groups of 2 (0-1, 2-3, and so on) but if there
are 4 or fewer bytes per texel, then y can vary in groups of 0-3, 4-7, like the x co-ordinate. See
the following figure for possible thread quad to texel layouts for the different storage patterns.
Working with this knowledge, you can then either layout your workgroup in the same shape as
your accesses must be, or layout linearly and manually swizzle your gl_GlobalInvocationID into
coordinates for imageStore().

In the following figure, the colored areas represent memory blocks that your quad must be selected
within.

Figure 9-1: Texel to quad mapping

Things to avoid when optimizing your image processing implementation
We recommend that you:

• Do not use imageLoad() in compute unless you must use coherent read and writes within the
dispatch.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Compute shading

• Do not use compute to process images generated by fragment shading. Doing so creates a
backwards dependency that can cause a bubble. If fragment shader outputs are consumed
by fragment shaders of later render passes, then render passes go through the pipeline more
cleanly.

• Avoid textureGrad() unless it is necessary. It is slower than texture() and textureLod().
Instead, replace with trilinear or bilinear filtering where possible.

textureGrad() can be improved by ensuring the derivatives specified are the same
for all threads in an aligned 2x2 pixel-quad. Newer drivers will work faster with
dFdxCoarse() and dFdyCoarse() if you are calculating the derivatives yourself.

The negative impact of not using the correct image processing method
Compute shaders can be slower and less energy-efficient than fragment shaders for simple post-
processing workloads. Examples of post-processing workloads are downscaling, upscaling, and
blurs.

9.2 Workgroup sizes
Arm Midgard, Bifrost, and Valhall GPUs have a fixed number of registers available in each shader
core. These GPUs can split those registers across a variable number of threads depending on the
register usage requirements of the shader program.

Prerequisites
You must understand the following concepts:

• Shader core resource scheduling.

• Workgroups.

• Stack memory.

Using workgroups
The GPU hardware can split up, and then merge, workgroups during shader core resource
scheduling. If barriers or shared memory are used, then GPUs cannot do this with workgroups. In
such a case, all work items in the workgroup must be executed concurrently in the shader core.

Large workgroup sizes restrict the number of registers that are available to each work item in this
scenario. In turn, forcing shader programs to use stack memory if insufficient registers are available.

Arm GPUs currently use subgroup sizes of 16 and smaller, so implementations which assume larger
warp-sizes may require modification to function correctly. Be especially careful with optimizations
which attempt to avoid barrier calls.

How to optimize the use of workgroup sizes
Try using the following optimization techniques:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Compute shading

• Use 64 as a baseline workgroup size.

• Use a multiple of 4 as a workgroup size.

• Try smaller workgroup sizes before larger ones, especially if using barriers or shared memory.

• When working with images or textures, use a square execution dimension, for example 8x8, to
exploit optimal 2D cache locality.

• If a workgroup has per-workgroup work to be done, consider splitting the work into two passes.
Doing so avoids barriers and kernels that contain portions where most threads are idle.

• Compute shader performance is not always intuitive, so keep measuring the performance
levels.

Things to avoid when optimizing workgroup sizes
Arm recommends that you:

• Do not use more than 64 threads per workgroup.

• Do not assume that barriers with small workgroups are free from performance costs.

Negative impacts of not using workgroup sizes correctly
The different types of impact you can see are:

• Be careful with large workgroups. If a high percentage of work items are waiting on a barrier,
then the shader core can be starved of work.

• Shaders that spill to the stack incur a higher load and store unit utilization, along with a higher
cost to external memory bandwidth.

9.3 Shared memory
Arm GPUs do not implement dedicated on-chip shared memory for compute shaders. The shared
memory that is available to use is system RAM that is backed up by the load-store cache.

Prerequisites
You must understand the following concepts:

• Cache memory.

• Memory allocation.

• Reduction shaders.

How to optimize the use of shared memory on Arm GPUs
Try using the following optimization techniques:

• Use shared memory to share significant computation between threads in a workgroup.

• Keep your shared memory as small as possible, as it reduces the chance of thrashing the data
cache.

• To reduce the size of the shared memory that is needed, reduce the precision and data widths.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Compute shading

• You need barriers to synchronize access to shared data. Shader code that has been ported from
desktop development can sometimes omit barriers due to GPU-specific assumptions on warp
width. Such an approach is not safe to use on mobile GPUs.

• It can be computationally cheaper splitting an algorithm over multiple shaders when compared
to inserting barriers.

• For barriers, smaller workgroups are less expensive.

Things to avoid when optimizing shared memory use
Arm recommends that you:

• Do not copy data from global memory to shared memory on Arm GPUs. Doing so pollutes the
caches.

• Do not use shared memory to implement code. For example:

 if (localInvocationID == 0) {
 common_setup();
 }
 barrier();
 // Per-thread workload here
 barrier();
 if (localInvocationID == 0) {
 result_reduction();
 }

Splitting the example problem into three shaders would be an improvement. The setup and
reduction shaders would need fewer threads.

The negative impact of using shared memory incorrectly
Depending on the algorithmic design of the compute shader that you use, the negative impact of
using shared memory incorrectly is specific to your application.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

10. Shader code
Writing optimal shader code through correct precision, vectorizing, uniforms and other techniques
is key to optimizing the graphics performance of your application.

10.1 Minimize precision
Arm GPUs have full support for reduced precision in the shader core register file and arithmetic
units. Also, reducing precision on inputs and outputs saves data bandwidth. Using 16-bit precision
is normally sufficient for computer graphics, especially for fragment shading when computing an
output color.

Prerequisites
You must understand the following concepts:

• Different precision types, including lowp and mediump, FP16, and FP32.

• Maintaining correct values through calculations involving reduced precision variables and
temporaries.

• HLSL and GLSL.

Marking variables and temporaries
Both ESSL and Vulkan GLSL support marking variables and temporaries to use reduced precision
level with mediump. There is no benefit to using lowp for Arm GPUs as it is functionally identical to
mediump.

Forcing 16-bit floating point
There are two aspects to 16-bit float support: storage and arithmetic. 16-bit storage support
reduces bandwidth and memory requirements. 16-bit arithmetic support improves throughput.

In Vulkan, enforced 16-bit support is available through the extension VK_KHR_shader_float16_int8
for arithmetic and the extension VK_KHR_16bit_storage, which is core to Vulkan 1.1, for storage.
There are examples of their use at the end of the chapter.

Where graphics drivers can ignore mediump, with explicit FP16 through the extensions drivers
producing known performance. But where both FP32 and FP16 variant shaders must be provided,
mediump gives convenience if different results on different devices are acceptable. Explicit FP16 is
especially useful for specialized compute shaders with FP16 kernels.

Which precision to use
FP16 is not usually accurate enough to use for every vertex output in your application. Use cases
which work well with FP16 precision:

• Normals / Tangent / Bi-tangent

• Vertex colors

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

• Any auxiliary data which is centered around 0 and does not need exceptionally high precision.

Use cases which can work well with FP16 precision:

• Local world position. Precision is significantly improved with delta_pos =
f16vec3(world_position - camera_position);. This gives the property that the closer you get
to the camera, the better precision you get. For mobile, precision is probably acceptable.

• Texture coordinates with smaller texture resolutions and constrained UV range. If UVs can be
kept between [-1, 1], there is reasonable resolution in FP16.

Use cases unlikely to work:

• Global world position.

• UI texture coordinates.

Beware of overflowing the precision, and getting Infinity or NaN. In ESSL 1 propagation of Infinity
and NaN through calculations is usually suppressed, but with ESSL 3 and Vulkan values are likely to
propagate through all affected calculations. VK_KHR_shader_float_controls can be used to change
default Infinity and NaN propagation behaviour.

How to optimize the use of minimized precision
Try using the following optimization techniques:

• Use mediump when the resulting precision is acceptable.

• Use mediump for inputs, outputs, variables, and samplers where possible.

• Extra precision for mediump values can be gained by centering around zero and making use of
the floating-point sign bit. For example, with angles try to use a range of -PI to +PI, rather than
0 to 2PI.

• Use mediump where you must make shader variants for FP16 and FP32, for example graphics
fragment shaders. Use explicit FP16 for cases like specially optimized compute shaders.

• If using explicit FP16, make sure to vectorize the code by using f16vec2 or f16vec4. Modern
GPU architectures use packed f16x2 instructions to improve arithmetic performance. Scalar
float16_t does not gain the same benefit.

HLSL
HLSL compiles to SPIR-V with the right tool, or pipeline of tools. Whether relaxed, or explicit,
precision is required can depend on the tool and what other platforms are targeted. However,
minFloat16 works well for relaxed precision and float16 works well for explicit precision.

Things to avoid when optimizing your use of minimized precision
Be aware of the following pitfalls when using minimized precision:

• Do not test the correctness of mediump precision on desktop GPUs. Desktop GPUs usually
ignore mediump and process it as highp. There is no difference in function or performance, so
the test is worthless.

• Do not cast between FP16 and FP32 too much. Most GPUs must spend cycles when
converting between FP16 and FP32.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

The negative impact of using minimized precision incorrectly
If you choose to use full FP32 precision, performance and power efficiency can be negatively
impacted. highp can use up to twice the resources and halve the speed.

How to debug precision-related performance issues
Try forcing mediump or FP16 for everything except for the contributors to gl_Position, and then
compare the performance difference afterwards.

Vulkan Examples
Example code for 16-bit arithmetic is available in the Vulkan Samples repository on GitHub. For
more information see, Vulkan 16-Bit Arithmetic Tutorial.

Example code for 16-bit storage is available in the Vulkan Samples repository on GitHub. For more
information, see Vulkan 16-Bit Storage input/output Tutorial.

10.2 Check precision
In extensions and elsewhere, make sure that attribute precisions are as expected.

Prerequisites
You must understand the concept of precision types such as mediump and highp.

Predefined attributes
You can get overflows if you use an attribute as though it was a different precision to what it is
defined as. For example, in the extension EXT_shader_framebuffer_fetch, gl_LastFragData is
mediump, as is gl_LastFragColorARM in the extension GL_ARM_shader_framebuffer_fetch. Both of
these variables have caused overflows when used incorrectly by developers.

How to optimize
Check the definition of attributes, pre-defined or otherwise, before use.

Negative impact
Overflows from wrong precision errors can cause random crashes and other types of corruption.

10.3 Vectorized arithmetic code
The Arm Midgard GPU architecture implements Single Instruction Multiple Data (SIMD) maths
units, exposing vector instructions to each thread of execution. The Arm Bifrost and Valhall GPU
architectures switch to scalar warp-based arithmetic instructions, but still implement vector access
to memory.

Prerequisites
You must understand the following concepts:

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/16bit_arithmetic/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/16bit_storage_input_output/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

• Vector and scalar arithmetic instructions.

• Vector processing units.

How to optimize the use of vectorized arithmetic code on Arm GPUs
Try using the following optimization techniques:

• Write vector arithmetic code in your shaders. While doing so is less critical since the Arm
Bifrost GPUs and upwards, there are still large numbers of devices that are using Arm Midgard
GPU architecture.

• Write compute shaders so that work items contain enough work to fill the vector processing
units.

Something to avoid when optimizing your use of vectorized arithmetic code
Do not write scalar code and hope that the compiler optimizes it. While the compiler can, it is more
reliably vectorized if the input code starts out in vector form.

10.4 Vectorize memory access
The Arm GPU shader core load-store data cache has a wide data path capable of returning multiple
values in a single clock cycle. It is important to make vector data accesses to get the highest access
bandwidth from the data caches. Shader programs expose direct access to the underlying memory.

Prerequisites
You must understand the following concepts:

• The load-store data cache.

• Vector data accesses.

• Thread quads.

How to optimize the use of vectorized memory accesses on Arm GPUs
Try using the following optimizations:

• For memory accesses with a single thread, use vector data types.

• Bifrost GPUs can run four neighboring threads in lock-step, which is known as a quad. You must
access overlapping or sequential memory ranges across the four threads to allow load merging.
Mali-G52 and Mali-G76 GPUs can do eight threads in a warp, and Valhall GPUs can do 16.

Things to avoid when optimizing your use of vectorized memory accesses
Arm recommends that you:

• Do not use scalar loads if vector loads are possible.

• Do not access divergent addresses across a thread quad where possible.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

The negative impact of using vectorized memory accesses incorrectly
Many types of common compute programs perform relatively light arithmetic on large data sets.
Getting memory access correct for them can have a significant impact on performance.

10.5 Manual source code optimization
There is no guarantee that the shader compiler can safely perform code transforms. Rendering
errors can result from a floating-point infinity or Not-a-Number (NaN) that would not have occurred
in the original program order.

Prerequisites
You must understand the following concepts:

• Code transforms.

• Matrix mathematics.

• Floating-point limitations.

Reducing the number of computations needed
Where possible, refactor your source code to reduce the number of computations that are needed,
rather than relying on the compiler to apply the optimizations.

How to optimize your source code
Try using the following optimizations:

• Based on your knowledge of values, refactor your source code to optimize the code as much as
possible by hand.

• Graphics are not bit exact. Therefore, you must be willing to approximate when it helps
refactoring. For example, simplify (A * 0.5) + (B * 0.45) by using (A + B) * 0.5 instead,
saving a multiply.

• Use the built-in function library where possible. Often, a hardware implementation that is faster
or, lower power than the equivalent hand-written shader code backs up the function library.

Beware timestamp effects
Timestamps are useful to see how long different parts of code are taking. However, timestamps
have the following limitations:

• Timestamps have an overhead. If you have used a significant number of timestamps, check the
GPU performance impact.

• Timestamps can impact work scheduling and introduce serialization. Check how the overall
frame time is affected when adding them in, and do not leave them in released code.

Things to avoid when optimizing your use of your source code
• Do not reinvent the built-in function library in your custom shader code.

• Do not do clears or fills of buffers with shader code where vkCmdFillBuffer can be used.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

The negative impact of not using minimized precision correctly
Less efficient shader programs cause reduced application performance.

How to debug source-code related issues
Use the Mali™ Offline Compiler to measure the impact of your shader code changes, including
analysis of shortest and longest path through the programs.

10.6 Generating SPIR-V
With Vulkan, whether using HLSL or GLSL, there are a number of SPIR-V generators - or pipelines
to generate SPIR-V. Be aware that they will create different code, and be prepared to analyze it.

Prerequisites
• SPIR-V

• Microsoft DXC and FXC

• glslang

• Mali Offline Compiler

Analyzing SPIR-V
To check SPIR-V, there is Khronos’ spirv-dis tool, to disassemble the binary into assembly language
text. Analysis of compiled code can be done with the Mali Offline Compiler. However, if you wish
to try other compilers, then they will either need to be run separately, or you can use other third-
party tools, such as Shader Playground.

Something to avoid in compiled SPIR-V
Often the fastest SPIR-V involves the fewest instructions. However, be aware of the
NoContraction decoration, which disables optimizations in an entire shader. Avoid this if at all
possible.

As an example, currently the DXC HLSL compiler uses the NoContraction decoration if fused
multiply-adds are used (fma() or mad()). Normal math instructions of A*B+C therefore end up
unexpectedly faster, as they do not generate NoContraction.

The negative impact of not checking generated SPIR-V
If you do not look at the SPIR-V generated by your shader compiler, then you can end up with less
efficient shaders than you expected.

Additional reading
For more information on SPIR-V, see Official Khronos SPIR overview.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 135

https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://www.khronos.org/spir/

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

10.7 Instruction caches
The shader core instruction cache is a performance-impacting area that is often overlooked. Due to
the number of threads running concurrently, it is a critically important part to be aware of.

Prerequisites
You must understand the following concepts:

• Instruction caches.

• Early ZS testing.

How to optimize the use of instruction caches
Try using the following optimizations:

• Use shorter shaders with many threads over long shaders with few threads. A shorter program
is more likely to be hot in the cache.

• Use shaders that do not have control-flow divergence. Divergence can reduce temporal locality
and increase cache pressure.

Things to avoid when optimizing your use of instruction caches
We recommend that you:

• Do not unroll loops too aggressively, although some unrolling can help.

• Do not generate duplicate shader programs or pipeline binaries from identical source code.

• Beware of fragment shading with many visible layers in a tile. The shaders for all layers that are
not killed by early ZS or Forward Pixel Kill (FPK), must be loaded and executed, increasing cache
pressure.

For more information, see Arm Community blog: Killing Pixels - A New Optimization for Shading on
ARM Mali GPUs.

How to debug instruction cache-related performance issues
Try the following debugging techniques:

• Use the Mali Offline Compiler to statically determine the sizes of the programs being generated
for any given Arm GPU.

For more information, see Mali™ Offline Compiler.

• You can use the Arm Performance Studio tool suite to step through draw calls and visualize
how many transparent layers are building up in your render passes.

For more information, see Arm® Performance Studio.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 135

https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/killing-pixels---a-new-optimization-for-shading-on-arm-mali-gpus
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/killing-pixels---a-new-optimization-for-shading-on-arm-mali-gpus
https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

10.8 Uniforms
Arm GPUs can promote data from API-set uniforms and uniform buffers into shader core registers.
The data is then loaded on a per-draw basis, instead of on every shader thread. Loading the data
on a per-draw basis removes many load operations from the shader programs.

Prerequisites
You must understand the following concepts:

• Uniforms.

• Uniform Buffer Objects (UBOs).

Using uniforms
Not all uniforms can be promoted into registers. Uniforms that are dynamically accessed cannot
always be promoted to register-mapped uniforms, unless the compiler is able to make the uniforms
constant expressions. For example, expression array indices that are made constant by loop
unrolling a fixed iteration for-loop.

How to optimize the use of uniforms on Arm GPUs
Try using the following optimizations:

• Keep your uniform data small. 128 bytes is a good general rule for how much data can be
promoted to registers in any given shader.

• Avoid uniform vectors or matrices that are padded with constant elements that are used in
computation. For example, elements that are always zero or one.

• Promote uniforms to compile-time constants with #defines for OpenGL ES, specialization
constants for Vulkan, or literals in the shader source if they are static.

• Prefer uniforms set by glUniform() on OpenGL ES, rather than uniforms loaded from buffers.

• Prefer column major format for matrices that are stored in UBOs with OpenGL ES.

• Vulkan push constants are equal to UBOs for Arm GPUs.

Things to avoid when optimizing your use of uniforms
We recommend that you:

• Do not dynamically index into uniform arrays.

• Do not over use instancing. Instanced uniforms that are indexed using gl_InstanceID count as
being dynamically indexed and cannot use register mapped uniforms.

The negative impact of using uniforms incorrectly
Register mapped uniforms cost little to use computationally. Any spilling to buffers in memory
increases the load-store cache accesses to the per-thread uniform fetches.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

How to debug uniform-related performance issues on Arm GPUs
The Mali™ Offline Compiler provides statistics about the number of uniform registers that are
being used. The Mali Offline Complier also contains information on the number of load and store
instructions that are being generated.

10.9 Uniform subexpressions
One common source of inefficiency is the presence of uniform subexpressions in the shader
source. Uniform subexpressions are pieces of code that only depend on the value of literals or
other uniforms. Therefore, the results are always the same.

Prerequisites
You must understand the following concepts:

• Uniforms

How to optimize the use of uniform subexpressions on Arm GPUs
Minimize the number of uniform-on-uniform or uniform-on-literal computations. Compute the
result of the uniform subexpression on the CPU and then upload that as your uniform.

The negative impact of using uniform subexpressions incorrectly
The Mali GPU drivers can optimize the cost of most uniform subexpressions so that they are only
computed a single time per draw. The benefit is not large, however, the optimization pass still
incurs a small cost for every draw call. To avoid the draw call cost, you can remove the redundancy.

How to debug uniform sub-expression-related performance issues on Arm GPUs
To measure the impact of your shader code changes, including analysis of shortest and longest path
through the programs, use the Mali™ Offline Compiler.

10.10 Uniform control-flow
One common source of inefficiency is the presence of conditional control-flow, for example, if
blocks and for loops, which are parameterized by uniform expressions.

Prerequisites
You must understand the following concepts:

• #defines in OpenGL ES.

• Specialization constants in Vulkan.

How to optimize the use of a uniform control-flow
Use #defines at compile time in OpenGL ES, and specialization constants in Vulkan for all control
flow. Doing so allows the compilation to completely remove unused code blocks and statically
unroll loops.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 135

https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

Things to avoid when optimizing your use of a uniform control-flow
Do not use uniform values that parametrize control-flows. Instead, specialize shaders for each
control path that is needed.

The negative impact of not using contol-flow correctly
You can expect a reduced performance in your application due to less efficient shader programs.

How to debug uniform-control-flow-related performance issues
To measure the impact of your shader code changes, use the Mali™ Offline Compiler. Include an
analysis of the shortest and longest path through the programs.

10.11 Branches
Branching can be expensive on a GPU. Branching either restricts how the compiler can pack groups
of instructions in a thread. Another example is when there is a divergence across multiple threads,
which introduces cross-thread scheduling restrictions.

Prerequisites
You must understand the following concepts:

• Branching.

• Thread scheduling.

How to optimize the use of branches
Try using the following optimizations:

• Minimize the use of complex branches in shader programs.

• Minimize the amount of control-flow divergence in spatially adjacent shader threads.

• Use min(), max(), clamp(), and mix() functions to avoid small branches.

• Check the benefits of branching over computation. For example, skipping lights that are above
a threshold distance from the camera. Often, it is faster just doing the computation.

Things to avoid when optimizing your use of branches
Do not implement multiple expensive data paths that are selected from using a mix(). Branching is
usually the best solution for minimizing the overall cost in this particular scenario.

The negative impact of not using branches correctly
You can expect to experience a reduced performance in your application due to less efficient
shader programs.

How to debug branch-related performance issues
Use the Mali Offline Compiler to measure the impact of your shader code changes. Include an
analysis of shortest and longest path through the programs. For more information, see Mali™ Offline
Compiler.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 135

https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

10.12 Discards
Using a discard in a fragment shader, or when using alpha-to-coverage, are commonly used
techniques. For example, alpha-testing complex shapes for foliage and trees.

Prerequisites
You must understand the following concepts:

• Fragment shaders.

• Alpha-to-coverage.

• Late ZS updates.

• Depth and stencil writing.

Using discards
These techniques force fragments to use late ZS updates. It is not known beforehand if the
fragments survive the fragment operations stage of the pipeline until after shading. You must run
the shader to determine the discard state of each sample. Doing so can cause redundant shading
or pipeline starvation due to pixel dependencies.

How to optimize the use of discards and alpha-to-coverage
Try using the following optimizations:

• Minimize your use of shader discard and alpha-to-coverage.

• Computing lights in deferred lighting commonly uses fragment discard to cull fragments that are
too far from the light source. To minimize execution bubbles, Arm recommends that you do not
do depth & stencil writes for these lighting passes.

• Render alpha-tested geometry front-to-back with depth-testing enabled. Doing so causes as
many fragments as possible to fail during early ZS testing. In turn, minimizing the number of
late ZS updates that are needed.

The negative impact of not using discards and alpha-to-coverage correctly
Keep the following in mind:

• Extra fragment shading costs can cause a performance loss or bandwidth increase.

• Pipeline starvation waiting for pixel dependencies to resolve can also cause a loss in
performance.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

10.13 Atomics
Atomic operations are common to many compute algorithms and some fragment algorithms. With
some slight modifications, atomic operations allow many algorithms to be implemented on highly
parallel GPUs that would otherwise be serial.

Prerequisites
You must understand the following concepts:

• Atomics.

• Contention.

• L1 and L2 caches.

Atomics and contention
The key performance problem with atomics is contention. Atomic operations from different shader
cores. Hitting the same cache line requires data coherency snooping through L2 cache, which is
computationally expensive.

Optimized compute applications that use atomics must aim to spread out the contention by
keeping the atomic operations local to a single shader core. Atomics are efficient when a shader
core controls the necessary cache line in its L1.

How to optimize atomics
Try using the following optimization techniques:

• Consider how to avoid contention when using atomics in algorithm design.

• Consider spacing atomics 64 bytes apart to avoid multiple atomics contending on the same
cache line.

• Consider whether it is possible to amortize the contention by accumulating into a shared
memory atomic. Then, have one thread push the global atomic operation at the end of the
workgroup.

• For OpenCL, consider the use of the cl_arm_get_core_id extension to allow explicit
management of per-shader-core atomic variables.

Things to avoid when optimizing atomics
If better solutions that use multiple passes are available, then do not use atomics.

The negative impact of not using atomics correctly
Heavy contention on a single atomic cache entry significantly reduces overall throughput. It also
impacts how well problems scale up when running on a GPU implementation with more shader
cores.

How to debug atomics related performance issues
The GPU performance counters include counters for monitoring the frequency of L1 cache snoops
from the other shader cores in the system.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Shader code

10.14 Multi-Draw Indirect
Multi-Draw Indirect (MDI) allows you to issue multiple draw calls with a single command which
significantly reduces CPU overhead. Multi-Draw Indirect is useful for GPU-driven rendering.

Prerequisites
You must understand the following concepts:

• Draw calls.

GPU-driven rendering
Multi-Draw Indirect is useful for GPU-driven rendering, where the GPU is responsible for issuing
draw calls. This is particularly useful for rendering large numbers of objects with minimal CPU
overhead.

In Vulkan, the VK_KHR_draw_indirect_count extension or the core Vulkan 1.2 both expose
MDI. MDI defines two new additional indirect commands, the vkCmdDrawIndirectCount and
vkCmdDrawIndexedIndirectCount command.

Avoid accessing gl_BaseVertex and gl_BaseInstance
When you use Multi-Draw Indirect, avoid accessing gl_BaseVertex and gl_BaseInstancebecause
they can cause a significant performance penalty.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

11. Ray tracing
This chapter covers the best practices that we recommend you use when adding ray tracing and
ray queries to your graphics application, particularly on platforms powered by Arm GPUs. Ray
tracing requires support for the Vulkan extension VK_KHR_acceleration_structure and either
VK_KHR_ray_query or, VK_KHR_ray_tracing_pipeline. All Immortalis™ GPUs support ray tracing.

The ray tracing pipeline extension introduces a new set of shader types that work differently to the
shaders in the traditional shader pipeline.

The ray query extension adds support for tracing rays in all shader types, and can be used in the
traditional pipeline of vertex, compute, and fragment shaders. Although the two extensions are
orthogonal, for the Arm GPU hardware that supports ray tracing, ray queries within the traditional
pipeline is the preferred method as this currently has greater performance acceleration.

Reference
For more about Vulkan ray tracing extensions, see Khronos’ introductory blog on Ray tracing in
Vulkan and the Vulkan Guide Ray Tracing topic. Arm also provides the following learning pathway:
Learn about Ray Tracing with Vulkan on Android.

11.1 Acceleration structures
Acceleration Structures (AS) are important to make ray tracing efficient. To quickly find ray
intersections, AS are used to represent geometry in a spatially sorted way.

Prerequisites
You must understand the following concepts:

• Ray tracing

• Bounding volumes

• Bottom-Level Acceleration Structures (BLAS)

• Top-Level Acceleration Structures (TLAS)

Use triangle geometry and minimize triangle count
We recommend using acceleration structures with triangles rather than Axis-Aligned
Bounding Boxes (AABBs). In VkAccelerationStructureBuildGeometryInfoKHR objects, use
VkAccelerationStructureGeometryKHR structures of VK_GEOMETRY_TYPE_TRIANGLES_KHR rather
than VK_GEOMETRY_TYPE_AABBS_KHR. Ray intersections with both triangles and AABBs are hardware-
accelerated on Immortalis™ GPUs, but intersections with AABBs require more interaction with user
shaders, which is slower.

To reduce intersection tests and accelerate the traversals, try to use a minimal number of triangles
for the structure.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 135

https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/extensions/ray_tracing.adoc
https://learn.arm.com/learning-paths/mobile-graphics-and-gaming/ray_tracing/

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Use the same acceleration structure in all threads
There is a significant performance improvement if all the threads in a warp can traverse their rays
together because the GPU can calculate them more efficiently.

Warps can only traverse together if they are traversing the same acceleration structure. This is only
a problem if you have multiple TLAS. If you have multiple TLAS, avoid dynamically selecting a TLAS
in the shader.

Use build flags
The GPU can improve performance if it knows the expected usage of acceleration structures,
which you can define with VkBuildAccelerationStructureFlagBitsKHR.

For example, when setting the VkAccelerationStructureBuildGeometryInfoKHR flags, use the
following:

• VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR for static BLAS. This is usually
in combination with VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR not being set.

• VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR for TLAS, and
BLAS that require frequent updates, for example, animations. In this case also use
VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR to re-fit the acceleration structure
rather than building it from scratch every frame.

Use geometry flags
To achieve performance improvements, set the VkGeometryFlagsKHR flags.

When possible, set the VK_GEOMETRY_OPAQUE_BIT_KHR flag in VkAccelerationStructureGeometryKHR
because it allows the GPU to immediately confirm ray intersections and save ray query calls or any-
hit shader invocations.

Group acceleration structures when rebuilding
To achieve better parallelization:

• Group several AS builds into a single command

• Use deferred operations in host builds.

You must consider the amount of scratch memory required. Try to group AS so that several can
be built together without requiring high memory usage. For example, you may have a single large
scratch buffer and reserve chunks with an offset for each AS build. The buffer would only be
reset, with an AS barrier, when it runs out. When tuning scratch buffer size, you must test the
performance on target Arm GPU devices.

Group static geometry into a single BLAS
In general, you should group static geometry into a single BLAS to test against. However, if there
are large holes in the static geometry, resulting in a largely empty bounding box, you can split the
geometry into regions. In this instance, place the geometry into sensible groupings and profile their
performance.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Separately, skinned geometry is also best grouped into a single BLAS
with VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR
and VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR set in
VkAccelerationStructureBuildGeometryInfoKHR::flags.

Avoid overlapping geometries
Grouping geometries can result in faster ray traversals. Conversely, if a BLAS has disjoint
geometries that have significant space between them, it often makes sense to split the BLAS.
Doing so ensures that rays do not intersect with the empty region of a BLAS.

For example, the following images are two almost completely overlapping BLAS, that should be
joined together, and then split into 2 regions, right and left.

Figure 11-1: Overlapping and Non-overlapping BLAS division

Negative consequences of non-optimal acceleration structures
AS that use the following take longer to test against and slow your rendering down:

• Non-triangle geometry

• More triangles than needed

• Inappropriate build flags

11.2 Efficient ray tracing
There are several practical tips to get good ray tracing performance on mobile devices. This topic
introduces some aims for you to consider.

Prerequisites
You must understand the following concepts:

• Ray tracing

• Acceleration Structures (AS)

• Ray query

• Ray tracing pipeline (RTP)

• Level of Detail (LOD)

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Minimize count and size of dynamic geometries
Rebuilding and updating AS for animated objects has a significant cost. Try to minimize the number
of dynamic models, and their primitive count.

Dynamic geometries often need their acceleration structure to be updated every
frame, and can use VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR if they
do so, as this is faster. However, they will still need an occasional full rebuild with
VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR to ensure that the quality of the
AS does not drop beyond an acceptable level.

Minimize rays per pixel
Every ray cast has a performance cost. Therefore, try to minimize the number of rays used and only
cast rays that are essential.

To achieve this aim, consider the following techniques:

• Render at a lower resolution and then upscale appropriately.

• Checkerboard rendering allows you to only trace half the rays each frame.

• Consider using temporal super-sampling techniques to distribute rays across multiple frames.

• Hybrid rendering methods. For example, try combining Screen-Space Reflections (SSR) or even
reflection probes with ray traced reflections, and shadow-maps with ray traced shadows.

Optimize shadow rays
Try to avoid casting unnecessary rays. For shadows, there are many cases where you can know the
result without casting a ray. Such examples include:

• Avoid tracing a ray if the surface normal is facing away from the light and is therefore
automatically in shadow.

• Detect if a given pixel is in range of a light, or on the far plane, so you can avoid casting the ray.

• Use a simple shadow map to detect shadow edges, where shadow rays are more valuable.

• Use gl_RayFlags. See Ray query or Ray tracing pipeline for further information.

Minimize divergence between rays
GPUs work best when work can be parallelized. Therefore, it is best to avoid shader divergence
across neighboring threads to maximize shader throughput and exploit caching strategies. This is
particularly important in ray tracing since spatially adjacent shader threads can result in different
ray traversals and intersection logic. Therefore, try to maximize ray coherency. As an example, with
warp-swizzling, a noise function could be written to diverge less per warp.

Aiming for better ray coherency means:

• Hard shadows are faster than soft shadows.

• Mirror reflections are faster than glossy or rough reflections.

• Stochastic sampling gives lower performance.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Performance-quality trade-offs may be required. For example, reduce roughness of reflections to
reduce divergence and improve performance. Consider ray-binning techniques and combine ray
tracing with rasterization-based techniques where possible.

However, divergence through early discard of rays is good, especially if it results in whole warps
being dismissed early.

Minimize ray length
When casting rays, it is best practice to keep the parameters tMin as large as possible, and tMax as
small as possible. Make sure to also keep the parameters coherent across a warp while doing this.
Keeping these values optimized can sometimes reduce traversal times and avoid precision issues.

Minimize ray payload
Additional ray payloads add to both bandwidth and memory use.

Use simple shaders
Ray tracing uses more GPU resources, so it is very important to simplify shaders to avoid register
spilling.

You may also want to avoid combining ray tracing with other features that use a lot of bandwidth.

Avoid non-opaque traversals and geometry
Traversal hints may be provided with flags at the shader level (compile time) and/or at AS build time
(runtime). The table below compares some options. In this case, shader flags take precedence over
AS flags:

Table 11-1: Flag options

Shader flag (traceRayEXT/
rayQueryInitializeEXT)

Instance flag
(VkAccelerationStructureInstanceKHR)

Geometry flag (VkAccelerationStructureGeometryKHR)

gl_RayFlagsOpaqueEXT VK_GEOMETRY_INSTANCE_
FORCE_OPAQUE_BIT_KHR

VK_GEOMETRY_OPAQUE_BIT_KHR

gl_RayFlagsNoOpaqueEXT VK_GEOMETRY_INSTANCE_
FORCE_NO_OPAQUE_BIT_KHR

0 (absence of opaque flag) or VK_GEOMETRY_NO_
DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR

Transparency requires more complex traversals and shader logic, which are both expensive. Only
use transparent geometry where needed.

Avoid using VK_GEOMETRY_NO_DUPLICATE_ANY_HIT_INVOCATION_BIT_KHR, only enable it only if there
is a strong need, for example, with partially transparent materials like glass or smoke particles. For
alpha-test transparency, you can set flags to 0. This allows for fast traversals because the GPU does
not have to track hits, but may result in alpha-test code executing more than once.

Consider materials and texturing
After a ray hit, the next step is to resolve the material. Different rays within a warp may hit different
objects or materials.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Fragment shaders are run in groups of 2x2 fragments. This means, for instance, a full screen
triangle is preferred over a full screen quad to minimise the number of helper invocations. Also,
fragment shaders will want an explicit texture LOD to stop rendering artifacts where all 4 rays in a
2x2 quad hit different materials and UV interpolation will fail.

Negative consequences of too many rays cast
Ray casting is expensive, therefore, casting too many rays at once results in your frame taking too
long to render. Make sure that every ray cast is required and provides useful information to the
final pixel color.

Debugging techniques to use with ray tracing
Consider implementing a heatmap system to visualize the amount of hit-candidates for ray query,
or the amount of hit-shader invocations for RTP. The following image is an example of a heatmap
system.

Figure 11-2: Heatmap

For profiling, use the Arm® Performance Studio.

Extensive counter instrumentation is available in Streamline, and shader best practice static analysis
is available when using Mali Offline Compiler.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 135

https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Figure 11-3: Streamline

11.3 Ray query
Ray query is the preferred Arm GPU ray tracing solution because it is more performant.

Prerequisites
You must understand the following concepts:

• Ray casting

Use a single call to rayQueryProceed for each rayQueryInitialize
For each rayQueryEXT object, ensure that there is exactly one call to rayQueryProceedEXT following
a call to rayQueryInitializeEXT. For example:

rayQueryEXT ray_query;
for (int i = 0; i < iter; i++) {
 rayQueryInitializeEXT(ray_query, ...);
 rayQueryProceedEXT(ray_query);
}

Use gl_RayFlags
gl_RayFlags flags help minimize the work done during ray traversal. For use-cases such as
shadows, where you only need to determine whether there is a hit rather than find the closest one,
use gl_RayFlagsTerminateOnFirstHitEXT and gl_RayFlagsOpaqueEXT. The fastest way to get the
closest hit is to use only gl_RayFlagsCullNoOpaqueEXT or gl_RayFlagsOpaqueEXT as appropriate for
the scene. gl_RayFlagsCullNoOpaqueEXT is fastest, but does not include any hits on non-opaque
objects.

If you do not use**Axis-Aligned Bounding Boxes* (AABBs) in your Acceleration Structures,
you can use gl_RayFlagsSkipAABBEXT to improve performance. AABBs are often not used,
see Acceleration structures for more information. There is a significant performance uplift
if both gl_RayFlagsOpaqueEXT and gl_RayFlagsSkipAABBEXT flags can be used. Using

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

gl_RayFlagsCullNoOpaqueEXT instead of gl_RayFlagsOpaqueEXT provides an even larger
performance improvement.

Using the flags gl_RayFlagsOpaqueEXT or gl_RayFlagsCullNoOpaqueEXT with
gl_RayFlagsSkipAABBEXT guarantees that rayQueryProceedEXT completes the traversal and return
false. Therefore, using its output value is unnecessary.

rayQueryEXT rq;
rayQueryInitializeEXT(rq, accStruct, gl_RayFlagsTerminateOnFirstHitEXT |
 gl_RayFlagsCullNoOpaqueEXT | gl_RayFlagsSkipAABBEXT, cullMask, origin, tMin,
 direction, tMax);

You should use Static values for ray flags if possible. Do not dynamically modify
flags or pass them in from Uniform Buffer Objects (UBOs). This ensures all
optimizations can be applied.

For hybrid renderers gl_RayFlagsCullFrontFacingTrianglesEXT can be useful to avoid self-
intersection on rays spawned from the GBuffer. Culling may also be specified with AS flags, which
take precedence over shader flags:

Table 11-2: AS flags

Shader flag (traceRayEXT/rayQueryInitializeEXT) Instance flag (VkAccelerationStructureInstanceKHR)

gl_RayFlagsCullBackFacingTrianglesEXT

gl_RayFlagsCullFrontFacingTrianglesEXT

VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_KHR

VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR

Triangle face culling implies more work for GPU. You must only use triangle face
culling if there is an algorithmic need. Alternatively, you can use a bias to ray origin
to avoid self-interactions by setting t_min to a small value.

Shading
Arm GPUs allow you to use ray queries from most shader types:

• Fragment shader-based queries allow the pipeline to take advantage of ray query workloads
running without breaking the render pass, avoiding additional barriers. It also benefits from
optimizations such as AFBC and AFRC.

• Compute shader-based pipelines can benefit from the flexibility of compute shaders and cross-
thread communication, if required.

• Vertex shader-based queries lack the benefits of the above and are discouraged.

• Ray query can also be used within ray tracing pipeline shaders, but this is strongly discouraged.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Use Mali Offline Compiler to test if shaders are performant
The Arm Performance Studio’s Mali Offline Compiler can analyze whether ray tracing code can be
hardware accelerated with Immortalis™ GPUs or is on a slower path. This is an important and easy
check.

Avoid rayQueryProceed conditionals
Avoid using either the rayQueryInitializeEXT or rayQueryProceedEXT call within a conditional or
recursion. However, rayQueryProceedEXT will be needed as the condition in a while loop unless
geometry is entirely opaque. Ensure rayQueryProceedEXT calls have the rayQuery object initialized
with the flags as previously described, and if possible use single calls.

Minimizing the number of return trips between the traversal logic and the calling shader improves
performance. Use VK_GEOMETRY_OPAQUE_BIT_KHR / VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR
to minimize return trips and get better performance.

Ray query loop example: Alpha-tested shadows
rayQueryInitializeEXT(ray_query, top_level_as,
 gl_RayFlagsTerminateOnFirstHitEXT, ...);
// Use gl_RayFlagsTerminateOnFirstHitEXT to indicate that traversal can stop after
 first confirmed hit was found.
// Without this flag GPU will search for the closest hit, resulting into extra work,
 that is not needed for shadows.
while (rayQueryProceedEXT(ray_query))
{
 const uint instance_id =
 rayQueryGetIntersectionInstanceCustomIndexEXT(ray_query, false);
 const uint primitive_id = rayQueryGetIntersectionPrimitiveIndexEXT(ray_query,
 false);
 const vec2 barycentrics = rayQueryGetIntersectionBarycentricsEXT(ray_query,
 false);
 if (alpha_test(instance_id, primitive_id, barycentrics))
 {
 rayQueryConfirmIntersectionEXT(ray_query);
 }
}

Negative consequences of complex shaders and rayQueryProceed loops
The compiler can optimize for best performance when the shaders meet the above conditions.
Not following the advice results in the compiler being forced into a slow path and a loss of
performance.

Example
Example code for ray query is available in the Khronos Vulkan Samples on GitHub, see Vulkan Basic
ray queries.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_queries/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_queries/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

11.4 Ray tracing pipeline
The ray tracing pipeline defines a dedicated set of shaders including ray generation, closest-hit, any-
hit and miss shaders.

Prerequisites
You must understand the following concepts:

• Ray casting

Use gl_RayFlags
gl_RayFlags flags help minimize the work done during ray traversal. For use-cases such as
shadows, where you only need to determine whether there is a hit rather than find the closest one,
use gl_RayFlagsTerminateOnFirstHitEXT and gl_RayFlagsOpaqueEXT. The fastest way to get the
closest hit is to use only gl_RayFlagsCullNoOpaqueEXT or gl_RayFlagsOpaqueEXT as appropriate for
the scene. gl_RayFlagsCullNoOpaqueEXT is fastest, but does not include any hits on non-opaque
objects.

If you do not use Axis-Aligned Bounding Boxes (AABBs) in your Acceleration Structures, you
can use gl_RayFlagsSkipAABBEXT to improve performance. AABBs are often not used,
see Acceleration structures for more information. There is a significant performance uplift
if both gl_RayFlagsOpaqueEXT and gl_RayFlagsSkipAABBEXT flags can be used. Using
gl_RayFlagsCullNoOpaqueEXT instead of gl_RayFlagsOpaqueEXT provides an even larger
performance improvement.

traceRayEXT(accStruct, gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT |
 gl_RayFlagsSkipAABBEXT, cullMask, 0, 0, 0, origin, tMin, direction, tMax, 0);

You should use Static values for ray flags if possible. Do not dynamically modify
flags or pass them in from Uniform Buffer Objects (UBOs). This ensures all
optimizations can be applied.

For hybrid renderers, using gl_RayFlagsCullFrontFacingTrianglesEXT can be useful to avoid self-
intersection on rays spawned from the GBuffer. Culling may also be specified with AS flags, which
take precedence over shader flags:

Table 11-3: AS flags

Shader flag (traceRayEXT/rayQueryInitializeEXT) Instance flag (VkAccelerationStructureInstanceKHR)

gl_RayFlagsCullBackFacingTrianglesEXT

gl_RayFlagsCullFrontFacingTrianglesEXT

VK_GEOMETRY_INSTANCE_TRIANGLE_FRONT_COUNTERCLOCKWISE_BIT_KHR

VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

Triangle face culling implies more work for GPU. You must only use triangle face
culling if there is an algorithmic need. Alternatively, you can use a bias to ray origin
to avoid self-interactions by setting t_min to a small value.

Avoid pipeline libraries
We do not recommend pipeline libraries for ray tracing pipeline. You must have a monolithically
created pipeline. A monolithically created pipeline does not have pipeline libraries, so that the
full state is known at creation and compiler optimizations can be applied. To achieve the best
performance, you must minimise the number of shaders, state, and payloads.

Do not combine ray tracing and ray query
When using the ray tracing pipeline, do not use ray query from any-hit, closest-hit, intersection or
miss shader stages because this results in a significant performance penalty. If multiple rays are
required, they should all be done at the ray generation stage and, if needed, feedback information
about other rays in their payload.

Minimize the use of any-hit and closest-hit shader calls
Additional shader calls can be computationally expensive and any-hit shaders can be repeatedly
called. Setting a maximum number of, or eliminating, any-hit calls can give a large improvement
in performance, but you must monitor the effect on quality. This trade-off requires consideration
when you use non-opaque geometry. In such instances, you may want to consider hybrid
techniques.

To reduce the chance of divergent execution, you must minimise the number of different closest-hit
shaders.

Generally, minimise the entries in the Shader Binding Table (SBT).

Consider using a single bindless descriptor set
If materials suit it, a single bindless descriptor set is a good choice, rather than using unique
descriptors for each SBT entry. A bindless descriptor set works well with combining resources. This
allows indexing into texture and buffer arrays.

Use the efficient ray tracing advice
You should read and follow the advice in the Efficient ray tracing section, especially minimizing ray
payload.

Negative consequences of combining ray tracing pipeline and ray query
Using ray query within the ray tracing pipeline is not hardware accelerated in early Immortalis™

GPUs and is therefore less performant.

Example
Example code for ray tracing pipeline is available in the Khronos Vulkan Samples on GitHub:

• Vulkan Basic hardware accelerated ray tracing

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_tracing_basic/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Ray tracing

• Vulkan Ray-tracing: Extended features and dynamic objects

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_tracing_extended/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

12. System integration
This chapter covers how to optimize your Vulkan or OpenGL ES system integration.

12.1 Using EGL buffer preservation in OpenGL ES
Creating window surfaces that are configured with EGL_BUFFER_PRESERVED allows applications to
logically update only part of the screen. With EGL_BUFFER_PRESERVED, applications always start
rendering with the framebuffer state from the previous frame, rather than rendering from scratch.

Prerequisites
You must understand the following concepts:

Framebuffers:

• How to use the Partial update extension

• How to use the Swap Buffers with Damage extension

Preserving the EGL buffer
If your application only wants to update a subregion of the screen, then using the EGL buffer can
appear like an efficiency boost. However, in real systems, the use of double, or triple buffering
means that rendering starts with a full screen blit from the window surface for frame n, into the
window surface for frame n+1.

How to optimize the EGL buffer
Try using the following optimization techniques:

• To minimize client rendering, use the Partial Update extension, instead of
EGL_BUFFER_PRESERVED. The Partial Update extension allows incremental updates and true
partial rendering of a frame.

• To minimize server-side composition overheads, use the Swap Buffers with Damage extension
instead of eglSwapBuffers().

• If the previous two extensions are not available, review the cost of using EGL_BUFFER_PRESERVED
against the cost of just re-rendering a whole frame. When using simple UI content that uses
compressed texture inputs and procedural fills, it can be more efficient to re-render the entire
frame from the source material.

• If you know that an entire frame is being overdrawn when using EGL_BUFFER_PRESERVED, then
insert a full-screen glClear() at the start of the render pass. Doing so removes the readback of
the previous frame into the GPU tile memory.

Outcomes to avoid when using the EGL buffer
Arm recommends that you:

• Do not use EGL_BUFFER_PRESERVED surfaces without considering if it makes sense for the
content involved. Always try using EGL_BUFFER_DESTROYED and then measure the benefits.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 135

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

• Do not use either EGL_KHR_partial_update or EGL_KHR_swap_buffers_with_damage for
applications that always re-render the whole frame. There is an extra cost to the software in
doing so.

• Do not use EGL_KHR_partial_update with AFRC on an EGL window surface. If update and
AFRC regions are misaligned there will be visible corruption.

The negative impact of not using the EGL buffer correctly
Unnecessary readbacks can reduce performance and increase memory bandwidth.

12.2 Android blob cache size in OpenGL ES
The Arm GPU OpenGL ES drivers use the EGL_ANDROID_blob_cache extension to persistently cache
the results of shader compilation and linkage.

Prerequisites
You must understand the following concepts:

• BlobCache extension

Reconsider the size of the Android blob cache
For many applications, shaders are only compiled and linked when the application is first used.
Subsequent application runs use binaries from the cache, benefiting from a faster startup and level
load times.

The Android blob cache defaults to a relatively small size, 64KB per application. 64KB per
application is insufficient for many modern games and applications that can use hundreds of
shaders.

To increase the number of applications benefiting from program caching, we recommend that
system integrators significantly increase the maximum size of the blob cache for their platforms.

How to optimize the size of the Android blob cache
Try increasing the size of the Android blob cache for each application. For example, up to 512KB or
even 1MB.

The negative impact of not setting the Android blob cache size correctly
As shader programs must be compiled and linked at runtime, any games and applications that
exceed the size of the blob cache begin more slowly.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 135

https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_blob_cache.txt

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

12.3 Optimizing the swapchain surface count for Vulkan
The application has control over the window surface swapchain when using Vulkan. In particular,
the application can decide how many surfaces to use.

Prerequisites
You must understand the following concepts:

• Vulkan windows surface swapchain.

The swapchain and vsync
Most mobile platforms use the vsync signal of the display to prevent screen tearing on buffer swap.
If the GPU is rendering more slowly than the vsync period, then a swapchain that contains only
two buffers is prone to stalling the GPU.

How to optimize the swapchain surface count
Try using the following optimization techniques:

• If your application always runs faster than vsync, then use two surfaces in the swapchain.
Doing so reduces your memory consumption.

• If your application sometimes runs more slowly than vsync, then use three surfaces in the
swapchain. Doing so gives you the best performance for your application.

Outcomes to avoid when using the window surface swapchain
If your application runs more slowly than vsync, then do not use two surfaces in the swapchain.

The negative impact of not using the window surface swapchain correctly
Using double buffering and vsync locks rendering to an integer fraction of the vsync rate. If a frame
renders slower than vysnc, then the performance of the application is reduced. For example, on a
device that uses a 60FPS panel refresh rate, an application that is otherwise capable of running at
50FPS, drops down to 30FPS.

How to debug swapchain related performance issues
System profilers can show when the GPU is going idle. If the GPU is going idle, and the frame
period is a multiple of the vsync period, then it can indicate rendering blocking and that the GPU is
waiting for the vysnc signal to release a buffer.

Example
Example code for N-buffering is available in the Vulkan Samples repository on GitHub. For more
information, see Vulkan Swapchain images tutorial.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/swapchain_images/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

12.4 Optimizing the swap chain surface rotation for
Vulkan

For Vulkan, the application has control over the window surface orientation. The application is
responsible for handling the differences between the logical and the physical orientation of the
window when a mobile device is rotated.

Prerequisites
You must understand the following concepts:

• How swap chain surface rotation works.

Swap chain surface rotation
It is more efficient for the presentation subsystem if the application renders into a window surface
whose orientation matches the physical orientation of the display panel.

How to optimize swap chain surface rotation
Try using the following optimization techniques:

• To avoid presentation engine transformation passes, ensure that swap chain
preTransform value matches the currentTransform value that is returned by
vkGetPhysicalDeviceSurfaceCapabilitiesKHR().

• If a swap chain image acquisition returns VK_SUBOPTIMAL_KHR or VK_ERROR_OUT_OF_DATE_KHR,
then recreate the swap chain. When doing so, consider any updated surface properties,
including potential orientation updates reported using currentTransform.

Outcomes to avoid when using swap chain surface rotation
Do not assume that supported presentation engines transforms, other than currentTransform, are
free. Many presentation engines can handle rotation or mirroring. However, it can come with extra
processing cost.

The negative impact of not using swap chain surface rotation correctly
Non-native orientation can require extra transformation passes in the presentation engine.
Therefore, some systems must use the GPU as part of the presentation engine to handle cases that
the display controller cannot handle natively.

How to debug swap chain surface rotation performance issues
System profilers, such as the kernel-integrated version of Streamline, can track the use of the Arm
GPU to specific processes. Monitoring such tracking allows for the attribution of any extra GPU
workload to the compositor process. However, the previous step assumes that the GPU is being
used by the compositor to apply the presentation transformation.

Example
Example code for surface rotation is available in the Vulkan Samples repository on GitHub: Vulkan
Surface Rotation Tutorial.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/surface_rotation/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/surface_rotation/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

12.5 Optimizing swapchain semaphores for Vulkan
In Vulkan, semaphores allow synchronization and safe access of swapchain data.

Prerequisites
You must understand the following concepts:

• Semaphores

• Swap chains

• Windows System Integration (WSI)

• Pipeline bubbles

Swapchain semaphores
The following is a typical example of what a Vulkan frame looks like:

1. Create a VkSemaphore, #1, for the start of frame acquire.

2. Create a separate VkSemaphore, #2, for the end of frame release.

3. Calling vkAcquireNextImage() gives you the swapchain index #N and then associates with
semaphore #1.

4. Wait for all fences that are associated with swapchain index #N.

5. Build the command buffers.

6. Submit the command buffers rendering to the window surface to VkQueue. Tell the command
buffers to wait for semaphore #1 before rendering can begin, and to then signal semaphore #2
when the command buffers have completed.

7. Call vkQueuePresent(), configuring it to wait for semaphore #2.

The critical part of the previous example occurs when setting up the wait for any command buffers
on semaphore #1. We must also specify which pipeline stages must wait for the WSI semaphore.

Along with pWaitSemaphores\[i\], there is also pWaitDstStageMask\[i\]. The pWaitDstStageMask
\[i\] mask specifies which pipeline stages must wait for the WSI semaphore. You must wait for
the final color buffer using VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT.

When rendering, you must transition the WSI image from either an UNDEFINED, or PRESENT_SRC_KHR
layout to a different layout. The layout transition must wait for COLOR_ATTACHMENT_OUTPUT_BIT,
creating a dependency chain to the semaphore.

How to optimize swapchain semaphores in WSI
When the application is waiting for a semaphore from WSI, use pWaitDstStageMask =
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT.

The negative impact of not using swapchain semaphores correctly
Large pipeline bubbles are created when the vertex, or compute, stalls.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

12.6 Window buffer alignment
If rows are insufficiently aligned, then linear format framebuffers can suffer from dramatically
reduced write performance. To ensure an efficient write performance, align all memory system
allocated surfaces that are imported into Arm GPU drivers.

Prerequisites
You must understand the following concepts:

• Framebuffer formats.

• Row alignments.

How to optimize the window buffer alignment
Try using the following optimization techniques:

• Align rows in linear format framebuffers to the smallest possible alignment of either a multiple
of 16 pixels, or 64 bytes. For example, for RGB565 framebuffers you can use a 32-byte
alignment. You can use a 64-byte alignment for RGBA8 and RGBA fp16 framebuffers.

• When an alpha channel is not required, then use power-of-two formats as they have better
memory alignment properties. Use a format such as RGBX8 with a dummy channel, instead of
using RGB8.

Outcomes to avoid when using the window buffer alignment
Arm recommends that you:

• Do not use any row alignment other than either a multiple of 16 pixels, or 64 bytes.

• Do not use framebuffer formats that are not power-of-two. For example, do not use true 24-bit
RGB8.

The negative impact of not using the window buffer alignment correctly
AXI Bursts must be aligned to the Burst size. Unaligned rows must be broken into multiple smaller
AXI Bursts to meet this requirement. Doing so makes less efficient use of the memory bus and,
often causes the GPU to stall. The stalling occurs because the GPU exhausts the pool of available
transaction IDs.

12.7 Vulkan private data
The Vulkan extension VK_EXT_private_data adds the ability to associate application data with a
Vulkan object. Try to only use private data slots reserved at device creation time.

Prerequisites
You must understand the following concepts:

• Vulkan extensions

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

System integration

Pre-reserve slots
If private data is required to be stored with a Vulkan object through the Vulkan private data
extension, ensure that all the necessary slots are reserved at device creation time. Pre-reserved
slots are not recycled and are accessed efficiently within the Vulkan object’s memory area.

If you do not reserve enough slots, you can affect slot reservations of other layers. Conversely, you
can be affected by other poorly implemented layers - even if you reserve the slots correctly.

Avoid unreserved slots
If more slots are needed than were reserved at device creation time, it is better to implement a
Vulkan object data storage system on the app side. The app has a better overview of lifetime and
thread access patterns and can produce better performance.

Also avoid using more pre-reserved slots than is necessary. In general, only one should be required.
Each pre-reserved slot increases the size of all created Vulkan objects by eight bytes.

Negative consequences of using unreserved private data slots
Unreserved slots have extra overhead to track them, and reduces performance below what an
efficient app-side implementation can achieve. Ultimately, they are a convenience feature for when
performance is not the primary concern.

12.8 Vulkan extensions to avoid
There are many Vulkan extensions. However, as Vulkan is a cross-platform API, not every extension
is suited to mobile and tile-based GPUs. Therefore, some extensions are non-optimal and must
therefore be avoided.

Prerequisites
You must understand the following concepts:

• Vulkan extensions

Non-optimal extensions
Extensions to be avoided include:

• VK_EXT_transform_feedback: An extension which supports old OpenGL ES and DirectX
applications running on top of Vulkan.

How to avoid using non-optimal extensions
To avoid using these extensions, try the following alternative:

• Use compute shaders rather than the transform feedback buffers of
VK_EXT_transform_feedback.

The negative impact of using non-optimal extensions
The impact differs by extension, but performance is significantly affected.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 135

https://www.arm.com/company/policies/trademarks

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0304-10 31 January 2025 Non-Confidential First release of version 3.4

0303-09 10 October 2024 Non-Confidential First release of version 3.3

0302-08 30 January 2024 Non-Confidential First release of version 3.2

0301-07 30 January 2023 Non-Confidential First release of version 3.1

0300-06 1 August 2022 Non-Confidential First release of version 3.0

0202-05 14 May 2021 Non-Confidential First release of version 2.2

0201-04 26 May 2020 Non-Confidential First release of version 2.1

0200-03 30 October 2019 Non-Confidential First release of version 2.0

0101-02 30 June 2019 Non-Confidential First release of version 1.1

0100-01 27 October 2017 Non-Confidential Initial release

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Change history
The Change history tables describe the technical changes between released issues of this
document in reverse order. Issue numbers match the revision history in Document release
information on page 128.

Table 2: Version 3.4

Change Location

Added Multi-Draw Indirect chapter Multi-Draw Indirect

Updated Texture and sampler descriptors chapter Texture and sampler descriptors

Advice added to Buffer update for OpenGL ES chapter Buffer update for OpenGL ES

Change from Graphics Analyzer to RenderDoc for Arm GPUs Multiple chapters

Table 3: Version 3.3

Change Location

Added Staging buffers chapter Staging buffers

Updated Ray tracing pipeline chapter Ray tracing pipeline

Updated Ray query chapter Ray query

Updated Arm Fixed Rate Compression AFRC

Added Fragment Prepass advice Optimizing the draw call render order

Added Pipeline cache advice Pipeline creation in Vulkan

Added Scratch buffer advice Acceleration structures

Updated Runtime compression Runtime compression

Updated Dynamic Rendering Multipass rendering

Updated Safe image layouts Transaction elimination

Updated Variable Rate Shading Variable rate shading

Table 4: Version 3.2

Change Location

Added Runtime compression chapter Runtime compression

Renamed AFBC textures chapter AFBC textures

Changed All Vulkan example code links Multiple Chapters

Changed Extensive Raytracing advice updates All Raytracing chapters

Updated Manual source code optimization Manual source code optimization

Updated Minimize precision Minimize precision

Updated Optimization process Multiple Chapters

Updated Optimize attachment grouping Multiple Chapters

Updated Vulkan pipeline synchronization Vulkan pipeline synchronization

Updated Workgroup sizes Workgroup sizes

Table 5: Version 3.1

Change Location

Utgard advice removed from this guide −

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Change Location
Added additional tips Efficient render passes with Vulkan

Info on using static values for ray flags Ray query

Added section on relaxed precision FP16 outputs Attribute precision

Added a section on HLSL Minimize precision

Added Arm Fixed Rate Compression (AFRC) section AFRC

Added section about dedicated allocations Allocating memory in Vulkan

Added minimize ray length section Efficient ray tracing

Added information on VK_EXT_descriptor_indexing Optimizing descriptor sets and layouts for Vulkan

Added new ray tracing pipeline section Ray tracing pipeline

Added new section on generating SPIR-V Generating SPIR-V

Added Dynamic Rendering incompatibility section Multipass rendering

Added new Variable Rate Shading (VRS) section Variable rate shading

Table 6: Version 3.0

Change

Changed guide name from Mali to Arm GPU Best
Practices

-

Added Ray tracing chapter and sub-chapters Ray tracing

Integrated Arm Mali GPU OpenGL ES Application
Optimization Guide, added new sub-chapters from
integrated guide

Optimization basics Basic application optimizations
Basic vertex shader optimizations Basic fragment shader
optimizations

Added section on Sparse Index Buffers Index sparsity

Added section on Private Data Vulkan private data

Added section on Optimizing Attachment Grouping Optimize attachment grouping

Re-added Vectorize Memory Access section Vectorize memory access

Updated developer web links Multiple chapters

Updated Vulkan AFBC textures AFBC textures for Vulkan

Updated Attribute layout Attribute layout

Updated Attribute precision Attribute precision

Updated Image processing Image processing

Updated Arm GPU datasheet and performance counters Arm GPU datasheet and performance counters

Updated Multipass rendering Multipass rendering

Updated Texture sampling performance Texture sampling performance

Updated Transaction elimination Transaction elimination

Updated Uniforms Uniforms

Table 7: Version 2.2

Change Location

Updated Minimize precision Minimize precision

AFBC chapter split into Vulkan and GLES chapters Multisampling for OpenGL ES

Updated Multisampling for Vulkan Multisampling for Vulkan

Updated Image processing Image processing

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Change Location
Updated Texture and sampler descriptors Texture and sampler descriptors

Updated Texture sampling performance Texture sampling performance

Updated Vulkan pipeline synchronization Vulkan pipeline synchronization

Updated Buffer update for OpenGL ES Buffer update for OpenGL ES

Updated Draw call batching best practices Draw call batching best practices

Added Vulkan extensions to avoid chapter Vulkan extensions to avoid

Updated Multipass rendering Multipass rendering

Updated Blending Blending

Updated Optimizing the draw call render order Optimizing the draw call render order

Table 8: Version 2.1

Change Location

Added Queries to the Optimizing application logic chapter Queries

Updated Pipeline creation in Vulkan Pipeline creation in Vulkan

Updated Command pools for Vulkan Command pools for Vulkan

Added a Git Hub example to Optimizing command buffers Optimizing command buffers for Vulkan

Added a Git Hub example to Secondary command buffers Secondary command buffers

Added a Git Hub example to Optimizing descriptor sets Optimizing descriptor sets and layouts for
Vulkan

Added a Git Hub example to Multpass rendering Multipass rendering

Added AFBC Vulkan support details and GitHub example AFBC textures

Added a Git Hub example to Optimizing the swapchain surface count
for Vulkan

Optimizing the swapchain surface count for
Vulkan

Table 9: Version 2.0

Change Location

No changes -

Table 10: Version 1.1

Change Location

Added information about command pools Command pools for Vulkan

Added information about secondary command buffers Buffer update for OpenGL ES

Added information about buffer update Buffer update for OpenGL ES

Table 11: Version 1.0

Change Location

Initial Release -

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 135

https://developer.arm.com/glossary

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 135

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® GPU Datasheet 102849 Non-Confidential

Arm® GPU Performance Counters – Non-Confidential

Arm® GPU Training Series – Non-Confidential

Arm® Learning Path on AFRC – Non-Confidential

Arm® Performance Studio – Non-Confidential

Arm® Streamline Performance Analyzer – Non-Confidential

Learn about Ray Tracing with Vulkan on Android – Non-Confidential

Mali™ Offline Compiler – Non-Confidential

Real-time 3D Art Best Practices - Geometry 102448 Non-Confidential

RenderDoc for Arm® GPUs – Non-Confidential

Non-Arm resources Document ID Organization

Arm Community blog: Hidden Surface Removal in Immortalis-G925: The Fragment Prepass – Tord Øygard

Arm Community blog: Killing Pixels - A New Optimization for Shading on ARM Mali GPUs – Sean Ellis

Arm Community blog: New game changing Vulkan extensions for mobile: Descriptor Indexing – Hans-Kristian Arntzen

Arm Community blog: Vulkan Best Practices - Memory limits with Vulkan on Mali GPUs – Attilio Provenzano

BlobCache extension – KhronosGroup

EXT_texture_compression_astc_decode_mode extension – KhronosGroup

Forward Pixel Kill (FPK) – Sean Ellis

How to use the Partial update extension – KhronosGroup

How to use the Swap Buffers with Damage extension – KhronosGroup

Official Khronos SPIR overview – KhronosGroup

Ray tracing in Vulkan – KhronosGroup

The EXT_multisampled_render_to_texture extension – KhronosGroup

VK_EXT_astc_decode_mode extension – KhronosGroup

Vulkan 16-Bit Arithmetic Tutorial – KhronosGroup

Vulkan 16-Bit Storage input/output Tutorial – KhronosGroup

Vulkan Basic hardware accelerated ray tracing – KhronosGroup

Vulkan Basic ray queries – KhronosGroup

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 135

https://developer.arm.com/documentation
https://developer.arm.com/documentation/102849/latest
https://developer.arm.com/documentation#q=Mali%20Performance%20Counter%20Reference
https://www.youtube.com/playlist?list=PLKjl7IFAwc4QUTejaX2vpIwXstbgf8Ik7
https://learn.arm.com/learning-paths/smartphones-and-mobile/afrc/
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer
https://learn.arm.com/learning-paths/mobile-graphics-and-gaming/ray_tracing/
https://developer.arm.com/Tools%20and%20Software/Mali%20Offline%20Compiler
https://developer.arm.com/documentation/102448/0100
https://developer.arm.com/Tools%20and%20Software/RenderDoc%20for%20Arm%20GPUs
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/immortalis-g925-the-fragment-prepass
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/killing-pixels---a-new-optimization-for-shading-on-arm-mali-gpus
https://community.arm.com/arm-community-blogs/b/mobile-graphics-and-gaming-blog/posts/vulkan-descriptor-indexing
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/memory-limits-with-vulkan-on-mali-gpus
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_blob_cache.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_astc_decode_mode.txt
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/killing-pixels---a-new-optimization-for-shading-on-arm-mali-gpus
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt
https://www.khronos.org/spir/
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/registry/gles/extensions/EXT/EXT_multisampled_render_to_texture.txt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_EXT_astc_decode_mode
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/16bit_arithmetic/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/16bit_storage_input_output/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_tracing_basic/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_queries/README.adoc

Arm® GPU Best Practices Developer Guide Document ID: 101897_0304_10_en
Issue 10

Non-Arm resources Document ID Organization
Vulkan CDescriptor Management tutorial – KhronosGroup

Vulkan Command Buffer usage tutorial – KhronosGroup

Vulkan Guide Ray Tracing topic – KhronosGroup

Vulkan Image Compression Control Tutorial – KhronosGroup

Vulkan MSAA example – KhronosGroup

Vulkan Ray-tracing: Extended features and dynamic objects – KhronosGroup

Vulkan Render Subpasses Tutorial – KhronosGroup

Vulkan Surface Rotation Tutorial – KhronosGroup

Vulkan Swapchain images tutorial – KhronosGroup

Vulkan Validation Layers – KhronosGroup

Vulkan Validation Layers – KhronosGroup

Copyright © 2017, 2019–2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 135

https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/descriptor_management/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/command_buffer_usage/README.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/extensions/ray_tracing.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/image_compression_control/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/msaa/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/extensions/ray_tracing_extended/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/subpasses/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/surface_rotation/README.adoc
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/swapchain_images/README.adoc
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://github.com/KhronosGroup/Vulkan-Samples/blob/main/samples/performance/pipeline_cache/README.adoc

	Arm® GPU Best Practices Developer Guide
	Contents
	1. Overview
	1.1 Before you begin
	1.2 Arm GPU datasheet and performance counters
	1.3 The graphics rendering pipeline

	2. Optimization basics
	2.1 Optimization process
	2.2 Basic optimization checklist
	2.3 Memory bandwidth
	2.4 Converting from desktop to mobile

	3. Optimizing application logic
	3.1 Basic application optimizations
	3.2 Draw call batching best practices
	3.3 Draw call culling best practices
	3.4 Optimizing the draw call render order
	3.5 Avoid using depth prepasses
	3.6 OpenGL ES GPU pipelining
	3.7 OpenGL ES Separate Shader Objects
	3.8 Vulkan GPU pipelining
	3.9 Vulkan pipeline synchronization
	3.10 Pipelined resource updates
	3.11 Optimize attachment grouping
	3.12 Queries

	4. CPU overheads
	4.1 Compiling shaders in OpenGL ES
	4.2 Pipeline creation in Vulkan
	4.3 Allocating memory in Vulkan
	4.4 OpenGL ES CPU memory mapping
	4.5 Vulkan CPU memory-mapping
	4.6 Command pools for Vulkan
	4.7 Optimizing command buffers for Vulkan
	4.8 Secondary command buffers
	4.9 Optimizing descriptor sets and layouts for Vulkan

	5. Vertex shading
	5.1 Basic vertex shader optimizations
	5.2 Index draw calls
	5.3 Index buffer encoding
	5.4 Index sparsity
	5.5 Attribute precision
	5.6 Attribute layout
	5.7 Varying precision
	5.8 Triangle density
	5.9 Instanced vertex buffers

	6. Tessellation, geometry shading, and tiling
	6.1 Tessellation
	6.2 Geometry shading
	6.3 Tiling and effective triangulation

	7. Fragment shading
	7.1 Basic fragment shader optimizations
	7.2 Efficient render passes with OpenGL ES
	7.3 Efficient render passes with Vulkan
	7.4 Multisampling for OpenGL ES
	7.5 Multisampling for Vulkan
	7.6 Multipass rendering
	7.7 HDR rendering
	7.8 Stencil updates
	7.9 Blending
	7.10 Transaction elimination
	7.11 Variable rate shading

	8. Buffers and textures
	8.1 Buffer update for OpenGL ES
	8.2 Robust buffer access
	8.3 Staging buffers
	8.4 Texture sampling performance
	8.5 Anisotropic sampling performance
	8.6 Texture and sampler descriptors
	8.7 sRGB textures
	8.8 AFBC textures
	8.9 AFBC textures for Vulkan
	8.10 AFRC
	8.11 Runtime compression

	9. Compute shading
	9.1 Image processing
	9.2 Workgroup sizes
	9.3 Shared memory

	10. Shader code
	10.1 Minimize precision
	10.2 Check precision
	10.3 Vectorized arithmetic code
	10.4 Vectorize memory access
	10.5 Manual source code optimization
	10.6 Generating SPIR-V
	10.7 Instruction caches
	10.8 Uniforms
	10.9 Uniform subexpressions
	10.10 Uniform control-flow
	10.11 Branches
	10.12 Discards
	10.13 Atomics
	10.14 Multi-Draw Indirect

	11. Ray tracing
	11.1 Acceleration structures
	11.2 Efficient ray tracing
	11.3 Ray query
	11.4 Ray tracing pipeline

	12. System integration
	12.1 Using EGL buffer preservation in OpenGL ES
	12.2 Android blob cache size in OpenGL ES
	12.3 Optimizing the swapchain surface count for Vulkan
	12.4 Optimizing the swap chain surface rotation for Vulkan
	12.5 Optimizing swapchain semaphores for Vulkan
	12.6 Window buffer alignment
	12.7 Vulkan private data
	12.8 Vulkan extensions to avoid

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

