
Arm Compiler for Embedded FuSa 6.22LTS
Defect Notification Report
Version January 2025

Non-Confidential
Copyright © 2025 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
110099_2025-01_00_en

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Arm Compiler for Embedded FuSa 6.22LTS Defect Notification Report

This document is Non-Confidential.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (110099_2025-01_00_en) was issued on 2025-01-24. There might be a later issue at
https://developer.arm.com/documentation/110099

The product version is January 2025.

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This document is intended for use by a software developer who has a valid license for Arm
Compiler for Embedded FuSa 6.22LTS, and is using an Arm Compiler for Embedded FuSa 6.22LTS
release to build a project with functional safety or long-term maintenance requirements. The
document includes descriptions of known safety-related defects that affect each release of Arm
Compiler for Embedded FuSa 6.22LTS.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 101

https://developer.arm.com/documentation/110099
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Contents

Contents

1. Introduction.. 5
1.1 Scope of the Defect Lists...5
1.2 Derivation of the Defect Lists...5
1.3 Documentation releases for documentation synchronization faults...6

2. Defects...7
2.1 Format of a Defect Entry... 7
2.1.1 Target environment... 8
2.2 Machine-readable defects list.. 9
2.3 Defects affecting qualified components... 10
2.3.1 Translation faults... 12
2.3.2 Missing diagnostic faults... 55
2.3.3 Determinism faults..77
2.3.4 Documentation synchronization faults.. 77
2.4 Defects affecting unqualified components...79
2.4.1 Translation faults... 80
2.4.2 Missing diagnostic faults... 90
2.4.3 Determinism faults..90
2.4.4 Documentation synchronization faults.. 91
2.5 Defects affecting both qualified and unqualified components.. 91
2.5.1 Translation faults... 92
2.5.2 Missing diagnostic faults... 93
2.5.3 Determinism faults..93
2.5.4 Documentation synchronization faults.. 93

A. Changes since the Arm Compiler for Embedded FuSa 6.22LTS Defect Notification Report for
December 2024...94
A.1 Defects added...94
A.2 Defects updated...95

Proprietary notice.. 96

Product and document information..98

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Contents

Product status... 98
Revision history...98
Conventions... 99

Useful resources.. 101

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Introduction

1. Introduction
This document is intended for functional safety managers and software developers using Arm
Compiler for Embedded FuSa 6.22LTS for functional safety projects.

This document has been created based on information available to Arm as of 24 January 2025. It
provides an updated list of known safety-related defects that affect a release of Arm Compiler for
Embedded FuSa 6.22LTS, and has been published on a discretionary basis.

Functional safety managers can reference the known defects in Arm Compiler for Embedded
FuSa to address requirement 11.4.4 in ISO 26262-8, Planning of usage of a software tool, and the
equivalent requirement in IEC 61508-4 section 7.4.4.5.

Software developers can study the known defect list and apply appropriate safeguards and
workarounds if they think they are at risk.

For information on the referenced documents, see the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

1.1 Scope of the Defect Lists
The defect lists within this document contain an entry for each known defect that is in a safety-
related fault category and, at the time this document was generated, identified as affecting the
following Arm Compiler for Embedded FuSa 6.22LTS releases: 6.22.1.

See The role of Arm Compiler for Embedded FuSa in Safety-related Development in the Arm Compiler
for Embedded FuSa 6.22LTS Qualification Kit Safety Manual for an explanation of the safety-related
fault categories.

See the Arm Compiler for Embedded FuSa 6.22LTS Qualification Kit Development Process
document for an explanation of how the Arm Compiler for Embedded FuSa development process
handles safety-related defects.

Defects are grouped according to whether they affect qualified or unqualified toolchain
components, the fault category, and are listed in descending order of the defect identifier number.

1.2 Derivation of the Defect Lists
This section describes how the information in the defect lists within this document are derived.

The information in the defect lists in this document is derived directly from the Arm defect tracking
system.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Introduction

All incoming Arm Compiler for Embedded FuSa defects are assessed for their impact on functional
safety. See the Arm Compiler for Embedded FuSa 6.22LTS Qualification Kit Development Process
document for more information.

The provided information might change in future versions of this document. Such changes may
include the removal of a defect from the document.

1.3 Documentation releases for documentation
synchronization faults

This section explains the relationship between documentation releases and toolchain releases in
the context of Documentation synchronization faults.

Documentation synchronization faults apply to specific releases of the documentation.

For each affected release specified in a documentation synchronization fault, use the References
section of the matching Arm Compiler for Embedded FuSa 6.22LTS Qualification Kit Safety Manual to
identify the specific release of the documentation to which the fault applies.

For example, if a documentation synchronization fault affects release 6.22.1 of the Arm Compiler
for Embedded FuSa tools, see the References section of release 6.22.1 of the Arm Compiler for
Embedded FuSa 6.22LTS Qualification Kit Safety Manual for the specific release of the documentation
to which the fault applies.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2. Defects
This chapter contains information about all known safety-related defects that affect releases of
Arm Compiler for Embedded FuSa 6.22LTS.

2.1 Format of a Defect Entry
This section describes the format of a defect entry in this document.

Each defect entry contains the following information:

Item Description

Defect
identifier

A unique identifier for the defect, of the form SDCOMP-<N>. This identifier is used as the title of the section describing the
defect. It should be used in all communication regarding the defect.

Components The Arm Compiler for Embedded FuSa components affected by the defect. The affected components might be one or more
of:

• Qualified toolchain components:

◦ Compiler and integrated assembler, armclang

◦ ELF processing utility, fromelf

◦ Librarian, armar

◦ Linker, armlink

• Unqualified toolchain components:

◦ Legacy assembler, armasm

◦ Libraries

Fault
category

Each defect in this documented is listed in a section based on its safety-related fault category classification:

• Translation fault

• Missing diagnostic fault

• Determinism fault

• Documentation synchronization fault

For more information about fault categories, see the Arm Compiler for Embedded FuSa 6.22LTS Qualification Kit Safety Manual.

Target
environment

Where feasible, describes the set of target Arm architectures or processor states that might be affected by the defect. The
default value is "Any", which means the issue could affect any supported target Arm architecture or processor state. For
more information, see the Target environment section.

Affected
releases

A list of the releases in scope that the defect is observable in.

Unaffected
releases

A list of the releases in scope that the defect is not observable in.

Description A summary of the defect and its impact.

Conditions A list of conditions that must hold to observe the defect.

The information describing the scope of a defect is included in a table in each defect entry in this
document. You can use the information in this table to determine if a defect is relevant to your
project without having to read the full details of the defect.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

To avoid a known defect, manually inspect the source code and command-line options to ensure
that at least one condition for the defect does not hold true. Arm Support might be able to help
you identify other workarounds for known defects, if a generic workaround is not suitable.

2.1.1 Target environment

This section describes the purpose and meaning of the target environment associated with each
defect entry included in this document.

Where feasible, the target environment is used to limit the scope of each defect.

The target environment specifies one of the following:

• One or more architectures

• One or more processor states

• A combination of architectures and processor states

• The value "Any"

It does not specify any of the following:

• Architecture revisions, such as Armv8.1-M

• Architecture extensions, such as the M-profile Vector Extension (MVE)

Instead, the conditions of a defect may include statements that further limit the scope of the
defect. For example, for a defect with the target environment "Armv8-M with the Main Extension",
the conditions may include the following statement to limit the scope of the defect to only targets
that implement the M-profile Vector Extension (MVE):

• The program is compiled for a target with the M-profile Vector Extension (MVE).

The following target environments are included within the scope of this document:

Target
environment

Description

Any The scope defect is not limited to any specific target environments, and can affect any target Arm architecture or processor
subject only to the conditions under which the defect can occur.

A32 state An Arm architecture or processor in A32 state (formerly Arm state). Depending on the -mcpu or -march option used with
the compiler, A32 state may be the default. For example, it is the default when compiling with -mcpu=cortex-r52. For
more information, see the -march and -mcpu sections of the Arm Compiler for Embedded FuSa Reference Guide.

AArch32
state

An Arm architecture or processor in AArch32 state. This includes A32 state (formerly Arm state) and T32 state (formerly
Thumb state).

AArch64
state

An Arm architecture or processor in AArch64 state.

Armv6-M The Armv6-M architecture, or a processor based on the Armv6-M architecture. For example, Cortex-M0.

Armv7-A The Armv7-A architecture, or a processor based on the Armv7-A architecture. For example, Cortex-A9.

Armv7-M The Armv7-M architecture, or a processor based on the Armv7-M architecture. For example, Cortex-M3.

Armv7-R The Armv7-R architecture, or a processor based on the Armv7-R architecture. For example, Cortex-R5.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Target
environment

Description

Armv8-A Any version of the Armv8-A architecture, or a processor based on any version of the Armv8-A architecture. Unless
otherwise specified in the conditions of a defect, this includes both AArch64 state and AArch32 state. For example, Cortex-
A53.

Armv8-M Any version of the Armv8-M architecture, or a processor based on any version of the Armv8-M architecture. Unless
otherwise specified in the conditions of a defect, this includes both Armv8-M with the Main Extension and Armv8-M
without the Main Extension. For example, this includes projects that are compiled with -march=armv8-m.base, -
march=armv8.1-m.main, or -mcpu=cortex-m55.

Armv8-
M with
the Main
Extension

Any version of the Armv8-M architecture with the Main Extension, or a processor based on any version of the Armv8-
M architecture with the Main Extension. For example, this includes projects that are compiled with -march=armv8.1-
m.main or -mcpu=cortex-m33.

Armv8-M
without
the Main
Extension

Any version of the Armv8-M architecture without the Main Extension, or a processor based on any version of the Armv8-
M architecture without the Main Extension. For example, this includes projects that are compiled with -march=armv8-
m.base or -mcpu=cortex-m23.

Armv8-R The Armv8-R architecture, or a processor based on the Armv8-R architecture. This does not include the Armv8-R AArch64
architecture. For example, Cortex-R52.

Armv8-R
AArch64

The Armv8-R AArch64 architecture, or a processor based on the Armv8-R AArch64 architecture. For example, Cortex-
R82AE.

Armv9-A Any version of the Armv9-A architecture, or a processor based on any version of the Armv9-A architecture. Unless
otherwise specified in the conditions of a defect, this includes both AArch64 state and AArch32 state. For example,
Armv9.2-A and Cortex-A710.

T32 state An Arm architecture or processor in T32 state (formerly Thumb state). For example, this always applies when compiling for
an M-profile target.

2.2 Machine-readable defects list
This section provides information about the JSON format defect lists included as an attachment
with this document.

The contents of the defects lists in this document are available in a machine-readable JSON format.
The file defects_as_JSON.zip attached to this document contains the following files that can be
used to programmatically analyze the defects listed within this document:

defects.json

A JSON file containing a list of all defects from this document, and information about the
scope of the list. The entry for each defect follows the same format as described in Format of
a Defect Entry. The defect description and conditions are provided as HTML markup.

schema.json

The JSON schema for the file defects.json. It includes descriptions of the contents of the
defects.json file.

Arm does not provide tools to analyze the JSON format defects list.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3 Defects affecting qualified components
This section contains details about known safety-related defects that affect the qualified toolchain
components of Arm Compiler for Embedded FuSa 6.22LTS.

The qualified toolchain components are:

• The compiler and integrated assembler, armclang.

• The ELF processing utility, fromelf.

• The librarian, armar.

• The linker, armlink.

The following defects are included in this section:

Identifier Fault category Affected components

SDCOMP-67799 Translation fault armclang

SDCOMP-67678 Translation fault armclang

SDCOMP-67666 Translation fault armclang

SDCOMP-67662 Translation fault armclang

SDCOMP-67650 Translation fault armclang

SDCOMP-67544 Translation fault armclang

SDCOMP-67448 Translation fault armclang

SDCOMP-67446 Translation fault armclang

SDCOMP-67194 Translation fault armclang

SDCOMP-66895 Translation fault armclang

SDCOMP-66787 Translation fault armclang

SDCOMP-66692 Translation fault fromelf

SDCOMP-66658 Translation fault armclang

SDCOMP-66632 Translation fault armclang

SDCOMP-66328 Translation fault armclang

SDCOMP-66256 Translation fault armclang

SDCOMP-65607 Translation fault armclang

SDCOMP-65592 Translation fault armclang

SDCOMP-65590 Translation fault armclang

SDCOMP-65579 Translation fault armclang

SDCOMP-65564 Translation fault armclang

SDCOMP-65550 Translation fault armclang

SDCOMP-65418 Translation fault armclang

SDCOMP-64877 Translation fault armclang

SDCOMP-64590 Translation fault armlink

SDCOMP-64397 Translation fault armclang

SDCOMP-64335 Translation fault armclang

SDCOMP-63984 Translation fault armclang

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Identifier Fault category Affected components
SDCOMP-63912 Translation fault armclang

SDCOMP-63911 Translation fault armclang

SDCOMP-63205 Translation fault armclang

SDCOMP-63114 Translation fault armclang

SDCOMP-63088 Translation fault armclang

SDCOMP-62378 Translation fault armclang

SDCOMP-62176 Translation fault armclang

SDCOMP-62133 Translation fault armclang

SDCOMP-61486 Translation fault armclang

SDCOMP-60117 Translation fault armlink

SDCOMP-58780 Translation fault armclang

SDCOMP-58354 Translation fault armlink

SDCOMP-57725 Translation fault armclang

SDCOMP-57255 Translation fault armclang

SDCOMP-57229 Translation fault armclang

SDCOMP-57213 Translation fault armlink

SDCOMP-56435 Translation fault armlink

SDCOMP-55460 Translation fault armclang

SDCOMP-55200 Translation fault armclang

SDCOMP-55184 Translation fault fromelf

SDCOMP-55040 Translation fault armclang

SDCOMP-50968 Translation fault fromelf

SDCOMP-50408 Translation fault armclang

SDCOMP-44980 Translation fault fromelf

SDCOMP-28728 Translation fault fromelf

SDCOMP-24899 Translation fault fromelf

SDCOMP-11947 Translation fault fromelf

SDCOMP-67984 Missing diagnostic fault armclang

SDCOMP-67968 Missing diagnostic fault armclang

SDCOMP-67424 Missing diagnostic fault armclang

SDCOMP-67120 Missing diagnostic fault armclang

SDCOMP-66894 Missing diagnostic fault armclang

SDCOMP-65243 Missing diagnostic fault armclang

SDCOMP-64683 Missing diagnostic fault armclang

SDCOMP-64255 Missing diagnostic fault armclang

SDCOMP-62201 Missing diagnostic fault armclang

SDCOMP-61489 Missing diagnostic fault fromelf

SDCOMP-61488 Missing diagnostic fault armlink

SDCOMP-61461 Missing diagnostic fault armclang

SDCOMP-59512 Missing diagnostic fault armclang

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Identifier Fault category Affected components
SDCOMP-58367 Missing diagnostic fault armclang

SDCOMP-56812 Missing diagnostic fault armclang

SDCOMP-56331 Missing diagnostic fault armclang

SDCOMP-56220 Missing diagnostic fault armclang

SDCOMP-56212 Missing diagnostic fault armclang

SDCOMP-55983 Missing diagnostic fault armclang

SDCOMP-53903 Missing diagnostic fault armclang

SDCOMP-52627 Missing diagnostic fault armclang

SDCOMP-50017 Missing diagnostic fault armclang

SDCOMP-49961 Missing diagnostic fault armclang

SDCOMP-49919 Missing diagnostic fault armclang

SDCOMP-49763 Missing diagnostic fault armclang

SDCOMP-25238 Missing diagnostic fault armclang

SDCOMP-18689 Missing diagnostic fault armlink

SDCOMP-17355 Missing diagnostic fault armlink

SDCOMP-66862 Documentation synchronization fault armclang

SDCOMP-61514 Documentation synchronization fault armclang

2.3.1 Translation faults

This section contains details about safety-related defects that have been classified as a translation
fault.

For more information about the definition of a translation fault, see the Arm Compiler for Embedded
FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS Qualification
Kit Safety Manual.

2.3.1.1 SDCOMP-67799

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67799.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main extension 6.22.1 -

Description
The compiler can generate incorrect code for an M-profile Vector Extension (MVE) intrinsic defined
in the <arm_mve.h> system header.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, for the call to the __arm_vsbcq_u32() intrinsic in the following code:

#include <arm_mve.h>

uint32x4_t test1(uint32x4_t lhs, uint32x4_t rhs)
{
 unsigned carry = 0;
 return vsbcq_u32(lhs, rhs, &carry);
}

the compiler incorrectly generates a VSBCI.I32 instruction instead of a VSBC.I32 instruction.

The VSBCI.I32 instruction assumes that the carry flag is always set. Subsequently, this can result in
unexpected run-time behavior.

This defect is associated with the issue described in SDCOMP-67678.

For more information about MVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program contains a call Z to an MVE intrinsic I defined in the <arm_mve.h> system header.

• I is of the form vsbcq().

• The behavior of the program depends on Z.

2.3.1.2 SDCOMP-67678

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67678.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main extension 6.22.1 -

Description
The compiler can generate incorrect code for a function that contains a call to an M-profile Vector
Extension (MVE) intrinsic defined in the <arm_mve.h> system header.

This defect is associated with the issue described in SDCOMP-67799.

For more information about MVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program is compiled at any optimization level except -O0.

• The program contains a function F.

• F contains a call to an MVE intrinsic I defined in the <arm_mve.h> system header.

• I has one of the following forms:

◦ vadcq_()

◦ vsbcq_()

• The behavior of the program depends on F.

2.3.1.3 SDCOMP-67666

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67666.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code for Scalable Vector Extension version 2 (SVE2) intrinsics
defined in the <arm_sve.h> system header.

For more information about SVE2 intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the Scalable Vector Extension version 2
feature (FEAT_SVE2).

• The program is compiled at any optimization level except -O0.

• The program contains a call to an intrinsic I that is defined in the <arm_sve.h> system header.

• I is of the form svwhilele_*().

• The behavior of the program depends on the vector returned by I.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.4 SDCOMP-67662

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67662.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.22.1 -

Description
The compiler can generate incorrect code for an M-profile Vector Extension (MVE) intrinsic defined
in the <arm_mve.h> system header.

For example, for the call to the __arm_vcmlaq_rot90_f32() intrinsic in the following:

#include <arm_mve.h>

float32x4_t func(float32x4_t v)
{
 return __arm_vcmlaq_rot90_f32(v, v, v);
}

the compiler incorrectly generates a VCMLA.F32 instruction that uses the register Q0 for all
operands:

vcmla.f32 q0, q0, q0, #90
bx lr

A VCMLA.F32 instruction which specifies the same register as both the destination and a source
operand is architecturally CONSTRAINED UNPREDICTABLE. Subsequently, this can result in unexpected
run-time behavior.

For more information about MVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program contains a call to an MVE intrinsic I defined in the <arm_mve.h> system header.

• I is of the form vcmlaq__f32().

• The behavior of the program depends on I.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.5 SDCOMP-67650

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67650.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.22.1 -

Description
The compiler can generate incorrect code for an M-profile Vector Extension (MVE) intrinsic defined
in the <arm_mve.h> system header.

For more information about MVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program contains a call to an MVE intrinsic I defined in the <arm_mve.h> system header.

• I has one of the following forms:

◦ vfmaq_m()

◦ vfmasq_m()

◦ vfmsq_m()

• The behavior of the program depends on I.

2.3.1.6 SDCOMP-67544

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67544.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler can generate incorrect code for a volatile variable of a single-precision floating-
point type.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program contains a volatile variable V of type T.

• T is a single-precision floating-point type.

• The program contains an operation A that accesses V.

• The program contains an operation B that accesses V.

• The behavior of the program depends on the relative order of A and B being preserved.

2.3.1.7 SDCOMP-67448

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67448.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The integrated assembler incorrectly fails to set the minimum alignment requirement for a user-
defined executable section based on the default target instruction set. Instead, it incorrectly always
sets the minimum alignment requirement to 1 byte.

For example, the integrated assembler incorrectly sets the alignment requirement to 1 byte for
.text.func when assembling the following for an Armv8-A target:

.section .text.func, "ax"
nop

The default target instruction set for Armv8-A targets is A32. Therefore, .text.func must have a
minimum alignment requirement of 4 bytes.

To avoid this issue, explicitly specify an alignment requirement of 4 bytes for each user-defined
executable section as follows:

Default target instruction set Alignment directive

A32 .p2align 2

T32 .p2align 1

This defect is associated with the issues described in SDCOMP-67446 and SDCOMP-66632.

Conditions
The safety-related system is at risk when all the following are true:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program contains a user-defined executable section S.

• S does not contain any of the following directives:

◦ .align

◦ .arm

◦ .balign

◦ .code 16

◦ .code 32

◦ .p2align

◦ .thumb

2.3.1.8 SDCOMP-67446

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67446.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The integrated assembler can incorrectly change the minimum alignment requirement of a user-
defined executable section for a source file that contains an instruction set directive.

For example, the integrated assembler incorrectly sets the alignment requirement to 2 bytes for
.text.func when assembling the following for an Armv8-A target:

.section .text.func, "ax"
nop
.thumb

The default target instruction set for Armv8-A targets is A32. Therefore, .text.func must have a
minimum alignment requirement of 4 bytes.

To avoid this issue, explicitly specify an alignment requirement of 4 bytes for each user-defined
executable section using an aligment directive. For example, using .p2align 2:

.section .text.func, "ax"

.p2align 2
nop
.thumb

This defect is associated with the issues described in SDCOMP-67448 and SDCOMP-66632.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a user-defined executable section S.

• S contains one of the following directives:

◦ .arm

◦ .code 16

◦ .code 32

◦ .thumb

• S does not contain any of the following directives:

◦ .align

◦ .balign

◦ .p2align

2.3.1.9 SDCOMP-67194

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-67194.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler can generate incorrect code for an outlined function.

Conditions
The safety-related system is at risk when one of the following is true:

• The program is compiled at -Oz and without -mno-outline.

• The program is compiled with -moutline.

2.3.1.10 SDCOMP-66895

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66895.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The compiler can generate incorrect debug information for a call from a secure function to a non-
secure function.

Conditions
This defect can occur when all the following are true:

• The program is compiled for a target with the Security Extension.

• The program is compiled with -mcmse.

• The program is compiled with -g or -gdwarf<version>.

• The program contains a secure function F.

• F is annotated with attribute((cmse_nonsecure_entry)).

• F calls a non-secure function via a function pointer P.

• P is annotated with attribute((cmse_nonsecure_call)).

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.11 SDCOMP-66787

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66787.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.22.1 -

Description
The compiler can generate code which incorrectly fails to indicate that the floating-point unit may
be used by a Non-secure function N that is called from a Secure function S. Subsequently, this can
result in the floating-point registers being corrupted after returning from N to S.

For example, the floating-point registers may be corrupted after the return from N() to S() in the
following:

typedef float __attribute__((cmse_nonsecure_call)) nsfunc(void);

float N(void) /* Non-secure function that returns a value of float type */
{
 return 1.0f;
}

float S(void) /* Secure function that calls a Non-secure function */
{
 nsfunc *P = (nsfunc *)N; /* Non-secure function pointer P for N() */
 if (cmse_is_nsfptr(P))
 {

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

 float value = P(); /* Non-secure function call to N() via P */
 /* Floating-point registers may be corrupted here */
 return value;
 }
 else
 {
 return 0.0f;
 }
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is not compiled for an Armv8.1-M target with the Main Extension.

• The program is compiled with -mfloat-abi=hard.

• The program contains a Secure function S in a source file A.

• A is compiled with -mcmse.

• The program contains a Non-secure function N in a source file B.

• B is not compiled with -mcmse.

• N returns a value of type T.

• N does not have any parameters of type T.

• T is one of the following:

◦ A floating-point type.

◦ A vector type.

• S calls N via a function pointer P.

• P is annotated with attribute((cmse_nonsecure_call)).

• The Secure Floating-point Context is not active within S before the call to N via P. To determine
if the Secure Floating-point Context is active, check the value of the FPCA field of the CONTROL_S
register.

2.3.1.12 SDCOMP-66692

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66692.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Armv8-M with the Main Extension 6.22.1 -

Description
The fromelf utility disassembles the VSCCLRM instruction incorrectly.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the fromelf utility incorrectly disassembles the following valid VSCCLRM instruction as
an invalid VLDM instruction:

 vscclrm {d8, d9, d10, d11, d12, d13, d14, d15, vpr}

Conditions
This defect occurs when all the following are true:

• The fromelf utility is used to disassemble an ELF format input file F.

• F is disassembled for an Armv8.1-M target with the Main Extension. For example, F is
disassembled with --cpu=8.1-M.Main.

• F contains a VSCCLRM instruction.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.1.13 SDCOMP-66658

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66658.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly always applies the rules for type auto-deduction for direct-list-initialization
from C++17, regardless of which C++ source language mode a program is compiled for.

For example, the compiler incorrectly always deduces the type of var as int instead of
std::initializer_list<int> in the following:

auto var{ 1 };

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or C++14 source language mode.

• The program contains a variable V.

• The type of V is determined using type auto-deduction.

• V is initialized with direct-list-initialization using an initializer list L.

• L contains only one element E.

• E is of type T.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The behavior of the program depends on V being of type std::initializer_list<T> instead of
T.

2.3.1.14 SDCOMP-66632

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66632.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The integrated assembler incorrectly fails to automatically set the minimum alignment requirement
for a user-defined executable section to 4 bytes. Instead, it incorrectly always sets the minimum
alignment requirement to 1 byte.

For example, the integrated assembler incorrectly sets the alignment to 1 byte .text.func in the
following:

.section .text.func, "ax"
nop

To avoid this issue, explicitly specify an alignment for each user-defined executable section using
the following directive:

.p2align 2

This defect is associated with the issues described in SDCOMP-67448 and SDCOMP-67446.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a user-defined executable section S.

• S does not contain any of the following directives:

◦ .align

◦ .balign

◦ .p2align

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.15 SDCOMP-66328

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66328.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect C++ exception unwinding information and incorrect debug
information for a function.

Conditions
This defect can occur when all the following are true:

• The program is compiled in a C++ source language mode.

• One of the following is true:

◦ The program is compiled with C++ exceptions enabled.

◦ The program is compiled with -g or -gdwarf-<version>.

• The target options used to build the program enable the pointer authentication instructions
that allow signing of LR using SP and PC as diversifiers feature (FEAT_PAuth_LR).

• The target options used to build the program disable the pointer authentication feature
(FEAT_PAuth).

• The program is compiled with a -mbranch-protection=<protection> option that enables
pointer authentication branch protection using the Program Counter as a second diversifier for
return address signing. For example, -mbranch-protection=pac-ret+pc.

The safety-related system is at risk when one of the following is true:

• A C++ exception is thrown by, or propagated through, an affected function at run-time.

• The incorrect debug information causes you to manually make an incorrect change to the
safety-related system.

2.3.1.16 SDCOMP-66256

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66256.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate code that incorrectly does not conform to the Procedure Call Standard
for the Arm 64-bit Architecture.

For example, when compiling the following code with -march=armv8.2-a+bf16 and at -O1, the
compiler can generate code that incorrectly splits the Homogenous Floating-point Aggregate (HFA)
parameter src between the register H7 and the stack:

#include <arm_neon.h>

volatile __bf16 dst;

typedef struct
{
 __bf16 x, y;
} hfa_t;

void func(double a, double b, double c, double d,
 double e, double f, double g, hfa_t src)
{
 dst = src.x;
 dst = src.y;
}

ldr h0, [sp]
adrp x8, dst
str h7, [x8, :lo12:dst]
str h0, [x8, :lo12:dst]
ret

The Procedure Call Standard for the Arm 64-bit Architecture does not permit a HFA parameter to be
split between registers and the stack.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a function F.

• F has M consecutive floating-point parameters, followed by a parameter of T type.

• T is a Homogenous Floating-point Aggregate type, which consists of N members of __bf16 type.

• 1 < N <= 4.

• M < 8.

• M + N > 8.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.17 SDCOMP-65607

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65607.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code for Scalable Vector Extension version 2 (SVE2) intrinsics
defined in the <arm_sve.h> system header.

For more information about SVE2 intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the Scalable Vector Extension version 2
feature (FEAT_SVE2).

• The program is compiled at any optimization level except -O0.

• The program contains a call to an intrinsic I that is defined in the <arm_sve.h> system header.

• I has one of the following forms:

◦ svwhilegt_*()

◦ svwhilege_*()

• The behavior of the program depends on the vector returned by I.

2.3.1.18 SDCOMP-65592

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65592.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can incorrectly generate a Scalable Vector Extension (SVE) instruction for a function
that is not annotated as being executed in streaming mode. Subsequently, this can result in
unexpected run-time behavior.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For more information about streaming mode, see the Controlling the use of streaming mode
section of the Arm C Language Extensions (ACLE).

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the Scalable Matrix Extension feature
(FEAT_SME).

• The program is built with target options that do not enable the Scalable Vector Extension
feature (FEAT_SVE).

• The program contains a function F.

• F is not annotated as being executed in streaming mode.

• The behavior of the program depends on F being executed in non-streaming mode at run-time.

2.3.1.19 SDCOMP-65590

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65590.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.22.1 -

Description
The compiler can generate incorrect code for a function that contains a call to an M-profile Vector
Extension (MVE) intrinsic of the form vsetq_lane_32() defined in the <arm_mve.h> system header.

For more information about MVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program contains a function F.

• F contains a call to an MVE intrinsic I defined in the <arm_mve.h> system header.

• I is of the form vsetq_lane_32().

• The behavior of the program depends on F.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 101

https://arm-software.github.io/acle/main/acle.html#sme-language-extensions-and-intrinsics
https://arm-software.github.io/acle/main/acle.html#sme-language-extensions-and-intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.20 SDCOMP-65579

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65579.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code for a Scalable Vector Extension (SVE) intrinsic defined in
the <arm_sve.h> system header.

For more information about SVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable one of the following features:

◦ Scalable Matrix Extension (FEAT_SME)

◦ Scalable Vector Extension (FEAT_SVE)

• The program is compiled at any optimization level except -O0.

• The program contains a call to an SVE intrinsic I defined in the <arm_sve.h> system header.

• I is of the form svuzp*().

• The behavior of the program depends on I.

2.3.1.21 SDCOMP-65564

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65564.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code for Scalable Vector Extension (SVE) intrinsics defined in
the <arm_sve.h> system header.

For more information about SVE intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the Scalable Vector Extension feature
(FEAT_SVE).

• The program contains a call to an intrinsic I that is defined in the <arm_sve.h> system header.

• One of the following is true:

◦ I is svqadd[_n_s8](<op1>, <op2>), and <op2> is a negative scalar value.

◦ I is svqadd[_s8](<op1>, <op2>), and either operand is a vector in which all elements are
the same negative value.

◦ I is svqsub[_n_s8](<op1>, <op2>), and <op2> is a negative scalar value.

◦ I is svqsub[_s8](<op1>, <op2>), and <op2> is a vector in which all elements are the same
negative value.

• The behavior of the program depends on the vector returned by I.

2.3.1.22 SDCOMP-65550

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65550.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code.

Conditions
The safety-related system is at risk when the program is built with target options that enable the
use of Neon instructions. For example, -march=armv8-a.

This defect can occur when certain conditions hold for LLVM Machine Intermediate Representation
(MIR).

Note: Arm is not aware of any conditions that must hold for C, C++, or assembly language source
code to observe this defect.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.23 SDCOMP-65418

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65418.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler can generate code that incorrectly corrupts the frame pointer register R11. The frame
pointer register must remain reserved throughout the execution of a program. Subsequently, this
can result in a debugger displaying incorrect frame chain information.

This defect is associated with the issues described in SDCOMP-67120 and SDCOMP-64397.

Conditions
This defect occurs when all the following are true:

• The program is compiled with one of the following:

◦ -mframe-chain=aapcs

◦ -mframe-chain=aapcs+leaf

• The program is compiled without -fno-omit-frame-pointer.

The safety-related system is only at risk when the incorrect frame chain information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.24 SDCOMP-64877

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64877.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state, Armv8-M with the Main Extension 6.22.1 -

Description
The compiler incorrectly fails to enable branch protection using pointer authentication.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built Link-Time Optimization (LTO) enabled.

• The program contains two compilation units A and B.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• Both A and B are compiled with LTO enabled.

• A is compiled with a -mbranch-protection=<protection> option that enables branch protection
using pointer authentication. For example, -mbranch-protection=standard.

• A contains a function F.

• F is not annotated with a attribute((target("branch-protection=<protection>"))) attribute
that enables branch protection using pointer authentication.

• One of the following is true:

◦ B is compiled without a -mbranch-protection=<protection> option.

◦ B is compiled with a -mbranch-protection=<protection> option that does not enable
branch protection using pointer authentication. For example, -mbranch-protection=bti.

• The behavior of the program depends on branch protection using pointer authentication to be
enabled for F.

2.3.1.25 SDCOMP-64590

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64590.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Description
The linker can generate incorrect stack usage information.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as a
lower limit. For more information, see the Linker maximum stack size calculation section of the Safety
Manual.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -fno-omit-frame-pointer.

• The program is linked using one of the following options:

◦ --callgraph

◦ --info=stack

◦ --info=summarystack

The safety-related system is only at risk when the incorrect stack usage information causes you to
manually make an incorrect change to the safety-related system.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.26 SDCOMP-64397

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64397.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.22.1 -

Description
The compiler can generate code that incorrectly fails to preserve the frame pointer register R11.
Subsequently, this can result in a debugger displaying incorrect frame chain information.

This defect is related with the issues described in SDCOMP-67120 and SDCOMP-65418.

Conditions
The defect can occur when all the following are true:

• The program is compiled with an -mbranch-protection=<protection> option that enables
branch protection using pointer authentication. For example, -mbranch-protection=standard.

• The program is compiled with one of the following:

◦ -mframe-chain=aapcs

◦ -mframe-chain=aapcs+leaf

The safety-related system is only at risk when the incorrect frame chain information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.27 SDCOMP-64335

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64335.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate code that incorrectly fails to acquire a lock for an atomic exchange
operation. Such incorrect code specifies the WZR or XZR register as the second operand for a SWP or
SWPL instruction.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the compiler incorrectly generates a SWPL instruction that specifies WZR as the second
operand for the following:

#include <stdatomic.h>

void func(atomic_int *var)
{
 atomic_exchange_explicit(var, 1, memory_order_release);
}

Conditions
The safety-related system is at risk when all the following are true:

• The target options used to build the program enable the Large System Extensions feature
(FEAT_LSE). For example, -march=armv8.2-a or -march=armv8.1-a+lse.

• The program contains a call to one of the following:

◦ An __atomic_exchange*() built-in.

◦ An atomic_exchange*() function defined in the <stdatomic.h> Arm C library header.

◦ An exchange*() member function of the class template std::atomic<T>.

◦ A std::atomic_exchange*() function defined in the <atomic> Arm C++ library header.

To detect if the safety-related system is at risk, disassemble the program with fromelf --text -c
and manually inspect the output. If the output contains a SWP or SWPL instruction that specifies WZR
or XZR as the second operand, then the safety-related system is at risk.

2.3.1.28 SDCOMP-63984

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63984.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang T32 state 6.22.1 -

Description
The compiler can generate a code section that incorrectly contains a literal pool.

Conditions
The safety-related system is at risk when all the following are true:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program is compiled with -mexecute-only.

• The program contains a thread-local variable V.

• The behavior of the program depends on an access to V.

2.3.1.29 SDCOMP-63912

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63912.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler can generate incorrect code for an access to a bit-field. Such incorrect code does not
conform to the Procedure Call Standard for the Arm Architecture.

For example, the compiler generates code that incorrectly uses the register R1 for the parameter b
in the following:

struct S
{
 int x : 64;
};

int func(int a, struct S b)
{
 return b.x;
}

To avoid this issue, compile with -Werror=bitfield-width to make the compiler report the
following error for potentially affected code:

• width of bit-field '<bit-field>' (<width_of_bit-field> bits) exceeds the width of its
type; value will be truncated to <width_of_type> bits.

Conditions
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a class, struct, or union type A.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• A has a bit-field member M of size S and type B.

• S is greater than the size of B.

• The program contains a function F.

• F has a parameter of type A.

• F accesses M.

The safety-related system is not at risk when F is compiled using the same toolchain that is used to
compile all code that calls F.

2.3.1.30 SDCOMP-63911

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63911.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture.

For example, the compiler generates code that incorrectly assumes that the register R0 is used for
the parameter b in the following:

struct S
{
};

int func(struct S a, int b)
{
 return b;
}

Conditions
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a class, struct, or union type T.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program contains a function F with a parameter A of type T.

• T does not have any members.

• F has a second parameter B with non-empty type, which appears after A in the argument list.

The safety-related system is not at risk when F is compiled using the same toolchain that is used to
compile all code that calls F.

2.3.1.31 SDCOMP-63205

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63205.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler can generate incorrect code for a loop.

To avoid this issue, compile with -fno-vectorize.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is compiled for a big-endian target.

• The program is compiled for a target that includes the Advanced SIMD Extension.

• The program contains a loop.

2.3.1.32 SDCOMP-63114

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63114.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate an incorrect STG instruction. Subsequently, this can result in unexpected
run-time behavior.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
This defect can occur when all the following are true:

• The program is built with target options that enable the Memory Tagging Extension feature
(FEAT_MTE).

• The program is compiled with -fsanitize=memtag-stack.

To detect if the safety-related system is at risk, compile with -S and manually inspect the output.
The safety-related system is only at risk when the output contains an STG instruction with an
immediate offset of 4096, for example:

stg sp, [sp], #4096

The STG instruction supports an immediate offset that is a multiple of 16 and in the range [-4096,
4080].

2.3.1.33 SDCOMP-63088

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63088.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code for an access to an _Atomic 128-bit variable.

For example, the compiler can generate incorrect code for the following when compiling with -
mbig-endian:

_Atomic __uint128_t v;

__uint128_t func(void)
{
 return v;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a big-endian target.

• The program contains an _Atomic 128-bit variable V.

• The program contains an access to V.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.34 SDCOMP-62378

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62378.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler generates an incorrect Neon load or store instruction for a Neon intrinsic defined
in the <arm_neon.h> system header. The incorrect instruction has an alignment specifier.
Subsequently, at run-time, this can result in a Data Abort when the address being accessed is not
aligned to the alignment specified by the alignment specifier.

For example, the compiler incorrectly generates:

vld1.8 {d16, d17, d18, d19}, [r0:256]

instead of:

vld1.8 {d16, d17, d18, d19}, [r0]

for the following:

uint8x16x2_t vector = vld1q_u8_x2(address);

The alignment specifier :256 means that the vld1.8 instruction will result in a Data Abort if
address is not aligned to a 256-byte boundary.

For more information about Neon intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a call to a Neon intrinsic I that is defined in the <arm_neon.h> system
header.

• I has one of the following forms:

◦ vld*_x2()

◦ vld*_x3()

◦ vld*_x4()

◦ vst*_x2()

◦ vst*_x3()

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 101

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

◦ vst*_x4()

• I is used to access an address X.

• X is not aligned to a 256-byte boundary.

To avoid this issue, manually inspect the source code, and ensure each address that is accessed
using an affected Neon intrinsic is aligned to a 256-byte boundary.

2.3.1.35 SDCOMP-62176

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62176.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler can generate incorrect code for a function which has a half-precision floating-point
parameter that is passed using the stack.

For example, the compiler can generate incorrect code for the following:

__fp16 func(int a, int b, int c, int d, __fp16 e)
{
 return e + 1.0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a big-endian target.

• The program is compiled for a target with half-precision floating-point support.

• The program contains a function F.

• F has a parameter P that is one of the following types:

◦ _Float16

◦ __fp16

• P is passed using the stack.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The behavior of the program depends on P.

2.3.1.36 SDCOMP-62133

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62133.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code for a function that contains an inline assembly statement
with a +&r constraint code.

For example, the compiler can generate incorrect code for the following:

int func(void)
{
 register int V __asm("x0") = 1;
 __asm volatile("add %w0, %w0, #1" : "+&r" (V));

 return V;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at -O0.

• The program contains a function F.

• The program contains a named register variable V that uses a 64-bit register.

• F contains an inline assembly statement S.

• S specifies an output operand K.

• K is associated with V.

• K has the constraint code +&r.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.37 SDCOMP-61486

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61486.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler generates incorrect code for the expression noexcept(typeid(V)).

For example, the compiler generates code that incorrectly evaluates noexcept(typeid(obj)) to
false in the following:

class C { virtual void func(void) {} };
C obj;
noexcept(typeid(obj)) ? puts("OK") : puts("Not OK");

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or later source language mode.

• The program is not compiled with -fno-rtti.

• The program contains a polymorphic class C.

• The program contains an expression E.

• E is of the form noexcept(typeid(V)).

• V is one of the following:

◦ A glvalue of type C.

◦ A reference to C.

• The behavior of the program depends on the result of E.

2.3.1.38 SDCOMP-60117

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60117.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The linker can generate incorrect stack usage information.

To avoid this issue, compile the input objects with -gdwarf-3.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as a
lower limit. For more information, see the Linker maximum stack size calculation section of the Safety
Manual.

Conditions
This defect can occur when all the following are true:

• The input objects are compiled with -g or -gdwarf-<version>, where <version> is not 3.

• Stack usage information is obtained from the linker using any of the following options:

◦ --callgraph

◦ --info=stack

The safety-related system is only at risk when the incorrect stack usage information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.39 SDCOMP-58780

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58780.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler generates code that incorrectly fails to raise a std::bad_array_new_length exception
for a new expression. Subsequently, this can result in unexpected run-time behavior.

For example, the compiler generates code that incorrectly fails to raise a
std::bad_array_new_length exception for the following:

void no_init_array(int len)
{
 (void)new char[len];
}

void test(void)
{
 try
 {
 no_init_array(-1);
 }
 catch (const std::bad_array_new_length &)
 {

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

 std::cout << "Exception caught" << std::endl;
 }
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++14 or later source language mode.

• The program is compiled with C++ exceptions enabled.

• The program contains a new expression E.

• E is not a constant expression.

• E specifies a negative array length.

• E allocates an array with elements of type T.

• The size of T is 1 byte.

• The behavior of the program depends on a std::bad_array_new_length exception being raised
for E.

2.3.1.40 SDCOMP-58354

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58354.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Description
The linker incorrectly reports an ELF section that is not Zero Initialized (ZI) as ZI in the --map
output.

For example, the linker incorrectly reports the ELF section for the execution region EXEC as Zero in
the --map output for the following:

LOAD 0x8000
{
 EXEC +0x0 FILL 0xFFFFFFFF 0x100 {}
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with --map.

• The program is linked with a scatter file that contains an execution region E.

• E has one of the following execution region attributes:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

◦ PADVALUE

◦ ZEROPAD

◦ FILL

• The --map output causes you to manually make an incorrect change to the safety-related
system.

2.3.1.41 SDCOMP-57725

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57725.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler can generate incorrect debug location information for a static variable.

Conditions
This defect can occur when all the following are true:

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.42 SDCOMP-57255

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57255.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The compiler generates incorrect debug information for a C++ tuple-like binding B. The incorrect
debug information associates an identifier I in B with the source code line on which B is declared
instead of the source code line on which I is used.

For example, the compiler generates incorrect debug information that associates the identifier a
with the line on which a is bound to src in the following:

std::tuple<int,short> src(x,y);

void func(void)
{
 const auto [a,b] = src;

 if (a == 0)
 {
 std::cout << "a is zero" << std::endl;
 }
}

Conditions
This defect occurs when all the following are true:

• The program is compiled in a C++17 source language mode.

• The program is compiled with -g or -gdwarf-<version>.

• The program contains a tuple-like binding.

The safety-related system is only at risk if the incorrect debug information causes you to manually
make an incorrect change to the safety-related system.

2.3.1.43 SDCOMP-57229

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57229.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly generates debug information at the function scope for a static variable
defined in a lexical block within a function.

Subsequently, this can result in an affected variable incorrectly being displayed by a debugger as
being in scope at function scope.

Conditions
This defect occurs when all the following are true:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program contains a function F.

• F defines a static variable in a lexical block within F.

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.44 SDCOMP-57213

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57213.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Description
The linker can generate an incorrect address for a local symbol that is associated with an unused
merged string.

For example, the linker can generate an incorrect address for the symbol str2 in the following:

 .section strings, "aMS", %progbits, 1
str1:
 .asciz "Hello, world!"
str2:
 .asciz "Hello, world!"

Conditions
This defect can occur when all the following are true:

• The program is linked without --no_merge.

• The program contains an assembly language source file with an ELF section S.

• S has the SHF_MERGE and SHF_STRING flags set.

• S contains a null-terminated string A.

• S contains a null-terminated string B associated with the symbol X.

• B is identical to A, or is a suffix of A.

• X is a local symbol.

• X is not used.

The safety-related system is only at risk if the incorrect address for X causes you to manually make
an incorrect change to the safety-related system.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.45 SDCOMP-56435

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-56435.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Description
The linker incorrectly includes the size of uninitialized data in the p_memsz field of the ELF program
header for the execution region containing the uninitialized data.

Subsequently, an ELF processing tool that creates the execution view directly from the ELF
program headers can zero-initialize memory that was not intended to be zero-initialized. This can
result in unexpected run-time behavior.

To avoid this issue, use one of the following workarounds:

• Do not use the program headers to derive the execution view when loading the image onto the
target device. Instead, use the fromelf utility to generate a binary file for the image, and then
load that binary file.

• Use --elf-output-format=gnu for better compatibility with program loaders. This may require
you to modify your scatter file. For more details, see the --elf-output-format section of the
Reference Guide

• Do not use the EMPTY or UNINIT execution region attributes.

Conditions
The safety-related system is at risk when all the following are true:

• An ELF processing tool is used to directly create the execution view of the program from the
ELF program headers.

• The program is linked with a scatter file that contains an execution region E.

• One of the following is true:

◦ E has the EMPTY attribute.

◦ E has the UNINIT attribute and contains ZI data.

• The behavior of the program depends on the ELF processing tool not zero-initializing memory
that was not intended to be zero-initialized.

2.3.1.46 SDCOMP-55460

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-55460.

The following table describes the scope of this defect:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler can generate code that incorrectly fails to ignore the partial specializations of a
member template when the primary member template is subsequently explicitly specialized.

For example, the compiler incorrectly uses the partial specialization of B for the variable obj in the
following:

#include <stdio.h>

// Template class A
template<class T> struct A
{
 // Member template B
 template<class T2> struct B
 {
 void f(void)
 {
 printf("Incorrect: Default\n");
 }
 };
 // Partial specialization of B
 template<class T2> struct B<T2*>
 {
 void f(void)
 {
 printf("Incorrect: Partial specialization\n");
 }
 };
};

// Explicit specialization of A::B
template<> template<class T2> struct A<short>::B
{
 void f(void)
 {
 printf("Correct: Explicit specialization\n");
 }
};

int main(void)
{
 A<short>::B<int*> obj;

 obj.f();

 return 0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program defines a template class A.

• A contains a member template B.

• The program defines a partial specialization of B.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• A::B is subsequently explicitly specialized.

2.3.1.47 SDCOMP-55200

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-55200.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.22.1 -

Description
The compiler incorrectly sets bit 1 of the Arm C Language Extensions (ACLE) feature macro
__ARM_FEATURE_MVE.

For example, the compiler incorrectly sets bit 1 of __ARM_FEATURE_MVE when compiling with -
march=armv8.1-m.main+mve.fp -mfpu=fpv5-d16.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with an -march=<name> or -mcpu=<name> option that enables the floating-
point M-profile Vector Extension (MVE-FP). For example, -march=armv8.1-m.main+mve.fp or -
mcpu=cortex-m55.

• The program is built with -mfpu=<name>, where <name> is one of the following:

◦ fpv5-d16

◦ fpv5-sp-d16

• The behavior of the program depends on bit 1 of the Arm C Language Extensions (ACLE)
feature macro __ARM_FEATURE_MVE.

2.3.1.48 SDCOMP-55184

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-55184.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.22.1 -

Description
When the linker removes unused sections from an image that contains debug information, the
auxiliary debug information sections in the resulting image can contain unused but valid padding
bytes between DWARF records. When processing such an image with -g or --text -g, the

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

fromelf utility can incorrectly fail to decode DWARF records that follow such padding bytes, and
subsequently report incorrect information about the correlation between the image and the original
source code.

Conditions
The fromelf utility can report incorrect information when all the following are true:

• An executable ELF format input file F contains debug information.

• The debugging information in F contains one the following:

◦ Line table entries for a function X in the .debug_line section.

◦ Variable location entries for a variable in a function X in the .debug_loc section.

• The code for X is not present in F.

• F is processed using the -g or --text -g options.

The output from the -g or --text -g options is not directly used by debugging tools.

The safety-related system is only at risk if incorrect information in the output from the -g or --text
-g options causes you to manually make an incorrect change to the safety-related system.

2.3.1.49 SDCOMP-55040

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-55040.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler can generate incorrect code when compiling with -fsanitize=memtag-stack.
Subsequently, this can result in a memory tagging exception against an address in the stack.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is built with target options that enable the Memory Tagging Extension feature
(FEAT_MTE).

• The program is compiled with -fsanitize=memtag-stack.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.1.50 SDCOMP-50968

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50968.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.22.1 -

Description
When processing an image with -g or --text -g, the fromelf utility can report incorrect debug
information.

Conditions
The fromelf utility can report incorrect debug information when all the following are true:

• An executable ELF format input file F contains all the following:

◦ Debug information.

◦ A RELA relocation entry.

• F is processed using the -g or --text -g options.

The output from the -g or --text -g options is not directly used by debugging tools.

The safety-related system is only at risk if incorrect debug information in the output from the -g or
--text -g options causes you to manually make an incorrect change to the safety-related system.

2.3.1.51 SDCOMP-50408

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50408.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The compiler can generate incorrect code for a function that has a parameter of vector type.

Such code does not conform to the Procedure Call Standard for the Arm Architecture.

Conditions
This defect can occur when all the following are true:

• The program is compiled for a big-endian target.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program is compiled for a target that includes the Advanced SIMD Extension.

• The program contains a function F.

• F has a parameter of vector type T.

• T is defined in the <arm_neon.h> system header.

The safety-related system is only at risk when the entire program is not built using the same
toolchain.

2.3.1.52 SDCOMP-44980

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-44980.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.22.1 -

Description
The fromelf utility can report incorrect bit-field offsets when processing an ELF file that contains
bit-fields with -a or --text -a.

Conditions
This defect occurs when all the following are true:

• An ELF format input file F contains debug information.

• F contains a global or static variable V.

• V contains a bit-field.

• The global and static data addresses in F are printed using any of the following options:

◦ -a

◦ --text -a

The safety-related system is only at risk if the incorrect bit-field offset information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.53 SDCOMP-28728

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-28728.

The following table describes the scope of this defect:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Affected components Target environment Affected releases Unaffected releases

fromelf AArch64 state 6.22.1 -

Description
The fromelf utility incorrectly decodes certain UNDEFINED instructions as MRS or MSR instructions.

For example, the fromelf utility incorrectly disassembles the following UNDEFINED instruction as an
MRS instruction:

.inst 0xd5200000

Conditions
This defect can occur when all the following are true:

• An ELF format input file contains an instruction with a bit pattern P.

• P is within the A64 System Instruction Class encoding space.

• P is architecturally UNDEFINED.

The safety-related system is only at risk if the incorrect disassembly output causes you to manually
make an incorrect change to the safety-related system.

2.3.1.54 SDCOMP-24899

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-24899.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf T32 state 6.22.1 -

Description
The fromelf utility can disassemble certain instructions incorrectly and associate symbols with an
incorrect address.

For example, for the following code:

 .section .text
 .p2align 2
 .type func1, %function
 .type func2, %function
 .global func1
 .global func2
func1:
 bx lr
 .inst.n 0xffff
func2:
 bx lr

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

the fromelf utility incorrectly disassembles the output as:

func1
 0x00000000: 4770 pG BX lr
func2
 0x00000002: ffff4770 ..pG VQSHL.U32 q10,q8,#31

Conditions
This defect can occur when all the following are true:

• An ELF format input file contains two consecutive 16-bit opcodes A and B.

• A is not a valid 16-bit instruction.

• A symbol is associated with the address of B.

The safety-related system is only at risk when the incorrect output from the fromelf utility causes
you to manually make an incorrect change to the safety-related system.

2.3.1.55 SDCOMP-11947

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-11947.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.22.1 -

Description
The fromelf utility incorrectly disassembles a 16-bit addend as an 8-bit addend.

Conditions
This defect can occur when all the following are true:

• An ELF format input file F contains a 16-bit data word D.

• F is processed using --disassemble.

• D is associated with a relocation R of type T.

• T is one of the following:

◦ R_AARCH64_ABS16

◦ R_ARM_ABS16

• R has an addend greater than 255.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.2 Missing diagnostic faults

This section contains details about safety-related defects that have been classified as a missing
diagnostic fault.

For more information about the definition of a missing diagnostic fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

2.3.2.1 SDCOMP-67984

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-67984.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M 6.22.1 -

Description
The compiler can incorrectly set bit 3 of the Arm C Language Extensions (ACLE) feature macro
__ARM_FEATURE_LDREX.

For example, the compiler incorrectly sets bit 3 of __ARM_FEATURE_LDREX when compiling with -
march=armv8-m.main.

Conditions
The safety-related system is at risk when the behavior of the program depends on bit 3 of the Arm
C Language Extensions (ACLE) feature macro __ARM_FEATURE_LDREX.

2.3.2.2 SDCOMP-67968

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-67968.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The inline assembler and integrated assembler incorrectly ignore a .cpu target selection directive
that does not explicitly disable an extension E using +no<extension>. Subsequently, the inline
assembler and integrated assembler incorrectly fail to report an error for an instruction that
requires E.

For example, when assembling the following with -mcpu=cortex-a53+ras, the integrated assembler
incorrectly ignores the .cpu cortex-a53 target selection directive, and subsequently fails to report
an error for the ESB instruction:

.cpu cortex-a53
esb // invalid without the RAS extension

Conditions
The safety-related system is at risk when all the following are true:

• One of the following is true:

◦ The program is assembled with an -mcpu option A.

◦ The program contains a .cpu target selection directive A.

• A enables an extension E.

• The program contains a subsequent .cpu target selection directive B.

• B does not explicitly disable E using +no<extension>.

• The program contains an instruction I.

• I follows B.

• I requires E.

2.3.2.3 SDCOMP-67424

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-67424.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a MOVT or MOVW
instruction with an offset that is outside the range for the instruction.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the integrated assembler incorrectly fails to report an error for the following
instruction:

movt r0, #:lower16:. + 32768 // out of range offset

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• I is one of the following:

◦ MOVT

◦ MOVW

• I specifies a source operand S.

• S has one of the following forms:

◦ #:lower16:. + <offset>

◦ #:lower16:<label> + <offset>

◦ #:upper16:. + <offset>

◦ #:upper16:<label> + <offset>

• <offset> is an immediate value.

• <offset> is outside the range [-32768, 32767].

• The behavior of the program depends on I.

2.3.2.4 SDCOMP-67120

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-67120.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The inline assembler incorrectly fails to report the following warning for an inline assembly
statement that contains the frame pointer register R11 in its clobber list:

• inline asm clobber list contains reserved registers: R11

The frame pointer register must remain reserved throughout the execution of a program.
Subsequently, if the inline assembly statement corrupts R11, this can result in a debugger displaying
incorrect frame chain information.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the inline assembler incorrectly fails to report the warning for the inline assembly
statement in the following:

int func(int input)
{
 int output;

 __asm volatile(
 "add r11, %[input]\n\t"
 "mov %[output], r11\n\t"
 : [output] "=&r" (output)
 : [input] "r" (input)
 : "r11"
);

 return output;
}

This defect is associated with the issues described in SDCOMP-65418 and SDCOMP-64397.

Conditions
This defect occurs when all the following are true:

• The program is compiled with one of the following:

◦ -mframe-chain=aapcs

◦ -mframe-chain=aapcs+leaf

• The program is compiled without -fno-omit-frame-pointer.

• The program contains an inline assembly statement S.

• The clobber list of S contains R11.

The safety-related system is only at risk when all the following are true:

• S corrupts R11.

• The incorrect frame chain information causes you to manually make an incorrect change to the
safety-related system.

2.3.2.5 SDCOMP-66894

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-66894.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The compiler incorrectly fails to report an error for an -march or -mcpu option that specifies an
invalid feature modifier.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, when compiling with -march=armv8.4-a+nolse2, the compiler incorrectly fails to
report the following error:

• unsupported argument 'armv8.4-a+nolse2' to option '-march='

+nolse2 is an invalid feature modifier.

For more information about feature modifiers, see the following sections of the Reference Guide:

• -march

• -mcpu

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with an -march=<name> or -mcpu=<name> option X.

• X specifies an invalid feature modifier.

2.3.2.6 SDCOMP-65243

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-65243.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report the following error for a
Scalable Vector Extension (SVE) instruction that specifies an invalid predication pattern:

• invalid operand for instruction

Instead, the inline assembler and integrated assembler incorrectly generate code that does not
contain the instruction. Subsequently, this can result in unexpected run-time behavior.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for
each of the following instructions:

ptrue p0.d, #ALL
cntb x0, #ALL, mul #1

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an SVE instruction I.

• I has an invalid predication pattern specifier operand.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The behavior of the system depends on I being executed.

2.3.2.7 SDCOMP-64683

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-64683.

The following table describes the scope of this defect:

Affected
components

Target environment Affected
releases

Unaffected
releases

armclang Armv7-A, Armv7-M, Armv7-R, Armv8-A, Armv8-M with the Main Extension,
Armv8-R, Armv9-A

6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a PC-relative
load (literal) instruction. Subsequently, this can result in one or more of the following unexpected
run-time behaviors:

• A load from an incorrect address.

• An alignment fault.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
LDRD instruction in the following:

 .thumb

 .section .text.func, "ax"
 .balign 4
 .global func
 .type func, %function
func:
 ldrd r0, r1, src
 .byte 0xff
src:
 .word 0x11223344, 0x55667788

where the address of src is not aligned to a 4-byte boundary.

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for AArch32 state.

• The program contains an instruction I.

• I is one of the following:

◦ LDRD (literal)

◦ VLDR (literal)

• I specifies a label X as the label of the literal data item to be loaded.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The address of X is not aligned to a 4-byte boundary.

• The behavior of the program depends on I.

2.3.2.8 SDCOMP-64255

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-64255.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report the following error for a
DMB, DSB, or ISB instruction that has an invalid operand:

• expected an immediate or barrier type

Instead, the inline assembler and integrated assembler incorrectly generate code that does not
contain the instruction. Subsequently, this can result in unexpected run-time behavior.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
following:

dmb [r0]

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a DMB, DSB, or ISB instruction I.

• I has an invalid operand.

• The behavior of the system depends on I being executed.

2.3.2.9 SDCOMP-62201

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-62201.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-A 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The compiler incorrectly fails to report an error for an atomic read of a const 128-bit variable.
Instead, the compiler can generate code that incorrectly performs a write access to the variable.

For example, when compiling with -march=armv8-a, the compiler incorrectly fails to report an error,
and subsequently generates an LDAXP / STLXP instruction pair to access src for the following:

volatile const __int128 _Atomic src = 1;

__int128 func(void)
{
 return src + 1;
}

The STLXP instruction performs a write operation to src.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for AArch64 state.

• The program is compiled with target options that do not enable the Large System Extensions
version 2 feature (FEAT_LSE2). For example, -march=armv8-a.

• The program contains a const 128-bit variable V.

• The program accesses V.

• The behavior of the safety-related system depends on V not being written to.

2.3.2.10 SDCOMP-61489

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61489.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.22.1 -

Description
The fromelf utility can incorrectly fail to report an error for an invalid combination of the --
cpu=name and --fpu=name options.

Conditions
This defect can occur when all the following are true:

• The fromelf utility is used to disassemble an ELF format input file F with the --cpu=A and --
fpu=B options.

• A and B are incompatible.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• F contains an instruction I.

• I is not compatible with A.

The safety-related system is only at risk when the output from the fromelf utility prevents you
from detecting the presence of I.

2.3.2.11 SDCOMP-61488

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61488.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Description
The linker can incorrectly fail to report an error for an invalid combination of the --cpu=name and --
fpu=name options.

For example, the linker incorrectly fails to report an error when linking with --cpu=Cortex-M3 and
--fpu=FPv5-D16.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with --cpu=A and --fpu=B.

• A and B are incompatible.

2.3.2.12 SDCOMP-61461

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61461.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang A32 state 6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a conditional
Advanced SIMD element or structure load/store instruction. Advanced SIMD element or structure
load/store instructions must be unconditional.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
following instructions:

vld1eq.32 {d0}, [r0]
vst1eq.32 {d0}, [r0]

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• I is one of the following:

◦ VLD1

◦ VLD2

◦ VLD3

◦ VLD4

◦ VST1

◦ VST2

◦ VST3

◦ VST4

• I is conditional.

• The behavior of the program depends on I being executed conditionally.

2.3.2.13 SDCOMP-59512

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-59512.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for an explicit template instantiation that is not in
the same namespace as the template definition.

For example, the compiler incorrectly fails to report an error for the explicit template instantiation
in the following:

// Template definition
template<class T>
int func(T x)
{
 return x;

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

}

namespace N
{
 // Explicit template instantiation
 template int func<int>(int);

 // An unrelated definition of a function named func()
 int func(double x)
 {
 return 2 * x;
 }
}

To avoid this issue, compile with -Werror=c++11-compat.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++98 or C++03 source language mode.

• The program is compiled without -Werror=c++11-compat.

• The program contains a template T in a namespace A.

• The program contains an explicit template instantiation of T in a namespace B.

• A and B are not the same.

• The behavior of the program depends on T being used.

2.3.2.14 SDCOMP-58367

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-58367.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang T32 state 6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a T32
instruction with an invalid .n width specifier. Instead, the inline assembler and integrated assembler
assemble the instruction as a 32-bit instruction.

For example, the integrated assembler incorrectly fails to report an error for the following:

adc.n r0, r1, #1

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an assembly instruction I with the .n width specifier.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• I does not have a 16-bit instruction encoding.

• The behavior of the program depends on I being assembled as a 16-bit instruction.

2.3.2.15 SDCOMP-56812

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56812.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for an invalid #define or #undef preprocessor
macro.

For example, the compiler incorrectly fails to report an error for both invalid preprocessor macros in
the following:

#undef noreturn
#define noreturn 1

This defect is associated with the issue described in SDCOMP-56212.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or later source language mode.

• The program is compiled with one of the following options:

◦ -pedantic

◦ -Weverything

◦ -Wkeyword-macro

◦ -Wpedantic

• One of the following is true:

◦ The program contains a #define preprocessor macro which specifies a name N that is
lexically identical to an attribute token.

◦ The program contains an #undef preprocessor macro which specifies a name N that is
lexically identical to one of the following:

▪ A keyword which is not an alternative operator representation.

▪ An identifier with a special meaning.

▪ An attribute token.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The behavior of the program depends on N.

2.3.2.16 SDCOMP-56331

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56331.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.22.1 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for an instruction
that specifies W31 or X31 as a general-purpose register operand.

For example, the integrated assembler incorrectly fails to report an error for the following:

mov w0, w31

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• I specifies one of the following as a general-purpose register operand R:

◦ W31

◦ X31

• The behavior of the program depends on I accessing R as a general-purpose register instead of
as the zero register.

2.3.2.17 SDCOMP-56220

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56220.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for the redefinition of a variable originally declared
in the controlling expression of a range-based for statement.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the compiler incorrectly fails to report an error for the redeclaration of var in the
following:

void func(void)
{
 for (int var : {1, 2, 3})
 {
 extern int var();
 }
}

This defect is associated with the issue described in SDCOMP-50017.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a range-based for statement S.

• S has a controlling expression that defines a variable V.

• The outermost block of S contains a redeclaration of V as a function.

• The behavior of the program depends on V not being redeclared as a function.

2.3.2.18 SDCOMP-56212

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56212.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for an invalid #define or #undef preprocessor
macro that redefines or undefines a name that is used in an Arm C++ standard library header.

For example, the compiler incorrectly fails to report an error for the invalid #define preprocessor
macro in the following:

#include <iostream>
#define cout cerr

int main(void)
{
 std::cout << "Hello, world!" << std::endl;

 return 0;
}

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

This defect is associated with the issue described in SDCOMP-56812.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program includes an Arm C++ standard library header H.

• The program contains a #define or #undef preprocessor macro M.

• M specifies a name that is lexically identical to a name N that is used in H.

• The behavior of the program depends on M not changing N.

2.3.2.19 SDCOMP-55983

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-55983.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang A32 state 6.22.1 -

Description
The inline assembler and integrated assembler can incorrectly fail to report an error for a branch
instruction with an offset that is outside the range for the instruction.

For example, the integrated assembler incorrectly fails to report an error for the following:

b . + 33554440 // An A32 B instruction has the range
 // -33554432 to 33554428

Instead, the integrated assembler incorrectly encodes the instruction as:

b . - 33554424

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a branch instruction I with a destination D.

• D has one of the following forms:

◦ . + <offset>

◦ <label> + <offset>

• <offset> is an immediate value.

• The behavior of the program depends on I branching to D.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.2.20 SDCOMP-53903

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-53903.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler can incorrectly fail to report one of the following warnings:

• inline namespace reopened as a non-inline namespace

• non-inline namespace reopened as an inline namespace

For example, the compiler incorrectly fails to report a warning for the inline namespace being re-
opened as a non-inline namespace for the following:

namespace A {
 inline namespace {}
}
namespace {}

and incorrectly fails to report a warning for the non-inline namespace being re-opened as an inline
namespace for the following:

namespace A {
 namespace {}
}
inline namespace {}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a namespace A.

• A contains a namespace B.

• One of the following is true:

◦ B is inline, and is re-opened as non-inline outside A.

◦ B is non-inline, and is re-opened as inline outside A.

• The behavior of the program depends on the visibility of the members of B remaining
unchanged.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.3.2.21 SDCOMP-52627

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-52627.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error when a constexpr constructor of a class template
fails to initialize an anonymous union member.

For example, the compiler incorrectly fails to report an error for the invalid constexpr constructor
of Z, which does not initialize var, in the following:

template < class > struct Z {
 union {
 int var;
 };
 constexpr Z() {}
};

constexpr Z<int> z;

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or later source language mode.

• The program contains a class template T.

• T contains an anonymous member M of union type.

• T contains a constexpr constructor Z.

• Z does not initialize any member of M.

• The program contains a constexpr variable instantiation I of T.

• The behavior of the program depends on I initializing M.

2.3.2.22 SDCOMP-50017

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-50017.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The compiler incorrectly fails to report an error for the redefinition of a variable originally declared
in the controlling expression of an if, for, switch, or while statement.

For example, the compiler incorrectly fails to report an error for the redeclaration of var in the
following:

void func(void)
{
 if (int var = 0)
 {
 extern int var();
 }
}

This defect is associated with the issue is described in SDCOMP-56220.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains an if, for, switch, or while statement S.

• S has a controlling expression that defines a variable V.

• The outermost block of S contains a redeclaration of V as a function.

• The behavior of the program depends on V not being redeclared as a function.

2.3.2.23 SDCOMP-49961

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-49961.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report a warning for a variadic function arguments list that contains
an argument of __fp16 or _Float16 type. Use of these types in a variadic function arguments list
has undefined behavior.

For example, the compiler incorrectly fails to report a warning for var in the following:

#include <stdarg.h>

void func(int a, ...)
{
 va_list vl;

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

 va_start(vl, a);
 __fp16 var = va_arg(vl, __fp16);
}

Conditions
The safety-related system is at risk when all the following are true:

• The program uses the va_arg macro with a variadic function arguments list L.

• The next parameter in L is P.

• P is of __fp16 or _Float16 type.

• The behavior of the program depends on P not being promoted to a different type.

2.3.2.24 SDCOMP-49919

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-49919.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for an ambiguous call to an extern "C" function
using a default argument.

For example, the compiler incorrectly fails to report an error for the ambiguous call to func1() in
the following:

namespace A
{
 extern "C" int func1 (int var = 1);
}

namespace B
{
 extern "C" int func1 (int var = 2);
}

using A::func1;
using B::func1;

int func2(void)
{
 return func1();
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program contains two namespaces A and B.

• Both A and B declare an extern "C" function F.

• F has the same name in both A and B.

• F has a default argument.

• The program contains using-declarations or using-directives that make both A::F and B::F
accessible in a block X.

• X contains a call to F using a default argument.

2.3.2.25 SDCOMP-49763

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-49763.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for a base class destructor that is called using the
type name of a derived class.

For example, the compiler incorrectly fails to report an error for the call to Derived::~Base() in the
following:

struct Base
{
 ~Base() { }
};

struct Derived : Base {};

void func(void)
{
 Derived *ptr = new Derived;
 ptr-> Derived::~Base();
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a class Z.

• The program contains a class D that is derived from Z.

• The program contains an instance I of D.

• The program contains an expression that has one of the following forms:

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

◦ I.D::~Z()

◦ I->D::~Z()

2.3.2.26 SDCOMP-25238

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-25238.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Description
The compiler incorrectly fails to report an error for an uninitialized variable of union type that
contains a member of const type.

For example, the compiler incorrectly fails to report an error for the variable f in the following:

union U
{
 const short a;
 const int b;
} f;

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a union U.

• U has a member of const type.

• U does not have a user-defined default constructor.

• The program contains an uninitialized variable V of type U.

• The behavior of the program depends on V.

2.3.2.27 SDCOMP-18689

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-18689.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The linker incorrectly fails to report an error for a call to a linker execution address or load address
built-in function that uses an ambiguous execution region or load region name.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with a scatter file F.

• F contains an execution region with the name A.

• F contains a load region with the name B.

• A and B are the same name N.

• F contains a call Z to one of the following linker execution address or load address built-in
functions:

◦ ImageBase()

◦ ImageLength()

◦ ImageLimit()

◦ LoadBase()

◦ LoadLength()

◦ LoadLimit()

• Z uses N.

• The memory layout of the program depends on Z.

2.3.2.28 SDCOMP-17355

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-17355.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.22.1 -

Description
The linker incorrectly fails to report an error for an ARM_LIB_STACK or ARM_LIB_STACKHEAP execution
region that does not end at one of the following:

• A 16-byte boundary for AArch64 state.

• An 8-byte boundary for AArch32 state.

For example, the linker incorrectly fails to report an error for the following:

ARM_LIB_STACKHEAP 0xF000 EMPTY 0x1004 { }

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with a scatter file F.

• F contains an execution region E that has one of the following names:

◦ ARM_LIB_STACK

◦ ARM_LIB_STACKHEAP

• One of the following is true:

◦ The program is built for AArch64 state and E does not end at a 16-byte boundary.

◦ The program is built for AArch32 state and E does not end at an 8-byte boundary.

2.3.3 Determinism faults

There are no known determinism faults that affect qualified components.

For more information about the definition of a determinism fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

2.3.4 Documentation synchronization faults

This section contains details about safety-related defects that have been classified as a
documentation synchronization fault.

For more information about the definition of a documentation synchronization fault, see the Arm
Compiler for Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded
FuSa 6.22LTS Qualification Kit Safety Manual.

2.3.4.1 SDCOMP-66862

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-66862.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The Restrictions with Link-Time Optimization section of the User Guide incorrectly does not state
that the compiler is not guaranteed to report an error for invalid instructions in file-scope inline
assembly when compiling with Link-Time Optimization (LTO) enabled.

For example, the compiler is not guaranteed to report an error for the following file-scope inline
assembly statement when compiling for AArch32 state with -march=armv7-a+nofp:

 __asm("vmov s0, s1");

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with Link-Time Optimization (LTO) enabled.

• The target options specified to the compiler disable an architectural feature F.

• The program contains an instruction I.

• I requires F.

2.3.4.2 SDCOMP-61514

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-61514.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.22.1 -

Description
The ACLE support section of the Reference Guide incorrectly does not state that the poly8_t,
poly16_t, and poly64_t types are defined as signed in the <arm_neon.h> system header.
Subsequently, this can result in unexpected run-time behavior if the program depends on poly8_t,
poly16_t, or poly64_t being unsigned.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a variable V of type A or type B, where:

◦ A is one of the following types defined in the <arm_neon.h> system header:

▪ poly8_t

▪ poly16_t

▪ poly64_t

◦ B is derived from A.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The behavior of the program depends on V being unsigned.

2.4 Defects affecting unqualified components
This section contains details about known safety-related defects that affect the unqualified
toolchain components of Arm Compiler for Embedded FuSa 6.22LTS.

The unqualified toolchain components are:

• The legacy assembler, armasm.

• The libraries supplied with the toolchain.

Unqualified toolchain components are outside the scope of the Qualification Kit.
Defects related to unqualified toolchain components are provided in this document
for information only.

The following defects are included in this section:

Identifier Fault category Affected components

SDCOMP-66090 Translation fault Libraries

SDCOMP-65871 Translation fault Libraries

SDCOMP-63111 Translation fault Libraries

SDCOMP-62801 Translation fault Libraries

SDCOMP-60784 Translation fault Libraries

SDCOMP-60162 Translation fault Libraries

SDCOMP-53422 Translation fault Libraries

SDCOMP-50751 Translation fault Libraries

SDCOMP-50064 Translation fault Libraries

SDCOMP-45879 Translation fault Libraries

SDCOMP-30903 Translation fault Libraries

SDCOMP-30359 Translation fault Libraries

SDCOMP-29077 Translation fault Libraries

SDCOMP-18016 Translation fault Libraries

SDCOMP-13831 Translation fault Libraries

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.4.1 Translation faults

This section contains details about safety-related defects that have been classified as a translation
fault.

For more information about the definition of a translation fault, see the Arm Compiler for Embedded
FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS Qualification
Kit Safety Manual.

2.4.1.1 SDCOMP-66090

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66090.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.22.1 -

Description
The Arm C library implementation of the calloc(num, size) function can incorrectly fail to return a
null pointer. This can result in unexpected run-time behavior.

To avoid this issue, manually inspect the source code and ensure that the program explicitly checks
that num*size does not overflow (1<<64)-1 before each call to calloc().

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the unqualified C libraries supplied with the toolchain.

• The program calls calloc(num, size).

• The value of num*size is greater than or equal to (1<<64).

2.4.1.2 SDCOMP-65871

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65871.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Armv8-R AArch64 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
A floating-point arithmetic operation or a C library function call involving a value or variable of
double type can return an incorrect result or set the FE_INEXACT floating-point exception flag
incorrectly.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program is built with target options that disable hardware floating-point support.

• One of the following is true:

◦ The program contains an arithmetic operation X involving a value or variable of double type.

◦ The program contains a call X to a C library function with an argument of double type. For
example, the nearbyint() function defined in the <math.h> system header.

• The behavior of the program depends on one of the following:

◦ The FE_INEXACT floating-point exception flag being set or cleared by X.

◦ The result of X.

2.4.1.3 SDCOMP-63111

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63111.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The Arm C Library implementation of certain BFloat16 intrinsics defined in the <arm_neon.h>
system header incorrectly relies on C undefined behavior. Subsequently, this can result in
unexpected run-time behavior.

For more information about C undefined behavior, see the article What is "undefined behavior" in
terms of compiling C/C++ code, and what implications can it have on a project?

For more information about BFloat16 intrinsics, see https://developer.arm.com/architectures/
instruction-sets/intrinsics.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the BFloat16 Floating-point Extension
feature (FEAT_BF16).

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 101

https://developer.arm.com/documentation/ka006070/latest
https://developer.arm.com/documentation/ka006070/latest
https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/architectures/instruction-sets/intrinsics

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program contains a call to a BFloat16 intrinsic I defined in the <arm_neon.h> system
header.

• I is of the form vcvt*_f32_bf16().

2.4.1.4 SDCOMP-62801

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62801.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Armv8-M with the Main Extension 6.22.1 -

Description
The M-profile PACBTI variant of the Arm C library implementation of the strcmp() function
incorrectly assumes that the function parameters are always aligned to a 4-byte boundary.
Subsequently, this can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program is not linked with --library_security=none.

• The program is compiled with -mno-unaligned-access.

• The program is compiled with an -mbranch-protection=<protection> option that
enables Branch Target Identification (BTI) branch protection. For example, -mbranch-
protection=standard.

• The program contains call Z to the strcmp() function.

• A parameter of Z is not aligned to a 4-byte boundary.

2.4.1.5 SDCOMP-60784

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60784.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Description
The Arm C library implementations of the fma() and fmaf() functions incorrectly fail to set errno
to ERANGE upon an overflow or underflow. Additionally, upon an underflow, these functions can
return an incorrect sign of zero.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built for one of the following:

◦ AArch32 state.

◦ An Armv8-R AArch64 target without hardware floating-point support.

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ fma()

◦ fmaf()

• The third parameter of Z is zero.

• The product of the the first two parameters of Z results in an overflow or underflow.

• The behavior of the program depends on one of the following:

◦ Z setting errno to ERANGE upon an overflow or underflow.

◦ Z returning the correct sign of zero upon an underflow.

2.4.1.6 SDCOMP-60162

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60162.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.22.1 -

Description
The Arm C library implementations of functions that convert between multibyte characters and
wide characters can result in an alignment fault at run-time.

For example, the call to the printf() function in the following code results in an alignment fault
when run on an Armv8-A target with unaligned memory accesses disabled:

#include <stdio.h>
#include <wchar.h>

__asm(".global __use_utf8_ctype\n");

int main(void)
{

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

 const wchar_t *wstr = L"wide string";
 printf("%ls\n", wstr);

 return 0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program uses one of the following LC_TYPE locales:

◦ A user-defined locale that uses the LC_CTYPE_multibyte legacy assembler macro.

◦ Shift-JIS

◦ UTF-8

• The program contains a call to an Arm C library function that converts between multibyte
characters and wide characters. For example:

◦ mbtowc()

◦ printf() with a %ls format specifier.

◦ wctomb()

◦ wprintf() with a %s format specifier.

• The program is run on a target that has unaligned memory accesses disabled.

2.4.1.7 SDCOMP-53422

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-53422.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The Arm C library implementation of the pow() function can incorrectly fail to set errno to ERANGE
when the return value overflows to HUGE_VAL.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the pow() function.

• Z has arguments that result in an overflow to HUGE_VAL.

• The behavior of the program depends on Z setting errno to ERANGE.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.4.1.8 SDCOMP-50751

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50751.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The Arm C library implementation of the setlocale() function incorrectly fails to return a null
pointer for a locale selection that cannot be honored at run-time.

For example, the Arm C library implementation of the setlocale() function incorrectly fails to
return a null pointer for the following:

const char *retstr = setlocale(LC_ALL, "invalid");

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the setlocale() function with a locale string S.

• S specifies a locale selection that cannot be honored at run-time.

• The behavior of the program depends on Z returning a null pointer.

2.4.1.9 SDCOMP-50064

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50064.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The Arm implementation of the C++ regular expressions library can behave incorrectly for an
invalid regular expression, resulting in one of the following:

• A failure to call the abort() function.

• A failure to throw a std::regex_error exception.

• Throwing an incorrect std::regex_error exception.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

For example, the Arm implementation of the std::regex constructor incorrectly fails to call the
abort() function or throw a std::regex_error exception for the invalid regular expression [c-a] in
the following:

std::regex re("[c-a]", std::regex_constants::basic);

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program uses the C++ regular expressions library with a regular expression R.

• R is invalid.

• The behavior of the program depends on the use of R causing one of the following:

◦ A call to the abort() function

◦ A std::regex_error exception

2.4.1.10 SDCOMP-45879

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-45879.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.22.1 -

Description
The Arm C library implementations of the bsearch() and qsort() functions can incorrectly
corrupt the stack when used to process an array larger than 4GB. Subsequently, this can result in
unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ bsearch()

◦ qsort()

• Z specifies an array containing M members of size N each.

• M * N is larger than 4GB.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.4.1.11 SDCOMP-30903

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-30903.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The Arm C++ library implementations of the assignment operators of the following classes can
return an incorrect result:

• std::gslice_array

• std::indirect_array

• std::mask_array

• std::slice_array

For example, the assignment expression A = B returns an incorrect result in the following:

std::valarray<int> V = { 0, 1, 2, 3, 4, 5, 6 };
const std::slice_array<int> A = V[std::slice(1, 3, 2)];
const std::slice_array<int> B = V[std::slice(0, 3, 1)];
A = B;

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a variable V of std::valarray<T> type.

• The program contains two variables A and B.

• A and B both have one of the following types:

◦ std::gslice_array

◦ std::indirect_array

◦ std::mask_array

◦ std::slice_array

• A and B are each initialized with an expression of the form V[<index>].

• <index> is an expression that has one of the following types:

◦ std::gslice

◦ std::slice

◦ std::valarray<bool>

◦ std::valarray<size_t>

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

• The program contains an assignment expression A = B.

2.4.1.12 SDCOMP-30359

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-30359.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The constructors of the Arm C++ library implementation of std::locale incorrectly either call the
abort() function or throw a std::runtime_error exception.

For example, when compiling with -fno-exceptions, the constructor incorrectly calls the abort()
function for the following:

std::locale obj("C");

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C++ libraries supplied with Arm Compiler.

• The program contains a call to a std::locale constructor with a locale name N.

• N is a valid standard C locale name.

• The behavior of the program depends on the locale being successfully set to N.

2.4.1.13 SDCOMP-29077

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-29077.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The constructors of the Arm C++ library implementations of certain
std::<facet_category>_byname locale-specific facet categories incorrectly always either call the
abort() function or throw a std::runtime_error exception.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C++ libraries supplied with Arm Compiler.

• The program contains a call Z to a constructor of one of the following locale-specific facet
categories:

◦ ctype_byname

◦ codecvt_byname

◦ collate_byname

◦ moneypunct_byname

◦ time_get_byname

◦ time_put_byname

• The behavior of the program depends on Z returning successfully.

2.4.1.14 SDCOMP-18016

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-18016.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.22.1 -

Description
The Arm C library __heapstats() and __heapvalid() functions can result in unexpected run-time
behavior for a program that does not use the heap.

To avoid this issue, include the following file-scope inline assembly statement in an affected
program:

__asm(".global __use_no_heap\n\t");

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call to one of the following functions:

◦ __heapstats()

◦ __heapvalid()

• The program does not use the heap.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.4.1.15 SDCOMP-13831

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-13831.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Armv7-M 6.22.1 -

Description
The Arm C library implementation of strcmp() can incorrectly read up to 3 bytes past the end of a
string being compared. This can result in unexpected run-time behavior.

For example, for a string placed at the end of accessible memory, this can result in a memory
access fault.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program is not linked with microlib.

• The program contains a call Z to the strcmp() function.

• An argument to Z is a pointer P.

• P is not a multiple of 4 bytes.

• P points to a string S.

• The behavior of the program depends on strcmp() not accessing memory beyond the end of S.

2.4.2 Missing diagnostic faults

There are no known missing diagnostic faults that affect unqualified components.

For more information about the definition of a missing diagnostic fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

2.4.3 Determinism faults

There are no known determinism faults that affect unqualified components.

For more information about the definition of a determinism fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.4.4 Documentation synchronization faults

There are no known documentation synchronization faults that affect unqualified components.

For more information about the definition of a documentation synchronization fault, see the Arm
Compiler for Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded
FuSa 6.22LTS Qualification Kit Safety Manual.

2.5 Defects affecting both qualified and unqualified
components

This section contains details about known safety-related defects that affect both the qualified and
unqualified toolchain components of Arm Compiler for Embedded FuSa 6.22LTS.

The qualified toolchain components are:

• The compiler and integrated assembler, armclang.

• The ELF processing utility, fromelf.

• The librarian, armar.

• The linker, armlink.

The unqualified toolchain components are:

• The legacy assembler, armasm.

• The libraries supplied with the toolchain.

Unqualified toolchain components are outside the scope of the Qualification Kit.
Defects related to unqualified toolchain components are provided in this document
for information only.

The following defects are included in this section:

Identifier Fault category Affected components

SDCOMP-63948 Translation fault armclang, Libraries

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.5.1 Translation faults

This section contains details about safety-related defects that have been classified as a translation
fault.

For more information about the definition of a translation fault, see the Arm Compiler for Embedded
FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS Qualification
Kit Safety Manual.

2.5.1.1 SDCOMP-63948

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63948.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang, Libraries AArch64 state 6.22.1 -

Description
The compiler can generate incorrect C++ exception-handling code. Subsequently, this can result in
unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the Scalable Vector Extension feature
(FEAT_SVE).

• The program is compiled with C++ exceptions enabled.

• The program uses a type that is defined in the <arm_sve.h> system header.

• The program throws a C++ exception.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00
Defects

2.5.2 Missing diagnostic faults

There are no known missing diagnostic faults that affect both qualified and unqualified
components.

For more information about the definition of a missing diagnostic fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

2.5.3 Determinism faults

There are no known determinism faults that affect both qualified and unqualified components.

For more information about the definition of a determinism fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.22LTS
Qualification Kit Safety Manual.

2.5.4 Documentation synchronization faults

There are no known documentation synchronization faults that affect both qualified and
unqualified components.

For more information about the definition of a documentation synchronization fault, see the Arm
Compiler for Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded
FuSa 6.22LTS Qualification Kit Safety Manual.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Changes since the Arm Compiler for Embedded FuSa 6.22LTS
Defect Notification Report for December 2024

Appendix A Changes since the Arm
Compiler for Embedded FuSa
6.22LTS Defect Notification
Report for December 2024

This appendix provides information about changes made to the defect lists compared to the Arm
Compiler for Embedded FuSa 6.22LTS Defect Notification Report for December 2024.

A.1 Defects added
This section contains a list of defects that have been added to this document compared to the Arm
Compiler for Embedded FuSa 6.22LTS Defect Notification Report for December 2024.

Identifier Fault category Affected components Target environment

SDCOMP-67984 Missing diagnostic fault armclang Armv8-M

SDCOMP-67968 Missing diagnostic fault armclang AArch64 state

SDCOMP-67799 Translation fault armclang Armv8-M with the Main extension

SDCOMP-67678 Translation fault armclang Armv8-M with the Main extension

SDCOMP-67650 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-66895 Translation fault armclang Armv8-M

SDCOMP-66894 Missing diagnostic fault armclang AArch64 state

SDCOMP-66692 Translation fault fromelf Armv8-M with the Main Extension

SDCOMP-65590 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-65579 Translation fault armclang AArch64 state

SDCOMP-65550 Translation fault armclang AArch64 state

SDCOMP-64397 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-63205 Translation fault armclang AArch32 state

SDCOMP-63114 Translation fault armclang AArch64 state

SDCOMP-63088 Translation fault armclang AArch64 state

SDCOMP-62801 Translation fault Libraries Armv8-M with the Main Extension

SDCOMP-55200 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-55040 Translation fault armclang AArch64 state

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 101

https://developer.arm.com/documentation/110099/2024-12
https://developer.arm.com/documentation/110099/2024-12
https://developer.arm.com/documentation/110099/2024-12
https://developer.arm.com/documentation/110099/2024-12

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Changes since the Arm Compiler for Embedded FuSa 6.22LTS
Defect Notification Report for December 2024

A.2 Defects updated
This section contains a list of defects that have been updated in this document compared to the
Arm Compiler for Embedded FuSa 6.22LTS Defect Notification Report for December 2024.

Identifier Fault category Affected components Target environment

SDCOMP-67662 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-67424 Missing diagnostic fault armclang AArch32 state

SDCOMP-67120 Missing diagnostic fault armclang AArch32 state

SDCOMP-65592 Translation fault armclang AArch64 state

SDCOMP-65418 Translation fault armclang AArch32 state

SDCOMP-64590 Translation fault armlink Any

SDCOMP-63911 Translation fault armclang AArch32 state

SDCOMP-63111 Translation fault Libraries Any

SDCOMP-62378 Translation fault armclang AArch32 state

SDCOMP-62201 Missing diagnostic fault armclang Armv8-A

SDCOMP-60117 Translation fault armlink Any

SDCOMP-50408 Translation fault armclang AArch32 state

SDCOMP-45879 Translation fault Libraries AArch64 state

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 101

https://developer.arm.com/documentation/110099/2024-12

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 101

https://www.arm.com/company/policies/trademarks

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

202501-00 24 January 2025 Non-Confidential Initial release

Change history
For a list of technical changes since the last release listed in the release history of this document,
see Changes since the Arm Compiler for Embedded FuSa 6.22LTS Defect Notification Report for
December 2024.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 101

https://developer.arm.com/glossary

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 101

Arm Compiler for Embedded FuSa 6.22LTS Defect
Notification Report

Document ID: 110099_2025-01_00_en
Issue 00

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm Compiler for Embedded FuSa 6.22LTS Qualification Kit Safety Manual 109409 Confidential

Arm Compiler for Embedded FuSa 6.22LTS documentation index KA006002 Non-Confidential

Does Arm document all known issues that affect each Arm Compiler release? KA005052 Non-Confidential

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 101

https://developer.arm.com/documentation
https://developer.arm.com/documentation/ka006002/latest
https://developer.arm.com/documentation/ka005052/latest

	Arm Compiler for Embedded FuSa 6.22LTS Defect Notification Report
	Contents
	1. Introduction
	1.1 Scope of the Defect Lists
	1.2 Derivation of the Defect Lists
	1.3 Documentation releases for documentation synchronization faults

	2. Defects
	2.1 Format of a Defect Entry
	2.1.1 Target environment

	2.2 Machine-readable defects list
	2.3 Defects affecting qualified components
	2.3.1 Translation faults
	2.3.1.1 SDCOMP-67799
	2.3.1.2 SDCOMP-67678
	2.3.1.3 SDCOMP-67666
	2.3.1.4 SDCOMP-67662
	2.3.1.5 SDCOMP-67650
	2.3.1.6 SDCOMP-67544
	2.3.1.7 SDCOMP-67448
	2.3.1.8 SDCOMP-67446
	2.3.1.9 SDCOMP-67194
	2.3.1.10 SDCOMP-66895
	2.3.1.11 SDCOMP-66787
	2.3.1.12 SDCOMP-66692
	2.3.1.13 SDCOMP-66658
	2.3.1.14 SDCOMP-66632
	2.3.1.15 SDCOMP-66328
	2.3.1.16 SDCOMP-66256
	2.3.1.17 SDCOMP-65607
	2.3.1.18 SDCOMP-65592
	2.3.1.19 SDCOMP-65590
	2.3.1.20 SDCOMP-65579
	2.3.1.21 SDCOMP-65564
	2.3.1.22 SDCOMP-65550
	2.3.1.23 SDCOMP-65418
	2.3.1.24 SDCOMP-64877
	2.3.1.25 SDCOMP-64590
	2.3.1.26 SDCOMP-64397
	2.3.1.27 SDCOMP-64335
	2.3.1.28 SDCOMP-63984
	2.3.1.29 SDCOMP-63912
	2.3.1.30 SDCOMP-63911
	2.3.1.31 SDCOMP-63205
	2.3.1.32 SDCOMP-63114
	2.3.1.33 SDCOMP-63088
	2.3.1.34 SDCOMP-62378
	2.3.1.35 SDCOMP-62176
	2.3.1.36 SDCOMP-62133
	2.3.1.37 SDCOMP-61486
	2.3.1.38 SDCOMP-60117
	2.3.1.39 SDCOMP-58780
	2.3.1.40 SDCOMP-58354
	2.3.1.41 SDCOMP-57725
	2.3.1.42 SDCOMP-57255
	2.3.1.43 SDCOMP-57229
	2.3.1.44 SDCOMP-57213
	2.3.1.45 SDCOMP-56435
	2.3.1.46 SDCOMP-55460
	2.3.1.47 SDCOMP-55200
	2.3.1.48 SDCOMP-55184
	2.3.1.49 SDCOMP-55040
	2.3.1.50 SDCOMP-50968
	2.3.1.51 SDCOMP-50408
	2.3.1.52 SDCOMP-44980
	2.3.1.53 SDCOMP-28728
	2.3.1.54 SDCOMP-24899
	2.3.1.55 SDCOMP-11947

	2.3.2 Missing diagnostic faults
	2.3.2.1 SDCOMP-67984
	2.3.2.2 SDCOMP-67968
	2.3.2.3 SDCOMP-67424
	2.3.2.4 SDCOMP-67120
	2.3.2.5 SDCOMP-66894
	2.3.2.6 SDCOMP-65243
	2.3.2.7 SDCOMP-64683
	2.3.2.8 SDCOMP-64255
	2.3.2.9 SDCOMP-62201
	2.3.2.10 SDCOMP-61489
	2.3.2.11 SDCOMP-61488
	2.3.2.12 SDCOMP-61461
	2.3.2.13 SDCOMP-59512
	2.3.2.14 SDCOMP-58367
	2.3.2.15 SDCOMP-56812
	2.3.2.16 SDCOMP-56331
	2.3.2.17 SDCOMP-56220
	2.3.2.18 SDCOMP-56212
	2.3.2.19 SDCOMP-55983
	2.3.2.20 SDCOMP-53903
	2.3.2.21 SDCOMP-52627
	2.3.2.22 SDCOMP-50017
	2.3.2.23 SDCOMP-49961
	2.3.2.24 SDCOMP-49919
	2.3.2.25 SDCOMP-49763
	2.3.2.26 SDCOMP-25238
	2.3.2.27 SDCOMP-18689
	2.3.2.28 SDCOMP-17355

	2.3.3 Determinism faults
	2.3.4 Documentation synchronization faults
	2.3.4.1 SDCOMP-66862
	2.3.4.2 SDCOMP-61514

	2.4 Defects affecting unqualified components
	2.4.1 Translation faults
	2.4.1.1 SDCOMP-66090
	2.4.1.2 SDCOMP-65871
	2.4.1.3 SDCOMP-63111
	2.4.1.4 SDCOMP-62801
	2.4.1.5 SDCOMP-60784
	2.4.1.6 SDCOMP-60162
	2.4.1.7 SDCOMP-53422
	2.4.1.8 SDCOMP-50751
	2.4.1.9 SDCOMP-50064
	2.4.1.10 SDCOMP-45879
	2.4.1.11 SDCOMP-30903
	2.4.1.12 SDCOMP-30359
	2.4.1.13 SDCOMP-29077
	2.4.1.14 SDCOMP-18016
	2.4.1.15 SDCOMP-13831

	2.4.2 Missing diagnostic faults
	2.4.3 Determinism faults
	2.4.4 Documentation synchronization faults

	2.5 Defects affecting both qualified and unqualified components
	2.5.1 Translation faults
	2.5.1.1 SDCOMP-63948

	2.5.2 Missing diagnostic faults
	2.5.3 Determinism faults
	2.5.4 Documentation synchronization faults

	A. Changes since the Arm Compiler for Embedded FuSa 6.22LTS Defect Notification Report for December 2024
	A.1 Defects added
	A.2 Defects updated

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

