Determining the stack usage of applications q r m KE | |_

AN 316, January 2025,V 1.3
feedback@keil.com

Abstract

Determining the required stack sizes for a software project is a crucial part of the development process. The
developer aims to create a stable application, while not wasting resources. This application note explains
methods that help finding the optimal setting while looking specifically on the stack load caused by interrupt
service routines (ISRs) in RTOS applications running on an Arm Cortex-M based processor.

Contents
Y o1 - [ot AT O O OO O OO T TSP PSR P PO UPTOPOOTOPPPRPPPO 1
T (o o [¥Tord o] o HA OO T TP PP URUSOPPTO 2
O Yo { ol oY A = [1Y/ =T .o Vo o AU 2
Stack usage of INterrupt SErVICE ROULINESvviiiiiiiiie ettt e e e e e sbae e e e sabae e e ssasbeeesansaeeees 3
Memory requirement for automatic register Stackingcc.ueevviiiiiiciie 3
Stack USage Of the RTXSE KEINEIeeeiieceeeee ettt e ettt e e e ettt e e e s ata e e e e aataeeeeaseeeesansaeeesansaeeesansaneens 4
F N | A o A - [U LY =TSP 5
Ry = Tl [F= 1AV SRR 5
DY a1l T F= 1 AV 2 PP 6
Thread Stack WaterMarKiNg..........ii i i e st e e st e e s e bt e e e e sbteeeesbtaeeesstaeesssteeaesnssneessnns 6
Y YT = Vol V7 =T 0 0 F= 1 4] = U 7
Calculate and coNfigUIe StACK USAEEueiiiiiiieiiiiiiee ettt et e e st e e e e sate e e s st te e e e sbteeessbteeessntaeeesssneessnnes 10
TREEAT STACKS ..ttt ettt sttt et e et e bt e s b e e s it e st e s bt e bt e b e e s beesree s neene e reesaeesane e 10
VLN STACK ..ttt ettt ettt s b e s a et st e et e bt e bt e bt e eh et ea e e e bt e ke e bt e eheeeat e e be e be e bt e abeesneeeneeentean 10
oL Y o1 [R 11
Rl 1= 1o IS = Yol QU LY 1= U RP SRR 11
DYNAMIC SEACK @N@IYSIS .eeiiiiiiiiiiiiee ettt e e e et e e e e et e e e et e e e e e abaee e e astaeeeaaseeeeesnseaeeennsreeeennsenas 11
) €= 14 (o= Y F= 1AV P 12
CoNfigUre thrEad STACKS ...eiiiiieee e e et e e et e e e e et e e e e sbteeeesbtaeeesstaeeesstaeaesnstaeesanes 12
Y T] = ol U Y- =PSRRIt 12
) = 14 (o= 1 F= 1AV P 12
Calculate MAiN STACK SIZE......eiiiiriiiie ettt ettt et e s st s bt s bt e b e b e e smeesmeeeaeeeareen 13
] U101 0 =1 V2PN 13
2] £T =T (ol OO OO SRRSOV UPUPTUPRUPONt 13
AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. Al rights reserved

1 https://developer.arm.com/documentation/kan316/latest/

Introduction

Stacks are memory regions where data is added or removed in a last-in-first-out (LIFO) manner. In an RTOS,
each thread has a separate memory region for its stack. During function execution, data may be added on top of
the stack; when the function exits, it removes that data from the stack.

In a Cortex-M processor system, two stack memory regions need to be considered:

e The system stack is used before the RTOS kernel starts and by interrupt service routines (ISRs). It is
addressed via the Main Stack Pointer (MSP).
o The thread stack(s) are used by running RTOS threads and are addressed via the Process Stack Pointer
(PSP).
As the memory region for stack is constrained in size, allocating more memory on the stack than is available, can
result in a program crash or stack overflow. In embedded systems, the timing of external program events
influences the program flow and a stack size issue may create infrequent, sporadic program errors. It is
therefore critical to understand the stack memory requirements of an application.

For calculating (and therefore optimizing) the required stack memory size, the following methods may be used:

e Static analysis (using call tree analysis) is performed at build time (by a linker for example).
e Dynamic analysis (using stack watermarking) is performed at run-time (in a debug session for example).

Usage of Stack Memory
In an embedded application, the stack memory is typically used in the following constructs:

e On function calls to save register content (such as the link register (LR) for the return address)
e Local function variables are stored on the stack when no CPU registers are available.
e Forinterrupt service execution, the register frames are store on the stack.

The application programmer may influence the stack memory usage with for following techniques:

e Forarrays, allocate space from memory pools instead of local function variables.

e Reduce the potential interrupt nesting by choosing the right number of interrupt priority levels.

e Simplify the function call nesting. However, as this impacts the program readability, there is a balance.
Also, modern compiler optimizations perform automatic function in-lining and therefore function call
nesting is less important.

The picture below shows the stack usage of an embedded application that is using an RTOS kernel. ISRs use the
main stack, a thread uses the thread stack whereby each thread has its own stack space that is managed by the
RTOS kernel. Each thread stack should reserve additional memory that is required for “thread context
switching”. The memory required for “thread context switching” depends on the usage of the floating-point unit
(FPU):

e without FPU: 64 bytes (to save R0..R12, LR, PC, xPSR)
e with FPU: 200 bytes (to save S0..531, FPSCR, R0..R12, LR, PC, xPSR)

Optionally, an RTOS stores an “overflow protect pattern” (which is a fixed value) at the stack bottom which is
used by the kernel to check for stack overflows.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

2 https://developer.arm.com/documentation/kan316/latest/

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/LIFO_(computing)
https://en.wikipedia.org/wiki/Thread_(computer_science)

Main Stack (MSP) Thread Stacks [PSP)

Top
Startup
RTX5 Kernel Thread
PendsV, SysTick, SVC Thread stack #3
Thread stack #2
auto register stacking stack #1
ISR priority ‘n’ thread
: context stacking
: thread 1
auto register stacking thread context stacking
e s context stacking
ISR priority ‘1

auto register stackin
T
ISR priority ‘0

auto register stacking

HardFault priority ‘-1’

auto register stacking
NMI priority -2'

Note that RTXS5 itself executes in handler mode and uses the main stack for kernel functions. This is different
from other RTOS kernels (i.e. FreeRTOS), where the kernel functions use the thread stack and therefore require
additional memory space on each individual thread stack.

Stack usage of Interrupt Service Routines

Interrupt service routines run when an exception has occurred and use the main stack. They are triggered by a
peripheral, hardware fault, or by software with the Service Call (SVC) instruction. For interrupt service routines,
the processor does automatic register stacking on the current active stack: when thread stack is active, PSP is
used, otherwise MSP.

Memory requirement for automatic register stacking

The memory required for automatic register stacking depends on the actual stack alignment and the usage of
the floating-point registers of the program code that is interrupted. The usage of the floating-point registers is
indicated by the processor in CONTROL register - FPCA bit (bit 2):

e When CONTROL — bit 2 = 0: automatic register stacking uses 32 bytes (+ 4 bytes aligner)
e When CONTROL — bit 2 = 1: automatic register stacking uses 104 bytes (+ 4 bytes aligner)

NOTES:

e For Cortex-M processors without hardware FPU (Cortex-M0/MO0+/M3/M23) always use 32 bytes for
automatic register stacking.

e For Cortex-M processors with hardware FPU, it might be complex to analyze the floating-point register
usage of the various threads and ISRs. In this case, always use 104 bytes for automatic register stacking.

Interrupt service routines can be nested due to preemption of interrupts or exceptions. Cortex-M processors
have the following configurations that influence the maximum nesting:

e Each interrupt source has a priority register, whereby lower values indicate higher priority.

e The AIRCR (Application Interrupt and Reset Control Register) contains a PRIGROUP field that defines the
split of the priority register into a group priority and sub-priority within the group. Only a lower group
priority value can preempt code execution.

e Some exceptions have a fixed priority which is typically higher than other interrupt sources.

To consider the interrupt nesting the maximum depth of the stack loads must be added.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

3 https://developer.arm.com/documentation/kan316/latest/

NOTE:

Consider reducing the maximum interrupt nesting by reducing the potential group priority levels with the
AIRCR->PRIGROUP field (refer also to the CMSIS function NVIC_SetPriorityGrouping). Note that the group
priority level must be configured before starting the RTX5 kernel with the osKernelStart() function.

Stack usage of the RTX5 Kernel

The RTX5 Kernel is always executed in handler mode. This differs from several other RTOS kernels where the
kernel functions itself use the thread stack and therefore each thread must consider this extra stack load.

handler mode

Main Stack [MSP) Process Stack (PSP)

Interrupt Handler Thread

RT¥ function l

Threads enter the RTX RTOS
Kernel via SWC [Service Call).
Kernel functions are therefore
not using process stack memory.

SVC

RTX RTOS Kernel

The RTX5 Kernel uses the following interrupt service routines:

e SVC for most of the RTX functions
e SysTick for the RTX5 Kernel tick
e PendSV for RTX function calls from other interrupt service routines.

The priorities of SVC, SysTick, and PendSV are different, but these ISRs are never nested and therefore the user
must only consider the maximum stack load of one path (the highest stack usage of SVC, SysTick, or PendSW).

The stack requirements of the RTX5 Kernel depend on the compiler and the optimization level. As RTX5 supports
event annotations and this configuration impacts also the stack requirement. For technical details, refer to the
CMSIS documentation under “CMSIS-RTOSv2 — RTXv5 Implementation — Technical Data — Stack Requirements”.
For this application note we use the information for Arm Compiler ARMCC v5.06 with -00. The stack
requirements for the SVC/SysTick/PendSV is:

e 176 bytes when not using the Event Recorder
e 360 bytes when using the Event Recorder
NOTE:

Refer to the CMSIS documentation under “CMSIS-RTOSv2 — RTXv5 Implementation — Technical Data — Stack
Requirements”, as the stack requirements might be different.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

4 https://developer.arm.com/documentation/kan316/latest/

https://arm-software.github.io/CMSIS_5/develop/RTOS2/html/pStackRequirements.html
https://arm-software.github.io/CMSIS_5/develop/RTOS2/html/pStackRequirements.html

Analysis of Stack Usage
There are two different methods to analyze the required memory size of a stack:

e Static analysis does not require to execute the program. It counts the stack requirements of each
individual function and requires knowledge of the program flow. The program flow of complex
applications may be hard to track as function pointer values might be not known. Static analysis is
typical the best method for the main stack as under test conditions the worst-case ISR nesting will
rarely occur.

e Dynamic analysis requires the program to be executed with all possible conditions. Typically, it is
examined using a debugger that watches the memory stack usage. Dynamic analysis is the preferred
method for the thread stack as it delivers the real stack memory requirement (static analysis may
delivery significant higher values due to worst case assumptions of the program flow that do not occur
during real-world execution).

Static analysis

Static analysis uses the program flow (or call tree) to track the stack memory usage for every function and the
related call tree. As it does not require to execute the program, it is the best method for evaluating the stack
requirement. However, static analysis has restrictions when function pointers or assembly code is used, as it
may be impossible to track the exact control flow and hence calculate the stack usage.

Static analysis can be performed by the Arm linker (armlink) with the --callgraph option. Refer to the “Linker
User Guide, Linker command-line Options, --callgraph”
(www.keil.com/support/man/docs/armclang_link/armclang link pge1362075422709.htm).

In wVision enable Callgraph under Project — Options for Target — Listing:

[V Linker Listing: .\Listings\Blinky map
v Memory Map v Symbols [v Size Info
|v Caligraph [V Cross Reference [V Totals Info

[V Unused Sections Info
[V Veneers Info

This generates an HTML file (in the folder of the output *.axf file) that contains the call tree along with stack
usage information.

A snippet of an example listing is shown below. The function ‘phaseA’ (defined in blinky.o) has a maximum stack
depth (Max Depth) of 264 bytes when executing the listed call chain:

phaseA (Thumb, 84 bytes, Stack size 24 bytes, blinky.o(.text))

[Stack]

- Max Depth = 264

- Call Chain = phaseA = __ hardfp_sin > _ieee754 rem_pio2 = aeabi _dsub = aeabi_dadd =
_double_epilogue = double_round

IMPORTANT:

The linker call graph report (“Max Depth” value) does not contain the additional memory space that is required
for “thread context switching” or “automatic register stacking”.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

5 https://developer.arm.com/documentation/kan316/latest/

http://www.keil.com/support/man/docs/armclang_link/armclang_link_pge1362075422709.htm

Dynamic analysis

Dynamic analysis requires that the application executes the program paths that cause the maximum stack usage
in a debug session. In practice, this method relies typically on a fixed memory pattern value that is checked by
the debugger and is therefore called also stack watermarking.

IMPORTANT:

With dynamic analysis it is hard to capture the maximum usage of the main stack, as the interrupt nesting
depends also on the timing of interrupt events. The worst-case scenario will rarely occur.

However, the method can reliably evaluate the memory requirement of a thread stack (addressed by PSP), when
complete execution of the thread functionality is ensured.

Thread stack watermarking

For RTX, stack watermarking can be enabled in the RTOS configuration file RTX_Config.h. In a debug session, the
current maximum stack usage per thread is then shown in the Component Viewer window for RTX (access via
View — Watch Windows — RTX RTOS - Threads). This measurement covers also register stacking of interrupts
and exceptions that occur during thread execution. However, you should add on top of the additional space for
automatic register stacking as the timing of interrupts may have not occurred at the maximum depth of the
function nesting.

RTX RTOS
Property Value
7“1 id: 0x2007C3F0, osRbTimerThread osThreadBlocked, osPriorityHigh, Stack Used: 43%, Max: 43%
=5 id: 010000050, MainThread osThreadBlocked, osPriorityNormal, Stack Used: 31%, Max: 31%
¥ State osThreadBlocked
¥ Priority osPriorityNormal
¥ Attributes osThreadDetached
¥ Waiting Delay, Timeout: 8
--“1§ Stack Used: 31% [80], Max: 31% [80]
¥ Used 20
¥ Max 80
¥ Top 0x100001A0
¥ Current (10000150
¥ Limit 0x100000A0
¥ Size 256
¥ Flags 000000000
F-“1% id: Ox100001A8, LowPriorityThread osThreadReady, osPriorityLow, Stack Used: 37%, Max: 37%
+-“% id: 0x10000300, MNormalPriorityThread osThreadRunning, osPriorityNormal, Stack Used: 28%, Max: 53%
F-“1% id: 10000458, HighPriority Thread osThreadBlocked, osPriorityHigh, Stack Used: 37%, Max: 37%
+ "1 Semaphores
%% Message Queues
AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

6 https://developer.arm.com/documentation/kan316/latest/

Main stack watermarking

Stack watermarking may be used also for the main stack (MSP). In embedded systems, interrupt execution
depends on the timing of external program events and therefore it is almost impossible to capture the
maximum interrupt nesting using stack watermarking.

If stack watermarking should be used for the “main stack”, it can be added as described below. The example
project AN316.uvprojx that is part of this application note contains the relevant files already.

Step 1: Add the following assembler module FillSystemStack.S to the project. It initializes the correct main stack
area with constant values.

.syntax unified

// specify the symbols referencing the stack area
.equ StackBase, Image$$ARM LIB STACKSSZISS$Base
.equ StackLimit, Image$$ARM_LIB_STACK$$ZI$$Limit
//.equ StackBase, STACK$$Base

//.equ StackLimit, STACKSS$Limit

.global StackBase
.global StackLimit

. thumb
.section .text.FillSystemStack, "ax", %$progbits
.global FillSystemStack
.p2align 2
. type FillSystemStack, %function
.thumb_func
FillSystemStack:
.fnstart
.cfi_sections .debug frame
.cfi_startproc

1ldr r0,=StackBase

mov rl, sp

1dr r2 ,=0xCDCDCDCD

1ldr r3,=0xABABABAB

str r3,[x0]

b Loop_Check
Loop:

str r2, [x0]
Loop_Check:

adds r0,r0,#0x04

cmp r0,rl

bne Loop

bx 1r

.size FillSystemStack, .-FillSystemStack
.cfi_endproc

.cantunwind

. fnend

.end

Step 2: Configure FillSystemStack.S so that symbols StackBase and StackLimit are set to the correct stack range
values. Two options using Arm “linker defined symbols” for stack configured in the scatter file or the standard
CMSIS assembler startup files (that define the main stack memory region) are already given and can be
commented/uncommented. If the project uses other symbols, they need to be used accordingly.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved
7 https://developer.arm.com/documentation/kan316/latest/

Step 3: Call the function FillSystemStack (). It initializes the main stack with a fixed value (0xCDCDCDCD)
and an overflow protection value (OXABABABAB) at the bottom of the stack. This function
FillSystemStack () should be called at the beginning of the main () function as it writes the required
memory pattern for the debugger to perform stack watermark analysis.

NOTE:

If the function shall be called early in the reset handler, make sure the Arm runtime library startup code does
not initialize the stack area with zeros. Normally this will happen, as the stack area is ZI data. And Zl initialization
would erase the patterns written by Fil1SystemStack () again.

To prevent ZI data from getting zero initialized, the UNINIT region attribute needs to be used, as in this example
for the stack configured in the scatter file:

ARM LIB STACK __ STACK TOP UNINIT EMPTY -_STACK SIZE
{ ; Reserve empty region for stack

}

Step 4: For the uVision debugger the SCVD file SystemStack.svcd implements the related viewer:

<?xml version="1.0" encoding="utf-8"?>
<component viewer schemaVersion="0.1" xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xs:noNamespaceSchemalLocation="Component Viewer.xsd">
<component name="MyExample" version="1.0.0"/>
<objects>
<object name="SystemStack">
<var name="StackStart" type="int32 t" value="0" />
<var name="StackLimit" type="int32 t" value="0" />
<var name="StackSize" type="int32 t" value="0" />

<var name="StackMax" type="int32_t" value="0" />
<var name="StackUsed" type="int32_t" value="0" />
<calc cond="__Symbol exists ("Image$$ARM LIB STACKS$$ZI$$Base") ">
<!-- symbols for stack configured in scatter file -->
StackStart = _ FindSymbol ("Image$$ARM LIB STACKS$$ZISBase");
StackLimit = _ FindSymbol ("Image$$ARM LIB STACKSSZISSLimit");
</calc>
<calc cond="__Symbol exists ("STACK$$Base")">
<!-- symbols for stack configured in Keil assembler startup file -->
StackStart = _ FindSymbol ("STACK$$Base");
StackLimit = __ FindSymbol ("STACK$$Limit");
</calc>
<calc>
StackSize = StackLimit - StackStart;
StackMax = _ CalcMemUsed(StackStart, StackSize, 0xCDCDCDCD, OxABABABAB) ;
StackUsed = StackLimit - __ GetRegVal ("MSP") ;
</calc>
<calc cond="StackUsedé> (StackMax& OXFFFFF) ">
<!-- 1in case stack was allocated, but not used -->
StackMax = ((StackUsed*100/StackSize)<<20) |StackUsed;
</calc>

<out name="SystemStack">
<item property="Start" value="%$x[StackStart]"/>
<item property="Size" value="%x[StackSize]" />
<item>
<print cond="__Running == 0"
property="Used"
value="%d[StackUsed*100/StackSize] %% [%d[StackUsed]]" />
<print cond="__Running == 1" property="Used" value="unknown" />
</item>
<item alert="(StackMax >> 31)" property="Max"
value="%d[(StackMax>>20) & O0xFF]%% [%d[StackMax & OxFFFFF]]" />
</out>
</object>
</objects>
</component viewer>

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

8 https://developer.arm.com/documentation/kan316/latest/

https://www.keil.com/pack/doc/compiler/EventRecorder/html/SCVD_Format.html

Step 5: If the application uses other symbols than the SCVD file is already checking for, it needs to be adjusted
accordingly. The StackStart and StackLimit variables need to refer to the same stack area related symbols that
are already used in the FillSystemStack.S assembler module.

Step 6: Add the SystemStack.svcd file to the debug session via Project — Options for Target — Debug — Manage
Component Viewer Description Files. In a running debug session, open this view via View — Watch Windows —
SystemStack:

SystemStack o g3
Property Value

¥ Start 0x2007C428

¥ Size 0x00000200

¥ Max 28% [144]

After the callto FillSystemStack (), the maximum system stack usage is reported.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

9 https://developer.arm.com/documentation/kan316/latest/

Calculate and configure stack usage

Thread stacks

The worst-case thread stack usage can be determined using the “Thread stack watermarking” method described
on page 6. To get the maximum stack usage, ensure that all functions of a thread are executed. Then calculate
the required stack memory with the following steps:

1. Open the RTX Component Viewer (View — Watch Windows — RTX RTOS — Threads) to get the maximum
stack usage of a thread.

2. Thread switches may have unpredictable timing. Add therefore additional memory for “thread context
switching”: 64 Bytes for processors without FPU), 200 Bytes when using FPU.

3. Round up the stack usage to a multiple of 8 to consider alignment requirements.

The thread stack can be allocated from a memory pool or provided as static memory to osThreadNew().

As an alternative you may use “Static analysis” provided by the linker to supply the stack usage for step 1.
However, keep in mind that “Static analysis” might be tricky for applications that use function pointers.

For example, for “Static analysis” of the RTX Timer Thread stack usage must also consider the timer callback
functions. When the function A, B, C are called as timer callbacks and the call graph shows for function A=16,
B=8, and C=32 bytes stack usage, the maximum (32) must be added to the stack depth of osRtxTimerThread.

Main stack

The amount of main stack can be calculated by adding the memory requirements of the startup code and each
potential ISR routine, considering the various group priority levels. To calculate the main stack usage, the Excel
spread sheet MISP_Calculation.xlIsx is part of this application note. Using the instructions, it is easy to calculate
the total memory requirements for the main stack. As an alternative, the numbers can be added manually,

whereby the “Memory requirement for automatic register stacking” should be considered.
A B C D E F

1 |Calculate main stack memory requirements using the following instructions:

2 1. Insert all interrupt sources of your application software

3 2. Enter the group priority of the interrupt sources

4 3. Use static analysis provided by the linker to enter max. stack requirement for each ISR

5 4. If an ISR is using floating registers, enter "1' under "Uses FP regs"

) 5. Enter the stack usage for SVC (RTX) from the information provided with the RTX RTOS kernel

7 6. Far each "Group Priority", consider only the ISR with the max. stack usage

8

9 |Source Group Priority Max Stack Uses FP regs Total Stack Main Stack (MSP)

10 Startup

11 |Startup code 32 RTX5 Kernel
PendSV, SysTick, SVC

12 |RTX5 Kernel 360 0 392 - :
auto register stacking

13 |IRQO 1 16 1 120 ISR priority ‘n’

14 |IRQ1 0 60 0 92 i

15 [IRQ2 0 40 0 = -
auto register stacking

16 |HardFault -1 0 0 32 ISR priority ‘1’

17 |NMI -2 0 0 0 auto register stacking

18 |Total (bytes) 668 SR el
auto register stacking

19 HardFault priority *-1°

20 auto register stacking

21 NMI priority -2

22

The size of the main stack is (depending on the method to configure the stack) configured in the scatter file or
startup file of the related microcontroller device.
AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

10 https://developer.arm.com/documentation/kan316/latest/

Example

To demonstrate stack usage calculation, a code example running on an NXP LPC1768 with an Arm Cortex-M3
core is provided. The project AN316.uvprojx can be downloaded with this application note and either runs in
simulation or on real hardware using the MCB1700 development board.

Thread stack usage
Dynamic stack analysis

The “Thread stack watermarking” method delivers the threads the following results:

osRtxIdleThread 64 bytes
osRtxTimerThread 96 bytes
MainThread 72 bytes
LowPriorityThread 80 bytes
NormalPriorityThread 128 bytes
HighPriorityThread 80 bytes

The dynamic stack analysis also includes the stack space required for the “thread stack switch”. However, as the
timing of embedded applications depend also on external inputs, it is not guaranteed that it happened at the
maximum stack load. Therefore, reserve additional space to allow the worst-case execution of the “thread stack
switch” (which is 64 bytes in our example).

The user thread with the maximum stack load is the NormalPriorityThread and its worst-case stack
requirement is in our example: 128 + 64 = 192 bytes.

The maximum stack load for the timer thread is: 96 + 64 = 160 bytes
As the idle thread is empty, we use the number that we obtained with static stack analysis below.
Static analysis

The callgraph file .\Objects\test.html contains the stack load calculated with “Static analysis”. The values for the
threads are:

osRtxIdleThread 0 bytes
osRtxTimerThread 88 bytes
MainThread 8 bytes
LowPriorityThread 48 bytes
NormalPriorityThread 80 bytes
HighPriorityThread 48 bytes

The static stack analysis does not include the stack space required for the “thread stack switch”. The numbers
are therefore somewhat lower. For dynamic stack analysis it is important that all potential paths are executed. If
in doubt, you should validate the results also with static stack analysis.

The user thread with the maximum stack load is the NormalPriorityThread and its worst-case stack
requirement is in our example: 80 + 64 = 144 bytes.

The maximum stack load for the timer thread is: 88 + 64 = 152 bytes

As the osRtxldleThread is empty the number obtained with static stack analysis is correct and the stack space
required is therefore just: 0 + 64 bytes.

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

11 https://developer.arm.com/documentation/kan316/latest/

https://www.keil.com/mcb1700/

Configure thread stacks

For configuring thread stack usage, consider also the “overflow protect pattern” and the required 8-byte
alignment. The following uses the worst-case user thread stack requirement obtained with the “Thread stack
watermarking” method. The minimum configuration settings for the application in RTX_Config.h are therefore:

OS_IDLE THREAD STACK SIZE 64 + 4 + 4 =72 bytes
OS_TIMER THREAD STACK SIZE 160 + 4 + 4 = 168 bytes
For the user threads, the default stack size is used. The settings are therefore:

OS_STACK SIZE 192 + 4 + 4 = 200 bytes

NOTE:

The memory requirements could be further reduced by specifying a user stack space for the various threads
with the osThreadNew function call. This allows to optimize memory for constrained systems.

Main stack usage

The application example itself uses interrupt grouping 4 and enables three interrupts:
- EINT3_ IRQn with group priority 0 —sub-priority O
- TIMERO IRQn with group priority O —sub-priority 1
- TIMER1 IRQn with group priority 1 - sub-priority O

Static analysis

The callgraph file .\Objects\test.html contains the stack load information.

The stack memory for “Startup” is the “Stack size” reported for ‘main’ (8 bytes) + 32 Bytes for osKernelStart. In
our example it is therefore 40 bytes.

| main (Thumb, 288 bytes, Stack size 8 bytes, main.o(.text.main))

For the RTX5 Kernel, the ARM Compiler V6.10 value with -O1 value is used: 152 bytes without Event Recorder.

The stack size for each ISR routine is also part of that callgraph file (use the information “Max Depth” or when
not present the Stack size value to get the memory requirements in bytes). Round-up to a value that is a
multiple of 8 to consider alignment.

TIMER1_IRQHandler (Thumb, 32 bytes, Stack size 120 bytes, main.o(.text. TIMER1_IRQHandler))

[Stack]
Max Depth =120
Call Chain = TIMER1_IRQHandler

The ISR stack requirement values obtained from the callgraph file .\Objects\test.html are:

- EINT3 IRQHandler: 0 bytes
- TIMERO IRQHandler: 12 rounded up to 16 bytes (for alignment)
- TIMER1 IRQHandler: 120 bytes
AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved

12 https://developer.arm.com/documentation/kan316/latest/

Calculate main stack size

The values are then entered into the Excel spread sheet MSP_Calculation_test.xIsx as shown below. This
calculates the total stack memory required for the main stack to 456 bytes.

The default configuration of the startup code is 512 bytes, therefore this setting may be reduced if memory is a
critical resource.

| A | B | C A D | E | F
1 jCalculate main stack memory requirements using the following instructions:
2 1. Insert all interrupt sources of your application software
3 2. Enter the group priority of the interrupt sources
4 | 3. Use static analysis provided by the linker to enter max. stack requirement for each ISR
5 | 4. If an ISR is using floating registers, enter '1' under "Uses FP regs"
6 5. Enter the stack usage for RTXS Kernel from the information provided with the RTX RTOS kernel
7 6. For each "Group Priority", consider only the ISR with the max. stack usage
8 4
9 |Source Group Priority Max Stack Uses FP regs Total Stack Main Stack (MSP)
10 Startup
11 |Startup code 40 RTXS5 Kernel
1 PendSV, SysTick, SVC
12 |RTXS Kernel 152 0 184 2 .
1 auto register stacking
13 | TIMER1_IRQ 1 120 0 152 ISR priority n’
14 | TIMERO_IRQ 0 16 0 48 i
15 |[EXT3_IRQ 0 0 0 e .
{ auto register stacking
16 |HardFault -1 0 0 32 ISR priority 2’
17 \NMI -2 0 0 0 auto register stacking
18 |Total (bytes) 456 ISR p.riority ‘o’ .
1 auto register stacking
19 | HardFault priority -1’
20 | auto register stacking
21 NMI priority -2
22
Summary

Verifying the stack requirements is an essential task before releasing an embedded application. Stack overflows
may occur infrequently but typically cause a shut-down of the operation. The instructions described here should
be therefore part of every verification and validation process.

This application note provides detailed step-by-step instructions for calculating the stack requirements of an
RTX5 based applications. It also contains helpful procedures (such as an Excel sheet) that help during the
process. While the process is exemplified using RTX5, the information also applies to other Cortex-M based
systems, regardless whether using a real-time operating system or not.

References

o Arm Compiler —Linker Command-line Options contains information about the --callgraph option.

e Cortex-M4(F) Lazy Stacking and Context Switching explains the “Stack usage of Interrupt Service
Routines”.

e Cortex-M Devices Generic User Guides provide generic information about a processor and the various
hardware stacks.

e Arm Blog: How much stack memory do | need for my Arm Cortex-M applications?

AN316 — Determining the stack usage of applications Copyright © 2025 Arm Ltd. All rights reserved
13 https://developer.arm.com/documentation/kan316/latest/

https://developer.arm.com/documentation/101754/latest/armlink-Reference/armlink-Command-line-Options/--callgraph----no-callgraph?lang=en
https://developer.arm.com/documentation/dai0298/a
https://developer.arm.com/documentation#q=cortex-m4%20devices%20generic%20user%20guide&sort=relevancy
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/how-much-stack-memory-do-i-need-for-my-arm-cortex--m-applications

