
Learn the architecture - Generic Interrupt
Controller v3 and v4, Overview
Version 3.2

Non-Confidential
Copyright © 2021, 2025 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
198123_0302_02_en

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Learn the architecture - Generic Interrupt Controller v3 and v4, Overview

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

3.2-02 10 January 2025 Non-Confidential Images update

3.2-01 6 December 2021 Non-Confidential Replaces DAI0492B

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 38

https://www.arm.com/company/policies/trademarks

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 38

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Contents

Contents

1. Overview...6

2. Before you begin...7

3. What is a Generic Interrupt Controller?... 8

4. Arm GIC fundamentals... 10

5. Configuring the Arm GIC..18

6. Handling interrupts.. 23

7. Sending and receiving Software Generated Interrupts...31

8. Example...34

9. Check your knowledge... 35

10. Related information...36

11. Next steps..37

12. Appendix: Legacy operation..38

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Overview

1. Overview
This guide provides an overview of the features of the Arm Generic Interrupt Controller (GIC)
v3 and v4. The guide describes the operation of a GICv3 compliant interrupt controller. It also
describes how to configure a GICv3 interrupt controller for use in a bare metal environment.

This guide is the first in a collection of related guides about Arm Generic Interrupt Controllers:

• Arm CoreLink Generic Interrupt Controller v3 and v4: Overview (this guide)

• Arm CoreLink Generic Interrupt Controller v3 and v4: Locality-specific Peripheral Interrupts

• Arm CoreLink Generic Interrupt Controller v3 and v4: Virtualization

Background
An interrupt is a signal to the processor that an event has occurred which needs to be dealt with.
Interrupts are typically generated by peripherals.

For example, a system might use a Universal Asynchronous Receiver/Transmitter (UART) interface
to communicate with the outside world. When the UART receives data, it needs a mechanism to be
able to tell the processor that new data has arrived and is ready to be processed. One mechanism
that a UART could use is to generate an interrupt to signal the processor.

Small systems might have only a few interrupt sources and a single processor. However, larger
systems might have many more potential interrupt sources and processors. The GIC performs the
critical tasks of interrupt management, prioritization, and routing. The GIC marshals all interrupts
from across the system, prioritizes them, and sends them to a core to be dealt with. GICs are
primarily used to boost processor efficiency and to enable interrupt virtualization.

GICs are implemented based on the Arm GIC architecture. This architecture has evolved from
GICv1 to the latest versions GICv3 and GICv4. Arm has several generic interrupt controllers that
provide a range of interrupt management solutions for all types of Arm Cortex multiprocessor
systems. These controllers range from the simplest GIC-400 for systems with small CPU cores
counts to GIC-600 for high-performant and multi-chip systems. GIC-600AE adds additional safety
features targeting high performant ASIL B to ASIL D systems.

At the end of this guide, you can check your knowledge. You will have learned about the different
types of interrupts, and be able to write software that enables the GIC and configures these
different interrupt types.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 38

https://developer.arm.com/documentation/102923/latest
https://developer.arm.com/documentation/107627/latest

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Before you begin

2. Before you begin
This guide covers the basic operation of the GICv3 and v4 and the use of Shared Peripheral
Interrupt (SPIs), Private Peripheral Interrupt (PPIs), and Software Generated Interrupts (SGIs).

This guide complements the Arm Generic Interrupt Controller Architecture Specification GIC
architecture version 3.0 and 4.0. It is not a replacement or an alternative. Refer to the Arm Generic
Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.0 for detailed
descriptions of registers and behaviors.

GICv3 and GICv4 allow for several different configurations and use cases. For simplicity, this guide
concentrates on a subset of those configurations and use cases, in which:

• Two Security states are present.

• Affinity routing is enabled for both Security states.

• System register access is enabled at all Exception levels.

• The connected processor, or processors, are Armv8-A or Armv9-A compliant, implement all
Exception levels and use AArch64 at all Exception levels.

This guide does not cover:

• Legacy operation.

• Use from an Exception level that is using AArch32.

This guide assumes that you are familiar with the Arm Exception model. If you want to learn about
the Arm Exception model, you can read the Learn the Architecture: Exception model guide.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 38

https://developer.arm.com/architectures/system-architectures/system-components/arm-generic-interrupt-controller/documentation
https://developer.arm.com/architectures/system-architectures/system-components/arm-generic-interrupt-controller/documentation
https://developer.arm.com/architectures/learn-the-architecture/exception-model

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

What is a Generic Interrupt Controller?

3. What is a Generic Interrupt Controller?
A Generic Interrupt Controller (GIC) takes interrupts from peripherals, prioritizes them, and delivers
them to the appropriate processor core. The following diagram shows a GIC taking interrupts from
n different peripherals, and distributing them to two different processors.

Figure 3-1: GIC example

The GIC is the standard interrupt controller for Arm Cortex-A and Arm Cortex-R profile processors.
The GIC provides a flexible and scalable approach to interrupt management, supporting systems
with a single core to large multi-chip designs with hundreds of cores.

A brief history of the Arm CoreLink GIC
Like the Arm architecture, the GIC architecture has evolved over time. The following table
summarizes the major releases of the GIC specification and the processors that they are typically
used with.

GIC versions Key features Typically used with

GICv1 Support for up to eight PEs

Support for up to 1020 interrupt IDs

Support for two Security states

Arm Cortex-A5 MPCore

Arm Cortex-A9 MPCore

Arm Cortex-R4

Arm Cortex-R5 MPCore

Arm Cortex-R7 MPCore

Arm Cortex-R8 MPCore

GICv2 All key features of GICv1

Support for virtualization

Arm Cortex-A7 MPCore

Arm Cortex-A15 MPCore

Arm Cortex-A17 MPCore

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

What is a Generic Interrupt Controller?

GIC versions Key features Typically used with
GICv3 All key features of GICv2

Support for more than eight PEs

Support for message-signaled interrupts

Support for more than 1020 interrupt IDs

System register access to the CPU Interface registers

An enhanced security model that separates Secure and Non-secure Group 1 interrupts

Arm Cortex-A3x MPCore

Arm Cortex-A5x MPCore

Arm Cortex-A7x MPCore

GICv4 All key features of GICv3

Direct injection of virtual interrupts Arm Cortex-A3x MPCore

Arm Cortex-A5x MPCore

Arm Cortex-A7x MPCore

This guide covers Arm CoreLink GICv3 and GICv4, which are used by most Armv9-A, Armv8-A and
Armv8-R designs.

GICv3 and GICv4 have also received minor updates since they were released:

• GICv3.1 added support additional wired interrupts, Secure virtualization and Memory System
Resource Partitioning and Monitoring (MPAM)

• GICv3.2 added support for Armv8-R AArch64.

• GICv3.3 added support for non-maskable interrupts.

• GICv4.1 extended virtualization support to cover direct-injection of virtual Software Generated
Interrupts (SGIs)

• GICv4.2 added support for directly-injecting non-maskable virtual interrupts.

GICv2m is an extension to GICv2 to add support for message-signaled interrupts.
For more information contact Arm Support.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

4. Arm GIC fundamentals
In this section, we look at the basic operation of the Arm GICv3 and v4 interrupt controllers.

Interrupt types
The GIC can deal with four different types of interrupt sources:

• Shared Peripheral Interrupt (SPI). Peripheral interrupts that can be delivered to any connected
core.

• Private Peripheral Interrupt (PPI). Peripheral interrupts that are private to one core. An example
of a PPI is an interrupt from the Generic Timer.

• Software Generated Interrupt (SGI). SGIs are typically used for inter-processor communication
and are generated by a write to an SGI register in the GIC.

• Locality-specific Peripheral Interrupt (LPI). LPIs were first introduced in GICv3 and have a very
different programing model to the other three types of interrupt. The configuration of LPIs is
covered in the Arm CoreLink Generic Interrupt Controller v3 and v4: Locality-specific Peripheral
Interrupts guide.

Each interrupt source is identified by an ID number, which is referred to as an INTID. The interrupt
types that are introduced in the preceding list are defined in terms of ranges of INTIDs:

INTID Interrupt Type Notes

0 - 15 SGIs Banked per PE

16 - 31

1056 - 1119 (GICv3.1)

PPIs Banked per PE

32 - 1019

4096 - 5119 (GICv3.1)

SPIs –

1020 - 1023 Special interrupt number Used to signal special cases, see Settings for each PE for more information.

1024 - 8191 Reserved –

8192 and greater LPIs The upper boundary is IMPLEMENTATION DEFINED

How interrupts are signaled to the interrupt controller
Traditionally, interrupts are signaled from a peripheral to the interrupt controller using a dedicated
hardware signal, as shown in the following image:

Figure 4-1: Dedicated interrupt signal

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

Arm CoreLink GICv3 supports this model, but also provides an additional signaling mechanism:
message-signaled interrupts (MSI). MSIs are transmitted by a write to a register in the interrupt
controller, as you can see here:

Figure 4-2: Message signaled interrupt signal

Using a message to forward the interrupt from a peripheral to the interrupt controller removes
the requirement for a dedicated signal for each interrupt source. This can be an advantage for
designers of large systems, where potentially hundreds or even thousands of signals might be
routed across an SoC and converge on the interrupt controller.

Whether an interrupt is sent as a message or using a dedicated signal has little effect on the way
that the interrupt handling code handles the interrupt. Some configuration of the peripherals might
be required. For example, it might be necessary to specify the address of the interrupt controller.
This peripheral configuration is beyond of the scope of this guide.

In Arm CoreLink GICv3, SPIs can be message-signaled interrupts. LPIs are always message-signaled
interrupts. Different registers are used for the different interrupt types, as shown in the following
table:

Interrupt Type Registers

SPI GICD_SETSPI_NSR asserts an interrupt

GICD_SETSPI_NSR asserts an interrupt

LPI GITS_TRANSLATER

Interrupt state machine
The interrupt controller maintains a state machine for each SPI, PPI, and SGI interrupt source. This
state machine consists of four states:

• Inactive. The interrupt source is not currently asserted.

• Pending. The interrupt source has been asserted, but the interrupt has not yet been
acknowledged by a PE.

• Active. The interrupt source has been asserted, and the interrupt has been acknowledged by a
PE.

• Active and Pending. An instance of the interrupt has been acknowledged, and another instance
is now pending.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

LPIs have a simpler state machine. See Taking an interrupt for more information.

The state machine is shown in the following diagram:

Figure 4-3: Interrupt state machine

The life cycle of an interrupt depends on whether it is configured to be level-sensitive or edge-
triggered:

• For level-sensitive interrupts, a rising edge on the interrupt input causes the interrupt to
become pending, and the interrupt is held asserted until the peripheral de-asserts the interrupt
signal.

• For edge-sensitive interrupts, a rising edge on the interrupt input causes the interrupt to
become pending, but the interrupt is not held asserted.

Level sensitive interrupts
The following diagram shows how the interrupt state transitions correspond to the interrupt signal:

Figure 4-4: Timing level sensitive

Considering each state transition in turn:

• Inactive to pending. An interrupt transitions from inactive to pending when the interrupt
source is asserted. At this point the GIC asserts the interrupt signal to the PE, if the interrupt is
enabled and is of sufficient priority.

• Pending to active and pending. An interrupt transitions from pending to active and pending
when a Processor Element (PE) acknowledges the interrupt by reading one of the Interrupt
Acknowledge Registers (IARs) in the CPU interface. This read is typically part of an interrupt
handling routine that executes after an interrupt exception is taken. At this point the GIC de-
asserts the interrupt signal to the PE.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

• Active and pending to active. An interrupt transitions from active and pending to active when
the peripheral de-asserts the interrupt signal. This typically happens in response software
writing to a status register in the peripheral.

• Active to inactive. An interrupt goes from active to inactive when the PE writes to one of the
End of Interrupt Registers (EOIRs) in the CPU interface. This indicates that the PE has finished
handling the interrupt.

Edge-triggered interrupts
The following diagram shows how the interrupt state transitions correspond to the interrupt signal:

Figure 4-5: Timing edge-triggered

Considering each state transition in turn:

• Inactive to pending. An interrupt transitions from inactive to pending when the interrupt
source is asserted. At this point the GIC asserts the interrupt signal to the PE, if the interrupt is
enabled and is of sufficient priority.

• Pending to active. An interrupt transitions from pending to active when a PE acknowledges
the interrupt by reading one of the IARs in the CPU interface. This read is typically part of
an interrupt handling routine that executes after an interrupt exception is taken. However,
software can also poll the IARs. At this point the GIC de-asserts the interrupt signal to the PE.

• Active to active and pending. An interrupt goes from active to active and pending if the
peripheral re-asserts the interrupt signal.

• Active and pending to pending. An interrupt goes from active and pending to pending when
the PE writes to one of the EOIRs in the CPU interface. This indicates that the PE has finished
handling the first instance of the interrupt. At this point the GIC re-asserts the interrupt signal
to the PE.

Target interrupts
The Arm architecture assigns each PE a hierarchal identifier that is called an affinity. The GIC uses
affinity values to target interrupts at a specific core.

An affinity is a 32-bit value that is split into four fields:

<affinity level 3>.<affinity level 2>.<affinity level 1>.<affinity level 0>

The affinity of a PE is reported in MPIDR_EL1.

The exact meaning of the different levels of affinity is defined by the specific processor and SoC.
For example, Arm Cortex-A53 and Arm Cortex-A57 processors use:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

<group of groups>.<group of processors>.<processor>.<core>

Later designs, like those used in Arm Cortex-A55 and Arm Cortex-A76 processors, use:

<group of processors>.<processor>.<core>.<thread>

It is highly unlikely that all the possible nodes exist in a single implementation. For example, an SoC
for a mobile device could have a layout like this:

0.0.0.[0:3] Cores 0 to 3 of a Cortex-A53 processor

0.0.1.[0:1] Cores 0 to 1 of a Cortex-A57 processor

AArch32 state, and Armv7-A, can only support three levels of affinity. This means
that a design that uses AArch32 state is limited to a single node at affinity level 3
(0.x.y.z). GICD_TYPER.A3V indicates whether the interrupt controller can support
multiple level 3 nodes.

Security model
The Arm GICv3 architecture supports Arm TrustZone technology. Each INTID must be assigned a
group and security setting by software. GICv3 supports three combinations of settings, as you can
see in the following table:

Interrupt Type Example use

Secure Group 0 Interrupts for EL3 (Secure Firmware)

Secure Group 1 Interrupts for Secure EL1 (Trusted OS)

Non-secure Group 1 Interrupts for the Non-secure state (OS or Hypervisor)

Group 0 interrupts are always signaled as FIQs. Group 1 interrupts are signaled as either IRQs or
FIQs, depending on the current Security state and Exception level of the PE, as you can see here:

EL and Security state of PE Group 0 Group 1 Group 1

Secure Non-secure

Secure EL0/1 FIQ IRQ FIQ

Non-secure EL0/1/2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

These rules are designed to complement the AArch64 security state and Exception level routing
controls. The following diagram shows a simplified software stack, and what happens when
different types of interrupt are signaled while executing at EL0:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

Figure 4-6: Interrupt routing example

In this example, IRQs are routed to EL1 (SCR_EL3.IRQ==0) and FIQs routed to EL3
(SCR_EL3.FIQ==1) . Considering the rules described above, while executing at EL1 or EL0 a Group 1
interrupt for the current Security state is taken as an IRQ.

An interrupt for the other Security state triggers an FIQ, and the exception is taken to EL3. This
allows software executing at EL3 to perform the necessary context switch.

Impact on software

When the Armv9-A Realm Management Extensions is implemented, the GIC treats
Realm state is treated as an extension of non-secure state.

Software controls the allocation of INTIDs to interrupt groups when configuring the interrupt
controller. Only software executing in Secure state can allocate INTIDs to interrupt groups.

Typically, only software executing in Secure state should be able to access the settings and state of
Secure interrupts: Group 0 and Secure Group 1.

Accesses from Non-secure state to Secure interrupt settings and state can be enabled. This is
controlled individually for each INTID, using the GICD_NSACRn and GICR_NSACR registers.

LPIs are always treated as Non-secure Group 1 interrupts.

Support for single Security state
GICv3 supports the Arm TrustZone technology, but the use of TrustZone is OPTIONAL. This means
that you can configure your implementation to have either a single Security state or two Security
states:

• GICD_CTLR.DS == 0 Two Security states, Secure and Non-secure, are supported.

• GICD_CTLR.DS == 1 Only a single Security state is supported.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

Configure the GIC to use the same number of Security states as the attached PEs. Typically, this
means that the GIC will support two Security states when connected to Arm Cortex-A profile
processors and one Security state when connected to Arm Cortex-R profile processors.

Programmer’s model
The register interface of a GICv3 interrupt controller is split into three groups:

• Distributor interface

• Redistributor interface

• CPU interface

These interfaces are illustrated in the following diagram:

Figure 4-7: Programming interfaces

In general, the Distributor and the Redistributors are used to configure interrupts, and the CPU
interface is used to handle interrupts.

Distributor
The Distributor registers are memory-mapped and used to configure SPIs. The Distributor provides
a programming interface for:

• Interrupt prioritization and distribution of SPIs

• Enable and disable SPIs

• Set the priority level of each SPI

• Route information for each SPI

• Set each SPI to be level-sensitive or edge-triggered

• Generate message-signaled SPIs

• Control the active and pending state of SPIs

• Determine the programmer’s model that is used in each Security state: affinity routing or
legacy.

Redistributors
There is one Redistributor per connected core. The Redistributors provide a programming interface
to:

• Enable and disable SGIs and PPIs

• Set the priority level of SGIs and PPIs

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Arm GIC fundamentals

• Set each PPI to be level-sensitive or edge-triggered

• Assign each SGI and PPI to an interrupt group

• Control the state of SGIs and PPIs

• Control the base address for the data structures in memory that support the associated
interrupt properties and pending state for LPIs

• Provide power management support for the connected PE

CPU interfaces
Each core contains a CPU interface, which are system registers that are used during interrupt
handling. The CPU interfaces provide a programming interface to:

• Provide general control and configuration to enable interrupt handling

• Acknowledge an interrupt

• Perform a priority drop and deactivation of interrupts

• Set an interrupt priority mask for the PE

• Define the preemption policy for the PE

• Determine the highest priority pending interrupt for the PE

In Arm CoreLink GICv3, the CPU Interface registers are accessed as System registers: ICC_*_ELn.

Software must enable the System register interface before using these registers. This is controlled
by the SRE bit in the ICC_SRE_ELn registers, where n specifies the Exception level: EL1-EL3.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Configuring the Arm GIC

5. Configuring the Arm GIC
This section of the guide describes how to enable and configure a GICv3-compliant interrupt
controller in a bare metal environment. For detailed register descriptions see the Arm Generic
Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.

The configuration of Locality-specific Peripheral Interrupts (LPIs) is significantly different to the
configuration of Shared Peripheral Interrupts (SPIs), Private Peripheral Interrupt (PPIs), and Software
Generated Interrupts (SGIs), and is beyond the scope of this guide. To learn more, refer to our
guide Arm CoreLink Generic Interrupt Controller v3 and v4: Locality-specific Peripheral Interrupts.

Most systems that use a GICv3 interrupt controller are multi-core systems, and possibly also multi-
processor systems. Some settings are global, which means that affect all the connected PEs. Other
settings are particular to a single PE.

Let’s look at the global settings, and then the settings for each PE.

Global settings
The Distributor control register (GICD_CTLR) must be configured to enable the interrupt groups and
to set the routing mode as follows:

• Enable Affinity routing (ARE bits): The ARE bits in GICD_CTLR control whether the GIC is
operating in GICv3 mode or legacy mode. Legacy mode provides backwards compatibility with
GICv2. This guide assumes that the ARE bits are set to 1, so that GICv3 mode is being used.

• Enables: GICD_CTLR contains separate enable bits for Group 0, Secure Group 1 and Non-secure
Group 1:

◦ EnableGrp1S enables distribution of Secure Group 1 interrupts.

◦ EnableGrp1NS enables distribution of Non-secure Group 1 interrupts.

◦ EnableGrp0 enables distribution of Group 0 interrupts.

Arm CoreLink GIC-600 does not support legacy operation, and the ARE bits are
permanently set to 1.

Settings for each PE
This section covers settings that are specific to a single core or PE.

Redistributor configuration
Each core has its own Redistributor, as shown here:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 38

https://developer.arm.com/architectures/system-architectures/system-components/arm-generic-interrupt-controller/documentation
https://developer.arm.com/architectures/system-architectures/system-components/arm-generic-interrupt-controller/documentation

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Configuring the Arm GIC

Figure 5-1: PE connected to redistributor

The Redistributor contains a register called GICR_WAKER which is used to record whether the
connected PE is online or offline. Interrupts are only forwarded to a PE that the GIC believes is
online. At reset, all PEs are treated as being offline.

To mark the connected PE as being online, software must:

• Clear GICR_WAKER.ProcessorSleep to 0.

• Poll GICR_WAKER.ChildrenAsleep until it reads 0.

It is important that software performs these steps before configuring the CPU interface, otherwise
behavior can be UNPREDICTABLE.

While the PE is offline (GICR_WAKER.ProcessorSleep==1), an interrupt that is targeting the PE will
result in a wake-request signal being asserted. Typically, this signal will go to the power controller
of the system. The power controller then turns on the PE. On waking, software on that PE would
clear the ProcessorSleep bit, allowing the interrupt that woke the PE to be forwarded.

CPU interface configuration
The CPU interface is responsible for delivering interrupt exceptions to the PE to which it is
connected. To enable the CPU interface, software must configure the following:

• Enable System register access.

The CPU interfaces (ICC_*_ELn) section describes the CPU interface registers, and how they
are accessed as System registers in GICv3. Software must enable access to the CPU interface
registers, by setting the SRE bit in the ICC_SRE_ELn registers.

Many recent Arm Cortex processors do not support legacy operation, and the SRE
bits are fixed as set. On these processors this step can be skipped.

• Set Priority Mask and Binary Point registers.

The CPU interface contains the Priority Mask register (ICC_PMR_EL1) and the Binary Point
registers (ICC_BPRn_EL1). The Priority Mask sets the minimum priority that an interrupt must
have in order to be forwarded to the PE. The Binary Point register is used for priority grouping
and preemption. The use of both registers is described in more detail in Handling Interrupts.

• Set EOI mode.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Configuring the Arm GIC

The EOImode bits in ICC_CTLR_EL1 and ICC_CTLR_EL3 in the CPU interface control how the
completion of an interrupt is handled. This is described in more detail in End of interrupt.

• Enable signaling of each interrupt group.

The signaling of each interrupt group must be enabled before interrupts of that group will be
forwarded by the CPU interface to the PE. To enable signaling, software must write to the
ICC_IGRPEN1_EL1 register for Group 1 interrupts and ICC_IGRPEN0_EL1 registers for Group
0 interrupts. ICC_IGRPEN1_EL1 is banked by Security state. This means that ICC_GRPEN1_EL1
controls Group 1 for the current Security state. At EL3, software can access both Group 1
enables using ICC_IGRPEN1_EL3.

PE configuration
Some configuration of the PE is also required to allow it to receive and handle interrupts. A detailed
description of this is outside of the scope of this guide. In this guide, we will describe the basic
steps that are required for an Armv8-A compliant PE executing in AArch64 state.

• Routing controls

The routing controls for interrupts are in SCR_EL3 and HCR_EL2 of the PE. The routing control
bits determine the Exception level to which an interrupt is taken. The routing bits in these
registers have an UNKNOWN value at reset, so they must be initialized by software.

• Interrupt masks

The PE also has exception mask bits in PSTATE. When these bits are set, interrupts are masked.
These bits are set at reset.

• Vector table

The location of the vector tables of the PE is set by the VBAR_ELn registers. Like with SCR_EL3 and
HCR_EL2, VBAR_ELn registers have an UNKNOWN value at reset. Software must set the VBAR_ELn
registers to point to the appropriate vector tables in memory.

To learn more about these steps, see the Learn the Architecture: Exception model guide.

SPI, PPI, and SGI configuration
So far, we have looked at configuring the interrupt controller itself. We will now discuss the
configuration of the individual interrupt sources.

Which registers are used to configure an interrupt depends on the type of interrupt:

• SPIs are configured through the Distributor, using the GICD_* registers.

• PPIs and SGIs are configured through the individual Redistributors, using the GICR_* registers.

These different configuration mechanisms are illustrated in the following diagram:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 38

https://developer.arm.com/architectures/learn-the-architecture/exception-model

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Configuring the Arm GIC

Figure 5-2: Config registers

For each INTID, software must configure the following:

• Priority: GICD_IPRIORITYn, GICR_IPRIORITYn

Each INTID has an associated priority, represented as an 8-bit unsigned value. 0x00 is
the highest possible priority, and 0xFF is the lowest possible priority. Running priority and
preemption describes how the priority value in GICD_IPRIORITYn and GICR_IPRIORITYn masks
low priority interrupts, and how it controls preemption. An interrupt controller is not required
to implement all 8 priority bits. A minimum of 5 bits must be implemented if the GIC supports
two Security states. A minimum of 4 bits must be implemented if the GIC support only a single
Security state.

• Group: GICD_IGROUPn, GICD_IGRPMODn, GICR_IGROUPn, GICR_IGRPMODn

As described in Security model, an interrupt can be configured to belong to one of the three
interrupt groups. These interrupt groups are Group 0, Secure Group 1 and Non-secure Group
1.

• Edge-triggered or level-sensitive: GICD_ICFGRn, GICR_ICFGRn

For PPIs and SPI, the software must specify whether the interrupt is edge-triggered or level-
sensitive. SGIs are always treated as edge-triggered, and therefore GICR_ICFGR0 behaves as
Read-As-One, Writes Ignored (RAO/WI) for these interrupts.

• Enable: GICD_ISENABLERn, GICD_ICENABLER, GICR_ISENABLERn, GICR_ICENABLERn

Each INTID has an enable bit. Set-enable registers and Clear-enable registers remove the
requirement to perform read-modify-write routines. Arm recommends that the settings
outlined in this section are configured before enabling the INTID.

• Non-maskable: Interrupts configured as non-maskable are treated as higher priority than all
other interrupts belonging to the same Group. That is, a non-maskable Non-secure Group 1
interrupt is treated as higher priority than all other Non-secure Group 1 interrupts.

◦ The non-maskable property is added in GICv3.3 and requires matching support in the PE.

◦ Only Secure Group 1 and Non-secure Group 1 interrupts can be marked as non-maskable.

For a bare metal environment, it is often unnecessary to change settings after initial configuration.
However, if an interrupt must be reconfigured, for example to change the Group setting, you
should first disable the interrupt before changing its configuration.

The reset values of most of the configuration registers are IMPLEMENTATION DEFINED. This means
that the designer of the interrupt controller decides what the values are, and the values might vary
between systems.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Configuring the Arm GIC

Arm GICv3.1 and the extended INTID ranges
Arm GICv3.1 added support for additional SPI and PPI INTIDs. The registers to configure these
interrupts are the same as the original interrupt ranges, except that they have an E suffix. For
example:

• GICR_ISENABLERn - Enable bits for the original PPI range

• GICR_ISENABLERnE - Enable bits for the additional PPIs that are introduced in GICv3.1

Setting the target PE for SPIs
For SPIs, the target of the interrupt must be configured. This is controlled by GICD_IROUTERn or
GICD_IROUTERnE for the GICv3.1 extended SPIs. There is a GICD_IROUTERn register for each SPI, and
the Interrupt_Routing_Mode bit controls the routing policy. The options are:

• GICD_IROUTERn.Interrupt_Routing_Mode == 0

The SPI is delivered to the PE A.B.C.D, which are the affinity co-ordinates specified in the
register.

• GICD_IROUTERn.Interrupt_Routing_Mode == 1

The SPI can be delivered to any connected PE that is participating in distribution of the
interrupt group. The Distributor, rather than software, selects the target PE. The target can
therefore vary each time the interrupt is signaled. This type of routing is referred to as 1-of-N.

A PE can opt out of receiving 1-of-N interrupts. This is controlled by the DPG1S, DPG1NS and DPG0
bits in GICR_CTLR.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

6. Handling interrupts
This section describes what happens when an interrupt occurs: how the interrupt is routed to a PE,
how interrupts are prioritized against each other, and what happens at the end of the interrupt, for
example.

Routing a pending interrupt to a PE
The Interrupt state machine section describes how an interrupt transitions from the inactive to the
pending state when the source of the interrupt is asserted. When an interrupt becomes pending,
the interrupt controller decides whether to send the interrupt to one of the connected PEs based
on the following tests. These tests determine which PE, if any, to send the interrupt to:

• Check that the group associated with the interrupt is enabled.

The Security model section described how each INTID is assigned to a Group: Group 0, Secure
Group 1, or Non-secure Group 1. For each Group, there is a Group enable bit in both the
Distributor and in each CPU Interface.

The interrupt controller checks that the Group enable bit is set for the Group associated with
the INTID for that interrupt.

An interrupt that is a member of a disabled Group cannot be signaled to a PE. These interrupts
remain in the pending state until the group is enabled.

• Check that the interrupt is enabled.

Individually disabled interrupts can become pending but will not be forwarded to a PE.

• Check the routing controls to decide which PEs can receive the interrupt.

Which PEs can receive an interrupt depends on what type of interrupt is being sent:

◦ For Shared Peripheral Interrupts (SPIs), routing is controlled by GICD_IROUTERn. An SPI can
target one specific PE, or any one of the connected PEs.

◦ For Locality-specific Peripheral Interrupts (LPIs), the routing information comes from the ITS.

◦ Private Peripheral Interrupts (PPIs) are specific to one PE and can only be handled by that
PE.

◦ For Software Generated Interrupts (SGIs), the originating PE defines the list of target PEs.
This is described further in Sending and receiving Software Generated Interrupts.

• Check the interrupt priority and priority mask to decide which PEs are suitable to handle the
interrupt.

Each PE has a Priority Mask register, ICC_PMR_EL1, in its CPU interface. This register sets the
minimum priority that is required for an interrupt to be forwarded to that PE. Only interrupts
with a higher priority than the mask are signaled to the PE.

• Check the running priority to decide which PEs are available to handle the interrupt.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 38

https://developer.arm.com/documentation/198123/0302/Sending-and-receiving-Software-Generated-Interrupts?lang=en

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

Running priority and preemption covers running priority, and how this affects preemption. If the
PE is not already handling an interrupt, the running priority is the idle priority: 0xFF. Only an
interrupt with a higher priority than the running priority can preempt the current interrupt.

If the interrupt passes all these tests, it is forwarded to the appropriate core as an IRQ or FIQ
exception. To learn more, see Setting the target PE for SPIs.

Taking an interrupt
When entering the exception handler, software does not know which interrupt it has taken. The
handler must read one of the Interrupt Acknowledge Registers (IARs) to get the INTID of the
interrupt.

There are two IARs:

Register Use

ICC_IAR0_EL1 Used to acknowledge Group 0 interrupts. Typically read in FIQ handlers.

ICC_IAR1_EL1 Used to acknowledge Group 1 interrupts. Typically used in IRQ handlers.

ICC_NMIAR1_EL1 Used to acknowledge non-maskable Group 1 interrupts (GICv3.3 only).

Reading an IAR returns the INTID of the taken interrupt and advances the state machine of the
interrupt. Typically, the IARs are read on entry to an interrupt handler. However, software is free to
read the registers at any time.

Sometimes, the IAR cannot return a valid INTID. For example, software reads ICC_IAR0_EL1,
acknowledge Group 0 interrupts, but the pending interrupt belongs to Group 1. In this case, the
read returns one of the reserved INTIDs, as shown in the following table:

ID Meaning Example scenario

1020 Only returned by reads of ICC_IAR0_EL1.

Highest pending interrupt is Secure Group 1.

Only seen in EL3.

An interrupt for the Trusted OS was signaled while the PE was executing in Non-
secure state. This is taken as an FIQ to EL3, so that the Secure Monitor could
context switch to the Trusted OS.

1021 Only returned by reads of ICC_IAR0_EL1.

Highest pending interrupt is Non-secure Group
1.

Only seen in EL3.

An interrupt for the rich OS was signaled while the PE was xecuting in Secure
state. This would be taken as a FIQ to EL3, so that the Secure Monitor could
context switch to the rich OS.

1022 Returned on reads of ICC_IAR1_EL1.

Highest pending interrupt is Non-secure Group
1. non-maskable property.

Interrupts with the non-maskable property are acknowledged using a different
register.

1023 Spurious interrupt.

There are no enabled INTIDs in the pending
state, or all INTIDs in that pending are of
insufficient priority to be taken.

When polling the IARs, this value indicates that there are no interrupts to
available to acknowledge.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 38

https://developer.arm.com/architectures/learn-the-architecture/arm-corelink-generic-interrupt-controller-v3-and-v4-overview/handling-interrupts#running_priority
https://developer.arm.com/architectures/learn-the-architecture/arm-corelink-generic-interrupt-controller-v3-and-v4-overview/configuring-the-arm-corelink-gic#spi_pe

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

A read of an IAR that returns one of these reserved values does not acknowledge an interrupt, if
one is present.

Example of interrupt handling
The following diagram shows an example of a mobile system with a modem interrupt which signals
an incoming phone call. This interrupt is intended to be handled by the Rich OS in the Non-secure
state.

Figure 6-1: Handling the interrupt

The steps involved in handling the interrupt are as follows:

1. The modem interrupt becomes pending while the PE is executing the Trusted OS at Secure
EL1. As the modem interrupt is configured as Non-secure Group 1, it will be signaled as an FIQ.
With SCR_EL3.FIQ==1, the exception is taken to EL3.

2. Secure Monitor software executing at EL3 reads the IAR, which returns 1021. This value
indicates that the interrupt is expected to be handled in Non-secure state. The Secure Monitor
then performs the necessary context switching operations.

3. Now that the PE is in Non-secure state, the interrupt is re-signaled as an IRQ and taken to
Non-secure EL1 to be handled by the Rich OS.

In this example, the Non-secure Group 1 interrupt caused an immediate exit from the Secure OS.
This might not always be required or wanted. An alternative model for this example is shown in the
following diagram, where the interrupt is initially taken to Secure EL1:

Figure 6-2: Alternative routing model

The steps involved in handling the interrupt are now as follows:

1. The modem interrupt becomes pending while the PE is executing the Trusted OS at Secure
EL1. Because the modem interrupt is configured as Non-secure Group 1, it will be signaled as
an FIQ. With SCR_EL3.FIQ==0, the exception is taken to Secure EL1.

2. The Trusted OS performs actions to tidy up its internal state. When it is ready, the Trusted OS
uses an SMC instruction to yield to Non-secure state.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

3. The SMC exception is taken to EL3. The Secure Monitor software executing at EL3 performs
the necessary context switching operations.

4. Now that the PE is in Non-secure state, the interrupt is signaled as an IRQ and taken to Non-
secure EL1 to be handled by the Rich OS.

Running priority and preemption
The Priority Mask register sets the minimum priority that an interrupt must have to be forwarded
to the PE. The GICv3 architecture also has the concept of a running priority. When a PE
acknowledges an interrupt, its running priority becomes the same as the priority of the interrupt.
The running priority returns to its former value when the PE writes to one of the End of Interrupt
(EOI) registers. The following diagram shows an example the running priority of a PE over time:

Figure 6-3: Running priority value over time

The current running priority is reported in the Running Priority register in the CPU interface:
ICC_RPR_EL1.

The concept of running priority is important when considering preemption. Preemption occurs
when a high priority interrupt is signaled to a PE that is already handling a lower priority interrupt.
Preemption introduces some additional complexity for software, but it can prevent a low priority
interrupt from blocking the handling of a higher priority interrupt.

The following diagram shows what would happen if preemption was not allowed:

Figure 6-4: Without preemption

The high priority interrupt is blocked until the previously signaled low priority interrupt is taken.
Now consider the same situation, but with preemption enabled:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

Figure 6-5: With preemption

When the higher priority interrupt becomes pending, it preempts the previously signaled low
priority interrupt. The preceding diagram shows one level of preemption. However, it is possible to
have multiple levels of preemption.

The Arm CoreLink GICv3 architecture allows software to control preemption by specifying the
difference in priority required for preemption to occur. This is controlled through the Binary Point
registers: ICC_BPRn_EL1.

The Binary Point registers split the priority into two fields, group priority and sub-priority, as you
can see here:

Figure 6-6: 8-bit priority value

For preemption, only the group priority bits are considered. The sub-priority bits are ignored.

For example, consider the following three interrupts:

• INTID A has priority 0x10.

• INTID B has priority 0x20.

• INTID C has priority 0x21.

In this example, we decided that:

• A can preempt B or C.

• B cannot preempt C, because B and C have similar priorities.

To achieve this, the split between Group and sub-priority could be set at N=4, as you can see here:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

Figure 6-7: Group priority

With this split, B and C now have the same priority for the purpose of preemption. However, A still
has a higher priority, which means that it can preempt either B or C.

The Binary Point registers only affect preemption, that is, whether an interrupt should be signaled
while already handling a different interrupt. When choosing between pending interrupts, the Binary
Point registers are not used.

Preemption requires that the interrupt handler, or handlers, are written to support
nesting. Details of how to write such an interrupt handler are outside of the scope
of this guide.

End of interrupt
Once the interrupt has been handled, software must inform the interrupt controller that the
interrupt has been handled, so that the state machine can transition to the next state. The Arm
CoreLink GICv3 architecture treats this as two tasks:

• Priority drop

This means dropping the running priority back to the value that it had before the interrupt was
taken.

• Deactivation

This means updating the state machine of the interrupt that is currently being handled.
Typically, this will be a transition from the Active state to the Inactive state.

In the GICv3 architecture, priority drop and deactivation can happen together or separately. This is
determined by the settings of ICC_CTLR_ELn.EOImode:

• EOImode = 0

A write to ICC_EOIR0_EL1 for Group 0 interrupts, or ICC_EOIR1_EL1 for Group 1 interrupts,
performs both the priority drop and deactivation. This mode is often used for a simple bare
metal environment.

• EOImode = 1

A write to ICC_EOIR0_EL1 for Group 0 interrupts, or ICC_EOIR1_EL1 for Group 1 interrupts
results in a priority drop. A separate write to ICC_DIR_EL1 is required for deactivation. This
mode is often used for virtualization purposes.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

Most software will use EOIMode==0. EOImode==1 is most often used by hypervisors.

Checking the highest priority pending interrupt and running priority
As their names suggest, the Highest Priority Pending Interrupt registers, ICC_HPPIR0_EL1 and
ICC_HPPIR1_EL1, report the INTID of the highest priority pending interrupt for a PE.

Running priority was introduced in Running priority and preemption, and is reported by the
Running Priority register (ICC_RPR_EL1).

Checking the state of individual INTIDs
The Distributor provides registers that indicate the current state of each SPI. Similarly, the
Redistributors provide registers that indicate the state of PPIs and SGIs for their connected PEs.

These registers can also move an interrupt to a specific state. This can be useful, for example, for
testing that the configuration is correct without requiring the peripheral to assert the interrupt.

There are separate registers to report the active state and the pending state. The following table
lists the active state registers. The pending state registers have the same format:

Register Description

GICD_ISACTIVERn Sets the active state for SPIs.

One bit for each INTID.

Reads of a bit return the current state of the INTID:

• 1 - The INTID is active.

• 0 - The INTID is not active.

Writing 1 to a bit activates the corresponding INTID.

Writing 0 to a bit has not effect.

GICD_ICACTIVERn Clears the active state for SPIs.

One bit for each INTID.

Reads of a bit return the current state of the interrupt:

• 1 - The INTID is active.

• 0 - The INTID is not active.

Writing 1 to a bit activates the corresponding INTID.

Writing 0 to a bit has not effect.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Handling interrupts

Register Description
GICR_ISACTIVERn Sets the active state for SGIs and PPIs.

One bit for each INTID. This register covers INTIDs 0 to 31, which are private to each PE.

Reads of a bit return the current state of the interrupt:

• 1 - The INTID is active.

• 0 - The INTID is not active.

Writing 1 to a bit activates the corresponding INTID.

Writing 0 to a bit has not effect.

GICR_ICACTIVERn Clears the active state for SGIs and PPIs.

One bit for each INTID. This register covers INTIDs 0 to 31, which are private to each PE.

Reads of a bit return the current state of the interrupt:

• 1 - The INTID is active.

• 0 - The INTID is not active.

Writing 1 to a bit activates the corresponding INTID.

Writing 0 to a bit has not effect.

Software executing in Non-secure state cannot see the state of Group 0 or Secure
Group 1 interrupts, unless access is permitted by GICD_NASCRn or GICR_NASCRn.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Sending and receiving Software Generated Interrupts

7. Sending and receiving Software
Generated Interrupts

Software Generated Interrupts (SGIs) are interrupts that software can trigger by writing to a
register in the interrupt controller.

Generating SGIs An SGI is generated by writing to one of the following SGI registers in the CPU
interface:

System register interface Description

ICC_SGI0R_EL1 Generates a Secure Group 0 interrupt.

ICC_SGI1R_EL1 Generates a Group 1 interrupt, for the current Security state of the PE.

ICC_ASGI1R_EL1 Generates a Group 1 interrupt, for the other Security state of the PE.

You can see the basic format of the SGI registers in the following diagram:

Figure 7-1: SGI registers

Controlling the SGI ID
The SGI ID field controls which INTID is generated. As described in Interrupt types, INTIDs 0-15
are used for SGIs.

Controlling the target
The IRM (Interrupt Routing Mode) field in the SGI registers controls which PE or PEs an SGI is sent
to. There are two options:

• IRM = 0

The interrupt is sent to <aff3>.<aff2>.<aff1>.<Target List>, where <target list> is encoded
as 1 bit for each affinity 0 node under <aff1>. This means that the interrupt can be sent to a
maximum of 16 PEs, which might include the originating PE.

• IRM = 1

The interrupt is sent to all connected PEs, except the originating PE (self).

Controlling the Security state and grouping
The Security state and grouping of SGIs is controlled by:

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Sending and receiving Software Generated Interrupts

• The SGI register, ICC_SGI0R_EL1, ICC_SGI1R_EL1, or ICC_ASGIR_EL1, that is written by
software on the originating PE.

• The GICR_IGROUPR0 and GICR_IGRPMODR0 registers of the target PE or PEs.

Software executing in Secure state can send both Secure and Non-secure SGIs. Whether software
executing in Non-secure state can generate Secure SGIs is controlled by GICR_NSACR.

This register can only be accessed by software executing in Secure state. The following table shows
the GIC determines whether an interrupt is forwarded or not by inspecting:

• The Security state of the originating PE.

• The interrupt handling configuration of the PE which the interrupt is targeting.

• The SGI register.

Security state of sending PE SGI register written Configuration on receiving PE Forwarded?

Secure EL3/EL1 ICC_SGI0R_EL1 Secure Group 0

Secure Group 1

Non-secure Group 1

Yes

No

No

Secure EL3/EL1 ICC_SGI1R_EL1 Secure Group 0

Secure Group 1

Non-secure Group 1

No (*)

Yes

No

Secure EL3/EL1 ICC_ASGI1R_EL1 Secure Group 0

Secure Group 1

Non-secure Group 1

No

No

Yes

Non-secure EL2/EL1 ICC_SGI0R_EL1 Secure Group 0

Secure Group 1

Non-secure Group 1

Configurable by GICR_NSACR (*)

No

No

Non-secure EL2/EL1 ICC_SGI1R_EL1 Secure Group 0

Secure Group 1

Non-secure Group 1

Configurable by GICR_NSACR (*)

Configurable by GICR_NSACR

Yes

Non-secure EL2/EL1 ICC_ASGI1R_EL1 Secure Group 0

Secure Group 1

Non-secure Group 1

Configurable by GICR_NSACR (*)

Configurable by GICR_NSACR

No

• This table assumes that GICD_CTLR.DS==0. When GICD_CTLR.DS==1, the SGIs marked with (*) are
also forwarded.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Sending and receiving Software Generated Interrupts

Comparison of GICv3 and GICv2
In Arm GICv2, SGI INTIDs are banked by the originating PE and the target PE. This means that a
given PE could have the same SGI INTID pending a maximum of eight times, once from each PE in
the system.

In Arm GICv3, SGIs are only banked by the target PE. This means that a given PE can only have
one instance of an SGI INTID pending.

Let’s illustrate this difference with an example. PEs A and B simultaneously send SGI INTID 5 to PE
C, as shown here:

Figure 7-2: Multiple senders example

How many interrupts will C receive?

• For GICv2: Two interrupts

The GIC will receive both the interrupts from A and B. The order of the two interrupts depends
on the individual design and the precise timing. The two interrupts can be distinguished by the
fact that the ID of the originating PE is prefixed to the INTID that is returned by GICC_IAR.

• For GICv3: One interrupt

Because the originating PE does not bank the SGI, the same interrupt cannot be pending on
two PEs. Therefore, C only receive one interrupt, with ID 5, no prefix.

The example assumes that the two interrupts are sent simultaneously or almost simultaneously.
If C were able to acknowledge the first SGI before the second SGI arrived, then C would see two
interrupts in GICv3.

During legacy operation, that is when GICD_CTLR.ARE=0, the behavior of SGIs is
the same as in Arm CoreLink GICv2.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Example

8. Example
There is a short example to accompany this guide that is downloadable as a zip file.

The example configures the system counter to generate a system count, and then uses two timers
to generate interrupts based on the system count. As each timer fires, the interrupt handler
disables the associated timer to clear the interrupt.

The example requires Arm Development Studio. If you do not already have a copy, you can
download an evaluation copy.

Refer to the ReadMe.txt file in the zip file for full instructions to build and run the example.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 38

https://developer.arm.com/-/media/Files/downloads/Common%20Task%20Tutorials%20Samples/AArch64_GIC_v3_v4_example.zip
https://developer.arm.com/products/software-development-tools/arm-development-studio

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Check your knowledge

9. Check your knowledge
Q: What are the four interrupt types in Arm GICv3, and how are they identified?

A: The four types are Locality-specific Peripheral Interrupts (LPIs), Shared Peripheral Interrupts
(SPIs), Private Peripheral Interrupts (PPIs), and Software Generated Interrupts (SGIs). The type can
be identified from the INTID, the interrupt source ID number.

Q: What are the different groups that an interrupt can be assigned to, and what are each of those
groups typically used for?

A: Group 0 is typically used for interrupts that target the EL3 firmware.

Secure Group 1 is typically used for interrupts that target the Secure state software.

Non-secure Group 1 is typically used for interrupts that target the Non-secure kernel or hypervisor.

Q: Which registers would an interrupt handler read to find out which interrupt it had taken?

A: One of the ICC_IARn_EL1 registers.

Q: Out of reset, the GIC treats all the connected PEs as being offline or asleep. How does software
mark a PE as being online?

A: By clearing the GICR_WAKER.ProcessorSleep in the Redistributor of that PE, then polling until
ChildrenAsleep reads as 0.

Q: What configuration does the GIC store for each interrupt source?

A:

• Enable

• Priority

• Edge-triggered vs Level-sensitive

• Group

• Target (SPIs only)

Q: Can a PE send an SGI to itself?

A: Yes

Q: If a PE is already handling an interrupt, what controls whether another interrupt can preempt it?

A: The priority of the second interrupt and the value of the Binary Point register: ICC_BPRn_EL1.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Related information

10. Related information
Here are some resources related to material in this guide:

• GIC specifications

• GIC home page on developer.arm.com

• GIC Stream Protocol interface version B

• Arm Community

• The Learn the Architecture: Exception model guide

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 38

https://developer.arm.com/architectures/system-architectures/system-components/arm-generic-interrupt-controller/documentation
https://developer.arm.com/ip-products/system-ip/system-controllers/interrupt-controllers
https://developer.arm.com/documentation/ecm0495013/b/?lang=en
https://community.arm.com/developer
https://developer.arm.com/architectures/learn-the-architecture/exception-model

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2
Next steps

11. Next steps
This guide has introduced the Arm CoreLink GICv3 and v4 architecture and how to initialize a GIC
in a bare metal environment. This guide briefly introduced the Locality-specific Peripheral Interrupts
(LPI) interrupt type. How LPIs are handled and initialized is covered in our guide Arm CoreLink
Generic Interrupt Controller v3 and v4: Locality-specific Peripheral Interrupts.

The Arm CoreLink GIC architecture supports virtualization. To learn more about virtualization
features in GICv3 and GICv4, read our guide Arm CoreLink Generic Interrupt Controller v3 and v4:
Virtualization.

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 38

Learn the architecture - Generic Interrupt Controller v3 and
v4, Overview

Document ID: 198123_0302_02_en
Version 3.2

Appendix: Legacy operation

12. Appendix: Legacy operation
GICv3 made several changes to the programmer’s model compared to GICv2. To support legacy
software written for GICv2 systems, GICv3 has optional support for legacy operation.

Support for legacy operation is optional and DEPRECATED. Several of the latest GIC
implementations from Arm no longer support it.

The programmers’ model that is used is controlled by the Affinity Routing Enable (ARE) bits in
GICD_CTRL:

• When ARE==0, affinity routing is disabled (legacy operation).

• When ARE==1, affinity routing is enabled (GICv3 operation).

In a system with two Security states, affinity routing can be controlled separately for each Security
state. Only specific combinations are permitted, and these are as follows:

Figure 12-1: Supported combinations

Copyright © 2021, 2025 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 38

	Learn the architecture - Generic Interrupt Controller v3 and v4, Overview
	Contents
	1. Overview
	2. Before you begin
	3. What is a Generic Interrupt Controller?
	4. Arm GIC fundamentals
	5. Configuring the Arm GIC
	6. Handling interrupts
	7. Sending and receiving Software Generated Interrupts
	8. Example
	9. Check your knowledge
	10. Related information
	11. Next steps
	12. Appendix: Legacy operation

