
SystemReady Devicetree Band Integration and
Testing Guide
Version 3.0

Non-Confidential
Copyright © 2021–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
DUI1101_3.0_01_en



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

SystemReady Devicetree Band Integration and Testing Guide

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0300-
01

24
December
2024

Non-
Confidential

Updates of SystemReady Devicetree Band Integration and Testing
Guide

0202 23
September
2024

Non-
Confidential

Add “Deploying Yocto on SystemReady-compliant hardware”
appendix

0201-
01

24 April
2024

Non-
Confidential

Minor updates

0201 22
November
2023

Non-
Confidential

Updates for SystemReady IR 2.1 to reflect SRS v2.2 new features
and some automated tests in ACS image - EAC Release

0200 15 May
2023

Non-
Confidential

Updates for SystemReady IR 2.0 - EAC Release

0200 25
January
2023

Non-
Confidential

Updates for SystemReady IR 2.0 - Beta Release

0101 7 April
2022

Non-
Confidential

Second release version 1.1

0100 17 August
2021

Non-
Confidential

First release version 1.0

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 62

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Contents

Contents

1. SystemReady Devicetree Band Overview................................................................................................ 8
1.1 Before you begin............................................................................................................................................ 8

2. Configure U-Boot for SystemReady........................................................................................................ 10
2.1 Prerequisites...................................................................................................................................................10
2.2 UEFI................................................................................................................................................................. 10
2.3 Device Firmware Upgrade..........................................................................................................................11
2.3.1 Common configuration............................................................................................................................ 12
2.3.2 Generate capsule files..............................................................................................................................13
2.4 EFI System Resource Table (ESRT)...........................................................................................................15
2.5 Secure boot....................................................................................................................................................15
2.6 Adapt the automated boot flow...............................................................................................................15
2.7 Adapt the Devicetree.................................................................................................................................. 16

3. Test SystemReady Devicetree band........................................................................................................ 17
3.1 Test the U-Boot shell.................................................................................................................................. 18
3.2 Test the UEFI shell.......................................................................................................................................19
3.3 Test ESRT........................................................................................................................................................19
3.4 Test Devicetree............................................................................................................................................. 21
3.4.1 Devicetree Validation............................................................................................................................... 21
3.4.2 DT Kernelt self-test..................................................................................................................................22
3.5 Ethernet port Test........................................................................................................................................22
3.6 Test UpdateCapsule..................................................................................................................................... 24
3.7 Run the BBR tests........................................................................................................................................25
3.8 Run Linux BSA.............................................................................................................................................. 26
3.9 Secure boot test........................................................................................................................................... 27
3.10 Test installation of Linux distributions.................................................................................................. 27
3.11 Boot sources tests..................................................................................................................................... 29
3.12 Run the ACS test suite.............................................................................................................................30
3.13 Verify the test results............................................................................................................................... 31

4. Test with the ACS........................................................................................................................................ 32
4.1 ACS overview................................................................................................................................................32

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Contents

4.2 Run the ACS tests........................................................................................................................................34
4.3 Run ACS in automated mode....................................................................................................................37
4.4 Run ACS in normal mode...........................................................................................................................38
4.4.1 ACS waiver application flow.................................................................................................................. 38
4.5 Review the ACS logs...................................................................................................................................39
4.6 ACS logs......................................................................................................................................................... 40
4.6.1 ACS Configs............................................................................................................................................... 41

5. Related information..................................................................................................................................... 42

6. Next steps...................................................................................................................................................... 43

A. Build firmware for Compulab IOT-GATE-IMX8 platform.................................................................. 44

B. Run the SystemReady-devicetree band ACS image on simulator....................................................45
B.1 Prerequisite.................................................................................................................................................... 45
B.1.1 Install the FVP simulator.........................................................................................................................45
B.2 Prepare the SystemReady-devicetree band ACS live image.............................................................. 46
B.3 Compile the U-Boot.................................................................................................................................... 46
B.3.1 Compile the firmware to run on Qemu.............................................................................................. 46
B.3.2 Compile the firmware to run on FVP..................................................................................................47
B.4 Execute the ACS on simulator..................................................................................................................47
B.4.1 Execute on QEMU................................................................................................................................... 47
B.4.2 Execute on FVP........................................................................................................................................ 48

C. Rebuild the SystemReady-devicetree band ACS image......................................................................50
C.1 Prerequisites.................................................................................................................................................. 50
C.2 Build the SystemReady-devicetree band ACS live image................................................................... 50
C.3 Troubleshooting advice............................................................................................................................... 51

D. Test checklist.................................................................................................................................................52

E. Frequently Asked Questions..................................................................................................................... 53
E.1 General............................................................................................................................................................53

F. Steps to run edk2-test Parser manually................................................................................................. 54

G. Deploying Yocto on SystemReady-compliant hardware.................................................................... 55
G.1 Yocto Project overview...............................................................................................................................55

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Contents

G.2 SystemReady for Yocto.............................................................................................................................. 56
G.3 Build a generic SystemReady Yocto image............................................................................................56
G.4 Example: deployment on an NXP board................................................................................................58
G.5 The meta-arm layer.....................................................................................................................................60

H. Document Revisions................................................................................................................................... 62

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

SystemReady Devicetree Band Overview

1. SystemReady Devicetree Band Overview
SystemReady is a compliance program. It is based on a set of hardware and firmware standards
that enable interoperability with generic off-the-shelf operating systems and hypervisors. These
standards include the following:

• the Base System Architecture (BSA)

• Base Boot Requirements (BBR)

• Base Boot Security Requirements (BBSR)

• Market-specific supplements

SystemReady replaces the successful ServerReady compliance program and extends it to a broader
set of devices.

SystemReady compliance ensures that Arm-based servers, infrastructure edge devices, and
embedded IoT systems are designed to specific requirements. This enables generic, off-the-shelf
operating systems to work out of the box on Arm-based devices. The compliance program enables
systems to meet the SystemReady standards.

1.1 Before you begin
Before you test for SystemReady devicetree compliance, review this guide objective and the
SystemReady testing requirements in this section. This guide is specific for SystemReady
Devicetree band.

This guide describes how to configure a U-Boot-based platform for SystemReady Devicetree band
compliance, and how to run all the SystemReady Devicetree tests.

This guide assumes that your system has U-Boot firmware and the examples
shown are captured on a U-Boot platform. However, you can achieve SystemReady
Devicetree compliance with any UEFI-compliant firmware. Using U-Boot is not
mandatory. You can also use EDK2 or another firmware implementation for
certification. If you are not using U-Boot, you can ignore the Configure U-Boot for
SystemReady section.

To perform the following tasks which are required for certification:

• Enable Unified Extensible Firmware Interface (UEFI) features in U-Boot

• Run the SystemReady Devicetree live image of the Arm Architecture Compliance Suite (ACS)
and analyze test results

• Enable the EFI System Resource Table (ESRT) feature in U-Boot and test it in ACS

• Run the ACS Devicetree validation test in ACS

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

SystemReady Devicetree Band Overview

• Test for availability and accessibility of the Ethernet ports from Linux

• Sign firmware images, and test the UpdateCapsule() interface to authenticate signatures and
update the firmware(recommended)

• Enable secure boot in U-Boot and test it in ACS (recommended)

• Boot and install generic Linux distribution images

For more information about SystemReady compliance and testing requirements, see the Arm
SystemReady Requirements Specification.

SystemReady Devicetree compliant platforms must provide a specific minimum set of hardware and
firmware features to enable an operating system to be deployed. Compliant systems must conform
to the following requirements:

• The Embedded Base Boot (EBBR) Requirements. The EBBR specification is aimed at Arm
embedded device developers who want to use UEFI technology to separate firmware and OS
development. For example, class-A embedded devices like networking platforms can benefit
from a standard interface that supports features such as secure boot and firmware updates. For
more information, download the EBBR specification and reference source code from the EBBR
GitHub repository.

• The EBBR recipe requirements described in the Arm Base Boot Requirements.

• Arm recommends that SystemReady Devicetree platforms comply with the Arm Base System
Architecture (BSA) specification.

• Arm recommends that SystemReady Devicetree platforms comply with the Base Boot Security
Requirements (BBSR). This compliance is currently recommended, not mandatory.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 62

https://developer.arm.com/documentation/den0109/
https://developer.arm.com/documentation/den0109/
https://developer.arm.com/architectures/platform-design/embedded-systems
https://github.com/ARM-software/ebbr/releases
https://github.com/ARM-software/ebbr/releases
https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0107/latest
https://developer.arm.com/documentation/den0107/latest


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

2. Configure U-Boot for SystemReady
This section explains how to enable the U-Boot configuration options required for SystemReady
Devicetree Compliance.

These options enable the following features:

• UEFI

• Device Firmware Upgrade, to enable UpdateCapsule() support

• Encryption, to enable verification of signed capsules with FMP format with UpdateCapsule()

• ESRT

• Secure boot (when certifying with the recommended BBSR option)

This section is only relevant if you are using U-Boot firmware. You can ignore this section if you are
using EDK2 or other firmware.

2.1 Prerequisites
Build U-Boot and install it on your platform. U-Boot 2022.04 or later is required for SystemReady
Devicetree v2.1 onwards. U-Boot releases and patches are in the U-Boot git repository.
Instructions for porting and building U-Boot is beyond the scope of this document. See the U-Boot
documentation for details on how to enable a new platform.

2.2 UEFI
The UEFI Application Binary Interface must be enabled and supported in U-Boot for SystemReady
Devicetree.

To configure UEFI support in U-Boot:

1. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, enable the configuration
options as the following code shows:

// Core UEFI features
CONFIG_BOOTM_EFI=y
CONFIG_CMD_BOOTEFI=y
CONFIG_CMD_NVEDIT_EFI=y
CONFIG_CMD_EFIDEBUG=y
CONFIG_CMD_BOOTEFI_HELLO=y
CONFIG_CMD_BOOTEFI_HELLO_COMPILE=y
CONFIG_CMD_BOOTEFI_SELFTEST=y
CONFIG_CMD_GPT=y
CONFIG_EFI_PARTITION=y
CONFIG_EFI_LOADER=y
CONFIG_EFI_DEVICE_PATH_TO_TEXT=y
CONFIG_EFI_UNICODE_COLLATION_PROTOCOL2=y
CONFIG_EFI_UNICODE_CAPITALIZATION=y
CONFIG_EFI_HAVE_RUNTIME_RESET=y

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 62

https://source.denx.de/u-boot/u-boot


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

CONFIG_CMD_EFI_VARIABLE_FILE_STORE=y

2. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, add the following
configuration options to enable Real Time Clock (RTC) support:

CONFIG_DM_RTC=y
CONFIG_EFI_GET_TIME=y
CONFIG_EFI_SET_TIME=y
CONFIG_RTC_EMULATION=y

This configuration uses the RTC emulation feature that works on all platforms. If your
platform has a real RTC, enable the CONFIG_RTC_* option for that device instead of
CONFIG_RTC_EMULATION.

3. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, add the following
configuration options to enable the UEFI UpdateCapsule() interface to update firmware:

CONFIG_CMD_DFU=y
CONFIG_FLASH_CFI_MTD=y
CONFIG_EFI_CAPSULE_FIRMWARE_FIT=y
CONFIG_EFI_CAPSULE_FIRMWARE_MANAGEMENT=y
CONFIG_EFI_CAPSULE_FIRMWARE=y
CONFIG_EFI_CAPSULE_FIRMWARE_RAW=y

4. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, add the following
configuration options to enable partitions and filesystems support:

CONFIG_CMD_GPT=y
CONFIG_FAT_WRITE=y
CONFIG_FS_FAT=y
CONFIG_CMD_PART=y
CONFIG_PARTITIONS=y
CONFIG_DOS_PARTITION=y
CONFIG_ISO_PARTITION=y
CONFIG_EFI_PARTITION=y
CONFIG_PARTITION_UUIDS=y

With the UEFI ABI, U-Boot can find and execute UEFI binaries from a system partition on an
eMMC, SD card, USB flash drive, or other device. You can test UEFI boot using either a Linux
distribution ISO image or the ACS. Boot the platform with the image on a USB flash drive to boot
either the GRUB Linux distribution or the EFI Shell.

2.3 Device Firmware Upgrade
In U-Boot, configure Device Firmware Upgrade (DFU) to enable UpdateCapsule support, if your
system supports it. UpdateCapsule supports both signed capsule update and unsigned capsule
update schemes, set by different U-Boot configuration options. Arm recommends using the signed
capsule update scheme.

This section splits the configuration process into two parts:

• Common configuration describes steps that are common to both the signed and unsigned
capsule update schemes.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

• Generate capsule files describes steps that are specific to the signed capsule update scheme.

This guide does not describe the unsigned capsule update scheme, because it is not compliant.

2.3.1 Common configuration

To enable DFU mode:

1. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, add the following
configuration options:

CONFIG_FIT=y
CONFIG_OF_LIBFDT=y
CONFIG_DFU=y
CONFIG_CMD_DFU=y

2. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, add one or more of the
DFU backend configuration options for the storage device containing the firmware:

CONFIG_DFU_MMC=y
CONFIG_DFU_MTD=y
CONFIG_DFU_NAND=y
CONFIG_DFU_SF=y

3. In <root_workspace>/u-boot/configs/<platform_name>_defconfig, enable the following
configuration options to ensure that one or more of the DFU transport options are enabled for
testing:

CONFIG_DFU_OVER_TFTP=y
CONFIG_DFU_OVER_USB=y

4. Edit the test.its file to create a Flattened Image Tree (FIT) image used for testing:

/dts-v1/;

/ {
     description = "Automatic U-Boot update";
     \#address-cells = <1>;

     images {
             u-boot.bin {
                     description = "U-Boot binary";
                     data = /incbin/("u-boot.bin");
                     compression = "none";
                     type = "firmware";
                     arch = "arm64";
                     load = <0>;

                     hash-1 {
                             algo = "sha1";
                     };
             };
     };
};

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

5. Generate the binary tests.itb test image using the mkimage command:

$ mkimage -f test.its tests.itb

6. Use the dfu command to test that DFU is functioning correctly and reflash the device firmware.
The following example code shows DFU over TFTP:

u-boot=> setenv updatefile tests.itb
u-boot=> dhcp
u-boot=> dfu tftp ${kernel_addr_r}

2.3.2 Generate capsule files

This section describes how to generate three different capsule files:

• A signed capsule supporting authentication.

• An unsigned capsule, which should fail authentication.

• A tampered capsule, which should also fail authentication.

To generate a signed capsule file, follow these steps:

1. To support signed capsule file authentication, you need to enable the asymmetric algorithm,
HASH algorithm, secure boot, and X509 format certificate parser functions. These features
correspond to the following configuration options in <root_workspace>/u-boot/configs/
<platform_name>_defconfig for U-Boot:

CONFIG_EFI_CAPSULE_AUTHENTICATE=y
CONFIG_EFI_HAVE_CAPSULE_SUPPORT=y
CONFIG_EFI_RUNTIME_UPDATE_CAPSULE=y
CONFIG_EFI_CAPSULE_ON_DISK=y
CONFIG_EFI_SECURE_BOOT=y
CONFIG_EFI_SIGNATURE_SUPPORT=y
CONFIG_RSA=y
CONFIG_RSA_VERIFY=y
CONFIG_RSA_VERIFY_WITH_PKEY=y
CONFIG_IMAGE_SIGN_INFO=y
CONFIG_RSA_SOFTWARE_EXP=y
CONFIG_ASYMMETRIC_KEY_TYPE=y
CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y
CONFIG_RSA_PUBLIC_KEY_PARSER=y
CONFIG_X509_CERTIFICATE_PARSER=y
CONFIG_PKCS7_MESSAGE_PARSER=y
CONFIG_PKCS7_VERIFY=y
CONFIG_HASH=y
CONFIG_SHA1=y
CONFIG_SHA256=y
CONFIG_SHA512=y
CONFIG_SHA384=y
CONFIG_MD5=y
CONFIG_CRC32=y

2. To authenticate the signed firmware, generate a private key-pair and use the private key to sign
the firmware. This requires installing the following tools on your host:

• openssl

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

• efitools

• dtc version >=1.6

• mkeficapsule

Create the keys and certificate files on your host:

$ openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=CRT/ \
         -keyout CRT.key -out CRT.crt -nodes -days 365
$ cert-to-efi-sig-list CRT.crt CRT.esl

3. Use the mkeficapsule command to package the U-Boot binary in the capsule format:

$ mkeficapsule --monotonic-count 1 \
 --private-key "CRT.key" \
 --certificate "CRT.crt" \
 --index 1 \
 --guid 058B7D83-50D5-4C47-A195-60D86AD341C4 \
 "tests.itb" \
 "signed_capsule.bin"

You can use the resulting signed_capsule.bin binary to update the firmware with UEFI capsule
update, as described in [Test SystemReady Devicetree].

To generate an unsigned capsule file and a tampered capsule file from a signed capsule file, use
capsule-tool.py from the SystemReady scripts as follows:

$ capsule-tool.py --de-authenticate --output unauth.bin signed_capsule.bin
$ capsule-tool.py --tamper --output tampered.bin signed_capsule.bin

The mkimage and mkeficapsule tools exist in the U-Boot repository tools directory. For
information about how to build mkimage and mkeficapsule, see Building tools for Linux, in the U-
Boot documentation. Alternatively, you can use the GenerateCapsule tool from EDK2 to create a
UEFI Capsule binary.

GUID values are bound to particular systems. The GUID value
058B7D83-50D5-4C47-A195-60D86AD341C4 in the example above is for U-Boot using
FIT format on the QEMU platform. Replace it with your system-specific GUID.

To authenticate the signed capsule firmware, insert the signing public key into a dtb file.

1. Create a signature.dts file:

/dts-v1/;
/plugin/;

&{/} {
     signature {
                capsule-key = /incbin/("CRT.esl");
     };
};

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 62

https://gitlab.arm.com/systemready/systemready-scripts
https://github.com/u-boot/u-boot
https://u-boot.readthedocs.io/en/latest/build/tools.html#building-tools-for-linux
https://u-boot.readthedocs.io/en/latest/build/tools.html#building-tools-for-linux
https://github.com/tianocore/edk2


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

1. Compile the signature.dts file and overlay it on the original system dtb file:

$ dtc -@ -I dts -O dtb -o signature.dtbo signature.dts
$ fdtoverlay -i orig.dtb -o new.dtb -v signature.dtbo

The orig.dtb file is the original system dtb file. The new.dtb file is a new dtb file which includes the
signing public key certificate. Test UpdateCapsule uses this new.dtb file.

2.4 EFI System Resource Table (ESRT)
The EFI System Resource Table (ESRT) is a standard table for providing firmware version and
upgrade information to UEFI applications and the OS. Platforms with SystemReady Devicetree
compliance can benefit from integrating with common firmware update infrastructure.

To support ESRT, the U-Boot configuration must enable the following option:

CONFIG_EFI_ESRT=y

2.5 Secure boot
Secure boot enables firmware authentication in the boot stage. This is required for
BBSR compliance. To support this feature, enable the following configuration options in
<root_workspace>/u-boot/configs/<platform_name>_defconfig, :

CONFIG_EFI_SECURE_BOOT=y
CONFIG_EFI_LOADER=y
CONFIG_FIT_SIGNATURE=y
CONFIG_EFI_SIGNATURE_SUPPORT=y
CONFIG_HASH=y
CONFIG_RSA=y
CONFIG_RSA_VERIFY=y
CONFIG_RSA_VERIFY_WITH_PKEY=y
CONFIG_IMAGE_SIGN_INFO=y
CONFIG_ASYMMETRIC_KEY_TYPE=y
CONFIG_ASYMMETRIC_PUBLIC_KEY_SUBTYPE=y
CONFIG_X509_CERTIFICATE_PARSER=y
CONFIG_PKCS7_MESSAGE_PARSER=y
CONFIG_PKCS7_VERIFY=y

These configuration options might already have been enabled if you configured them as part of
Device Firmware Upgrade to support signed capsule file authentication.

2.6 Adapt the automated boot flow
Make sure that the automated boot sequence attempts the UEFI boot methods. In U-Boot,
the bootcmd environment variable holds the default boot command. This is usually a script that

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Configure U-Boot for SystemReady

attempts one or more boot methods in turn. This script tries to boot using the bootefi bootmgr
and bootefi commands. If your system is using the generic distro configuration, the generated
scan_dev_for_efi boot script automatically tries the UEFI boot methods.

Next, make sure the bootargs environment variable is empty when booting with UEFI. The
bootargs U-Boot environment variable holds the arguments passed to the image being booted,
which is traditionally the Linux kernel. When booting with the UEFI boot methods, the UEFI
application binary receives the bootargs arguments. Commonly, operating systems boot with
UEFI to run intermediate UEFI applications like GNU GRUB before booting the Linux kernel. To
avoid interfering with UEFI applications, the bootargs environment variable must be empty when
booting with UEFI. If your system uses the generic distro configuration, the bootargs are handled
appropriately.

2.7 Adapt the Devicetree
Adapt the U-Boot built-in Devicetree to support OS boot. When booting with UEFI, the Devicetree
is passed to UEFI applications, including the Linux kernel, as an EFI configuration table. With
U-Boot, Specify the Devicetree using an argument to the bootefi command. You can load this
Devicetree by the boot scripts from the storage medium. However, if U-Boot is already using a
built-in Devicetree in $fdtcontroladdr, the simplest option is to use this Devicetree. If necessary,
you can adapt the U-Boot built-in Devicetree sources to support both U-Boot and Linux OS boot.

Also, ensure that the UEFI Devicetree mentions the console UART. It is common with U-Boot to
pass the console UART information to the Linux kernel as arguments using the bootargs variable.
When booting with UEFI, the console UART must be specified as stdout-path in the chosen node
of the Devicetree.

The following code shows a simplified Devicetree example:

/ {
        chosen {
                stdout-path = "/serial@f00:115200";
        };

        serial@f00 {
                compatible = "vendor,some-uart";
                reg = <0xf00 0x10>;
        };
};

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

3. Test SystemReady Devicetree band
This section explains how to run the U-Boot and UEFI tests, and how to test the Linux installation
for SystemReady Devicetree.

The Test checklist appendix includes the steps in this section to help during testing.

Before you start the SystemReady Devicetree testing, you need the following tools and images:

• Provided by your platform vendor:

◦ The platform under test with firmware already installed.

◦ Three capsule files in FMP format: signed, unsigned, and tampered. These files were
generated in Generate capsule files.

• Provided by Arm:

◦ This guide

◦ SystemReady reporting template. Use this directory structure to collect all test results.

◦ SystemReady results parsing scripts. Use these scripts to check that all required logs are
provided and the required tests have passed.

◦ Arm SystemReady Devicetree band ACS live image installed on a storage medium. For
details about which version of the ACS image should be used, see the Arm SystemReady
Requirements Specification.

• Provided by a third party:

◦ Three actively supported versions of Linux distributions or BSD images on storage media.

The SystemReady Devicetree tests include the following:

• EFI System Resource Table (ESRT) dump and sanity check

• Devicetree validation

• Ethernet port availability and accessibility test

• UEFI Capsule Update tests

• EBBR tests

• UEFI BSA and Linux BSA tests

• Secure boot test, recommended

• Installation and boot of three different heritage of Linux/BSD distributions

• Boot sources stated by the vendor

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 62

https://gitlab.arm.com/systemready/systemready-ir-template
https://gitlab.arm.com/systemready/systemready-scripts
https://gitlab.arm.com/systemready/edk2-test-parser
https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/prebuilt_images/
https://developer.arm.com/documentation/den0109/
https://developer.arm.com/documentation/den0109/


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

Before running the tests, clone the SystemReady reporting template repository and use it to
capture the test results and logs. See the documentation in the template repository for the latest
list of commands to run the tests.

3.1 Test the U-Boot shell
The U-Boot shell test involves entering the U-Boot prompt and capturing logs for a series of
commands.

All U-Boot shell tests can be skipped if the U-Boot shell access is protected by the
firmware vendor.

To perform the U-Boot tests:

1. Start a log of all the output from the serial console.

2. Reboot the platform and run the following commands from the U-Boot shell:

u-boot=> help
u-boot=> version
u-boot=> printenv
u-boot=> printenv -e
u-boot=> bdinfo
u-boot=> rtc list
u-boot=> sf probe
u-boot=> usb reset
u-boot=> usb info
u-boot=> mmc rescan
u-boot=> mmc list
u-boot=> mmc info
u-boot=> efidebug devices
u-boot=> efidebug drivers
u-boot=> efidebug dh
u-boot=> efidebug memmap
u-boot=> efidebug tables
u-boot=> efidebug query
u-boot=> efidebug boot dump
u-boot=> efidebug capsule esrt
u-boot=> bootefi hello ${fdtcontroladdr}
u-boot=> bootefi selftest ${fdtcontroladdr}

3. Save the log as fw/u-boot-sniff.log in the results directory.

Always refer to the README.md from the SystemReady Devicetree template for the latest manual
test instructions.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 62

https://gitlab.arm.com/systemready/systemready-ir-template


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

3.2 Test the UEFI shell
To capture the behavior of the UEFI shell:

1. Capture the output from the serial console and boot into the UEFI shell using the ACS utility,
then run the following commands:

Shell> dmem
Shell> pci
Shell> drivers
Shell> devices
Shell> devtree
Shell> dmpstore
Shell> dh -d -v
Shell> memmap
Shell> smbiosview

2. Save the console log as fw/uefi-sniff.log in the results directory.

FS# indicates separate partitions, but the numbering might vary on different system.

In this example:

• FS0 is the boot partition on the SystemReady-Devicetree image

• FS2 is the / partition on the SystemReady-Devicetree image

For more details, see Prepare the SystemReady-devicetree band ACS live image.

Always see the README.md from the SystemReady Devicetree template for the latest manual test
instructions.

3.3 Test ESRT
This test is run automatically as part of the ACS. To perform the test manually, run the
CapsuleApp.efi application on UEFI Shell to dump the EFI System Resource Table (ESRT), as
follows:

UEFI Interactive Shell v2.2
EDK II
UEFI v2.100 (Das U-Boot, 0x20230700)
Mapping table
      FS0: Alias(s):HD0b:;BLK1:
          /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/VenHw(63293792-adf5-9325-
b99f-4e0e455c1b1e,00)/HD(1,GPT,f5cc8412-cd9f-4c9e-a782-0e945461e89e,0x800,0x32000)
      FS1: Alias(s):HD0c:;BLK2:
          /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/VenHw(63293792-adf5-9325-
b99f-4e0e455c1b1e,00)/HD(2,GPT,ed59c37b-2a8d-4d58-a7ec-a2d7e42ab4a1,0x32800,0xba40e)
      FS2: Alias(s):HD0d:;BLK3:
          /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/VenHw(63293792-adf5-9325-
b99f-4e0e455c1b1e,00)/HD(3,GPT,3000afbb-d111-4bb9-ae70-5f2242f9c85f,0xed000,0x19000)
     BLK0: Alias(s):
          /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/VenHw(63293792-adf5-9325-
b99f-4e0e455c1b1e,00)

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

     BLK3: Alias(s):
          /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/VenHw(63293792-adf5-9325-
b99f-4e0e455c1b1e,01)
Press ESC in 5 seconds to skip startup.nsh or any other key to continue.
Shell> FS0:
FS0:\> ls
Directory of: FS0:\
08/05/2011  23:00 <DIR>             0  acs_results
08/05/2011  23:00 <DIR>             0  EFI
08/05/2011  23:00          33,683,456  Image
08/05/2011  23:00 <DIR>             0  security-interface-extension-keys
08/05/2011  23:00               3,288  startup.nsh
08/05/2011  23:00                   0  yocto_image.flag
          3 File(s)  33,686,744 bytes
          2 Dir(s)
FS0:\> \EFI\BOOT\app\CapsuleApp.efi -E

ASSERT_EFI_ERROR (Status = Not Found)
ASSERT [CapsuleApp] /home/edhcha01/RELEASE/arm-systemready/IR/Yocto/meta-woden/
build/tmp/work/generic_arm64-oe-linux/uefi-apps/1.0-r0/edk2/MdeModulePkg/Library/
UefiHiiServicesLib/UefiHiiServicesLib.c(94): !(((INTN)(RETURN_STATUS)(Status)) < 0)

ASSERT_EFI_ERROR (Status = Not Found)
ASSERT [CapsuleApp] /home/edhcha01/RELEASE/arm-systemready/IR/Yocto/meta-woden/
build/tmp/work/generic_arm64-oe-linux/uefi-apps/1.0-r0/edk2/MdePkg/Library/
DxeServicesTableLib/DxeServicesTableLib.c(58): !(((INTN)(RETURN_STATUS)(Status)) <
 0)
ASSERT [CapsuleApp] /home/edhcha01/RELEASE/arm-systemready/IR/Yocto/meta-woden/
build/tmp/work/generic_arm64-oe-linux/uefi-apps/1.0-r0/edk2/MdePkg/Library/
DxeServicesTableLib/DxeServicesTableLib.c(59): gDS != ((void *) 0)

ASSERT_EFI_ERROR (Status = Not Found)
ASSERT [CapsuleApp] /home/edhcha01/RELEASE/arm-systemready/IR/Yocto/meta-woden/
build/tmp/work/generic_arm64-oe-linux/uefi-apps/1.0-r0/build/Build/MdeModule/
RELEASE_GCC5/AARCH64/MdeModulePkg/Application/CapsuleApp/CapsuleApp/DEBUG/
AutoGen.c(415): !(((INTN)
ASSERT_EFI_ERROR (Status = Not Found)
ASSERT [CapsuleApp] /home/edhcha01/RELEASE/arm-systemready/IR/Yocto/meta-woden/
build/tmp/work/generic_arm64-oe-linux/uefi-apps/1.0-r0/edk2/MdePkg/Library/
DxeHobLib/HobLib.c(48): !(((INTN)(RETURN_STATUS)(Status)) < 0)
ASSERT [CapsuleApp] /home/edhcha01/RELEASE/arm-systemready/IR/Yocto/meta-woden/
build/tmp/work/generic_arm64-oe-linux/uefi-apps/1.0-r0/edk2/MdePkg/Library/
DxeHobLib/HobLib.c(49): mHobList != ((void *) 0)
##############
# ESRT TABLE #
##############
EFI_SYSTEM_RESOURCE_TABLE:
FwResourceCount    - 0x1
FwResourceCountMax - 0x1
FwResourceVersion  - 0x1
EFI_SYSTEM_RESOURCE_ENTRY (0):
  FwClass                  - 058B7D83-50D5-4C47-A195-60D86AD341C4
  FwType                   - 0x0 (Unknown)
  FwVersion                - 0x0
  LowestSupportedFwVersion - 0x0
  CapsuleFlags             - 0x0
  LastAttemptVersion       - 0x0
  LastAttemptStatus        - 0x0 (Success)

Perform the ESRT sanity check on SystemReady-devicetree band ACS Linux Shell as follows:

1. exit UEFI Shell, and enter into Linux Boot

2. Run the fwts command on Linux Shell, as follows:

root@generic-arm64:~# fwts --ebbr esrt
Test: Sanity check UEFI ESRT Table.
  Sanity check UEFI ESRT Table.                           1 passed

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

  Validity of fw_class in UEFI ESRT Table for EBBR.       1 passed

3.4 Test Devicetree
This section describes how to manually perform Devicetree validation and a Kernel self-test

3.4.1 Devicetree Validation

Devicetree validation ensures that the Devicetree node data matches the schema constraints. The
ACS performs this test automatically. This section describes how to perform the test manually.

1. Install Devicetree Schema Tools using the following command:

$ pip3 install -U dtschema

See dt-schema for more information.

2. Install device specific bindings

Download or clone the latest stable kernel. The Devicetree schemas are in the Documentation/
devicetree/bindings directory.

3. Run the bsa.efi application on UEFI Shell to dump the Devicetree:

FS0:\EFI\BOOT\bsa\> Bsa.efi -dtb BsaDevTree.dtb

 BSA Architecture Compliance Suite
          Version 1.0.1

 Starting tests with print level :  3

 Creating Platform Information Tables
 PE_INFO: Number of PE detected       :    2
 GIC_INFO: Number of GICD             :    1
 GIC_INFO: Number of ITS              :    0
  MEM timer node offset not found
 TIMER_INFO: Number of system timers  :    0
 WATCHDOG_INFO: Number of Watchdogs   :    0
 PCIE_INFO: Number of ECAM regions    :    1
 PCIE_INFO: No entries in BDF Table
 SMMU_INFO: Number of SMMU CTRL       :    0
 Peripheral: Num of USB controllers   :    0
 Peripheral: Num of SATA controllers  :    0
 Peripheral: Num of UART controllers  :    1

This command dumps the dtb content and stores it in the BsaDevTree.dtb file. The ACS test
does this step automatically which is introduced in Run ACS in automated mode.

4. Mount the SystemReady-devicetree band ACS image on a Linux host machine and copy the
BsaDevTree.dtb file to the host machine.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 62

https://github.com/devicetree-org/dt-schema
https://www.kernel.org


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

5. Use the dtc tool to de-compile the BsaDevTree.dtb file, as follows:

$ dtc -o /dev/null -O dts -I dtb -s acs_results/uefi/BsaDevTree.dtb &>log

6. Validate the Devicetree file as follows:

$ dt-validate -s <kernel path>/Documentation/devicetree/bindings -m acs_results/
uefi/BsaDevTree.dtb &>>log

7. Analyze the logs with the dt-parser script:

$ dt-parser.py log

There should be no errors reported. Read the warnings and act on any relevant information. For
more information about how to download this script, see Verify the test results.

3.4.2 DT Kernelt self-test

DT kernel self-test is integarted with ACS live image and is used for validating the devices
described in the device tree have an associated drivers in OS.

The ACS performs this test automatically.This section describes how to perform the test manually.

1. Move to /usr/kernel-selftest directory cd /usr/kernel-selftest

2. Run the kselftest script ./run_kselftest.sh -t dt:test_unprobed_devices.sh &> log

3.5 Ethernet port Test
SystemReady Devicetree compliance requires the ethernet port to be available and accessible
in the OS. After the ACS Linux system boots up, the init.sh scripts automatically executes. It
executes ethtool-test.py script to detect and test the ethernet interfaces. The tests include
bringing up the ethernet interface and pinging the router/gateway.

The log is automatically stored in acs-results/linux-tools/ethtool-test.log. The expected logs
look like:

 ****************************************************************

                          Running ethtool

 ****************************************************************
 INFO: Detected following ethernet interfaces via ip command :
 0: eth0

 INFO: Bringing down all ethernet interfaces using ifconfig
 ifconfig eth0 down

 ****************************************************************

 INFO: Bringing up ethernet interface: eth0

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

 INFO: Running "ethtool eth0 " :
 Settings for eth0:
 .Supported ports: [  ]
 .Supported link modes:   Not reported
 .Supported pause frame use: No
 .Supports auto-negotiation: No
 .Supported FEC modes: Not reported
 .Advertised link modes:  Not reported
 .Advertised pause frame use: No
 .Advertised auto-negotiation: No
 .Advertised FEC modes: Not reported
 .Speed: Unknown!
 .Duplex: Unknown! (255)
 .Auto-negotiation: off
 .Port: Other
 .PHYAD: 0
 .Transceiver: internal
 .Link detected: yes

 INFO: Ethernet interface eth0 doesn't supports ethtool self test
 INFO: Link detected on eth0
 INFO: Running ip address show dev eth0 :
 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel qlen 1000
     link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
     inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic eth0
        valid_lft 86380sec preferred_lft 86380sec
     inet6 fec0::5054:ff:fe12:3456/64 scope site dynamic noprefixroute flags 100
        valid_lft 86383sec preferred_lft 14383sec
     inet6 fe80::5054:ff:fe12:3456/64 scope link
        valid_lft forever preferred_lft forever

 INFO: eth0 support DHCP
 INFO: Running ip route show dev eth0 :
 default via 10.0.2.2 dev eth0  src 10.0.2.15  metric 10
 10.0.2.0/24 dev eth0 scope link  src 10.0.2.15  metric 10
 10.0.2.2 dev eth0 scope link  src 10.0.2.15  metric 10
 10.0.2.3 dev eth0 scope link  src 10.0.2.15  metric 10

 INFO: Router/Gateway IP for eth0 : 10.0.2.2
 INFO: Running ifconfig eth0 up :
 INFO: Running ping -w 10000 -c 3 -I eth0 10.0.2.2 :
 PING 10.0.2.2 (10.0.2.2): 56 data bytes
 64 bytes from 10.0.2.2: seq=0 ttl=255 time=3.320 ms

 --- 10.0.2.2 ping statistics ---
 3 packets transmitted, 3 packets received, 0% packet loss
 round-trip min/avg/max = 1.774/2.562/3.320 ms

 INFO: Ping to router/gateway[10.0.2.2] for eth0 is successful
 INFO: Running ping -w 10000 -c 3 -I eth0 www.arm.com :
 PING www.arm.com (96.17.150.99): 56 data bytes
 64 bytes from 96.17.150.99: seq=0 ttl=255 time=121.453 ms

 --- www.arm.com ping statistics ---
 3 packets transmitted, 3 packets received, 0% packet loss
 round-trip min/avg/max = 121.453/121.755/122.213 ms

 INFO: Ping to www.arm.com is successful

 ****************************************************************

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

3.6 Test UpdateCapsule
UpdateCapsule is the standard interface to update firmware. The SystemReady devicetree ACS
image provides automatic capsule update testing as part of ACS automation run.

Prerequisites:

1. Copy the platform’s three capsule files:

• unauth.bin

• tampered.bin

• signed_capsule.bin

These files were generated using Generate capsule files mentioned in the IR guide. They are in the
BOOT partition /acs_tests/app/ path of the ACS image on a storage drive.

1. Boot the ACS image on the platform with the new.dtb file which was generated in Generate
capsule files.

The automatic capsule update flow is as follows.

1. Select bbr/bsa from the GRUB boot menu and press Enter. This is the default selection and
runs automatically if you do not choose another option.

2. First, the UEFI-based tests, including SCT, BSA, and the Ethernet port test, runs. After these
tests complete, ACS automatically boots to Linux.

3. In Linux, the FWTS, BSA, and MVP tests are executed. The image is automatically detected if
you need a capsule update test and will reboot to perform the testing.

4. After rebooting to the UEFI shell, SCT and BSA tests are skipped, because they were already
completed in the first run.

5. User input is requested to proceed with the capsule update, with a 10-second timeout.

6. If you press any key within 10 seconds, capsule.efi performs the on-disk capsule update test.
If you do not press any key and ACS determines that capsule testing is needed, it proceeds with
the test. However, a prompt is provided, allowing you to skip the capsule update test if wanted.

7. Before firmware update, script captures ESRT and SMBIOS tables for firmware update versions
into \acs_results\app_output path.

8. As part of firmware update, first the update with unauth.bin and tampered.bin is done, then
update with signed_capsule.bin is performed.

FS0:\acs_tests\app\CapsuleApp.efi   FS0:\acs_tests\app\unauth.bin
FS0:\acs_tests\app\CapsuleApp.efi   FS0:\acs_tests\app\tampered.bin
FS0:\acs_tests\app\CapsuleApp.efi   FS0:\acs_tests\app\ signed_capsule.bin -OD

1. If the update with signed_capsule.bin is successful, the system automatically resets for the
firmware update. In case of failure, ACS boots to Linux with a failure acknowledgment.

2. On reboot after firmware update, script captures ESRT and SMBIOS tables for firmware
update versions into `\acs_results\app_output path and then it boots to Linux with success
acknowledgement.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

3. In Linux, a message is logged indicating whether the capsule update was successful or not,
based on the uefi capsule update status.

3.7 Run the BBR tests
For SystemReady Devicetree compliance, the BBR test suites only test a reduced subset of the
UEFI and EBBR specifications. Some of the EBBR tests are contained in the UEFI Self-Certification
Tests (SCT), which are automatically executed when you choose bbr/bsa in the ACS GRUB menu.
Other EBBR tests based on FWTS are integrated into the init.sh script which is automatically
executed when you choose Linux Boot in the ACS GRUB menu.

root@generic-arm64:/usr/bin# fwts --ebbr
Running 3 tests, results appended to results.log
Test: UEFI miscellaneous runtime service interface tests.
  Test for UEFI miscellaneous runtime service interfaces  6 skipped
  Stress test for UEFI miscellaneous runtime service i..  1 skipped
  Test GetNextHighMonotonicCount with invalid NULL par..  1 skipped
  Test UEFI miscellaneous runtime services unsupported..  1 passed
Test: UEFI Runtime service variable interface tests.
  Test UEFI RT service get variable interface.            1 skipped
  Test UEFI RT service get next variable name interface.  1 skipped
  Test UEFI RT service set variable interface.            1 skipped
  Test UEFI RT service query variable info interface.     1 skipped
  Test UEFI RT service variable interface stress test.    1 skipped
  Test UEFI RT service set variable interface stress t..  1 skipped
  Test UEFI RT service query variable info interface s..  1 skipped
  Test UEFI RT service get variable interface, invalid..  1 skipped
  Test UEFI RT variable services unsupported status.      2 passed, 2 skipped
Test: UEFI Runtime service time interface tests.
  Test UEFI RT service get time interface.                1 skipped
  Test UEFI RT service get time interface, NULL time p..  1 skipped
  Test UEFI RT service get time interface, NULL time a..  1 skipped
  Test UEFI RT service set time interface.                1 skipped
  Test UEFI RT service set time interface, invalid yea..  1 skipped
  Test UEFI RT service set time interface, invalid yea..  1 skipped
  Test UEFI RT service set time interface, invalid mon..  1 skipped
  Test UEFI RT service set time interface, invalid mon..  1 skipped
  Test UEFI RT service set time interface, invalid day 0  1 skipped
  Test UEFI RT service set time interface, invalid day..  1 skipped
  Test UEFI RT service set time interface, invalid hou..  1 skipped
  Test UEFI RT service set time interface, invalid min..  1 skipped
  Test UEFI RT service set time interface, invalid sec..  1 skipped
  Test UEFI RT service set time interface, invalid nan..  1 skipped
  Test UEFI RT service set time interface, invalid tim..  1 skipped
  Test UEFI RT service set time interface, invalid tim..  1 skipped
  Test UEFI RT service get wakeup time interface.         1 skipped
  Test UEFI RT service get wakeup time interface, NULL..  1 skipped
  Test UEFI RT service get wakeup time interface, NULL..  1 skipped
  Test UEFI RT service get wakeup time interface, NULL..  1 skipped
  Test UEFI RT service get wakeup time interface, NULL..  1 skipped
  Test UEFI RT service set wakeup time interface.         1 skipped
  Test UEFI RT service set wakeup time interface, NULL..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT service set wakeup time interface, inva..  1 skipped

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

  Test UEFI RT service set wakeup time interface, inva..  1 skipped
  Test UEFI RT time services unsupported status.          4 passed

3.8 Run Linux BSA
The SystemReady-devicetree band ACS automatically runs the Linux BSA test. The BSA test is
integrated into the init.sh script which is executed automatically when SystemReady-devicetree
band ACS Linux boots up.

To run the Linux BSA test, do the following:

1. In the SystemReady-devicetree band ACS Linux Shell, load the kernel module as follows:

root@generic-arm64:~# insmod /lib/modules/*/kernel/bsa_acs/bsa_acs.ko
[   78.227399] init BSA Driver

2. Run the BSA test under Linux, as shown in the following example:

root@generic-arm64:~# bsa

 ************ BSA Architecture Compliance Suite *********
                        Version 1.0.6

 Starting tests (Print level is  3)

 Gathering system information....
[  194.112536]  PE_INFO: Number of PE detected       :    2
[  194.113856]  PCIE_INFO: Number of ECAM regions    :    1
[  194.496935]  PCIE_INFO: Number of BDFs found      :    0
[  194.497460]  PCIE_INFO: No entries in BDF Table
[  194.498691]  Peripheral: Num of USB controllers   :    0
[  194.499009]  Peripheral: Num of SATA controllers  :    0
[  194.499331]  Peripheral: Num of UART controllers  :    0
[  194.881670]  DMA_INFO: Number of DMA CTRL in PCIe :    0
[  194.882575]  SMMU_INFO: Number of SMMU CTRL       :    0

      *** Starting Memory Map tests ***
[  194.886495]
[  194.886495]       *** Starting Memory Map tests ***
[  194.887066]
[  194.887066] Operating System View:
[  194.887711]  104 : Addressability
[  194.887711]        Checkpoint --  2                           : Result: 
 SKIPPED
[  194.889531]
[  194.889531]       One or more Memory tests failed or were skipped.

      *** Starting Peripherals tests ***
[  194.893543]
[  194.893543]       *** Starting Peripheral tests ***
[  194.894110]
[  194.894110] Operating System View:
[  194.894471]  605 : Memory Attribute of DMA
[  194.894471]        No DMA controllers detected...
[  194.894471]        Checkpoint --  3                           : Result: 
 SKIPPED
[  194.895844]
[  194.895844]       One or more Peripheral tests failed or were skipped.

      *** Starting PCIe tests ***
[  194.899800]

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

[  194.899800]       *** Starting PCIe tests ***
[  194.900558]
[  194.900558] Operating System View:
[  194.900884]  801 : Check ECAM Presence                        : Result:  PASS
[  194.901618]
[  194.901618]        No PCIe Devices Found, Skipping PCIe tests...
[  194.902074]
[  194.902074]      ------------------------------------------------------------
[  194.902074]       Total Tests Run =  3, Tests Passed =  1, Tests Failed =  0
[  194.902074]      ------------------------------------------------------------

                    *** BSA tests complete ***

3. The BSA tests log is stored in /mnt/acs_results/linux_acs/bsa_acs_app/
BSALinuxResults.log.

3.9 Secure boot test
Secure boot enables cryptographic authentication of the software in the boot stage. It detects
whether the images loaded are corrupted or have been tampered with.

To enable the secure boot feature, all the firmware should be signed, and the boot process must
be configured to use the RSA public key algorithm. The secure boot feature is an important
requirement in the Base Boot Security Requirements which is recommended by the Arm
SystemReady Compliance Program.

For more details about the secure boot test, see the BBSR and Security Interface Testing FAQ.

3.10 Test installation of Linux distributions
SystemReady Devicetree must boot at least three unmodified generic UEFI distributors images,
each installed from a distinct storage medium written from an ISO image.

The following Linux distributions produce suitable ISO images:

• Fedora IoT

• Red Hat Enterprise Linux

• Rocky Linux

• Debian Stable

• Ubuntu Server

• OpenSUSE Leap

• SUSE Linux Enterprise Server

• OpenWRT

• The Yocto Project

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 62

https://developer.arm.com/documentation/den0107/latest/
https://www.arm.com/architecture/system-architectures/systemready-compliance-program
https://www.arm.com/architecture/system-architectures/systemready-compliance-program
https://developer.arm.com/documentation/107981/latest/SystemReady-compliance-testing---BBSR-and-Security-Interface-Testing-FAQ?lang=en
https://getfedora.org/en/iot/
https://developers.redhat.com/products/rhel/download
https://rockylinux.org/download/
https://www.debian.org/releases/stable/
https://ubuntu.com/download/server/arm
https://get.opensuse.org/leap/
https://www.suse.com/download/sles/
https://downloads.openwrt.org/
https://www.yoctoproject.org/


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

In testing, use the supported versions of the pre-built distributions from your chosen vendor,
above. We recommend using stable versions.

The selection of Linux distributions should cover the diversity of heritages. Fox example, RHEL/
Fedora/Rocky Linux belong to the same heritage, SLES/openSUSE belong to the same heritage,
and Ubuntu/Debian belong to the same heritage.

To test the Linux distribution installation, do the following:

1. Write the ISO image to a USB drive or other storage medium.

2. From a bash shell, run the following command to write the downloaded ISO to a storage
medium. This replaces <usb-block-device> with the path to the drive’s block device on your
Linux workstation:

$ dd if=/path/to/distro-image.iso of=/dev/<usb-block-device> ; sync

3. When testing the distribution installation, capture the log of the installation, the serial console
output from the first power-on of the board and the Boot sources tests.

4. After the ISO is written to the USB drive or equivalent, connect the USB drive to your board
and turn the board on. U-Boot finds the image and boots from the image by default. A
compliant system boots from the distribution ISO into the installer tool. Use this installer tool to
complete the installation of Linux and then reboot into a working Linux environment installed
on the eMMC or other local storage.

5. After Linux is installed, run the following sequence of Linux sniff tests as root using the serial
console:

     # dmesg
     # lspci -vvv
     # lscpu
     # lsblk
     # dmidecode
     # uname -a
     # cat /etc/os-release
     # efibootmgr
     # cp -r /sys/firmware ~/
     # tar czf ~/sys-firmware.tar.gz ~/firmware

6. Use the intermediate copy step to capture the /sys/firmware folder contents, then copy the
resulting console.log file and the sys-firmware.tar.gz file into os-logs/linux-<distroname>-
<distroversion>/ in the results directory for reporting.

7. Download the script ethtool-test.sh and run on the serial console as below:

$ sudo ./ethtool-test.sh | tee ethtool_test.log

For more details, see ethtool-test.

Always read the README.md from the SystemReady Devicetree template for the latest manual test
instructions.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 62

https://gitlab.arm.com/systemready/systemready-scripts/-/blob/ir2.1/ethtool-test.sh?ref_type=heads
https://gitlab.arm.com/systemready/systemready-scripts/-/tree/ir2.1?ref_type=heads#ethtool-testsh


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

3.11 Boot sources tests
Boot sources tests are limited to those sources stated by the vendor as such and block devices.
Other boot sources as network boot are not covered.

Boot sources tests detect all the block devices on the test platform, and perform the first block
reading on each block device. In automated SystemReady-devicetree band ACS test running, the
storage medium tests are integrated into the init.sh script which is automatically executed when
you choose Linux Boot in the SystemReady-devicetree band ACS GRUB menu. The logs are stored
in acs-results/linux-tools/read_blk_devices.log automatically as part of the ACS test.

This is an example of the Boot sources tests on QEMU platform logs.

*****************************************************************************

                            Read block devices tool

*****************************************************************************
INFO: Detected following block devices with lsblk command :
0: ram0
1: ram1
2: ram2
3: ram3
4: ram4
5: ram5
6: ram6
7: ram7
8: ram8
9: ram9
10: ram10
11: ram11
12: ram12
13: ram13
14: ram14
15: ram15
16: mtdblock0
17: vda
18: vdb

*****************************************************************************

INFO: Block device : /dev/ram0
INFO: Invalid partition table or not found for ram0
INFO: Block device : /dev/ram1
INFO: Invalid partition table or not found for ram1
INFO: Block device : /dev/ram2
INFO: Invalid partition table or not found for ram2
INFO: Block device : /dev/ram3
INFO: Invalid partition table or not found for ram3
INFO: Block device : /dev/ram4
INFO: Invalid partition table or not found for ram4
INFO: Block device : /dev/ram5
INFO: Invalid partition table or not found for ram5
INFO: Block device : /dev/ram6
INFO: Invalid partition table or not found for ram6
INFO: Block device : /dev/ram7
INFO: Invalid partition table or not found for ram7
INFO: Block device : /dev/ram8
INFO: Invalid partition table or not found for ram8
INFO: Block device : /dev/ram9
INFO: Invalid partition table or not found for ram9
INFO: Block device : /dev/ram10
INFO: Invalid partition table or not found for ram10
INFO: Block device : /dev/ram11

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

INFO: Invalid partition table or not found for ram11
INFO: Block device : /dev/ram12
INFO: Invalid partition table or not found for ram12
INFO: Block device : /dev/ram13
INFO: Invalid partition table or not found for ram13
INFO: Block device : /dev/ram14
INFO: Invalid partition table or not found for ram14
INFO: Block device : /dev/ram15
INFO: Invalid partition table or not found for ram15
INFO: Block device : /dev/mtdblock0
INFO: Invalid partition table or not found for mtdblock0
INFO: Block device : /dev/vda
INFO: Partition table type : GPT

INFO: Partition : /dev/vda1 Partition type GUID : EBD0A0A2-
B9E5-4433-87C0-68B6B72699C7 "Platform required bit" : 0
INFO: Performing block read on /dev/vda1 part_guid = EBD0A0A2-
B9E5-4433-87C0-68B6B72699C7
INFO: Block read on /dev/vda1 part_guid = EBD0A0A2-B9E5-4433-87C0-68B6B72699C7
 successful

INFO: Partition : /dev/vda2 Partition type GUID :
 0FC63DAF-8483-4772-8E79-3D69D8477DE4 "Platform required bit" : 0
INFO: Performing block read on /dev/vda2 part_guid =
 0FC63DAF-8483-4772-8E79-3D69D8477DE4
INFO: Block read on /dev/vda2 part_guid = 0FC63DAF-8483-4772-8E79-3D69D8477DE4
 successful

*****************************************************************************

INFO: Block device : /dev/vdb
INFO: Partition table type : GPT

INFO: Partition : /dev/vdb1 Partition type GUID : C12A7328-F81F-11D2-
BA4B-00A0C93EC93B "Platform required bit" : 0
INFO: vdb1 partition is PRECIOUS.
      EFI System partition : C12A7328-F81F-11D2-BA4B-00A0C93EC93B
      Skipping block read...

INFO: Partition : /dev/vdb2 Partition type GUID : B921B045-1DF0-41C3-
AF44-4C6F280D3FAE "Platform required bit" : 0
INFO: Performing block read on /dev/vdb2 part_guid = B921B045-1DF0-41C3-
AF44-4C6F280D3FAE
INFO: Block read on /dev/vdb2 part_guid = B921B045-1DF0-41C3-AF44-4C6F280D3FAE
 successful

*****************************************************************************

3.12 Run the ACS test suite
See Test with the ACS for instructions on running the ACS test suite. Save the full console log of
the ACS test log as acs-console.log in the results directory. Also copy the entire contents of the
ACS Results filesystem from the ACS drive into the results directory.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test SystemReady Devicetree band

3.13 Verify the test results
SystemReady Devicetree results can be verified using an automated script, which detects common
mistakes.

To verify the test results:

1. Clone the latest version of the scripts repositories:

$ git clone https://gitlab.arm.com/systemready/edk2-test-parser
$ git clone https://gitlab.arm.com/systemready/systemready-scripts

2. Run the script from the systemready-ir-template folder, which contains acs-console.log and
acs_results:

$ export PATH="$PATH:/path/to/edk2-test-parser"
$ cd systemready-ir-template
$ /path/to/systemready-scripts/check-sr-results.py
WARNING check_file: `./acs_results/linux_dump/lspci.log' empty (allowed)
INFO <module>: 153 checks, 152 pass, 1 warning, 0 error

Make sure there are no errors reported, as shown in the example output.

For more information, see the documentation in the systemready-scripts and systemready-ir-
template repositories.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 62

https://gitlab.arm.com/systemready/systemready-scripts
https://gitlab.arm.com/systemready/systemready-ir-template
https://gitlab.arm.com/systemready/systemready-ir-template


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

4. Test with the ACS
The ACS ensures architectural compliance across different implementations of the architecture.
The ACS is delivered as a prebuilt release image and also with tests in source form within a build
environment.

When verifying for SystemReady Devicetree compliance, choose ACS prebuilt image as
recommended by Arm SystemReady Requirements Specification.

The image is a bootable live OS image containing a collection of test suites. This collection of
Arm Compliance Suites (ACS) includes the BSA, BBR, BBR ACS. These test suites test compliance
against the BSA, BBR, EBBR, and BBSR specifications for SystemReady Devicetree Compliance.
Arm recommends using architectural implementations to sign off against the ACS to prove
compliance with these specifications.

For the latest image, see SystemReady Devicetree band ACS Release details.

For the latest changes to ACS, see https://github.com/ARM-software/arm-
systemready/blob/main/changelog.txt

4.1 ACS overview
The SystemReady Devicetree ACS is delivered through a live OS image. This image provides a
GRUB menu containing the following options:

• Linux Boot

• bbr/bsa

• SCT for Base Boot Security Requirements (optional)

• Linux Boot for Base Boot Security Requirements (optional)

The default option is bbr/bsa, which enables the basic automation to run the BSA and BBR tests.
The OS image is a set of UEFI applications on UEFI Shell and Linux kernel with BusyBox integrated
with the Firmware Test Suite (FWTS).

The BSA test suites check for compliance with the BSA specification. The tests are delivered
through the following suites:

• BSA tests on UEFI Shell. These tests are written on top of Validation Adaption Layers (VAL)
and Platform Adaptation Layers (PAL). The abstraction layers provide the tests with platform
information and a runtime environment to enable execution of the tests. In Arm deliveries, the
VAL and PAL layers are written on top of UEFI.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 62

https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/prebuilt_images/
https://developer.arm.com/documentation/den0109/latest
https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band#release-details
https://github.com/ARM-software/arm-systemready/blob/main/changelog.txt
https://github.com/ARM-software/arm-systemready/blob/main/changelog.txt


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

• BSA tests on the Linux command line. These tests consist of the Linux command-line
application bsa and the kernel module bsa_acs.ko.

The BBR test suites check for compliance with the BBR specification. For certification, the firmware
is tested against the EBBR recipe which contains a reduced subset of UEFI, the BBR, and the EBBR
specification. The tests are delivered through two bodies of code:

• EBBR tests contained in UEFI Self-Certification Tests (SCT). UEFI implementation requirements
are tested by SCT.

• EBBR based on the FWTS. The FWTS is a package hosted by Canonical that provides tests for
UEFI. The FWTS tests are a set of Linux-based firmware tests which are customized to run only
UEFI tests applicable to EBBR.

The BBSR test suites check for compliance with the Base Boot Security Requirements (BBSR)
specification. These test suites are automatically executed when the SCT for Security Interface
Extension (optional) or Linux Boot for Security Interface Extension (optional) GRUB
menu options are chosen. When the SCT for Security Interface Extension (optional) option
is chosen, the ACS attempts to enroll the secure boot keys automatically before running the SCT
test suite for SIE. For more details about how to run the SIE tests, see the BBSR and Security
Interface Testing FAQ.

If automatic secure boot key enrollment fails, manual enrollment is required, and the
BBSR tests must be restarted.

The following diagram shows the contents of the live OS image:

Figure 4-1: ACS components

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 62

https://developer.arm.com/documentation/107981/latest/SystemReady-compliance-testing---BBSR-and-Security-Interface-Testing-FAQ?lang=en
https://developer.arm.com/documentation/107981/latest/SystemReady-compliance-testing---BBSR-and-Security-Interface-Testing-FAQ?lang=en


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

4.2 Run the ACS tests
The prerequisites to run the ACS tests are as follows:

• Prepare a storage medium, such as a USB device, with a minimum of 1GB of storage. This
storage medium is used to boot and run the ACS and to store the execution results.

• Prepare the System Under Test (SUT) machine with the latest firmware loaded.

• Prepare a host machine for console access to the SUT machine, and collecting the results.

• Configure and capture test waivers as described in: arm-systemready/SystemReady-devicetree-
band at main · ARM-software/arm-systemready · GitHub

Figure 4-2 shows the ACS test process:

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

Figure 4-2: ACS test process

The ACS image must be set up on an independent medium or disk, such as a USB device. After
the ACS image is written to the disk, it must not be edited again. The U-Boot firmware should be

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

housed in a separate disk to that of the ACS. A storage device with ESP (EFI System Partition) must
exist in the system, otherwise the related UEFI SCT tests can fail.

To set up the USB device:

1. Download the latest ACS prebuilt image from the Arm SystemReady Devicetree band prebuilt
images repository to a local directory on Linux. For more information about the image releases,
see the SystemReady Devicetree band ACS readme.

2. Deploy the ACS image on a USB device. Write the ACS bootable image to a USB storage
device on the Linux host machine using the following commands:

$ lsblk
$ sudo dd if=/path/to/ir-acs-live-image-generic-arm64.wic of=/dev/sdX
$ sync

In this code, replace /dev/sdX with the name of your device. Use the lsblk command to display
the device name.

To execute the SystemReady-devicetree Band ACS prebuilt image:

1. Start capturing a log of the serial console output. The log must start from the first power on of
the board, and include the finished boot into Linux to run FWTS.

2. Select the option to boot from USB on the SoC.

3. Press any key to stop the boot process and change the boot_targets variable to specify the
boot device. Use setenv to change the boot_targets value and saveenv to make it the default.

4. If the platform cannot boot from the USB device, use an alternative such as an SD card. If the
platform cannot boot, the following message is displayed:

 U-Boot 2023.07.02 (Oct 07 2023 - 06:23:19 +0000)

 CPU:   [CPU Name] rev1.0 at 1200 MHz
 Reset cause: POR
 Model: [Board Name]
 DRAM:  2 GiB
 Core:  202 devices, 29 uclasses, devicetree: separate
 WDT:   Not starting watchdog@30280000
 Loading Environment from MMC... *** Warning - bad CRC, using default environment

 In:    serial@30880000
 Out:   serial@30880000
 Err:   serial@30880000
 Net:   eth0: ethernet@30be0000
 Hit any key to stop autoboot:  2  0
 u-boot=> print boot_targets
 boot_targets=usb0 mmc2 mmc0 pxe dhcp
 u-boot=> setenv boot_targets usb0 mmc2
 u-boot=> saveenv
 Saving Environment to MMC... Writing to MMC(2)... OK
 u-boot=> boot
 starting USB...
 Bus usb@32e40000: USB EHCI 1.00
 Bus usb@32e50000: USB EHCI 1.00
 scanning bus usb@32e40000 for devices... 2 USB Device(s) found
 scanning bus usb@32e50000 for devices... 5 USB Device(s) found
        scanning usb for storage devices... 2 Storage Device(s) found
 ...

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 62

https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/prebuilt_images
https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/prebuilt_images
https://github.com/ARM-software/arm-systemready/blob/main/SystemReady-devicetree-band/README.md


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

5. Insert the USB device in one of the USB slots and start a power cycle. The live image boots to
run the ACS.

Figure 4-3 shows the complete ACS execution process through the SystemReady-devicetree band
ACS live image:

Figure 4-3: ACS execution process

To skip the debug and test steps shown in the diagram, press any key within five seconds.

You must test the UpdateCapsule tests manually, then you must record and submit the logs.

4.3 Run ACS in automated mode
If you do not choose an option in the GRUB menu and do not skip any tests, the image runs the
ACS in the following order:

1. SCT tests
Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 37 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

2. Debug dumps

3. BSA ACS

4. Linux boot

5. FWTS tests

6. BSA tests

7. DT validate tool

8. DT kernel Kselftest

9. Ethtool

10. block device check script

11. System will automatically reboots for capsule update testing

12. Capsule Update test

13. Linux boot

After these tests are executed, the control returns to a Linux prompt.

4.4 Run ACS in normal mode
When the image boots, choose one of the following GRUB menu options to specify the test
automation:

• Linux Boot to execute FWTS and BSA

• bbr/bsa to execute the tests in the same sequence as fully automated mode

• SCT for Base Boot Security Requirements to execute the BBSR tests, include authenticated
variable tests, secure boot, and TCG2 protocol tests

• Linux Boot for Base Boot Security Requirements to execute authenticated variable tests
and Devicetree base tests of FWTS and the Trusted Platform Module 2 test

4.4.1 ACS waiver application flow

Waivers are automatically applied as part of automation run, based on user input waiver file. The
file should be kept at following location in the image: /mnt/acs_tests/config/acs_waiver.json.

On further details on waiver application process please check this guide: https://github.com/ARM-
software/arm-systemready/blob/main/common/docs/waiver_guide.md

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 62

https://github.com/ARM-software/arm-systemready/blob/main/common/docs/waiver_guide.md
https://github.com/ARM-software/arm-systemready/blob/main/common/docs/waiver_guide.md


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

4.5 Review the ACS logs
The logs are stored in a separate partition in the image called acs_results.

After the automated execution, the results partition acs_results is automatically mounted on /mnt.
Navigate to acs_results to view the logs, as Figure 4-4 shows:

Figure 4-4: acs_results file location

You can also extract the logs from the USB key on the host machine.

Check for the generation of the following logs after mounting the acs_results directory as Table
4-1 shows.

Table 4-1: Table 4-1: Logs description

Number ACS Full log path Running
time

Description

1 BSA(UEFI) acs_results/uefi/
BsaResults.log acs_results/
uefi/BsaDevTree.dtb

Less
than two
minutes

BsaDevTree.dtb is the dumped block of Devicetree

2 SCT acs_results/sct_results/
Summary.log

Four to
six hours

Summary.log contains the summary of all tests run. Logs of
individual SCT test suites can be found in the same path.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

Number ACS Full log path Running
time

Description

3 SCT results
parse

acs_results/edk2-test-
parser/edk2-test-parser.log

Less
than two
minutes

edk2-test-parser.log contains the edk2-test parser
summary of SCT result.

4 FWTS acs_results/fwts/
FWTSResults.log

Less
than two
minutes

FWTSResults.log contains a summary table and output of
the Firmware Test Suite results.

5 Debug
Dumps

acs_results/linux_dumps
acs_results/uefi_dumps

Less
than two
minutes

Contains dumps of the lspci command, drivers, devices,
memmap, and other files.

6 Linux tools acs_results/linux_tools Less
than two
minutes

Contains the logs of dt-validate, ethtool-test.py,
device_driver_info.sh read_blk_devices.py, and
device_tree.dts file

7 ESRT `acs_results/app_output Less
than two
minutes

Contains the logs of ESRT and FMP tests.

8 SCT for
BBSR

`acs_results/BBSR/sct_results/
Overall/Summary.log

Less
than four
minutes

Summary.log contains the summary of all tests run.

9 FWTS for
BBSR

Summary.log contains the summary
of all tests run

Less
than two
minutes

FWTSResults.log contains a summary table and output of the
Firmware Test Suite results

10 ACS JSON
and HTML
results

/mnt/acs_results/BBSR/fwts/
FWTSResults.log

Less
than ten
minutes

/mnt/acs_results/acs_summary/acs_jsons

The directory contains the acs test tools results in JSON
standard format.

/mnt/acs_results/acs_summary/html_
detailed_summary

The directory contains the acs test tools results in HTML
format. It includes a ACS summary and detailed individual test
suite report.

4.6 ACS logs
If any logs are missing, run the suite manually. To report the error, mount the boot partition to
copy the logs from acs_results directory to a local directory, then submit the logs. Use the
systemready-ir-template directory structure for recording the logs.

Use an SSD in a USB enclosure to execute the SCT tests more quickly. The SCT tests result are
parsed by edk2-test-parser script tool automatically in the SystemReady-devicetree band ACS
Linux shell.

The ACS image includes log parser scripts that process raw logs from individual tests. These scripts
generate detailed HTML pages for each test and an overall compliance report, summarized in the
acs_summary.html page.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 62

https://gitlab.arm.com/systemready/systemready-ir-template


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test with the ACS

The results are available in the /mnt/acs_results/acs_summary folder.

Please note that some results require manual interpretation, such as:

Test Log Location Check

SMBIOS /mnt/acs_results/uefi_dump/smbiosview.log smbios table as per BBR specification

OS-Logs /mnt/acs_results_template/os-logs/linux-*/ethtool_test /mnt/
acs_results_template/os-logs/linux-*/boot_source

Manually check the logs for any failure
Manually check the logs for any failure

4.6.1 ACS Configs

The following are the ACS configs files:

• acs_config_dt.txt: The file specifies the ARM specification version that the ACS tool
suite complies with, and this information is included in the System_Information table of the
ACS_Summary.html report.

• system_config.txt: The file is used to collect below system information which is required for
ACS_Summary.html report, this needs to be manually filled by user.

◦ FW source code: Unknown

◦ Flashing instructions: Unknown

◦ product website: Unknown

◦ Tested operated Systems: Unknown

◦ Testlab assistance: Unknown

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Related information

5. Related information
The following resources are related to material in this guide.

Specifications:

• Arm Base System Architecture (BSA) specification

• Arm Base Boot Requirements (BBR) specification

• Base Boot Security Requirements (BBSR)

• Arm SystemReady Requirements Specification

Repositories:

• Arm SystemReady ACS Repository

• Embedded Base Boot Requirements (EBBR) Repository

User Guides:

• Arm SystemReady Devicetree Band Compliance Policy Guidelines

• SystemReady FAQ

SystemReady Pages:

• SystemReady Devicetree Band Page

• Arm SystemReady Compliance Program

• Arm Community - SystemReady Forum

Other Resources:

• U-Boot Repository

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 62

https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/documentation/den0107/latest
https://developer.arm.com/documentation/den0109/latest
https://github.com/ARM-software/arm-systemready/tree/main/
https://github.com/ARM-software/ebbr/releases
https://developer.arm.com/documentation/110052/
https://developer.arm.com/documentation/107981/latest/
https://developer.arm.com/Architectures/Arm%20SystemReady%20Devicetree%20Band
https://www.arm.com/architecture/system-architectures/systemready-compliance-program
https://community.arm.com/support-forums/f/systemready-forum
https://source.denx.de/u-boot/u-boot


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0
Next steps

6. Next steps
In this guide, you learned how to prepare for SystemReady Devicetree compliance and how to
perform the tasks needed for the compliance program. This band is for devices in the IoT edge
sector that are built around SoCs based on the Arm A-profile architecture. The SystemReady
Devicetree band ensures interoperability with embedded Linux and other embedded operating
systems.

After reading this guide, you can find more information about certification registration at Arm
SystemReady Program.

For support with the ACS, e-mail support-systemready-acs@arm.com.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 62

https://www.arm.com/resources/contact-us/systemready-compliance
https://www.arm.com/resources/contact-us/systemready-compliance
mailto:support-systemready-acs@arm.com


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Build firmware for Compulab IOT-GATE-IMX8 platform

Appendix A Build firmware for Compulab
IOT-GATE-IMX8 platform

This section provides an example of how to build compliant firmware for an i.MX8M platform,
specifically for the IOT-GATE-iMX8 from Compulab.

Use the following commands to fetch the relevant reference source code and build the reference
firmware:

$ sudo apt install swig   # if the swig package is missing for Ubuntu
$ git clone https://git.linaro.org/people/paul.liu/systemready/build-scripts.git/
$ cd build-scripts
$ ./download_everything.sh
$ ./build_everything.sh

By default, the generated binary images are in the following directories:

• /tmp/uboot-imx8/flash.bin

• /tmp/uboot-imx8/u-boot.itb

• /tmp/uboot-imx8/capsule1.bin

For more information about how to test SCT on an i.MX8 board, see the following repositories:

• iot-gate-imx8

• Building and running iot-gate-imx8

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 62

https://git.linaro.org/people/paul.liu/systemready/build-scripts.git/tree/docs
https://git.linaro.org/people/paul.liu/systemready/build-scripts.git/tree/docs/iotgateimx8_building_running.md


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Run the SystemReady-devicetree band ACS image on simulator

Appendix B Run the SystemReady-
devicetree band ACS image on
simulator

Running the SystemReady-devicetree band ACS image on simulator involves the following steps:

1. Prepare the SystemReady-devicetree band ACS live image

2. [Compile the U-Boot firmware]

3. Execute the ACS on Simulator

It is possible to run either on [QEMU] or on [FVP].

B.1 Prerequisite
To test SystemReady Devicetree band on simulator, use steps:

1. Use a PC running [Ubuntu 24.04 LTS]

2. Install the following packages:

$ sudo apt install bash bc binutils build-essential bzip2 cpio diffutils \
           expect file findutils g++ gcc git gzip make patch perl rsync sed \
           tar telnet unzip wget xterm xz-utils

B.1.1 Install the FVP simulator

To run on FVP, download the FVP simulator from the Arm website and extract the archive:

$ wget https://developer.arm.com/-/media/Files/downloads/ecosystem-models/FM_11_25/
FVP_Base_RevC-2xAEMvA_11.25_15_Linux64.tgz
$ tar xf FVP_Base_RevC-2xAEMvA_11.25_15_Linux64.tgz

The FVP model executable is Base_RevC_AEMvA_pkg/models/Linux64_GCC-9.3/
FVP_Base_RevC-2xAEMvA.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Run the SystemReady-devicetree band ACS image on simulator

B.2 Prepare the SystemReady-devicetree band ACS live
image

Arm provides the Devicetree ACS live image, prepare it as the following steps:

1. Download the prebuilt Devicetree ACS image from arm-systemready github. Arm recommends
that you select the latest prebuilt Devicetree ACS image to download.

2. Uncompress the image with the following command:

$ xz -d systemready-dt_acs_live_image.wic.xz

This image comprises two file system partitions recognized by UEFI:

/

Stores rootfs of Linux and test-suites to run in Linux environment.

boot

Contains bootable applications and test suites. The bbr and bsa test applications are stored
in this partition under the EFI/BOOT directory. Contains a ‘acs_results’ directory which stores
logs of the automated execution of ACS. Approximate size: 150 MB.

B.3 Compile the U-Boot
You can build the U-Boot firmware with [Buildroot].

More information on Buildroot is available in [The Buildroot user manual].

To download Buildroot, do the following:

$ git clone https://gitlab.com/buildroot.org/buildroot.git -b 2024.08.x
$ cd buildroot

B.3.1 Compile the firmware to run on Qemu

To build the firmware code to run on Qemu, do the following:

$ make qemu_aarch64_ebbr_defconfig
$ make

When the build completes, it generates the firmware file output/images/flash.bin, comprising TF-
A, OP-TEE and the U-Boot bootloader. A QEMU executable is also generated at output/host/bin/
qemu-system-aarch64.

Specific information for this Buildroot configuration is available in the file board/qemu/aarch64-
ebbr/readme.txt.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 62

https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/prebuilt_images


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Run the SystemReady-devicetree band ACS image on simulator

B.3.2 Compile the firmware to run on FVP

To build the firmware code to run on FVP, do the following:

$ make arm_fvp_ebbr_defconfig
$ make

When the build completes, it generates the firmware file output/images/bl1.bin and output/
images/fip.bin, comprising TF-A, OP-TEE and the U-Boot bootloader.

Specific information for this Buildroot configuration is available in the file board/arm/fvp-ebbr/
readme.txt.

B.4 Execute the ACS on simulator
This section shows how to execute the ACS on simulator

B.4.1 Execute on QEMU

Launch Qemu using the following command:

$ ./output/host/bin/qemu-system-aarch64 \
    -M virt,secure=on,acpi=off \
    -bios output/images/flash.bin \
    -cpu cortex-a53 \
    -device virtio-blk-device,drive=hd1 \
    -device virtio-blk-device,drive=hd0 \
    -device virtio-net-device,netdev=eth0 \
    -device virtio-rng-device,rng=rng0 \
    -drive file=<path-to/ir-acs-live-image-generic-
arm64.wic>,if=none,format=raw,id=hd0 \
    -drive file=output/images/disk.img,if=none,id=hd1 \
    -m 2048 \
    -netdev user,id=eth0 \
    -nographic \
    -object rng-random,filename=/dev/urandom,id=rng0 \
    -rtc base=utc,clock=host \
    -smp 2

The SystemReady-devicetree band ACS starts, as Figure B-1 shows:

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Run the SystemReady-devicetree band ACS image on simulator

Figure B-1: Figure B-1: SystemReady-devicetree band ACS image starting on QEMU

The EFI System Partition (ESP) in use is the one created by Buildroot in the OS image file disk.img.

B.4.1.1 Troubleshooting QEMU advice

If the ACS halts at the following BSA test, restart qemu-system-aarch64 to finish running the ACS.

 502 : Wake from System Timer Int
       Checkpoint --  1                           : Result:  SKIPPED
 503 : Wake from EL0 PHY Timer Int

B.4.2 Execute on FVP

Launch the FVP using the following command:

<path-to/FVP_Base_RevC-2xAEMvA> \
    --config-file board/arm/fvp-ebbr/fvp-config.txt \
    -C bp.secureflashloader.fname="output/images/bl1.bin" \
    -C bp.flashloader0.fname="output/images/fip.bin" \
    -C bp.virtioblockdevice.image_path=<path-to/ir-acs-live-image-generic-arm64.wic>

There is no EFI System Partition (ESP) on FVP at this point.

• FVP: https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms

• QEMU: https://www.qemu.org

• Ubuntu 24.04 LTS: https://releases.ubuntu.com/

• Buildroot: https://buildroot.org

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 62

https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://www.qemu.org
https://releases.ubuntu.com/
https://buildroot.org


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Run the SystemReady-devicetree band ACS image on simulator

• The Buildroot user manual: https://buildroot.org/downloads/manual/manual.html

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 62

https://buildroot.org/downloads/manual/manual.html


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Rebuild the SystemReady-devicetree band ACS image

Appendix C Rebuild the SystemReady-
devicetree band ACS image

SystemReady ACS GitHub contains the prebuilt image. For details of the latest version for
download, see the release details. For debug purposes, if you want to rebuild the SystemReady
devicetree ACS image, see the steps from the ACS build steps in the SystemReady documentation.

C.1 Prerequisites
Before starting the ACS build, ensure that the following requirements are met:

• Ubuntu 22.04 LTS with a minimum of 32GB free disk space

• Bash shell

• Sudo privilege to install tools required for build

• Git is installed

If Git is not installed, install Git using sudo apt install git. Also, run the git config --global
user.name "Your Name" and git config --global user.email "Your Email" commands to
configure your Git installation.

C.2 Build the SystemReady-devicetree band ACS live
image

To build the live image:

1. Clone the arm-systemready repository using the following code with the latest release tag, for
example v24.11_SR_REL3.0.0-BETA0_SR-DT_REL3.0.0-BETA0:

git clone https://github.com/ARM-software/arm-systemready.git \
        --branch <release_tag>

2. Navigate to the SystemReady-devicetree band/Yocto directory directory:

cd arm-systemready/SystemReady-devicetree-band/Yocto

3. Run get_source.sh to download the sources and tools for the build. Provide the sudo
password if prompted:

./build-scripts/get_source.sh

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 62

https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/prebuilt_images
https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band#release-details
https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-devicetree-band/Yocto
https://github.com/ARM-software/arm-systemready/tags


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Rebuild the SystemReady-devicetree band ACS image

4. To start building the SystemReady-devicetree band ACS live image, use the following command:

./build-scripts/build-systemready-dt-band-live-image.sh

If this procedure is successful, the bootable image is available at /path-to-arm-systemready/
SystemReady-devicetree-band/Yocto/meta-woden/build/tmp/deploy/images/generic-arm64/

systemready-dt_acs_live_image.wic.xz.

The image is generated in a compressed (.xz) format. You must uncompress the
image before using it. You can use the following command to uncompress the
image:

xz xz -d systemready-dt_acs_live_image.wic.xz

C.3 Troubleshooting advice
When building SystemReady-devicetree band ACS image in step 4, you might see a kernel
download error:

Resolving cdn.kernel.org (cdn.kernel.org)... failed: Name or service not known.
wget: unable to resolve host address ‘cdn.kernel.org’

If you see this error, clone the latest arm-systemready repository code with the following
command:

git clone https://github.com/ARM-software/arm-systemready.git

Then continue from step 2.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Test checklist

Appendix D Test checklist
The following checklist summarizes the steps you must take to test your system for SystemReady
Devicetree compliance:

1. Perform U-Boot sanity tests manually as described in the Test the U-Boot Shell section in Test
SystemReady Devicetree band.

2. Perform UEFI sanity tests manually as described in the Test the UEFI Shell section in Test
SystemReady Devicetree band.

3. Perform capsule update manually as described in the Test UpdateCapsule section in Test
SystemReady Devicetree band.

4. Run the automated ACS-IR as described in the Run the ACS test suite section in Test
SystemReady Devicetree band.

5. Optionally perform SCT test for BBSR compliance as described in BBSR and Security Interface
Testing FAQ.

6. Optionally perform Linux BBSR FWTS and Secure firmware update tests as described in
SystemReady Security Interface Extension User Guide.

7. Install two Linux distributions and perform OS tests manually as described in the Test
installation of Linux distributions section in Test SystemReady Devicetree band.

8. Verify your test results using the scripts as described in the Verify the test results section in the
Test SystemReady Devicetree band and the Review the ACS logs section in Test with the ACS.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 62

https://developer.arm.com/documentation/107981/latest/SystemReady-compliance-testing---BBSR-and-Security-Interface-Testing-FAQ?lang=en
https://developer.arm.com/documentation/107981/latest/SystemReady-compliance-testing---BBSR-and-Security-Interface-Testing-FAQ?lang=en
https://developer.arm.com/documentation/107981/latest/SystemReady-compliance-testing---BBSR-and-Security-Interface-Testing-FAQ?lang=en


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Frequently Asked Questions

Appendix E Frequently Asked Questions
This section answers some common questions related to SystemReady Devicetree.

E.1 General
This section answers general questions related to SystemReady Devicetree.

What operating systems can run on a SystemReady Devicetree platform?
While SystemReady Devicetree is intended to make it easier to build embedded Linux and
BSD systems, it defines a base platform architecture that can be used by any operating system.
Operating systems that use the UEFI firmware ABI and the Devicetree system description can boot
on a SystemReady Devicetree platform.

How does SystemReady Devicetree band differ from SystemReady band?
SystemReady Devicetree band differs from SystemReady band in the following ways:

• SystemReady Devicetree requires only a subset of the UEFI ABI required by the SystemReady
core bad. In particular, SystemReady Devicetree does not require most Runtime Services
after ExitBootServices() has been called, and does not require Option ROM loadable driver
support. The lack of Runtime Services means changes to firmware variables, like BootXXXX, must
be done in the UEFI environment before the OS boots. The lack of Option ROM support means
that booting from PCIe devices may not be supported if the firmware does not have native
drivers for the device.

• SystemReady Devicetree uses the Devicetree system description instead of ACPI and SMBIOS.
Devicetree is used by Embedded Linux products and many embedded SoCs do not currently
have working ACPI descriptions. Linux supports both ACPI and Devicetree system descriptions,
so SystemReady platforms can all be supported with a single kernel image if the appropriate
configuration options are enabled.

• The core SystemReady band provide forward and backward compatibility with generic off-the-
shelf OS images. SystemReady IR only supports limited compatibility and has the dependency
that the board support package (BSP) is upstreamed and downported to the distros.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Steps to run edk2-test Parser manually

Appendix F Steps to run edk2-test Parser
manually

This section describes how to run edk2-test parser script tool to parse the SCT test results.

To run the edk2-test Parser tool:

1. Clone the latest version of the parser:

$ git clone https://git.gitlab.arm.com/systemready/edk2-test-parser.git

2. Run the parser from the acs_results folder:

$ cd acs_results
$ /path/to/edk2-test-parser/parser.py sct_results/Overall/Summary.ekl \
 sct_results/Sequence/EBBR.seq
INFO ident_seq: Identified `sct_results/Sequence/EBBR.seq' as
 "ACS-IR v23.03_IR_2.0.0 EBBR.seq".
INFO apply_rules: Updated 55 tests out of 10657 after applying 144 rules
INFO print_summary: 0 dropped, 0 failure, 51 ignored, 1 known acs limitation,
 3 known u-boot limitations, 10602 pass, 0 warning

3. Make sure the sequence file is recognized correctly, and that there are no dropped, skipped,
failures, or warnings reported.

Run the edk2-test Parser tool to parse the logs further, based on YAML
configurations.

For more information, see the document in the EDK2 SCT Results Parser repository.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 62

https://gitlab.arm.com/systemready/edk2-test-parser


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

Appendix G Deploying Yocto on
SystemReady-compliant
hardware

The Yocto Project (YP) is an industry standard development tool to build Linux-based software
stacks for embedded devices. YP provides the flexibility to create custom solutions, however
most YP builds require custom engineering to run on a specific hardware platform. As a result,
it is difficult to support many targets with a single configuration. On SystemReady compliant
platforms, YP builds rely on consistent boot behavior, a firmware-provided system description, and
mainline Linux support to eliminate per-platform enablement. SystemReady reduces the effort for
maintenance and can support many platforms with a single image.

This section provides further detail and guidance on the following:

• The Yocto Project (YP) and SystemReady

• A reference deployment example on an Arm-based NXP board

• Information about where to find the necessary components to get YP up and running on
SystemReady compliant platforms

G.1 Yocto Project overview
The Yocto Project helps developers build custom embedded Linux distributions. It is popular due
to its modularity, which allows you to optimize speed, footprint, and memory utilization. The Yocto
Project contains the following key elements:

• Tools for Linux development

• Poky, a reference embedded distribution

• OpenEmbedded build system

Poky is Yocto’s stable reference OS, which demonstrates a basic level of functionality for
embedded systems. Poky combines core components from the Yocto Project, is tested and
supported, and receives frequent updates. Developers can use Poky as a foundation and adapt it
to meet their requirements. Underpinning Yocto’s modularity is the Layer Model, which allows for
functionality to be logically organized into layers. Layers group related recipes and tell the build
system what to make. Recipes are a form of metadata, which contain instructions on where to find
the source code and information on dependencies and compilation options.

The OpenEmbedded layer index provides an easy way to find layers, such as Board Support
Packages (BSP), GUIs, middleware, and the Poky layer. The Yocto Project Compatible Layer Index
includes a curation of layers validated to work with Yocto. Combining pre-built layers with custom
built layers, developers can build an entire distribution. The layer system creates a logical hierarchy
which enables collaboration and reuse of code, whilst simplifying the overall view of the software.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

An example hierarchy can include the following layers:

• Developer Specific Layer, a custom functionality for the specific product requirements

• Poky, a reference OS to act as a foundation

• Hardware Specific BSP provided by the silicon vender or ODM

• Yocto Specific Layer, which are recipes specific to Yocto builds

• OpenEmbedded-core, a small set of foundational recipes consistent across OpenEmbedded
derived builds

The OpenEmbedded Build System uses the BitBake tool. BitBake parses recipes to compile a final
image either through native or cross compilation. For more detailed information about Yocto, see
the Yocto documentation.

G.2 SystemReady for Yocto
Yocto offers an easy way to build custom OS images. Embedded developers often support
many platforms with different hardware and firmware, creating bespoke Yocto images for each
configuration. SystemReady is designed to address this complexity. SystemReady compliant
platforms expose a standardized set of interfaces to the OS so that Yocto builds and other off-
the-shelf Linux distributions can boot without modifications. Embedded platforms can target
SystemReady, however Yocto builds can boot without modification across platforms compliant with
SystemReady.

SystemReady provides an effective solution to the issue of fragmentation for embedded
developers, offering a software experience that works while retaining the customizability that Yocto
is known for. With this combination, you can support large, diverse deployments with substantially
reduced effort.

G.3 Build a generic SystemReady Yocto image
This is a simple guide how to build a base generic Yocto image that will boot on any SystemReady
compatible platform.

1. Make sure all the Yocto build prerequisites are met, as described in Yocto Project Quick Build.

2. Set up Poky using the following code:

$ git clone git://git.yoctoproject.org/poky
$ cd poky
$ source oe-init-build-env

3. Set the MACHINE config value in the conf/local.conf config file to genericarm64, as shown in
the following snippet:

$ echo 'MACHINE ?= "genericarm64"' >> conf/local.conf

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 62

https://docs.yoctoproject.org/
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

genericarm64 is a generic SystemReady aarch64 machine.

4. Change the init system from sysvinit to systemd, as shown in the following code:

$ echo 'INIT_MANAGER = "systemd"' >> conf/local.conf

This system can properly detect the console tty from the kernel.

5. Build the Yocto image using the following code:

$ bitbake core-image-base

After the build successfully finishes the Yocto image can be found as <path to yocto repo>/
build/tmp/deploy/images/genericarm64/core-image-base-genericarm64.rootfs.wic

Although Yocto is often used to build firmware images, genericarm64 machine focuses on OS
image only. The expectation is that real hardware comes with the firmware pre-loaded.

6. Genericarm64 images for specific projects

The genericarm64 machine definition can be easily used to build Yocto images for specific projects.
For example, to build a Yocto image including Parsec and AWS Greengrass, in addition to the steps
described above you also need:

• Clone and add OpenEmbedded, Security, clang and AWS Yocto layers using the following code:

git clone git://git.openembedded.org/meta-openembedded
git clone git://git.yoctoproject.org/git/meta-security
git clone https://github.com/aws4embeddedlinux/meta-aws.git
git clone https://github.com/kraj/meta-clang.git
cd poky
source oe-init-build-env
bitbake-layers add-layer ../../meta-openembedded/meta-oe
bitbake-layers add-layer ../../meta-openembedded/meta-python
bitbake-layers add-layer ../../meta-openembedded/meta-networking
bitbake-layers add-layer ../../meta-openembedded/meta-multimedia
bitbake-layers add-layer ../../meta-clang
bitbake-layers add-layer ../../meta-aws
bitbake-layers add-layer ../../meta-security/meta-tpm
bitbake-layers add-layer ../../meta-security/meta-parsec

• Include Parsec and AWS Greengrass into the Yocto image:

echo '
# TPM
DISTRO_FEATURES:append = " tpm2"
IMAGE_INSTALL:append = " tpm2-tools"

# PARSEC
IMAGE_INSTALL:append = " parsec-service parsec-tool"

# AWS greengrass and command line utility
IMAGE_INSTALL:append = " aws-cli greengrass-bin"' >> conf/local.conf

The result image can be used to boot any SystemReady compliant platform and provision it as an
AWS IoT thing.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

1. Pre-built Generic arm64 Yocto images.

Yocto project publishes pre-built Yocto images which can be used for initial testings. Genericarm64
images with systemd init system can be found in Yocto 5.0.5 genericarm64-alt images or later
Yocto releases.

G.4 Example: deployment on an NXP board
Before you begin, you will need the following:

• An NXP i.MX 8M Mini EVK board

• A micro SD card that is 2GB or larger

• A computer running a Linux environment

Make the board SystemReady Devicetree compatible
To make the board SystemReady Devicetree compatible, do the following:

1. Ensure you have an NXP account.

2. Download and extract the i.MX 8M Mini EVK boot image (SystemReady certified) from
Embedded Linux for i.MX Applications Processors.

3. Download the uuu tool from the mfgtools GitHub repository. This tool is used to program the
onboard eMMC.

4. On the NXP board, slide the power switch to the off position and set the boot mode switches
to Download mode. The following table shows the switch settings:

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10

Top row 1 0 1 0 X X X X X X

Bottom row X X X X X X X X X 0

1=Switch Up, 0= Switch Down, X= Either

5. Connect the USB-C power cable to the power supply, the USB-C USB cable to the PC, and
the USB Micro cable to the PC (serial). The following diagram shows how the cables should be
connected:

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 62

https://downloads.yoctoproject.org/releases/yocto/yocto-5.0.5/machines/genericarm64-alt/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX?tab=In-Depth_Tab
https://github.com/NXPmicro/mfgtools/releases


SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

Figure G-1: An image showing how to connect the USB cables

6. Slide the power switch to the on position and flash the boot firmware as shown in the following
code snippet:

$ sudo uuu -b emmc imx-boot-imx8mmevk-sd.bin-flash_evk

The SystemReady Devicetree compatible version of U-Boot is installed to the onboard eMMC.

7. Slide the power switch to the off position and set the boot mode switches to eMMC mode, as
shown in the following table:

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10

Top row 0 1 1 0 1 1 0 0 0 1

Bottom row 0 0 0 1 0 1 0 1 0 0

1=Switch Up, 0= Switch Down

The board is now ready to boot SystemReady compatible operating systems from an SD Card or
USB.

Boot a generic SystemReady Yocto image
Now that the board is SystemReady Devicetree compatible, the next step is to boot the base
generic Yocto image built following the Build a generic SystemReady Yocto image guide.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

1. Copy the image to a micro SD card using the following code:

sudo dd if=<path to yocto repo>/build/tmp/deploy/images/genericarm64/core-image-
base-genericarm64.rootfs.wic of=/dev/sdX bs=4M

2. Insert the microSD card into the development board and power it on. As shown in the following
screen shot, the board shows U-boot, the systemd-boot menu, and a login shell for Yocto:

Figure G-2: A screenshot showing the Yocto login shell

The Yocto image is now installed on the NXP board.

G.5 The meta-arm layer
meta-arm is a layer with recipes specific for Arm platforms, and contains qemuarm64-secureboot
and qemuarm64-sbsa QEMU machines.

The following table describes the recipes in the meta-arm layer:

Recipe Description

Android Common Kernel Downstream of kernel.org kernels, including selected patches that have not been merged into the mainline
or Long Term Supported (LTS) kernel

Arm FVP - Architecture
Envelope Model

Support for Fixed Virtual Platform (FVP) Architecture Envelope Models (AEM)

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Deploying Yocto on SystemReady-compliant hardware

Recipe Description
Arm FVP - Library
Ecosystem Reference
Design

Support for Arm FVP library, which includes all CPU FVPs

DS-5 Streamline Gator
daemon

Daemon for gathering data for Arm Streamline Performance Analyser (part of Arm Development Studio)

Hafnium A reference Secure Partition Manager (SPM) for systems that implement the Armv8.4-A Secure-EL2
extension, enabling multiple, isolated Secure Partitions (SPs) to run at Secure-EL1

OpenCSD API for decoding trace streams from Arm CoreSight trace hardware

OP-TEE Trusted Execution Environment (TEE) designed as companion to a non-secure Linux kernel running on
Cortex-A cores using TrustZone

SCP Firmware System Control Processor (SCP) and Manageability Control Processor (MCP) firmware reference
implementation

Tianocore EDK2 Open-source implementation of UEFI

Trusted Firmware-A Reference implementation of secure world software for Cortex-A

Trusted Firmware for
Cortex-M

Reference implementation of secure world software for Cortex-M

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 62



SystemReady Devicetree Band Integration and Testing
Guide

Document ID: DUI1101_3.0_01_en
Version 3.0

Document Revisions

Appendix H Document Revisions
This section contains changes between current version and previous version.

Table H-1: Changes between v2.0 EAC and v2.1 EAC

Changes Topics affected

Added key enrollment automation test • ACS overview

Added how to test boot sources • Boot sources tests

Added how to test ethernet port • Ethernet port Test

Table H-2: Changes between ACS v2.1.0 and ACS v2.0.0

Changes Topics affected

Added the automated Secure Boot key enrollment • ACS overview

Added the automated running of edk2-test parser and saving of results in acs_results • ACS logs

• Steps to
run edk2-
test Parser
manually

Added the automated running of ethtool.py to test the ethernet ports • Ethernet port
Test

Added the automated discovery and read of block devices and identifying “precious” partitions • Boot sources
tests

Added the saving of /sys folder and device to driver mapping logs • Test
installation
of Linux
distributions

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 62


	SystemReady Devicetree Band Integration and Testing Guide
	Contents
	1. SystemReady Devicetree Band Overview
	1.1 Before you begin

	2. Configure U-Boot for SystemReady
	2.1 Prerequisites
	2.2 UEFI
	2.3 Device Firmware Upgrade
	2.3.1 Common configuration
	2.3.2 Generate capsule files

	2.4 EFI System Resource Table (ESRT)
	2.5 Secure boot
	2.6 Adapt the automated boot flow
	2.7 Adapt the Devicetree

	3. Test SystemReady Devicetree band
	3.1 Test the U-Boot shell
	3.2 Test the UEFI shell
	3.3 Test ESRT
	3.4 Test Devicetree
	3.4.1 Devicetree Validation
	3.4.2 DT Kernelt self-test

	3.5 Ethernet port Test
	3.6 Test UpdateCapsule
	3.7 Run the BBR tests
	3.8 Run Linux BSA
	3.9 Secure boot test
	3.10 Test installation of Linux distributions
	3.11 Boot sources tests
	3.12 Run the ACS test suite
	3.13 Verify the test results

	4. Test with the ACS
	4.1 ACS overview
	4.2 Run the ACS tests
	4.3 Run ACS in automated mode
	4.4 Run ACS in normal mode
	4.4.1 ACS waiver application flow

	4.5 Review the ACS logs
	4.6 ACS logs
	4.6.1 ACS Configs


	5. Related information
	6. Next steps
	A. Build firmware for Compulab IOT-GATE-IMX8 platform
	B. Run the SystemReady-devicetree band ACS image on simulator
	B.1 Prerequisite
	B.1.1 Install the FVP simulator

	B.2 Prepare the SystemReady-devicetree band ACS live image
	B.3 Compile the U-Boot
	B.3.1 Compile the firmware to run on Qemu
	B.3.2 Compile the firmware to run on FVP

	B.4 Execute the ACS on simulator
	B.4.1 Execute on QEMU
	B.4.1.1 Troubleshooting QEMU advice

	B.4.2 Execute on FVP


	C. Rebuild the SystemReady-devicetree band ACS image
	C.1 Prerequisites
	C.2 Build the SystemReady-devicetree band ACS live image
	C.3 Troubleshooting advice

	D. Test checklist
	E. Frequently Asked Questions
	E.1 General

	F. Steps to run edk2-test Parser manually
	G. Deploying Yocto on SystemReady-compliant hardware
	G.1 Yocto Project overview
	G.2 SystemReady for Yocto
	G.3 Build a generic SystemReady Yocto image
	G.4 Example: deployment on an NXP board
	G.5 The meta-arm layer

	H. Document Revisions

