
SystemReady Band Integration and Testing Guide
Version 4.0

Non-Confidential
Copyright © 2020, 2023–2024 Arm Limited (or its
affiliates).
All rights reserved.

Issue 01
102677_0400_01_en

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

SystemReady Band Integration and Testing Guide

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0400-
01

24 December
2024

Non-
Confidential

Major update

0300-
02

4 April 2024 Non-
Confidential

Minor updates

0300-
01

25 October
2023

Non-
Confidential

Integrated SR ACS requirements into ACS chapter

0200-
01

14 April 2023 Non-
Confidential

Added SR requirements to create the SystemReady SR/ES
Integration Guide

0100-
01

1 January 2020 Non-
Confidential

Initial release of SystemReady ES Integration Guide

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 70

https://www.arm.com/company/policies/trademarks

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 70

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Contents

Contents

1. Terms and abbreviations... 7

2. SystemReady Band Test and Integration Overview... 8

3. Set up the Raspberry Pi 4.. 9
3.1 Set up the terminal..11
3.2 Format the SD drive..11
3.3 Update the EEPROM.. 15
3.4 Install UEFI...15
3.5 Configure UEFI..17
3.6 Troubleshooting UEFI.. 18
3.7 Set UEFI variables.. 20
3.8 Set the system table selection..21
3.9 Set the console preference..22
3.10 Limit RAM to 3GB...23

4. Set up the RD-N2 FVP... 24
4.1 Set up the host machine and download the software stack..24
4.2 Download the RD-N2 FVP..24
4.3 Build the software stack and run the FVP...25

5. Preparation...26
5.1 Install and boot requirements..26
5.2 Prepare the OS installer media... 26
5.3 Boot order..29

6. Windows PE.. 31
6.1 Download and run Windows ADK and WinPE.. 31
6.2 Create an ISO file...33
6.3 Install to a USB drive.. 34
6.4 Other Boot Configuration Data settings...34
6.5 Boot WinPE... 35

7. ACS...36

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Contents

7.1 ACS overview..36
7.2 BSA-ACS and SBSA-ACS..37
7.3 BBR-ACS...37
7.4 ACS prerequisites... 37
7.5 Set up the test environment... 38
7.6 Run the tests... 38
7.7 Run tests in automated mode...40
7.8 Run tests in normal mode..45
7.9 Review the ACS test result logs... 45

8. Debugging commands...47

9. Advanced Configuration and Power Interface..48
9.1 Example: Thermal zone...49
9.2 Example: Fan cooling device..50
9.3 Example: USB XHCI and PCIe.. 52
9.4 Example: UART... 54
9.5 Example: Debug port...55
9.6 Example: Power button...56
9.7 Example: PCIe ECAM..57
9.8 ACPI integration recommendations... 59

10. SMBIOS requirements.. 62
10.1 SMBIOS integration...62
10.2 Platform driver..63
10.3 System Management BIOS framework...64

11. UEFI requirements...65

12. Related information...66

13. Next steps..67

A. Running ACS tests manually... 68

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Terms and abbreviations

1. Terms and abbreviations
This document uses the following terms and abbreviations.

UEFI
Unified Extensible Firmware Interface

EDK2
EFI Development Kit 2

ACPI
Advanced Configuration and Power Interface

ASL
ACPI Source Language

AML
ACPI Machine Language

SMBIOS
System Management BIOS

PXE
Preboot Execution Environment

USAP
USB Attached SCSI Protocol

ACS
Architecture Compliance Suite

BSA
Base System Architecture

SBSA
Server Base System Architecture

BBR
Base Boot Requirement

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

SystemReady Band Test and Integration Overview

2. SystemReady Band Test and Integration
Overview

This guide describes how to integrate SystemReady band compliant systems, how to develop and
build the firmware, and how to run the SystemReady band compliance tests.

In this guide, you will learn:

• How to set up a Raspberry Pi 4 for SystemReady tests

• How to set up a Neoverse N2 reference design (RD-N2) FVP for SystemReady tests.

• How to use the SystemReady band compliance test suites

• About Advanced Configuration and Power Interface (ACPI) power management and System
Management BIOS (SMBIOS) integration

This guide describes expectations for SystemReady band compliant systems.
Additional requirements may apply depending on target market-segment. For
example, SBSA requirements additionally apply for servers.

Before you begin
This guide assumes you are familiar with the following technologies and frameworks:

• UEFI

• EDK2 firmware development environment

• ACPI, ASL, and AML

• SMBIOS

This guide is aimed at the following audiences:

• IHVs and OEMs who develop SystemReady band compliant platforms

• UEFI developers who implement ACPI and SMBIOS support for SystemReady band compliant
platforms

• Operating system developers who adapt their operating systems to run on SystemReady band
compliant platforms

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

3. Set up the Raspberry Pi 4
This section describes using a Raspberry Pi 4 to demonstrate how to build a SystemReady band
compliant platform.

To set up the Raspberry Pi, you need the following hardware:

Power
A powered USB hub to avoid overloading the standard Raspberry Pi power supply.

Network controller (NIC)
UEFI supports the Raspberry Pi NIC such as for Preboot eXecution Environment (PXE)
booting. However, the NIC driver is missing from many OS distributions. Use a USB NIC,
such as a Realtek RTL8153 based device. For this guide, we tested the Raspberry Pi with
RTL8153 NIC.

Storage
A micro SD card and a USB storage device. The micro SD holds the UEFI firmware and any
FAT16 or FAT32 capable drive will work.

The USB Storage device is the main disk for the operating system. Connect it to the USB port
of the Raspberry Pi. We recommend the USB 3.0 blue ports for better performance.

Check your OS for minimum install size, for example, 64 to 128GB as a starting point. You
can use thumb drivers and drive enclosures. We recommend a UASP enabled external drive.
A second 8GB or larger thumb drive is recommended for the OS installer.

Interfacing
Use the Raspberry Pi video output with a keyboard and mouse or use a serial connection.
You can setup both types of connection at the same time.

Keyboard and mouse
Use an HDMI micro to HDMI cable and an HDMI display to output the video. USB mice and
keyboards with generic drivers will work.

Serial adapter
For this guide, use a generic TTL serial adapter that utilizes separate cables. You need to use
three of the wires.

Figure 3-1 shows how to connect the serial adapter to your Raspberry Pi:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Figure 3-1: Raspberry Pi serial adapter connections

Table 3-1 shows the connection details:

Table 3-1: Connection Details

Description TX RX GRND

Color Red Brown Orange

Header pin 8 10 6

GPIO GPIO14 GPIO15

Finally, connect the serial cable USB connector to your PC.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

3.1 Set up the terminal
If you are using Windows, you need a terminal emulator such as PuTTY.

Table 3-2 shows the configuration required, and the following text describes how to set up your
connection with PuTTY:

Table 3-2: PuTTy Configuration

Variable Value

Baud rate 115200

Data bits 8

Parity None

Stop bits 1

1. On the Session configuration panel in PuTTY, select Serial from the Connection type options.

2. Use the Serial line and Speed options to specify which serial line to use and the Baud rate to
use to transfer data.

3. For more information on serial connection with PuTTY, see Connecting to a local serial line.

If you are using Linux or a Mac, use terminal emulators such as minicom or screen to connect to
the TTL serial connection. If there are no serial devices connected to your computer, your serial
connector is /dev/ttyUSB0. If you have more than one serial device, use a tool such as dmseg to
check ttyUSB<num>.

To connect using screen, enter the following command:

$ screen /dev/ttyUSB0 115200

To connect using minicom, enter the following command:

$ minicom -D /dev/ttyUSB0

For more information and troubleshooting, see Using a console cable with Raspberry Pi.

3.2 Format the SD drive
For Raspberry Pi 4, you can format the SD drive in Large FAT16 or Large FAT32 for updating the
EEPROM and storing the UEFI firmware.

To format the SD drive on Windows, use Rufus and the following procedure:

1. In Rufus, select your device then select Non bootable from the Boot selection menu. Ensure
the file system type is Large FAT16 or Large FAT32. Figure 3-2 shows the file system type:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 70

https://the.earth.li/~sgtatham/putty/0.61/htmldoc/Chapter3.html#using-serial
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/overview
https://rufus.ie/

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Figure 3-2: Rufus format options

2. Click Show advanced format options and disable Create extended label and icon files. This
option is not needed.

3. Click START.

To format the drive on Mac OS:

1. Open Disk Utility and select your SD card in the list of drives as shown in Figure 3-3:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Figure 3-3: Disk Utility window on Mac

2. Click Erase to format the drive.

3. In the format list, select MS-DOS (FAT).

To format the drive on Linux:

1. Use either graphical or command-line instructions. When using graphical instructions, open
Disks and select your SD card.

2. Figure 3-4 shows where to click on the bars at the top of the window.:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Figure 3-4: Disk format option

3. Select Format Disk, then select Compatible with all systems and devices (MBR/DOS).

4. Click Format. A blank formatted disk is created.

5. Figure 3-5 shows where to click + to add a partition:

Figure 3-5: Add partition

6. Select a Partition Size. For this guide, the firmware image is under 10MB, so any partition size
can be used. Click Next.

7. In Type, select For use with all systems and devices (FAT). Click Create.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

3.3 Update the EEPROM
To update the EEPROM:

1. Ensure the Raspberry Pi 4 is running the latest firmware on the EEPROM.

2. Download the latest version of rpi-eeprom from RPi eeprom github and use this tool to update
the boot EEPROM.

3. Unzip the contents of rpi-boot-eeprom-recovery to a blank, FAT formatted SD-SDCARD.

4. Power off the Raspberry Pi 4.

5. Insert the SD card.

6. Power on the Raspberry Pi 4 and wait 10 seconds.

The green LED light blinks rapidly to show success. Otherwise, an error pattern is displayed.

If an HDMI display is attached to the Raspberry Pi 4, the screen shows green for success or red if a
failure occurs.

3.4 Install UEFI
The latest UEFI binaries and installation guide are on PFTF Github.

To install UEFI:

1. Download the latest archive from Releases.

2. Create an SD card or a USB drive with at least one partition. This can be a regular partition or
an ESP. Format the partition to FAT16 or FAT32.

To boot from USB or ESP, you need the latest version of firmware on EEPROM.
If you are using the latest UEFI firmware and you cannot boot from USB or ESP,
see Update the EEPROM.

3. Extract all the files from the downloaded archive to the partition you created. Do not change
the names of the extracted files and directories.

To run UEFI:

1. Insert the SD card or connect the USB drive and power up your Raspberry Pi 4. A multicolored
screen shows the embedded bootloader reading the data. The Raspberry Pi 4 logo appears
when the UEFI firmware is ready.

2. Press Esc to enter the firmware setup, F1 to launch the UEFI Shell, or wait for the UEFI boot
option to boot Raspberry Pi 4.

You can build UEFI firmware from source. The following steps are for Ubuntu Linux 18.04.1 on
x86_64 host PC using cross compilation.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 70

https://github.com/raspberrypi/rpi-eeprom/releases
https://github.com/pftf/RPi4/
https://github.com/pftf/RPi4/releases
https://en.wikipedia.org/wiki/EFI_system_partition

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

To build UEFI firmware:

1. Create a workspace directory with the following commands:

$ mkdir RPi4
$ export WORKSPACE=$(pwd)/RPi4

2. Clone the pftf/RPi4 repository:

$ git clone http://github.com/pftf/RPi4.git
$ git submodule update –init

3. Initialize submodules for both the edk2 and edk2-platform repositories using the commands
shown:

$ cd edk2
$ git submodule update –init
$ cd ../edk2-platforms
$ git submodule update –init
$ cd ..

4. Copy 0001-MdeModulePkg-UefiBootManagerLib-Signal-ReadyToBoot-o.patch to the edk2
folder and run the following command:

$ patch -p3 < 0001-MdeModulePkg-UefiBootManagerLib-Signal-ReadyToBoot-o.patch

5. Install a toolchain for cross compilation using the following command:

$ sudo apt-get install gcc-aarch64-linux-gnu

6. Follow the instructions on Building EDKII UEFI firmware for Arm Platforms to build a binary. An
example of the build command for RPi4 platform follows:

$ GCC5_AARCH64_PREFIX=aarch64-linux-gnu-
$ build -n 8 -a AARCH64 -t GCC5 -p Platform/RaspberryPi/RPi4/RPi4.dsc

The resulting binary RPI_EFI.fd is found in the RPi4/Build/<BUILD_TARGET>/FV folder.

7. Follow the steps in the “Booting the firmware section” in Raspberry Pi 4 Platform to prepare a
bootable SD card.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 70

https://developer.arm.com/tools-and-software/open-source-software/firmware/edkii-uefi-firmware/building-edkii-uefi-firmware-for-arm-platforms/build-firmware-on-a-linux-host
https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/RPi4/Readme.md

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

3.5 Configure UEFI
Figure 3-6 shows the boot into the UEFI shell by pressing F1 during the boot process:

Figure 3-6: UEFI shell screen

To boot to the UEFI menu, press Esc during the boot process. The following UEFI menu is
displayed:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Figure 3-7: UEFI menu

In this menu, you can change device settings and manually boot the device using Boot Manager.

3.6 Troubleshooting UEFI
To boot to the UEFI menu:

1. Press Esc to interrupt the boot process.

2. In the UEFI menu, navigate to the Boot Manager then select UEFI Shell. The Raspberry Pi 4
boots to the UEFI Shell. Figure 3-8 shows the UEFI Shell option:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Figure 3-8: Boot Manager menu

3. Use the map command to see if a storage device is mounted. Figure 3-9 shows a USB drive is
mounted as FS0:

Figure 3-9: Map command output

4. Change the directory to FS0 by typing FS0: at the command prompt.

Table 3-3 shows UEFI Shell commands which are helpful for debugging:

Table 3-3: Uefi Shell Commands

Command Description

pci Show PCIe devices or PCIe function configuration space information

drivers Show a list of drivers

devices Show a list of devices managed by EFI drivers

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Command Description
devtree Show a tree of devices

dh -d -v > dh_d_v.txt Save a dump of all UEFI Driver Model-related handles to dh_d_v.txt

memmap Save the memory map to memmap.txt

smbiosview Show SMBIOS information

acpiview -l Show a list of ACPI tables

acpiview -r 2 Validate that all ACPI tables required by SBBR 1.2 are installed.

acpiview -s DSDT -d Generate a binary file of DSDT ACPI table.

dmpstore -all > dmpstore.txt | Dump all UEFI variables to dmpstore.txt

See the UEFI Shell Specification for more details. The Shell commands section provides a list of
shell commands, descriptions, and examples.

3.7 Set UEFI variables
You can view and change the Raspberry Pi 4 UEFI configuration settings using the UI configuration
menu and UEFI shell. To configure the Raspberry Pi 4 using the UEFI Shell, use setvar to read and
write the UEFI variables for the GUID CD7CC258-31DB-22E6-9F22-63B0B8EED6B5.

To read a setting, use the following command:

setvar <NAME> -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5

To write a setting, use the following command:

setvar <NAME> -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5 -bs -rt -nv =<VALUE>

For string-type settings such as Asset Tag, use the following command:

setvar <NAME> -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5 -bs -rt -nv =L"<VALUE>"
 =0x0000

The following commands are examples of reading and modifying UEFI variables:

Read the System Table Selection setting

Shell> setvar SystemTableMode -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5

Change the System Table Selection setting to Devicetree

Shell> setvar SystemTableMode -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5 -bs -rt -nv
 =0x00000002

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 70

https://uefi.org/sites/default/files/resources/UEFI_Shell_2_2.pdf

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

Read the Limit RAM to 3 GB setting:

Shell> setvar RamLimitTo3GB -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5

Change the Limit RAM to 3 GB setting to Disabled:

Shell> setvar RamLimitTo3GB -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5 -bs -rt -nv
 =0x00000000

Change the Asset Tag to the string ASSET-TAG-123:

Shell> setvar AssetTag -guid CD7CC258-31DB-22E6-9F22-63B0B8EED6B5 -bs -rt -nv
 =L"ASSET-TAG-123" =0x0000

3.8 Set the system table selection
In the Advanced Configuration menu, select ACPI as shown in Figure 3-10:

Figure 3-10: ACPI option

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

3.9 Set the console preference
Linux uses the /chosen/stdout-path DT property or the SPCR ACPI table to show that the primary
console is the serial port, even if a graphical console is available. Therefore, for some Linux OSes,
set the preference to Graphical to remove the SPCR table which make the graphical console work.

To select the graphical console:

1. Open Device Manager in the UEFI menu

2. Select Console Preference Selection. Figure 3-11 shows the Console Preference Selection
option:

Figure 3-11: Console Preference Selection option

1. In the Console Preference Selection menu, select Graphical or Serial.

2. To get serial console messages, set the preference to Serial.

The serial console on most OSes may not work with the Graphical setting because
the UEFI does not install the SPCR ACPI table. This setting must be Serial when
running the ACS test suite because the SPCR ACPI table is mandatory for the
SystemReady band and is used in parts of the ACS.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the Raspberry Pi 4

3.10 Limit RAM to 3GB
Currently, many operating systems support 3GB of RAM on the Raspberry Pi 4. To set the limit to
3GB:

1. From the UEFI menu go to Device Manager > Raspberry Pi Configuration > Advanced
Configuration

2. Enable Limit RAM to 3GB. Figure 3-12 shows the RAM limit setting:

Figure 3-12: RAM limit enabled

The following operating systems do not require a 3GB RAM limit:

• OpenBSD 6

• NetBSD 9

• VMWare ESXi

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the RD-N2 FVP

4. Set up the RD-N2 FVP
This section describes how to set up the RD-N2 FVP.

4.1 Set up the host machine and download the software
stack

A host machine with Ubuntu 18.04 or Ubuntu 20.04 with 64 GB of free disk space and 32 GB
of RAM is the minimum requirement to sync and build the platform software stack. However, we
recommend 48 GB of RAM.

Follow the instructions in the getting-started.rst in the infra-refdesign-docs GitLab to install the
necessary tools and download the source code for the software stack.

If the host machine’s memory is less than 32 GB, follow the instructions for using the swap file to
enable virtual memory.

You need a display manager to run the FVP. Using a text console to connect to the host machine
does not work. For remote access to the host machine, you need a console application that
supports display export. For example, you can follow these instructions: https://itsfoss.com/install-
gui-ubuntu-server/ to install the lightdm display manager. Then install a remote desktop tool such
as xrdp. An alternative is to use MobaXterm.

4.2 Download the RD-N2 FVP
The RD-N2 FVP installer is available from the Neoverse Infrastructure FVPs section on the Fixed
Virtual Platforms site.

Run the following commands to download and install RD-N2 FVP:

$ wget https://developer.arm.com/-/media/Arm%20Developer%20Community/Downloads/OSS/
FVP/Neoverse-N2/Neoverse-N2-11-20-18-release/FVP_RD_N2_11.20_18_Linux64.tgz

$ tar -xvzf FVP_RD_N2_11.20_18_Linux64.tgz

$ ls
FVP_RD_N2_11.20_18_Linux64.tgz FVP_RD_N2.sh license_terms

$./FVP_RD_N2.sh

/FVP_RD_N2$ ls
bin fmtplib Iris models scripts
doc install_history license_terms plugins sw

For more information, see theNeoverse Reference Design Platform Software.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 70

https://gitlab.arm.com/infra-solutions/reference-design/docs/infra-refdesign-docs/-/blob/main/docs/user_guides/getting_started.rst
https://linuxize.com/post/how-to-add-swap-space-on-ubuntu-20-04/
https://itsfoss.com/install-gui-ubuntu-server/
https://itsfoss.com/install-gui-ubuntu-server/
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms#Downloads
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms#Downloads
https://neoverse-reference-design.docs.arm.com/en/latest/index.html

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Set up the RD-N2 FVP

4.3 Build the software stack and run the FVP
Follow the instructions in the links below to build and run the FVP:

• ACS compliance test on Neoverse RD platforms

• WinPE boot on Neoverse RD platforms

• Install and boot an OS on Neoverse RD platforms

You must run the FVP with the root account to access the console logs.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 70

https://neoverse-reference-design.docs.arm.com/en/latest/features/systemready_acs.html
https://neoverse-reference-design.docs.arm.com/en/latest/features/boot/winpe_boot.html
https://neoverse-reference-design.docs.arm.com/en/latest/features/boot/distro_boot.html

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0
Preparation

5. Preparation
This section of the guide describes the preparation that is required before running the
SystemReady tests.

5.1 Install and boot requirements
SystemReady band compliant operating systems must boot free of board-specific images and
with generic installation instructions. For example, do not use versions of an operating system or
installation guides that are specifically designed for Raspberry Pi. The SystemReady band does not
use special images and guides, and ensures your images are suitable for AARCH64.

5.2 Prepare the OS installer media
Before you prepare the installer media, download the AARCH64 installer image for your OS. Table
5-1 provides links to install tested OSes for the System Ready band. For more information, see OS-
image-download-links.txt in the band template.

Table 5-1: Operating System Download Links

Operating system Download link

VMware ESXi-Arm Fling ESXi Arm Edition

Red Hat Enterprise Linux (RHEL) RHEL Server ISO - RHEL ARM 64

Fedora Server Standard ISO image for aarch64

Fedora Workstation (Live ISO) aarch64 Live ISO

SUSE Linux Enterprise Server (SLES) Evaluation Copy of SUSE Linux Enterprise Server | SUSE

OpenSUSE Leap OpenSUSE DVD iso

OpenSUSE Tumbleweed (Daily Build) openSUSE Tumbleweed - Get openSUSE

Ubuntu Server 64-bit ARM (ARMv8/AArch64) server install image

Ubuntu Desktop Live (Daily Build) 64-bit ARM (ARMv8/AArch64) desktop image

Debian arm64 DVD iso

NetBSD NetBSD/evbarm

OpenBSD OpenBSD FAQ: Installation Guide

FreeBSD Download FreeBSD | The FreeBSD Project

Entry in this list does not indicate that the OS is officially supported on the system.
Consult the system and OS vendors for official support.

You can use the disk tools listed depending on your to set up a USB storage device with an OS
installer. To set up the device:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 70

https://gitlab.arm.com/systemready/systemready-band-template/-/blob/main/os-logs/OS-image-download-links.txt
https://gitlab.arm.com/systemready/systemready-band-template/-/blob/main/os-logs/OS-image-download-links.txt
https://flings.vmware.com/esxi-arm-edition
https://developers.redhat.com/products/rhel/download
https://getfedora.org/en/server/download/
https://getfedora.org/en/workstation/download/
https://www.suse.com/download/sles/
http://download.opensuse.org/ports/aarch64/distribution/leap/
https://get.opensuse.org/tumbleweed/#download
http://cdimage.ubuntu.com/ubuntu/releases/
http://cdimage.ubuntu.com/ubuntu/daily-live/current/
https://cdimage.debian.org/debian-cd/current/arm64/iso-dvd/
https://wiki.netbsd.org/ports/evbarm/
https://www.openbsd.org/faq/faq4.html#Download
https://www.freebsd.org/where/

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0
Preparation

1. Insert the USB drive then use a disk tool to restore a disk image to the drive.

• Rufus or balenaEtcher on Windows

• Use balenaEtcher for RHEL, Fedora, CentOS, and AlmaLinux because of an OS installer
known issue that results in a “source can’t be found” error.

• dd command on Linux

For example, if your USB drive is /dev/sda and you want to restore the Ubuntu install image,
use the following command:

dd if=ubuntu-22.04.4-live-server-arm64.iso of=/dev/sda status=progress

2. If installation problems occur, for example a system hang in the OS bootloader, clean the media
device as follows:

• diskpart on Windows:

C:\diskpart
DISKPART> list disk
DISKPART> select disk x (Where “x” it’s the letter of the USB drive)
DISKPART> clean (if installation issue still exists, try “clean all” This may
 take hours.)
DISKPART> exit

• dd command on Linux:

First, only clean the first megabyte. In most cases, this fixes the issue:

dd if=/dev/zero of=/dev/sdb bs=1M count=1 status=progress

If the installation issue persists, perform a deep clean. This might take several hours:

dd if=/dev/zero of=/dev/sdb bs=1M status=progress

3. After you create the install media, insert the drive into the USB 3.0 (blue) USB ports on the
system.

4. If the USB drive is the first boot option, UEFI discovers and automatically boots into the
installer media. Figure 6-1 shows the OS bootloader:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 70

https://rufus.ie/en/
https://www.balena.io/etcher

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0
Preparation

Figure 5-1: GRUB loader

5. If the first boot option is UEFI shell or PXE boot, press Esc to interrupt the boot process.

6. In the UEFI menu, go to Boot Manager

7. Choose the install media (USB drive).

8. Figure 6-2 shows the USB key which is called UEFI Kingston DataTraveler 3.0:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0
Preparation

Figure 5-2: USB key in Boot Manager

9. Press Enter to launch the OS bootloader.

10. Now, you can follow the installation instructions provided by your OS. For example, see Ubuntu
or Fedora.

11. Install the operating system to a storage device, not the installer media or the SD card that you
used to store your firmware.

Many operating systems have images and guides specific to a platform like
Raspberry Pi 4. However, these guides are often designed without SystemReady
compliance considerations.

VMware offers ESXi-Arm Fling as a technical preview for evaluation. For more information, see
ESXi Arm Edition.

5.3 Boot order
When UEFI variables are not supported at runtime, the OS might not be able to create a boot
entry. The installed OS might not be automatically booted after installation and reboot.

In this case, you can modify the boot order to solve this problem:

1. After installation, power cycle the system an extra time or enter the UEFI configurator as
described in Configure UEFI.

2. Open the Boot Maintenance Manager and change the boot order.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 70

https://ubuntu.com/server/docs/install/step-by-step
https://docs.fedoraproject.org/en-US/fedora-server/installation/interactive-local/
https://flings.vmware.com/esxi-arm-edition

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0
Preparation

3. The installed OS device must be at the top of the list. If it is not, highlight the device and press
+ until it is at the top of the list.

4. Press Enter, then save and exit.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Windows PE

6. Windows PE
Windows PE (WinPE) is a small operating system used to deploy, troubleshoot, and repair Windows
installations. Windows OS is required to build the USB key and ISO. This guide describes using
Windows ADK version 2004.

This section describes the following steps:

1. Build the ISO and USB key on a device running Windows 10

2. Install ADK on Windows 10

3. Build the WinPE image

4. Boot WinPE

6.1 Download and run Windows ADK and WinPE
Microsoft does not provide an .iso file for WinPE. Instead, download the Windows ADK and
Windows PE at https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install to
build one yourself.

To install and run Windows ADK and WinPE:

1. Run the adksetup.exe installer.

2. Select Install the Windows Assessment and Deployment Kit – Windows 10 to this Computer
and follow the installer to feature selection.

3. Figure 6-1 shows enabling the Deployment Tools feature to build a WinPE image:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 70

https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Windows PE

Figure 6-1: Windows ADK features

4. Run the WinPE adkwinpesetup.exe installer and install the Windows Preinstallation
Environment feature.

5. Create a bootable WinPE USB drive using the Deployment and Imaging Tools Environment as
Administrator. Figure 6-2 shows how to start the Deployment and Imaging Tools Environment
app window with administrator privileges:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Windows PE

Figure 6-2: Starting Deployment and Imaging Tools Environment

The Create bootable WinPE media guide uses amd64 architecture. Use Arm64 architecture to
build an Arm64 USB.

6. If you are creating an ISO file, follow the instructions in Create an ISO file to change the boot
parameters.

7. Run the following command to create a working copy of the Windows PE arm64 files:

> copype arm64 C:\WinPE_arm64

8. Create bootable media using MakeWinPEMedia. You can either create an ISO file or format a
USB key directly.

6.2 Create an ISO file
To create an ISO file:

1. Change the boot parameters before creating the media.

2. The files in the \media folder are copied to the USB key. This lets you change the boot
parameters without having to mount the ISO.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 70

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-usb-bootable-drive

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Windows PE

3. To enable EMS or serial console on the .iso image, use the following commands:

> cd C:\WinPE_arm64\media\EFI\Microsoft\Boot
C:\WinPE_arm64\media\EFI\Microsoft\Boot> bcdedit /store BCD /set {default} ems ON

4. Use the following command to create the ISO image.

> MakeWinPEMedia /ISO C:\WinPE_arm64 C:\WinPE_arm64\WinPE_arm64.iso

6.3 Install to a USB drive
To prepare the USB drive, use the following commands:

1. Clean a selected USB drive, create a primary partition, format it to FAT32, assign it the letter P,
and label it “WINPE”.

C:\diskpart
DISKPART> list disk
DISKPART> select disk x (Where “x” it’s the number of the USB drive)
DISKPART> clean (if installation issue still exists, try “clean all” This may
 take hours.)
DISKPART> create partition primary
DISKPART> format fs=fat32 quick label="WINPE"
DISKPART> assign letter P
DISKPART> exit

2. To install directly to the USB drive and format the drive, use the following command:

> MakeWinPEMedia /UFD C:\WinPE_arm64 P:

3. To enable the EMS serial console on the WinPE media, enter the following commands:

> P:
P:\> cd P:\EFI\Microsoft\Boot\
P:\EFI\Microsoft\Boot> bcdedit /store BCD /set {default} ems ON

6.4 Other Boot Configuration Data settings
If the system has one UART, you cannot enable WinDBG and EMS at the same time.

1. To enable WinDBG serial debug, use the following commands:

> bcdedit /store BCD /dbgsettings SERIAL DEBUGPORT:1 BAUDRATE:115200
> bcdedit /store BCD /set {default} debug ON

2. Enter bcdedit /store BCD /enum all to list all Boot Configuration Data (BCD) settings.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Windows PE

6.5 Boot WinPE
To boot WinPE on an Arm64 system:

1. Flash the WinPE ISO image to a media device, for example a USB drive.

2. Install the media device on the system, for example by plugging the USB drive into a USB port

3. Boot from the media device.

If you do not have an Arm64 system, use Arm Infrastructure FVPs.

1. Press any key to boot WinPE from CDROM. A cmd window is displayed and a SAC console in
the UART terminal if you enabled EMS in the boot configuration. Figure 6-3 shows an example
of the console and cmd window:

Figure 6-3: SAC console and cmd window

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

7. ACS
SystemReady band uses a collection of Architecture Compliance Suite (ACS), to help validate
system compliance.

7.1 ACS overview
The Arm SystemReady band ACS live image provides a collection of tests designed to ensure
architectural compliance across various implementations and variants of the architecture. The
product is delivered as source code with a build environment. It creates a bootable live OS image
encompassing a series of System Architecture Compliance Suites (ACS), including the BSA-
ACS, SBSA-ACS, and BBR-ACS. These suites assess compliance against the BSA, SBSA, and
BBR specifications for SystemReady band compliance. Arm recommends verifying architectural
implementations against the ACS to demonstrate compliance with these specifications.

The Architecture Compliance Suites for SystemReady band compliance are facilitated through a
live OS image, empowering basic automation for executing required and recommended tests. The
ACS image contains the following components for checking the requirements during boot time and
runtime.

• UEFI applications that operate on a UEFI shell.

• Linux kernel that incorporates kernel modules and Firmware Test Suite (FWTS).

Figure 7-1 is a diagram illustrating the various components of the Arm SystemReady band ACS live
image:

Figure 7-1: ACS components

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 70

https://developer.arm.com/Architectures/Architectural%20Compliance%20Suite

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

7.2 BSA-ACS and SBSA-ACS
The BSA-ACS checks for compliance against the Arm Base System Architecture (BSA) specification,
and the SBSA-ACS checks for compliance against the Server Base System Architecture (SBSA)
supplement specification. BSA-ACS compliance is required by the SystemReady band. SBSA-ACS is
only required for SystemReady band compliant servers. The tests are delivered through two parts:

• Tests on UEFI Shell. These tests consist of the UEFI shell command-line application bsa.efi
and sbsa.efi. These tests are written on top of Validation Adaption Layers (VAL) and Platform
Adaptation Layers (PAL). The abstraction layers provide the tests with platform information and
runtime environment to enable execution of the tests. In Arm deliveries, the VAL and PAL are
written on top of UEFI.

• Tests on the Linux command line. These tests consist of the Linux command-line application
bsa and sbsa, and the kernel module bsa_acs.ko and sbsa_acs.ko.

7.3 BBR-ACS
The BBR-ACS checks compliance against the Arm Base Boot Requirements (BBR) specification. For
SystemReady band compliance, firmware is tested against the SBBR recipe of BBR.

These tests are delivered through two bodies of code:

• SBBR tests contained in UEFI Self Certification Tests (SCT) tests. UEFI implementation
requirements which are tested by SCT.

• SBBR based on FWTS. The Firmware Test Suite (FWTS) is a package hosted by Canonical that
provides tests for ACPI and UEFI. The FWTS tests are customized to run only UEFI tests.

7.4 ACS prerequisites
The prerequisites to run the ACS live image are as follows:

• Prepare a storage device with a minimum of 1GB of storage. This storage device is used to boot
and run the ACS and to store the execution results.

We recommend you use NVMe/SATA drive or USB disk enclosure with a fast
SSD drive. Using a USB stick may take longer than 6 hours for testing.

• Prepare the SUT (System Under Test) machine with the latest firmware loaded, a host machine
for console access, then collect the results

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 70

https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0029/h/?lang=en
https://developer.arm.com/documentation/den0029/h/?lang=en
https://developer.arm.com/documentation/den0044/latest

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

7.5 Set up the test environment
To set up the storage device, use the following procedure:

1. Download the prebuilt SystemReady band live image to a local directory on Linux.

The pre-built ACS image for SystemReady band compliance is available on GitHub at the
following location:

https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-band/
prebuilt_images/<release tag>/systemready_acs_live_image.img.xz

For information on the latest release and release tags, see the SystemReady band README

2. Decompress and deploy the image to the storage device.

Use a utility such as xz on Linux or 7-Zip on Windows to uncompress the
systemready_acs_live_image.img.xz file.

3. On the Linux host machine, write the SystemReady band ACS live image to the storage device
using the following commands:

$ lsblk
$ sudo dd if=/path/to systemready_acs_live_image.img.xz of=/dev/sdX
$ sync

In this code, replace /dev/sdX with the name of your storage device. Use the lsblk command
to display the storage device name.

4. For testing server system, it is needed to change the value of SbsaRunEnabled in acs_tests
\config\acs_run_config.ini from 0 to 1 to enable SBSA test in automation test.

7.6 Run the tests
To execute the SystemReady band prebuilt ACS live image, do the following:

1. Insert the SystemReady ACS drive into the system.

2. Boot to the firmware setup menu.

3. Move the boot option of the ACS drive to the top of the boot order and then save the setting.

4. Reset the system.

The live image boots and runs automatically.

Figure 7-2 shows the complete process of ACS execution through the SystemReady band ACS live
image:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 70

https://github.com/ARM-software/arm-systemready/tree/main/SystemReady-band/prebuilt_images/
https://github.com/ARM-software/arm-systemready/blob/main/SystemReady-band/README.md

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

Figure 7-2: Test execution process

To skip the debug and test steps shown in the diagram, press any key within five
seconds.

As shown in the flowchart, there are two main modes of execution:

• Fully automated mode

• Normal mode

The following sections describe these modes in more detail.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

7.7 Run tests in automated mode
If no option in GRUB is chosen and no tests are skipped, tests are run in fully automated mode.

Figure 7-3 shows the GRUB bootloader options screen:

Figure 7-3: GRUB bootloader options

After a few seconds, the image executes the ACS process in the following order:

1. SCT tests:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

Figure 7-4: SCT tests

2. UEFI debug dumps:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

Figure 7-5: UEFI debug dumps

3. BSA ACS:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

Figure 7-6: BSA ACS

4. Linux debug dump and FWTS tests:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

Figure 7-7: FWTS tests

5. Linux BSA test:

Figure 7-8: Linux BSA test

After these tests are executed, the message “ACS automated test suites run is completed.” will be
printed out and the control returns to a Linux prompt

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

7.8 Run tests in normal mode
When the image boots, choose one of the following GRUB options to specify the test automation:

• Linux boot to boot ACS Linux and execute FWTS and Linux BSA

• SystemReady band ACS (Automation) to execute the tests in the same sequence as fully
automated mode

You can also skip individual test stages by pressing a key at the appropriate point.

7.9 Review the ACS test result logs
The logs are stored in a folder called acs-results.

Figure 7-9 shows the logs directory structure:

Figure 7-9: ACS results directory

After the tests finish, the ACS partition is mounted on /mnt.

1. Navigate to /mnt/acs_results to view the logs.

2. Extract the logs from the ACS drive to view the logs on the host machine later.

3. Check that the logs shown in Table 7-1 were generated:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

ACS

Table 7-1: Log Details

Log
number

ACS Path Running time Notes

1 BSA
(UEFI)

acs_results/uefi/BsaResults.log Less than 2 minutes —

2 BSA
(Linux)

acs_results/linux/
BsaResultsKernel.log

Less than 2 minutes —

3 SCT acs_results/edk2-test-parser/
edk2-test-parser.log and
acs_results/sct_results/
Overall/Summary.log

1-6 hours

Note: Using USB stick may take
SCT tests faster, use a SATA or
NVMe drive or an SSD in a USB
enclosure

edk2-test-parser.log contains
summary of test result. Summary.log
contains serial output messages from
all tests.

4 FWTS acs_results/fwts/results.log Less than 2 minutes —

5 Debug
Dumps

acs_results/linux_dumps

acs_results/uefi_dumps

Less than 2 minutes Contains output from commands
including: acpiview, smbiosview,
lspci, drivers, devices, and
memmap.

Post testing, check the files in acs_results folder to ensure all necessary logs are generated

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Debugging commands

8. Debugging commands
Linux commands are helpful for debugging:

Table 8-1: Command Details

Command Description

hostnamectl Control the system hostname

lspci Display information about PCI buses in the system and devices connected to them

lspci -vvv Display everything that can be parsed

lsusb Display information about USB buses in the system and the devices connected to them

lsusb -v Display detailed information about the USB devices shown. This information includes configuration descriptors
for the current speed of the device. Class descriptors are shown for USB device classes including hub, audio, HID,
communications, and chipcard.

df Report file system disk space usage

cat /etc/
os-release

Show operating system identification data

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

9. Advanced Configuration and Power
Interface

SystemReady band compliant devices must be conformant with the following specifications:

• BSA

• SBBR recipe in BBR

• SBSA (only for servers)

The Advanced Configuration and Power Interface (ACPI) describes the hardware resources that are
installed on SystemReady band compliant devices. ACPI also handles aspects of runtime system
configuration, event notification, and power management.

For mandatory ACPI tables for SystemReady band compliant systems, see the Arm Base Boot
Requirement (BBR) specification. For example, the Raspberry Pi 4 SystemReady compliant system,
uses the following mandatory ACPI tables:

• Root System Description Pointer (RSDP)

• Extended system Description Table (XSDT)

• Fixed ACPI Description Table (FACP)

• Differentiated System Description Table (DSDT)

• Debug Port 2 Table (DBG2)

• Generic Timer Descriptor Table (GTDT)

• Multiple APIC Description Table (APIC)

• Processor Property Topology Table (PPTT)

• SPCR Serial Port Console Redirection Table. This table is not published by default. To publish
this table, select Device Manager in the UEFI menu, then select Serial as the console device.

• Secondary System Description Table (SSDT)

The ACPI examples in this section demonstrate the following use cases:

• Thermal zones

• Fan cooling devices

• USB XHCI and PCIe

• UART

• Debug port

• Power buttons

• PCIe ECAM

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 70

https://developer.arm.com/documentation/den0044
https://developer.arm.com/documentation/den0044

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

9.1 Example: Thermal zone
Raspberry Pi 4 has hardware resources that allow the OS to perform thermal management.
BCM2711 provides a register to read CPU temperature. You can enable platform-specific hardware
resources by exposing memory map peripheral addresses with Devicetree or ACPI structures, and
provide platform-specific OS drivers. For example, the bcm2711_thermal Linux driver consumes
a register address provided through a Devicetree structure and produces an API to read CPU
temperature. The OS requires an update for any hardware modifications because a new driver
is installed to control this hardware. We recommend that you abstract these hardware resources
using ACPI AML methods. In this example, you do not use a platform driver because the hardware
resource is represented as an ACPI thermal model.

Table 9-1 defines a simple thermal zone TZ00. TZ00 specifies the following methods:

Table 9-1: ACPI Methods

Method Description

_TMP Returns the thermal zone’s current temperature in tenths of degrees

_SCP Sets the platform cooling policy, active or passive. A placeholder on the Raspberry Pi.

_CRT Returns the critical trip point in tenth of degrees where OSPM must perform a critical shutdown

_HOT Returns the critical trip point in tenths of degrees where OSPM can choose to transition the system into S4 sleeping state

_PSV Return the passive cooling policy threshold value in tenths of degrees

The following objects are also presented:

Table 9-2: ACPI Objects

Object Description

_TZP Thermal zone polling frequency in tenths of seconds

_PSL List of processor device objects for clock throttling. Specifies all four cores on Raspberry Pi.

The following code shows a thermal zone (TZ00) implementation, which is listed in Table 9-1 and
Table 9-2:

 Device (EC00)
 {
 Name (_HID, EISAID ("PNP0C06"))
 Name (_CCA, 0x0)

 // all temps in are tenths of K (aka 2732 is the min temps in Linux (aka 0C))
 ThermalZone (TZ00) {
 Method (_TMP, 0, Serialized) {
 OperationRegion (TEMS, SystemMemory, THERM_SENSOR, 0x8)
 Field (TEMS, DWordAcc, NoLock, Preserve) {
 TMPS, 32
 }
 return (((410040 - ((TMPS & 0x3ff) * 487)) / 100) + 2732);
 }
 Method (_SCP, 3) { } // receive cooling policy from OS

 Method (_CRT) { Return (3632) } // (90C) Critical temp point (immediate
 power-off)
 Method (_HOT) { Return (3582) } // (85C) HOT state where OS should
 hibernate

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

 Method (_PSV) { Return (3532) } // (80C) Passive cooling (CPU throttling)
 trip point

 // SSDT inserts _AC0/_AL0 @60C here, if a FAN is configured

 Name (_TZP, 10) //The OSPM must poll this device every 1
 seconds
 Name (_PSL, Package () { _SB_.CPU0, _SB_.CPU1, _SB_.CPU2, _SB_.CPU3 })
 }
 }

9.2 Example: Fan cooling device
Raspberry Pi 4 can be connected to extension hats with a variable speed fan, such as a POE hat.
You can also connect a simple on/off fan. A POE hat uses the Raspberry Pi 4 proprietary mailbox
for fan control and an on/off fan can be controlled with a single GPIO pin. As a result, each fan
device uses specific drivers and can be presented to the OS in different ways.

To simplify OSPM and remove the platform driver, ACPI objects and methods can provide fan
device information and control to the OS.

ACPI 1.0 defines a fan device, which is suitable for an on/off fan connected to GPIO. ACPI 4.0
defines additional fan device interface objects, enabling OSPM to perform more robust active
cooling thermal control.

Currently, Raspberry Pi 4 supports the ACPI 1.0 fan device. The fan and other related objects and
operators are specified in Table 9-4.

Tables 9-3 lists PFAN fan power resource methods:

Table 9-3: PFAN Fan Power Resource methods

Method Description

_STA Returns the status of a fan device. This example returns the exact value of the GPIO pin which is used to connect a fan. The
exact pin used is configured in the UEFI menu.

_ON Puts the power resource into ON state by setting the GPIO pin, which is used to control a fan

_OFF Puts the power resource into OFF state by clearing the GPIO pin, which is used to connect a fan

Table 9-4 lists methods and objects for the fan device:

Table 9-4: Fan Device Methods and Objects

Object Description

FAN0 Fan device object

_HID Plug and Play ID. This should be PNP0C0B

_PR0 Power Resource for the fan object (fully ON state)

Table 9-5 lists methods and objects for the Active Cooling point:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

Table 9-5: Active Cooling Point Methods and Objects

Object Description

_AC0 Returns the temperature trip point at which OSPM must start or stop Active cooling

_AL0 Evaluates a list of Active cooling devices to be turned on when the corresponding _ACx temperature threshold is exceeded. _AL0
defines a single FAN0 device on RPi4

The following code shows the ACPI implementation of a fan cooling device and the device
resources:

Scope (_SB_.EC00)
 {
 // Define a NameOp we will modify during InstallTable
 Name (GIOP, 0x2) //08 47 49 4f 50 0a 02 (value must be >1)
 Name (FTMP, 0x2)
 // Describe a fan
 PowerResource (PFAN, 0, 0) {
 OperationRegion (GPIO, SystemMemory, GPIO_BASE_ADDRESS, 0x1000)
 Field (GPIO, DWordAcc, NoLock, Preserve) {
 Offset (0x1C),
 GPS0, 32,
 GPS1, 32,
 RES1, 32,
 GPC0, 32,
 GPC1, 32,
 RES2, 32,
 GPL1, 32,
 GPL2, 32
 }
 // We are hitting a GPIO pin to on/off a fan.
 // This assumes that UEFI has programmed the
 // direction as OUT. Given the current limitations
 // on the GPIO pins, its recommended to use
 // the GPIO to switch a larger voltage/current
 // for the fan rather than driving it directly.
 Method (_STA) {
 if (GPL1 & (1 << GIOP)) {
 Return (1) // present and enabled
 }
 Return (0)
 }
 Method (_ON) { // turn fan on
 Store (1 << GIOP, GPS0)
 }
 Method (_OFF) { // turn fan off
 Store (1 << GIOP, GPC0)
 }
 }
 Device (FAN0) {
 // Note, not currently an ACPIv4 fan
 // the latter adds speed control/detection
 // but in the case of linux needs FIF, FPS, FSL, and FST
 Name (_HID, EISAID ("PNP0C0B"))
 Name (_PR0, Package () { PFAN })
 }
 }
 // merge in an active cooling point.
 Scope (_SB_.EC00.TZ00)
 {
 Method (_AC0) { Return ((FTMP * 10) + 2732) } // (60C) active cooling trip
 point,
 // if this is lower than PSV then
 we
 // prefer active cooling
 Name (_AL0, Package () { _SB_.EC00.FAN0 }) // the fan used for AC0 above
 }

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

With the ACPI 1.0 fan, you do not need a platform-specific GPIO driver and a temperature
monitor. The ACPI fan driver consumes the PNP0C0B FAN0 device and uses an ACPI power
subsystem to turn it on or off.

Use the following Hat 4 methods with ACPI 4.0 on a Raspberry Pi 4 for POE:

Table 9-6: Hat 4 Methods

Method Description

_FIF Returns fan device information

_FPS Returns a list of supported fan performance states

_FSL Control method that sets the fan device’s speed level (performance state). RPI_FIRMWARE_SET_POE_HAT_VAL would be used
in ACPI AML on a Raspberry Pi 4.

In this example, instead of exposing a proprietary mailbox to the OS and using a platform driver, we
allow the OS to use a standard ACP fan driver.

9.3 Example: USB XHCI and PCIe
If a PCIe controller is present and visible by the operating system, you must use an MCGF table.

The PCIe controller is present on the Raspberry Pi 4, but it is not SBSA compatible. To confirm a
Raspberry Pi 4 as SystemReady band compliant, the PCIe is hidden and as a result MCFG is not
used.

The USB XHCI controller is connected to the PCIe controller, and an ACPI node XHC0 is added to
the DSDT table. Also, a _DMA object is defined to describe resources consumed by XCH0.

The following code shows the ACPI_DMA resource:

Name (_DMA, ResourceTemplate() {
 /*
 * XHC0 is limited to DMA to first 3GB. Note this
 * only applies to PCIe, not GENET or other devices
 * next to the A72.
 */
 QWordMemory (ResourceConsumer,+
 ,
 MinFixed,
 MaxFixed,
 NonCacheable,
 ReadWrite,
 0x0,
 0x0, // MIN
 0xbfffffff, // MAX
 0x0, // TRA
 0xc0000000, // LEN
 ,
 ,
)
 })

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

_DMA is an optional object and returns a byte stream in the same format as a _CRS object. _DMA is
defined under devices that represent buses, such as Device SCB0 for the Raspberry Pi 4. This
object specifies the ranges the bus controller decodes on the child interface. This is analogous
to the _CRS object, which describes the resources that the bus controller decodes on the parent
interface. The ranges described in the resources of a _DMA object can be used by child devices for
DMA or bus master transactions.

The _DMA object is only valid if a _CRS object is defined. The OSPM must reevaluate the _DMA object
after an _SRS object has been executed because the _DMA ranges resources may change depending
on how the bridge has been configured.

The following code shows the ACPI XCH0 USB 3.0 controller implementation:

Device (XHC0)
{
 Name (_HID, "PNP0D10") // Hardware ID
 Name (_UID, 0x0) // Unique ID
 Name (_CCA, 0x0) // Cache Coherency Attribute
 Method (_CRS, 0, Serialized) { // Current Resource Settings
 Name (RBUF, ResoureTemplate() {
 QWordMemory (ResourceConsumer,
 ,
 MinFixed,
 MaxFixed,
 NonCacheable,
 ReadWrite,
 0x0,
 SANITIZED_PCIE_CPU_MMIO_WINDOW, // MIN
 SANITIZED_PCIE_CPU_MMIO_WINDOW, // MAX
 0x0,
 0x1, // LEN
 ,
 ,
 MMIO
)
 Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive, ,,) {
 175
 }
 })
 CreateQwordField (RBUF, MMIO._MAX, MMBE)
 CreateQwoedField (RBUF, MMIO._LEN, MMLE)
 Add (MMBE, XHCI_REG_LENGTH - 1, MMBE)
 Add (MMLE, XHCI_REG_LENGTH - 1, MMLE)
 Return (RBUF)
 }

Method (_INI, 0, Serialized) {
 OperationRegion (PCFG, SystemMemory, SANITIZED_PCIE_REG_BASE + PCIE_EXT_FG_DATA,
 0x10000)
 Field (PCFG, AnyAcc, NoLock, Preserve) {
 VNID, 16, // Vendor ID
 DVID, 16, // Device ID
 CMND, 16, // Command register
 STAT, 16, // Status register
 }
 Debug = "xHCI enable"
 Store (0x6, CMND)
}
}

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

9.4 Example: UART
The system can present Arm SBSA Generic UART and 16550 UART devices. You can describe the
devices with Serial Console Redirection (SPCR).

The Raspberry Pi 4 has a PL011 UART port described in spcr.aslc using C. The following code
snippet shows the ACPI UART PL011 implementation:

 STATIC EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE Spcr = {
 ACPI_HEADER (
 EFI_ACPI_6_3_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_SIGNATURE,
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE,
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_REVISION
),
 // UINT8 InterfaceType;
 RPI_UART_INTERFACE_TYPE,
 // UINT8 Reserved1[3];
 {
 EFI_ACPI_RESERVED_BYTE,
 EFI_ACPI_RESERVED_BYTE,
 EFI_ACPI_RESERVED_BYTE
 },
 // EFI_ACPI_6_3_GENERIC_ADDRESS_STRUCTURE BaseAddress;
 ARM_GAS32 (RPI_UART_BASE_ADDRESS),
 // UINT8 InterruptType;
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_INTERRUPT_TYPE_GIC,
 // UINT8 Irq;
 0, // Not used on ARM
 // UINT32 GlobalSystemInterrupt;
 RPI_UART_INTERRUPT,
 // UINT8 BaudRate;
 #if (FixedPcdGet64 (PcdUartDefaultBaudRate) == 9600)
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_BAUD_RATE_9600,
 #elif (FixedPcdGet64 (PcdUartDefaultBaudRate) == 19200)
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_BAUD_RATE_19200,
 #elif (FixedPcdGet64 (PcdUartDefaultBaudRate) == 57600)
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_BAUD_RATE_57600,
 #elif (FixedPcdGet64 (PcdUartDefaultBaudRate) == 115200)
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_BAUD_RATE_115200,
 #else
 #error Unsupported SPCR Baud Rate
 #endif
 // UINT8 Parity;
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_PARITY_NO_PARITY,
 // UINT8 StopBits;
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_STOP_BITS_1,
 // UINT8 FlowControl;
 RPI_UART_FLOW_CONTROL_NONE,
 // UINT8 TerminalType;
 EFI_ACPI_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_TERMINAL_TYPE_VT_UTF8,
 // UINT8 Reserved2;
 EFI_ACPI_RESERVED_BYTE,
 // UINT16 PciDeviceId;
 0xFFFF,
 // UINT16 PciVendorId;
 0xFFFF,
 // UINT8 PciBusNumber;
 0x00,
 // UINT8 PciDeviceNumber;
 0x00,
 // UINT8 PciFunctionNumber;
 0x00,
 // UINT32 PciFlags;
 0x00000000,
 // UINT8 PciSegment;
 0x00,

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

 // UINT32 Reserved3;
 EFI_ACPI_RESERVED_DWORD
 };

9.5 Example: Debug port
For some OSes, the debug port is presented on the platform. To describe the debug ports available
on the platform, Debug Port Table 2 is used. The table contains information about the configuration
of the debug port.

The Raspberry Pi 4 has a PL011 UART port that can be described to the OS as a debug port. The
following code shows the ACPI UART PL011 debug port implementation:

 #define RPI_DBG2_NUM_DEBUG_PORTS 1
 #define RPI_DBG2_NUMBER_OF_GENERIC_ADDRESS_REGISTERS 1
 #define RPI_DBG2_NAMESPACESTRING_FIELD_SIZE 15

 #define RPI_UART_INTERFACE_TYPE
 EFI_ACPI_DBG2_PORT_SUBTYPE_SERIAL_ARM_PL011_UART
 #define RPI_UART_BASE_ADDRESS BCM2836_PL011_UART_BASE_ADDRESS
 #define RPI_UART_LENGTH BCM2836_PL011_UART_LENGTH
 #define RPI_UART_STR { '\\', '_', 'S', 'B', '.', 'G',
 'D', 'V', '0', '.', 'U', 'R', 'T', '0', 0x00 }
 STATIC DBG2_TABLE Dbg2 = {
 {
 ACPI_HEADER (
 EFI_ACPI_6_3_DEBUG_PORT_2_TABLE_SIGNATURE,
 DBG2_TABLE,
 EFI_ACPI_DBG2_DEBUG_DEVICE_INFORMATION_STRUCT_REVISION
),
 OFFSET_OF (DBG2_TABLE, Dbg2DeviceInfo),
 RPI_DBG2_NUM_DEBUG_PORTS
 },
 {
 /*
 * Kernel Debug Port
 */
 DBG2_DEBUG_PORT_DDI (
 RPI_DBG2_NUMBER_OF_GENERIC_ADDRESS_REGISTERS,
 RPI_UART_INTERFACE_TYPE,
 RPI_UART_BASE_ADDRESS,
 RPI_UART_LENGTH,
 RPI_UART_STR
),
 }
 };

BBR requires platforms to keep a debug port on a separate UART port from the console port so
there is no conflict in debug messages and OS console output. Because the Raspberry Pi has only
one active UART, enable or disable DBG2 as needed for debugging.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

9.6 Example: Power button
If you remove the power cable from the device without shutting down the OS, the file system can
be corrupted and other unrecoverable errors can occur. A power button is a useful addition to the
embedded platform, which allows an OS to implement shutdown safely.

If we connect a button to one of the Raspberry Pi 4 GPIO pins, we can define an ACPI power
button. The GPIO interrupt functionality in the BCM2711 is used with a Generic Event Device
to generate the Notify command to tell OSPM that the button has been pressed. The OS then
initiates sleep or soft shutdown based on user settings.

Table 9-7 shows the Generic Event Device objects:

Table 9-7: Generic Event Device Objects

Object Description

GED1 Generic Event Device Object

_HID Plug and Play ID: ACPI0013 for GED

_CRS List of interrupts

Table 9-8 lists the Generic Event Device methods:

Table 9-8: Generic Event Device Methods

Method Description

_EVT Interrupt handler. This has arg0, which contains the Generic System Interrupt Vector of the interrupt.

_INI Platform Specific Initialization

Table 9-9 shows the power button objects:

Table 9-9: Power Button Objects

Object Description

PWRB Power Button object

_HID Plug and Play ID: PNP0C0C for power button

Table 9-10 lists the power button methods:

Table 9-10: Power Button Methods

Method Description

_STA Status of the device. We return 0xF, which means the device is present, enabled, should be shown in UI and is functioning
properly.

Using the _INI method, set up GPIO pin 5 to trigger an interrupt when a rising edge is detected.
Then, in the _EVT method, check the status of the pins to check that the interrupt was GPIO0, and
that pin 5 triggered the interrupt. If the interrupt is triggered, the status is reset and the power
button notified.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

The following code shows an ACPI power button implementation:

// Generic Event Device
Device (GED1) {
 Name (_HID, "ACPI0013")
 Name (_UID, 0)

 Name (_CRS, ResourceTemplate () {
 Interrupt(ResourceConsumer, Edge, ActiveHigh, ExclusiveAndWake) {
 BCM2386_GPIO_INTERRUPT0 }
 })

 OperationRegion (PH0, SystemMemory, GPIO_BASE_ADDRESS, 0x1000)
 Field (PH0, DWordAcc, NoLock, Preserve) {
 GPF0, 32, /* GPFSEL0 - GPIO Function Select 0 */
 offset(0x40),
 GPE0, 32, /* GPEDS0 - GPIO Pin Event Detect Status 0 */
 GPE1, 32, /* GPEDS1 - GPIO Pin Event Detect Status 1 */
 GRE0, 32, /* GPREN0 - GPIO Pin Rising Edge Detect Enable 0 */
 GRE1, 32, /* GPREN1 - GPIO Pin Rising Edge Detect Enable 1 */
 offset(0xe4),
 GUD0, 32, /* GPIO_PUP_PDN_CNTRL_REG0 - GPIO Pull-up / Pull-down
 Register 0 */
 }

 Method (_INI, 0, NotSerialized) {
 /* 0x00000020 = GPIO pin 5 */
 /* Enable rising edge detect */
 Store(0x00000020, GRE0)
 /* Enable Pull down resistor for pin 5 */
 Store(0x00000800, GUD0)
 }

 Method (_EVT, 1) {
 If (ToInteger(Arg0) == BCM2386_GPIO_INTERRUPT0)
 Name()
 Store(0x00000020, GPE0) // Clear the status
 Notify (_SB.PWRB, 0x80) // Sleep/Off Request
 }
 }
}

Device (PWRB) {
 Name (_HID, "PNP0C0C")
 Name (_UID, Zero)
 Method (_STA, 0x0, NotSerialized) {
 Return(0xF)
 }
}

9.7 Example: PCIe ECAM
If a platform supports PCIe, the platform reports PCIe Configuration Space using the MCFG ACPI
table. If the PCIe Root complex is not SBSA compatible, take a different approach.

The Raspberry Pi 4 hides PCIe Configuration space and the MCFG table is not published on this
platform. Only the USB XHCI is exposed in the DSDT table.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

Alternatively, you can use the Arm PCI Configuration Space Access Firmware Interface. You can
use this interface as an alternative to the Enhanced Configuration Access Mechanism (ECAM)
hardware mechanism .

The interface enables a caller to:

• Access PCI configuration space reads and writes

• Discover the implemented PCI segment groups and bus ranges for each segment

For the list of supported calls, see the Arm PCI Configuration Space Access Firmware Interface.

Arm PCI Configuration Space Access Firmware Interface implementation requires the following:

• On the platform with EL3 presented, Platform Firmware SMCCCv1.1 compliant implementation

• If EL3 is not present but EL2 is present, HVC conduit must be implemented in hypervisor

• Operating System SMCCv1.1 compliant SMC or HVC conduit implementation

Enabling Arm PCI Configuration Space Access Firmware Interface requires patches for a platform
firmware, UEFI, and an OS.

An example of the SMCCC implementation supporting Arm PCI Configuration Space Access
Firmware Interface is in Arm Trusted Firmware. Arm Trusted Firmware allows platforms to handle
PCI configuration access requests through standard SMCCC. To enable these access requests, the
SMC_PCI_SUPPORT build flag is provided.

To use PCIe SMCCC, describe PCIe Root Complex in the SSDT ACPI table. Refer to this patch
[PATCH v2 3/6] Platform/RaspberryPi: Add PCIe SSDT. With this patch, instead of hiding the PCIe
root complex, expose PCIe to the OS. The OS ACPI PCI driver controls the PCIe root complex but
because the MCFG table is absent, the driver uses the OS SMC conduit to get access to the PCIe
ECAM.

An example of the OS SMC conduit implementation is in the NetBSD. NetBSD implements
pci_smccc_call(), which uses a Secure Monitor Call to request a PCI Configurate access service
to a platform firmware running in EL3. With PCI_SMCCC enabled, the NetBSD PCIe subsystem
uses the PCI_VERSION SMC call to check if the SMCCC supports PCI configuration access. If the
SMCCC version is 1.1 or later, the PCI SMCCC is supported.

You can build and run NetBSD, Arm Trusted Firmware and EDK2 on the Raspberry Pi 4 with PCI
SMCCC enabled. As a result, the PCIe is exposed through SMCCC driving the XHCI controller.

In the future, other operation systems or hypervisors such as VMWare ESXi might implement this
interface.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 70

https://developer.arm.com/documentation/den0115
https://github.com/ARM-software/arm-trusted-firmware
https://edk2.groups.io/g/devel/message/79008
https://src.fossil.netbsd.org/artifact/a5411fa1e9a5e8c9

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

9.8 ACPI integration recommendations
You can implement ACPI tables using a platform driver or dynamic ACPI framework.

For platform drivers, you manually create ACPI tables using ACPI Source Language (ASL). Create a
set of .asl files and an edk2 module information file AcpiTable.inf. You can also create an ACPI
table using C language. In this case, .aslc files must be used.

These files are compiled at build time and stored in a firmware volume. At boot time, a platform
driver uses ArmLib methods, shown in the following code:

EFI_STATUS LocateAndInstallAcpiFromFvConditional(
 IN CONST EFI_GUID* AcpiFile,
 IN EFI_LOCATE_ACPI_CHECK CheckAcpiTableFunction
)
or
EFI_STATUS LocateAndInstallAcpiFromFv(
 IN CONST EFI_GUID* AcpiFile
)

These methods locate and install ACPI tables in a firmware volume. The following code snippet
locates ACPI tables implemented for the platform and installs it in a firmware volume:

Status = LocateAndInstallAcpiFromFv(&mAcpiTableFile);

In this example, mAcpiTableFile is a GUID of the ACPI storage file in a firmware volume and
matches FILE_GUID in the AcpiTable.inf.

Although ACPI tables are compiled at build time and stored in a firmware volume, you
can modify these tables at boot time. The second parameter CheckAcpiTableFunction in
LocateAndInstallAcpiFromFvConditional() is a pointer to a function. This parameter is an
algorithm LocateAndInstallAcpiFromFvConditional() used to locate and install ACPI, and
performs the following steps:

1. Use EFI_FIRMWARE_VOLUME2_PROTOCOL and mAcpiTableFile GUID to find an ACPI table in a
firmware volume.

2. Prior to the installation of the table, call CheckAcpiTableFunction() with a pointer to a newly
found ACPI table as a parameter.

3. Provided CheckAcpiTableFunction() indicates that the table should be installed, use
EFI_ACPI_TABLE_PROTOCOL to install the table.

4. Repeat until all ACPI tables are found and installed.

CheckAcpiTableFunction() has a pointer to a newly discovered ACPI table and can modify the
table before being installed. For an example, see the HandleDynamicNamespace() function of the
Raspberry Pi 4 ACPI platform driver and see how it is used to modify DSDT and SSDT ACPI tables
with values taken from PCD values.

For a Raspberry Pi 4 ACPI table implementation, see AcpiTables.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 70

https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/AcpiTables

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

To learn how ACPI tables are installed on the Raspberry Pi 4, see ConfigDxe.

For another example of the ACPI platform driver, see PlatformDxe. The dynamic ACPI table
generators that are implemented as libraries. These generators query a platform-specific
Configuration Manager to collate the information required for generating the tables at runtime. See
Arm at master for a list of the generators supported.

To implement Configuration Manager, include a platform-specific DXE
driver called ConfigurationManagerDxe. Configuration Manager produces
EDKII_CONFIGURATION_MANAGER_PROTOCOL and implements its API. The
declaration of the API for the EDKII_CONFIGURATION_MANAGER_PROTOCOL is in
ConfigurationManagerProtocol.h.

The following code shows the GUID of the Configuration Manager Protocol:

 #define EDKII_CONFIGURATION_MANAGER_PROTOCOL_GUID \
 { 0xd85a4835, 0x5a82, 0x4894, \
 { 0xac, 0x2, 0x70, 0x6f, 0x43, 0xd5, 0x97, 0x8e } \
 };

The following code shows a software interface of the Configuration Manager Protocol:

typedef struct ConfigurationManagerProtocol {
 UINT32 Revision;
 EDKII_CONFIGURATION_MANAGER_GET_OBJECT GetObject;
 EDKII_CONFIGURATION_MANAGER_SET_OBJECT SetObject;
 EDKII_PLATFORM_REPOSITORY_INFO * PlatRepoInfo;
} EDKII_CONFIGURATION_MANAGER_PROTOCOL;

The API consists of the following functions:

• GetObject(). The GetObject() function defines the interface implemented by the Configuration
Manager Protocol used to return the Configuration Manager Objects

• SetObject(). The SetObject() function defines the interface implemented by the Configuration
Manager Protocol to update the Configuration Manager Objects

Configuration Manager Objects are objects that represent platform configuration and are stored in
the EDKII_PLATFORM_REPOSITORY_INFO repository, maintained by Configuration Manager.

Configuration Manager maintains a list of ACPI tables to be installed. Based on this list, the
corresponding ACPI table generators are invoked by the Dynamic ACPI framework.

For example, the IORT ACPI table generator handles the following ACPI objects:

• EArmObjItsGroup

• EArmObjNamedComponent

• EArmObjRootComplex

• EArmObjSmmuV1SmmuV2

• EArmObjSmmuV3

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 70

https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/Drivers/ConfigDxe
https://github.com/tianocore/edk2-platforms/tree/master/Platform/ARM/SgiPkg/Drivers/PlatformDxe
https://github.com/tianocore/edk2/tree/master/DynamicTablesPkg/Library/Acpi/Arm
https://github.com/tianocore/edk2/blob/master/DynamicTablesPkg/Include/Protocol/ConfigurationManagerProtocol.h

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Advanced Configuration and Power Interface

• EArmObjPmcg

• EArmObjGicItsIdentifierArray

• EArmObjIdMappingArray

• EArmObjGicItsIdentifierArray

If the OEM platform has an SMMUv3 hardware block, include an object with ID equal to
EArmObjSmmuV3 in the Configuration Manager repository. For more information, refer to the list
of Arm object IDs and data structures in ArmNameSpaceObjects.h.

The IORT ACPI table generator requests the EArmObjSmmuV3 object using the
EDKII_CONFIGURATION_MANAGER_GET_OBJECT function and adds the SMMUv3 node to the
IORT ACPI table. The same mechanism is used by other ACPI table generators.

For an implementation example, see ConfigurationManager for
EDKII_CONFIGURATION_MANAGER_PROTOCOL.

Currently, the capability to generate ASL tables (DSDT and SSDT) is limited to
generating ASL Serial Port Information corresponding to DBG2 and SPCR because it
is platform-specific.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 70

https://github.com/tianocore/edk2/blob/master/DynamicTablesPkg/Include/ArmNameSpaceObjects.h
https://github.com/tianocore/edk2-platforms/tree/master/Platform/ARM/VExpressPkg/ConfigurationManager

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

SMBIOS requirements

10. SMBIOS requirements
The SMBIOS table version 3.0.0 or later is required to conform to the SMBIOS specification. Earlier
SMBIOS table and format versions are not supported.

For information about the required SMBIOS records for SystemReady band compliant systems, see
the Arm Base Boot Requirement (BBR) specification. For example, the Raspberry Pi 4 SystemReady
band compliant system uses the following SMBIOS records:

• Type 00: BIOS information

• Type 01: system information

• Type 02: base board information (optional)

• Type 03: chassis information

• Type 04: processor information

• Type 07: cache information

• Type 09: system slot information

• Type 11: OEM string (optional)

• Type 16: physical memory array

• Type 17: memory device

• Type 19: memory array mapped address

• Type 32: boot status

10.1 SMBIOS integration
SMBIOS data structures are built on top of the platform-independent driver SmbiosDxe, which
uses the EFI_SMBIOS_PROTOCOL API. EFI_SMBIOS_PROTOCOL allows consumers to log
SMBIOS data records and enables the producer (SmbiosDxe) to create the SMBIOS tables for
a platform. SmbiosDxe is responsible for installing the pointer to the tables in the EFI System
Configuration Table.

The following code shows a GUID of SMBIOS Protocol:

 #define EFI_SMBIOS_PROTOCOL_GUID \
 { 0x3583ff6, 0xcb36, 0x4940, { 0x94, 0x7e, 0xb9, 0xb3, 0x9f,\
 0x4a, 0xfa, 0xf7 } }

The following code shows an SMBIOS Protocol data structure:

typedef struct _EFI_SMBIOS_PROTOCOL {
 EFI_SMBIOS_ADD Add;
 EFI_SMBIOS_UPDATE_STRING UpdateString;
 EFI_SMBIOS_REMOVE Remove;
 EFI_SMBIOS_GET_NEXT GetNext;

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 70

https://developer.arm.com/documentation/den0044/latest

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

SMBIOS requirements

 UINT8 MajorVersion;
 UINT8 MinorVersion;
} EFI_SMBIOS_PROTOCOL;

10.2 Platform driver
The SMBIOS driver is a platform-specific DXE driver that uses SMBIOS data records provided by
the OEM. The driver consumes EFI_SMBIOS_PROTOCOL, which is produced by SmbiosDxe and
uses its interface to add SMBIOS records.

The driver creates SMBIOS records defined in SmBios.h. These records are standard SMBIOS data
structures, defined according to the latest SMBIOS specification.

For example, the following code shows the definition for a TYPE 1 System information SMBIOS
table, which is defined by the PlatformSmbiosDxe Raspberry Pi 4 platform driver:

SMBIOS_TABLE_TYPE1 mSysInfoType1 = {
 { EFI_SMBIOS_TYPE_SYSTEM_INFORMATION, sizeof (SMBIOS_TABLE_TYPE1), 0 },
 1, // Manufacturer String
 2, // ProductName String
 3, // Version String
 4, // SerialNumber String
 { 0x25EF0280, 0xEC82, 0x42B0, { 0x8F, 0xB6, 0x10, 0xAD, 0xCC, 0xC6, 0x7C,
 0x02 } },
 SystemWakeupTypePowerSwitch,
 5, // SKUNumber String
 6, // Family String
};

PlatformSmbiosDxe uses EFI_SMBIOS_PROTOCOL method Add() to add mSysInfoType1 record:

Status = gBS->LocateProtocol (&gEfiSmbiosProtocolGuid, NULL, (VOID**)&Smbios);
Status = Smbios->Add (
 Smbios,
 gImageHandle,
 &c,
 Record // mSysInfoType1
);

The platform driver is responsible for ensuring that the SMBIOS record is formatted to match the
version of the SMBIOS specification as defined in the MajorVersion and MinorVersion fields of the
EFI_SMBIOS_PROTOCOL.

Add both a platform driver and SmbiosDxe driver to your platform and flash description files. Use
the RPi4.dsc and the RPi4.fdf files as a reference.

For more information about how the platform driver is implemented on the Raspberry Pi 4, see the
PlatformSmbiosDxe implementation.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 70

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
https://github.com/tianocore/edk2-platforms/blob/master/Platform/RaspberryPi/RPi4/RPi4.dsc
https://github.com/tianocore/edk2-platforms/blob/master/Platform/RaspberryPi/RPi4/RPi4.fdf
https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/Drivers/PlatformSmbiosDxe

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

SMBIOS requirements

10.3 System Management BIOS framework
The platform driver requires the OEM to define SMB records using C and check that these records
are formatted according to the version of the SMBIOS specification as defined in the MajorVersion
and MinorVersion fields of the EFI_SMBIOS_PROTOCOL.

The generic Arm System Management BIOS (SMBIOS) framework allows you to generate SMBIOS
tables without writing C code. This framework uses platform configuration PCD database entries
and strings from a Human Interface Infrastructure (HII).

For example, the OEM can provide the following PCD entries in its platform description file:

• gEfiMdeModulePkgTokenSpaceGuid.PcdFirmwareVendor

• gEfiMdeModulePkgTokenSpaceGuid.PcdFirmwareVersionString

• gArmTokenSpaceGuid.PcdSystemBiosRelease

• gArmTokenSpaceGuid.PcdEmbeddedControllerFirmwareRelease

These entries are taken by the SMBIOS framework and added to the SMBIOS table type 00 BIOS
information automatically.

The OEM must provide an OemMiscLib library with the following platform-specific definitions:

Processor Information
The SMBIOS framework creates processor and cache information tables and requires the following
functions:

• OemGetCpuFreq()

• OemGetProcessorInformation()

• OemGetCacheInformation()

• OemGetMaxProcessors()

The SMBIOS framework calls these functions to get processor and cache information and uses the
EFI_SMBIOS_PROTOCOL Add() function to add SMBIOS type 04 and type 07 tables.

OemUpdateSmbiosInfo() function
The SMBIOS framework uses hardcoded PCD entries to create SMBIOS tables, but platform-
specific information is needed in runtime. For example, a baseboard serial number or chassis serial
number must not be hardcoded in the UEFI binary the OEM uses to flash the board. The OEM
can write OemUpdateSmbiosInfo() so that these two strings are read in runtime from a baseboard
management controller. The SMBIOS framework calls OemUpdateSmbiosInfo() to retrieve these
two strings and update default information in the SMBIOS type 02 and type 03 tables.

For more details about the OemMiscLib implementation, see tianocore/edk2-platforms/Platform.

For more information about the SMBIOS framework, see https://github.com/tianocore/edk2/tree/
master/ArmPkg/Universal/Smbios/SmbiosMiscDxe.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 70

https://github.com/tianocore/edk2/tree/master/ArmPkg/Universal/Smbios/SmbiosMiscDxe
https://github.com/tianocore/edk2/tree/master/ArmPkg/Universal/Smbios/SmbiosMiscDxe

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

UEFI requirements

11. UEFI requirements
The boot and system firmware for 64-bit Arm embedded servers is based on the UEFI specification
version 2.8 or later and incorporates the AArch64 bindings.

UEFI compliant systems must follow the requirements in section 2.6 of the specification. However,
to ensure a common boot architecture for server-class AArch64, systems compliant with this
specification must provide the UEFI services and protocol from the provided list.

UEFI compliance is tested using UEFI Self-Certification Tests (SCT) and FWTS. For more
information about using SCT and FWTS, see ACS.

For a list of required UEFI runtime and boot services, see the Arm Base Boot Requirements
specification.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 70

https://developer.arm.com/documentation/den0044/

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Related information

12. Related information
The following resources are related to material in this guide.

Specifications:

• Arm Base System Architecture (BSA) specification

• Arm Server Base System Architecture (SBSA) specification

• Arm Base Boot Requirements (BBR) specification

• Base Boot Security Requirements (BBSR)

• Arm SystemReady Requirements Specification

Repositories:

• Arm SystemReady ACS Repository

User Guides:

• SystemReady Band Policy Guidelines

• SystemReady FAQ

SystemReady Pages:

• Arm SystemReady Band Page

• Arm SystemReady Compliance Program

• Arm Community - SystemReady Forum

Other Resources:

• UEFI Self-Certification Test

• Advanced Configuration and Power Interface (ACPI) Specification

• Arm PCI Configuration Space Access Firmware Interface

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 70

https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0029/latest
https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/documentation/den0107/latest
https://developer.arm.com/documentation/den0109/latest
https://github.com/ARM-software/arm-systemready/tree/main/
https://developer.arm.com/documentation/110051/
https://developer.arm.com/documentation/107981/latest/
https://developer.arm.com/Architectures/Arm%20SystemReady%20Band
https://www.arm.com/architecture/system-architectures/systemready-compliance-program
https://community.arm.com/support-forums/f/systemready-forum
https://github.com/tianocore/edk2-test
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://developer.arm.com/documentation/den0115

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0
Next steps

13. Next steps
In this guide, you learned how to integrate systems, how to develop and build the firmware, and
how to test for SystemReady band compliance using a RD-N2 FVP and Raspberry Pi 4.

After reading this guide, you can go to the Arm SystemReady Compliance Program site for more
information.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 70

https://www.arm.com/architecture/system-architectures/systemready-compliance-program

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Running ACS tests manually

Appendix A Running ACS tests manually
To run ACS tests manually, press Esc after the UEFI shell loads. Then, navigate to the acs_tests
folder on the ACS drive partition.

Figure A-1 shows the folder contents:

Figure A-1: acs_tests folder contentss

In this directory, the bbr folder contains the UEFI Self-Certification Test and the bsa folder has a
UEFI shell application for BSA and SBSA compliance. For more information, see bsa-acs and sbsa-
acs.

To run the bsa and sbsa tests, go to the folder and start the application using the following
command:

FS0:\acs_tests\bsa\> bsa.efi

or

FS0:\acs_tests\bsa\sbsa\> sbsa.efi

For a list of application parameters, refer to the Compliance User Guides available at BSA-ACS
Docs and SBSA-ACS Docs.

To run the same SCT command as the automated process, that is to run all the SCT SBBR tests, go
to the folder and start the application using the following command:

FS0:\acs_tests\bbr\sct\> SCT.efi -s SBBR.seq

Figure A-2 shows how to run specific SCT test cases, you can start SCT with a GUI by passing -u
as a parameter:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 70

https://github.com/ARM-software/bsa-acs/blob/main/README.md
https://github.com/ARM-software/sbsa-acs/blob/master/README.md
https://github.com/ARM-software/sbsa-acs/blob/master/README.md
https://github.com/ARM-software/bsa-acs/tree/main/docs
https://github.com/ARM-software/bsa-acs/tree/main/docs
https://github.com/ARM-software/sbsa-acs/tree/master/docs

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Running ACS tests manually

Figure A-2: Start SCT with a GUI

1. Press F5 to select tests manually. Press Enter.

2. Figure A-3 shows the view, add, or remove tests in the Test Case Management menu:

Figure A-3: Test Case Management menu

3. Press F9 to run SCT, as shown in Figure A-4:

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 70

SystemReady Band Integration and Testing Guide Document ID: 102677_0400_01_en
Version 4.0

Running ACS tests manually

Figure A-4: SCT screen

Sometimes SCT can hang in the process of self-reset. In this case, power off the
system then power it on. The tests are not reset. During the next boot if the
same drive with SCT has been selected as the boot device, the test continues.
Follow the steps outlined in Boot order to ensure the ACS drive is the first boot
option.

If you need to build your own image, ACS tests are open source and can be downloaded from
SystemReady ACS. Read the documentation in this repository to learn how to build and construct
test images.

Copyright © 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 70

https://github.com/ARM-software/arm-systemready/

	SystemReady Band Integration and Testing Guide
	Contents
	1. Terms and abbreviations
	2. SystemReady Band Test and Integration Overview
	3. Set up the Raspberry Pi 4
	3.1 Set up the terminal
	3.2 Format the SD drive
	3.3 Update the EEPROM
	3.4 Install UEFI
	3.5 Configure UEFI
	3.6 Troubleshooting UEFI
	3.7 Set UEFI variables
	3.8 Set the system table selection
	3.9 Set the console preference
	3.10 Limit RAM to 3GB

	4. Set up the RD-N2 FVP
	4.1 Set up the host machine and download the software stack
	4.2 Download the RD-N2 FVP
	4.3 Build the software stack and run the FVP

	5. Preparation
	5.1 Install and boot requirements
	5.2 Prepare the OS installer media
	5.3 Boot order

	6. Windows PE
	6.1 Download and run Windows ADK and WinPE
	6.2 Create an ISO file
	6.3 Install to a USB drive
	6.4 Other Boot Configuration Data settings
	6.5 Boot WinPE

	7. ACS
	7.1 ACS overview
	7.2 BSA-ACS and SBSA-ACS
	7.3 BBR-ACS
	7.4 ACS prerequisites
	7.5 Set up the test environment
	7.6 Run the tests
	7.7 Run tests in automated mode
	7.8 Run tests in normal mode
	7.9 Review the ACS test result logs

	8. Debugging commands
	9. Advanced Configuration and Power Interface
	9.1 Example: Thermal zone
	9.2 Example: Fan cooling device
	9.3 Example: USB XHCI and PCIe
	9.4 Example: UART
	9.5 Example: Debug port
	9.6 Example: Power button
	9.7 Example: PCIe ECAM
	9.8 ACPI integration recommendations

	10. SMBIOS requirements
	10.1 SMBIOS integration
	10.2 Platform driver
	10.3 System Management BIOS framework

	11. UEFI requirements
	12. Related information
	13. Next steps
	A. Running ACS tests manually

