
Arm® Development Studio
Version 2024.1

Getting Started Guide

Non-Confidential
Copyright © 2018–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
101469_2024.1_00_en



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Arm® Development Studio Getting Started Guide

This document is Non-Confidential.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (101469_2024.1_00_en) was issued on 2024-12-17. There might be a later issue at
https://developer.arm.com/documentation/101469

The product version is 2024.1.

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This book describes how to get started with Arm® Development Studio. It takes you through the
processes of installing and licensing Arm Development Studio, and guides you through some of the
common tasks that you might encounter when using Arm Development Studio for the first time.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 215

https://developer.arm.com/documentation/101469
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Contents

Contents

1. Introduction to Arm Development Studio................................................................................................7
1.1 Arm Compiler for Embedded.......................................................................................................................7
1.2 Arm Debugger................................................................................................................................................. 8
1.3 Debug probes.................................................................................................................................................. 9
1.4 FVP models....................................................................................................................................................11
1.5 Arm Streamline..............................................................................................................................................11

2. Installing and configuring Arm Development Studio...........................................................................12
2.1 Hardware and host platform requirements............................................................................................ 12
2.2 Debug system requirements......................................................................................................................13
2.3 Install Arm Development Studio on Windows using the command line......................................... 14
2.4 Install Arm Development Studio on Windows using the installation wizard.................................. 15
2.5 Install Arm Development Studio on Linux..............................................................................................16
2.6 Additional Linux libraries............................................................................................................................ 17
2.7 Uninstalling Arm Development Studio on Linux...................................................................................18
2.8 Licensing Arm Development Studio.........................................................................................................19
2.8.1 Add a license using Product Setup.......................................................................................................19
2.8.2 Add a license using the Arm License Manager..................................................................................21
2.8.3 Delete a FlexNet license.........................................................................................................................25
2.9 Language settings.........................................................................................................................................25
2.10 Configure an RSE connection to work with an Arm Linux target...................................................26
2.11 Launching gdbserver with an application.............................................................................................31
2.12 Register a compiler toolchain..................................................................................................................31
2.12.1 Registering a compiler toolchain using the Arm Development Studio IDE............................... 32
2.12.2 Register a compiler toolchain using the Arm DS command prompt...........................................35
2.12.3 Reconfigure existing projects to use a newly registered compiler toolchain.............................36
2.12.4 Configure a compiler toolchain for the Arm DS command prompt on Windows.................... 36
2.12.5 Configure a compiler toolchain for the Arm DS command prompt on Linux........................... 37
2.13 Specify plug-in install location................................................................................................................ 38
2.14 Development Studio perspective keyboard shortcuts.......................................................................39

3. Introduction to Arm Debugger................................................................................................................. 41
3.1 Debugger concepts......................................................................................................................................42

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Contents

3.2 Overview: Arm CoreSight debug and trace components................................................................... 46
3.3 Overview: Debugging multi-core (SMP and AMP), big.LITTLE, and multi-cluster targets............47
3.3.1 Debugging SMP systems........................................................................................................................ 47
3.3.2 Debugging AMP Systems........................................................................................................................50
3.3.3 Debugging big.LITTLE Systems............................................................................................................. 51
3.4 Overview: Debugging Arm-based Linux applications.......................................................................... 52

4. Introduction to the IDE.............................................................................................................................. 53
4.1 IDE Overview................................................................................................................................................ 53
4.2 Personalize your development environment..........................................................................................55
4.3 Add views to the Arm Development Studio IDE................................................................................. 56
4.4 Change the default workspace in the Arm Development Studio IDE..............................................57
4.5 Switch perspectives in the Arm Development Studio IDE.................................................................58
4.6 Launch the Arm Development Studio command prompt................................................................... 59
4.7 Headless tools in the Arm Development Studio command prompt................................................. 62

5. Projects and examples in Arm Development Studio........................................................................... 64
5.1 Project types..................................................................................................................................................64
5.2 Create a new C or C++ project................................................................................................................66
5.3 Configuring the C/C++ build behavior................................................................................................... 67
5.4 Create a new Makefile project with existing code............................................................................... 69
5.5 Creating an empty Makefile project.........................................................................................................71
5.6 Add a new source file to your project....................................................................................................71
5.7 Add a source file to your project............................................................................................................. 74
5.8 Using the Import wizard............................................................................................................................. 74
5.9 Using the Export wizard............................................................................................................................. 75
5.10 Import existing Eclipse projects..............................................................................................................76
5.11 Importing and exporting options............................................................................................................79
5.12 Sharing Arm Development Studio projects......................................................................................... 80
5.13 Updating a project to a new toolchain.................................................................................................81
5.14 Run the Arm Development Studio IDE from the command-line to clean, build, and import
projects................................................................................................................................................................... 81
5.15 Setting up the compilation tools for a specific build configuration................................................83
5.16 Examples provided with Arm Development Studio........................................................................... 84
5.17 Import the example projects................................................................................................................... 86
5.18 Working sets............................................................................................................................................... 87
5.18.1 Create a working set............................................................................................................................. 88

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Contents

5.18.2 Change the top-level element when displaying working sets......................................................91
5.18.3 Deselect a working set......................................................................................................................... 92

6. Writing code.................................................................................................................................................. 93
6.1 Editing source code..................................................................................................................................... 93
6.2 About the C/C++ editor.............................................................................................................................94
6.3 About the Arm assembler editor..............................................................................................................94
6.4 About the ELF content editor...................................................................................................................95
6.5 ELF content editor - Header tab..............................................................................................................96
6.6 ELF content editor - Sections tab............................................................................................................96
6.7 ELF content editor - Segments tab......................................................................................................... 97
6.8 ELF content editor - Symbol Table tab...................................................................................................98
6.9 ELF content editor - Disassembly tab.....................................................................................................99
6.10 About the scatter file editor.................................................................................................................100
6.11 Creating a scatter file............................................................................................................................. 101
6.12 Importing a memory map from a BCD file....................................................................................... 103

7. Debugging code..........................................................................................................................................106
7.1 Using FVPs with Arm Development Studio.........................................................................................106
7.2 Configuring a connection from the command-line to a built-in FVP.............................................107
7.3 Configuring a connection to an external FVP for bare-metal application debug........................ 108
7.4 Configuring a connection to a bare-metal hardware target.............................................................111
7.5 Configuring a connection to a bare-metal hardware target using gdbserver............................... 115
7.6 Configuring a connection to a Linux application using gdbserver..................................................117
7.7 Configuring a connection to a Linux kernel........................................................................................ 119
7.8 Configuring trace for bare-metal or Linux kernel targets................................................................. 122
7.9 Configuring an Events view connection to a bare-metal target......................................................125
7.10 Exporting or importing an existing Arm Development Studio launch configuration................ 127
7.11 Disconnecting from a target................................................................................................................. 132

8. Tutorial: Hello World.................................................................................................................................133
8.1 Open Arm Development Studio for the first time.............................................................................133
8.2 Create a project in C or C++..................................................................................................................134
8.3 Configure your project..............................................................................................................................136
8.4 Build your project...................................................................................................................................... 137
8.5 Configure your debug session................................................................................................................ 138
8.6 Application debug with Arm Debugger................................................................................................142

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Contents

8.7 Disconnect from the target.....................................................................................................................146
8.8 Capture trace output from an FVP....................................................................................................... 147
8.9 Other tutorials and workbooks...............................................................................................................150

9. Troubleshoot Arm Development Studio...............................................................................................152
9.1 Arm Linux problems and solutions........................................................................................................ 152
9.2 Enabling internal logging from the debugger......................................................................................153
9.3 FTDI probe: Incompatible driver error..................................................................................................153
9.4 Target connection problems and solutions.......................................................................................... 154

10. Migrating from DS-5 to Arm Development Studio.........................................................................156
10.1 Add an Existing License Server............................................................................................................156
10.2 Default Workspace Location.................................................................................................................159
10.3 Combined C/C++ and Debug Perspectives......................................................................................159
10.4 Migrate an existing DS-5 project........................................................................................................ 165
10.5 CMSIS Packs.............................................................................................................................................169
10.6 Create a new Hardware Connection.................................................................................................. 174
10.7 Connect to new or custom hardware................................................................................................ 181
10.8 Create a new Linux application connection......................................................................................187
10.9 Create a new model connection......................................................................................................... 192
10.10 Connect to new or custom models..................................................................................................196
10.11 Imported μVision project limitations................................................................................................ 202
10.12 Other differences between DS-5 and Arm Development Studio..............................................203

A. Terminology.................................................................................................................................................204

B. Keyboard shortcuts................................................................................................................................... 206

Proprietary notice..........................................................................................................................................208

Product and document information......................................................................................................... 210
Product status...................................................................................................................................................210
Revision history................................................................................................................................................ 210
Conventions.......................................................................................................................................................212

Useful resources............................................................................................................................................ 214

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Development Studio

1. Introduction to Arm Development Studio
Arm® Development Studio is a professional software development solution for bare-metal
embedded systems and Linux-based systems. It covers all stages in development from boot code
and kernel porting to application and bare-metal debugging, including performance analysis.

It includes:

The Arm Compiler for Embedded 6 toolchain.
Build embedded and bare-metal embedded applications.

Arm Debugger
A graphical debugger supporting software development on Arm processor-based targets and
Fixed Virtual Platform (FVP) targets.

Fixed Virtual Platform (FVP) targets
Single and multi-core simulation models for architectures Armv6-M, Armv7-A/R/M, Armv8-
A/R/M, and Armv9-A. These enable you to develop software without any hardware.

Arm Streamline
A graphical performance analysis tool that enables you to transform sampling data and
system trace into reports that present data in both visual and statistical forms.

Dedicated examples, applications, and supporting documentation to help you get started with using
Arm Development Studio tools.

Some third-party compilers are compatible with Arm Development Studio. For example, the GNU
Compiler tools enable you to compile bare-metal, Linux kernel, and Linux applications for Arm
targets.

1.1 Arm Compiler for Embedded
The Arm® Compiler for Embedded toolchains enable you to build applications and libraries that are
suitable for bare-metal embedded systems.

As part of the download package, Arm Development Studio includes Arm Compiler for Embedded
6 for compiling embedded and bare-metal embedded applications. It supports the Armv6-M,
Armv7, Armv8, and Armv9-A architectures.

There are two Arm Compiler toolchains that work with Arm Development Studio; the legacy Arm
Compiler 5, and the latest Arm Compiler for Embedded 6. You can run these toolchains in the Arm
Development Studio IDE, or from the command line.

• References to Arm Compiler for Embedded in the Arm Development Studio
documentation refer to Arm Compiler for Embedded 6, unless otherwise
specified.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Development Studio

• Arm Compiler 5 is not included in the Arm Development Studio download
package. However, you can download the legacy toolchain from the What
should I do if I want to use a legacy release of Arm Compiler? article. To install,
see Add a compiler to Arm Development Studio.

• The features available to you in Arm Compiler for Embedded depend on your
individual license type.

For example, a license might:

◦ Limit the use of Arm Compiler for Embedded to specific processors.

◦ Place a maximum limit on the size of images that can be produced.

You can enable additional features of Arm Compiler for Embedded by
purchasing a license for the full Arm Development Studio suite. Contact your
tools supplier for details.

Related information
Register a compiler toolchain on page 31

1.2 Arm Debugger
Arm® Debugger is accessible using either the Arm Development Studio IDE or command-line, and
supports software development on Arm processor-based targets and Fixed Virtual Platform (FVP)
targets.

Using Arm Debugger through the IDE allows you to debug bare-metal and Linux applications with
comprehensive and intuitive views, including:

• Synchronized source and disassembly.

• Call stack.

• Memory.

• Registers.

• Expressions.

• Variables.

• Threads.

• Breakpoints.

• Trace.

The Debug Control view enables you to single-step through applications at source-level or
instruction-level, and see other views update when the code is executed. Setting breakpoints or
watchpoints stops the application and allows you to explore the behavior of the application. You
can also use the view to trace function executions in your application with a timeline showing the
sequence of events, if supported by the target.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 215

https://developer.arm.com/documentation/ka005184/latest
https://developer.arm.com/documentation/ka005184/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Development Studio

You can also debug using the Arm DS Command Prompt command-line console, which allows for
automation of debug and trace activities through scripts.

Related information
Debug control view
Running Arm Debugger from the command-line and using scripts

1.3 Debug probes
Arm® Development Studio supports various debug probes and connections.

Debug probes
Debug probes vary in complexity and capability. When you use them with Arm Development
Studio, they provide high-level debug functionality, for example:

• Reading/writing registers

• Setting breakpoints

• Reading from memory

• Writing to memory

Supported Arm debug probes include:

• Arm DSTREAM

• Arm DSTREAM-ST

• Arm DSTREAM-PT

• Arm DSTREAM-HT

• Arm DSTREAM-XT

• Keil® ULINK2™

• Keil ULINKpro™

• Keil ULINKpro D

• Keil ULINKplus™

Supported third-party debug probes include:

• ST-Link

• FTDI MPSSE JTAG

If you are using the FTDI MPSSE JTAG probe on Linux, the OS automatically
installs an incorrect driver when you connect this probe. For details on how to
fix this issue, see FTDI probe: Incompatible driver error.

• Intel FPGA Download Cable II (formerly USB-Blaster II)

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Control-view
https://developer.arm.com/documentation/101470/2024-1/Running-Arm-Debugger-from-the-command-line-and-using-scripts


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Development Studio

If you are using the Intel FPGA Download Cable debug probes, Arm Debugger can connect to
the following boards:

◦ NX5

◦ Agilex 5

◦ Agilex 7

◦ Arria V SoC

◦ Arria 10 SoC

◦ Cyclone V SoC

◦ Stratix 10

To enable the connections, ensure that the environment variable QUARTUS_ROOTDIR is set and
contains the path to the Quartus tools installation directory:

◦ On Windows, this environment variable is usually set by the Quartus tools installer.

◦ On Linux, you might have to manually set the environment variable to the Quartus tools
installation path. For example, ~/<quartus_tools_installation_directory>/qprogrammer.

For information on installing device drivers for Intel FPGA Download Cable and Intel FPGA
Download Cable II, consult your Quartus tools documentation.

Third-party debug probes
Third-party tools vendors provide the following debug probes:

• Cadence Virtual Debug

• Synopsys Virtualizer

• Siemens/Mentor Veloce vProbe

For information on how to enable connections to these probes within Arm Development Studio,
contact the debug probes vendors.

Debug connections
Debug connections allow the debugger to debug a variety of targets.

Supported debug connections include:

• Iris interface for models.

• Component Architecture Debug Interface (CADI) for models. This interface is deprecated.

• Ethernet to gdbserver.

• CMSIS-DAP.

Debug hardware configuration
Use the debug hardware configuration views in Arm Development Studio to update and configure
the debug hardware probe that provides the interface between your development target and your
workstation.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Development Studio

Arm Development Studio provides the following views:

• Debug Hardware Config IP view
Use this view to configure the IP address on a debug hardware probe.

• Debug Hardware Firmware Installer view
Use this view to update the firmware on a debug hardware probe.

These views only support the DSTREAM family of devices.

1.4 FVP models
Fixed Virtual Platforms (FVPs) are complete simulations of an Arm system, including processor,
memory, and peripherals. You can use FVPs for bare-metal debugging and application development
instead of a physical target. FVP targets give you a comprehensive model on which to build and
test your software, from the point of view of a programmer.

When using an FVP, absolute timing accuracy is sacrificed to achieve fast simulated execution
speed. This means that you can use a model for confirming software functionality, but you must
not rely on the accuracy of cycle counts, low-level component interactions, or other hardware-
specific behavior.

Arm® Development Studio provides several FVPs, covering a range of processors in the Cortex®

family. You can also connect to a variety of other Arm and third-party simulation models that
implement the Iris interface for debug and trace, or the deprecated Component Architecture Debug
Interface (CADI).

Related information
The Iris User Guide
Introduction to the Component Architecture Debug Interface (CADI)

1.5 Arm Streamline
Arm® Streamline is a graphical performance analysis tool. It enables you to transform sampling
data, instruction trace, and system trace into reports that present the data in both visual and
statistical forms.

Arm Streamline uses hardware performance counters with kernel metrics to provide an accurate
representation of system resources.

Related information
Streamline documentation

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Hardware-Configure-IP-view
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Hardware-Firmware-Installer-view
https://developer.arm.com/documentation/101196/latest
https://developer.arm.com/documentation/100963/latest/Introduction-to-the-Component-Architecture-Debug-Interface--CADI-
https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

2. Installing and configuring Arm
Development Studio

Arm® Development Studio is available for Windows and Linux operating systems. This
chapter describes installation requirements, the installation process, and how to configure Arm
Development Studio.

There are two ways to install Arm Development Studio on Windows. You can use either the
installation wizard, or the command line.

You can install multiple versions of Arm Development Studio on Windows and Linux platforms. To
do this, you must use different root installation directories.

2.1 Hardware and host platform requirements
For the best experience with Arm® Development Studio, your hardware and host platform should
meet the minimum requirements.

Hardware requirements
To install and use Arm Development Studio, your workstation must have at least:

• A dual core x86 2 GHz processor (or equivalent).

• 2 GB of RAM.

• Approximately 3 GB of hard disk space.

To improve performance, Arm recommends a minimum of 4 GB of RAM when you:

• Debug large images.

• Use models with large simulated memory maps.

• Use Arm Streamline.

Host platform requirements
Arm Development Studio supports the following host platforms:

• Microsoft Windows 10

• Microsoft Windows 11

• Red Hat Enterprise Linux 8 Workstation

• Ubuntu Desktop Edition 20.04 LTS

• Ubuntu Desktop Edition 22.04 LTS

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Arm Development Studio only supports 64-bit host platforms.

Arm Compiler for Embedded host platform requirements
Arm Development Studio contains the latest version of Arm Compiler for Embedded 6 that was
available at the time your version of Arm Development Studio was released. The release note
provides information on host platform compatibility:

• Arm Compiler for Embedded 6

For information on adding other versions of Arm Compiler to Arm Development Studio, including
Arm Compiler 5, see Register a compiler toolchain.

2.2 Debug system requirements
When debugging bare-metal and Linux targets, you need additional software and hardware.

Bare-metal requirements
You require a debug unit to connect bare-metal targets to Arm® Development Studio. For a list of
supported debug units, see Debug Probes.

Linux application and Linux kernel requirements
Linux application debug requires gdbserver version 7.0 or later on your target.

In addition to gdbserver, certain architecture and debug features have minimum Linux kernel
version requirements. This is shown in the following table:

Table 2-1: Linux kernel version requirements

Architecture or debug feature Minimum Arm Linux kernel version

Debug with Arm Debugger 2.6.28

Application debug on Symmetric MultiProcessing (SMP) systems 2.6.36

Access VFP and Arm® Neon® registers 2.6.30

Arm Streamline 3.4

Managing firmware updates
• For DSTREAM, use the debug hardware firmware installer view to check the firmware and

update it if necessary. Updated firmware is available in <install_directory>/sw/debughw/
firmware.

• To use ULINK2™ debug probe with Arm Debugger, you must upgrade with CMSIS-DAP
compatible firmware. On Windows, the UL2_Upgrade.exe program can upgrade your ULINK2™

unit. The program and instructions are available in <install_directory>/sw/debughw/ULINK2.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 215

https://developer.arm.com/documentation/ka005198/latest
https://developer.arm.com/documentation/101470/2024-1/Using-debug-probes-with-Arm-Development-Studio
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Hardware-Firmware-Installer-view


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

• For ULINKpro™ and ULINKpro D, Arm Development Studio manages the firmware installation.

2.3 Install Arm Development Studio on Windows using the
command line

To install Arm® Development Studio on Windows using the command line, use the following
procedure.

Before you begin
• Download the Arm Development Studio installation package.

• You must have admin privileges on your machine to install from the command line.

Procedure
1. Unzip the downloaded .zip file.
2. Open the command prompt with administrative privileges.
3. Run the Microsoft installer, msiexec.exe on the armds-<version>.msi file using the msiexec

standard options and the following Arm-specific options:

/EULA

Set EULA to 1 to accept the End User License Agreement (EULA). You must read the
EULA before accepting it using this option. Find the EULA in the GUI installer, the
installation files, or on the Arm Development Studio downloads page.

If you do not set EULA to 1, the installation fails with errors written to the msi installation
log.

INSTALL_CERT

Set INSTALL_CERT to 1 to install the Arm certificate that allows device drivers to be
installed without requesting administrator permission. A dialog requesting permission
to install the Arm certificate appears during the installation unless the certificate was
previously installed or INSTALL_CERT is set to 1.

SKIP_DRIVERS

Set SKIP_DRIVERS to 1 to prevent the installation of USB device drivers during
installation.

Arm recommends that you install the device drivers. They provide USB
connections to DSTREAM hardware units. They also support networking
for the simulation models.

SKIP_MERGE_MODULES

Set SKIP_MERGE_MODULES to 1 to stop third-party redistributables from being installed. For
example, Visual C++ libraries.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 215

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Software-Download


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

MANUFACTURERDIR

Specifies the Arm Development Studio installation directory. This is useful during a quiet
installation, where there is no user interaction during the installation. If not specified, Arm
Development Studio installs into the Program files/Arm directory.

For installations with user interaction, the installation directory is configured in one of the
dialog boxes.

• You must provide the location of the .msi file as an argument to msiexec.

• To display a full list of msiexec options, run msiexec /? from the command
line.

Example 2-1: Quiet installation using msiexec

msiexec.exe /i <installer_location\data\install.msi> /qn EULA=1 INSTALL_CERT=1

MANUFACTURERDIR="C:\devstudio" /l\*v<install.log>

This example installs Arm Development Studio with no user interaction or display of progress. This
example includes the following msiexec standard options:

/i <installer_location\data\install.msi>

Specifies the full path name to the .msi installer file.

/qn

Specifies quiet mode with no user interface.

/l\*v<install.log>

Specifies that all outputs from the installation are written as verbose output to the
<install.log> file.

2.4 Install Arm Development Studio on Windows using the
installation wizard

To install Arm® Development Studio on Windows using the installation wizard, use the following
procedure.

Before you begin
Download the Arm Development Studio installation package.

Procedure
1. Unzip the downloaded .zip file.
2. Run armds-<version>.msi to open the Arm Development Studio setup wizard.
3. Follow the on-screen instructions.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 215

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Software-Download


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

During installation, you might be prompted to install the Arm certificate that
allows device drivers to be installed. Arm recommends that you install these
drivers. They allow USB connections to DSTREAM hardware units. They also
support networking for the simulation models. These drivers are required to use
these features.

2.5 Install Arm Development Studio on Linux
Install Arm® Development Studio on Linux using the installation package provided on the Arm
developer website.

Before you begin
Download the Linux installation package from the Arm Developer website.

Arm Development Studio might be vulnerable to permission-based attacks. For
more information on how to mitigate any vulnerabilities, see Installer vulnerabilities
CVE-2022-43701, CVE-2022-43702, and CVE-2022-43703.

About this task

You can install multiple versions of Arm Development Studio on Linux platforms. To
do this, you must use different root installation directories.

Procedure
Run armds-<version>.sh and follow the on-screen instructions.

During the installation, Arm Development Studio automatically runs a dependency
check and produces a list of missing libraries. You can safely continue with the
installation. Arm recommends that you install these libraries before using Arm
Development Studio.

You can find more details and a full list of required libraries in Additional Linux
libraries.

Arm recommends that you run the post install setup scripts during the installation
process.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 215

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Software-Download
https://developer.arm.com/documentation/ka005596/latest
https://developer.arm.com/documentation/ka005596/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Next steps
To use the post install setup scripts after installation, with root privileges, run:

run_post_install_for_Arm_DS_IDE_<version>.sh

This script is in the install directory.

Device drivers and desktop shortcuts are optional features that are installed by this script. The
device drivers allow USB connections to debug hardware units, for example, the DSTREAM family.
The desktop menu is created using the http://www.freedesktop.org/ menu system on supported
Linux platforms.

Use suite_exec to configure the environment variables correctly for Arm
Development Studio. For example, run <install_directory>/bin/suite_exec
<shell> to open a shell with the PATH and other environment variables correctly
configured. Run suite_exec with no arguments for more help.

2.6 Additional Linux libraries
To install Arm® Development Studio on Linux, you need to install some additional libraries, which
might not be installed on your system.

The specific libraries that require installation depend on the distribution of Linux that you are
running. The dependency_check_linux-x86_64.sh script identifies libraries you must install. This
script is in <install_location>/sw/dependency_check.

If the required libraries are not installed, some of the Arm Development Studio tools
might fail to run. You might encounter error messages, such as:

• armcc: No such file or directory

• arm-linux-gnueabihf-gcc: error while loading shared libraries: libstdc++.so.6:
cannot open shared object file: No such file or directory

Required libraries
Arm Development Studio depends on the following libraries:

• libasound.so.2

• libatk-1.0.so.0

• libc.so.6 *

• libcairo.so.2

• libfontconfig.so.1

• libfreetype.so.6

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 215

http://www.freedesktop.org/


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

• libgcc_s.so.1 *

• libGL.so.1

• libGLU.so.1

• libgthread-2.0.so.0

• libgtk-x11-2.0.so.0

• libncurses.so.5

• libnsl.so.1

• libstdc++.so.6 *

• libusb-0.1.so.4

• libX11.so.6

• libXext.so.6

• libXi.so.6

• libXrender.so.1

• libXt.so.6

• libXtst.so.6

• libz.so.1 *

On a 64-bit installation, libraries marked with an asterisk require an additional 32-bit
compatibility library. Tools installed by the 64-bit installer have dependencies on 32-
bit system libraries. Arm Development Studio tools might fail to run, or might report
errors about missing libraries if 32-bit compatibility libraries are not installed.

Some components also render using a browser library. Arm recommends that you install one of
these libraries to ensure all components render correctly:

• libwebkit-1.0.so.2

• libwebkitgtk-1.0.so.0

• libxpcom.so

2.7 Uninstalling Arm Development Studio on Linux
Arm® Development Studio is not installed with a package manager. To uninstall Arm Development
Studio on Linux, you must delete the installation directory. You might also need to delete additional
configuration files manually.

Procedure
1. Locate your Arm Development Studio installation directory.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

2. If you ran the optional post-install step during or after installation, up to three additional
configuration files are created outside of the install directory. Delete the following files if they
are present:

• /etc/udev/rules.d/ARM_debug_tools.rules

• /etc/hotplug/usb/armdebugtools

• /etc/hotplug/usb/armdebugtools.usermap

3. If you installed the optional desktop shortcuts during or after installation, you can also remove
them:
a) Locate the Arm Development Studio installation directory.
b) Run the following script: remove_menus_for_Arm_DevelopmentStudio_<version>.sh.

4. Delete the Arm Development Studio installation directory.

Related information
Install Arm Development Studio on Linux on page 16

2.8 Licensing Arm Development Studio
Arm® Development Studio uses Arm user-based licensing or FlexNet license management software
to enable features that correspond to specific editions.

To view license information in Arm Development Studio, select Help > Arm License Manager.

To compare Arm Development Studio editions, see Compare editions.

Related information
Add a license using Product Setup on page 19
Add a license using the Arm License Manager on page 21
Delete a FlexNet license on page 25

2.8.1 Add a license using Product Setup

When you first open Arm® Development Studio, the Product Setup dialog box opens and can
prompt you to add a license.

Before you begin

If you previously added a license for an Arm development tool that also licenses
Arm Development Studio, Development Studio is already licensed and this
procedure is not required.

• If you or your company has purchased Arm Development Studio, you need one of the
following:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 215

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Editions


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

◦ For Arm user-based licensing, the license server address or an activation code.

◦ For FlexNet license management, the license file or the license server address and port
number.

• To obtain an evaluation license, you need an Arm account.

Procedure
1. Add your license:

Figure 2-1: Product Setup dialog box shown when you first open Arm Development Studio

• For Arm user-based licensing, select Manage Arm User-Based Licenses, and then click
Finish to open the Arm License Management Utility dialog box.

Arm user-based licensing is only available to customers with a user-based
licensing license. Documentation for user-based licensing is available at
https://lm.arm.com. For assistance with user-based licensing issues, visit Arm
Support Services and open a support case.

• For a FlexNet license server, select Add FlexNet product license, then click Next. Enter the
license server address and port number in the format <port number> @ <server address>,
then click Next.

• For a FlexNet license file, select Add FlexNet product license, then click Next. Select
License File, click Browse…, select the license file, then click Next.

• For an evaluation license:

a. Select Obtain evaluation license, then click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 215

https://lm.arm.com
https://developer.arm.com/All%20Support%20Services
https://developer.arm.com/All%20Support%20Services


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

b. Log into your Arm account, then click Next.
c. Choose a network interface, then click Finish. An evaluation license is generated.

2. Select a product to activate, then click Finish.

2.8.2 Add a license using the Arm License Manager

Use the Arm License Manager to add a license to Arm® Development Studio. If you have an
existing license and need to change to a different type of license, you must deactivate the existing
license.

Before you begin
• If you are using Arm user-based licensing, you require the license server address or an

activation code.

• If you are using FlexNet license management, you require the license file or the license server
address and port number.

Procedure
1. Click Help > Arm License Manager to display your license information in the Preferences

dialog box.
2. If there is an existing Development Studio license, the Preferences dialog box shows that a

license is active. For example:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-2: A license is already in use

If you need to add a different type of license, deactivate the existing license:

• For user-based licensing, see the User-based Licensing User Guide.

• For FlexNet licensing, see Delete a FlexNet license.
3. If there is no existing Development Studio license or you deactivated the existing license, the

following Preferences dialog box is displayed:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 215

https://lm.arm.com


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-3: Development Studio currently has no license

4. Click Configure to display the Product Setup dialog box:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-4: Adding a new license

• For Arm user-based licensing, select Manage Arm User-Based Licenses, then click Finish to
open the Arm License Management Utility dialog box.

Arm user-based licensing is only available to customers with a user-based
licensing license. Documentation for user-based licensing is available at
https://lm.arm.com. For assistance with user-based licensing issues, visit Arm
Support Services and open a support case.

• For a FlexNet license server, select Add FlexNet product license, then click Next. Enter the
license server address and port number in the format <port number> @ <server address>,
then click Next.

• For a FlexNet license file, select Add FlexNet product license, then click Next. Select
License File, click Browse…, select the license file, then click Next.

• For an evaluation license:

a. Select Obtain evaluation license, then click Next.
b. Log into your Arm account, then click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 215

https://lm.arm.com
https://developer.arm.com/All%20Support%20Services
https://developer.arm.com/All%20Support%20Services


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

c. Choose a network interface, then click Finish. An evaluation license is generated.
5. Select a product to activate, then click Finish.

Related information
Add a license using Product Setup on page 19

2.8.3 Delete a FlexNet license

You can use the Arm license manager to delete unwanted FlexNet licenses from Arm®

Development Studio.

About this task
If you are using user-based licensing, there is generally no requirement to delete a license, as a user
can use the license for multiple products on multiple devices. To delete a license, for example, if the
local license cache is corrupt, follow the instructions in the User-based Licensing User Guide.

Procedure
1. Click Help > Arm License Manager to view your license information.
2. Select the license you want to delete, then click Remove.

Licenses added using an environment variable are listed in this dialog box, but
cannot be removed. To remove these licenses, unset the environment variable.

2.9 Language settings
Only Japanese language packs are currently supported by Arm® Development Studio. These
language packs are installed with Arm Development Studio.

Procedure
Launch the IDE in Japanese using one of the following methods:

◦ If your operating system locale is set as Japanese, the IDE automatically displays the translated
features.

◦ If your operating system locale is not set as Japanese, you must specify the -nl command-line
argument when launching the IDE:

armds_ide -nl ja

Arm Compiler for Embedded 6 does not support Japanese characters in source
files.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 215

https://lm.arm.com


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

2.10 Configure an RSE connection to work with an Arm
Linux target

On some targets, you can use a SecureSHell (SSH) connection with the Remote System Explorer
(RSE) provided with Arm® Development Studio.

Procedure
1. In the Remote Systems view, click the Define a connection to remote system option on the

toolbar.
2. In the Select Remote System Type dialog box, expand the General group and select SSH Only.

Figure 2-5: Selecting a connection type

3. Click Next.
4. In Remote SSH Only System Connection, enter the remote target IP address or name in the

Host name field.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-6: Enter connection information

5. Click Next.
6. Verify if the Sftp Files, Configuration, and Available Services are what you require.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-7: Sftp Files options

7. Click Next.
8. Verify if the Ssh Shells, Configuration, and Available Services are what you require.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-8: Defining the shell services

9. Click Next.
10. Verify if the Ssh Terminals, Configuration, and Available Services are what you require.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-9: Defining the terminal services

11. Click Finish.
12. In the Remote Systems view:

a) Right-click on the target and select Connect from the context menu.
b) In the Enter Password dialog box, enter a UserID and Password if required.
c) Click OK to close the dialog box.

Results
Your SSH connection is now set up. You can copy any required files from the local file system on to
the target file system. You can do this by dragging and dropping the relevant files into the Remote
Systems view.

Related information
Import the example projects on page 86
Debug Configurations - Connection tab
Debug Configurations - Files tab
Debug Configurations - Debugger tab
Debug Configurations - Environment tab

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Connection-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Files-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Debugger-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Environment-tab


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Target management terminal for serial and SSH connections
Remote Systems view

2.11 Launching gdbserver with an application
Describes how to launch gdbserver with an application.

Procedure
1. Open a terminal shell that is connected to the target.
2. In the Remote Systems view, right-click on Ssh Terminals.
3. Select Launch Terminal to open a terminal shell.
4. In the terminal shell, navigate to the directory where you copied the application, then execute

the required commands.

Example 2-2: Launch Gnometris

The following example shows the commands used to launch the Gnometris application.

export DISPLAY=ip:0.0
gdbserver :port gnometris

Where:

ip

is the IP address of the host to display the Gnometris application.

port

is the connection port between gdbserver and the application, for example 5000.

If the target has a display connected to it, you do not need to use the export
DISPLAY command.

2.12 Register a compiler toolchain
You can use a different compiler toolchain other than the one installed with Arm® Development
Studio.

If you want to build projects using a toolchain that is not installed with Arm Development Studio,
you must first register the toolchain you want to use. You can register toolchains:

• Using the Preferences dialog box in Arm Development Studio.

• Using the add_toolchain utility from the Arm Development Studio Command Prompt.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Target-management-terminal-for-serial-and-SSH-connections
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Remote-Systems-view


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

You might want to register a compiler toolchain if:

• You want to use a GCC toolchain, or another Arm compiler such as Arm Compiler 5, that is not
included in the Arm Development Studio installation.

• You upgrade your version of Arm Development Studio but you want to use an earlier version of
the toolchain that was previously installed.

• You install a newer version or older version of the toolchain without re-installing Arm
Development Studio.

A variety of other compiler toolchains are available. To find other compiler toolchains, you can do
the following:

• Navigate to Arm Compiler for Embedded downloads for the latest Arm Compiler for Embedded
toolchain.

• Download a GCC toolchain from Linaro.

• Download the GNU Arm Embedded toolchain for Arm processors.

• If you are using Arm Development Studio 2021.1 or later, and want to use Arm Compiler 5, see
What should I do if I want to use a legacy release of Arm Compiler?.

When you register a toolchain, the toolchain is available for new and existing projects in Arm
Development Studio.

You can only register Arm or GCC toolchains.

Related information
Registering a compiler toolchain using the Arm Development Studio IDE on page 32
Register a compiler toolchain using the Arm DS command prompt on page 35
Reconfigure existing projects to use a newly registered compiler toolchain on page 36
Configure a compiler toolchain for the Arm DS command prompt on Windows on page 36
Configure a compiler toolchain for the Arm DS command prompt on Linux on page 37

2.12.1 Registering a compiler toolchain using the Arm Development Studio
IDE

You can register compiler toolchains using the Preferences dialog box in Arm® Development
Studio.

Before you begin
• Download an Arm Compiler for Embedded or GCC toolchain.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 215

https://developer.arm.com/documentation/ka005198/latest
https://releases.linaro.org/components/toolchain/binaries/
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/documentation/ka005184/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Procedure
1. Open the Toolchains tab in the Preferences dialog box; Windows > Preferences > Arm DS >

Toolchains. Here, you can see the compiler toolchains that Arm DS currently recognizes,

Figure 2-10: Toolchains Preferences dialog box

2. Click Add and enter the filepath to the toolchain binaries that you want to use. Then click Next
to autodetect the toolchain properties.

3. After the toolchain properties are autodetected, click Finish to register the toolchain.
Alternatively, click Next to manually enter or change the toolchain properties, and then click
Finish.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Figure 2-11: Properties for the new toolchain

You must manually enter the toolchain properties if:

• The toolchain properties were not autodetected.

• The family, major version, and minor version of the new toolchain are
identical to a toolchain that Arm DS already knows about.

4. In the Preferences dialog box, click Apply.
5. Restart Arm Development Studio.

Results
• The new toolchain is registered with Arm Development Studio.

• When you create a new project, Arm DS shows the new toolchain in the available list of
toolchains.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Related information
Reconfigure existing projects to use a newly registered compiler toolchain on page 36

2.12.2 Register a compiler toolchain using the Arm DS command prompt

Use the add_toolchain utility from the command prompt to register a new Arm® Compiler for
Embedded or GCC toolchain.

Before you begin
• Download an Arm Compiler for Embedded or GCC toolchain.

Procedure
1. Open the Arm DS <version> Command Prompt, and enter add_toolchain <path>, where

<path> is the directory containing the toolchain binaries. The utility automatically detects the
toolchain properties.

By default, the add_toolchain utility is an interactive tool. To use the
add_toochain utility as a non-interactive tool, add the --non-interactive
option to the command.

For example, on Windows: add_toolchain "C:\Program Files
(x86)\ARM_Compiler_5.06u7\bin64" --non-interactive

2. The utility prompts whether you want to register the toolchain with the details it has detected.
If you want to change the details, the utility prompts for the details of the toolchain.

3. Restart Arm Development Studio. You must do this before you can use the toolchain in the Arm
DS environment.

• The toolchain target only applies to GCC toolchains. It indicates what
target platform the GCC toolchain builds for. For example, if your compiler
toolchain binary is named arm-linux-gnueabihf-gcc, then the target
name is the prefix arm-linux-gnueabihf. The target field allows Arm DS to
distinguish different toolchains that otherwise have the same version.

• You must manually enter the toolchain properties if:

◦ The toolchain properties were not autodetected.

◦ The type, major version, and minor version of the new toolchain are
identical to a toolchain that Arm DS already knows about.

Results
• The new toolchain is registered with Arm Development Studio.

• When you create a new project, Arm DS shows the new toolchain in the available list of
toolchains.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

Related information
Reconfigure existing projects to use a newly registered compiler toolchain on page 36

2.12.3 Reconfigure existing projects to use a newly registered compiler
toolchain

When you register a new compiler toolchain in Arm® Development Studio, you can reconfigure
existing projects to use the newly registered toolchain.

Before you begin
Register an Arm Compiler for Embedded or GCC toolchain. You can use the IDE or the Arm DS
command prompt.

Procedure
1. Select a new compiler toolchain to use with your project.

a) In the Project Explorer view, right-click your project and select Properties > C/C++ Build >
Tool Chain Editor.

b) Select the new toolchain under the Current toolchain drop-down menu.
c) Click Apply and Close.

2. After you change the toolchain, clean and rebuild the project.
a) In the Project Explorer view, select the project, right-click it and select Clean Project.
b) In the Project Explorer view, select the project, right-click it and select Build Project.

2.12.4 Configure a compiler toolchain for the Arm DS command prompt on
Windows

Describes how to specify a compiler toolchain using the Arm DS Command Prompt.

About this task
When you want to compile or build from the Arm DS command prompt, you must select the
compiler toolchain you want to use. You can either specify a default toolchain, so that you do not
need to select a toolchain every time you start the Arm DS command prompt, or you can specify a
toolchain for the current session only.

By default, the Arm DS command prompt is not configured with a compiler
toolchain.

Procedure
1. To set a default compiler toolchain:

a) Select Start > All Programs > Arm DS Command Prompt.
b) To see the available compiler toolchains, enter select_default_toolchain.
c) From the list of available toolchains, select your default compiler toolchain.

2. To specify a compiler toolchain for the current session:
Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 36 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

a) Select Start > All Programs > Arm DS Command Prompt.
b) To see the available compiler toolchains, enter select_toolchain.

Using this command overwrites the default compiler toolchain for the
current session.

c) From the list of available toolchains, select the one that you want to use for this session.

2.12.5 Configure a compiler toolchain for the Arm DS command prompt on
Linux

Describes how to specify a compiler toolchain using the Linux command-line utility.

About this task
When you want to compile or build from the Arm DS command prompt, you must select the
compiler toolchain you want to use. You can either specify a default toolchain, so that you do not
need to select a toolchain every time you start the Arm DS command prompt, or you can specify a
toolchain for the current session only.

By default, the Arm DS command prompt is not configured with a compiler
toolchain.

Procedure
1. To set a default compiler toolchain, run <install_directory>/bin/select_default_toolchain

and follow the instructions.
2. To specify a compiler toolchain for the current session, run <install_directory>/bin/

suite_exec --toolchain <toolchain_name>

To list the available toolchains, run suite_exec with no arguments.

If you specify a toolchain using the suite_exec --toolchain command, it
overwrites the default compiler toolchain for the current session.

Example 2-3: Example

To use the Arm® Compiler for Embedded toolchain in the current session, run:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

<install_directory>/bin/suite_exec --toolchain "Arm Compiler for Embedded 6" bash --

norc

2.13 Specify plug-in install location
By default, Arm® Development Studio installs plug-ins into the user's home area. You can override
the default settings so that the plug-ins are installed into the Arm DS installation directory. Plug-ins
available in the Arm DS installation directory are available to all users of the host workstation.

Before you begin
• Installation of Arm Development Studio with appropriate licenses applied.

• Access to your Arm Development Studio install.

About this task
You override the default Arm Development Studio configuration location using the Eclipse vmargs
runtime option. The Eclipse vmargs runtime option allows you to customize the operation of the
Java VM to run Eclipse. See the Eclipse runtime options documentation for more information about
the Eclipse vmargs runtime option.

Procedure
1. At your operating system command prompt, enter: <armds_install_directory>/

bin/armds_ide -vmargs -Dosgi.configuration.area=<install_directory/sw/ide/

configuration> -Dosgi.configuration.cascaded=false.

On Windows, you must run armds_idec.exe from either the Arm DS Command
Prompt, or directly from the <install_directory>/bin directory. Do not run
the armds_idec.exe executable that is in the <install_directory>/sw/eclipse
directory.

The armds_idec.exe executable in <install_directory>/bin acts as a
wrapper for armds_idec.exe in <install_directory>/sw/eclipse. Running
the executable from the <install_directory>/bin directory sets up the Arm
Development Studio environment (paths, environment variables, and other
similar items) in the same way as the Arm DS Command Prompt.

2. Install your Eclipse plug-in using your preferred plug-in installation option, for example, the
Eclipse Marketplace.

3. Restart Arm Development Studio when prompted to do so.

Results
Your plug-ins are now installed into the Arm Development Studio <install_directory/sw/ide/
configuration> directory and are available to all users of the host workstation.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

2.14 Development Studio perspective keyboard shortcuts
You can use various keyboard shortcuts in the Development Studio perspective.

You can access the dynamic help in any view or dialog box by using the following:

• On Windows, use the F1 key

• On Linux, use the Shift+F1 key combination.

The following keyboard shortcuts are available when you connect to a target:

Commands view
You can use:

Ctrl+Space
Access the content assist for autocompletion of commands.

Enter
Execute the command that is entered in the adjacent field.

DOWN arrow
Navigate down through the command history.

UP arrow
Navigate up through the command history.

Debug Control view
You can use:

F5
Step at source level including stepping into all function calls where there is debug
information.

ALT+F5
Step at instruction level including stepping into all function calls where there is debug
information.

F6
Step at source or instruction level but stepping over all function calls.

F7
Continue running to the next instruction after the selected stack frame finishes.

F8
Continue running the target.

A Connect only connection might require setting the PC register to the
start of the image before running it.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Installing and configuring Arm Development Studio

F9
Interrupt the target and stop the current application if it is running.

Related information
Commands view

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Commands-view


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

3. Introduction to Arm Debugger
Arm® Debugger is part of Arm Development Studio and helps you find the cause of software bugs
on Arm processor-based targets and Fixed Virtual Platform (FVP) targets.

From device bring-up to application debug, it can be used to develop code on an RTL simulator,
virtual platform, and hardware, to help get your products to market quickly.

Arm Debugger supports:

• Loading images and symbols.

• Running images.

• Breakpoints and watchpoints.

• Source and instruction level stepping.

• CoreSight™ and non-CoreSight trace (Embedded Trace Macrocell Architecture Specification v3.0
and above).

• Accessing variables and register values.

• Viewing the contents of memory.

• Navigating the call stack.

• Handling exceptions and Linux signals.

• Debugging bare-metal code.

• Debugging multi-threaded Linux applications.

• Debugging the Linux kernel and Linux kernel modules.

• Debugging multicore and multi-cluster systems, including big.LITTLE™.

• Debugging Real-Time Operating Systems (RTOSs).

• Debugging from the command-line.

• Performance analysis using Arm Streamline.

• A comprehensive set of debugger commands that can be executed in the Eclipse Integrated
Development Environment (IDE), script files, or a command-line console.

• GDB debugger commands, making the transition from open source tools easier.

• A small subset of third party CMM-style commands sufficient for running target initialization
scripts.

Using Arm Debugger, you can debug bare-metal and Linux applications with comprehensive and
intuitive views, including synchronized source and disassembly, call stack, memory, registers,
expressions, variables, threads, breakpoints, and trace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

3.1 Debugger concepts
Lists some of the useful concepts to be aware of when working with Arm® Debugger.

AMP
Asymmetric Multi-Processing (AMP) system has multiple processors that may be different
architectures. See Debugging AMP Systems for more information.

Bare-metal
A bare-metal embedded application is one which does not run on an OS.

BBB
The old name for the MTB.

CADI
Component Architecture Debug Interface. Debuggers can use this deprecated API to control
models. Because this API is deprecated, Arm recommends that you use the Iris model
interface instead.

Configuration database
A configuration database is where Arm Debugger stores information about the processors,
devices, and boards it can connect to.

A configuration database exists as a series of .xml files, python scripts, .rvc files, .rcf files,
.sdf files, and other miscellaneous files.

Arm Development Studio comes with pre-configured support for a wide variety of devices.
This configuration database is in the <installation_directory>/sw/debugger/configdb/
directory. You can view these devices in the Debug Configuration dialog box in the Arm
Development Studio IDE.

You can also:

• Add support for your own devices using the Platform Configuration Editor (PCE) tool

• Use the PCE tool to create your own local extension configuration databases

• Use remote configuration databases

Contexts
Each processor in the target can run more than one process. However, the processor
only executes one process at any given time. Each process uses values stored in variables,
registers, and other memory locations. These values can change during the execution of the
process.

The context of a process describes its current state, as defined principally by the call stack
that lists all the currently active calls.

The context changes when:

• A function is called.

• A function returns.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

• An interrupt or an exception occurs.

Because variables can have class, local, or global scope, the context determines which
variables are currently accessible. Every process has its own context. When execution of a
process stops, you can examine and change values in its current context.

CTI
The Cross Trigger Interface (CTI) combines and maps trigger requests, and broadcasts them
to all other interfaces on the Embedded Cross Trigger (ECT) sub-system. See Cross-trigger
configuration for more information.

DAP
The Debug Access Port (DAP) is a control and access component that enables debug access
to the complete SoC through system ports. See About the Debug Access Port for more
information.

Debugger
A debugger is software running on a host computer that enables you to make use of a debug
probe to examine and control the execution of software running on a debug target.

Debug agent
A debug agent is hardware or software, or both, that enables a host debugger to interact
with a target. For example, a debug agent enables you to read from and write to registers,
read from and write to memory, set breakpoints, download programs, run and single-step
programs, program flash memory, and so on.

gdbserver is an example of a software debug agent.

Debug session
A debug session begins when you connect the debugger to a target for debugging software
running on the target and ends when you disconnect the debugger from the target.

Debug target
A debug target is an environment where your program runs. This environment can be
hardware, software that simulates hardware, or a hardware emulator.

A hardware target can be anything from a mass-produced development board or electronic
equipment to a prototype product, or a printed circuit board.

During the early stages of product development, if no hardware is available, a simulation or
software target might be used to simulate hardware behavior. A Fixed Virtual Platform (FVP)
is a software model from Arm that provides functional behavior equivalent to real hardware.

Even though you might run an FVP on the same host as the debugger, it is
useful to think of it as a separate piece of hardware.

Also, during the early stages of product development, hardware emulators are used to verify
hardware and software designs for pre-silicon testing.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 215

https://developer.arm.com/documentation/101470/2024-1/Controlling-Target-Execution/Cross-trigger-configuration
https://developer.arm.com/documentation/101470/2024-1/Controlling-Target-Execution/Cross-trigger-configuration
https://developer.arm.com/documentation/ddi0314/latest/Debug-Access-Port/About-the-Debug-Access-Port


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

Debug probe
A debug probe is a physical interface between the host debugger and hardware target. It acts
as a debug agent. A debug probe is normally required for bare-metal start/stop debugging
real target hardware, for example, using JTAG.

Examples include DSTREAM, DSTREAM-ST, and the ULINK family of debug and trace
probes.

DSTREAM
The Arm DSTREAM family of debug and trace units. For more information, see: DSTREAM
family

Arm Development Studio supports the Arm DSTREAM debug unit, but it is
discontinued and no longer available to purchase.

DTSL
Debug and Trace Services Layer (DTSL) is a software layer in the Arm Debugger stack.
DTSL is implemented as a set of Java classes which are typically implemented (and possibly
extended) by Jython scripts. A typical DTSL instance is a combination of Java and Jython.
Arm has made DTSL available for your own use so that you can create programs (Java or
Jython) to access/control the target platform.

DWARF
DWARF is a debugging format used to describe programs in C and other similar programming
languages. It is most widely associated with the ELF object format but it has been used with
other object file formats.

ELF
Executable and Linkable Format (ELF) is a common standard file format for executables,
object code, shared libraries, and core dumps.

ETB
Embedded Trace Buffer (ETB) is an optional on-chip buffer that stores trace data from
different trace sources. You can use a debugger to retrieve captured trace data.

ETF
Embedded Trace FIFO (ETF) is a trace buffer that uses a dedicated SRAM as either a circular
capture buffer, or as a FIFO. The trace stream is captured by an ATB input that can then be
output over an ATB output or the Debug APB interface. The ETF is a configuration option of
the Trace Memory Controller (TMC).

ETM
Embedded Trace Macrocell (ETM) is an optional debug component that enables
reconstruction of program execution. The ETM is designed to be a high-speed, low-power
debug tool that supports trace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 215

https://developer.arm.com/Tools%20and%20Software/#aq=%40navigationhierarchiescategories%3D%3D%22Tools%20and%20Software%20products%22%20AND%20%40navigationhierarchiescontenttype%3D%3D%22Product%20Information%22&numberOfResults=48&f-navigationhierarchiesprocessortype=Debuggers
https://developer.arm.com/Tools%20and%20Software/#aq=%40navigationhierarchiescategories%3D%3D%22Tools%20and%20Software%20products%22%20AND%20%40navigationhierarchiescontenttype%3D%3D%22Product%20Information%22&numberOfResults=48&f-navigationhierarchiesprocessortype=Debuggers


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

ETR
Embedded Trace Router (ETR) is a CoreSight™ component which routes trace data to system
memory or other trace sinks, such as HSSTP.

FVP
Fixed Virtual Platform (FVP) enables development of software without the requirement for
actual hardware. The functional behavior of the FVP is equivalent to real hardware from a
programmers view.

Iris
Debuggers can use this API to control models.

ITM
Instruction Trace Macrocell (ITM) is a CoreSight component which delivers code
instrumentation output and specific hardware data streams.

jRDDI
The Java API implementation of RDDI.

Jython
An implementation of the Python language which is closely integrated with Java.

MTB
Micro Trace Buffer. This is used in the Cortex®-M0 and Cortex-M0+.

PTM
Program Trace Macrocell (PTM) is a CoreSight component which is paired with a core to
deliver instruction only program flow trace data.

RDDI
Remote Device Debug Interface (RDDI) is a C-level API which allows access to target debug
and trace functionality, typically through a DSTREAM box, or an Iris model.

Scope
The scope of a variable is determined by the point at which it is defined in an application.

Variables can have values that are relevant within:

• A specific class only (class).

• A specific function only (local).

• A specific file only (static global).

• The entire application (global).

SMP
A Symmetric Multi-Processing (SMP) system has multiple processors with the same
architecture. See Debugging SMP systems for more information.

STM
System Trace Macrocell (STM) is a CoreSight component which delivers code instrumentation
output and other hardware generated data streams.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

TPIU
Trace Port Interface Unit (TPIU) is a CoreSight component which delivers trace data to an
external trace capture device.

TMC
The Trace Memory Controller (TMC) enables you to capture trace using:

• The debug interface such as 2-pin serial wire debug.

• The system memory such as a dynamic Random Access Memory (RAM).

• The high-speed links that already exist in the System-on-Chip (SoC) peripheral.

3.2 Overview: Arm CoreSight debug and trace
components

CoreSight™ defines a set of hardware components for Arm®-based SoCs. Arm Debugger uses the
CoreSight components in your SoC to provide debug and performance analysis features.

Examples of common CoreSight components include:

• DAP: Debug Access Port

• ECT: Embedded Cross Trigger

• TMC: Trace Memory Controller

◦ ETB: Embedded Trace Buffer

◦ ETF: Embedded Trace FIFO

◦ ETR: Embedded Trace Router

• ETM: Embedded Trace Macrocell

• PTM: Program Trace Macrocell

• ITM: Instrumentation Trace Macrocell

• STM: System Trace Macrocell

Trace triggers are not supported on Cortex®-M series processors.

Examples of how these components are used by Arm Debugger include:

• The Trace view displays data collected from PTM and ETM components.

• The Events view displays data collected from ITM and STM components.

• Debug connections can make use of the ECT to provide synchronized starting and stopping of
groups of cores. For example, you can use the ECT to:

◦ Stop all the cores in an SMP group simultaneously.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 215

https://developer.arm.com/documentation/ddi0314/latest/Debug-Access-Port/About-the-Debug-Access-Port
https://developer.arm.com/documentation/ddi0314/latest/Embedded-Cross-Trigger
https://developer.arm.com/documentation/ddi0461/latest/Introduction/About-the-TMC
https://developer.arm.com/documentation/ddi0461/latest/Introduction/Example-systems-with-different-configurations
https://developer.arm.com/documentation/ddi0461/latest/Introduction/Example-systems-with-different-configurations
https://developer.arm.com/documentation/ddi0461/latest/Introduction/Example-systems-with-different-configurations
https://developer.arm.com/documentation/ddi0314/latest/CoreSight-Trace-Sources/Embedded-Trace-Macrocells
https://developer.arm.com/documentation/ihi0035/latest/Program-Trace-Macrocell-Programmers-Model
https://developer.arm.com/documentation/ddi0314/latest/Instrumentation-Trace-Macrocell
https://developer.arm.com/documentation/ddi0444/latest/Introduction/About-the-System-Trace-Macrocell


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

◦ Halt heterogeneous cores simultaneously to allow whole system debug at a particular point
in time.

If you are using an SoC that is supported out-of-the-box with Arm Debugger, select the correct
platform (SoC) in the Debug Configuration dialog box to configure a debug connection. If you
are using an SoC that is not supported by Arm Debugger by default, then you must first define
a custom platform in Arm Debugger's configuration database using the Platform Configuration
Editor tool.

For all platforms, whether built-in or manually created, you can use the Platform Configuration
Editor (PCE) to easily define the debug topology between various components available on the
platform. See the Platform Configuration Editor topic for details.

3.3 Overview: Debugging multi-core (SMP and AMP),
big.LITTLE, and multi-cluster targets

Arm® Debugger is developed with multicore debug in mind for bare-metal, Linux kernel, or
application-level software development.

Awareness for Symmetric Multi-Processing (SMP), Asymmetric Multi-Processing (AMP), and
big.LITTLE™ configurations is embedded in Arm Debugger, allowing you to see which core, or
cluster a thread is executing on.

When debugging applications in Arm Debugger, multicore configurations such as SMP or
big.LITTLE require no special setup process. Arm Debugger includes predefined configurations,
backed up by the Platform Configuration Editor which enables further customization. The nature
of the connection determines how Arm Debugger behaves, for example stopping and starting all
cores simultaneously in a SMP system.

Related information
Debugging SMP systems on page 47
Debugging AMP Systems on page 50
Debugging big.LITTLE Systems on page 51

3.3.1 Debugging SMP systems

From the point of view of Arm® Debugger, Symmetric Multi Processing (SMP) refers to a set of
architecturally identical cores that are tightly coupled together and used as a single multi-core
execution block. Also, from the point of view of the debugger, they must be started and halted
together.

Arm Debugger expects an SMP system to meet the following requirements:

• The same ELF image running on all processors.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 215

https://developer.arm.com/documentation/101470/2024-1/Platform-Configuration/Platform-Configuration-Editor
https://developer.arm.com/documentation/101470/2024-1/Platform-Configuration/Platform-Configuration-Editor


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

• All processors must have identical debug hardware. For example, the number of hardware
breakpoint and watchpoint resources must be identical.

• Breakpoints and watchpoints must only be set in regions where all processors have identical
physical and virtual memory maps. Processors with separate instances of identical peripherals
mapped to the same address are considered to meet this requirement. Private peripherals of
Arm multicore processors is a typical example.

Configuring and connecting
To enable SMP support in the debugger, you must first configure a debug session in the Debug
Configurations dialog box. Configuring a single SMP connection is all that you require to enable
SMP support in the debugger.

Targets that support SMP debugging have SMP mentioned against them.

Figure 3-1: Versatile Express A9x4 SMP configuration

Once connected to your target, use the Debug Control view to work with all the cores in your SMP
system.

Image and symbol loading
When debugging an SMP system, image and symbol loading operations apply to all the SMP
processors.

For image loading, this means that the image code and data are written to memory once, through
one of the processors, and are assumed to be accessible through the other processors at the same
address because they share the same memory.

For symbol loading, this means that debug information is loaded once and is available when
debugging any of the processors.

Running, stepping, and stopping
When debugging an SMP system, attempting to run one processor automatically starts running
all the other processors in the system. Similarly, when one processor stops, either because you
requested it or because of an event such as a breakpoint being hit, then all the other processors in
the system stop.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

For instruction level single-stepping commands, stepi and nexti, the currently selected processor
steps one instruction.

Figure 3-2: Core 0 stopped on step i command

The exception to this is when a nexti operation is required to step over a function call, in which
case, the debugger sets a breakpoint and then runs all processors. All other stepping commands
affect all processors.

Depending on your system, there might be a delay between different cores running or stopping.
This delay can be very large because the debugger must run and stop each core individually.
However, hardware cross-trigger implementations in most SMP systems ensure that the delays are
minimal and are limited to a few processor clock cycles.

In rare cases, one processor might stop, and one or more of the other processors might not
respond. This can occur, for example, when a processor running code in secure mode has
temporarily disabled debug ability. When this occurs, the Debug Control view displays the
individual state of each processor, running or stopped, so you can see which ones have failed to
stop. Subsequent run and step operations might not operate correctly until all the processors stop.

Breakpoints, watchpoints, and signals
By default, when debugging an SMP system, breakpoint, watchpoint, and signal (vector catch)
operations apply to all processors. This means that you can set one breakpoint to trigger when
any of the processors execute code that meets the criteria. When the debugger stops due to
a breakpoint, watchpoint, or signal, then the processor that causes the event is listed in the
Commands view.

Breakpoints or watchpoints can be configured for one or more processors by selecting the required
processor in the relevant Properties dialog box. Alternatively, you can use the break-stop-on-cores
command. This feature is not available for signals.

Examining target state
Views of the target state, including Registers, Call stack, Memory, Disassembly, Expressions, and
Variables contain content that is specific to a processor. Views such as Breakpoints, Signals, and
Commands are shared by all the processors in the SMP system, and display the same contents
regardless of which processor is currently selected.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 215

https://developer.arm.com/documentation/101471/6-4-0armds/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/stepi
https://developer.arm.com/documentation/101471/6-4-0armds/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/nexti


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

Trace
If you are using a connection that enables trace support, you can view trace for each of the
processors in your system using the Trace view.

By default, the Trace view shows trace for the processor that is currently selected in the Debug
Control view. Alternatively, you can choose to link a Trace view to a specific processor by using the
Linked: context toolbar option for that Trace view. Creating multiple Trace views linked to specific
processors enables you to view the trace from multiple processors at the same time.

The indexes in the different Trace views do not necessarily represent the same point
in time for different processors.

3.3.2 Debugging AMP Systems

From the point of view of Arm® Debugger, Asymmetric Multi Processing (AMP) refers to a set of
cores which operate in an uncoupled manner. The cores can be of different architectures or of the
same architecture but not operating in an Symmetric Multi Processing (SMP) configuration. Also,
from the point of view of the debugger, it depends on the implementation whether the cores need
to be started or halted together.

For example, a Cortex®-A520 device coupled with a Cortex-M55 combines the benefits of an
application processor running Linux with a microcontroller running an Real-Time Operating System
(RTOS) that provides low-latency interrupts. These types of system are often found in industrial
applications where a rich user interface might need to interact closely with a safety-critical control
system, combining multiple cores into an integrated SoC for efficiency gains.

Bare metal debug on AMP Systems
Arm Debugger supports simultaneous debug of the cores in AMP devices. In this case, you need
to launch a debugger connection to each one of the cores and clusters in the system. Each one of
these connections is treated independently, so images, debug symbols, and OS awareness are kept
separate for each connection. For instance, you will normally load an image and its debug symbols
for each AMP processor. With multiple debug sessions active, you can compare content in the
Registers, Disassembly, and Memory views by opening multiple views and linking them to multiple
connections, allowing you to view the state of each processor at the same time.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

Figure 3-3: Example of Asymmetric Multi Processing with three cores

You can connect to a system in which there is a cluster or big.LITTLE™ subsystem working in SMP
mode (for example, running Linux) with extra processors working in AMP mode (for example,
running their own bare-metal software or an RTOS). Arm Debugger is capable of supporting these
devices by just connecting the debugger to each core or subsystem separately.

The Heterogeneous system debug with Arm Development Studio tutorial provides an example of
the setup and debug of an AMP system.

3.3.3 Debugging big.LITTLE Systems

A big.LITTLE™ system optimizes for both high performance and low power consumption over a
wide variety of workloads. It achieves this by including one or more high performance processors
alongside one or more low power processors.

Awareness for big.LITTLE configurations is built into Arm® Debugger, allowing you to establish a
bare-metal, Linux kernel, or Linux application debug connection, just as you would for a single core
processor.

For the software required to enable big.LITTLE support in your own OS, visit the
big.LITTLE Linaro git repository.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 215

https://developer.arm.com/documentation/102021


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to Arm Debugger

Bare-metal debug on big.LITTLE systems
For bare-metal debugging on big.LITTLE systems, you can establish a big.LITTLE connection in Arm
Debugger. In this case, all the processors in the big.LITTLE system are brought under the control
of the debugger. The debugger monitors the power state of each processor as it runs and displays
it in the Debug Control view and on the command-line. Processors that are powered-down are
visible to the debugger, but cannot be accessed. The remaining functionality of the debugger is
equivalent to an SMP connection to a homogeneous cluster of cores.

Linux application debug on big.LITTLE systems
For Linux application debugging on big.LITTLE systems, you can establish a gdbserver connection
in Arm Debugger. Linux applications are typically unaware of whether they are running on a big
processor or a LITTLE processor because this is hidden by the operating system. Therefore, there
is no difference when debugging a Linux application on a big.LITTLE system as compared to
application debug on any other system.

3.4 Overview: Debugging Arm-based Linux applications
Arm® Debugger supports debugging Linux applications and libraries that are written in C, C++, and
Arm assembly.

The integrated suite of tools in Arm Development Studio enables rapid development of optimal
code for your target device.

For Linux applications, communication between the debugger and the debugged application is
achieved using gdbserver. See Configuring a connection to a Linux application using gdbserver for
more information.

Related information
Configuring a connection to a Linux kernel on page 119
About debugging shared libraries

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 215

https://developer.arm.com/documentation/101470/2024-1/Debugging-Embedded-Systems/About-debugging-shared-libraries


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

4. Introduction to the IDE
The Arm® Development Studio Integrated Development Environment (IDE) is Eclipse-based,
combining the Eclipse IDE from the Eclipse Foundation with the compilation and debug technology
of Arm tools.

It includes:

Project Explorer
The project explorer enables you to perform various project tasks such as adding or removing
files and dependencies to projects, importing, exporting, or creating projects, and managing
build options.

Editors
Editors enable you to read, write, or modify C/C++ or Arm assembly language source files.

Perspectives and views
Perspectives provide customized views, menus, and toolbars to suit a particular type of
environment. Arm Development Studio uses the Development Studio perspective by
default. To switch perspectives, from the main menu, select Window > Perspective > Open
Perspective.

4.1 IDE Overview
The Integrated Development Environment (IDE) contains a collection of views that are associated
with a specific perspective.

Arm® Development Studio uses the Development Studio perspective as default.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

Figure 4-1: IDE in the Development Studio perspective.

1. The main menu and toolbar are both located at the top of the IDE window. Other toolbars, that
are associated with specific features, are located at the top of each perspective or view.

2. Project Explorer view to create, build, and manage your projects.

3. Editor view to inspect and modify the content of your source code files. The tabs in the editor
area show the files that are currently open for editing.

4. During a debug session this area typically shows the Registers and Breakpoints views. You can
drag and drop other views into this area.

5. Debug Control view to create and control debug connections.

6. During a debug session this area typically shows views that are associated with debug inputs
and outputs, such as the Commands and Console views.

On exit, your settings save automatically. When you next open Arm Development Studio, the
window returns to the same perspective and views.

For further information on a view, click inside it and press F1 to open the Help view.

Customize the IDE
You can customize the IDE by changing the layout, key bindings, file associations, and color
schemes. These settings can be found in Window > Preferences. Changes are saved in your
workspace. If you select a different workspace, then these settings might be different.

Related information
Introduction to the IDE on page 53
Perspectives in Arm Development Studio

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Perspectives-in-Arm-Development-Studio


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

4.2 Personalize your development environment
Arm® Development Studio Integrated Development Environment (IDE) has many settings, called
Preferences, that are available for you to adjust and change. Use these Preferences to adapt the
IDE to best support your own personal development style.

When you launch Arm Development Studio for the first time, the Preferences Wizard takes you
through the process of setting up the IDE.

This wizard presents the most commonly changed Preferences to customize for your requirements.
These include specifying the start-up workspace location, selecting a theme, and tweaking the code
editing format.

• If you have upgraded from a previous version of Arm Development Studio and
had your workspace preferences already set up, your preferences remain the
same.

• These preferences are only saved in the current workspace. To copy your
preferences to another workspace, select File > Export... to open the Export
wizard. Then select General > Preferences and choose the location you want to
export your preferences to.

• You can click Apply and Close at any point during your wizard. The Preferences
Wizard applies changes up to where you have modified the options and leaves
the rest of the settings as default.

• There are more IDE configuration options in the Preferences dialog which
allow you to make further in-depth changes to your IDE settings. For example,
extra code formatting and syntax highlighting options. To open the Preferences
dialog, from the main menu, select Window > Preferences.

• You can click Skip and ignore the Preferences Wizard and return to the wizard
later to make changes. To restart the wizard later, in the Preferences dialog,
select Arm DS > General > Start Preferences Wizard.

• To disable the Preferences Wizard when you launch Arm Development Studio,
add ARM_DS_DISABLE_PREFS_WIZARD as an environment variable in your operating
system.

• When switching Arm Development Studio between the light and dark themes,
to apply your selection you must restart Arm Development Studio.

Related information
Installing and configuring Arm Development Studio on page 12
Licensing Arm Development Studio on page 19
Introduction to the IDE on page 53
Language settings on page 25
Preferences dialogue box

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Preferences-dialog-box


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

4.3 Add views to the Arm Development Studio IDE
Views provide information for a specific function, corresponding to the active debug connection.
Each perspective has a set of default views. You can add, remove, or reposition the views to
customize your workspace.

Procedure
1. Click the + button in the area you want to add a view.

Figure 4-2: Adding a view in an area

2. Choose a view to add, or click Other… to open the Show View dialog box to see a complete list
of available views.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

Figure 4-3: Adding a view in Arm Development Studio

3. Select the view you want to open, and click OK.

Results
The view opens in the selected area.

Related information
Arm Debugger perspectives and views

4.4 Change the default workspace in the Arm
Development Studio IDE

The workspace is an area on your file system to store files and folders related to your projects,
and your IDE settings. When Arm® Development Studio launches for the first time, a default
workspace is automatically created for you in C:\Users\<user>\Development Studio Workspace.

About this task

Arm recommends that you select a dedicated workspace folder for your projects.
If you select an existing folder containing resources that are not related to your
projects, you cannot access them in Arm Development Studio. These resources
might also cause a conflict later when you create and build projects.

Arm Development Studio automatically opens in the last used workspace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

Procedure
1. Select File > Switch Workspace > Other.... The Eclipse Launcher dialog box opens.

Figure 4-4: Workspace Launcher dialog box

2. Click Browse… to choose your workspace, and click OK.

Results
Arm Development Studio relaunches in the new workspace.

4.5 Switch perspectives in the Arm Development Studio
IDE

Perspectives define the layout of your selected views and editors in the Arm® Development Studio
IDE. Each perspective has its own associated menus and toolbars.

Procedure
1. Go to Window > Perspective > Open Perspective > Other.... This opens the Open Perspective

dialog box.
2. Select the perspective that you want to open, and click OK.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

Figure 4-5: Open Perspective dialog box

Results
Your perspective opens in the workspace.

Related information
Arm Debugger perspectives and views

4.6 Launch the Arm Development Studio command
prompt

To configure the same features of Arm® Development Studio that you can configure through the
GUI, you can use the Arm Development Studio command prompt.

About this task
The Arm Development Studio command prompt is useful when:

• You want to run scripts or automate tasks.

• You are more comfortable working with the command line.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

You can use the Arm Development Studio command prompt to perform operations such as:

• Registering and configuring a compiler toolchain.

• Selecting and using a compiler.

• Running a model.

• Launching Arm Streamline.

• Importing, building, and cleaning Eclipse projects and μVision® projects.

• Configuring Arm Debugger.

• Configuring a connection to a built-in Fixed Virtual Platform (FVP).

• Batch updating firmware for the DSTREAM family of products.

Procedure
Launch the command prompt for your system:

On Windows:
◦ Select Start > All Programs > Arm Development Studio > Arm Development Studio

Command Prompt.
On Linux:

1. Open a new terminal in your preferred shell.

2. Change directory to the bin directory inside your Arm Development Studio installation
directory. For example: cd /opt/arm/developmentstudio-2020.0/bin.

3. Run ./suite_exec.

Example 4-1: Arm Development Studio command prompt usage scenarios

• Configure a compiler toolchain
On Windows:

◦ Set a default compiler toolchain:

1. Follow the procedure to launch the command prompt.

2. To see the available compiler toolchains, run select_default_toolchain.

3. Select your preferred default compiler toolchain from the available list.

◦ Specify a compiler toolchain for the current session:

1. Follow the procedure to launch the command prompt.

2. To see the available compiler toolchains, run select_toolchain.

3. Select your preferred compiler toolchain for this session from the available list.
On Linux:

◦ Set a default compiler toolchain:

1. Follow the procedure to launch the command prompt.

2. Run ./select_default_toolchain.

3. Select your preferred default compiler toolchain from the available list.
Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 60 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

◦ Set a compiler toolchain for the current session:

1. Follow the procedure to launch the command prompt.

2. Run ./suite_exec --toolchain <toolchain_name> <preferred_shell>.

• Set Arm Compiler for Embedded 6 as your compiler toolchain
On Windows:

1. Follow the procedure to launch the command prompt.

2. To see the available compiler toolchains, run select_toolchain.

3. Select Arm Compiler for Embedded 6 from the list.

4. To verify that the environment has been configured correctly, run armclang --vsn to
see the version information and license details.

On Linux:
1. Follow steps 1 and 2 of the procedure to launch the command prompt.

2. Run ./suite_exec --toolchain "Arm Compiler 6" <preferred_shell>.

3. To verify that the environment has been configured correctly, run ./armclang --vsn
to see the version information and license details.

• Connect to an Arm FVP Cortex-A9x4 model
On Windows:

1. Follow the procedure to launch the command prompt.

2. Run armdbg --cdb-entry "Arm FVP::VE_Cortex_A9x4::Bare Metal Debug::Bare
Metal Debug::Cortex-A9x4 SMP".

On Linux:
1. Follow the procedure to launch the command prompt.

2. Run ./armdbg --cdb-entry "Arm FVP::VE_Cortex_A9x4::Bare Metal Debug::Bare
Metal Debug::Cortex-A9x4 SMP".

• Connect to an Arm FVP Cortex-A53x1 and specify an image to load
On Windows:

1. Follow the procedure to launch the command prompt.

2. Run armdbg --cdb-entry "Arm FVP (Installed with Arm DS)::Base_A53x1::Bare
Metal Debug::Bare Metal Debug::Cortex-A53" --cdb-entry-
param model_params="-C bp.secure_memory=false" --image "C:
\<path_to_workspace_folder>\HelloWorld\Debug\HelloWorld.axf".

On Linux:
1. Follow the procedure to launch the command prompt.

2. Run ./armdbg --cdb-entry "Arm FVP (Installed with Arm
DS)::Base_A53x1::Bare Metal Debug::Bare Metal Debug::Cortex-A53" --

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

cdb-entry-param model_params="-C bp.secure_memory=false" --image
"<path_to_workspace_folder>/HelloWorld/Debug/HelloWorld.axf".

Related information
Debugging code on page 106
Configuring a connection from the command-line to a built-in FVP on page 107
Register a compiler toolchain using the Arm DS command prompt on page 35
Run the Arm Development Studio IDE from the command-line to clean, build, and import projects
on page 81
Running Arm Debugger from the command-line and using scripts

4.7 Headless tools in the Arm Development Studio
command prompt

Use the Arm® Development Studio command prompt to run features of the Arm Development
Studio IDE without the GUI. You might want to do this to automate certain tasks.

The following commands run the Arm Development Studio IDE from the command prompt:

• On Windows: armds_idec.exe

• On Linux: armds_ide

You must specify a headless application as an argument to the -application option.

There are two headless applications provided with Arm Development Studio:

• Use com.arm.cmsis.pack.project.headlessbuild to clean, build, and import Eclipse projects.

• Use com.arm.cmsis.pack.uv.headlessuvimport to clean, build, and import μVision® projects.

You can also specify the following options as necessary:

Table 4-1: Arm DS IDE options

Option Description

-nosplash Disables the Arm Development Studio IDE splash screen.

--launcher.suppressErrors Causes errors to be printed to the console instead of being reported
in a graphical dialog box.

-data <workspaceDir> Specify the location of your workspace.

-import <projectDir>[/projectName.uvprojx] Import the project from the specified directory into your workspace.

If you are using
com.arm.cmsis.pack.uv.headlessuvimport to import a
μVision project, you must specify the project file here.

Use this option multiple times to import multiple projects.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 215

https://developer.arm.com/documentation/101470/2024-1/Running-Arm-Debugger-from-the-command-line-and-using-scripts


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Introduction to the IDE

Option Description
-build <projectName>[/<configName>] | all Build the project with the specified name, or all projects in your

workspace.

By default, this option builds all the configurations in each project.
You can limit this action to a single configuration, such as Debug or
Release, by specifying the configuration name immediately after
your project name, separated with '/'.

Use this option multiple times to build multiple projects.

-cleanBuild <projectName>[/<configName>] | all Clean and build the project with the specified name, or all projects
in your workspace.

By default, this option cleans and builds all the configurations in
each project. You can limit this action to a single configuration,
such as Debug or Release, by specifying the configuration name
immediately after your project name, separated with '/'.

Use this option multiple times to clean and build multiple projects.

-cmsisRoot <path> Set the path to the CMSIS Packs root directory

-help Prints the list of available arguments.

Related information
Launch the Arm Development Studio command prompt on page 59
Run the Arm Development Studio IDE from the command-line to clean, build, and import projects
on page 81

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5. Projects and examples in Arm
Development Studio

You can use Arm® Development Studio to create, import, export, and manage projects. Arm
Development Studio also comes with several example projects.

Projects are top level folders in your workspace that contain related files and sub-folders. A project
must exist in your workspace before you add a new file or import an existing file.

You can import resources from existing projects and export resources to use with tools external to
Arm Development Studio.

5.1 Project types
Different project types are provided with Eclipse, depending on the requirements of your project.

Bare metal projects require a software license for Arm® Compiler for Embedded to
successfully build an ELF image.

Bare-metal Executable
Uses Arm Compiler for Embedded to build a bare-metal executable ELF image.

Bare-metal Static library
Uses Arm Compiler for Embedded to build a library of ELF object format members for a bare-
metal project.

It is not possible to debug or run a stand-alone library file until it is linked into
an image.

Executable
Uses the GNU Compilation Tools to build a Linux executable ELF image.

Shared Library
Uses the GNU Compilation Tools to build a dynamic library for a Linux application.

Static library
Uses the GNU Compilation Tools to build a library of ELF object format members for a Linux
application.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

It is not possible to debug or run a stand-alone library file until it is linked into
an image.

Makefile project
Creates a project that requires a makefile to build the project. However, Eclipse does not
automatically create a makefile for an empty Makefile project. You can write the makefile
yourself or modify and use an existing makefile.

Eclipse does not modify Makefile projects.

Build configurations
By default, the new project wizard provides two separate build configurations:

Debug
The debug target is configured to build output binaries that are fully debuggable, at the
expense of optimization. It configures the compiler optimization setting to minimum (level 0),
to provide an ideal debug view for code development.

Release
The release target is configured to build output binaries that are highly optimized, at the
expense of a poorer debug view. It configures the compiler optimization setting to high (level
3).

In all new projects, the Debug configuration is automatically set as the active configuration. You can
change this in the C/C++ Build Settings panel of the Project Properties dialog box.

C project
This does not select a source language by default and leaves this decision up
to the compiler. Both GCC and Arm Compiler for Embedded default to C for
.c files and C++ for .cpp files.

C++ project
Selects C++ as the source language by default, regardless of file extension.

In both cases, the source language for the entire project a source directory, or
individual source file can be configured in the build configuration settings.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5.2 Create a new C or C++ project
Create a new C or C++ project in Arm® Development Studio.

Procedure
1. Select File > New > Project... from the main menu.
2. Expand the C/C++ group, select either C Project or C++ Project, and click Next.

C project
This does not select a source language by default and leaves this decision
up to the compiler. Both GCC and Arm Compiler for Embedded default to
C for .c files and C++ for .cpp files.

C++ project
Selects C++ as the source language by default, regardless of file extension.

In both cases, the source language for the entire project, a source directory or
individual source file can be configured in the build configuration settings.

3. Enter a Project name.
4. Leave the Use default location option selected so that the project is created in the default

folder shown. Alternatively, deselect this option and browse to your preferred project folder.
5. Select the type of project that you want to create.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-1: Creating a new C project

6. Select a Toolchain.
7. Click Finish to create your new project.

Results
You can view the project in the Project Explorer view.

5.3 Configuring the C/C++ build behavior
A build is the process of compiling and linking source files to generate an output file. A build can
be applied to either a specific set of projects or the entire workspace. It is not possible to build an
individual file or sub-folder.

Arm® Development Studio IDE provides an incremental build that applies the selected build
configuration to resources that have changed since the last build. Another type of build is the
Clean build that applies the selected build configuration to all resources, discarding any previous
build states.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Automatic
This is an incremental build that operates over the entire workspace and can run
automatically when a resource is saved. This setting must be enabled for each project by
selecting Build on resource save (Auto build) in the Behaviour tab. By default, this behavior
is not selected for any project.

Figure 5-2: Workbench build behavior

You must also ensure that Build Automatically is selected from the Project menu. By default,
this menu option is selected.

Manual
This is an incremental build that operates over the entire workspace on projects with Build
(Incremental build) selected. By default, this behavior is selected for all projects.

You can run an incremental build by selecting Build All or Build Project from the Project
menu.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Manual builds do not save before running so you must save all related files
before selecting this option! To save automatically before building, you
can change your default settings by selecting Preferences... > General >
Workspace from the Window menu.

Clean
This option discards any previous build states including object files and images from the
selected projects. The next automatic or manual build after a clean, applies the selected build
configuration to all resources.

You can run a clean build on either the entire workspace or specific projects by selecting
Clean… from the Project menu. You must also ensure that Clean is selected in the C/C++
Build > Behaviour tab of the Preferences dialog box. By default, this behavior is selected for
all projects.

Build order is a feature where inter-project dependencies are created and a specific build order
is defined. For example, an image might require several object files to be built in a specific order.
To do this, you must split your object files into separate smaller projects, reference them within a
larger project to ensure they are built before the larger project. Build order can also be applied to
the referenced projects.

5.4 Create a new Makefile project with existing code
You can create a new Makefile project in Arm® Development Studio with your existing source
code.

About this task
The following procedure describes how to create a new Makefile project in the same directory as
your source code.

Procedure
1. Create a Makefile project:

a) Select File > New > Project... from the main menu.
b) Expand the C/C++ group, select Makefile Project with Existing Code, and click Next.
c) Enter a project name and enter the location of your existing source code.
d) Select the toolchain that you want to use for Indexer Settings. Indexer Settings provide

source code navigation in the Arm Development Studio IDE.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-3: Creating a new Makefile project with existing code

e) Click Finish to create your new project. The project and source files are visible in the
Project Explorer view.

2. Create a Makefile:
a) Before you can build the project, you need to have a Makefile that contains the

compilation tool settings. The easiest way to create one is to copy the Makefile from an
example project, and paste it into your new project.

b) Edit the Makefile for your new project.
c) Right-click the project and then select Properties > C/C++ Build to access the build

settings. In the Builder Settings tab, check that the Build directory points to the location of
the Makefile.

3. Add any other source files you need to the project.
4. Build the project. In the Project Explorer view, right-click the project and select Build Project.

Related information
Creating an empty Makefile project on page 70

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5.5 Creating an empty Makefile project
Describes how to create an empty C or C++ Makefile project for an Arm Linux target:

Procedure
1. Create a new project:

a) Select File > New > Project... from the main menu.
b) Expand the C/C++ group, select either C Project or C++ Project, and click Next.
c) Enter a project name.
d) Leave the Use default location option selected so that the project is created in the default

folder shown. Alternatively, deselect this option and browse to your preferred project
folder.

e) Expand the Makefile project group.
f) Select Empty project in the Project type panel.
g) Select the toolchain that you want to use when building your project. If your project is for

an Arm Linux target, select the appropriate GCC toolchain. You might need to download a
GCC toolchain if you have not done so already.

h) Click Finish to create your new project. The project is visible in the Project Explorer view.
2. Create a Makefile, and then edit:

a) Before you can build the project, you must have a Makefile that contains the compilation
tool settings. The easiest way to create one is to copy the Makefile from the example
project, hello and paste it into your new project. The hello project is in the Linux examples
provided with Arm® Development Studio.

b) Locate the line that contains OBJS = hello.o.
c) Replace hello.o with the names of the object files corresponding to your source files.
d) Locate the line that contains TARGET =hello.
e) Replace hello with the name of the target image file corresponding to your source files.
f) Save the file.
g) Right-click the project and then select Properties > C/C++ Build. In the Builder Settings

tab, ensure that the Build directory points to the location of the Makefile.
3. Add your C/C++ files to the project.

Next steps
Build the project. In the Project Explorer view, right-click the project and select Build Project.

Related information
Create a new Makefile project with existing code on page 69

5.6 Add a new source file to your project
You can add new source files to your Arm® Development Studio project. If you want to add an
existing source file to your project see Add a source file to your project.

Procedure
1. Access the New Source File wizard using one of the following methods:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

• In the Project Explorer, right-click on the project and select New > Source File to open the
New Source File wizard.

• From the main menu bar, select File > New > Other > C/C++ > Source File. Then click
Next.

Figure 5-4: Adding a new source file to your project

2. Update the fields in the New Source File dialog box as required:

• Source folder

Enter the source folder where the new source file will be saved. If this field is not already
populated with the required source folder, click Browse… and select a source folder from
the required project.

• Source file

Enter a name for the new source file including the file extension.

• Template

Select a source file template from the drop-down list. The default options are:

◦ <None>

◦ Default C++ source template

◦ Default C++ test template

◦ Default C source template

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

The default templates only provide basic metadata about the newly created file, that is, the
author and the date it was created.

To use your own source file template, click Configure and the Code Templates preference
panel opens, where you can add or configure your own templates.

Figure 5-5: Code template configuration

3. Click Finish.

Results
The new source file is visible in the Project Explorer view.

Related information
Perspectives and Views
Eclipse online documentation: Code templates

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_c_code_templates_pref.htm


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5.7 Add a source file to your project
You can add existing source files to your Arm® Development Studio project. If you want to add a
new source file to your project see Add a new source file to your project.

Procedure
You can add existing source files to your project using one of the following methods:

◦ You can create source files and then add them to the project:

1. Create files on your local system.

2. Drag and drop the files into the project folder structure in the Project Explorer view of Arm
Development Studio.

In the File Operation dialog box, select whether you want to Copy files or Link to Files.
Click OK.

◦ Import existing source files:

1. Select File > Import > General > File System.

2. In the File system dialog box:

a. In From directory, enter directory containing the existing source files.

b. Select the required files in the list of files for the selected directory.

c. In Into Folder, click Browse… and select the required project folder.

d. Ensure the Options are set as you require.

e. Click Finish.

Results
The source file is visible in the Project Explorer view. If the files do not show in the project, update
the views in Arm Development Studio by selecting File > Refresh from the main menu.

Related information
Perspectives and Views
Eclipse online documentation: Code templates

5.8 Using the Import wizard
In addition to breakpoint and preference settings, you can use the Import wizard to import
complete projects, source files, and project sub-folders.

Select Import… from the File menu to display the Import wizard.

Importing complete projects
To import a complete project either from an archive zip file or an external folder from your file
system, you must use the Existing Projects into Workspace wizard. This ensures that the relevant
project files are also imported into your workspace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_c_code_templates_pref.htm


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Importing source files and project sub-folders
Individual source files and project sub-folders can be imported using either the Archive File or
File System wizard. Both options produce a dialog box similar to the following example. Using the
options provided you can select the required resources and specify the relevant options, filename,
and destination path.

Figure 5-6: Typical example of the import wizard

With the exception of the Existing Projects into Workspace wizard, files and folders are copied
into your workspace when you use the Import wizard. To create a link to an external file or project
sub-folder you must use the New File or New Folder wizard.

5.9 Using the Export wizard
You can use the Export wizard to export complete projects, source files and, project sub-folders in
addition to breakpoint and preference settings.

Select Export… from the File menu to display the Export wizard.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

The procedure is the same for exporting a complete project, a source file, and a project sub-folder.
If you want to create a zip file you can use the Archive File wizard, or alternatively you can use
the File System wizard. Both options produce a dialog box similar to the example shown here.
Using the options provided you can select the required resources and specify the relevant options,
filename, and destination path.

Figure 5-7: Typical example of the export wizard

5.10 Import existing Eclipse projects
If you have existing Eclipse projects, you can import them into your workspace.

Procedure
1. Select File > Import.
2. In the Import dialog box, select General > Existing Projects into Workspace. Click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-8: Selecting the import source type

3. Select one of the following to access the required projects:

Select root directory
a. Click Browse and then select a folder.

b. Click Select folder to return to the Import dialog box. All projects in subfolders of the
selected folder are shown in the Projects panel.

Select archive file
a. Click Browse and then select an archive file.

b. Click Open to return to the Import dialog box. All projects in the selected file are
shown in the Projects panel.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-9: Selecting an existing Eclipse projects for import

4. In the Projects panel, select the projects that you want to import. You cannot import a project
with the same name as an existing project.

5. Select Copy projects into workspace if required, or deselect to create links to your existing
projects and associated files.

6. If you are using working sets to group your projects then you can:
a) Select Add project to working sets.
b) Click Select.
c) Select an existing working set or create a new one and then select it.
d) Click OK.

7. Click Finish.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

If your existing project contains project settings from an older version of the
build system, you are given the option to update your project. Using the latest
version means that you can access all the latest toolchain features.

Results
The imported project is visible in the Project Explorer view.

5.11 Importing and exporting options
A resource must exist in a project in Arm® Development Studio before you can use it in a build.

If you want to use an existing resource from your file system in one of your projects, the
recommended method is to use the Import wizard. To do this, select Import… from the File menu.

If you want to use a resource externally, the recommended method is to use the Export wizard. To
do this, select Export… from the File menu.

There are several options available in the import and export wizards:

General
This option enables you to import and export the following:

• Files from an archive zip file.

• Complete projects.

• Selected source files and project sub-folders.

• Preference settings.

C/C++
This option enables you to import the following:

• C/C++ executable files.

• C/C++ project settings.

• Existing code as Makefile project.

You can also export C/C++ project settings and indexes.

Remote Systems
This option enables you to transfer files between the local host and the remote target.

Run/Debug
This option enables you to import and export the following:

• Breakpoint settings.

• Launch configurations.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Scatter File Editor
This option enables you to import the memory map from a BCD file and convert it into a
scatter file for use in an existing project.

For information on the other options not listed here, use the dynamic help.

5.12 Sharing Arm Development Studio projects
You can share Arm® Development Studio projects between users if necessary.

• There are many different ways to share projects and files, for example, using a
source control tool. This topic covers the general principles of sharing projects
and files using Arm Development Studio, and not the specifics of any particular
tool.

• To share files, it is recommended to do so at the level of the project and not
the workspace. Your source files in Arm Development Studio are organized into
projects, and projects exist in your workspace. A workspace contains many files,
including files in the .metadata directory, that are specific to an individual user
or installation.

In each project, the files that must be shared beyond just your source code are:

• .project - Contains general information about the project type, and the Arm Development
Studio plug-ins to use to edit and build the project.

• .cproject - Contains C/C++ specific information, including compiler settings.

Arm Development Studio places built files into the project directory, including auto-generated
makefiles, object files, and image files. Not all files have to be shared. For example, sharing an auto-
generated makefile might be useful to allow building the project outside of Arm Development
Studio, but if projects are only built in Arm Development Studio then this is not necessary.

You must be careful when creating and configuring projects to avoid hard-coded references to tools
and files outside of Arm Development Studio that might differ between users.

To ensure that files outside of Arm Development Studio can be referenced in a user agnostic way,
use the ${workspace_loc} built-in variable or custom environment variables.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5.13 Updating a project to a new toolchain
If you have several products installed, only the latest toolchain is listed in the New Project wizard.
Therefore, if you have projects that use an older toolchain, you must update them to the latest
toolchain.

Procedure
1. Right-click on the project in the Project Explorer view, and select Properties.
2. Expand C/C++ Build and select Tool Chain Editor.
3. Select the toolchain from the Current toolchain drop-down list and click OK.

5.14 Run the Arm Development Studio IDE from the
command-line to clean, build, and import projects

You can run Arm® Development Studio IDE from the command-line to clean, build, and import
Eclipse projects and μVision® projects. This might be useful when you want to create scripts to
automate build procedures.

Before you begin
• Ensure that the Arm Development Studio IDE is closed.

Procedure
1. Launch the command-line console.

• On Windows, select Start > All Programs > Arm Development Studio > Arm DS Command
Prompt.

• On Linux, run <install_directory>/bin/suite_exec <shell> to open a shell.
2. Run armds_idec.exe (on Windows) or armds_ide (on Linux) with the necessary options.

On Windows, you must run armds_idec.exe from either the Arm DS Command
Prompt, or directly from the <install_directory>/bin directory. Do not run
the armds_idec.exe executable that is in the <install_directory>/sw/eclipse
directory.

The armds_idec.exe executable in <install_directory>/bin acts as a
wrapper for armds_idec.exe in <install_directory>/sw/eclipse. Running
the executable from the <install_directory>/bin directory sets up the Arm
Development Studio environment (paths, environment variables, and other
similar items) in the same way as the Arm DS Command Prompt.

For example:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

"C:\Program Files\Arm\Development Studio <version>\bin\armds_idec.exe"

-nosplash -application com.arm.cmsis.pack.project.headlessbuild -data

"C:\path\to\your\workspace" -cleanBuild startup_Cortex-R8

a) You must specify one of the following application options:

• Specify -application com.arm.cmsis.pack.project.headlessbuild to build, clean, and
import existing Eclipse projects.

• Specify -application com.arm.cmsis.pack.uv.headlessuvimport to build, clean, and
import existing μVision projects.

b) Specify additional options as required. See Headless tools in the Arm Development Studio
command prompt for more information on the available options.

Example 5-1: Build and clean projects with the Arm Development Studio command-line

• On Windows, import, clean, and build an Eclipse project.

armds_idec.exe -nosplash -application com.arm.cmssis.pack.project.headlessbuild
-data C:<\path\to\workspace> -import C:<\path\to\project\directory> -cleanBuild
<projectName>

• On Windows, clean and build all the projects in a specified workplace.

armds_idec.exe -nosplash -application com.arm.cmsis.pack.project.headlessbuild -
data C:<\path\to\workspace> -cleanBuild all

• On Linux, import and build multiple Eclipse projects.

armds_ide -nosplash -application com.arm.cmsis.pack.project.headlessbuild -data </
path/to/workspace> -import <path/to/project1> -import <path/to/project2> -build
<project1> -build <project2>

• On Windows, build an Eclipse project's Release configuration.

armds_idec.exe -nosplash -application com.arm.cmsis.pack.project.headlessbuild -
build <project/Release>

• On Linux, clean and build the Debug configurations of multiple Eclipse projects in your
workspace.

armds_ide -nosplash -application com.arm.cmsis.pack.project.headlessbuild -data </
path/to/workspace> -cleanBuild <project1/Debug> -cleanBuild <project2/Debug>

• On Windows, import a μVision project.

armds_idec.exe -nosplash -application com.arm.cmsis.pack.uv.headlessuvimport -data
C:<\path\to\workspace> -import <path/to/projectName.uvprojx>

• On Linux, import multiple μVision projects, then clean and build all projects in your workspace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

armds_ide -nosplash -application com.arm.cmsis.pack.uv.headlessuvimport -
data </path/to/workspace> -import <path/to/project1.uvprojx> -import <path/to/
project2.uvprojx> -cleanBuild all

Related information
Launch the Arm Development Studio command prompt on page 59
Headless tools in the Arm Development Studio command prompt on page 62

5.15 Setting up the compilation tools for a specific build
configuration

The C/C++ Build configuration panels enable you to set up the compilation tools for a specific build
configuration. These settings determine how the compilation tools build an Arm executable image
or library.

Procedure
1. In the Project Explorer view, right-click the source file or project and select Properties.
2. Expand C/C++ Build and select Settings.
3. The Configuration panel shows the active configuration. To create a new build configuration or

change the active setting, click Manage Configurations….
4. The compilation tools available for the current project, and their respective build configuration

panels, are displayed in the Tool Settings tab. Click on this tab and configure the build as
required.

Makefile projects do not use these configuration panels. The Makefile must
contain all the required compilation tool settings.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-10: Typical build settings dialog box for a C project

5. Click OK.

Results
The updated settings for your build configuration are saved.

5.16 Examples provided with Arm Development Studio
Arm® Development Studio provides a selection of examples to help you get started:

• Bare-metal software development examples for Armv7 that show:

◦ Compilation with Arm Compiler for Embedded 6.

◦ Compilation with GCC bare-metal compiler.

◦ Armv7 bare-metal debug.

The code is located in the <examples_directory>/Bare-metal_examples_Armv7.zip archive file.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

• Bare-metal software development examples for Armv8 including Scalable Vector Extension (SVE)
and SVE2 that show:

◦ Compilation with Arm Compiler for Embedded 6.

◦ Compilation with GCC bare-metal compiler.

◦ Armv8 bare-metal debug.

The code is located in the <examples_directory>/Bare-metal_examples_Armv8.zip archive file.

• Bare-metal software development examples for Armv9 that show:

◦ Compilation with Arm Compiler for Embedded 6.

◦ Armv9 bare-metal debug.

The code is located in the <examples_directory>/Bare-metal_examples_Armv9.zip archive file.

• Bare-metal software development examples for Scalable Matrix Extension (SME), SME2,
Realm Management Extension (RME), and Guarded Control Stack (GCS) using Arm Compiler for
Embedded 6.

The code is located in the <examples_directory>/Bare-metal_examples_Armv9.zip archive file.

• Arm Linux examples built with GCC Linux compiler that show build, debug, and performance
analysis of simple C/C++ console applications, shared libraries, and multi-threaded applications.
The files are located in the <examples_directory>/Linux_examples.zip archive file.

An Armv7-A Linux distribution containing source files, header files, libraries, and pre-built
images for running and rebuilding the Armv7-A Linux examples is provided. This distribution is
available from the Arm downloads page.

• Examples for Keil® RTX version 5 RTX Real-Time Operating System (RTX-RTOS) are located in
the <examples_directory>/RTX5_examples.zip archive file.

• Software examples for Arm Debugger's Debug and Trace Services Layer (DTSL). The examples
are located in the <examples_directory>/DTSL_examples.zip archive file.

• Jython examples for Arm Debugger. The examples are located in the <examples_directory>/
Jython_examples.zip archive file.

• The CoreSight Access Library is available as a github project. A recent snapshot
of the library from github is located in the archive file, <examples_directory>/
CoreSight_Access_Library.zip.

You can extract these examples to a working directory and build them from the command-line,
or you can import them into Arm Development Studio IDE using the import wizard. All examples
provided with Arm Development Studio contain a pre-configured IDE launch script that enables
you to easily load and debug example code on a target.

Each example provides instructions on how to build, run, and debug the example code. You can
access the instructions from the main index, <examples_directory>/docs/index.html.

Related information
Import the example projects on page 86

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 215

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Software-Download
https://github.com/ARM-software/CSAL


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5.17 Import the example projects
To use the example projects provided with Arm® Development Studio, you must first import them.

Procedure
1. Launch Arm Development Studio IDE.
2. Arm recommends that you create another workspace for example projects, so that they remain

separate from your own projects. To do this, select File > Switch Workspace > Other > Browse
> Make new folder, and enter a suitable name.
Result: Arm Development Studio IDE relaunches.

3. In the main menu, select File > Import....
4. Expand the Arm Development Studio group, select Examples and Programming Libraries and

click Next.
Figure 5-11: Import dialog box

5. Select the examples and programming libraries you want to import. If a description for the
selected example exists, you can view it in the Description pane.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-12: Select items to import

6. Click Finish.

Results
You can browse the imported examples in the Project Explorer.

Each example contains a readme.html which explains how you can work with the example.

Related information
Working sets on page 87

5.18 Working sets
A working set enables you to group projects together and display a smaller subset of projects.

The Project Explorer view usually displays a full list of all your projects associated with the current
workspace. If you have a lot of projects it can be difficult to navigate through the list to find the
project that you want to use.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

To make navigation easier, group your projects into working sets. You can select one or more
working sets at the same time, or you can use the Project Explorer View Menu to switch between
one set and another. To return to the original view, select the Deselect Working Sets options in the
View Menu.

Working sets are also useful to refine the scope of a search or build projects in a specific working
set.

Related information
Create a working set on page 88
Change the top-level element when displaying working sets on page 91
Deselect a working set on page 91

5.18.1 Create a working set

Group related projects together by creating a working set.

Procedure
1. Click the View Menu hamburger icon in the Project Explorer view toolbar.
2. Select the Select Working Set… option.
3. In the Select Working Set dialog box, click New….

Figure 5-13: Creating a new working set

4. Under Working set type, select Resource and click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-14: Selecting the resource type for the new working set

5. In the Working set name field, enter a suitable name.
6. In the Working set contents panel, you can select existing projects that you want to associate

with this working set, or you can return to the wizard later to add projects.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-15: Adding new resources to a working set

7. Click Finish.
8. If required, repeat these steps to create more working sets.
9. In the Select Working Set dialog box, select the working sets that you want to display in the

Project Explorer view.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

Figure 5-16: Select the required working set

10. Click OK.

Results
The filtered list of projects are displayed in the Project Explorer view. Another feature of working
sets that can help with navigation is the option to change the top level element in the Project
Explorer view.

5.18.2 Change the top-level element when displaying working sets

In the Project Explorer view, if you have more than one working set then you might want to
display the projects in a hierarchical tree with the working set names as the top level element. This
is not selected by default.

Procedure
1. In the Project Explorer view toolbar, click the View Menu hamburger icon.
2. Select Top Level Elements from the context menu.
3. Select either Projects or Working Sets.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Projects and examples in Arm Development Studio

5.18.3 Deselect a working set

You can change the display of projects in the Project Explorer view and return to the full listing of
all the projects in the workspace.

Procedure
1. Click on the View Menu icon in the Project Explorer view toolbar.
2. Select Deselect Working Set from the context menu.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

6. Writing code
Describes how to use the editors when developing a project for an Arm target.

6.1 Editing source code
You can use the editors provided with Arm® Development Studio to edit your source code or you
can use an external editor. If you work with an external editor you must refresh Development
Studio to synchronize the views with the latest updates.

To do this, in the Project Explorer view, select the updated project, sub-folder, or file and click
File > Refresh. Alternatively, enable automatic refresh options under General > Workspace in the
Preferences dialog box. Configure your automatic refresh settings by selecting either Refresh using
native hooks or polling or Refresh on access options.

When you open a file in Development Studio, a new editor tab appears with the name of the file.
An edited file displays an asterisk (*) in the tab name to show that it has unsaved changes.

To view two or more editor tabs side-by-side, click on one of the tabs and drag it over an editor
border.

In the left-hand margin of the editor tab you can find a vertical bar that displays markers relating to
the active file.

Navigating
There are several ways to navigate to a specific resource in Development Studio. You can use
the Project Explorer view to open a resource by browsing through the resource tree and double-
clicking on a file. An alternative is to use the keyboard shortcuts or use the options from the
Navigate menu.

Searching
To locate information or specific code contained in one or more files in Development Studio, you
can use the options from the Search menu. Textual searching with pattern matching and filters to
refine the search fields are provided in a customizable Search dialog box. You can also open this
dialog box from the main workbench toolbar.

Content assist
The C/C++ editor, Arm assembler editor, and the Arm Debugger Commands view provide content
assistance at the cursor position to auto-complete the selected item. Using the Ctrl+Space
keyboard shortcut produces a small dialog box with a list of valid options to choose from. You can
filter the list by partially typing a few characters before using the keyboard shortcut. From the list
you can use the Arrow Keys to select the required item and then press the Enter key to insert it.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Bookmarks
You can use bookmarks to mark a specific position in a file or mark an entire file so that you can
return to it quickly. To create a bookmark, select a file or line of code that you want to mark and
select Add Bookmark from the Edit menu. The Bookmarks view displays all the user defined
bookmarks. To access the bookmarks, select Window > Show View > Bookmarks from the main
menu. If the Bookmarks view is not listed then select Others… for an extended list.

To delete a bookmark, open the Bookmarks view, click on the bookmark that you want to delete,
and select Delete from the Edit menu.

6.2 About the C/C++ editor
The standard C/C++ editor is provided by the CDT plug-in that provides C and C++ extensions to
Eclipse. It provides syntax highlighting, formatting of code and content assistance when editing C/C
++ code.

Embedded assembler in C/C++ files is supported by Arm® Compiler for Embedded but this editor
does not support it and so an error is displayed. This type of code is Arm-specific and accepted
Eclipse behavior so you can ignore the syntax error.

If this is not the default editor, right-click on a source file in the Project Explorer view and select
Open With > C/C++ Editor from the context menu.

See the C/C++ Development User Guide for more information. Select Help > Help Contents from
the main menu.

6.3 About the Arm assembler editor
The Arm assembler editor provides syntax highlighting, formatting of code and content assistance
for labels in Arm assembly language source files. You can change the default settings in the dialog
box.

If this is not the default editor, right-click on your source file in the Project Explorer view and select
Open With > Arm Assembler Editor from the context menu.

The following shortcuts are also available for use:

Table 6-1: Arm assembler editor shortcuts

Shortcut Description

Content assist Content assist provides auto-completion on labels existing in the
active file. When entering a label for a branch instruction, Partially
type the label and then use the keyboard shortcut Ctrl+Space to
display a list of valid auto-complete options. Use the Arrow Keys
to select the required label and press Enter to complete the term.
Continue typing to ignore the auto-complete list.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Shortcut Description
Editor focus The following options change the editor focus:

• Outline View provides a list of all areas and labels in the active
file. Click on an area or label to move the focus of the editor to
the position of the selected item.

• Select a label from a branch instruction and press F3 to move
the focus of the editor to the position of the selected label.

Formatter activation Press Ctrl+Shift+F to activate the formatter settings.

Block comments Block comments are enabled or disabled by using Ctrl+Semicolon.
Select a block of code and apply the keyboard shortcut to change
the commenting state.

6.4 About the ELF content editor
The ELF content editor creates forms for the selected ELF file. You can use this editor to view the
contents of image files and object files. The editor is read-only and cannot be used to modify the
contents of any files.

If this is not the default editor, right-click on your source file in the Project Explorer view and select
Open With > ELF Content Editor from the context menu.

The ELF content editor displays one or more of the following tabs depending on the selected file
type:

Header
Form view showing the header information.

Sections
Tabular view showing the breakdown of all section information.

Segments
Tabular view showing the breakdown of all segment information.

Symbol Table
Tabular view showing the breakdown of all symbols.

Disassembly
Textual view of the disassembly with syntax highlighting.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

6.5 ELF content editor - Header tab
The Header tab provides a form view of the ELF header information.

Figure 6-1: Header tab

6.6 ELF content editor - Sections tab
The Sections tab provides a tabular view of the ELF section information.

To sort the columns, click on the column headers.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-2: Sections tab

6.7 ELF content editor - Segments tab
The Segments tab provides a tabular view of the ELF segment information.

To sort the columns, click on the column headers.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-3: Segments tab

6.8 ELF content editor - Symbol Table tab
The Symbol Table tab provides a tabular view of the symbols.

To sort the columns, click on the column headers.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-4: Symbol Table tab

6.9 ELF content editor - Disassembly tab
The Disassembly tab displays the output with syntax highlighting. The color schemes and syntax
preferences use the same settings as the Arm assembler editor.

There are several keyboard combinations that you can use to navigate around the output:

• Use Ctrl+F to open the Find dialog box to search the output.

• Use Ctrl+Home to move the focus to the beginning of the output.

• Use Ctrl+End to move the focus to the end of the output.

• Use Page Up and Page Down to navigate through the output one page at a time.

You can also right-click in the Disassembly view and select the Copy and Find options in the
context menu.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-5: Disassembly tab

6.10 About the scatter file editor
The scatter file editor enables you to easily create and edit scatter files for use with the Arm linker
to construct the memory map of an image.

It provides a text editor, a hierarchical tree, and a graphical view of the regions and output sections
of an image. You can change the default syntax formatting and color schemes in the Preferences
dialog box.

If the scatter file editor is not the default editor, right-click on your source file in the Project
Explorer view and select Open With > Scatter File Editor from the context menu.

The scatter file editor displays the following tabs:

Source
Textual view of the source code with syntax highlighting and formatting.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Memory Map
A graphical view showing load and execute memory maps. Although these maps are not
editable, you can select a load region to show the related memory blocks in the execution
regions.

The scatter file editor also provides a hierarchical tree with associated toolbar and context menus
using the Outline view. Clicking on a region or section in the Outline view moves the focus of the
editor to the relevant position in your code. If this view is not visible, select Show View > Outline
from the Window menu.

The linker documentation for Arm® Compiler for Embedded describes in more detail
how to use scatter files.

Before you can use a scatter file you must add the --scatter=file option to the project in the C/
C++ Build > Settings > Tool settings > Arm Linker > Image Layout panel of the Properties dialog
box.

6.11 Creating a scatter file
Create a scatter file to specify more complex memory maps that cannot be specified using compiler
command-line memory map options.

Before you begin
Before you can use a scatter file, you must add the --scatter=file option to the project in the C/
C++ Build > Settings > Tool settings > Arm Linker > Image Layout panel of the Properties dialog
box.

Procedure
1. Open an existing project, or create a new project.
2. In your project, add a new empty text file with the extension .scat. For example scatter.scat.
3. In the Outline view, click the Add load region toolbar icon, or right-click and select Add load

region from the context menu.
4. Enter a load region name, for example, LR1.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-6: Add load region dialog box

5. Click OK.
6. Modify the load region as shown in the following example.

LR1 0x0000 0x8000
{
   LR1_er1 0x0000 0x8000
   {
       * (+RO)
   }
   LR1_er2 0x10000 0x6000
   {
       * (+RW,+ZI)
   }
}

7. Select the Regions/Sections tab to view a graphical representation.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-7: Graphical view of a simple scatter file

8. Save your changes.

6.12 Importing a memory map from a BCD file
If you have a BCD file that defines a memory map, you can import this into the Scatter File Editor.

Before you begin
Before you can use a scatter file, you must add the --scatter=file option to the project in the C/
C++ Build > Settings > Tool settings > Arm Linker > Image Layout panel of the Properties dialog
box.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Procedure
1. Select File > Import > Scatter File Editor > Memory from a BCD File.
2. Enter the location of the BCD file, or click Browse… to select the folder.
3. Select the file that contains the memory map that you want to import.
4. If you want to add specific memory regions to an existing scatter file, select Add to current

scatter file.

The scatter file must be open and active in the editor view before you can use
this option.

5. If you want the wizard to create a new file with the same name as the BCD file but with a
.scat file extension, select Create new scatter file template.

6. Select the destination project folder.
7. By default, all the memory regions are selected. Edit the selections and table content as

required.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Writing code

Figure 6-8: Memory block selection for the scatter file editor

8. Click Finish.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

7. Debugging code
You can set up connections to debug bare-metal targets, Linux kernel, and Linux applications. You
can also use the Snapshot View feature to view previously captured application states.

Bare-metal debug connections
Bare-metal targets run without an underlying operating system. To debug bare-metal targets using
Arm® Debugger:

• If debugging on hardware, use a debug hardware probe that is connected to the host
workstation and the debug target.

• If debugging on a model, use an Iris-compliant connection between the debugger and a model.

Linux kernel debug connections
Arm Debugger supports source-level debugging of a Linux kernel or a Linux kernel model. For
example, you can set breakpoints in the kernel code, step through the source, inspect the call stack,
and watch variables. The connection method is similar to bare-metal debug connections.

Linux application debug connections
For Linux application debugging in Arm Debugger, you can connect to your target with a TCP/IP
connection.

Before you attempt to connect to your target, ensure that:

• gdbserver is present on the target. If gdbserver is not installed on the target, either see the
documentation for your Linux distribution or check with your provider.

• For AArch64 (Arm®v8-A, Armv8-R AArch64, or Armv9-A) targets, you need to use the
AArch64 gdbserver.

• ssh daemon (sshd) must be running on the target to use the Remote System Explorer (RSE) in
Development Studio.

• sftp-server must be present on the target to use RSE for file transfers.

Snapshot Viewer
Use the Snapshot Viewer to analyze and debug a read-only representation of the application state
of your processor using previously captured data. This is useful in scenarios where interactive
debugging with a target is not possible. For more information, see Working with the Snapshot
Viewer.

7.1 Using FVPs with Arm Development Studio
A Fixed Virtual Platform (FVP) is a software model of a development platform, including processors
and peripherals. FVPs are provided as executables, and some are included in Development Studio.

Depending on your requirements, you can:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 215

https://www.linaro.org/downloads/
https://developer.arm.com/documentation/101470/2024-1/Working-with-the-Snapshot-Viewer
https://developer.arm.com/documentation/101470/2024-1/Working-with-the-Snapshot-Viewer


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

• Create a new model configuration

• Configure a connection to an FVP for bare-metal application debug

• From the command-line, configure a connection to an FVP for bare-metal application debug

• Configure a connection to an FVP for Linux application debug

• Configure a connection to an FVP for Linux kernel debug

7.2 Configuring a connection from the command-line to a
built-in FVP

You can configure a connection to a Fixed Virtual Platform (FVP) using the command-line only
mode available in Arm® Development Studio.

Before you begin
• The FVP model that you connect to must be available in the Development Studio configuration

database so that you can select it. If the FVP model is not available, you must first import it and
create a new model configuration. See Create a new model configuration for information.

• To load and execute the application on your FVP model using Development Studio, your
application must first be built with the appropriate compiler and linker options so that it can run
on your model. To locate the options and parameters required to build your application, see the
documentation for your compiler and linker.

• You must have the appropriate licenses installed to run your FVP model from the command
line.

• If you use the command-line only mode, you can automate debug and trace activities. By
automating a debug session, you can save significant time and avoid repetitive tasks such as
stepping through code at source level.

Procedure
1. Open the Arm Development Studio command prompt:

• On Windows, select Start > All Programs > Arm Development Studio > Arm Development
Studio Command Prompt.

• On Linux, add the <install_directory/bin> location to your PATH environment variable
and then open a UNIX bash shell.

2. To connect to the Arm FVP Cortex®-A9x4 FVP model and specify an image to load from your
workspace, at the command prompt, enter:

• On Windows: armdbg --cdb-entry "Arm FVP::VE_Cortex_A9x4::Bare Metal Debug::Bare
Metal Debug::Debug Cortex-A9x4 SMP" --image "C:\Users\<user>\developmentstudio-
workspace\HelloWorld\Debug\HelloWorld.axf"

• On Linux: armdbg --cdb-entry "Arm FVP::VE_Cortex_A9x4::Bare Metal Debug::Bare
Metal Debug::Debug Cortex-A9x4 SMP" --image "/home/<user>/developmentstudio-
workspace/HelloWorld/Debug/HelloWorld.axf"

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 215

https://developer.arm.com/documentation/101470/2024-1/Platform-Configuration/Model-targets/Create-a-new-model-configuration
https://developer.arm.com/documentation/101470/2024-1/Platform-Configuration/Model-targets/Create-a-new-model-configuration


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Results
Development Studio starts the Arm FVP Cortex-A9x4 FVP and loads the image. When you are
connected to your target, use any of the Arm Debugger commands to access the target and start
debugging.

For example, info registers displays all application level registers.

Related information
Running Arm Debugger from the command-line and using scripts
Connect to a target from the command-line
Command-line: armdbg options

7.3 Configuring a connection to an external FVP for bare-
metal application debug

You can use Arm® Development Studio to connect to an external Fixed Virtual Platform (FVP)
model for bare-metal debugging.

Before you begin
• The FVP model that you are connecting to must be available in the Development Studio

configuration database so that you can select it in the Model Connection dialog box. If the
FVP model is not available, you must first import it and create a new model configuration. See
Create a new model configuration for information.

• To load and execute the application on your FVP model using Development Studio, your
application must first be built with the appropriate compiler and linker options so that it can run
on your model. To locate the options and parameters required to build your application, check
the documentation for your compiler and linker.

• You must have the appropriate licenses installed to run your FVP model from the command
line.

About this task
This task explains how to:

• Create a model connection to connect to the Base_AEMvA FVP model and load your application
on the model.

• Start up the Base_AEMvA FVP model separately with the appropriate settings.

• Start a debug session in Development Studio to connect and attach to the running Base_AEMvA
FVP model.

• Configuring a connection to a built-in FVP model follows a similar sequence of
steps. Development Studio launches built-in FVPs automatically when you start
up a debug connection.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 215

https://developer.arm.com/documentation/101470/2024-1/Running-Arm-Debugger-from-the-command-line-and-using-scripts
https://developer.arm.com/documentation/101470/2024-1/Running-Arm-Debugger-from-the-command-line-and-using-scripts/Connect-to-a-target-from-the-command-line
https://developer.arm.com/documentation/101470/2024-1/Running-Arm-Debugger-from-the-command-line-and-using-scripts/Command-line--armdbg-options
https://developer.arm.com/documentation/101470/2024-1/Platform-Configuration/Model-targets/Create-a-new-model-configuration


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

• FVPs available with your edition of Development Studio are listed under the
Arm FVP (Installed with Arm DS) tree. To see which FVPs are available with
your license, compare Arm Development Studio editions.

Procedure
1. From the Arm Development Studio main menu, select File > New > Model Connection.
2. In the Model Connection dialog box, specify the details of the connection:

a) Give the connection a name in Debug connection name, for example:
my_external_fvp_connection.

b) If you want to associate the connection to an existing project, select Associate debug
connection with an existing project and click Next.

c) In Target Selection browse and select Base_AEMvA, then click Finish to complete the initial
configuration of the connection.

3. In the displayed Edit Configuration dialog box, use the Connection tab to select the target and
connection settings:
a) In the Select target panel confirm the target selected.
b) If required, specify Model parameters under Connections.
c) If required, Edit the Debug and Trace Services Layer (DTSL) settings in the DTSL

Configuration dialog box to configure additional debug and trace settings for your target.
4. Use the Files tab to specify your application and additional resources to download to the

target:
a) In Target Configuration > Application on host to download, specify the application that

you want to load on the model.
b) If you want to debug your application at source level, select Load symbols.
c) If you want to load additional resources, for example, additional symbols or peripheral

description files from a directory, use the Files area to add them. Click + to add resources,
click - to remove resources.

5. Use the Debugger tab to configure debugger settings.
a) In the Run control area:

• Choose if you want to Connect only to the target or Debug from entry point. If you
want to start debugging from a specific symbol, select Debug from symbol.

• If you need to run target or debugger initialization scripts, select the relevant options
and specify the script paths.

• If you need to specify at debugger start up, select Execute debugger commands
options and specify the commands.

b) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify a new location.

c) In the Paths area, use the Source search directory field to enter any directions on the host
to search for your application files.

d) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

6. If required, specify arguments to pass to the main() function. The methods of passing
arguments are described in About passing arguments to main().

7. If required, use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 215

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio#Editions
https://developer.arm.com/documentation/101470/2024-1/Reference/Passing-arguments-to-main--


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

8. Click Apply and then Close to save the configuration settings and close the Debug
Configurations dialog box.
You have now created a debug configuration to connect to the Base_AEMvA FVP target. You can
view this debug configuration in the Debug Control view.

9. The next step is to start up the Base_AEMvA FVP with the appropriate settings so that
Development Studio can connect to it when you start your debugging session.
a) Open a terminal window and navigate to the installation directory of the Base_AEMvA FVP.
b) Start up the Base_AEMvA separately with the appropriate options and parameters.

For example, to run the FVP_Base_AEMvA FVP model, at the command prompt enter:

FVP_Base_AEMvA -I -C cluster0.NUM_CORES=1 -C bp.secure_memory=false -C
cache_state_modelled=0

Where:

• FVP_Base_AEMvA is the executable for the FVP model on Windows platforms.

• -I or --iris-server starts the Iris server so that Arm Debugger can connect to the FVP
model.

• -C or --parameter sets the parameter you want to use when running the FVP model.

• cluster0.NUM_CORES=1 specifies the number of cores to activate on the cluster in this
instance.

• bp.secure_memory=false sets the security state for memory access. In this example,
memory access is disabled.

• cache_state_modelled=0 sets the core cache state. In this example, it is disabled.

The parameters and options that are required depend on your specific
requirements. Check the documentation for your FVP to locate the
appropriate parameters.

You can find the options and parameters that are used in this example in
the Fixed Virtual Platforms FVP Reference Guide. You can also enter --
list-params after the FVP executable name to print available platform
parameters.

The FVP is now running in the background awaiting incoming Iris connection requests from
Arm Debugger.

10. In the Debug Control view, double-click the debug configuration that you created.
This action starts the debug connection, loads the application on the model, and loads the
debug information into the debugger.

11. Click Continue running application to continue running your application.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 215

https://developer.arm.com/documentation/100966/1127/


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

7.4 Configuring a connection to a bare-metal hardware
target

To configure a connection to a bare-metal hardware target, create a hardware debug connection.
Then, connect to your hardware target using JTAG or Serial Wire Debug (SWD) using DSTREAM-
ST or a similar debug hardware probe.

Before you begin
• Ensure that your target is powered on. Refer to the documentation supplied with the target for

more information.

• Ensure that the debug hardware probe connecting your target with your workstation is
powered on and working.

• If using DSTREAM-ST, ensure that your target is connected correctly to the DSTREAM-ST unit.
If the target is connected and powered on, the TARGET LED illuminates green.

• If using DSTREAM, ensure that your target is connected correctly to the DSTREAM unit. If the
target is connected and powered on, the TARGET LED illuminates green, and the VTREF LED
on the DSTREAM probe illuminates.

Procedure
1. From the Arm® Development Studio main menu, select File > New > Hardware Connection.
2. In the Hardware Connection dialog box, specify the details of the connection:

a) In Debug Connection enter a debug connection name, for example
my_hardware_connection and click Next.

b) In Target Selection select a target, for example Juno Arm Development Platform (r2) and
click Finish to complete the initial connection configuration.

3. In the displayed Edit Configuration dialog box, click the Connection tab to specify the target
and connection settings:
a) In the Select target panel confirm the target selected.
b) Select your debug hardware unit in the Target Connection list. For example, DSTREAM

Family.
c) If required, Edit the Debug and Trace Services Layer (DTSL) settings in the DTSL

Configuration Configuration dialog box to configure additional debug and trace settings for
your target.

d) In the Connections area, enter the Connection name or IP address of your debug hardware
probe. If your connection is local, click Browse and select the connection using the
Connection Browser.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-1: The Connection tab

4. Click the Files tab to specify your application and additional resources to download to the
target:
a) If you want to load your application on the target at connection time, in the Target

Configuration area, specify your application in the Application on host to download field.
b) If you want to debug your application at source level, select Load symbols.
c) If you want to load additional resources, for example, additional symbols or peripheral

description files from a directory, add them in the Files area. Click + to add resources, click -
to remove resources.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-2: The Files tab

5. Use the Debugger tab to configure debugger settings.
a) In the Run control area:

• Specify if you want to Connect only to the target or Debug from entry point. If you
want to start debugging from a specific symbol, select Debug from symbol.

• If you need to run target or debugger initialization scripts, select the relevant options
and specify the script paths.

• If you need to specify at debugger start up, select Execute debugger commands
options and specify the commands.

b) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify the new location.

c) In the Paths area, specify any directories on the host to search for files of your application
in the Source search directory field.
If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

d) For target connections that support Debug Access Port (DAP) logging, you can enable DAP
logging. Select Enable DAP logging in the Logging area. In this area, you can also specify
the directory for the DAP log files.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

This option is not available for DSTREAM probes, models, gdbserver, and
snapshot connections.

Figure 7-3: The Debugger tab

6. If required, specify arguments to pass to the main() function. The methods of passing
arguments are described in About passing arguments to main().

7. If required, use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target and start the debugging session.

Related information
Configuring a connection to a bare-metal hardware target using gdbserver on page 114

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 215

https://developer.arm.com/documentation/101470/2024-1/Reference/Passing-arguments-to-main--


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

7.5 Configuring a connection to a bare-metal hardware
target using gdbserver

For bare-metal target debugging, you can configure Arm® Debugger to connect to a bare-metal
target using gdbserver. This type of connection can be used to connect to targets or debug probes
that expose a GNU Debugger (GDB) stub communicating using the GDB remote serial protocol. For
example, this type of connection can be used with virtual hardware and Quick Emulator (QEMU).

Before you begin
Ensure that your target is powered on. See the documentation supplied with the target for more
information.

About this task
• Connection to a bare-metal target using gdbserver is only supported for Armv7-A, Armv8-A,

and Armv8-M.

• See the Arm Virtual Hardware User Guide for an example of a GDB stub.

Procedure
1. From the Arm Development Studio main menu, select Run > Debug Configurations.
2. To create a new configuration, select Generic Arm C/C++ Application from the configuration

tree, and then click New Launch Configuration.
3. In the Name field, enter a suitable name for the new configuration. For example,

New_configuration.
4. In the Connection tab:

a) Select a target of Generic > GDB Debug > Connections via gdbserver to a bare metal
target > Connect to already running applications.

b) In the Connections area:

• Specify the address and port details of the target.

• If you want to terminate the gdbserver when disconnecting from the bare-metal target,
select Terminate gdbserver on disconnect.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 215

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_125.html
https://developer.arm.com/documentation/107660/latest/Connect-to-Virtual-Devices/GDB-Connection


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-4: Edit bare-metal using gdbserver connection details

5. If required, enter configurations in the other tabs. For example:

• In the Files tab, you can use the Load symbols from file option in the Files panel to specify
symbol files.

• In the Debugger tab, you can specify the actions that you want the debugger to perform
after connecting to the target.

• In the Arguments tab, you can enter arguments that are passed to the application when the
debug session starts.

• In the Environment tab, you can create and configure the target environment variables that
are passed to the application when the debug session starts.

6. Click Apply to save the configuration settings.
7. Click Debug to connect to the target and start debugging.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

7.6 Configuring a connection to a Linux application using
gdbserver

For Linux application debugging, you can configure Arm® Debugger to connect to a Linux
application using gdbserver.

Before you begin
• Set up your target with an Operating System (OS) installed and booted. Refer to the

documentation supplied with your target for more information.

• Obtain the target IP address or name for the connection between the debugger and the debug
hardware probe. If the target is in your local subnet, click Browse and select your target.

• If required, set up a Remote Systems Explorer (RSE) connection to the target.

• If you are connecting to an already running gdbserver, then you must ensure
that it is installed and running on the target. To run gdbserver and the
application on the target use: gdbserver port path/myApplication. Where
port is the connection port between gdbserver and the application and path/
myApplication is the application that you want to debug.

• If you are connecting to an AArch64 (Arm®v8-A, Armv8-R AArch64, or Armv9-
A) target, select the options under Connect via AArch64 gdbserver.

Procedure
1. From the Arm Development Studio main menu, select File > New > Linux Application

Connection.
2. In the Linux Application Connection dialog box, specify the details of the connection:

a) Give the debug connection a name, for example my_linux_app_connection.
b) If using an existing project, select Use settings from an existing project option.
c) Click Finish.

3. In the Edit Configuration dialog box displayed:

• If you want to connect to a target with the application and gdbserver already running on it:

a. In the Connection tab, select Connect to already running application.

b. In the Connections area, specify the address and port details of the target.

c. If you want to terminate the gdbserver when disconnecting from the FVP, select
Terminate gdbserver on disconnect.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/About-the-RSE


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-5: Edit Linux app connection details

d. In the Files tab, use the Load symbols from file option in the Files panel to specify
symbol files.

e. In the Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

f. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

g. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

• If you want to download your application to the target system and then start a gdbserver
session to debug the application, select Download and debug application. This connection
requires that ssh and gdbserver is available on the target.

a. In the Connections area, specify the address and port details of the target you want to
connect to.

b. In the Files tab, specify the Target Configuration details:

◦ Under Application on host to download, select the application to download onto
the target from your host filesystem or workspace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

◦ Under Target download directory, specify the download directory location.

◦ Under Target working directory, specify the target working directory.

◦ If required, use the Load symbols from file option in the Files panel to specify
symbol files.

c. In the Debugger tab, specify the actions that you want the debugger to perform after it
connects to the target.

d. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

e. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

• If you want to connect to your target, start gdbserver, and then debug an application
already present on the target, select Start gdbserver and debug target resident application,
and configure the options.

a. In the Model parameters area, the Enable virtual file system support option maps
directories on the host to a directory on the target. The Virtual File System (VFS)
enables the FVP to run an application and related shared library files from a directory on
the local host.

◦ The Enable virtual file system support option is selected by default. If you do not
want virtual file system support, deselect this option.

◦ If the Enable virtual file system support option is enabled, your current workspace
location is used as the default location. The target sees this location as a writable
mount point.

b. In the Files tab, specify the location of the Application on target and the Target
working directory. If you need to load symbols, use the Load symbols from file option
in the Files panel.

c. In the Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

d. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

e. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

4. Click Apply to save the configuration settings.
5. Click Debug to connect to the target and start debugging.

7.7 Configuring a connection to a Linux kernel
Use these steps to configure a connection to a Linux target and load the Linux kernel into memory.
The steps also describe how to add a pre-built loadable module to the target.

Before you begin
For a Linux kernel module debug, a Remote Systems Explorer (RSE) connection to the target might
be required. If so, you must know the target IP address or name.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/About-the-RSE


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Procedure
1. From the Arm® Development Studio main menu, select File > New > Hardware Connection.
2. In the Hardware Connection dialog box, specify the details of the connection:

a) In Debug Connection give the debug connection a name, for example
my_linux_kernel_connection and click Next.

b) In Target Selection select a target, for example Juno Arm Development Platform (r2) and
click Finish to complete the initial configuration of the connection.
Figure 7-6: Name the Linux kernel connection

3. In the Edit Configuration dialog box, use the Connection tab to specify the target and
connection settings:
a) In the Select target panel, browse and select Linux Kernel and/or Device Driver Debug

operation, and further select the processor core you require.
b) Select your debug hardware unit in the Target Connection list. For example, DSTREAM

Family.
c) If you need to, Edit the Debug and Trace Services Layer (DTSL) settings in the DTSL

Configuration Editor to configure additional debug and trace settings for your target.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

d) In the Connections area, enter the Connection name or IP address of your debug hardware
probe. If your connection is local, click Browse and select the connection using the
Connection Browser.

4. Use the Files tab to specify your application and additional resources to download to the
target:
a) If you want to load your application on the target at connection time, in the Target

Configuration area, specify your application in the Application on host to download field.
b) If you want to debug your application at source level, select Load symbols.
c) If you want to load additional resources, for example, additional symbols or peripheral

description files from a directory, add them in the Files area. Click Add resource to add
resources, click Remove resources to remove resources.

5. Select the Run control area in the Debugger tab to configure debugger settings:
a) Select Connect only and set up initialization scripts as required.

Operating System (OS) support is automatically enabled when a Linux kernel
vmlinux symbol file is loaded into the debugger from the Arm Debugger
launch configuration. However, you can manually control this using the set
os command.

For example, if you want to delay the activation of operating system
support until the kernel has booted and the Memory Management Unit
(MMU) is initialized, then you can configure a connection that uses a target
initialization script to disable operating system support.

b) Select Execute debugger commands option.
c) In the field provided, enter commands to load debug symbols for the kernel and any kernel

modules that you want to debug, for example:
add-symbol-file <path>/vmlinux S:0

add-symbol-file <path>/modex.ko

• The path to the vmlinux must be the same as your build environment.

• In the example above, the kernel image is called vmlinux, but this could
be named differently depending on your kernel image.

• In the example above, S:0 loads the symbols for secure space with 0
offset. The offset and memory space prefix is dependent on your target.
When working with multiple memory spaces, ensure that you load the
symbols for each memory space.

d) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify a new location.

e) In the Paths area, specify any directories on the host to search for files of your application
using the Source search directory field.

f) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

6. If required, specify arguments to pass to the main() function. The methods of passing
arguments are described in About passing arguments to main().

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 215

https://developer.arm.com/documentation/101471/6-4-0armds/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-os
https://developer.arm.com/documentation/101471/6-4-0armds/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-os
https://developer.arm.com/documentation/101471/6-4-0armds/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/add-symbol-file
https://developer.arm.com/documentation/101470/2024-1/Reference/Passing-arguments-to-main--


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

7. If required, use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply to save the configuration settings.
9. Click Debug to connect to the target and start the debugging session.

By default, for this type of connection, all processor exceptions are handled by
Linux on the target. Once connected, you can use the Manage Signals dialog
box in the Breakpoints view menu to modify the default handler settings.

7.8 Configuring trace for bare-metal or Linux kernel
targets

You can configure trace for bare-metal or Linux kernel targets using the DTSL options that Arm®

Debugger provides.

About this task
After configuring trace for your target, you can connect to your target and capture trace data.

Procedure
1. In Arm Debugger, select Window > Perspective > Open Perspective > Other > Development

Studio .
2. Select Run > Debug Configurations to open the Debug Configurations launcher panel.
3. Select the Arm Debugger debug configuration for your target in the left-hand pane.

If you want to create a new debug configuration for your target, then select Arm Debugger
from the left-hand pane, and then click the New button. Then select your bare-metal or Linux
kernel target from the Connection tab.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-7: Select the debug configuration

4. After selecting your target in the Connection tab, click the DTSL Options Edit button. This
shows the DTSL Configuration dialog box where you can configure trace.

5. Depending on your target platform, the DTSL Configuration dialog box provides different
options to configure trace.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-8: Select Trace capture method

a) For Trace capture method select the trace buffer you want to use to capture trace.
b) The DTSL Configuration dialog box shows the processors on the target that are capable of

trace. Click the processor tab you require. Then, select the option to enable trace for the
individual processors you want to capture trace.

c) Select any other trace related options you require in the DTSL Configuration dialog box.
d) Click Apply and then click OK. This configures the debug configuration for trace capture.

6. Use the other tabs in the DTSL Configuration dialog box to configure the other aspects of your
debug connection.

7. Click Apply to save your debug configuration. When you use this debug configuration to
connect, run, and stop your target, you can see the trace data in the Trace view.

The options to enable trace might be nested. In this example, you must select
Enable Cortex-A15 core trace to enable the other options. Then you must
select Enable Cortex-A15 0 trace to enable trace on core 0 of the Cortex®-A15
processor cluster.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-9: Select the processors you want to trace

Related information
Configure DSTREAM-PT trace mode

7.9 Configuring an Events view connection to a bare-metal
target

The Events view allows you to capture and view textual logging information from bare-metal
applications. It also allows you to view packets generated by the Data Watchpoint and Trace (DWT)
unit on M-profile targets. Logs are captured from your application using annotations that you must
add to the source code.

Before you begin
• On M-profile targets, set the registers appropriately to enable the required DWT packets. See

the Armv7-M Architecture Reference Manual for more information.

• Annotate your application source code with logging points and recompile it. See the ITM
and Event Viewer Example for Versatile Express Cortex-A9x4 provided with Arm®

Development Studio examples for more information.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 215

https://developer.arm.com/documentation/101470/2024-1/Using-debug-probes-with-Arm-Development-Studio/Debug-Hardware-configuration/Configure-DSTREAM-PT-trace-mode
https://developer.arm.com/documentation/ddi0403/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Procedure
1. Select Debug Configurations… from the Run menu.
2. Select Generic Arm C/C++ Application from the configuration tree and then click New to

create a new configuration.
3. In the Name field, enter a suitable name for the new configuration, for example,

events_view_debug
4. Use the Connection tab to specify the target and connection settings:

a) Select the required platform in the Select target panel. For example, ARM Development
Boards > Versatile Express A9x4 > Bare Metal Debug > Debug Cortex-A9x4 SMP.

b) Select your debug hardware unit in the Target Connection list. For example, DSTREAM
Family.

c) In DTSL Options, click Edit to configure DSTREAM trace and other target options. This
displays the DTSL Configuration dialog box.

• In the Trace Capture tab, either select On Chip Trace Buffer (ETB) (for a JTAG cable
connection), or DSTREAM 4GB Trace Buffer (for a Mictor cable connection).

• In the ITM tab, enable or disable ITM trace and select any additional settings you
require.

5. Click the Files tab to define the target environment and select debug versions of the
application file and libraries on the host that you want the debugger to use.
a) In the Target Configuration panel, specify your application in the Application on host to

download field.
b) If you want to debug your application at source level, select Load symbols.
c) If you want to load additional resources, for example, additional symbols or peripheral

description files from a directory, use the Files area to add them. Click + to add resources,
click - to remove resources.

6. Use the Debugger tab to configure debugger settings.
a) In the Run control area:

• Specify if you want to Connect only to the target or Debug from entry point. If you
want to start debugging from a specific symbol, select Debug from symbol.

• If you need to run target or debugger initialization scripts, select the relevant options
and specify the script paths.

• If you need to specify at debugger start up, select Execute debugger commands
options and specify the commands.

b) The debugger uses your workspace as the default working directory on the host. If you
want to change the default location, deselect the Use default option under Host working
directory and specify a new location.

c) In the Paths area, specify any directories on the host to search for files of your application
using the Source search directory field.

d) If you need to use additional resources, click Add resource (+) to add resources, click
Remove resources (-) to remove resources.

7. If required, specify arguments to pass to the main() function. The methods of passing
arguments are described in About passing arguments to main().

8. Click Apply to save the configuration settings.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 215

https://developer.arm.com/documentation/101470/2024-1/Reference/Passing-arguments-to-main--


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

9. Click Debug to connect to the target. Debugging requires the Development Studio
perspective. If the Confirm Perspective Switch dialog box opens, click Yes to switch
perspective.
When connected and the Development Studio perspective opens, you are presented with all
the relevant views and editors.

10. Set up the Events view to show output generated by the System Trace Macrocell (STM) and
Instruction Trace Macrocell (ITM) events.
a) From the main menu, select Window > Show view > Events
b)

In the Events view, click  , and select Events Settings.
c) In Select a Trace Source, ensure that the trace source matches the trace capture method

specified earlier.
d) Select the required Ports/Channels.
e) On M-profile targets, if required, select any DWT packets.
f) Click OK to close the dialog box.

11. Run the application for a few seconds, and then interrupt it.
You can view the relevant information in the Events view. For example:

Figure 7-10: Events view with data from the ITM source

7.10 Exporting or importing an existing Arm Development
Studio launch configuration

In Arm® Development Studio, a launch configuration contains all the information to run or debug a
program. An Arm Development Studio debug launch configuration typically describes the target to

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

connect to, the communication protocol or probe to use, the application to load on the target, and
debug information to load in the debugger.

• To use a launch configuration from the Development Studio command-line,
you must create a launch configuration file using the Export tab in the Debug
Configurations dialog box.

• You cannot import Development Studio command-line launch configurations.

• When exporting a launch configuration, Arm Development Studio resolves any
Eclipse variables that you have used. Arm Development Studio does not resolve
Eclipse variables when scripting or when using the Commands view.

Exporting an existing launch configuration
1. From the File menu, select Export….

2. In the Export dialog box, expand the Run/Debug group and select Launch Configurations.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Export-tab
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-exttools.htm
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Commands-view


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-11: Export Launch Configuration dialog box

3. Click Next.

4. In the Export Launch Configurations dialog box:

a. Depending on your requirements, expand the CMSIS C/C++ Application group or the
Generic Arm C/C++ Application and select one or more launch configurations.

b. Click Browse… and select the required location on your local file system and click OK.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Figure 7-12: Select Launch Configurations for export

5. If necessary, select Overwrite existing file(s) without warning.

6. Click Finish.

The launch configuration files are saved in your selected location with an extension of .launch.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

Importing an existing launch configuration
1. From the File menu, select Import….

2. In the Import dialog box, expand the Run/Debug group and select Launch Configurations.

3. Click Next.

4. In the Import Launch Configurations dialog box:

a. In From Directory, click Browse and select an import directory.

b. In the selection panels, select the folder and the specific launch configurations you want.

Figure 7-13: Import launch configuration selection panel

c. If necessary, select Overwrite existing file(s) without warning.

d. Click Finish to complete the import process.

You can view the imported launch configurations in the Debug Control panel.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Debugging code

7.11 Disconnecting from a target
To disconnect from a target, you can use either the Debug Control or the Commands view.

•
If you are using the Debug Control view, on the toolbar, click  .

Figure 7-14: Disconnecting from a target using the Debug Control view

• If you are using the Commands view, enter quit in the Command field and click Submit.

Figure 7-15: Disconnecting from a target using the Commands view

The disconnection process ensures that the target's state does not change, except for the
following:

• Any downloads to the target are canceled and stopped.

• Any breakpoints are cleared on the target, but are maintained in Arm® Development Studio.

• The DAP (Debug Access Port) is powered down.

• Debug bits in the DSC (Debug Status Control) register are cleared.

If a trace capture session is in progress, trace data continues to be captured even after Arm
Development Studio has disconnected from the target.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

8. Tutorial: Hello World
The Hello World tutorial is for new users, taking them through each step in getting their first
project up and running.

8.1 Open Arm Development Studio for the first time
The first time you open Arm® Development Studio, you are prompted to add your license details.
When you have completed the tasks in this section, you are ready to use Arm Debugger.

Before you begin
• Check that your operating system meets the Arm Development Studio system requirements.

For details see Hardware and host platform requirements.

• Download and install Arm Development Studio on your operating system with one of these
options:

◦ Linux: Install Arm Development Studio on Linux

◦ Windows using the command-line: Install Arm Development Studio on Windows using the
command line

◦ Windows using the installation wizard: Install Arm Development Studio on Windows using
the installation wizard

• If you or your company has purchased Arm Development Studio, you need one of the
following:

◦ Arm user-based licensing:

The license server address or an activation code.

◦ FlexNet license management:

The license file or the license server address and port number.

Procedure
1. Open Arm Development Studio:

• On Windows, select Windows menu > Arm Development Studio <version>

• On Linux:

◦ GUI: Use your Linux variant's menu system to locate Arm Development Studio.

◦ Command line: Run <installation_directory>/bin/armds_ide
2. The first time you open Arm Development Studio, the Product Setup dialog box opens, which

prompts you to add your product license. You can select one of the following:

• Manage Arm User-Based Licenses - select this option if you have purchased Arm
Development Studio and it is licensed using Arm user-based licensing. After selecting this
option, click Finish to open the Arm License Management Utility dialog box.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Arm user-based licensing is only available to customers with a user-based
licensing license. Documentation for user-based licensing is available at
https://lm.arm.com. For assistance with user-based licensing issues, visit Arm
Support Services and open a support case.

• Add product license - select this option if you have purchased Arm Development Studio
and it is licensed by FlexNet licence management. After selecting this option:

a. Click Next.
b. Enter the location of your license file, or the address and port number of your license

server, and click Next.
c. The Arm Development Studio editions that you are entitled to use are listed. Select the

edition that you require, and click Next.
d. Check the details on the summary page. If they are correct, click Finish.

• Obtain evaluation license - select this option if you would like to evaluate the product.
After selecting this option:

a. Click Next.
b. Log into your Developer account using your Arm Developer account email address and

password. If you do not have an account, click Create an account.
c. Select a network interface to which your license will be locked.

d. Click Finish.

Results
Arm Development Studio opens. See IDE Overview, which describes the main features of the user
interface.

The workspace is automatically set by default, to either:

• Windows: <userhome>\Development Studio Workspace

• Linux: <userhome>/developmentstudio-workspace

You can change the default location by selecting File > Switch Workspace.

8.2 Create a project in C or C++
After installing and licensing Arm® Development Studio, we are going to create a simple Hello
World C project and show you how to specify the base RAM address for a target. For the
remainder of this tutorial, we are going to use the Arm Compiler for Embedded 6 toolchain and our
target is a Cortex®-A53 Fixed Virtual Platform, provided with Arm Development Studio.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 215

https://lm.arm.com
https://developer.arm.com/All%20Support%20Services
https://developer.arm.com/All%20Support%20Services


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Before you begin
• Complete Open Arm Development Studio for the first time

• Ensure you are in the Development Studio Perspective. This is the default perspective when
Arm Development Studio is first opened. To return to it, click the Development Studio button
in the top right corner.

Figure 8-1: Screenshot highlighting the button for the Development Studio Perspective

Procedure
1. To create a new C project, select: File > New > Project....
2. Expand the C/C++ menu, and select C project, then click Next.

This tutorial also works with a C++ project.

3. In the C Project dialog box:
a) In the Project name field, enter HelloWorld.
b) Under Project type, select Executable > Hello World ANSI C Project.
c) Under Toolchains, select Arm Compiler for Embedded 6.
d) Click Finish.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Results
Figure 8-2: The IDE after creating a new project

Next steps
You can add existing source files to your project by dragging and dropping the file into the project
folder, or by selecting File > Import > General > File System.

8.3 Configure your project
Before you build the HelloWorld project, you must specify some configuration settings.

Before you begin
Complete Create a project in C or C++

About this task
You must specify:

• The target processor or architecture you want to compile for.

• That the compiler must add debug symbols into the image file, so that the debugger can debug
it at source-level.

• The address in RAM in your FVP target where you want the linker to base your image.

This ensures that the application is built and loaded correctly on to your target, and that you can
debug the image at source-level.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Procedure
1. In the Project Explorer view, right-click the HelloWorld project and select Properties. The

Properties for HelloWorld dialog box opens.
2. Add debug symbols into the image file:

a) Expand C/C++ Build, and select Settings.
b) Ensure the Configuration is set to Debug [Active].

3. Configure the target:
a) Select C/C++ Build > Settings.
b) In Tool Settings tab, select All Tools Settings > Target.
c) From the Target CPU dropdown, select Cortex-A53 AArch64.
d) From the Target FPU dropdown, select Armv8 (Neon).

4. Configure the image layout:
a) In the Tool Settings tab, select Arm Linker 6 > Image Layout.
b) In the RO base address field, enter 0x80000000.

5. Click Apply and Close.
6. If you are prompted to rebuild the index, click Rebuild Index.

8.4 Build your project
You can now build your HelloWorld project!

Before you begin
Complete this task:

• Configure your project

Procedure
In the Project Explorer view, right-click the HelloWorld project and select Build Project.

Results
When the project has built, in the Project Explorer view, under Debug, locate the HelloWorld.axf
file.

The .axf file contains the object code and debug symbols that enable Arm® Debugger to perform
source-level debugging.

Debug symbols are added at build time. You can either specify this manually, using
the -g option when compiling with Arm Compiler for Embedded 6, or you can set
this to be default behavior. See Configure your project for details.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

8.5 Configure your debug session
In Arm® Development Studio, you configure a debug session with the New Debug Connection
wizard. This wizard enables you to connect to your target.

About this task
Depending on your requirements, you can:

• Configure a connection to an FVP for bare-metal application debug

• From the command-line, configure a connection to an FVP for bare-metal application debug

• Configure a connection to an FVP for Linux application debug

• Configure a connection to an FVP for Linux kernel debug

The following example takes you through configuring a bare-metal Model Connection to a
Cortex®-A53 Fixed Virtual Platform (FVP), using the project you created in the previous section of
this tutorial.

Procedure
1. Create a .ds script so that the FVP handles semihosting, instead of Arm Debugger:

a) From the main menu, select File > New > Other....
b) In the Select a wizard dialog box, select Arm Debugger > Arm Debugger Script and click

Next.
c) Click Workspace… and select the HelloWorld project as the location for this script. Click

OK.
d) In the File Name field, name this script use_model_semihosting and click Finish. The empty

script opens in the Editor window.
e) Add the following code to the script and press Ctrl + S to save:

set semihosting enabled off

Figure 8-3: Editor window with semihosting script

2. From the main menu, select File > New > Model Connection.
3. In the Model Connection dialog box, specify the details of the connection:

a) Enter a name for the debug connection, for example HelloWorld_FVP.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

b) Select Associate debug connection with an existing project, and select the project that you
created and built in the previous section Build your project.

c) Click Next.
4. In the Target Selection dialog box, specify the details of the target:

a) Select Arm FVP (Installed with Arm DS) > Base_A53x1.
Figure 8-4: Select Base_A53x1 model

b) Click Finish.
5. In the Edit Configuration dialog box, ensure the right target is selected, the appropriate

application files are specified, and the debugger knows where to start debugging from:
a) Under the Connection tab, ensure that Arm FVP (Installed with Arm DS) > Base_A53x1 >

Bare Metal Debug > Cortex-A53 is selected.
b) Under Bare Metal Debug, in the Model parameters field, add the following parameter:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

-C bp.secure_memory=false

For Cortex-M models, the parameter to add is -C
fvp_mps2.DISABLE_GATING=1.

This parameter disables the TZC-400 TrustZone memory controller included in the
Base_A53x1 FVP. By default, the memory controller refuses all accesses to DRAM memory.

Figure 8-5: Edit configuration Connection tab

c) In the Files tab, select Target Configuration > Application on host to download >
Workspace.

d) Click and expand the HelloWorld project and from the Debug folder, select HelloWorld.axf
and click OK.

e) In the Debugger tab, select Debug from symbol.
f) Enable Run target initialization debugger script (.ds/.py) and click Workspace….
g) Select the use_model_semihosting.ds script and click OK.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

6. Click Debug to load the application on the target, and load the debug information into the
debugger.

Results
• By default for FVPs, the CLCD window launches. You can disable this default action with

the -C bp.vis.disable_visualisation=1 parameter. See Using the CLCD window for more
information.

Figure 8-6: The CLCD window

• Arm Development Studio connects to the model and displays the connection status in the
Debug Control view.

Figure 8-7: Debug Control view

• The application loads on the target, and stops at the main() function, ready to run.

Figure 8-8: main () in code editor

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 215

https://developer.arm.com/documentation/100966/1127/Getting-Started-with-Fixed-Virtual-Platforms/Using-the-CLCD-window


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

8.6 Application debug with Arm Debugger
Now that you have created a debug configuration and the application is loaded on the target, it is
time to start debugging and stepping through your application.

Running and stepping through the application
Use the controls provided in the Debug Control view to debug your application. By default, these
controls do source level stepping.

Figure 8-9: Debug Control view

The Debug Control view has the following controls:

 - Click to continue running the application after loading it on the target.

 - Click to interrupt or pause executing code.

 - Click to step through the code.

 - Click to step over a source line.

 - Click to step out.

 - This is a toggle. Click this to toggle between stepping instructions and stepping source code.
This applies to the above step controls.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Other views display information relevant to the debug connection
• Target Console view displays the application output.

Figure 8-10: Target console output

• Commands view displays messages output by the debugger. Also use this view to enter Arm®

Debugger commands.

Figure 8-11: Commands view

• C/C++ Editor view shows the active C, C++, or Makefile. The view updates when you edit
these files.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Figure 8-12: Code Editor view

• Disassembly view shows the built program as assembly instructions, and their memory
location.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Figure 8-13: Disassembly view

 indicates the location in the code where your program is stopped. In this case, it is at the
main() function.

• Memory view shows how the code is represented in the target memory. For example, to view
how the string Hello World from the application is represented in memory:

1. Open the Memory view.

2. In the Address field, enter &main and press Enter on your keyboard. The view displays the
contents of the target's memory.

3. Change the displayed number of bytes to 96 and press Enter.
4. Right-click on the column headings, and select Characters.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Figure 8-14: Adding Characters column to Memory view

5. Select and highlight the words Hello World.

Figure 8-15: Memory view

In the above example, the Memory view displays the hexadecimal values for the code and the
ASCII character encoding of the memory values, which enable you to view the details of the code.

After completing your debug activities, you can Disconnect from the target.

8.7 Disconnect from the target
To disconnect from a target, you can use either the Debug Control or the Commands view.

• If you are using the Debug Control view, click Disconnect from Target on the toolbar.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Figure 8-16: Disconnecting from a target using the Debug Control view

• If you are using the Commands view, enter quit in the Command field, then press Enter.

The disconnection process ensures that the state of the target does not change, except for the
following case:

• Any downloads to the target are canceled and stopped.

• Any breakpoints are cleared on the target, but are maintained in Arm® Development Studio.

• The DAP (Debug Access Port) is powered down.

• Debug bits in the DSC (Debug Status Control) register are cleared.

If a trace capture session is in progress, trace data continues to be captured even after Arm
Development Studio has disconnected from the target.

8.8 Capture trace output from an FVP
Trace capture from a Fixed Virtual Platform (FVP) provides you with a detailed output of all the
instructions that are executed in a debug session. You can enable trace capture in the Debug and
Trace Services Layer (DTSL) Configuration dialog box.

Procedure
1. In the Debug Control view, right-click on a disconnected target connection and select DTSL

Options.
2. In the Debug and Trace Services Layer (DTSL) Configuration dialog box, select the Model

Trace option under the Trace Buffer tab.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Here you can also change the trace buffer size in the Trace Buffer Size drop-
down menu.

Figure 8-17: Trace Buffer tab

3. In the Core Trace tab, select the processor on which you want to enable trace capture.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Figure 8-18: Core Trace tab

4. Select Apply and then OK to apply your settings and close the dialog box.

Next steps
1. Connect to the target.

2. In the Trace view, you can see all the instructions that are executed in a debug session.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

Figure 8-19: Example trace capture in the Trace view

8.9 Other tutorials and workbooks
The following tutorials and workbooks might also be of interest:

• Arm Debugger Manual Configuration

This workbook describes how to manually create a platform configuration for a specific target
with Arm® Development Studio Platform Configuration Editor (PCE). For the majority of targets,
you can create a platform configuration automatically by performing target auto-detection with
PCE. However, manually configuring a target can help you understand:

◦ The information required to create a platform configuration

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 215

https://developer.arm.com/documentation/102551/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Tutorial: Hello World

◦ How a platform configuration is created

◦ Which CoreSight™ devices are associated with debug and trace

◦ How and why CoreSight devices are connected together

◦ Important settings for the CoreSight devices

• Heterogeneous system debug with Arm Development Studio

This workbook describes how to set up and debug the NXP i.MX7 SABRE board development
board with Arm Development Studio. It takes you through the process of installing a Linux
image, and then guides you through a debug session with bare-metal and Linux applications.

• Accessing memory-mapped peripherals with Arm Development Studio

In most Arm embedded systems, peripherals are at specific addresses in memory. In your
code, you must consider not only the size and address of the register, but also its alignment in
memory. This tutorial describes how to map a C variable to each register of a memory-mapped
peripheral and use a pointer to that variable to read from and write to the register.

• Debugging with the MCIMX8M-EVK board, DSTREAM-ST, and Arm Development Studio

This tutorial describes how to use Arm Development Studio to debug a simple program running
on an MCIMX8M-EVK board. By completing a series of basic tasks, you learn about the
different features provided by Arm Development Studio including:

◦ Creating and configuring a simple Hello World project

◦ Configuring a debug connection to the i.MX 8MQuad using DSTREAM-ST

◦ Using Arm Development Studio to access information about memory and the memory map

◦ Creating a platform configuration for the MCIMX8M-EVK board

◦ Obtaining trace output from the MCIMX8M-EVK board

◦ Using the CoreSight Access Tool for SoC600 (CSAT600) with the MCIMX8M-EVK board
and DSTREAM-ST

• Beyond Hello World - advanced Arm Compiler 6 features

This tutorial explores some of the more advanced features of the Arm Compiler 6 toolchain.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 215

https://developer.arm.com/documentation/102021/latest
https://developer.arm.com/documentation/102635/latest
https://developer.arm.com/documentation/102707/latest
https://developer.arm.com/documentation/102665/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Troubleshoot Arm Development Studio

9. Troubleshoot Arm Development Studio
Describes how to diagnose problems when debugging applications using Arm® Debugger.

9.1 Arm Linux problems and solutions
Lists possible problems when debugging a Linux application.

You might encounter the following problems when debugging a Linux application.

Arm Linux permission problem
If you receive a permission denied error message when starting an application on the target then
you might have to change the execute permissions on the application:

chmod +x <myImage>

A breakpoint is not being hit
You must ensure that the application and shared libraries on your target are the same as those on
your host. The code layout must be identical, but the application and shared libraries on your target
do not require debug information.

Operating system support is not active
When Operating System (OS) support is required, the debugger activates it automatically where
possible. If OS support is required but cannot be activated, the debugger produces an error:

ERROR(CMD16-LKN36):
! Failed to load image "gator.ko"
! Unable to parse module because the operating system support is not active

OS support cannot be activated if:

• Debug information in the vmlinux file does not correctly match the data structures in the kernel
running on the target.

• It is manually disabled by using the set os enabled off command.

To determine whether the kernel versions match:

1. After loading the vmlinux image, stop the target.

2. Enter the following command:

print init_nsproxy.uts_ns->name

3. Check that the $1 output is correct:

$1 = {sysname = "Linux", nodename = "(none)", release = "3.4.0-rc3", version =
 "#1 SMP Thu Jan 24 00:46:06 GMT 2013", machine = "arm", domainname = "(none)"}

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Troubleshoot Arm Development Studio

Related information
Configuring a connection to a Linux application using gdbserver on page 116
Configuring a connection to a Linux kernel on page 119

9.2 Enabling internal logging from the debugger
Describes how to enable internal logging to help diagnose error messages.

On rare occasions an internal error might occur, which causes the debugger to generate an
error message suggesting that you report it to your local support representatives. You can help
to improve the debugger, by giving feedback with an internal log that captures the stacktrace
and shows where in the debugger the error occurs. To find out your current version of Arm®

Development Studio, you can select Help > About Arm Development Studio IDE in the IDE, or
open the product release notes.

To enable internal logging in the IDE, enter the following in the Commands view of the
Development Studio perspective:

1. To enable the output of logging messages from the debugger using the predefined DEBUG
level configuration: log config debug

2. To redirect all logging messages from the debugger to a file: log file <debug.log>

Enabling internal logging can produce very large files and slow down the debugger
significantly. Only enable internal logging when there is a problem.

Related information
Commands view

9.3 FTDI probe: Incompatible driver error
When connecting your FTDI probe to Arm® Development Studio, you might see an error message
when browsing for the probe.

The error is specific to Linux installations of Arm Development Studio:

Browsing failed: Incompatible virtual COM port driver (ftdi_sio) must be unloaded to

use FTDI MPSSE JTAG probe. See AN_220 FTDI Drivers Installation Guide for Linux.

Cause
The Linux operating system automatically loads an incompatible driver when the FTDI probe is
plugged in.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Commands-view


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Troubleshoot Arm Development Studio

Solution
1. To unload the incompatible driver, enter the following commands in your Terminal:

sudo rmmod ftdi_sio
sudo rmmod usbserial

2. Browse for your FTDI probe again, and it is now listed in the Connection Browser.

Related information
FTDI Drivers Installation Guide for Linux

9.4 Target connection problems and solutions
Lists possible problems when connecting to a target.

Failing to make a connection
The debugger might fail to connect to the selected debug target for the following reasons:

• You do not have a valid license to use the debug target.

• The debug target is not installed or the connection is disabled.

• The target hardware is in use by another user.

• The connection has been left open by software that exited incorrectly.

• The target has not been configured, or a configuration file cannot be located.

• The target hardware is not powered up ready for use.

• The target is on a scan chain that has been claimed for use by something else.

• The target hardware is not connected.

• You want to connect through gdbserver but the target is not running gdbserver.

• There is no ethernet connection from the host to the target.

• The port number in use by the host and the target are incorrect.

Check the target connections and power up state, then try and reconnect to the target.

Debugger connection settings
When debugging a bare-metal target the debugger might fail to connect for the following reasons:

• Heap Base address is incorrect.

• Stack Base (top of memory) address is incorrect.

• Heap Limit address is incorrect.

• Incorrect vector catch settings.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 215

https://www.ftdichip.com/Support/Documents/AppNotes/AN_220_FTDI_Drivers_Installation_Guide_for_Linux.pdf


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Troubleshoot Arm Development Studio

Check that the memory map settings are correct for the selected target. If set incorrectly, the
application might crash because of stack corruption or because the application overwrites its own
code.

Related information
Configuring a connection to a Linux application using gdbserver on page 116
Configuring a connection to a Linux kernel on page 119

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

10. Migrating from DS-5 to Arm
Development Studio

Describes the differences between DS-5 Development Studio (DS-5) and Arm® Development
Studio and provides information to aid migration from DS-5 to Arm Development Studio.

10.1 Add an Existing License Server
If Arm® Development Studio has no license information stored, you can add it when Arm
Development Studio launches. This activity describes how to add an existing license server and
specify the Arm Development Studio edition you want to use.

About this task
If no product license information exists for Arm Development Studio, the Add License dialog is
shown when Arm Development Studio first opens:

Figure 10-1: Product Setup dialog box when you first open Arm Development Studio.

• To choose not to add a license to Arm Development Studio, you can click Skip.
If you choose not to add a license, some functionality is disabled.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

• You can add license information to Arm Development Studio at any time using
the Arm License Manager. To open the Arm License Manager, select Help >
Arm License Manager.

This activity assumes that you have not skipped adding a license to Arm Development Studio and
that you are using an existing licence. If you are using user-based licensing, follow the instructions
in Add a license using the Arm License Manager.

Procedure
1. Open Arm Development Studio IDE.
2. In the Product Setup dialog box, select Add product license and click Next.

Figure 10-2: Enter existing license details screen.

3. In the Enter existing license details screen, in the License Server field, enter the license server
port and address and click Next.

4. In the Activate Product screen, select the appropriate Arm Development Studio edition from
the provided list.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Only editions enabled by your license file are listed.

Figure 10-3: Activate product screen.

5. To save and apply your changes, click Next and then Finish.

Next steps
You can change or add license information in Arm Development Studio using the Arm License
Manager. You can access the Arm License Manager by selecting either Help > Arm License
Manager or Window > Preferences > Arm DS > Product Licenses.

Related information
Add a license using Product Setup on page 19
Product and toolkit configuration for FlexNet Publisher (FNP) licenses

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 215

https://developer.arm.com/documentation/ka004977/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

10.2 Default Workspace Location
When launching for the first time, Arm® Development Studio uses a default workspace in your
home directory. After the first launch, Arm Development Studio automatically opens the last used
workspace.

The default workspace location is:

• Windows: user directory/Development Studio Workspace

• Linux: home/Development Studio Workspace

To change to a different workspace directory in Arm Development Studio, select File > Switch >
Workspace.

To change the default behavior and specify a workspace on startup, navigate to Window >
Preferences > General > Startup and Shutdown > Workspaces and tick Prompt for workspace on
startup.

10.3 Combined C/C++ and Debug Perspectives
Arm® Development Studio has a new IDE perspective, called Development Studio. The
Development Studio perspective combines the DS-5 C/C++ and DS-5 debugger perspectives to
display commonly used views in a single perspective.

This is the default perspective when Arm Development Studio opens:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-4: Arm Development Studio IDE

Project Explorer View
The Project Explorer view allows you to create and import projects.

The Import Project option is only present if no projects are listed in the Project
Explorer view.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-5: Project Explorer view in Arm Development Studio

In Arm Development Studio, you can now create and import existing μVision® projects:

1. From the toolbar, select File > Import.. to open the Import dialog.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-6: Import project dialog

2. Expand the Arm Development Studio drop-down, select μVision Project and click Next.

Debug Control View
The Debug Control view allows you to create new debug connections and connect with existing
configurations.

The Create a Debug Connection option is only shown in the Debug Control view
if no launch configurations exist in Arm Development Studio workspace. Arm
Development Studio provides new methods to create hardware, Linux application
and model connections. To read more about these new methods, see:

• Creating a new Hardware Connection

• Creating a new Linux Application Connection

• Creating a new Model Connection

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-7: Import project dialog

To connect to an existing configuration, click the Connect with Existing Config button.

The Connect with Existing Config option is only shown if no launch configurations
exist in the Arm Development Studio workspace.

General UI differences between DS-5 and Arm Development Studio
There are several minor UI features in Arm Development Studio that you must be aware of:

• In Arm Development Studio a three line button is used to display menu items instead of the
inverted triangle used in DS-5.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-8: Project Explorer view in Arm Development Studio

• To add more views to a Development Studio perspective in Arm Development Studio, you can
either click +, or select Window > Show View and choose your view.

Figure 10-9: Add new view button in Arm Development Studio

• Use the Builds the selected project (hammer) and Cleans the selected project (broom) buttons
in the Project Explorer view to build and clean the selected project.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-10: Build and Clean project buttons in Project Explorer view

Related information
Debug Control view
Perspectives in Arm Development Studio

10.4 Migrate an existing DS-5 project
You can import DS-5 projects and launch configurations (.launch files) into Arm® Development
Studio.

About this task
You can import existing DS-5 projects into Arm Development Studio, but projects and launch
configurations imported into Arm Development Studio are not backward-compatible with DS-5.

Procedure
1. Choose one of these project import methods:

• Click the Import Project option in the Project Explorer view.

The Import Project option only appears if no projects exist.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Control-view
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Perspectives-in-Arm-Development-Studio


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-11: Import Project option in the Project Explorer view.

• Select File > Import...
2. Select General > Existing Projects into Workspace and click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-12: Import dialog box

3. Select the existing DS-5 project(s) to import.
a) Click Browse… to locate the projects.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-13: Import dialog browse for root directory

b) Ensure the projects to import are selected and click Finish.
4. Import the projects.

a) Click Select All to import all the existing DS-5 projects or select the project(s) to import.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-14: Import dialog browse for root directory

b) Click OK.

Results
The imported project(s) appear in the Project Explorer view.

Related information
Product and toolkit configuration for FlexNet Publisher (FNP) licenses

10.5 CMSIS Packs
Arm® Development Studio includes support for Common Microcontroller Software Interface
Standard (CMSIS) Packs. CMSIS packs offer you a quick and easy way to create, build and debug

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 215

https://developer.arm.com/documentation/ka004977/latest


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

embedded software applications for processors that are based on Arm® Cortex®-M class and
Cortex-A5/A7/A9.

CMSIS Packs are a delivery mechanism for software components, device parameters, and board
support. A CMSIS Pack is a file collection that might include:

• Source code, header files, software libraries - for example RTOS, DSP and generic middleware.

• Device parameters, such as the memory layout or debug settings, along with startup code and
Flash programming algorithms.

• Board support, such as drivers, board parameters, and debug connections.

• Documentation and source code templates.

• Example projects that show you how to assemble components into complete working systems.

CMSIS Packs are developed by various silicon and software vendors, covering thousands of
different boards and devices. You can also use them to enable life-cycle management of in-house
software components.

You can use the CMSIS Pack Manager perspective in Arm Development Studio to load and
manage CMSIS Packs. The New Project wizard allows you to easily create a new project based on
selected CMSIS Pack(s).

To create a new Pack-based project, install the Packs needed for your target board/device from the
CMSIS Pack Manager, then use File > New > Project to create a new CMSIS C Project.

If you have already installed some CMSIS Packs, you can redirect the CMSIS Pack
Manager to the existing CMSIS Packs by setting Window > Preferences > CMSIS
Packs > CMSIS Pack root folder to the location of the installation folder.

You can access the CMSIS Pack Manager perspective by navigating to Window > Perspective >
Open Perspective > CMSIS Pack Manager.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-15: CMSIS Pack Manager perspective

To install the CMSIS pack(s) you must select the device manufacturer and board in the Devices
view, and, in the Packs view, click the appropriate Install icon next to the pack that you want to
install.

When you create a new project or hardware connection, boards or devices that
have CMSIS packs installed are available as selectable targets. For more information
on creating a hardware connection in Arm Development Studio, see Create a new
Hardware Connection.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-16: Installing a CMSIS pack for a device.

You can copy example CMSIS pack projects into the current workspace by opening the Boards
view and selecting your target board. Then open the Examples view and click the Import icon next
to your preferred example project.

Not all CMSIS packs come with examples. Only examples for installed CMSIS packs
are visible by default. Untick Only show examples from installed packs to see
examples from packs that you have not yet installed.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-17: Importing CMSIS Pack example projects

The CMSIS Pack Manager shows a μVision® icon if the example is a μVision project and requires
conversion.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-18: Example μVision projects

Related information
Imported μVision project limitations on page 202

10.6 Create a new Hardware Connection
Using the new Hardware Connection wizard in Arm® Development Studio, you can create a
connection to a hardware target for debug activities.

About this task
The Hardware Connection wizard allows you to select target information which comes from either
a CMSIS pack or a configuration database. This topic describes how to connect to a hardware
target using the Hardware Connection wizard, where the target is provided by a CMSIS Pack.

Procedure
1. Open the New Debug Connection dialog:

• Click the New Debug Connection button at the top of the Development Studio
perspective.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-19: Create new debug connection from Development Studio perspective.

2. Select the Hardware Connection wizard and click Next.

You can also open the Hardware Connection wizard by selecting File > New >
Hardware Connection.

Figure 10-20: Open Hardware Connection Wizard.

3. Enter a connection name in the Debug connection name field and click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

To associate a new hardware connection with an existing project select
Associate debug connection with an existing project and choose a project from
the list provided.

Figure 10-21: Enter debug connection name.

4. Select a hardware target to connect to from the available list and click Finish.

The Location entry of the selected target tells you whether the target support is
provided by a CMSIS Pack or a Configuration Database (configdb).

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-22: Select hardware target.

If the selected target uses a CMSIS pack that is not installed, the dialog shown below appears:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-23: Confirm CMSIS pack installation.

Click OK to confirm the pack installation.

When you select the hardware and install any required CMSIS packs, the Arm Development
Studio Edit Configuration dialog launches. This is presented differently depending on the
support for your selected target:

• If the device support for your selected target comes from a configdb, the Edit
Configuration dialog functions the same as the DS-5 Debug Configurations screen, and
looks like this:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-24: Edit Configuration dialog for configdb targets

• If the device support for your selected target comes from a CMSIS Pack, the Edit
Configuration dialog looks like this:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-25: Edit Configuration dialog for CMSIS pack targets.

This activity assumes the device support for your selected target comes from a
CMSIS Pack.

5. Setup and connect to a target using the Edit Configuration dialog:

• In the Connection tab:

a. Select a debug probe from the Conection Type drop-down list.

b. Select a debug connection method (JTAG or SWD) from the Debug Port drop-down
list.

c. Enter a connection address for the debug probe.

You can browse for the debug probe by clicking Browse…

d. Click Target Configuration… to set the trace connection options.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

• In the Advanced tab:

a. If required, add an image file to download to the target by going to File Settings and
clicking Add an image.

b. Select the required Run Control, Select and Reset, Reset Control and Scripts options.

• In the Flash tab:

a. If required, add a flash programming algorithm to the connection by selecting
Programming Algorithms and then Add a flash programming algorithm.

• In the OS Awareness tab:

a. If required, select an OS from the Select OS awareness drop-down list.

• In the Connection tab:

a. Click Apply and then Debug to connect to your selected target and start an Arm
Debugger session.

Results
The debug connection status appears in the Debug Control view and the created launch
configuration appears in the Project Explorer view.

10.7 Connect to new or custom hardware
Arm® Development Studio provides a method to add new hardware target configurations for
connection and debug purposes. This activity describes how to connect to new or custom
hardware in Arm Development Studio.

About this task
In DS-5, hardware configurations are added using a separate perspective, Platform Configuration
Editor. In Arm Development Studio, adding hardware configurations is part of the new Hardware
Connection wizard.

Procedure
1. Open the Hardware Connection wizard:

a) Click the New Debug Connection icon in the Debug Control view, in the View Menu listing
of the Debug Control view, or at the top of the Development Studio perspective.

b) Select Hardware Connection and click Next.
2. Enter a connection name in the Debug Connection name field and click Next.
3. Click Add a new platform….

If not already present, Arm Development Studio automatically creates a
configuration database (ExtensionDB) to store the new hardware configuration.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-26: Add new platform

4. Select the appropriate debug probe connection in the Conection Type drop-down list.

The Debug Probe Connection view automatically lists any debug probes of the
selected type. Unlike DS-5, Arm Development Studio can use ULINK devices for
autodetection purposes. If the debug probe is not discovered, you can enter the
debug probe connection information in the Connection Address field.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-27: Select a debug probe

5. Click Next to start the hardware target autodetection process.

A platform configuration is created for the attached target during the
autodetection process. You might be prompted to update the debug probe
firmware before the autodetection process begins. The debug probe firmware
update process is the same as it is for DS-5.

6. When the autodetection process completes, choose whether or not to inspect the platform in
the Platform Configuration Editor.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-28: Select a debug probe

• To continue using the Hardware Connection wizard, select Save platform and return to the
connection wizard.

• To exit the Hardware Connection wizard and enter the Platform Configuration Editor,
select Save platform and inspect in Platform Configuration Editor.

The Arm Development Studio Platform Configuration Editor (PCE)
functions the same as DS-5's PCE.

7. Click Next.

This activity assumes that you have chosen to continue using the Hardware
Connection wizard.

8. Enter platform identification details into the Platform fields and click Finish.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-29: Enter identification details for the platform

9. Select the new hardware configuration in the Target Selection view and click Finish.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-30: Select the new hardware configuration

Results
The new hardware target configuration appears in the Edit Configuration view.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

10.8 Create a new Linux application connection
Arm® Development Studio provides a method to connect to and debug Linux applications using
gdbserver.

About this task
Arm Development Studio adds a new Linux Application Connection wizard to help you create
connections to a Linux application running on a target. This activity describes how to connect to a
Linux application in Arm Development Studio using the Linux Application Connection wizard.

Procedure
1. Open the New Debug Connection dialog:

a) Click the New Debug Connection button at the top of the Development Studio
perspective.
Figure 10-31: Create new debug connection from Development Studio perspective.

2. Select Linux Application Connection and click Next.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-32: Select Linux Application Connection

3. Enter a connection name in the Debug connection name field and click Finish.

To associate a new Linux application connection with an existing project, select
Associate debug connection with an existing project and choose a project from
the provided list.

This activity assumes you have not associated the connection with an existing
project.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-33: Enter Linux Application Connection name

4. In the Edit Configuration dialog box:

• If you want to connect to a target with the application and gdbserver already running on it:

a. In the Connection tab, select Connect to already running application.

b. In the Connections area, enter the Address and Port details of the target.

c. If you want to terminate the gdbserver when disconnecting from the FVP, select
Terminate gdbserver on disconnect.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-34: Edit Linux app connection details

d. In the Files tab, use the Load symbols from file option in the Files panel to specify
symbol files.

e. In the Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

f. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

g. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

• If you want to download your application to the target system and then start a gdbserver
session to debug the application, select Download and debug application.

This connection requires that ssh and gdbserver is available on the target.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

a. In the Connections area, enter the Address and Port details of the target.

b. In the Files tab, specify the Target Configuration details:

◦ Under Application on host to download, select the application to download onto
the target from your host filesystem or workspace.

◦ Under Target download directory, specify the download directory location.

◦ Under Target working directory, specify the target working directory.

◦ If required, use the Load symbols from file option in the Files panel to specify
symbol files.

c. In the Debugger tab, specify the actions that you want the debugger to perform after it
connects to the target.

d. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

e. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

• If you want to connect to your target, start gdbserver, and then debug an application
already present on the target, select Start gdbserver and debug target resident application,
and configure the options.

a. In the Model parameters area, the Enable virtual file system support option maps
directories on the host to a directory on the target. The Virtual File System (VFS)
enables the FVP to run an application and related shared library files from a directory on
the local host.

◦ The Enable virtual file system support option is selected by default. If you do not
want virtual file system support, deselect this option.

◦ If the Enable virtual file system support option is enabled, your current workspace
location is used as the default location. The target sees this location as a writable
mount point.

b. In the Files tab, specify the location of the Application on target and the Target
working directory. If you need to load symbols, use the Load symbols from file option
in the Files panel.

c. In the Debugger tab, specify the actions that you want the debugger to perform after
connecting to the target.

d. If required, click the Arguments tab to enter arguments that are passed to the
application when the debug session starts.

e. If required, click the Environment tab to create and configure the target environment
variables that are passed to the application when the debug session starts.

5. Click Apply to save the configuration settings.
6. Click Debug to connect to the target and start debugging.

Results
A debug connection is created to your chosen Linux application target.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

10.9 Create a new model connection
Arm® Development Studio provides a method to connect to and debug models using a new Model
Connection wizard. This activity describes how to connect to a model that is shipped with Arm
Development Studio, using the new Model Connection wizard.

Procedure
1. Open the New Debug Connection dialog:

a) Click the New Debug Connection button at the top of the Development Studio
perspective.
Figure 10-35: Create new debug connection from Development Studio perspective.

2. Select Model Connection and click Next.
Figure 10-36: Select Model Connection wizard

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

3. Enter a new connection name in the Debug connection name field and click Next.
Figure 10-37: Enter Model Connection name

4. Select a model to connect to from the available list or click Add a new model.. to add a new
model configuration to Arm Development Studio.

See Connect to new or custom models for more information about connecting
to new models.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-38: Select a target model for the connection

5. Click Finish.

Results
The Edit Configuration dialog opens.

The Arm Development Studio Edit Configuration dialog provides the same
functions as the DS-5 Debug Configurations dialog. The main difference is that the
Arm Development Studio Edit Configuration dialog only shows the configuration
details for the selected model under the Select target field in the Connection tab.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-39: Edit Configuration dialog

Next steps
Make any necessary changes to the debug configuration in the Edit Configuration dialog.

Related information
Debug Configurations - Connection tab
Debug Configurations - Files tab
Debug Configurations - Debugger tab
Debug Configurations - OS Awareness tab
Debug Configurations - Arguments tab
Debug Configurations - Environment tab
Debug Configurations - Export tab

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 215

https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Connection-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Files-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Debugger-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---OS-Awareness-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Arguments-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Environment-tab
https://developer.arm.com/documentation/101470/2024-1/Perspectives-and-Views/Debug-Configurations---Export-tab


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

10.10 Connect to new or custom models
Arm® Development Studio provides a method to add new model configurations for connection
and debug purposes. This activity describes how to add model configurations to the configuration
database using the new Model Connection wizard.

About this task
In addition to the Model Configuration wizard, you can add Arm Development Studio model
configurations to the configuration database using the new Model Connection wizard.

Procedure
1. Open the Model Connection wizard:

a) Select File > New > Model Connection.
2. Enter a connection name in the Debug connection name field and click Next.
3. Click Add a new model…

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-40: Add a new model in the Model Connection wizard.

4. Select a model interface for connecting to your model. You have two interface options - Iris or
Component Architecture Debug Interface (CADI).

Iris model interface
• To launch and connect to a specific model from your local file system using Iris:

a. Select the Launch and connect to a specific model option and click Next.
b. In the Model Selection from File System dialog box, click File to browse for a

model and select it.

c. Click Open, then click Finish.

• To connect to a model running on the local host:

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

To connect to models running on the local host, you must launch the
model with the --iris-server switch before connecting to it.

a. Select the Browse for model running on local host option and click Next.
b. Select the model you require from the listed models.

Figure 10-41: Browse for model running on local host

c. Click Finish and connect to the model.

• To connect to a model using its address and port number, running either on the local
or a remote host:

To connect to models running on the local host, you must first launch
the model with the --iris-server switch before connecting to it. To
connect to models running on a remote host, you must first launch the
model with the --iris-server --iris-allow-remote switches.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

a. Select the Connect to model running on either local or remote host option and
click Next.

b. Enter the connection address and port number of the model.

Figure 10-42: Connect to model running on either local or remote host

c. Click Finish.
CADI model interface

The CADI model interface is deprecated. Arm recommends that you use
the Iris model interface instead.

• To launch and connect to a specific model from your local file system using CADI:

a. Select the Launch and connect to a specific model option and click Next.
b. In the Model Selection from File System dialog box, click File to browse for a

model and select it.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-43: Select model from file system

c. Click Open, then click Finish.

• To connect to a model running on the local host:

a. Select the Browse for model running on local host option and click Next.
b. Select the model you require from the listed models.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

Figure 10-44: Browse for model running on local host

c. Click Finish and connect to the model.

The selected model is imported and the *.mdf created. The Model Configuration Editor opens
and loads the imported model file. You can view the configuration database and model in the
Project Explorer.

5. (Optional) Rename the Manufacturer Name and Platform Name, and if necessary, use the
Model Configuration Editor to complete the model configuration.

If you do not enter a Manufacturer Name, the platform is listed under Imported
in the Debug Configurations dialog box.

Next steps
• Make any changes to the model in the Model Configuration Editor. To save the changes to the

model, click Save.

• To import and rebuild the Development Studio configuration database, click Import.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

• Click Debug to open the Debug Configurations dialog box to create, manage, and run
configurations for this target.

Related information
Create a new model configuration

10.11 Imported μVision project limitations
If you want to import μVision® projects into Arm® Development Studio, there are some limitations
to be aware of.

The limitations are as follows:

• μVision project settings which affect target debug are not migrated to Arm Development Studio
debug configurations, but are limited to the project build.

• μVision projects can have multiple project targets with variations in the Run-Time Environment
(RTE) setting. In Arm Development Studio, a project:

◦ Is limited to exactly one RTE configuration.

◦ Does not support Eclipse's C/C++ Development Tooling (CDT) concept of project
'configurations'.

Therefore, each μVision project target is imported as an individual Arm Development Studio
project with its own copy of the project files.

• When you convert and import a μVision project, a copy of the project files are created and
stored in your workspace directory.

• When you are preparing a μVision project for import into Arm Development Studio, you must
ensure that all the files and folders that are specified in the project, are either in the same folder
as the project file, or are in a subdirectory structure. If there are any files that are outside of
the project folder, you must copy these into the project folder, and then manually resolve any
relative dependencies.

• μVision Multi-Project-Workspace files (*.uvmpw) are not supported. Instead, you must import
the projects included in the workspace individually, and set up project interdependencies
manually.

• You cannot directly import μVision Multi-Project-Workspace (*.uvmpw) into Arm Development
Studio. To use projects contained in .uvmpw files, you must import each project individually and
manually configure their dependencies.

• You can only import μVision projects that specify fixed compiler versions. These compiler
toolchains must also be installed in Arm Development Studio. This is because, in Arm
Development Studio, the compiler version is configured per project target.

• User commands in μVision projects are not converted into the corresponding Arm
Development Studio Build Steps. To check or edit the converted Build Steps, right-click the
project, and select Properties > C/C++ Build > Settings > Build Steps.

• You must translate Key Sequence for Tool Parameters to their corresponding variables in Arm
Development Studio.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 215

https://developer.arm.com/documentation/101470/2024-1/Platform-Configuration/Model-targets/Create-a-new-model-configuration
https://developer.arm.com/documentation/101407/0540/Utilities/Key-Sequence-for-Tool-Parameters


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Migrating from DS-5 to Arm Development Studio

• The ElfDwT utility is not included in the Arm Development Studio installation. You must
manually set up Signature Creator for NXP Cortex-M Devices (ElfDwT) as an Arm Development
Studio post-build step. To set up a post-build step, right-click the project and select Properties
> C/C++ Build > Settings > Build Steps.

• The Using FCARM with μVision utility is not included in the Arm Development Studio
installation.

• In μVision source groups, software components and individual files can have specific
assignments to memory regions which are evaluated when the tools generate the linker script.
This feature is not available in Arm Development Studio, so you must manually edit the linker
script file.

10.12 Other differences between DS-5 and Arm
Development Studio

There are other small differences between DS-5 and Arm® Development Studio.

The differences are:

• The Linaro GCC 4.9-2014.04 [arm-linux-gnueabihf] compiler is not provided with Arm
Development Studio. To use GCC (Linux or bare-metal) in Arm Development Studio, you can
download the version you require from Linaro or Arm Developer, then add it as a toolchain (see
Register a compiler toolchain).

• In Arm Development Studio, the IDE executable in the bin directory of the installation is named
armds_ide. In DS-5, the executable is named eclipse.

• In Arm Development Studio, the default Run control option is connect only in the Edit
Configuration view's Debugger tab. In DS-5, the default Run control option is Debug from
symbol set to main.

• In Arm Development Studio, the command-line debugger is named armdbg. In DS-5, the
command-line debugger is named debugger.

• In Arm Development Studio, the Platform Configuration Editor (PCE) is integrated into the
new Connection wizard (see Connect to new or custom hardware).

• In Arm Development Studio, you must select Properties > C/C++ Build > Environment >
Append variables to native environment for every project. If you select Replace native
environment with specified one, the project might not build successfully.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 215

https://developer.arm.com/documentation/101407/0540/Utilities/Signature-Creator-for-NXP-Cortex-M-Devices
https://developer.arm.com/documentation/101407/0540/Utilities/Using-FCARM-with-%CE%BCVision
https://www.linaro.org/
https://developer.arm.com/


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Terminology

Appendix A Terminology
Arm® Development Studio documentation uses a range of terms. These are listed below.

Device
A component on a target that contains the application that you want to debug.

Dialog box
A small page that contains tabs, panels, and editable fields which prompt you to enter
information.

Editor
A view that enables you to view and modify the content of a file, for example source files.
The tabs in the editor area show files that are currently open for editing.

Flash Program
A term used to describe the storing of data on a flash device.

IDE
The Integrated Development Environment. A window that contains perspectives, menus,
and toolbars. This is the main development environment where you can manage individual
projects, associated sub-folders, and source files. Each window is linked to one workspace.

Panel
A small area in a dialog box or tab to group editable fields.

Perspective
Perspectives define the layout of your selected views and editors in Eclipse. They also have
their own associated menus and toolbars.

Project
A group of related files and folders in Eclipse.

Resource
A generic term used to describe a project, file, folder, or a combination of these.

Send To
A term used to describe sending a file to a target.

Tab
A small overlay page that contains panels and editable fields within a dialog box to group
related information. Clicking on a tab brings it to the top.

Target
A development platform on a printed circuit board or a software model that emulates the
expected behavior of Arm hardware.

View
Views provide related information, for a specific function, corresponding to the active file in
the editor. They also have their own associated menus and toolbars.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Terminology

Wizard
A group of dialog boxes to guide you through common tasks. For example, creating new files
and projects.

Workspace
An area on your file system used to store files and folders related to your projects.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Keyboard shortcuts

Appendix B Keyboard shortcuts
A list of the most common keyboard shortcuts available for use with Arm® Development Studio.

F3
Click an assembly instruction and press F3 to see help information about the instruction.

F10
Press F10 to access the main menu. You can then navigate the main menu using the arrow
keys.

Alt+F4
Exit Arm Development Studio.

Alt+Left arrow
Go back in navigation history.

Alt+Right arrow
Go forward in navigation history.

Ctrl+Semicolon
In the Arm assembler editor, add comment markers to a selected block of code in the active
file.

Ctrl+Home
Move the editor focus to the beginning of the code.

Ctrl+End
Move the editor focus to the end of the code.

Ctrl+B
Build all projects in the workspace that have changed since the last build.

Ctrl+F
Open the Find or Find/Replace dialog box to search through the code in the active editor.
Some editors are read-only and therefore disable this functionality.

Ctrl+F4
Close the active file in the editor view.

Ctrl+F6
Cycle through open files in the editor view.

Ctrl+F7
Cycle through available views.

Ctrl+F8
Cycle through available perspectives.

Ctrl+F10
Use with the arrow keys to access the drop-down menu.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Keyboard shortcuts

Ctrl+L
Move to a specified line in the active file.

Ctrl+Q
Move to the last edited position in the active file.

Ctrl+Space
Auto-complete selected functions in editors.

Shift+F10
Use with the arrow keys to access the context menu.

Ctrl+Shift+F
Activate the code style settings in the Preferences dialog box and apply them to the active
file.

Ctrl+Shift+L
Open a small page with a list of all keyboard shortcuts.

Ctrl+Shift+R
Open the Open resource dialog box.

Ctrl+Shift+T
Open the Open Type dialog box.

Ctrl+Shift+/
In the C/C++ editor, add comment markers to the start and end of a selected block of code
in the active file.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 215

https://www.arm.com/company/policies/trademarks


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

2024.1-
00

17 December
2024

Non-
Confidential

Updated document for Arm Development Studio
2024.1

2024.0-
00

17 May 2024 Non-
Confidential

Updated document for Arm Development Studio
2024.0

2023.1-
00

25 October
2023

Non-
Confidential

Updated document for Arm Development Studio
2023.1

2023.0-
00

13 April 2023 Non-
Confidential

Updated document for Arm Development Studio
2023.0

2022.2-
00

17 November
2022

Non-
Confidential

Updated document for Arm Development Studio
2022.2

2022.1-
00

21 July 2022 Non-
Confidential

Updated document for Arm Development Studio
2022.1

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Issue Date Confidentiality Change

2022.0-
01

27 April 2022 Non-
Confidential

Updated document for Arm Development Studio
2022.0

2022.0-
00

29 March 2022 Non-
Confidential

Updated document for Arm Development Studio
2022.0 Beta

2021.2-
00

10 November
2021

Non-
Confidential

Updated document for Arm Development Studio
2021.2

2021.1-
01

26 August 2021 Non-
Confidential

Documentation update 1 for Arm Development Studio
2021.1

2021.1-
00

9 June 2021 Non-
Confidential

Updated document for Arm Development Studio
2021.1

2021.0-
00

19 March 2021 Non-
Confidential

Updated document for Arm Development Studio
2021.0

2010-00 28 October
2020

Non-
Confidential

Updated document for Arm Development Studio
2020.1

2000-01 3 July 2020 Non-
Confidential

Documentation update 1 for Arm Development Studio
2020.0

2000-00 20 March 2020 Non-
Confidential

Updated document for Arm Development Studio
2020.0

1910-00 1 November
2019

Non-
Confidential

Updated document for Arm Development Studio
2019.1

1901-00 15 July 2019 Non-
Confidential

Updated document for Arm Development Studio
2019.0-1

1900-00 11 April 2019 Non-
Confidential

Updated document for Arm Development Studio
2019.0

1800-02 31 January 2019 Non-
Confidential

Documentation update 2 for Arm Development Studio
2018.0

1800-01 18 December
2018

Non-
Confidential

Documentation update 1 for Arm Development Studio
2018.0

1800-00 27 November
2018

Non-
Confidential

First release for Arm Development Studio

Change history
For information about the changes to the Arm Development Studio Getting Started Guide, see the
Arm Development Studio Release Notes.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 215

https://developer.arm.com/documentation/107629


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 215

https://developer.arm.com/glossary


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 215



Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

μVision User's Guide 101407 Non-Confidential

Component Architecture Debug Interface
User Guide

100963 Non-Confidential

Arm Debugger Command Reference 101471 Non-Confidential

Arm Development Studio Heterogeneous
system debug with Arm Development
Studio

102021 Non-Confidential

Arm Development Studio Release Note 107629 Non-Confidential

Arm Development Studio User Guide 101470 Non-Confidential

Arm DSTREAM-HT Getting Started Guide 101760 Non-Confidential

Arm DSTREAM-HT System and Interface
Design Reference Guide

101761 Non-Confidential

Arm DSTREAM-PT Getting Started Guide 101713 Non-Confidential

Arm DSTREAM-PT System and Interface
Design Reference Guide

101714 Non-Confidential

Arm DSTREAM-ST Getting Started Guide 100892 Non-Confidential

Arm DSTREAM-ST System and Interface
Design Reference Guide

100893 Non-Confidential

Arm DSTREAM-XT Getting Started Guide 102443 Non-Confidential

Arm DSTREAM-XT System and Interface
Design Reference Guide

102444 Non-Confidential

CoreSight Components Technical Reference
Manual

DDI0314 Non-Confidential

CoreSight System Trace Macrocell Technical
Reference Manual

DDI0444 Non-Confidential

CoreSight Trace Memory Controller
Technical Reference Manual

DDI0461 Non-Confidential

Fast Models Fixed Virtual Platforms
Reference Guide

100966 Non-Confidential

Iris User Guide 101196 Non-Confidential

User-based Licensing License Server
Administration Guide

107573 Non-Confidential

User-based Licensing User Guide 102516 Non-Confidential

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 215

https://developer.arm.com/documentation
https://developer.arm.com/documentation/101407
https://developer.arm.com/documentation/100963
https://developer.arm.com/documentation/100963
https://developer.arm.com/documentation/101471/6-4-0armds
https://developer.arm.com/documentation/102021
https://developer.arm.com/documentation/102021
https://developer.arm.com/documentation/102021
https://developer.arm.com/documentation/107629/2024-1
https://developer.arm.com/documentation/101470/2024-1
https://developer.arm.com/documentation/101760
https://developer.arm.com/documentation/101761
https://developer.arm.com/documentation/101761
https://developer.arm.com/documentation/101713
https://developer.arm.com/documentation/101714
https://developer.arm.com/documentation/101714
https://developer.arm.com/documentation/100892
https://developer.arm.com/documentation/100893
https://developer.arm.com/documentation/100893
https://developer.arm.com/documentation/102443
https://developer.arm.com/documentation/102444
https://developer.arm.com/documentation/102444
https://developer.arm.com/documentation/ddi0314
https://developer.arm.com/documentation/ddi0314
https://developer.arm.com/documentation/ddi0444
https://developer.arm.com/documentation/ddi0444
https://developer.arm.com/documentation/ddi0461
https://developer.arm.com/documentation/ddi0461
https://developer.arm.com/documentation/100966/1127
https://developer.arm.com/documentation/100966/1127
https://developer.arm.com/documentation/101196
https://developer.arm.com/documentation/107573
https://developer.arm.com/documentation/107573
https://developer.arm.com/documentation/102516


Arm® Development Studio Getting Started Guide Document ID: 101469_2024.1_00_en
Issue 00

Arm® architecture and specifications Document ID Confidentiality

ARMv7-M Architecture Reference Manual DDI0403 Non-Confidential

CoreSight Program Flow Trace Architecture
Specification

IHI0035 Non-Confidential

Non-Arm resources Document ID Organization

Eclipse Documentation - Eclipse Foundation

FTDI Drivers Installation Guide for Linux - Future Technology Devices International
Limited (FTDI)

Copyright © 2018–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 215

https://developer.arm.com/documentation/ddi0403
https://developer.arm.com/documentation/ihi0035
https://developer.arm.com/documentation/ihi0035
https://help.eclipse.org/
https://www.eclipse.org/org/foundation/
https://www.ftdichip.com/Support/Documents/AppNotes/AN_220_FTDI_Drivers_Installation_Guide_for_Linux.pdf
https://ftdichip.com/
https://ftdichip.com/

	Arm® Development Studio Getting Started Guide
	Contents
	1. Introduction to Arm Development Studio
	1.1 Arm Compiler for Embedded
	1.2 Arm Debugger
	1.3 Debug probes
	1.4 FVP models
	1.5 Arm Streamline

	2. Installing and configuring Arm Development Studio
	2.1 Hardware and host platform requirements
	2.2 Debug system requirements
	2.3 Install Arm Development Studio on Windows using the command line
	2.4 Install Arm Development Studio on Windows using the installation wizard
	2.5 Install Arm Development Studio on Linux
	2.6 Additional Linux libraries
	2.7 Uninstalling Arm Development Studio on Linux
	2.8 Licensing Arm Development Studio
	2.8.1 Add a license using Product Setup
	2.8.2 Add a license using the Arm License Manager
	2.8.3 Delete a FlexNet license

	2.9 Language settings
	2.10 Configure an RSE connection to work with an Arm Linux target
	2.11 Launching gdbserver with an application
	2.12 Register a compiler toolchain
	2.12.1 Registering a compiler toolchain using the Arm Development Studio IDE
	2.12.2 Register a compiler toolchain using the Arm DS command prompt
	2.12.3 Reconfigure existing projects to use a newly registered compiler toolchain
	2.12.4 Configure a compiler toolchain for the Arm DS command prompt on Windows
	2.12.5 Configure a compiler toolchain for the Arm DS command prompt on Linux

	2.13 Specify plug-in install location
	2.14 Development Studio perspective keyboard shortcuts

	3. Introduction to Arm Debugger
	3.1 Debugger concepts
	3.2 Overview: Arm CoreSight debug and trace components
	3.3 Overview: Debugging multi-core (SMP and AMP), big.LITTLE, and multi-cluster targets
	3.3.1 Debugging SMP systems
	3.3.2 Debugging AMP Systems
	3.3.3 Debugging big.LITTLE Systems

	3.4 Overview: Debugging Arm-based Linux applications

	4. Introduction to the IDE
	4.1 IDE Overview
	4.2 Personalize your development environment
	4.3 Add views to the Arm Development Studio IDE
	4.4 Change the default workspace in the Arm Development Studio IDE
	4.5 Switch perspectives in the Arm Development Studio IDE
	4.6 Launch the Arm Development Studio command prompt
	4.7 Headless tools in the Arm Development Studio command prompt

	5. Projects and examples in Arm Development Studio
	5.1 Project types
	5.2 Create a new C or C++ project
	5.3 Configuring the C/C++ build behavior
	5.4 Create a new Makefile project with existing code
	5.5 Creating an empty Makefile project
	5.6 Add a new source file to your project
	5.7 Add a source file to your project
	5.8 Using the Import wizard
	5.9 Using the Export wizard
	5.10 Import existing Eclipse projects
	5.11 Importing and exporting options
	5.12 Sharing Arm Development Studio projects
	5.13 Updating a project to a new toolchain
	5.14 Run the Arm Development Studio IDE from the command-line to clean, build, and import projects
	5.15 Setting up the compilation tools for a specific build configuration
	5.16 Examples provided with Arm Development Studio
	5.17 Import the example projects
	5.18 Working sets
	5.18.1 Create a working set
	5.18.2 Change the top-level element when displaying working sets
	5.18.3 Deselect a working set


	6. Writing code
	6.1 Editing source code
	6.2 About the C/C++ editor
	6.3 About the Arm assembler editor
	6.4 About the ELF content editor
	6.5 ELF content editor - Header tab
	6.6 ELF content editor - Sections tab
	6.7 ELF content editor - Segments tab
	6.8 ELF content editor - Symbol Table tab
	6.9 ELF content editor - Disassembly tab
	6.10 About the scatter file editor
	6.11 Creating a scatter file
	6.12 Importing a memory map from a BCD file

	7. Debugging code
	7.1 Using FVPs with Arm Development Studio
	7.2 Configuring a connection from the command-line to a built-in FVP
	7.3 Configuring a connection to an external FVP for bare-metal application debug
	7.4 Configuring a connection to a bare-metal hardware target
	7.5 Configuring a connection to a bare-metal hardware target using gdbserver
	7.6 Configuring a connection to a Linux application using gdbserver
	7.7 Configuring a connection to a Linux kernel
	7.8 Configuring trace for bare-metal or Linux kernel targets
	7.9 Configuring an Events view connection to a bare-metal target
	7.10 Exporting or importing an existing Arm Development Studio launch configuration
	7.11 Disconnecting from a target

	8. Tutorial: Hello World
	8.1 Open Arm Development Studio for the first time
	8.2 Create a project in C or C++
	8.3 Configure your project
	8.4 Build your project
	8.5 Configure your debug session
	8.6 Application debug with Arm Debugger
	8.7 Disconnect from the target
	8.8 Capture trace output from an FVP
	8.9 Other tutorials and workbooks

	9. Troubleshoot Arm Development Studio
	9.1 Arm Linux problems and solutions
	9.2 Enabling internal logging from the debugger
	9.3 FTDI probe: Incompatible driver error
	9.4 Target connection problems and solutions

	10. Migrating from DS-5 to Arm Development Studio
	10.1 Add an Existing License Server
	10.2 Default Workspace Location
	10.3 Combined C/C++ and Debug Perspectives
	10.4 Migrate an existing DS-5 project
	10.5 CMSIS Packs
	10.6 Create a new Hardware Connection
	10.7 Connect to new or custom hardware
	10.8 Create a new Linux application connection
	10.9 Create a new model connection
	10.10 Connect to new or custom models
	10.11 Imported μVision project limitations
	10.12 Other differences between DS-5 and Arm Development Studio

	A. Terminology
	B. Keyboard shortcuts
	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

