
Arm® Keil® Studio Visual Studio Code Extensions

User Guide

Non-Confidential
Copyright © 2023–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 18
108029_0000_18_en

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm® Keil® Studio Visual Studio Code Extensions User Guide

This document is Non-Confidential.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (108029_0000_18_en) was issued on 2024-11-06. There might be a later issue at
https://developer.arm.com/documentation/108029

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This book is written for all developers who are involved in the development of embedded, IoT, and
Machine Learning software for Cortex-M devices.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 97

https://developer.arm.com/documentation/108029
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Contents

Contents

1. Extension pack and extensions...7
1.1 Arm Keil Studio Pack... 7

2. Intended use cases for the extensions..9

3. Get started with an example project.. 10
3.1 Import a solution example... 11
3.2 Download a Keil μVision example..12
3.3 Finalize the setup of your development environment...13
3.3.1 Configure an HTTP proxy (optional)...13
3.3.2 clangd...14
3.4 Build the example project.. 14
3.5 Choose a context for your solution...15
3.6 Look at the Solution outline.. 15
3.7 Install CMSIS-Packs and select software components from packs...16
3.8 Connect your board...16
3.9 Run the solution on your board... 16
3.10 Start a debug session..17

4. Arm Environment Manager extension.. 18
4.1 Tools installation with Microsoft vcpkg...18
4.2 Confirm automatic activation.. 19
4.3 Check the tools installed with Microsoft vcpkg..19
4.4 Modify the manifest file manually..20
4.5 Use the Configure Arm Tools Environment visual editor..20
4.6 vcpkg activation options... 21
4.7 Use vcpkg from the command line..21
4.8 Specific installation use cases..22
4.8.1 Switch to a specific Arm Compiler for Embedded version... 22
4.8.2 Use Arm Compiler for Embedded FuSa.. 22
4.8.3 Use a pre-installed toolchain..23
4.8.4 Use the Keil Studio extensions on an air-gapped machine...24

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Contents

5. Arm CMSIS Solution extension.. 25
5.1 CMSIS solutions..25
5.2 Select a solution from the workspace...26
5.3 Set a context for your solution...26
5.4 Use the Solution outline...28
5.5 CMSIS-Packs..30
5.6 Install CMSIS-Packs..31
5.6.1 Explore the available CMSIS-Packs.. 31
5.7 Manage software components..32
5.7.1 Open the Software Components view..32
5.7.2 Modify the software components in your project.. 34
5.7.3 Undo changes.. 35
5.8 Use the Configuration Wizard...35
5.9 Create a solution.. 37
5.10 Configure a solution..40
5.11 Convert a Keil μVision project to a solution... 41
5.12 Configure a build task...42
5.13 Initialize your solution...42
5.14 Use the CMSIS csolution API... 43

6. Arm Device Manager extension... 44
6.1 Supported hardware.. 44
6.1.1 Supported development boards and MCUs... 44
6.1.2 Supported debug probes...44
6.2 Connect your hardware.. 45
6.3 Edit your hardware...45
6.4 Open a serial monitor... 46

7. Arm Debugger extension... 47
7.1 Run your project on your hardware with Arm Debugger...47
7.1.1 Configure a task.. 47
7.1.2 Override or extend the default run configuration options for Arm Debugger........................... 48
7.1.3 Arm Debugger run configuration options...49
7.1.4 Modify the run configuration options with the Run Configuration visual editor........................52
7.1.5 Run your project... 55
7.2 Debug your project with Arm Debugger..56
7.2.1 Add a configuration..56

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Contents

7.2.2 Override or extend the default debug configuration options for Arm Debugger...................... 57
7.2.3 Arm Debugger debug configuration options - CMSIS use cases...57
7.2.4 Modify the debug configuration options with the Debug Configuration visual editor..............61
7.2.5 Start an Arm Debugger session.. 66
7.2.6 Set breakpoints..68
7.2.7 Inspect registers.. 69
7.2.8 Inspect functions...70
7.2.9 Use the Debug Console..73
7.2.10 Scope resolution operator..76
7.2.11 Next steps.. 77
7.3 Work with scripts... 77
7.3.1 Prerequisites... 77
7.3.2 Use advanced scripts or the default Jython templates..78
7.4 Arm Debugger extension settings..79
7.4.1 Access the settings...79

8. Activate your license to use Arm tools.. 80
8.1 Troubleshoot expired or cache-expired licenses... 80

9. Use CMSIS-Toolbox from the command line.. 82
9.1 Add CMSIS-Toolbox to the system PATH..82
9.2 Support for packs...82
9.2.1 Add public packs...83
9.2.2 Add private local packs... 83
9.2.3 Add private remote packs...84
9.2.4 Remove packs.. 84

10. Known issues and troubleshooting... 86
10.1 Known issues.. 86
10.2 Troubleshooting.. 86
10.2.1 Build fails to find CMSIS-Toolbox and causes an ENOENT error... 86
10.2.2 Download and installation of vcpkg artifacts fails on Windows..87
10.2.3 Build fails to find toolchain.. 87
10.2.4 Connected development board or debug probe not found... 87
10.2.5 Out-of-date firmware.. 89

11. Submit feedback...90

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Contents

Proprietary notice.. 91

Product and document information..93
Product status... 93
Revision history...93
Conventions... 94

Useful resources...97

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Extension pack and extensions

1. Extension pack and extensions
The Arm® Keil® Studio Visual Studio Code extension pack, Arm Keil Studio Pack, provides a
comprehensive software development environment for embedded systems and IoT software
development on Arm-based microcontroller (MCU) devices. Use the Keil Studio extensions
contained in the pack to manage your CMSIS solutions (csolution projects), and to create, build,
test, and debug embedded applications on your chosen hardware.

The Keil Studio extensions are part of the Arm Keil Microcontroller Development Kit (MDK). MDK
is a collection of software tools for developing embedded applications based on Arm Cortex®‑M
and Ethos™-U processors. MDK gives you the flexibility to work with a command-line interface
(CLI) or an integrated development environment (IDE), or by deploying the tools into a continuous
integration workflow.

1.1 Arm Keil Studio Pack
The Arm® Keil® Studio Pack is a collection of Visual Studio Code extensions. The pack provides the
software development environment for embedded systems and IoT software development on Arm-
based microcontroller (MCU) devices.

The Keil Studio Pack contains the following extensions:

• Arm CMSIS Solution (Identifier: arm.cmsis-csolution): This extension provides support for
working with CMSIS solutions, also known as csolution projects.

• Arm Device Manager (Identifier: arm.device-manager): This extension allows you to manage
hardware connections for Arm Cortex®-M based microcontrollers, development boards, and
debug probes.

• Arm Debugger (Identifier: arm.arm-debugger): This extension provides access to the Arm
Debugger engine for Visual Studio Code by implementing the Microsoft Debug Adapter
Protocol (DAP). Arm Debugger supports connections to physical targets through external debug
probes like Arm’s ULINK™ family of debug probes, or through on-board low-cost debugging like
ST-Link or CMSIS-DAP based debug probes.

• Arm Environment Manager (Identifier: arm.environment-manager): This extension installs the
tools that you specify in a manifest file in your environment. For example, you can install Arm
Compiler for Embedded, CMSIS-Toolbox, CMake, and Ninja to work with CMSIS solutions.

• Arm Virtual Hardware (Identifier: arm.virtual-hardware): This extension allows you to manage
Arm Virtual Hardware and run embedded applications on virtual targets. An authentication
token is required to access the service. For more details, read the AVH solutions overview.

Arm Debugger is also an extension pack that contains the following extensions:

• Arm Environment Manager (Identifier: arm.environment-manager): The Environment Manager
is available in the Arm Debugger extension pack if you want to install the Arm Debugger and
other related extensions without using the Keil Studio Pack.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 97

https://arm-software.github.io/AVH/main/overview/html/index.html

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Extension pack and extensions

• Memory Inspector (Identifier: eclipse-cdt.memory-inspector): This extension allows you to
analyze and monitor the memory contents in an embedded system. The Memory Inspector
helps you to identify and debug memory-related issues during the development phase of your
project.

• Peripheral Inspector (Identifier: eclipse-cdt.peripheral-inspector): This extension
uses System View Description (SVD) files to display peripheral details. SVD files provide
a standardized way to describe the memory-mapped registers and peripherals of a
microcontroller or a System on Chip (SoC).

• This guide does not describe the Arm Virtual Hardware extension, which is in
development.

• This guide does not describe the Memory Inspector and the Peripheral
Inspector, which are third-party open-source extensions.

You can also install and use the extensions contained in the pack individually. However, we
recommend installing the Keil Studio Pack in Visual Studio Code Desktop to quickly set up your
environment and start working with an example. See the pack README file for more details.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 97

https://github.com/Arm-Software/vscode-keil-studio-pack/blob/main/README.md

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Intended use cases for the extensions

2. Intended use cases for the extensions
The intended use cases for the extensions are as follows:

• Embedded and IoT software development using CMSIS-Packs and solutions, also known
as csolution projects: The Common Microcontroller Software Interface Standard (CMSIS)
provides driver, peripheral, and middleware support for thousands of MCUs and hundreds
of development boards. Using the csolution project format, you can incorporate any CMSIS-
Pack based device, board, and software component into your application. For more information
about supported hardware for CMSIS projects, go to the Boards and Devices pages on
keil.arm.com. For information about CMSIS-Packs, go to open-cmsis-pack.org.

• Enhancement of a pre-existing Visual Studio Code embedded software development
workflow: You can adapt USB device management and embedded debugging to other project
formats and toolchains without additional overhead. This use case requires familiarity with
Visual Studio Code to configure tasks. See the individual extensions for more details.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 97

https://www.keil.arm.com/boards/
https://www.keil.arm.com/devices/
https://www.open-cmsis-pack.org/index.html

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

3. Get started with an example project
Set up your environment and start working with an example.

This section describes working with example solution or μVision projects that you
can get from keil.arm.com. If you open a µVision project, CMSIS Solution extension
converts it automatically to csolution format and installs any missing packs. CMSIS
Solution extension also initializes Git and configures a vcpkg instance for the
current workspace. Any projects that have the AC5 compatibility label only use
Arm Compiler 5, which does not support automatic conversion. As a workaround,
update Arm Compiler 5 projects to Arm Compiler 6 in Keil μVision, then convert the
projects to csolutions in Visual Studio Code. See Download a Keil μVision example
for more information.

You can also create solutions from scratch, or convert your existing μVision projects
to solutions. For more information, see Create a solution and Convert a Keil μVision
project to a solution.

We recommend installing the Keil Studio Pack in Visual Studio Code Desktop as explained in the
README file. The pack installs all the Keil® Studio extensions, as well as the Red Hat YAML and
clangd extensions.

If you do not want to use clangd, you can install the Microsoft C/C++ and Microsoft
C/C++ Themes extensions instead to enable IntelliSense.

Then:

• Run the setup process using an example solution project from keil.arm.com (recommended).

• Download a Keil μVision *.uvprojx project from keil.arm.com and convert it to a solution
(alternative).

The examples available on keil.arm.com include a Microsoft vcpkg manifest file (vcpkg-
configuration.json). The Environment Manager extension uses the manifest file to acquire and
activate the tools that you need to work with solutions using Microsoft vcpkg.

Each example also comes with a tasks.json file and a launch.json file to build, run, and debug the
project.

The tools installed by default are:

• Arm® Compiler for Embedded

• CMSIS-Toolbox

• CMake and Ninja

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 97

https://github.com/Arm-Software/vscode-keil-studio-pack/blob/main/README.md

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

Finalize the setup of your development environment:

• If you are working behind an HTTP proxy, see Configure an HTTP proxy.

• For more information on the clangd extension and how it adds smart features to your editor,
see clangd.

When you are ready:

• Build the example project.

• Explore what you can do with the CMSIS Solution extension:

◦ Choose a context for your solution.

◦ Look at the Solution outline.

◦ Install CMSIS-Packs and select software components from packs.

• Connect your board and run the example on the board.

• Start a debug session.

• Check the serial output.

3.1 Import a solution example
Import a solution example or download a zip file that contains the solution.

Procedure
1. Go to keil.arm.com.
2. Click the Hardware menu and select Boards.
3. Search for your board and select it in the Suggested Boards list.
4. Find a project in the Projects tab.

The Keil Studio compatibility label indicates that the example is compatible with the Keil
Studio Visual Studio Code extensions.

5. Move your cursor over Get Project, and then click Open in Keil Studio for VS Code to import
the solution example.
Alternatively, you can download a zip file that contains the solution with the Download .zip
option.

6. In the “Open Visual Studio Code?” dialog box that opens at the top of your browser window,
click Open Visual Studio Code.

7. In the “Allow ‘Arm Keil Studio Pack’ extension to open this URI?” dialog box that opens in Visual
Studio Code, click Open.

8. Choose a folder to import the project and click Select as Unzip Destination.
9. In the “Would you like to open the unzipped folder, or add it to the current workspace?” dialog

box, click Open.
10. Confirm that the Environment Manager extension can automatically activate the workspace and

download the tools specified in your vcpkg-configuration.json file.
Missing CMSIS-Packs are installed automatically.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 97

https://www.keil.arm.com

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

You must activate a license to use tools like Arm® Compiler, Arm Debugger, or Fixed Virtual
Platforms in your toolchain. If you have not activated your license after installing the pack, a
pop-up message displays in the bottom right-hand corner. See Activate your license to use Arm
tools for more details on licensing.

11. Click Explorer .
A vcpkg-configuration.json is available. The file records the vcpkg artifacts that you need to
work with your projects. Microsoft vcpkg and the Environment Manager extension take care of
the setup automatically. See Tools installation with Microsoft vcpkg.

A tasks.json file and a launch.json file are also available in the .vscode folder. Visual Studio
Code uses the tasks.json file to build and run the project, and the launch.json file for
debugging.

3.2 Download a Keil μVision example
When you download and open a Keil® μVision® *.uvprojx project, Visual Studio Code
automatically converts it to a solution and installs any missing packs. Note that conversion does not
work with Arm® Compiler 5 projects. You can download Arm Compiler 5 projects from the website,
but you cannot use them with the extensions. Only Arm Compiler 6 projects can be converted. As
a workaround, update Arm Compiler 5 projects to Arm Compiler 6 in Keil μVision, then convert
the projects to solutions in Visual Studio Code. For more information, see the Migrate Arm
Compiler 5 to Arm Compiler 6 application note and the Arm Compiler for Embedded Migration and
Compatibility Guide.

Procedure
1. Go to keil.arm.com.

2. Connect your board over USB and click Detect Connected Hardware in the bottom right-hand
corner.

3. Select the device firmware for your board in the dialog box that displays at the top of the
window, and then click Connect.

4. Click the Board link in the pop-up message that displays in the bottom right-hand corner.

The page for the board opens. Example projects are available in the Projects tab.

5. Move your cursor over the Get Project button for the project that you want to use and click
Download .zip to download the Keil μVision *.uvprojx example.

6. Unzip the example and open the folder in Visual Studio Code.

The conversion starts immediately, and any required packs that are missing are automatically
installed.

A dialog box displays. You can carry out the following tasks:

• Open the solution in a new workspace (Open option)

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 97

https://www.keil.com/appnotes/files/apnt_298.pdf
https://www.keil.com/appnotes/files/apnt_298.pdf
https://developer.arm.com/documentation/100068/0620/Migrating-from-Arm-Compiler-5-to-Arm-Compiler-for-Embedded-6?lang=en
https://developer.arm.com/documentation/100068/0620/Migrating-from-Arm-Compiler-5-to-Arm-Compiler-for-Embedded-6?lang=en
https://www.keil.arm.com

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

• Open the solution in a new window and new workspace (Open project in new window
option)

If there are conversion errors, check the uv2csolution.log file available.

7. Confirm that the Environment Manager extension can automatically activate the workspace and
download the tools specified in your vcpkg-configuration.json file.

You must activate a license to be able to use tools such as Arm® Compiler, Arm Debugger, or Fixed
Virtual Platforms in your toolchain. If you have not activated your license after installing the pack,
a pop-up message displays in the bottom right-hand corner. See Activate your license to use Arm
tools for more details on licensing.

The *.cproject.yml and *.csolution.yml files are available next to the *.uvprojx in the Explorer

.

A vcpkg-configuration.json file is available. The file records the vcpkg artifacts, such as the
compiler toolchain version, that you need to work with your projects. You do not need to do
anything to install the tools. Microsoft vcpkg and the Environment Manager extension take care of
the setup. See Tools installation with Microsoft vcpkg.

A tasks.json file and a launch.json file are also available in the .vscode folder. Visual Studio Code
uses the tasks.json file to build and run the project, and the launch.json file for debugging.

3.3 Finalize the setup of your development environment
To finalize the setup of your development environment:

• Configure an HTTP proxy. This step is required only if you are working behind an HTTP proxy.

• The pack installs all the Keil® Studio extensions, as well as the Red Hat YAML and clangd
extensions. See clangd for more information on this extension.

3.3.1 Configure an HTTP proxy (optional)

This step is required only if you are working behind an HTTP proxy. You can configure the tools to
use an HTTP proxy using the following standard environment variables:

• HTTP_PROXY: Set to the proxy used for HTTP requests

• HTTPS_PROXY: Set to the proxy used for HTTPS requests

• NO_PROXY: Set to include at least localhost,127.0.0.1 to disable the proxy for internal traffic,
which is required for the extension to work correctly

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

3.3.2 clangd

The clangd extension adds smart features to your editor, for example, code completion, compile
errors, and go-to-definition.

The clangd extension requires the clangd language server. If the server is not found
on your PATH, add it with the clangd: Download language server command from
the Command Palette. Read the clangd extension README file for more information.

After you install clangd, you do not need any extra setup. The CMSIS Solution extension generates
a compile_commands.json file for each project in a solution whenever a csolution file changes. It
also generates the file when you change the context of a solution, that is, the Target Type and
Build Type types. CMSIS Solution extension keeps a .clangd file up to date for each project in the
solution. The clangd extension uses the .clangd file to locate the compile_commands.json files, to
provide additional compile flags, and to enable IntelliSense. See the clangd documentation for more
details.

To improve IntelliSense with clangd, CMSIS Solution extension adds scoped
compiler flags to define certain macros to both your .clangd project configuration
file and your config.yaml global user configuration file. See the clangd
documentation for more details.

To turn off the automatic generation of the .clangd file and compile_commands.json file, and the
automatic addition of compiler flags for macro defines:

1. Open the settings:

• On Windows or Linux, go to File > Preferences > Settings.

• On macOS, go to Code > Settings > Settings.

2. Find the CMSIS Solution: Generate Clang Setup setting and clear its checkbox.

3.4 Build the example project
Check that your example project builds. You can build your project from the Explorer using Build
solution, from the Solution outline, or from the Command Palette.

Procedure
1. Build the project:

• From the Explorer:
a. Go to the Explorer view .

b. Right-click the *.csolution.yml file and select Build solution.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 97

https://clangd.llvm.org/installation#project-setup
https://clangd.llvm.org/config#files
https://clangd.llvm.org/config#files

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

These options are also available in the right-click menu:

◦ Clean all out and tmp directories: cleans the output and tmp directories for the
active solution

◦ Rebuild solution: cleans the output directories before building the cproject

• From the Solution outline:

a.
Click CMSIS in the Activity Bar.

The Solution outline opens. A Build solution icon is available in the Solution outline
header.

b. Click Build solution .

The Clean all out and tmp directories and Rebuild solution options are also available

with Views and More Actions .

You can configure a build task in a tasks.json file to customize the behavior of the
build button. All the examples on keil.arm.com include a tasks.json file. See Configure
a build task for more details.

• From the Command Palette: You can also trigger Build solution, Clean all out and tmp
directories, and Rebuild solution with the CMSIS: Build, CMSIS: Clean all out and tmp
directories, and CMSIS: Rebuild solution commands.

If the build fails with an ENOENT error, follow the instructions in the pop-up
message that displays in the bottom right-hand corner for installing CMSIS-
Toolbox. See Build fails to find CMSIS-Toolbox and causes an ENOENT error for
more information.

2. Check the Terminal tab to find where the ELF file (.axf) was generated.

3.5 Choose a context for your solution
A context is the combination of a target type, known as a build target, and a build type, known as a
build configuration. This context is specific to a particular project in your solution.

Read Set a context for your solution for more details.

3.6 Look at the Solution outline
The Solution outline presents the content of your solution in a tree view.

Read Use the Solution outline for more details.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

3.7 Install CMSIS-Packs and select software components
from packs

CMSIS-Packs contain reusable software components that you can use to quickly build projects.
CMSIS-Packs are listed in the csolution.yml files of solutions. The CMSIS Solution extension
seamlessly handles the installation of packs to your pack cache.

See CMSIS-Packs and Install CMSIS-Packs for more details.

The Software Components view shows all the software components selected in the active project
of your solution.

Read Manage software components for more details.

3.8 Connect your board
Connect your board. See Supported hardware for more details on the development boards, MCUs,
and debug probes supported.

Procedure
1. Click Device Manager in the Activity Bar to open the Device Manager extension.

2. Connect your board to your computer over USB.

The Device Manager detects the board and displays a pop-up message.

3. Click OK in the pop-up message to use the hardware.

You can now use your board to run and debug a project.

3.9 Run the solution on your board
Run the solution project on your board.

Procedure
1.

Click CMSIS in the Activity Bar.
The Solution outline opens. A Run icon is available in the Solution outline header.

2. Click Run .
3. If you are using a multicore device, select a processor from the drop-down list at the top of the

window.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Get started with an example project

You do not need to select a processor if you specified a "processorName" in the
launch.json file and you installed the CMSIS Solution extension.

The project runs on the board.
4. Check the Terminal tab.

3.10 Start a debug session
Start a debug session.

Procedure
1.

Click CMSIS in the Activity Bar.
The Solution outline opens. A Debug icon is available in the Solution outline header.

2. Click Debug .
3. If you are using a multicore device, select a processor from the drop-down list at the top of the

window.

You do not need to select a processor if you specified a "processorName" in the
launch.json file and you installed the CMSIS Solution extension.

The Run and Debug view displays and the debug session starts. The debugger stops at the
main() function of your project.

4. To see the debugging output, check the Debug Console tab.

Next steps
Look at the Visual Studio Code documentation to learn more about the debugging features
available in Visual Studio Code.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 97

https://code.visualstudio.com/docs/editor/debugging#_debug-actions

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

4. Arm Environment Manager extension
The Arm® Environment Manager extension allows you to manage environment artifacts, for
example a compiler toolchain, using Microsoft vcpkg. The extension uses a vcpkg manifest file to
acquire and activate the artifacts needed to set up your development environment.

Your project artifacts are stored in the vcpkg-configuration.json file in the project source code,
so the same tools are available to everyone using the project.

Information about vcpkg is available at vcpkg.io and at Microsoft Learn.

Alternatively, you can install the artifacts for your project by manually downloading
and installing the CMSIS-Toolbox and other required tools. For more information,
see the CMSIS-Toolbox installation instructions in the Open-CMSIS-Pack
documentation. See also Add CMSIS-Toolbox to the system PATH for information
on how to specify the path of your CMSIS-Toolbox. For other specific cases, see
Specific installation use cases.

The Environment Manager extension also includes features to help you license your tools. See
Activate your license to use Arm tools for more details.

A full list of commands and settings is available for the Arm Environment Manager extension. To

view the list, click Extensions in the Visual Studio Code Activity Bar. Click Arm Environment
Manager in the list of extensions, and then click Features (Windows) or Feature Contributions
(macOS).

4.1 Tools installation with Microsoft vcpkg
Microsoft vcpkg works in combination with the Environment Manager extension installed with the
pack for the setup of your environment.

Each official Arm example project includes a manifest file, vcpkg-configuration.json. This file
records the vcpkg artifacts required to work with your projects. An artifact is a set of packages
required for a working development environment. Examples of relevant packages include compilers,
linkers, debuggers, build systems, and platform SDKs.

For more information on vcpkg, see the official Microsoft vcpkg documentation. See also the
Microsoft vcpkg-tool repository for more details on artifacts.

If you are using Windows, you must enable long path support when using Keil
Studio and the Environment Manager extension. If long paths are not enabled, the
downloading and installation of vcpkg artifacts can fail.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 97

https://vcpkg.io/en/index.html
https://learn.microsoft.com/en-gb/vcpkg/
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md#manual-setup
https://github.com/microsoft/vcpkg/blob/master/README.md
https://github.com/microsoft/vcpkg-tool#vcpkg-artifacts

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

Environment Manager detects whether long paths are enabled in the Windows
registry, and displays an alert if they are not. To enable long paths in your Windows
settings, follow the instructions here: Enable Long Paths in Windows 10, Version
1607, and Later.

4.2 Confirm automatic activation
The Environment Manager extension automatically activates the workspace and downloads the
tools specified in your vcpkg-configuration.json file when you perform the following actions:

• Open a new workspace

• Duplicate an existing workspace

• Open an example project from keil.arm.com

A dialog box opens, allowing you to confirm the activation. Open the vcpkg-configuration.json
file to see what will be installed. You can also change the automatic activation at any time from the
settings.

4.3 Check the tools installed with Microsoft vcpkg
The vcpkg-configuration.json manifest file instructs Microsoft vcpkg to install tool artifacts like
compilers, models, and tools.

Move your mouse over Arm Tools in the status bar to see what tools are installed.

Figure 4-1: Arm Tools

You can also click Arm Tools in the status bar and select the View Log option. This option opens
the Output tab for the Arm Tools category.

By default, Microsoft vcpkg installs the tools in your user folder.

• On Windows: c:\Users\<user>\.vcpkg\artifacts

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 97

https://learn.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=registry#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=registry#enable-long-paths-in-windows-10-version-1607-and-later
https://www.keil.arm.com/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

• On Linux: /home/<user>/.vcpkg/artifacts

• On macOS: /Users/<user>/.vcpkg/artifacts

After Microsoft vcpkg has been activated for a project, any Terminal that you open in Visual Studio
Code has all the tools added to the PATH by default. This process allows you to run the different
CMSIS-Toolbox tools such as cpackget, cbuildgen, cbuild, or csolution.

4.4 Modify the manifest file manually
To add or change tools in your environment, modify the artifacts contained in the manifest file of
your project.

The artifacts provided by Arm are listed on the Arm tools available in vcpkg page on keil.arm.com.

Copy the code snippets for the artifacts that you want to install, then paste them in the
"requires": section of your vcpkg-configuration.json file. Save the file to download and activate
the newly added or updated artifacts automatically.

See also Use the Configure Arm Tools Environment visual editor as an alternative to editing the
manifest file manually.

4.5 Use the Configure Arm Tools Environment visual editor
As an alternative to editing the vcpkg-configuration.json manifest file directly, you can use the
Configure Arm Tools Environment visual editor to add or change tools in your environment.

Procedure
1. Right-click anywhere in the Explorer view.

2. From the menu that opens, select Configure Arm Tools Environment.

The Configure Arm Tools Environment editor opens.

Alternatively, click Arm Tools in the status bar and select Configure Arm Tools Environment
from the drop-down list at the top of the window.

3. Use the drop-down lists to install or update the tools that you want to use in your environment.

For example, select version 6.22.0 in the Arm Compiler for Embedded drop-down list. Only
the versions available on the Artifactory repository manager are exposed in the user interface.

4. If Auto Save is not enabled, save your changes. You can enable or disable Auto Save from the
File menu.

The newly added or updated tools are automatically downloaded and activated. You can view
details of what has been installed in the Output tab. To open the Output tab, select Output
from the View menu.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 97

https://github.com/Open-CMSIS-Pack/cmsis-toolbox
https://www.keil.arm.com/artifacts/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

4.6 vcpkg activation options
Several options are available to manage your environment with Microsoft vcpkg. If you are using an
example from keil.arm.com, or if you created a solution from scratch using Create Solution, your
environment is activated by default.

Procedure
1. From the Explorer, open your workspace.
2. Right-click the vcpkg-configuration.json file.
3. Depending on the activation status of your environment and the Environment Manager

settings selected, the following options are available:

• Configure Arm Tools Environment: Open the visual editor. Use this option to open the
visual editor and select the tools you want to install. See Use the Configure Arm Tools
Environment visual editor.

• Activate Environment: Activate the environment. This option is available only if you
previously deactivated your environment or if you modified the Activate On Config
Creation or Activate On Workspace Open settings for the Environment Manager. Tools
are available on the PATH.

• Deactivate Environment: Deactivate the active environment and remove tools from the
PATH.

• Reactivate Environment: Deactivate and activate the environment, for example if you have
changed your vcpkg configuration.

• Update Tool Registry: Check for fresh artifacts published in the registries.

The same options are available when you click Arm Tools in the status bar.

The View Log option in the drop-down list opens the Output tab to allow you to check what
tools have been installed. See Check the tools installed with Microsoft vcpkg.

If your project does not contain a vcpkg-configuration.json file, or if you have
deactivated the active environment, click Arm Tools in the status bar. Next,
select Add Arm tools Configuration To Workspace to open the visual editor and
select the tools.

4.7 Use vcpkg from the command line
You can use vcpkg from the command line to create reproducible tool installations.

The Arm Developer Learning Paths provide a guide on installing and initializing vcpkg and using a
configuration file. See Install tools on the command line using vcpkg.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 97

https://learn.arm.com/learning-paths/microcontrollers/vcpkg-tool-installation/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

4.8 Specific installation use cases
This section describes the following use cases:

• Installing a specific version of Arm® Compiler for Embedded

• Using Arm Compiler for Embedded FuSa

• Using a pre-installed toolchain instead of vcpkg

• Working on a machine with no internet access

4.8.1 Switch to a specific Arm Compiler for Embedded version

To switch to a specific Arm® Compiler for Embedded version, use the Configure Arm Tools
Environment visual editor.

Only the versions available on the Artifactory repository manager are exposed in the user interface.

Versions of Arm Compiler for Embedded older than 6.18.0 do not support user-
based licensing (UBL). As a consequence, these versions do not work with MDK v6.
For more details on user-based licensing support and backwards compatibility, see
the User-based licensing User Guide.

To switch to a specific Arm Compiler for Embedded version:

1. Select the version of Arm Compiler for Embedded that you need from the Configure Arm Tools
Environment visual editor.

For example, select version 6.22.0 in the Arm Compiler for Embedded drop-down list.

2. Restart Visual Studio Code.

3. Right-click the *.csolution.yml file and select Rebuild solution to rebuild the project.

4.8.2 Use Arm Compiler for Embedded FuSa

If you have functional safety (FuSa) requirements for your projects, you can use Arm® Compiler for
Embedded FuSa.

Arm Compiler for Embedded FuSa is available only on the Product Download Hub (PDH). You need
an MDK-Professional license to use it.

Versions of Arm Compiler for Embedded FuSa older than 6.16.2 do not support
user-based licensing (UBL). As a consequence, these versions do not work
with MDK v6. For more details on user-based licensing support and backwards
compatibility, see the User-based licensing User Guide.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 97

https://developer.arm.com/documentation/102516/latest/User-based-licensing-overview/Backwards-compatibility?lang=en
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/documentation/102516/latest/User-based-licensing-overview/Backwards-compatibility?lang=en

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

To install Arm Compiler for Embedded FuSa version 6.16.2:

1. Download the 6.16.2 version from the Product Download Hub (PDH) and manually install Arm
Compiler for Embedded FuSa on your machine.

You need an Arm account to access the PDH. To download Arm Compiler
for Embedded FuSa, your account must be connected with a valid MDK-
Professional license.

2. Specify the version that you installed in either the *.csolution.yml file or the *.cproject.yml
file of your project.

Add compiler: AC6@6.16.2 in the *.csolution.yml file as explained in the Open-CMSIS-Pack
documentation.

3. Add the Arm Compiler for Embedded FuSa toolchain in the global environment variables for the
operating system that you are using.

Set the AC6_TOOLCHAIN_6_16_2 environment variable to point to the toolchain binaries. See the
Open-CMSIS-Pack documentation.

4. Restart Visual Studio Code.

5. Build the project. See Build the example project.

4.8.3 Use a pre-installed toolchain

To use a toolchain that was already installed before installing the Keil Studio Pack, you must
deactivate vcpkg to avoid conflicts with your personal setup. If your project does not include a
vcpkg-configuration.json file, then you do not need to do anything.

Procedure
1. Deactivate vcpkg:

a. Open the settings:

• On Windows or Linux, go to File > Preferences > Settings.

• On macOS, go to Code > Settings > Settings.

b. Find the Activate on Workspace Open setting and clear its checkbox.
2. Make sure that the toolchain is installed correctly.
3. Make sure that you have added the toolchain to the global environment variables for your

operating system.
For example, for Arm Compiler for Embedded version 6.18.0, set the AC6_TOOLCHAIN_6_18_0
environment variable to point to the toolchain binaries. See the Open-CMSIS-Pack
documentation.

4. Restart Visual Studio Code.
5. Use cbuild list toolchains -v to check the variable path.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 97

https://developer.arm.com/downloads/view/ACOMP616?
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/YML-Input-Format.md#compiler
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/YML-Input-Format.md#compiler
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md#environment-variables
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md#environment-variables
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md#environment-variables

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Environment Manager extension

4.8.4 Use the Keil Studio extensions on an air-gapped machine

Use the following procedure to transfer all the required tools to an air-gapped machine:

1. Use the Activate Environment option or run the vcpkg-shell activate command from the
Terminal on a connected machine.

2. Transfer the vcpkg root directory to the air-gapped machine.

You can then use the air-gapped machine without an internet connection.

See vcpkg activation options for more details.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5. Arm CMSIS Solution extension
The Arm CMSIS Solution extension provides support for working with CMSIS solutions, otherwise
known as csolution projects. The extension manages the information needed to create your
solutions.

With the CMSIS Solution extension, you can carry out the following tasks:

• Select a solution from the workspace

• Set a context for your solution

• Use the Solution outline

• Install CMSIS-Packs

• Manage software components

• Use the Configuration Wizard to customize startup code and other configuration files

You can also:

• Create a solution from scratch

• Configure a solution

• Convert a Keil μVision project to a solution

• Configure a build task

• Initialize your solution

• Use the CMSIS csolution API

For information on working with existing example projects from keil.arm.com instead of creating
new projects from scratch, see Get started with an example project.

A full list of commands and settings is available for the Arm CMSIS Solution extension. To view the
list, click Extensions in the Visual Studio Code Activity Bar. Click Arm CMSIS Solution in the list
of extensions, and then click Features (Windows) or Feature Contributions (macOS).

5.1 CMSIS solutions
A solution is a container used to organize related projects that are part of a larger application and
that you can build separately. See Project Setup for Related Projects for a solution example.

Solutions are defined in YAML format using *.csolution.yml files. The *.csolution.yml
file defines the complete scope of an application and the build order of the projects that
the application contains. Individual projects are defined using *.cproject.yml files. The
*.cproject.yml file defines the content of an independent build. Each project corresponds to one
binary file (build artifact).

You can edit the *.csolution.yml and *.cproject.yml files of a solution manually.
Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 25 of 97

https://github.com/Open-CMSIS-Pack/devtools/blob/48fb5c6ad8eff254d83f00872ddd7c2ee9baad36/tools/projmgr/docs/Manual/Overview.md#project-setup-for-related-projects

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

The Keil Studio Pack includes the Red Hat YAML extension, and the CMSIS Solution extension uses
YAML schemas to make the editing of these files easier. See the vscode-yaml repository for more
information on the extension.

See the Build Overview of the CMSIS-Toolbox documentation and the Project Examples to
understand how solutions and projects are structured. For more information on csolution project
files, see CMSIS Solution Project File Format.

5.2 Select a solution from the workspace
If you have several solutions in your workspace, the Select solution from workspace option
enables you to set the active solution and switch between solutions.

You can set the active solution either from the Explorer view or from the Solution outline view.

• To set the active solution from the Explorer view, right-click the folder containing your
csolution project files, or the csolution.yml file itself, and select Select solution from
workspace.

• To open a project from the Solution outline view:

◦
Click CMSIS in the Activity Bar to open the CMSIS view. The Solution outline displays
on the left.

◦ In the header next to the solution name, click Views and More Actions , and then select
Select solution from workspace.

◦ Choose a solution from the list that opens at the top of the window. The CMSIS view loads
and activates your chosen solution.

5.3 Set a context for your solution
Look at your solution contexts. A context set is the combination of a target type and build type for
a particular project in your solution.

Procedure
1.

Click CMSIS in the Activity Bar to open the CMSIS view.
2. Choose one of the following options:

•
Click in the Solution outline header

• Select CMSIS: Manage Solution Settings from the Command Palette

• Click in the status bar.

The Manage Solution view opens.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 97

https://github.com/redhat-developer/vscode-yaml#features
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/build-overview.md
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/build-overview.md#project-examples
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/YML-Input-Format.md

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

3. Look at the available contexts for the solution. You can change the target type, the projects
included in the build, and the build type.
You can also change the run and debug configurations, or add new configurations.

• Active Target: Select a Target Type to specify the hardware to use to build the solution.
Some examples are also compatible with Arm® Virtual Hardware (AVH) targets, in which
case more options are available. For more details, read the AVH solutions overview.

Click Edit targets in csolution.yml to specify your target types by editing the YAML file
directly.

• Active Projects:

◦ Project Name: The project or projects included in the build. If you have multiple
projects in your solution, you can select the projects to include here.

◦ Build Type: The build configuration. A build configuration allows you to configure each
target type towards specific testing. You can set different build types for different
projects in your solution. You can create your own build types as required by your
application. Two commonly used examples are Debug for a full debug build of the
software for interactive debugging, or Release for the final code deployment.

Click Edit cproject.yml next to a project to open the <project-name>.cproject.yml file.
YAML syntax support helps you with editing.

The projects and build types you can select are defined by contexts for
a particular target. Some options might be unavailable if they have been
excluded for the target selected. To learn more about contexts and how
to modify them, see the Context and Conditional build information in the
CMSIS-Toolbox documentation. For example, you can use for-context and
not-for-context to include or exclude target types at the project: level in
the *.csolution.yml file.

• Run and Debug:

Run Configuration and Debug Configuration: Choose a run configuration and a debug
configuration to use for your solution. You can also select different run and debug
configurations for each project included in the solution.

You can also:

◦ Move your mouse over an entry in the list and click the pen icon to edit an existing
configuration with the visual editor.

◦ Click + Add new to add a new configuration, then:

▪ For a run configuration, select the arm-debugger.flash: Flash Device task in
the drop-down list that displays at the top of the window if you are using the Arm
Debugger extension.

▪ For a debug configuration, select an option in the drop-down list in the launch.json
file if you are using the Arm Debugger extension:

▪ Arm Debugger: Attach

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 97

https://arm-software.github.io/AVH/main/overview/html/index.html
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/YML-Input-Format.md#context
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/YML-Input-Format.md#conditional-build

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

▪ Arm Debugger: Launch

▪ Arm Debugger: Launch FVP

See Modify the run configuration options with the Run Configuration visual editor and
Modify the debug configuration options with the Debug Configuration visual editor for
more details.

4. Go to the Problems tab at the bottom of the window and check for errors. If the Problems tab
is not visible, go to the View menu and click Problems, or press Ctrl+Shift+M (Windows) or
Cmd+Shift+M (macOS).

5. Open the main.c file and check the IntelliSense features available. To find out about the
different features, read the Visual Studio Code documentation on IntelliSense.

5.4 Use the Solution outline
The Solution outline presents the content of your solution in a tree view.

Click CMSIS in the Activity Bar to open the CMSIS view. The Solution outline displays on the
left.

The Solution outline shows the projects (cprojects) included in the solution that are selected in
the Manage Solution view. Each cproject file contains configuration settings, source code files,
build settings, and other project-specific information. The extension uses these settings and files to
manage and build a software project for a board or device.

You can have the following details for a project:

• User files: User files are the files that you add to the project and that you can edit. For example,
a README or code files. You can organize user files using groups, and add files, sub-groups, or

component code templates to groups. Move your cursor over a group and click , then select
one of these options:

◦ Add New File: Create a file and add it to the group

◦ Add Existing File: Select an existing file and add it to the group

◦ Add New Group: Add a sub-group to the group selected

◦ Add From Component Code Template: Select a component code template in the drop-
down list and add to the group. A code template is a predefined file included with the
software components for your project to help you start developing your project.

The files you add are listed in the *.cproject.yml file of the solution under the groups
key. You can also manually add files under the groups key. They display as groups without
names in the Solution outline. For example:

 groups:
 - files:
 - file: README.md

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 97

https://code.visualstudio.com/docs/editor/intellisense

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

• constructed-files: Contains files such as the RTE_Components.h, Pre_Include_Global.h,
and Pre_Include_Local_Component_h header files that are generated for each context. See
RTE_Components.h, Pre_Include_Global_h, and Pre_Include_Local_Component_h for more
details.

• linker: Contains a linker script file and a <regions>.h file (or other user-defined header files). See
Linker Script Management for more details.

• Components: All the software components selected for the project. Components are sorted by
component class (Cclass). Code files, user code templates, and APIs from selected components
display under their parent components. Click the files, templates, or APIs to open them in the
editor.

• Layer Type:<type> or Layer:<base-filename>: The clayer file, *.clayer.yml, defines the
software layers for the project. A software layer is a set of source files, preconfigured software
components, and configuration files. Multiple projects can use the clayer file. The software
components used by each layer in the project appear in the tree view.

If you are using a generator to configure your device or board, then a Run Generator option is
available from the generator component entry under Layer > Components to start a generator
session. For more details, see Generator Support.

The Solution outline label displays the name of your active solution. You can choose one of the
following actions next to the solution name:

• Build solution: Click to build the projects included in the context set that you defined in the
Manage Solution view.

• Run: Click to run the solution on your hardware.

• Debug: Click to debug the solution.

• Open csolution.yml file: Open the main csolution.yml file. When you move your cursor over a
project or a layer, an Open file option is also available.

• Manage Solution Settings: Click to set a context for your solution.

• Collapse All: Click to collapse all the entries in the outline.

• Views and More Actions :

◦ Clean all out and tmp directories: Clean the output and tmp directories for the active
solution

◦ Rebuild solution: Clean the output directories before building the projects

◦ Refresh: Refresh the Explorer view

◦ Convert uVision project: Convert an existing μVision project to a solution

◦ Create new solution: Create a solution from scratch

◦ Select solution from workspace: Select the active solution. If you have several solutions
in your workspace, this option allows you to switch switch between solutions. The
same option is available from the Explorer when you right-click the folder that contains

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 97

https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/pdsc_components_pg.html#RTE_Components_h
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/pdsc_components_pg.html#Pre_Include_Global_h
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/pdsc_components_pg.html#Pre_Include_Local_Component_h
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/build-overview.md#linker-script-management
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/build-overview.md#generator-support

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

your csolution project files. You can also access this option when you right-click the
csolution.yml file itself. The active solution is shown as highlighted.

The Solution outline displays the selected build type and target type next to each project. You can

check which software components are selected for each project. Click to open the Software
Components view. See Manage software components for more details.

Press Ctrl+F (Windows) or Cmd+F (macOS) to look for an element in the Solution outline.

The Open-CMSIS-Pack documentation gives more information on the *.csolution.yml,
*.cproject.yml, and *.clayer.yml file formats.

5.5 CMSIS-Packs
CMSIS-Packs are a quick and easy way to create, build, and debug embedded software applications
for Cortex®-M devices.

CMSIS-Packs are a delivery mechanism for software components, device parameters, and board
support. A CMSIS-Pack is a file collection that might include:

• Source code, header files, and software libraries. Examples include RTOS (Real-Time Operating
System), DSP (Digital Signal Processing), and generic middleware.

• Device parameters, for example the memory layout or debug settings, along with startup code
and Flash programming algorithms

• Board support, for example drivers, board parameters, and descriptions for debug connections

• Documentation and source code templates

• Example projects that show you how to assemble components into complete working systems

Various silicon and software vendors develop CMSIS-Packs, covering thousands of different
boards and devices. You can also use them to enable life-cycle management of in-house software
components.

See the Open-CMSIS-Pack documentation for more details.

Discover new CMSIS-Packs on keil.arm.com/packs. Snippets that you can copy to add a pack to
your csolution.yml file and to install packs with cpackget add are available for each pack.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 97

https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/YML-Input-Format.md#project-file-structure
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/cp_Packs.html
https://www.keil.arm.com/packs/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5.6 Install CMSIS-Packs
If you use an example from keil.arm.com, the CMSIS-Packs that you need are already listed in the
csolution.yml file under the packs key. The CMSIS Solution extension scans your pack cache and
installs any missing packs.

If you need to add CMSIS-Packs, or if you are creating a solution from scratch, see Explore the
available CMSIS-Packs for more details.

See also Support for packs to understand the difference between public and private packs and how
you can manage packs from the command line.

5.6.1 Explore the available CMSIS-Packs

Explore the available CMSIS-Packs on keil.arm.com and install them.

Procedure
1. Go to the CMSIS-Packs page on keil.arm.com.
2. Search for a pack and select it in the Results list. For example, type wolfSSL.
3. Copy the packs snippet and update the packs key of your csolution.yml file in Visual Studio

Code.

Figure 5-1: wolfSSL example

4. Save the csolution.yml file.
Missing CMSIS-Packs are installed automatically.

If you have deactivated the automatic download of packs with the Download
Packs setting, then errors display in the Output tab for the CMSIS Build
Manager category. Use the cpackget pack add command to add packs
manually.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 97

https://www.keil.arm.com/packs/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5.7 Manage software components
The Software Components view shows all the software components selected in the active project
of a solution.

From this view you can see all the component details, called attributes in the Open-CMSIS-Pack
documentation.

You can also carry out the following tasks:

• Modify the software components to include in the project

• Manage the dependencies between components for each target type defined in your solution,
or for all the target types at once

• Build the solution using different combinations of pack and component versions, and different
versions of a toolchain

5.7.1 Open the Software Components view

This section describes how to open the Software Components view.

Procedure
1.

Click CMSIS in the Activity Bar to open the CMSIS view.
2. Move your cursor over the Solution outline. Click Manage software components at the

project level.

Results
The Software Components view opens.

The default view displays the components available from the packs listed in your solution
(Software packs: <Solution-name> drop-down list and All toggle button).

If the view does not display any components, click Install Missing Packs to resolve the issue.

You can use the Search field to search the list of components.

With the Project drop-down list, select the project for which you want to modify software
components.

With the Target drop-down list, select All Targets or a specific target type to modify software
components for all the target types in your solution at once, or for a specific target only.

With the Software packs drop-down list, you can filter on the components available from the packs
listed in your solution, or display the components from all installed packs.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 97

https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/cp_PackTutorial.html
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/cp_PackTutorial.html

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

Figure 5-2: The ‘Software Components’ view showing all the components available from the
packs listed in a solution

The CMSIS-Pack specification states that each software component must have the following
attributes:

• Component class (Cclass): A top-level component name, for example, CMSIS

• Component group (Cgroup): A component group name, for example, CORE for the CMSIS
component class

• Component version (Cversion): The version number of the software component

Optionally, a software component might have these additional attributes:

• Component subgroup (Csub): A component subgroup that is used when multiple compatible
implementations of a component are available, for example, Keil RTX5 under CMSIS > RTOS2

• Component variant (Cvariant): A variant of the software component that is typically used when
the same implementation has multiple top-level configurations, like Library for Keil RTX5

• Component vendor (Cvendor): The supplier of the software component, for example, ARM

• Bundle (Cbundle): Allows you to combine multiple software components into a software
bundle. Bundles have a different set of components available. All the components in a bundle
are compatible with each other but not with the components of another bundle. For example,
ARM Compiler for the Compiler component class.

Layer icons indicate which components are used in layers. In the current version, layers are
read-only, so you cannot select or clear them from the Software Components view. Click the layer
icon of a component to open the *.clayer.yml file or associated files.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

Documentation links are available for some components at the class, group, or subgroup level. Click
the Learn more link of a component to open the related documentation.

5.7.2 Modify the software components in your project

You can add components from all the packs available, not just the packs that are already selected
for a project.

Procedure
1. In the Project drop-down list, select the project for which you want to modify software

components.
2. In the Target drop-down list, select a specific target type. If you want to modify all the target

types at once, select All Targets. Note that some examples have only one target.
3. In the Software packs drop-down list, you can filter on the components available from the

packs listed in your solution with the Solution: <Solution-name> option. You can display the
components from all installed packs with the All installed packs option.

4. Check that the All toggle button is selected to display all the components available. Switch to
Selected to display only the components that are already selected.

5. Use the checkboxes to select or clear components as required. For some components, you can
also select a vendor, variant, or version.
The cproject.yml file is automatically updated.

6. Manage the dependencies between components and solve validation issues from the
Validation panel.

Issues are highlighted in red and have an exclamation mark icon next to them. You can
remove conflicting components from your selection or add missing component dependencies
from a suggested list.

7. If there are validation issues, move your cursor over the issues in the Validation panel to get
more details. Click the proposed fixes to find the components in the list. In some cases, you
might have to choose between different fix sets. Select a fix set in the drop-down list, make the
required component choices, and then click Apply.
If a pack is missing in the solution, a “Component’s pack is not included in your solution”
message displays in the Validation panel. An error also displays in the Problems view. See
Install CMSIS-Packs for information on how to install CMSIS-Packs.

There can also be issues such as:

• A component that you selected is incompatible with the selected hardware and toolchain.

• A component that you selected has dependencies which are incompatible with the selected
hardware and toolchain.

• A component that you selected has unresolvable dependencies. In such cases, you must
remove the component. Click Apply from the Validation panel.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5.7.3 Undo changes

In the current version, you can undo changes from the Source Control view or by directly editing
the cproject.yml file.

5.8 Use the Configuration Wizard
The Configuration Wizard simplifies the customization of startup code and configuration files by
providing an intuitive dialog-style interface. The wizard allows you to quickly modify configuration
settings without the need for extensive manual editing.

The Configuration Wizard interface is generated from annotations that are included in the
configuration files themselves.

These annotations, which are like embedded markup tags, can be already available in the
configuration files of software components used in your project, or you can add them yourself. For
the set of rules for creating these annotations, see Configuration Wizard Annotations in the Open-
CMSIS-Pack documentation.

To open the Configuration Wizard, open a configuration file containing annotations, then click

Open Preview .

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 97

https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/configWizard.html

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

Figure 5-3: Configuration Wizard

Changes you make in the Configuration Wizard are immediately reflected in the source file. You can
also edit the source file directly.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5.9 Create a solution
Create a solution project from scratch.

Procedure
1. To create a solution, either:

•
Click CMSIS in the Activity Bar to open the CMSIS view. Then:

◦ If you are starting from an empty workspace, click Create a New Solution.

◦ If you already have a solution opened in your workspace and want to create a new one
in the same workspace, move your cursor over the Solution outline. Next, click Views
and More Actions > Create new solution.

• Go to the File menu and select New File…, then select Create new solution in the drop-
down list that opens at the top of the window.

The Create Solution view opens.
2. Click the Target Board drop-down list. Enter a search term, and then select a board.

A picker shows you the details of the board that you selected.

.
3. Click Select.

By default, the Target Device drop-down list and Target Type field show the name of the
device mounted on the board that you selected.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

Alternatively, you can directly select a device in the Target Device drop-down list, without
selecting a board first.

4. In the Target Type field, you can customize the name of the target hardware that is used to
deploy the solution. The Target Type displays in the Manage Solution view. The target-types:
- type: section of the <solution_name>.csolution.yml file is updated automatically when you
set a target type in the user interface.

5. Select one of the following options from the Templates, Reference Applications, and Examples
drop-down list. Note that the option or options available depend on the board or device that
you selected. If there are many examples available, enter a search term, and then select an
example.

• Templates: Templates are projects that you can use to get started. Templates do not include
application-specific code.

◦ Create a blank solution

◦ Create a TrustZone solution. TrustZone is a hardware-based security feature that
provides a secure execution environment on Arm-based processors. It allows the
isolation of secure and non-secure zones, enabling the secure processing of sensitive
data and applications. If the board or device that you selected is compatible, you can
decide whether to use TrustZone, and define whether projects in the solution use
secure or non-secure zones.

• Reference examples: Use a reference application. Examples are only available if you
selected a board in the Target Board drop-down list. Reference applications are not
dependent on specific hardware. You can deploy them to various evaluation boards using
additional software layers that provide driver APIs for specific target hardware. Layers are
provided using Board Support Packs (BSPs).

Reference applications are available with the MDK-Middleware software pack. These
examples show you how to use software components for IPv4 and IPv6 networking, USB
Host and Device communication, and file system for data storage. The examples use board
layers. See MDK Middleware Reference Applications and the MDK-Middleware repository
and documentation for more details.

Other reference applications that illustrate how to match sensor shields and boards are also
available with the Sensor SDK pack. The examples use board and shield layers. See Sensor
Reference Applications and the Sensor-SDK-Example repository for more details.

• CMSIS solution examples: Use a CMSIS solution example. CMSIS solution examples are
created for a specific hardware or evaluation board. The examples are complete projects
that directly interface with board and device peripherals.

• µVision examples: Use a µVision example in *.uvprojx format as a starting point. µVision
examples are converted automatically.

6. For blank and TrustZone solutions only:

a. Configure the projects in your solution:

• If you selected Blank solution: CMSIS Solution extension adds one project for each
processor in the target hardware. You can change the project names. You can decide
to add secure or non-secure zones with the TrustZone drop-down list if the board or
device is compatible. By default, TrustZone is off.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 97

https://www.keil.arm.com/packs/mdk-middleware-keil/versions/
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/ReferenceApplications.md#mdk-middleware-reference-applications
https://github.com/arm-software/MDK-Middleware
https://arm-software.github.io/MDK-Middleware/latest/General/index.html
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/ReferenceApplications.md#sensor-reference-applications
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/ReferenceApplications.md#sensor-reference-applications
https://github.com/open-cmsis-pack/Sensor-SDK-Example

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

• If you selected TrustZone solution: CMSIS Solution extension adds a secure project
and a non-secure project for each processor in the target hardware that supports
TrustZone. You can change the project names. You can also change the secure or non-
secure zones in the TrustZone drop-down list, or remove TrustZone by selecting off.

b. Click Add Project to add projects to your solution and configure them. For TrustZone, you
can add as many secure or non-secure projects as you need for a particular processor.

c. Select a compiler: Arm Compiler 6, GCC, or LLVM.
7. You can change the name for your solution in the Solution Name field.
8. Click Browse next to the Solution Location field and choose where to store the files of the

solution using the system dialog box.
9. With the Initialize Git repository checkbox, you can initialize the solution as a Git repository.

Clear the checkbox if you do not want to turn your solution into a Git repository.
10. Click Create.

The extension creates the solution and automatically converts examples that are available only
in *.uvprojx format. If there are conversion errors, check the uv2csolution.log file.

A dialog box displays. You can carry out the following tasks:

• Open the solution in a new workspace with the Open option

• Open the solution in a new window and new workspace with the Open project in new
window option

• Add the solution to the current workspace with the Add project to vscode workspace
option

11. Select one of the options.
The extension also generates a vcpkg-configuration.json file with the tools that you need to
set up your development environment.

An Arm Environment Activation dialog box displays.
12. Confirm that the Environment Manager extension can automatically activate the workspace and

download the tools specified in your vcpkg-configuration.json file.
Missing CMSIS-Packs are installed automatically.

13. Check that the files for the solution have been created:

• A vcpkg-configuration.json file

• A <solution_name>.csolution.yml file

• One or more <project_name>.cproject.yml files, each available in a separate folder. For
reference applications only, each cproject.yml file contains a $Board-Layer$ variable. For
reference applications with sensor shields, each cproject.yml file contains a $Shield-Layer
$ variable too (layers: - layer:). These variables are not yet defined.

• A main <filename>.c template file for each project

Next steps
Explore the autocomplete feature available to edit the csolution.yml and cproject.yml files. Read
the CMSIS-Toolbox > Build Overview documentation for project examples.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 97

https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/build-overview.md#project-examples

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

See Configure a solution to add board and shield layers to your reference application. You can also
select a compiler for reference applications and other solution types.

Add CMSIS components with the Software Components view. When you add components, the
cproject.yml files are updated.

5.10 Configure a solution
If you have not already set a compiler, select a compiler for your solution from the Configure
Solution view. If you created a reference application from a reference example, you can also add
layers to your solution from the same view.

Procedure
1.

Click CMSIS in the Activity Bar to open the CMSIS view.
2. Make sure that your solution is the active solution in the Solution outline, otherwise use the

Select solution from workspace option in Views and More Actions .
3. Run the CMSIS: Configure Solution command from the Command Palette.
4. If you are working with a reference application, the Add Software Layer area displays, showing

the software layers that you can use. Layers are available from the Board Support Packs (BSPs)
installed on your machine.

• Not all BSPs have board layers.

• Not all layers are compatible with the connections that your reference
application requires.

• The CMSIS-Packs which contain reference applications and layers generally
provide an Overview.md file where the connections are detailed.

If there are no compatible layers, errors display.

a. Click Next to display the different options available.

b. You can indicate where the layers should be copied to in the Board-Layer and Shield-Layer
fields. Click Default to reset the paths to their default values.

c. If no compiler is set for the reference application, the Select Compiler area displays under
the layers selection and shows the compilers available in your environment. Select a
compiler. For example, AC6.

5. If you are working with another solution type, only the Select Compiler area displays. Select a
compiler.

6. Click OK.
For reference applications only, a Board.clayer.yml file and a Shield.clayer.yml file are
added in the folders that you selected. The files are available from the Explorer. Layers
are automatically added in the csolution.yml file of your solution under target-types:
variables:.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

For all solution types, the compiler is added with the compiler: key.

5.11 Convert a Keil μVision project to a solution
You can convert any Keil® μVision® project to a solution from the CMSIS Solution extension. Note
that the conversion does not work with Arm® Compiler 5 (AC5) projects. You can download Arm
Compiler 5 projects from the website, but you cannot use them with the extensions. Only Arm
Compiler 6 projects can be converted. As a workaround, you can update Arm Compiler 5 projects
to Arm Compiler 6 in Keil μVision, then convert the projects to solutions in Visual Studio Code. For
more information, see the Migrate Arm Compiler 5 to Arm Compiler 6 application note and the
Arm Compiler for Embedded Migration and Compatibility Guide.

Procedure
1. Drag and drop the folder that contains the *.uvprojx that you want to convert onto the Visual

Studio Code workspace to open it. Alternatively, import a μVision project from keil.arm.com, or
clone a project from GitHub.

2. Right-click the *.uvprojx and select Convert uVision project from the Explorer.
The conversion starts immediately.

Alternatively, if you are starting from an empty workspace, you can click CMSIS in the
Activity Bar to open the CMSIS view. Then choose one of the following two options:

• Click Convert a μVision Project and open your *.uvprojx file to convert it

• Move your cursor over the Solution outline, click Views and More Actions , then select
Convert uVision project and open your *.uvprojx file to convert it

A dialog box displays. You can carry out the following tasks:

• Open the solution in a new workspace with the Open option

• Open the solution in a new window and new workspace with the Open project in new
window option

You can also run the CMSIS: Convert uVision project command from the Command Palette. In
that case, select the *.uvprojx that you want to convert on your machine and click Select.

If there are conversion errors, check the uv2csolution.log file.
3. Confirm that the Environment Manager extension can automatically activate the workspace and

download the tools specified in your vcpkg-configuration.json file.
4. Check the Output tab. In the View menu, select Output to open the Output tab. Select

μVision to Csolution Conversion in the drop-down list on the right side of the Output tab.
The *.cproject.yml and *.csolution.yml files are available in the folder where the *.uvprojx
is stored.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 97

https://www.keil.com/appnotes/files/apnt_298.pdf
https://developer.arm.com/documentation/100068/0620/Migrating-from-Arm-Compiler-5-to-Arm-Compiler-for-Embedded-6?lang=en
https://www.keil.arm.com/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5.12 Configure a build task
In Visual Studio Code, you can automate certain tasks by configuring a tasks.json file. See
Integrate with External Tools via Tasks for more details.

With the CMSIS Solution extension, you can configure a build task using the tasks.json file to
build your projects. When you run the build task, the extension runs cbuild with the options that
you defined.

The examples on keil.arm.com include a tasks.json file that already contains
some configuration settings to build your project. You can modify the default
configuration if needed.

If you are working with an example that does not have a build task configured, follow these steps:

1. Go to Terminal > Configure Tasks….

2. In the drop-down list that opens at the top of the window, select the CMSIS Build task.

A tasks.json file opens with the default configuration.

3. Modify the configuration.

With IntelliSense, you can see the full set of task properties and values available in the
tasks.json file. You can bring up suggestions using Trigger Suggest from the Command
Palette. You can also display the task properties specific to cbuild by typing cbuild --help in
the Terminal.

4. Save the tasks.json file.

Alternatively, you can define a default build task using Terminal > Configure Default Build Task….
The Terminal > Run Build Task… option triggers the execution of default build tasks.

5.13 Initialize your solution
If your solution does not already contain a vcpkg-configuration.json, tasks.json, and
launch.json files, use the Initialize CMSIS project option to generate them. Examples from
keil.arm.com or solutions created from scratch from the Create Solution view already contain the
JSON files required.

Procedure
1. From the Explorer, open your workspace.
2. Right-click anywhere in the workspace and select Initialize CMSIS project.

The extension generates a vcpkg-configuration.json file, a tasks.json file, and a launch.json
file that are already preconfigured.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 97

https://code.visualstudio.com/docs/editor/tasks

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm CMSIS Solution extension

5.14 Use the CMSIS csolution API
If you want to create your own Visual Studio Code csolution extension, the CMSIS Solution
extension exposes an API that other extensions can use.

For the API specification, see the CMSIS csolution extension API page.

For information about authoring extensions, see the Extension API chapter in the Visual Studio
Code documentation.

For solution examples, go to keil.arm.com.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 97

https://www.npmjs.com/package/@arm-software/vscode-cmsis-csolution
https://code.visualstudio.com/api
https://www.keil.arm.com

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Device Manager extension

6. Arm Device Manager extension
Look at the hardware supported with the Keil® Studio extensions.

Then, manage your hardware with the Device Manager:

• Connect your hardware

• Edit your hardware

• Open a serial monitor

A full list of commands and settings is available for the Arm Device Manager extension. To view

the list, click Extensions in the Visual Studio Code Activity Bar. Click Arm Device Manager in
the list of extensions, and then click Features.

6.1 Supported hardware
This section describes the hardware that the Device Manager extension and other Keil® Studio
extensions support.

6.1.1 Supported development boards and MCUs

The extensions support the development boards and MCUs available on keil.arm.com.

6.1.2 Supported debug probes

The following debug probes are supported.

6.1.2.1 WebUSB-enabled CMSIS-DAP debug probes

The extensions support debug probes that implement the CMSIS-DAP protocol, for example:

• The DAPLink implementation: see the ARMmbed/DAPLink repository

• The LPC-Link2 implementation: see the LPC-Link2 documentation

• The Nu-Link2 implementation: see the Nuvoton repository

• The ULINKplus™ (firmware version 2) implementation: see the ULINKplus documentation

See the CMSIS-DAP documentation for general information.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 97

https://www.keil.arm.com/boards/
https://www.keil.arm.com/devices/
https://github.com/ARMmbed/DAPLink
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpc-link2:OM13054
https://github.com/OpenNuvoton/Nuvoton_Tools#comparison-of-nulink2fwbin-and-nulink2_daplinkbin
https://developer.arm.com/Tools%20and%20Software/ULINKplus
https://arm-software.github.io/CMSIS_6/latest/DAP/index.html

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Device Manager extension

6.1.2.2 ST-LINK debug probes

The extensions support ST-LINK/V2 probes and later, and the ST-LINK firmware available for these
probes.

The recommended debug implementation versions of the ST-LINK firmware are:

• For ST-LINK/V2 and ST-LINK/V2-1 probes: J36 and later

• For STLINK-V3 probes: J6 and later

See “Firmware naming rules” in Overview of ST-LINK derivatives for more details on naming
conventions.

6.2 Connect your hardware
This section describes how to connect your hardware for the first time.

Procedure
1. Click Device Manager in the Activity Bar.
2. Connect your hardware to your computer over a USB connection.

The Device Manager detects the hardware and a pop-up message displays in the bottom right-
hand corner.

3. Click OK to use the hardware.

Alternatively, click Add Device and select your hardware in
the drop-down list that displays at the top of the window.

You can now use your hardware to run and debug a project.

Next steps
To add more hardware, click Add Device in the top right-hand corner.

6.3 Edit your hardware
If the Device Manager cannot detect your hardware or if you are using an external debug probe,
you can edit the hardware entry from the Device Manager. You can specify a Device Family Pack
(DFP) and a device name retrieved from the pack to be able to work with your hardware. DFPs
handle device support.

Procedure
1. Move your cursor over the hardware that you want to edit and click Edit Device .
2. Edit the hardware name in the field that displays at the top of the window if needed and press

Enter. The hardware name is the name that displays in the Device Manager.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 97

https://www.st.com/resource/en/technical_note/tn1235-overview-of-stlink-derivatives-stmicroelectronics.pdf

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Device Manager extension

3. Select a Device Family Pack (DFP) CMSIS-Pack for your hardware in the drop-down list.
4. Select a device name to use from the CMSIS-Pack in the field and press Enter.

6.4 Open a serial monitor
Open a serial monitor. The serial output shows the output of your board. You can use the serial
output as a debugging tool or to communicate directly with your board.

Procedure
1. Move your cursor over the hardware for which you want to open a serial monitor and click

Open Serial .
A drop-down list displays at the top of the window where you can select a baud rate. The baud
rate is the data rate in bits per second between your computer and your hardware. To view the
output of your hardware correctly, you must select an appropriate baud rate. The baud rate
that you select must be the same as the baud rate of your active project.

2. Select a baud rate.
A Terminal tab opens with the baud rate selected.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7. Arm Debugger extension
Run a project on your hardware with Arm Debugger and start an Arm Debugger debug session
with the Arm Debugger extension.

To run a project on your hardware, you must first configure a task. Run configuration details
are saved in the tasks.json file of your project. For debugging, you also must add a launch
configuration to your project first. Debug configuration details are saved in the launch.json file.

You can configure the tasks.json and launch.json files manually. See Configure a task and Add a
configuration for more details.

You can also use the Run Configuration and Debug Configuration visual editors to quickly create
the configurations you need. See Modify the run configuration options with the Run Configuration
visual editor and Modify the debug configuration options with the Debug Configuration visual
editor.

Most examples provided on keil.arm.com come with tasks.json and launch.json
files that contain run and debug configuration settings. You can modify the default
configuration if needed.

For a full list of commands with usage instructions and examples for the Arm Debugger engine, see
the Arm Debugger Command Reference guide. You can also view a list of commands and settings
in the Features tab (Windows) or the Feature Contributions tab (macOS) for the extension. Click

Extensions in the Visual Studio Code Activity Bar, click Arm Debugger in the list of extensions,
and then click Features or Feature Contributions.

7.1 Run your project on your hardware with Arm
Debugger

Find out how to configure a task to run your project on your hardware and what the configuration
options are.

7.1.1 Configure a task

To run a project on your hardware, you must first configure a task. The task transfers the binary
into the appropriate memory locations on the hardware’s flash memory.

Use the arm-debugger.flash: Flash Device task. The CMSIS-Packs used in your project control
the flash download.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 97

https://developer.arm.com/documentation/101471/latest

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Most examples provided on keil.arm.com come with a tasks.json file that contains
run configuration settings. You can modify the default configuration if needed.

Procedure
1. Open the Command Palette. Search for Tasks: Configure Task and then select it.

Alternatively, go to the Terminal menu and select Configure Tasks….

2. Select the arm-debugger.flash: Flash Device task (or Flash Device).

This task adds default run configuration options in the tasks.json file in the .vscode folder of
the project.

3. Save the tasks.json file.

7.1.2 Override or extend the default run configuration options for Arm
Debugger

You can override or extend the default configuration options. See Arm Debugger run configuration
options.

For CMSIS use cases, to flash a hardware device, the task configuration must know which CMSIS-
Pack to read information from and the device name in the CMSIS-Pack to use. These settings are
named cmsisPack and deviceName, and you can specify them in multiple ways.

If your target hardware is automatically detected, or if you have set the pack and device name, the
task configuration can automatically pick this up. Use the following code:

 {
 [...]
 "serialNumber": "${command:device-manager.getSerialNumber}",
 "cmsisPack": "${command:cmsis-csolution.getTargetPack}",
 "deviceName": "${command:device-manager.getDeviceName}",
 [...]
 }

Alternatively, you can specify these settings directly as a full path to the CMSIS-Pack file or a folder
on your machine:

 {
 [...]
 "serialNumber": "${command:device-manager.getSerialNumber}",
 "cmsisPack": "/Users/me/mypack.pack",
 "deviceName": "STM32H745XIHx",
 [...]
 }

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

You can also use the short code for the CMSIS-Pack in the format <vendor>::<pack>@<version>:

 {
 [...]
 "serialNumber": "${command:device-manager.getSerialNumber}",
 "cmsisPack": "Keil::STM32H7xx_DFP@3.1.0",
 "deviceName": "STM32H745XIHx",
 [...]
 }

Note that this code triggers an automatic download of the CMSIS-Pack.

If you have not installed the CMSIS Solution extension, then for CMSIS use cases
you can use:

• "cmsisPack": "${command:device-manager.getDevicePack}" instead of
"cmsisPack": "${command:cmsis-csolution.getTargetPack}"

• "deviceName": "${command:device-manager.getDeviceName}" instead of
"deviceName": "${command:cmsis-csolution.getDeviceName}"

7.1.3 Arm Debugger run configuration options

The extension provides the following run configuration options.

Configuration option Description

"cmsisPack" The file path or URL path to a DFP (Device Family Pack) CMSIS-Pack for your hardware.

You can use this option with:

• cmsis-csolution.getTargetPack: Gets the DFP CMSIS-Pack for the selected target type in the
CMSIS Solution Manage Solution view. cmsis-csolution.getTargetPack is specific to your
solution.

• device-manager.getDevicePack: Gets the DFP CMSIS-Pack for the selected device. This command
uses the latest pack available in the pack index.

"connectMode" The connection mode.

Possible values:

• auto: The debugger decides

• haltOnConnect: Halts for any reset before running

• underReset: Holds external NRST line asserted

• preReset: Prereset using NRST

• running: Connects to a running target without altering the state

Default: auto

"dbgconf" The path to a .dbgconf file to configure CMSIS-Pack debug sequence execution. Requires Arm Debugger
v6.1.0 or later.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Configuration option Description
"debugClockSpeed" The maximum clock frequency for the debug communication. The frequency that is actually used depends on

the debug probe that you use.

auto uses a target-specific default. Requires Arm Debugger v6.0.2 or later.

Possible values: auto, 50MHz, 33MHz, 25MHz, 20MHz, 10MHz, 5MHz, 2MHz, 1MHz, 500kHz, 200kHz, 100kHz,
50kHz, 20kHz, 10kHz, 5kHz

Default: auto

"debugPortMode" The debug port mode to use for the debug connection. Requires Arm Debugger v6.0.2 or later.

Possible values: auto, JTAG, SWD

Default: auto

"deviceName" The CMSIS-Pack device name.

You can use this option with:

• cmsis-csolution.getDeviceName: Gets the device name from the information available for the
probe or board in the *.csolution.yml file of your solution

• device-manager.getDeviceName: Gets the device name from the DFP of the selected device

"eraseMode" The type of flash erase to use. Requires Arm Debugger v6.1.0 or later.

Possible values:

• sectors: Erase only the sectors to be programmed

• none: Skip flash erase

Default: sectors

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Configuration option Description
"flms" Flash algorithm configurations. Each entry either modifies a default algorithm that is defined in the

corresponding DFP (Device Family Pack), or adds an algorithm. Use the ‘ignore’ field to deactivate a default
algorithm from the DFP. Requires Arm Debugger v6.1.0 or later.

Required value:

• “path”: A relative path to the flash algorithm file in the DFP, or an absolute path to a flash algorithm file in
the file system of your machine

Optional values:

• “regionStart”: The start address of the memory region targeted by the flash algorithm in decimal or
hexadecimal format. If not set, uses the default start address for the algorithm from the DFP CMSIS-Pack.

• “regionSize”: The size of the memory region targeted by the flash algorithm in decimal or hexadecimal
format. If not set, uses the default size for the algorithm from the DFP CMSIS-Pack.

• “ramStart”: The start address of target system’s RAM used for execution of flash algorithms. If not set,
uses defaults from the DFP CMSIS-Pack.

• “ramSize”: The size of target system’s RAM used for execution of flash algorithms. If not set, uses
defaults from the DFP CMSIS-Pack.

• “ignore”: Ignores an algorithm as provided in the DFP. The value can be true or false. If not set,
algorithms marked as default in the DFP have an ignore value of false, and algorithms not marked as
default have an ignore value of true.

Use this option to:

• Disable default algorithms from the DFP. For example, to override the default algorithms with a local
version.

• Enable non-default algorithms. For example, for external flash memories that depend on the target board
design.

Algorithms are usually marked as default in a DFP if they are expected to be applicable for the majority of use
cases.

"openSerial" The baud rate to open the serial output of a device after flash (requires Arm Device Manager).

Possible values: 115200, 57600, 38400, 19200, 9600, 4800, 2400, 1800, 1200, 600

"pdsc" The file path or URL path to a PDSC file.

"probe" The name of a probe to use for the debug connection.

Possible values: ULINKpro, ULINKpro D, ULINK2, CMSIS-DAP, ULINKplus, ST-Link

Default: auto. If the Arm Debugger extension cannot set the probe type automatically, the default value is
CMSIS-DAP.

"processorName" The CMSIS-Pack processor name for multicore devices.

"program" or
"programs"

One or more file paths or URL paths to one or more projects to use in order of loading. Requires Arm Debugger
v6.0.2 or later.

You can use this option with:

• arm-debugger.getApplicationFile: Returns an AXF or ELF file used for CMSIS run and debug

"serialNumber" The serial number of the connected USB hardware to use.

You can use this option with:

• device-manager.getSerialNumber: Gets the serial number of the selected device

"targetAddress" Synonymous with serialNumber.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Configuration option Description
"targetInitScript" The path to a target initialization script (.ds/.py) executed after connection but before any other operation.

Requires Arm Debugger v6.1.0 or later.

"vendorName" The CMSIS-Pack vendor name.

"verifyFlash" Verify the contents downloaded to flash. Requires Arm Debugger v6.1.0 or later.

"workspaceFolder" The current Arm Debugger workspace folder.

Default: "${workspaceFolder}"

Other Visual Studio Code options are available. To see what is available, use the Trigger
Suggestions command (Ctrl+Space). You can also read the Visual Studio Code documentation on
tasks and the Schema for tasks.json page.

7.1.4 Modify the run configuration options with the Run Configuration
visual editor

Instead of editing the tasks.json file of your solution to change the run configuration options, you
can use the Run Configuration visual editor.

Procedure
1. There are 3 ways to open the editor:

• From the Explorer, right-click the tasks.json file in the .vscode folder of the solution and
select Open Run Configuration.

• From the Explorer, right-click the tasks.json file. Select Open With…, and then select Run
Configuration in the drop-down list that displays at the top of the window.

• If the tasks.json file is already open in the editor, click Open Run Configuration in the
top right-hand corner.

2. You can define several run configurations in the tasks.json file. In the Selected Configuration
drop-down list, select New Configuration to add a new configuration block in the JSON file. To
duplicate the currently selected configuration and modify it, click Duplicate.

3. You can change the name of the configuration in the Configuration Name field.
4. Modify your run configuration. See Run configuration options in the visual editor for more

details.
5. If Auto Save is not enabled, save your changes. You can enable or disable Auto Save from the

File menu.
The Arm Debugger extension updates the tasks.json file.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 97

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/tasks-appendix

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7.1.4.1 Run configuration options in the visual editor

Modify the run configuration options for your solution.

Probe / Unit Action

Probe Type In the drop-down list, select a type for the debug probe that you are using or the debug unit on your board.

• Default value: auto. If the Arm Debugger extension cannot set the probe type automatically, the default value is
CMSIS-DAP.

• You can connect a probe or a board to your computer over USB. In this case, the Arm Debugger extension sets a
probe type based on the serial number of the hardware detected.

Serial Number In the drop-down list, select the serial number of the debug probe or debug unit on your board.

• Default value: auto. With auto, the Arm Debugger extension uses the serial number of the active device in
the Arm Device Manager extension by default. The Arm Debugger extension adds the "${command:device-
manager.getSerialNumber}" command in the JSON file for "serialNumber".

• You can also select the serial number of the active device in the drop-down list. Alternatively, type a serial number.

To check what your active device is, click Open Arm Device Manager.

Target Action

CMSIS-Pack Select the Device Family Pack (DFP) for the target debug probe or board.

• Default value: auto (CMSIS Solution). The Arm Debugger extension uses the DFP for
the active device defined in the *.csolution.yml file of your solution. The Arm Debugger
extension adds the "${command:cmsis-csolution.getTargetPack}" command in the
JSON file for cmsisPack.

• auto (Device Manager): The Arm Debugger extension uses the DFP for the active
device in the Arm Device Manager extension. The Arm Debugger extension adds the
"${command:device-manager.getDevicePack}" command in the JSON file for
cmsisPack.

• You can also select the DFP for the active device in the drop-down list. Alternatively,
type the name of a DFP in the format <vendor>::<pack>@<version>. For example:
ARM::V2M_MPS3_SSE_300_BSP@1.4.0.

CMSIS-Pack Device Name Select the name of the target device, that is, the target chip on your board.

• Default value: auto (CMSIS Solution). The Arm Debugger extension detects the device
name from the information available for the probe or board in the *.csolution.yml file of
your solution. The Arm Debugger extension adds the "${command:cmsis-csolution.
getDeviceName}" command in the JSON file for deviceName.

• auto (Device Manager): The Arm Debugger extension detects the device name from
the information available for the probe or board in the Arm Device Manager extension. The
Arm Debugger extension adds the "${command:device-manager.getDeviceName}"
command in the JSON file for deviceName.

• You can also select the device name in the drop-down list. Alternatively, type the device name.
For example: MPS3_SSE_300. The device name available in the drop-down list is the one
defined in the *.csolution.yml file of your solution.

Processor Name For multicore devices, select the processor to use.

• Default value: auto (CMSIS Solution). The Arm Debugger extension uses the processor
name that is defined in the *.csolution.yml file of your solution. The Arm Debugger
extension adds the "${command:cmsis-csolution.getProcessorName}" command in
the JSON file for "processorName".

• You can also directly type a processor name. For example: cm4.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Application Action

Program Files One or more programs to run on your hardware

• Default value: The Arm Debugger extension adds the ${command:arm-debugger.
getApplicationFile} command in the JSON file for "program" when you add a new
configuration block. This command detects the latest AXF or ELF file generated.

• To point to a file directly, click Add File. You can add as many files as you need. The Arm Debugger
extension uses the files in the order in which you added them. The Arm Debugger extension
supports AXF and ELF files by default. You can add other file types.

• To add the ${command:arm-debugger.getApplicationFile} command if it is not available,
click Detect File.

• To remove the selection, move your cursor over the name of the command or file and click the
Delete Program File icon.

Run Action

Connection
Mode

Select a connection mode. The connection mode controls the operations that run when the debugger connects to the target
debug probe or the board.

• Default value: auto. The debugger decides which connect mode to use based on the connected target device.
For ST boards, when you select auto, the debugger uses underReset. For other boards, the debugger uses
haltOnConnect.

• haltOnConnect: Stops the CPU of the target debug probe or board for a reset before the flash download.

• underReset: Asserts the hardware reset during the connection.

• preReset: Triggers a hardware reset pulse before the connection.

• running: Connects to the CPU without stopping the program execution during the connection.

Port Mode Select a debug port mode to use. A debug port allows you to communicate with and debug microcontrollers or other
embedded systems.

• Default value: auto. With auto, the debugger decides which debug port mode to use based on the connected target
device.

• JTAG: Use the JTAG debug port mode.

• SWD: Use the SWD debug port mode.

Clock
Speed

The maximum clock frequency for the debug communication. The clock frequency is the speed at which data is transferred
between the debugger and the target device during debugging operations. The frequency actually used depends on the
capabilities of the debug probe and might be reduced to the next supported frequency.

• Default value: auto. With auto, the debugger decides which clock frequency to use based on the connected target
device.

• Other possible values: 50MHz, 33MHz, 25MHz, 20MHz, 10MHz, 5MHz, 2MHz, 1MHz, 500kHz, 200kHz, 100kHz, 50kHz,
20kHz, 10kHz, 5kHz.

Flash
Setup

Action

Erase
Mode

The type of flash erase to use

• Default value: sectors. With sectors, only the sectors of the flash memory to be programmed are erased. All the
data within these specific sectors is erased.

• none: Skip flash erase. The contents of the flash memory are not erased before programming.

Verify
Flash

Select this checkbox to verify the contents downloaded to the flash memory during the flash download.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Flash
Setup

Action

Flash
Algorithms

Default flash algorithms are available in the Device Family Pack (DFP) of your solution. You can also create your own
algorithms and use them in the configuration. See the Open-CMSIS-Pack documentation for more information. Select the
flash algorithms that you want to use or click the checkboxes to clear the selection. Algorithms available and marked as
default in DFPs are selected by default.

The following fields are available:

• Path: A relative path to a default flash algorithm file in the DFP, or an absolute path to a flash algorithm file in the file
system of your machine

• Region Start: The start address of the memory region targeted by the selected flash algorithm

• Region Size: The size of the memory region targeted by the selected flash algorithm

• RAM Start: The start address in the RAM of the target system used for the execution of the flash algorithm

• RAM Size: The size of the RAM in the target system used for the execution of the flash algorithm

Region Start, Region Size, RAM Start, and RAM Size can be expressed in decimal or hexadecimal format. If you do not set
these fields, then the Arm Debugger extension uses the default values from the DFP.

To add your own flash algorithms, edit the tasks.json file manually:

1. Add "path" under the "flms" key in the JSON file.

2. Fill in the Region Start, Region Size, RAM Start, and RAM Size fields from the visual editor, or edit the JSON file directly.

Serial Action

Baud
Rate

To view the serial output of the target debug probe or board correctly, select a baud rate. Possible values: 115200, 57600,
38400, 19200, 9600, 4800, 2400, 1800, 1200, 600.

7.1.5 Run your project

Run the project on your hardware.

Before you begin
When you have several solutions in one folder, Visual Studio Code ignores the tasks.json and
launch.json files that you created for each solution. Instead, Visual Studio Code generates new
JSON files at the root of the workspace in a .vscode folder and ignores the other JSON files.

As a result, you might have issues running or debugging a project.

As a workaround, open one solution first, then add other solutions to your workspace with the File
> Add Folder to Workspace option.

Procedure
1. Check that your hardware is connected to your computer.
2. Open the Command Palette. Search for Tasks: Run Task and then select it.
3. Select arm-debugger.flash: Flash Device in the drop-down list.

Alternatively, if you installed the Keil Studio Pack, go to the CMSIS view, open the Manage

Solution view , and check which run configuration is selected. Then, click Run in the
Solution outline header.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 97

https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/flashAlgorithm.html#CreateFPA

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

4. If you are using a multicore device and you did not specify a "processorName" in the
tasks.json file, and the CMSIS Solution extension is not installed, select the appropriate
processor for your project in the Select a processor drop-down list at the top of the window.

5. To verify that the project has run correctly, check the Terminal tab.
If the Arm Debugger engine cannot be found on your machine, an Arm Debugger not found
dialog box displays.

Select one of these options:

• To add Arm Debugger to your environment, click Install Arm Debugger. The vcpkg-
configuration.json file is updated. Check the Arm tools installed in the status bar

.

• To indicate the path to the Arm Debugger engine in the settings, click Configure Path.

7.2 Debug your project with Arm Debugger
Debug a project.

Several debug configurations are available. For CMSIS use cases, use the Arm Debugger: Launch,
Arm Debugger: Launch FVP, or Arm Debugger: Attach task.

7.2.1 Add a configuration

To debug your project, you must first add a launch configuration to enable you to configure
and save debug setup details. Visual Studio Code keeps debug configuration information in a
launch.json file. If the system does not detect a configuration, you get an error. You are prompted
to open the launch.json file and add a launch configuration for Arm Debugger.

Most examples provided on keil.arm.com come with a launch.json file that contains
debug configuration settings. You can modify the default configuration.

Procedure
1. Open the Command Palette. Search for Debug: Add Configuration and then select it.

The launch.json file opens.

Alternatively, go to the Run menu and select Add Configuration….

2. Select the Arm Debugger: Launch, Arm Debugger: Launch FVP, or Arm Debugger: Attach task
for CMSIS use cases.

This task adds default debug configuration options in the launch.json file in the .vscode folder
of the project.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

3. Save the launch.json file.

If you have not installed the CMSIS Solution extension, then for CMSIS use
cases you can use:

• "cmsisPack": "${command:device-manager.getDevicePack}" instead of
"cmsisPack": "${command:cmsis-csolution.getTargetPack}"

• "deviceName": "${command:device-manager.getDeviceName}" instead of
"deviceName": "${command:cmsis-csolution.getDeviceName}"

7.2.2 Override or extend the default debug configuration options for Arm
Debugger

You can override or extend the default configuration options as required. See Arm Debugger debug
configuration options - CMSIS use cases for more details.

For CMSIS use cases, see also the details provided for the tasks.json file for cmsisPack and
deviceName. To debug a hardware device, the launch configuration must know which CMSIS-Pack
to read information from and the device name in the CMSIS-Pack to use.

7.2.3 Arm Debugger debug configuration options - CMSIS use cases

The extension provides the following debug configuration options.

Launch configuration options for debugging with a physical target
Configuration option Description

"cmsisDevice" Concatenation of CMSIS-Pack name, device vendor, device name, and processor name (if multicore).

Deprecated. Use cmsisPack, pdsc, vendorName, deviceName, and processorName instead.

"cmsisPack" The file path or URL path to a DFP (Device Family Pack) CMSIS-Pack for your hardware.

You can use this option with:

• cmsis-csolution.getTargetPack: Gets the DFP CMSIS-Pack for the selected target type in the
CMSIS Solution Manage Solution view. cmsis-csolution.getTargetPack is specific to your
solution.

• device-manager.getDevicePack: Gets the DFP CMSIS-Pack for the selected device. This
command uses the latest pack available in the pack index.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Configuration option Description
"connectMode" The connection mode.

Possible values:

• auto: The debugger decides

• haltOnConnect: Halts for any reset before running

• underReset: Holds external NRST line asserted

• preReset: Prereset using NRST

• running: Connects to a running target without altering the state

Default: auto

"dbgconf" The path to a .dbgconf file to configure CMSIS-Pack debug sequence execution. Requires Arm Debugger
v6.1.0 or later.

"debugClockSpeed" The maximum clock frequency for the debug communication. The frequency that is actually used depends on
the debug probe that you use.

auto uses a target-specific default. Requires Arm Debugger v6.0.2 or later.

Possible values: auto, 50MHz, 33MHz, 25MHz, 20MHz, 10MHz, 5MHz, 2MHz, 1MHz, 500kHz, 200kHz,
100kHz, 50kHz, 20kHz, 10kHz, 5kHz

Default: auto

"debugFrom" The symbol the debugger will run to before debugging.

Default: "main"

"debugInitScript" The path to a debug initialization script (.ds/.py) executed after connection and running to debugFrom.
Requires Arm Debugger v6.1.0 or later.

"debugPortMode" The debug port mode to use for the debug connection. Requires Arm Debugger v6.0.2 or later.

Possible values: auto, JTAG, SWD

Default: auto

"deviceName" The CMSIS-Pack device name.

You can use this option with:

• cmsis-csolution.getDeviceName: Gets the device name from the information available for the
probe or board in the *.csolution.yml file of your solution

• device-manager.getDeviceName: Gets the device name from the DFP of the selected device

"pathMapping" A mapping of remote paths to local paths to resolve source files.

"pdsc" The file path or URL path to a PDSC file.

"probe" The name of a probe to use for the debug connection.

Possible values: ULINKpro, ULINKpro D, ULINK2, CMSIS-DAP, ULINKplus, ST-Link

Default: auto. If the Arm Debugger extension cannot set the probe type automatically, the default value is
CMSIS-DAP.

"processorName" The CMSIS-Pack processor name for multicore devices.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Configuration option Description
"program" or
"programs"

One or more file paths or URL paths to one or more projects to use in order of loading. Requires Arm
Debugger v6.0.2 or later.

You can use this option with:

• arm-debugger.getApplicationFile: Returns an AXF or ELF file used for CMSIS run and debug

"programMode" Mode to program an application to a target.

Possible values: auto, flash, ram, mixed

Default: auto

"resetAfterConnect" Resets the device after having acquired control of the processor.

"resetMode" Type of reset to use.

Possible values:

• auto: The debugger decides

• system: Use ResetSystem sequence

• hardware: Use ResetHardware sequence

• processor: Use ResetProcessor sequence

Default: auto

"searchPaths" Array of paths to source locations.

"serialNumber" The serial number of the connected USB hardware to use.

You can use this option with:

• device-manager.getSerialNumber: Gets the serial number of the selected device

"svd" The file path or URL path to an SVD file.

"targetAddress" Synonymous with serialNumber.

"targetInitScript" The path to a target initialization script (.ds/.py) executed after connection but before any other operation.
Requires Arm Debugger v6.1.0 or later.

"vendorName" The CMSIS-Pack vendor name.

"workspaceFolder" The current Arm Debugger workspace folder.

Default: "${workspaceFolder}"

Attach configuration options for debugging with a physical target
Configuration option Description

address Modify your debug configuration as follows:

• If the Arm Debugger engine is running on a distant server, indicate the address of the server in the format
ws://<host>:<port> (websocket).

• If the Arm Debugger engine is running on your machine, use <host>:<port> (socket).

"debugInitScript" The path to a debug initialization script (.ds/.py) executed after connection and running to debugFrom.
Requires Arm Debugger v6.1.0 or later.

"pathMapping" A mapping of remote paths to local paths to resolve source files.

"svd" The file path or URL path to an SVD file.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Configuration option Description
"targetInitScript" The path to a target initialization script (.ds/.py) executed after connection but before any other operation.

Requires Arm Debugger v6.1.0 or later.

Launch FVP configuration options for debugging with a virtual target (Fixed Virtual
Platforms)

FVPs are natively available on Windows and Linux only. If you are on a Mac,
you can run FVPs in a Linux container with Docker. To install Docker and clone
the https://github.com/Arm-Examples/FVPs-on-Mac repository, follow this Arm
Developer Learning Path.

Configuration option Description

"cdbEntry" Arm Debugger Configuration Database Entry to select.

"cdbEntryParams" One or more key/value settings specific to the selected cdbEntry.

Example: model_params: -f ${workspaceFolder}/model_config.txt

"debugFrom" The symbol the debugger will run to before debugging.

Default: "main"

"debugInitScript" The path to a debug initialization script (.ds/.py) executed after connection and running to debugFrom.
Requires Arm Debugger v6.1.0 or later.

"fvpParameters" The path to an FVP parameter configuration file.

"pathMapping" A mapping of remote paths to local paths to resolve source files.

"program" or
"programs"

One or more file paths or URL paths to one or more projects to use in order of loading. Requires Arm Debugger
v6.0.2 or later.

You can use this option with:

• arm-debugger.getApplicationFile: Returns an AXF or ELF file used for CMSIS run and debug

"programMode" Mode to program an application to a target.

Default value: ram

"searchPaths" Array of paths to source locations.

"svd" The file path or URL path to an SVD file.

"targetInitScript" The path to a target initialization script (.ds/.py) executed after connection but before any other operation.
Requires Arm Debugger v6.1.0 or later.

"workspaceFolder" The current Arm Debugger workspace folder.

Default: "${workspaceFolder}"

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 97

https://github.com/Arm-Examples/FVPs-on-Mac
https://learn.arm.com/install-guides/fvps-on-macos/
https://learn.arm.com/install-guides/fvps-on-macos/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7.2.4 Modify the debug configuration options with the Debug
Configuration visual editor

Instead of editing the launch.json file of your solution to change the debug configuration options,
you can use the Debug Configuration visual editor.

7.2.4.1 Debug configuration for a physical target

This section describes how to define a Launch or an Attach configuration (CMSIS use cases) with
the Debug Configuration visual editor.

Procedure
1. There are 3 ways to open the editor:

• From the Explorer, right-click the launch.json file in the .vscode folder of the solution and
select Open Debug Configuration.

• From the Explorer, right-click the launch.json file. Select Open With…, and then select
Debug Configuration in the drop-down list that displays at the top of the window.

• If the launch.json file is already open in the editor, click Open Debug Configuration in
the top right-hand corner.

2. You can define several debug configurations for physical targets in the launch.json file. In
the Selected Configuration drop-down list, select New Configuration, then select one of the
following options:

• Launch debugging mode: For CMSIS use cases, select a Launch configuration to launch your
program in debug mode using a physical target.

• Attach debugging mode: For CMSIS use cases, select an Attach configuration if you want
to debug a program that is already running.

See Launch versus attach configurations for explanations of the Launch and Attach core
debugging modes in Visual Studio Code.

Selecting a configuration adds a new configuration block in the JSON file.

To duplicate the currently selected configuration and modify it, click Duplicate.
3. You can change the name of the configuration in the Configuration Name field.
4. Modify your debug configuration.

• If you are defining a Launch configuration, see Launch configuration for more details.

• If you are defining an Attach configuration, see Attach configuration for more details.
5. If Auto Save is not enabled, save your changes. You can enable or disable Auto Save from the

File menu.
The Arm Debugger extension updates the launch.json file.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 97

https://code.visualstudio.com/docs/editor/debugging#_launch-versus-attach-configurations

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7.2.4.2 Debug configuration for a virtual target (Fixed Virtual Platforms)

This section describes how to define a Launch FVP configuration (CMSIS use cases) with the Debug
Configuration visual editor.

Before you begin
To debug a virtual target using Fixed Virtual Platforms (FVPs) models, you must install models on
your machine.

Check that the vcpkg-configuration.json file for your project contains "arm:models/arm/avh-
fvp" in the "requires": section.

You can add FVPs with the Configure Arm Tools Environment visual editor or by editing the
vcpkg-configuration.json file directly. Select the Arm Virtual Hardware for Cortex®-M based on
Fast Models option with the visual editor.

FVPs are natively available on Windows and Linux only. If you are on a Mac,
you can run FVPs in a Linux container with Docker. To install Docker and clone
the https://github.com/Arm-Examples/FVPs-on-Mac repository, follow this Arm
Developer Learning Path.

Procedure
1. There are 3 ways to open the editor:

• From the Explorer, right-click the launch.json file in the .vscode folder of the solution and
select Open Debug Configuration.

• From the Explorer, right-click the launch.json file. Select Open With…, and then select
Debug Configuration in the drop-down list that displays at the top of the window.

• If the launch.json file is already open in the editor, click Open Debug Configuration in
the top right-hand corner.

2. To work with a virtual target, you can define a Launch FVP configuration for CMSIS use cases in
the launch.json file. In the Selected Configuration drop-down list, select New Configuration,
then select Launch FVP. Selecting a configuration adds a new configuration block in the JSON
file.
To duplicate the currently selected configuration and modify it, click Duplicate.

3. You can change the name of the configuration in the Configuration Name field.
4. Modify your debug configuration. See Launch FVP configuration for more details.
5. If Auto Save is not enabled, save your changes. You can enable or disable Auto Save from the

File menu.
The Arm Debugger extension updates the launch.json file.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 97

https://github.com/Arm-Examples/FVPs-on-Mac
https://learn.arm.com/install-guides/fvps-on-macos/
https://learn.arm.com/install-guides/fvps-on-macos/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7.2.4.3 Debug configuration options in the visual editor

Modify the debug configuration options for your solution.

Launch configuration
Probe / Unit Action

Probe Type In the drop-down list, select a type for the debug probe that you are using or the debug unit on your board.

• Default value: auto. If the Arm Debugger extension cannot set the probe type automatically, the default value is
CMSIS-DAP.

• You can connect a probe or a board to your computer over USB. In this case, the Arm Debugger extension sets a
probe type based on the serial number of the hardware detected.

Serial Number In the drop-down list, select the serial number of the debug probe or debug unit on your board.

• Default value: auto. With auto, the Arm Debugger extension uses the serial number of the active device in
the Arm Device Manager extension by default. The Arm Debugger extension adds the "${command:device-
manager.getSerialNumber}" command in the JSON file for "serialNumber".

• You can also select the serial number of the active device in the drop-down list. Alternatively, type a serial number.

To check what your active device is, click Open Arm Device Manager.

Target Action

CMSIS-Pack Select the Device Family Pack (DFP) for the target debug probe or board.

• Default value: auto (CMSIS Solution). The Arm Debugger extension uses the DFP for
the active device defined in the *.csolution.yml file of your solution. The Arm Debugger
extension adds the "${command:cmsis-csolution.getTargetPack}" command in the
JSON file for cmsisPack.

• auto (Device Manager): The Arm Debugger extension uses the DFP for the active
device in the Arm Device Manager extension. The Arm Debugger extension adds the
"${command:device-manager.getDevicePack}" command in the JSON file for
cmsisPack.

• You can also select the DFP for the active device in the drop-down list. Alternatively,
type the name of a DFP in the format <vendor>::<pack>@<version>. For example:
ARM::V2M_MPS3_SSE_300_BSP@1.4.0.

CMSIS-Pack Device Name Select the name of the target device, that is, the target chip on your board.

• Default value: auto (CMSIS Solution). The Arm Debugger extension detects the device
name from the information available for the probe or board in the *.csolution.yml file of
your solution. The Arm Debugger extension adds the "${command:cmsis-csolution.
getDeviceName}" command in the JSON file for deviceName.

• auto (Device Manager): The Arm Debugger extension detects the device name from
the information available for the probe or board in the Arm Device Manager extension. The
Arm Debugger extension adds the "${command:device-manager.getDeviceName}"
command in the JSON file for deviceName.

• You can also select the device name in the drop-down list. Alternatively, type the device name.
For example: MPS3_SSE_300. The device name available in the drop-down list is the one
defined in the *.csolution.yml file of your solution.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Application Action

Program Files One or more programs to use for debugging

• Default value: The Arm Debugger extension adds the ${command:arm-debugger.
getApplicationFile} command in the JSON file for "program" when you add a new
configuration block. This command detects the latest AXF or ELF file generated.

• To point to a file directly, click Add File. You can add as many files as you need. The Arm
Debugger extension uses the files in the order in which you added them. The Arm Debugger
extension supports AXF and ELF files by default. You can add other file types.

• To add the ${command:arm-debugger.getApplicationFile} command if it is not
available, click Detect File.

• To remove the selection, move your cursor over the name of the command or file and click the
Delete Program File icon.

Processor Name For multicore devices, select the processor to use.

• Default value: auto (CMSIS Solution). The Arm Debugger extension uses the processor
name that is defined in the *.csolution.yml file of your solution. The Arm Debugger
extension adds the "${command:cmsis-csolution.getProcessorName}" command in
the JSON file for "processorName".

• You can also directly type a processor name. For example: cm4.

Debug Action

Connection
Mode

Select a connection mode. The connection mode controls the operations that run when the debugger connects to the
target debug probe or the board.

• Default value: auto. The debugger decides which connect mode to use based on the connected target device.
For ST boards, when you select auto, the debugger uses underReset. For other boards, the debugger uses
haltOnConnect.

• haltOnConnect: Stops the CPU of the target debug probe or board for a reset before the flash download.

• underReset: Asserts the hardware reset during the connection.

• preReset: Triggers a hardware reset pulse before the connection.

• running: Connects to the CPU without stopping the program execution during the connection.

Reset after
connect

Select this option to reset the device after it has acquired control of the processor.

Reset Mode Select a reset mode. The reset mode controls the reset operations performed by the debugger.

• auto (default): The debugger decides which reset to use based on information from the CMSIS-Pack.

• system: Uses the ResetSystem sequence from the CMSIS-Pack.

• hardware: Uses the ResetHardware sequence from the CMSIS-Pack.

• processor: Uses the ResetProcessor sequence from the CMSIS-Pack.

Debug
From

Select a function from which to start the debugger. Default value: main. The debugging session starts and the debugger
stops at the main() function of the program.

Program
Mode

Select a program mode. The program mode defines the type of debugging to use: flash debugging flash, RAM debugging
ram, or both mixed. The default value is auto. In auto mode, the debugger decides.

The main difference between flash and RAM debugging is in the type of memory used for storing and executing the code
during a debugging session:

• Flash debugging: The code is stored and executed from Flash memory. The debugger internally loads debug information
but does not load anything to the target.

• RAM debugging: The debugger loads the code into RAM after connection to the target system. The code is first copied
from its storage location into RAM before execution.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Debug Action
Port Mode Select a debug port mode to use. A debug port allows you to communicate with and debug microcontrollers or other

embedded systems.

• Default value: auto. With auto, the debugger decides which debug port mode to use based on the connected target
device.

• JTAG: Use the JTAG debug port mode.

• SWD: Use the SWD debug port mode.

Clock
Speed

The maximum clock frequency for the debug communication. The clock frequency is the speed at which data is transferred
between the debugger and the target device during debugging operations. The frequency actually used depends on the
capabilities of the debug probe and might be reduced to the next supported frequency.

• Default value: auto. With auto, the debugger decides which clock frequency to use based on the connected target
device.

• Other possible values: 50MHz, 33MHz, 25MHz, 20MHz, 10MHz, 5MHz, 2MHz, 1MHz, 500kHz, 200kHz, 100kHz, 50kHz,
20kHz, 10kHz, 5kHz.

Target
Initialization
Script

The path to a target initialization script (.ds/.py) executed after connection but before any other operation. Requires Arm
Debugger v6.1.0 or later.

Debug
Initialization
Script

The path to a debug initialization script (.ds/.py) executed after connection and running to debugFrom. Requires Arm
Debugger v6.1.0 or later.

Attach configuration
Connection Action

Address Modify your debug configuration as follows:

• If the Arm Debugger engine is running on a distant server, indicate the address of the server in the
format ws://<host>:<port> (websocket).

• If the Arm Debugger engine is running on your machine, use <host>:<port> (socket).

Debug Action

Target Initialization
Script

The path to a target initialization script (.ds/.py) executed after connection but before any other operation.
Requires Arm Debugger v6.1.0 or later.

Debug Initialization
Script

The path to a debug initialization script (.ds/.py) executed after connection and running to debugFrom. Requires
Arm Debugger v6.1.0 or later.

Launch FVP configuration
Target Action

Configuration
Database
Entry

The configuration database is where Arm Debugger stores information about the processors, devices, and boards it can
connect to. Select the FVP that you want to use (for example, MPS2_Cortex_M4), then select a processor (for example,
Cortex-M4). The list of FVPs available depends on the avh-fvp version specified in the vcpkg-configuration.json
file for your project. You can filter the list of FVPs to only display the models installed on your machine with the Show only
installed checkbox.

FVP
Parameters

For more advanced configuration settings, you can generate a list of FVP parameters and modify the arguments that
are listed in the file. To generate an fvp_config.txt file, click Generate File. To open the FVP Parameters editor and
modify the file, click the pen icon. If you already have a file available, click Select File to select it.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Application Action

Program Files One or more programs to use for debugging

• Default value: The Arm Debugger extension adds the ${command:arm-debugger.
getApplicationFile} command in the JSON file for "program" when you add a new
configuration block. This command detects the latest AXF or ELF file generated.

• To point to a file directly, click Add File. You can add as many files as you need. The Arm
Debugger extension uses the files in the order in which you added them. The Arm Debugger
extension supports AXF and ELF files by default. You can add other file types.

• To add the ${command:arm-debugger.getApplicationFile} command if it is not
available, click Detect File. This command detects the latest AXF or ELF file generated.

• To remove the selection, move your cursor over the name of the command or file and click the
Delete Program File icon.

Debug Action

Debug
From

Select a function from which to start the debugger. Default value: main. The debugging session starts and the debugger stops
at the main() function of the program.

7.2.5 Start an Arm Debugger session

Start a debug session.

Before you begin
When you have several solutions in one folder, Visual Studio Code ignores the tasks.json and
launch.json files that you created for each solution. Instead, Visual Studio Code generates new
JSON files at the root of the workspace in a .vscode folder and ignores the other JSON files.

As a result, you might have issues running or debugging a project.

As a workaround, open one solution first, then add other solutions to your workspace with the File
> Add Folder to Workspace option.

7.2.5.1 Start a debug session with a physical target

To start a debug session with a physical target, use the following procedure.

Procedure
1. Check that your device is connected to your computer.
2.

To start a debug session, go to the Run and Debug view and select a debug configuration

in the list . Click Start Debugging.
Alternatively, if you installed the Keil Studio Pack, go to the CMSIS view, open the Manage

Solution view , and check which debug configuration is selected. Then, click Debug in
the Solution outline header.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

3. If you are using a multicore device and you did not specify a "processorName" in the
launch.json file, and the CMSIS Solution extension is not installed, select the appropriate
processor for your project in the Select a processor drop-down list at the top of the window.
The Run and Debug view displays and the debug session starts. The debugger stops at the
main() function of the program.

4. To see the debugging output, check the Debug Console tab.
If the Arm Debugger engine cannot be found on your machine, an Arm Debugger not found
dialog box displays.

Select one of these options:

• To add Arm Debugger to your environment, click Install Arm Debugger. The vcpkg-
configuration.json file is updated. Check the Arm tools installed in the status bar

.

• To indicate the path to the Arm Debugger engine in the settings, click Configure Path.

7.2.5.2 Start a debug session with a virtual target

Start a debug session with a virtual target.

Before you begin
Fixed Virtual Platforms (FVPs) are natively available on Windows and Linux only. If you are on a
Mac, follow this Arm Developer Learning Path to install Docker and clone the https://github.com/
Arm-Examples/FVPs-on-Mac repository.

Procedure
1. Go to the Device Manager and select the FVP that you want to use. For example, MPS2

Cortex M4.
2.

To start a debug session, go to the Run and Debug view and select a debug configuration
in the list. Click Start Debugging.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 97

https://learn.arm.com/install-guides/fvps-on-macos/
https://github.com/Arm-Examples/FVPs-on-Mac
https://github.com/Arm-Examples/FVPs-on-Mac

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Figure 7-1: FVP configuration

Alternatively, if you installed the Keil Studio Pack, go to the CMSIS view, open the Manage

Solution view , and check which debug configuration is selected. Then, click Debug in
the Solution outline header.

The Run and Debug view displays and the debug session starts. The debugger stops at the
main() function of the program.

3. To see the debugging output, check the Debug Console tab.
If the Arm Debugger engine cannot be found on your machine, an Arm Debugger not found
dialog box displays.

Select one of these options:

• To add Arm Debugger to your environment, click Install Arm Debugger. The vcpkg-
configuration.json file is updated. Check the Arm tools installed in the status bar

.

• To indicate the path to the Arm Debugger engine in the settings, click Configure Path.

7.2.6 Set breakpoints

Breakpoints are useful when you know which part of your code you want to examine. To look
at values of variables, or to check if a block of code is being run, set one or more breakpoints to
suspend your running code.

See the Visual Studio Code documentation for more details.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 97

https://code.visualstudio.com/docs/editor/debugging#_breakpoints

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

With the current version of the Arm Debugger extension, you cannot set
breakpoints in assembly files by default. To be able to set breakpoints in assembly
files, go to the settings and select Allow Breakpoints Everywhere.

7.2.7 Inspect registers

The Registers view displays register contents for the detected processor. To display the Registers
view in the Run and Debug view, start a debug session as explained in Start an Arm Debugger
session.

The Registers view organizes registers into groups. These groups vary according to the processor
type you are using and the system you are debugging. During debugging, register values change as
your code runs.

Here is an example of what you can see in the Registers view for a Cortex-M4 processor:

Figure 7-2: Registers view for a Cortex-M4 processor

The Registers view can include:

• Processor core registers: In Arm processors, each processor core has a set of general-purpose
registers that are used for temporary data storage and manipulation during program execution.
The processor uses these registers for various operations, including arithmetic, logical, and data
movement instructions. Additionally, Arm processors can also have other specific registers,
for example the Program Counter (PC) and Stack Pointer (SP). These registers are essential for
managing program flow and maintaining the stack. These registers collectively form the register
file of the processor core. The register file provides a fast and efficient means for the processor
to store and retrieve data during computation.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

• System registers: In Arm processors, system registers are special-purpose registers that control
and configure various aspects of the behavior of a processor. These registers are part of the
Arm architecture and play a crucial role in managing system-level functionality. System registers
help to control the operating mode of the processor, interrupt handling, and other system-
related features.

• Floating-Point Unit (FPU) registers: In Arm processors, the FPU is responsible for handling
floating-point arithmetic operations. The FPU has its own set of registers distinct from the
general-purpose registers. These registers are used to store floating-point numbers and to
perform operations like addition, subtraction, multiplication, and division on them.

7.2.7.1 Edit registers

Edit registers during a debug session.

Procedure
1. Start a debug session as explained in Start an Arm Debugger session.
2. Click Pause to pause the debug session.

The Registers view displays register values that you can edit.
3. Move your cursor over the register values and click the pen icon for the value that you

want to update.
4. Enter a value or an expression in the field that opens at the top of the window and press Enter.

If you enter an expression, the result of the expression is written to the registers. For example,
$SP+0x20 adds 0x20 to the content of the SP register. See the Arm Debugger Command
Reference guide for more details on expressions.

Modified values are highlighted in the Registers view.

7.2.8 Inspect functions

The Functions view displays the main functions in your code, library functions, and user-defined
functions. To display the Functions view in the Run and Debug view, start a debug session. See
Start an Arm Debugger session for more information.

For each function, the Functions view shows the following details:

• The name of the function

• The address where the function is stored

• The size of the function in bytes

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 97

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Conformance-and-usage-rules-for-Arm-Debugger-commands/Expressions-in-the-Arm-Debugger
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Conformance-and-usage-rules-for-Arm-Debugger-commands/Expressions-in-the-Arm-Debugger

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Figure 7-3: Functions view

You can sort functions by a name, an address, or by size:

1. Move your cursor over the name of the solution in the Functions view and click Sort.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Figure 7-4: Functions view Sort button

2. Select an option in the drop-down list that displays at the top of the window.

• Sort By Label
• Sort By Address (Desc)
• Sort By Function Size (Desc)

You can add function breakpoints to break execution when a function is called. Breaking execution
is useful when you know the function name but not its location.

To add a function breakpoint:

In the Functions view, move your cursor over the function for which you want to add a breakpoint
and choose one of the following actions:

• Click the red dot that displays on the right side of the function name

• Right-click the function and select Set function breakpoint.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Figure 7-5: Add a function breakpoint

The function breakpoint displays in the Breakpoints view.

From the Breakpoints view, you can carry out the following tasks:

• Remove all breakpoints with or remove specific breakpoints

Figure 7-6: Remove specific breakpoints

• Add function breakpoints with

• Activate or deactivate all breakpoints with

7.2.9 Use the Debug Console

The Debug Console shows the debugging output of your project. The console displays messages,
errors, warnings, and other output generated during a debugging session.

The Debug Console automatically displays when you start a debug session. You can also go to
View > Debug Console to display it.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

Figure 7-7: Debug Console

7.2.9.1 Run Arm Debugger commands

You can run Arm Debugger commands directly from the Debug Console. To display information
on the command and how to use it, type help followed by the name of a command in the Debug
Console prompt.

For example, help step displays:

step

step

 Steps through an application at the source level stopping on the first
 instruction of each source line including stepping into all function calls. You
 must compile your code with debug information to use this command successfully.

 You can modify the behavior of this command with the set step-mode command.

Syntax

 step [<count>]

 Where:

 <count>
 Specifies the number of source lines to execute.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

 Note:
 Execution stops immediately if a breakpoint is reached, even if fewer
 than
 <count> source lines are executed.

Examples

 step # Execute one source line.
 step 5 # Execute five source lines.

Example:

1. Type break main.c:10 in the Debug Console prompt and press Enter to add a breakpoint on
line 10 of your main.c file.

2. Type continue in the prompt and press Enter to continue the debugging session. The debugger
runs to the first breakpoint it encounters and stops.

3. Type step to go to the next line.

All the Arm Debugger commands are also documented in Arm Debugger commands listed in
alphabetical order in the Arm Debugger Command Reference.

Type help followed by the name of a group in the prompt to display all the commands that are part
of that group.

For example, help group_log displays:

group_log

log

 List of all the Arm Debugger commands that enable you to control runtime
 messages from the debugger.

 log config
 Specifies the type of logging configuration to output runtime messages from
 the debugger.

 log file
 Specifies an output file to receive runtime messages from the debugger.

 Enter help followed by a command name for more information on a specific
 command.

The groups are also documented in Arm Debugger commands listed in groups in the Arm
Debugger Command Reference.

7.2.9.2 Use expressions

You can evaluate and resolve expressions with the Debug Console.

Use $expr:<expression> in the Debug Console prompt, where <expression> can include the
following information:

• program symbols or register symbols

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 97

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-groups

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

• arithmetic or logical operations

Example with the stack pointer register symbol $SP and an arithmetic operation:

1. Type $expr:$SP in the Debug Console prompt and press Enter.

This expression returns the current value of the stack pointer, for example 537133040.

2. Type $expr:$SP+0x20 and press Enter.

This expression returns the current value of the stack pointer + 32, so 537133072.

Example with the global variable SystemCoreClock and a logical operation:

1. Type $expr:SystemCoreClock.

This expression returns the current value of the global variable 25000000.

2. Type $expr:SystemCoreClock == 25000000 and press Enter.

This expression returns 1, because the result is true.

3. Type $expr:SystemCoreClock != 25000000 and press Enter.

This expression returns 0, because the result is false.

7.2.10 Scope resolution operator

To access variables and functions in images, files, namespaces, or classes, use the scope resolution
operator (::).

The scope resolution operator can be useful if you have to debug a project with multiple AXF
or ELF files (for example, a TrustZone example which consists of at least two ELF files). You
can explicitly point at a symbol in a specific file (for example, the main function) using symbol
expressions. See the Arm Debugger Command Reference guide for more details on the scope
resolution operator.

For example, to select a function from which to start the debugger with the Debug Configuration
visual editor, specify the following expression in the Debug From field:

"hello.axf"::main

You must put the expression between quotes.

The following line is added in the launch.json file:

"debugFrom": "\"hello.axf\"::main"

Backslashes are used to escape quotes.

You can also use absolute or relative file paths in expressions.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 97

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Conformance-and-usage-rules-for-Arm-Debugger-commands/Expressions-in-the-Arm-Debugger/Scoping-resolution-operator-in-Arm-Debugger

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

The scope resolution operator is also useful with watch expressions, the Debug Console, or
function breakpoints.

7.2.11 Next steps

To learn more about the debug features available in Visual Studio Code, see the Visual Studio Code
documentation.

7.3 Work with scripts
Use scripts to customize your debugging workflows and automate tasks.

The Arm Debugger extension supports scripting using languages like standard Python (CPython)
and Jython. Jython is a Java implementation of Python and is an ideal choice for larger or more
complex scripts.

You can write advanced scripts or use the Jython templates available, and then run the scripts
from the Debug Console. Alternatively, use the "targetInitScript" and "debugInitScript"
configuration options to call the scripts from the tasks.json or launch.json files in your project.

7.3.1 Prerequisites

To work with Python and Jython scripts, you must install a supported version of Python on
your machine. The Arm Debugger extension supports Python 2.7.2 and above, but not version
3. To install a Python interpreter, see the explanations provided in the Visual Studio Code
documentation.

macOS does not support the system installation of Python. We recommend that
you use a package management system like Homebrew.

We recommend that you install the Microsoft Python extension in Visual Studio Code for rich
Python language support. The Microsoft Python extension is installed with Microsoft Pylance,
which offers support for IntelliSense, and Microsoft Python Debugger.

After you have installed a version of Python and the Python extension, select the Python version
with the Python: Select Interpreter command from the Command Palette as explained in the
Visual Studio Code documentation. Alternatively, manually specify an interpreter.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 97

https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/python/python-tutorial#_install-a-python-interpreter
https://code.visualstudio.com/docs/python/python-tutorial#_install-a-python-interpreter
https://brew.sh/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://code.visualstudio.com/docs/languages/python#_install-python-and-the-python-extension
https://code.visualstudio.com/docs/python/environments#_manually-specify-an-interpreter

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7.3.2 Use advanced scripts or the default Jython templates

Write your own Jython scripts or use the default templates provided to help you get started, then
run the scripts.

Procedure
You can either:

• Create a Jython file with the .py extension. See About Jython scripts and Jython script
concepts and interfaces in the Arm Development Studio User Guide for more details.

• Use one of the templates provided.

a. Go to the File menu. Select New File…, and then select Jython Template in the drop-down list
that opens at the top of the window.

b. Select either the Basic template or the Advanced template option in the drop-down list.

The basic template contains module imports that are typically placed at the top of the Jython
script.

The advanced template acquires a connection to the target, loads an application, runs to the
start of the application, and reads some register values.

c. Edit the file to add the scripting commands that you need.

d. Save the template in the same folder as your project.

Next steps
You can run Jython scripts from the Debug Console with the source command.

For example:

source myScripts\myFile.py # Run a Jython script from file myFile.py.

Both relative and absolute paths are supported.

See the Arm Debugger Command Reference guide for more details.

You can also use the "targetInitScript" and "debugInitScript" configuration options to call
scripts from the tasks.json or launch.json files in your project.

For example:

"targetInitScript": "myScripts\myFile.py"

Both relative and absolute paths are supported.

See Arm Debugger run configuration options and Arm Debugger debug configuration options -
CMSIS use cases.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 97

https://developer.arm.com/documentation/101470/latest/Debugging-with-Scripts/About-Jython-scripts?lang=en
https://developer.arm.com/documentation/101470/latest/Debugging-with-Scripts/Jython-script-concepts-and-interfaces?lang=en
https://developer.arm.com/documentation/101470/latest/Debugging-with-Scripts/Jython-script-concepts-and-interfaces?lang=en
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/source?lang=en

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Arm Debugger extension

7.4 Arm Debugger extension settings
The Arm Debugger extension has the following settings.

Name Description

Application
Pattern

Regular expression to specify which files should be considered as application files by the arm-
debugger.getApplicationFile command. The default is **/*.{axf,elf}.

Debugger
Path

The path to the Arm Debugger executable. This setting overrides any path set automatically in your Arm Tools
Environment.

Experimental
Features

Option to enable preview features that have not reached production quality yet.

Logging
Verbosity

Verbosity level of the debugger logging. This impacts the output printed in the Output tab (View > Output) for the
Arm Debugger output channel. Arm Debugger also generates additional log files for each debug session if the Logging
Verbosity setting is set to debug. The log files are named as follows: armdbg-<date>_<time>.log.

Pack Asset
Url

URL to download CMSIS DFPs (Device Family Packs) from if they are not already available on your machine.

7.4.1 Access the settings

Access the Arm Debugger settings.

Procedure
1. Open the settings:

• On Windows or Linux, go to File > Preferences > Settings.

• On macOS, go to Code > Settings > Settings.
2. Go to the Extensions category and click Arm Debugger.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Activate your license to use Arm tools

8. Activate your license to use Arm tools
MDK and the various development tools Arm provides are exclusively available through user-based
licensing (UBL).

To use MDK and tools like Arm® Compiler, Arm Debugger, or Fixed Virtual Platforms (FVPs) in your
toolchain, you must activate a license.

If you use a licensed tool without a license, a No Arm License status displays in the status bar and
a pop-up message displays.

Errors also appear in the vcpkg-configuration.json file and in the Problems tab. To open the
Problems tab, select Problems from the View menu.

1. Click Manage Arm license in the pop-up that displays in the bottom right-hand corner.

2. Select one of the following options in the drop-down list at the top of the window:

• Activate Arm Keil MDK Community Edition: Switch to the Keil® MDK Community Edition
license. You can use this license only for non-commercial projects.

• Activate or manage Arm licenses: Switch to a commercial license such as Keil MDK
Professional Edition or a Keil MDK Essential Edition. This option opens an Arm License
Management Utility window where you can provide a product activation code or activate
your license with a license server.

To have access to the Arm License Management Utility window and manage your
license, you can also use the Environment: Manage tool licenses command from
the Command Palette. After you activate a license, its name displays in the status
bar. Click the license name to open the Arm License Management Utility window.

For further details, see Activate your product using an activation code and Activate your product
using a license server.

The Backwards compatibility topic also explains how you can license older versions of Keil software
using a product license that includes Keil MDK Professional.

8.1 Troubleshoot expired or cache-expired licenses
If you use a licensed tool with an expired or cache-expired license, a warning displays in the status
bar. In addition, a pop-up message displays in the bottom right-hand corner.

Cache-expired licenses happen when your local license could not be renewed. This
issue might occur because of network issues, lack of space on your device, or issues
with your permissions.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 97

https://developer.arm.com//Tools%20and%20Software/User-based%20Licensing
https://developer.arm.com//Tools%20and%20Software/User-based%20Licensing
https://developer.arm.com/documentation/102516/latest/Activate-and-deactivate-your-product-license/Activate-your-product-using-an-activation-code?lang=en
https://developer.arm.com/documentation/102516/latest/Activate-and-deactivate-your-product-license/Activate-your-product-using-a-license-server?lang=en
https://developer.arm.com/documentation/102516/latest/Activate-and-deactivate-your-product-license/Activate-your-product-using-a-license-server?lang=en
https://developer.arm.com/documentation/102516/latest/User-based-licensing-overview/Backwards-compatibility

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Activate your license to use Arm tools

1. Click Manage Arm license in the pop-up.

2. Depending on your license, one of the following options displays in the drop-down list at the
top of the window:

• If your license has expired, a Get help for expired license option displays. Select this option
to view information on the steps that you need to take.

• If your license is cache-expired, a Get help for cache-expired license option displays. Select
this option to view information on the steps that you need to take.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Use CMSIS-Toolbox from the command line

9. Use CMSIS-Toolbox from the command
line

CMSIS-Toolbox is a set of command-line tools that are integrated into the Keil® Studio extensions.
You can also use them as standalone tools from the command line.

If you used an official example from keil.arm.com and installed the Keil Studio Pack, then CMSIS-
Toolbox is already available on your machine. For more details, see Get started with an example
project.

The main command-line tools that CMSIS-Toolbox provides are:

• cpackget: Pack Manager. Used to install and manage CMSIS-Packs in your development
environment.

• cbuild: Build invocation. Used to orchestrate the build process that translates a project to an
executable binary image. cbuild invokes the csolution, cpackget, and cbuildgen tools and
launches the CMake compilation process.

• csolution: Project Manager. Used to create build information for embedded applications that
consist of one or more related projects.

The Build Tools page describes how to use these tools with the command line.

9.1 Add CMSIS-Toolbox to the system PATH
The Environment Manager extension installs CMSIS-Toolbox and adds the tools into the Visual
Studio Code system PATH.

If you install CMSIS-Toolbox without using the Environment Manager extension and vcpkg, add the
installation path to the system PATH.

9.2 Support for packs
CMSIS-Packs, or software packs, contain everything that you need to work with specific
microcontroller families or development boards.

You can work with different types of packs:

• Public packs: publicly available packs created by Arm or by silicon and software vendors. Public
packs are available from the CMSIS-Packs page on keil.arm.com.

• Private packs: packs that you have created but not shared yet, or packs that others shared
with you privately. These packs can be local packs available on your system or remote packs
available on the web.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 97

https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/build-tools.md
https://www.keil.arm.com/packs/

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Use CMSIS-Toolbox from the command line

This section gives you an overview on how to manage the different types of packs.

The Open-CMSIS-Pack documentation describes the different ways of adding or
removing packs from the command line in detail. See Adding packs and Removing
packs.

9.2.1 Add public packs

You can use the functionality available in the CMSIS Solution extension to install public packs. See
Install CMSIS-Packs for more details.

Alternatively, use the cpackget add command from the Terminal to install the latest published
version of public packs listed in the package index of a vendor. A package index file lists all the
CMSIS-Packs hosted and maintained by a vendor. See the Open-CMSIS-Pack documentation for
more information on package index files.

Explore the available CMSIS-Packs on keil.arm.com/packs and use the snippets
available to update your csolution.yml file and install packs with cpackget add.

For example, the following command installs the latest public version of a public pack:

cpackget pack add Vendor::PackName

Where:

• Vendor: Is the name of the vendor who created the CMSIS-Pack

• PackName: Is the name of the CMSIS-Pack

After running cpackget add, reload Visual Studio Code to update the data that displays in the
interface.

9.2.2 Add private local packs

To work with a CMSIS-Pack that you created locally, use the cpackget add command from the
Terminal. Then, reload Visual Studio Code so that the CMSIS Solution extension knows about the
registered pack. Components from the pack appear in the Software Components view, and the file
validation takes the new pack into account.

For example, the following command registers a local pack using a PDSC (pack description) file:

cpackget add /path/to/Vendor.PackName.pdsc

Where:
Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 83 of 97

https://github.com/Open-CMSIS-Pack/cpackget#adding-packs
https://github.com/Open-CMSIS-Pack/cpackget#removing-packs
https://github.com/Open-CMSIS-Pack/cpackget#removing-packs
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/createPackPublish.html#packIndexFile
https://www.keil.arm.com/packs

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Use CMSIS-Toolbox from the command line

• Vendor: Is the name of the vendor who created the CMSIS-Pack

• PackName: Is the name of the CMSIS-Pack

PDSC files contain information about the content of packs.

After running cpackget add to add packs to the pack root folder, reload Visual Studio Code to
update the data that displays in the interface.

If you cannot see the components from the pack or packs that you have just added in the
Software Components view, check the CMSIS_PACK_ROOT environment variable. You can check the
environment variables of your system relevant for CMSIS-Toolbox with:

cbuild list environment

9.2.3 Add private remote packs

To install a remote pack available on the web, use the cpackget add command and the URL of the
pack.

For example, the following command installs a pack version that you can download from the web:

cpackget add https://vendor.com/example/Vendor.PackName.x.y.z.pack

Where:

• Vendor: Is the name of the vendor who created the CMSIS-Pack

• PackName: Is the name of the CMSIS-Pack

• x.y.z: Is the specific version of the pack that you want to install

After running cpackget add, reload Visual Studio Code to update the data that displays in the user
interface.

9.2.4 Remove packs

To remove packs from your system, use cpackget rm.

For example, the following command removes a specific pack version:

cpackget rm Vendor.PackName.x.y.z

Where:

• Vendor: Is the name of the vendor who created the CMSIS-Pack

• PackName: Is the name of the CMSIS-Pack

• x.y.z: Is the specific version of the pack that you want to remove

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Use CMSIS-Toolbox from the command line

After running cpackget rm, reload Visual Studio Code to update the data that displays in the user
interface.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Known issues and troubleshooting

10. Known issues and troubleshooting
This section describes known issues with the Keil® Studio extensions and how to troubleshoot
some common issues.

10.1 Known issues
Here are the known issues.

Arm CMSIS Solution extension
The CMSIS Solution extension has the following known issues:

• No support for cdefaults.yml. The Software Components view and validation do not use the
compiler set in the cdefaults file.

10.2 Troubleshooting
This section provides solutions to some common issues you might experience when you use the
extensions.

10.2.1 Build fails to find CMSIS-Toolbox and causes an ENOENT error

The solution build fails with an ENOENT error because the extension cannot find the CMSIS-
Toolbox.

Solution
Follow the instructions in the pop-up message.

If the Environment Manager is installed, but the environment does not contain CMSIS-Toolbox:

• Use the Add to Vcpkg option to add CMSIS-Toolbox to the vcpkg-configuration.json file.
This option installs CMSIS-Toolbox with the Environment Manager.

• Alternatively, use the Open Installation Documentation option to install CMSIS-Toolbox
manually and add it to the PATH, or configure the path in the settings.

If the Environment Manager is not installed:

• Install the Environment Manager from the Extensions view using the Install Environment
Manager option. Next, create a vcpkg-configuration.json file. Click Arm Tools in the status
bar, then select Add Arm tools Configuration To Workspace to open the visual editor and
select tools. This process creates a vcpkg-configuration.json file that you can save for your
project.

• Alternatively, use the Open Installation Documentation option to install CMSIS-Toolbox
manually and add it to the PATH, or configure the path in the settings.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Known issues and troubleshooting

The CMSIS-Toolbox documentation describes how to install CMSIS-Toolbox manually.

10.2.2 Download and installation of vcpkg artifacts fails on Windows

With the Arm Environment Manager extension, downloading and installing vcpkg artifacts fails on
Windows due to long path names in the default installation folder.

Solution
Enable long path support in your Windows settings. See Enable Long Paths in Windows 10,
Version 1607, and Later for more details.

10.2.3 Build fails to find toolchain

With the CMSIS Solution extension, errors such as ld: unknown option: --cpu=Cortex-M4 appear
in the build output. In this example, CMSIS-Toolbox is trying to use the system linker instead of the
Arm linker, armlink, that is included with Arm® Compiler.

Solution
1. If you have installed the CMSIS Solution extension separately instead of using the Keil Studio

Pack, follow the instructions for installing and setting up CMSIS-Toolbox. In particular, make
sure that you set the CMSIS_COMPILER_ROOT environment variable correctly.

You can check the environment variables of your system relevant for CMSIS-Toolbox with:

cbuild list environment

Alternatively, you can install the Keil Studio Pack to benefit from an automated setup with
Microsoft vcpkg.

2. Clean the solution. In particular, delete the out and tmp directories.

3. Run the build again.

10.2.4 Connected development board or debug probe not found

You have connected your development board or debug probe, but the Device Manager extension
cannot detect the hardware.

Solution
• Run Device Manager on Windows, System Information on a Mac, or a Linux system utility tool

like hardinfo, and then check for warnings beside your hardware. Warnings can indicate that
hardware drivers are not installed. If necessary, obtain and install the appropriate drivers for
your hardware.

• On Windows: ST development boards and probes require extra drivers. You can download
them from the ST site.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 97

https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md
https://learn.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=registry#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=registry#enable-long-paths-in-windows-10-version-1607-and-later
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/blob/main/docs/installation.md
https://www.st.com/en/development-tools/stsw-link009.html
https://www.st.com/en/development-tools/stsw-link009.html

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Known issues and troubleshooting

• On Windows: Check if you have an Mbed™ serial port driver installed on your machine. The
Mbed serial port driver is required with Windows 7 only. Serial ports work out of the box
with Windows 8.1 or newer. The Mbed serial port driver breaks native Windows functionality
for updating drivers because it claims all the boards with a DAPLink firmware by default. We
recommend that you uninstall the driver if you do not need it. Alternatively, you can disable it.

You can either:

◦ Uninstall the Mbed serial port driver (recommended): Open a command prompt as an
administrator. Find and delete the mbedserial_x64.inf and mbedcomposite_x64.inf drivers.

 pnputil /enum-drivers

 pnputil /delete-driver {oemnumber.inf} /force

Then, connect your hardware using a USB cable and open the Windows Device Manager.
In Ports (COM & LPT) and Universal Serial Bus controllers, find the mbed entries and
right-click them both to uninstall them. Finally, disconnect and reconnect your hardware.

◦ Disable the Mbed serial port driver: Open the Windows Device Manager. In Ports (COM &
LPT), find the Mbed Serial Port. Right-click it and select Properties. Select the Driver tab
and click Update Driver. Click Browse my computer for drivers and then click Let me pick
from a list of available drivers on my computer. Select USB Serial Device instead of mbed
Serial Port.

• On Linux: udev rules grant permission to access USB boards and devices. To build and run a
project on your hardware or to debug a project, you must install udev rules.

Clone the pyOCD repository, then copy the rules files which are available in the udev folder to
/etc/udev/rules.d/ as explained in the README.md file. Follow the instructions in the README
file.

After installing the udev rules, your connected hardware is detectable in the Device Manager
extension. If you still encounter a permission issue when accessing the serial output, run sudo
adduser "$USER" dialout, and then restart your machine.

• Check that the firmware version of your board or debug probe is supported and update the
firmware to the latest version. See Out-of-date firmware for more details.

• Your board or device might be claimed by other processes or tools. This might happen if you
are accessing a board or device with several instances of Visual Studio Code, or with different
IDEs.

• Activate the Manage All Devices setting. This setting allows you to select any USB hardware
connected to your computer. By default, the Device Manager extension gives you access only
to hardware from known vendors.

1. Open the settings:

◦ On Windows or Linux, go to: File > Preferences > Settings.

◦ On macOS, go to: Code > Settings > Settings.

2. Find the Device-manager: Manage All Devices setting and select its checkbox.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 97

https://github.com/pyocd/pyOCD
https://github.com/pyocd/pyOCD/blob/main/udev/README.md

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Known issues and troubleshooting

10.2.5 Out-of-date firmware

You have connected your development board or debug probe and a pop-up message appears
mentioning that the firmware is out of date.

Solution
Update the firmware of the board or debug probe to the latest version:

• DAPLink. If you cannot find your board or probe on daplink.io, then check the website of the
manufacturer for your hardware.

• ST-LINK. Note that ST development boards and probes on Windows require extra drivers. You
can download them from the ST site.

• For other WebUSB-enabled CMSIS-DAP firmware updates, contact your board or debug probe
vendor.

If you are using an FRDM-KL25Z board and the standard DAPLink firmware update
procedure does not work, follow this procedure (requires Windows 7 or Windows
XP).

For more information on firmware updates, see also the Debug Probe Firmware Update
Information Application Note.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 97

https://armmbed.github.io/DAPLink/
https://www.st.com/en/development-tools/stsw-link007.html
https://www.st.com/en/development-tools/stsw-link009.html
https://axotron.se/blog/changing-to-mbed-firmware-on-frdm-kl25z-using-windows-10/
https://developer.arm.com/documentation/109243/latest/Abstract
https://developer.arm.com/documentation/109243/latest/Abstract

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Submit feedback

11. Submit feedback
If you have suggestions or if you discover an issue with any of the Keil® Studio extensions, get in
touch with us. Go to https://www.keil.arm.com/support and use the links in the Keil Studio for VS
Code category.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 97

https://www.keil.arm.com/support

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 97

https://www.arm.com/company/policies/trademarks

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0000-18 6 November 2024 Non-Confidential Updates

0000-17 10 October 2024 Non-Confidential Updates

0000-16 25 July 2024 Non-Confidential Updates

0000-15 19 June 2024 Non-Confidential Updates

0000-14 22 May 2024 Non-Confidential Updates

0000-13 23 April 2024 Non-Confidential Updates

0000-12 8 April 2024 Non-Confidential Updates

0000-11 21 March 2024 Non-Confidential Updates

0000-10 29 February 2024 Non-Confidential Updates

0000-09 31 January 2024 Non-Confidential Updates

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Issue Date Confidentiality Change

0000-08 20 December 2023 Non-Confidential Updates

0000-07 5 December 2023 Non-Confidential Updates

0000-06 14 November 2023 Non-Confidential Updates

0000-05 19 October 2023 Non-Confidential Updates

0000-04 3 October 2023 Non-Confidential Updates

0000-03 6 September 2023 Non-Confidential Updates

0000-02 20 July 2023 Non-Confidential Updates

0000-01 13 July 2023 Non-Confidential First release

Change history
For information about the functional changes to the Arm® Keil® Studio Visual Studio Code
extensions, see the Change Log for each extension in Visual Studio Code. Click Extensions in the
Visual Studio Code Activity Bar. Then select an extension and click CHANGELOG.

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 97

https://developer.arm.com/glossary

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Convention Use
<and> Encloses replaceable terms for assembler syntax where they appear in code or code

fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
of harming yourself.

This information is important and needs your attention.

This information might help you perform a task in an easier, better, or faster way.

This information reminds you of something important relating to the current
content.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 97

Arm® Keil® Studio Visual Studio Code Extensions User Guide Document ID: 108029_0000_18_en
Issue 18

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm Keil Microcontroller Development Kit (MDK) Getting Started Guide 109350 Non-Confidential

Arm Keil Studio Cloud User Guide 102497 Non-Confidential

µVision User Guide 101407 Non-Confidential

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 97

https://developer.arm.com/documentation
https://developer.arm.com/documentation/109350
https://developer.arm.com/documentation/102497
https://developer.arm.com/documentation/101407

	Arm® Keil® Studio Visual Studio Code Extensions User Guide
	Contents
	1. Extension pack and extensions
	1.1 Arm Keil Studio Pack

	2. Intended use cases for the extensions
	3. Get started with an example project
	3.1 Import a solution example
	3.2 Download a Keil μVision example
	3.3 Finalize the setup of your development environment
	3.3.1 Configure an HTTP proxy (optional)
	3.3.2 clangd

	3.4 Build the example project
	3.5 Choose a context for your solution
	3.6 Look at the Solution outline
	3.7 Install CMSIS-Packs and select software components from packs
	3.8 Connect your board
	3.9 Run the solution on your board
	3.10 Start a debug session

	4. Arm Environment Manager extension
	4.1 Tools installation with Microsoft vcpkg
	4.2 Confirm automatic activation
	4.3 Check the tools installed with Microsoft vcpkg
	4.4 Modify the manifest file manually
	4.5 Use the Configure Arm Tools Environment visual editor
	4.6 vcpkg activation options
	4.7 Use vcpkg from the command line
	4.8 Specific installation use cases
	4.8.1 Switch to a specific Arm Compiler for Embedded version
	4.8.2 Use Arm Compiler for Embedded FuSa
	4.8.3 Use a pre-installed toolchain
	4.8.4 Use the Keil Studio extensions on an air-gapped machine

	5. Arm CMSIS Solution extension
	5.1 CMSIS solutions
	5.2 Select a solution from the workspace
	5.3 Set a context for your solution
	5.4 Use the Solution outline
	5.5 CMSIS-Packs
	5.6 Install CMSIS-Packs
	5.6.1 Explore the available CMSIS-Packs

	5.7 Manage software components
	5.7.1 Open the Software Components view
	5.7.2 Modify the software components in your project
	5.7.3 Undo changes

	5.8 Use the Configuration Wizard
	5.9 Create a solution
	5.10 Configure a solution
	5.11 Convert a Keil μVision project to a solution
	5.12 Configure a build task
	5.13 Initialize your solution
	5.14 Use the CMSIS csolution API

	6. Arm Device Manager extension
	6.1 Supported hardware
	6.1.1 Supported development boards and MCUs
	6.1.2 Supported debug probes
	6.1.2.1 WebUSB-enabled CMSIS-DAP debug probes
	6.1.2.2 ST-LINK debug probes

	6.2 Connect your hardware
	6.3 Edit your hardware
	6.4 Open a serial monitor

	7. Arm Debugger extension
	7.1 Run your project on your hardware with Arm Debugger
	7.1.1 Configure a task
	7.1.2 Override or extend the default run configuration options for Arm Debugger
	7.1.3 Arm Debugger run configuration options
	7.1.4 Modify the run configuration options with the Run Configuration visual editor
	7.1.4.1 Run configuration options in the visual editor

	7.1.5 Run your project

	7.2 Debug your project with Arm Debugger
	7.2.1 Add a configuration
	7.2.2 Override or extend the default debug configuration options for Arm Debugger
	7.2.3 Arm Debugger debug configuration options - CMSIS use cases
	7.2.4 Modify the debug configuration options with the Debug Configuration visual editor
	7.2.4.1 Debug configuration for a physical target
	7.2.4.2 Debug configuration for a virtual target (Fixed Virtual Platforms)
	7.2.4.3 Debug configuration options in the visual editor

	7.2.5 Start an Arm Debugger session
	7.2.5.1 Start a debug session with a physical target
	7.2.5.2 Start a debug session with a virtual target

	7.2.6 Set breakpoints
	7.2.7 Inspect registers
	7.2.7.1 Edit registers

	7.2.8 Inspect functions
	7.2.9 Use the Debug Console
	7.2.9.1 Run Arm Debugger commands
	7.2.9.2 Use expressions

	7.2.10 Scope resolution operator
	7.2.11 Next steps

	7.3 Work with scripts
	7.3.1 Prerequisites
	7.3.2 Use advanced scripts or the default Jython templates

	7.4 Arm Debugger extension settings
	7.4.1 Access the settings

	8. Activate your license to use Arm tools
	8.1 Troubleshoot expired or cache-expired licenses

	9. Use CMSIS-Toolbox from the command line
	9.1 Add CMSIS-Toolbox to the system PATH
	9.2 Support for packs
	9.2.1 Add public packs
	9.2.2 Add private local packs
	9.2.3 Add private remote packs
	9.2.4 Remove packs

	10. Known issues and troubleshooting
	10.1 Known issues
	10.2 Troubleshooting
	10.2.1 Build fails to find CMSIS-Toolbox and causes an ENOENT error
	10.2.2 Download and installation of vcpkg artifacts fails on Windows
	10.2.3 Build fails to find toolchain
	10.2.4 Connected development board or debug probe not found
	10.2.5 Out-of-date firmware

	11. Submit feedback
	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

