
DRAFT

Realm Host Interface
specification

Document number DEN0148

Document quality ALP

Document version 1.0-alp2

Document confidentiality Non-confidential

Document build information 9e3736c6 doctool 0.56.1

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.

DRAFT

Realm Host Interface specification

Release information

1.0-alp2 (31-10-2024)

New features

• Addition of RHI_FAL_CLOSE ABI

Clarifications

• Alter wording of parameter blocks to description, [value] form.
• Move to consistent ‘sync’ terminology in Appendix A (previously a mix of ‘sync’ and ‘injection’).
• Typo corrections.

Defects

• Allocate FIDs within the range reserved for RHI in SMCCC.
• Swap SessionID and connectionType parameters for RHI_SESSION_OPEN to be consistent with other calls in protocol.
• Types within Appendix A renamed to use BSB naming instead of BIB naming.

Relaxations

None

1.0-alp1 (19-09-2024)
• Added Device Assignment ABI chapter

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

DRAFT

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this License (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this License. By using or copying the
Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owned or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that is not
itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions, information,
scope, and data. This document was produced using reasonable efforts based on information available as of the date of issue
of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and
that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible
for any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without notice. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT
OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this License then Arm may terminate this License immediately upon giving
written notice to Licensee. Licensee may terminate this License at any time. Upon termination of this License by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
License, all terms shall survive except for the License grants.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

DRAFT

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach. Any
termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this License and any translation, the terms of the English version of this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No license, express, implied or otherwise, is granted to Licensee under this
License, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

http://www.arm.com/company/policies/trademarks

DRAFT

Contents

Realm Host Interface specification

Realm Host Interface specification . ii
Release information . ii
Arm Non-Confidential Document License (“License”) iii

Preface
Conventions . vii

Typographical conventions . vii
Numbers . vii
Pseudocode descriptions . vii
Assembler syntax descriptions . vii

Rules-based writing . viii
Content item identifiers . viii
Content item rendering . viii
Content item classes . viii

Additional reading . ix
Feedback . x

Feedback on this book . x

Chapter 1 Realm Host Interface (RHI)
1.1 Overview . 11
1.2 Use cases . 11
1.3 Transport . 12
1.4 Protocols . 12

Chapter 2 RHI Implementation Features
2.1 RHI_IMPLEMENTATION_FEATURES . 14

Chapter 3 Host Session
3.1 RHI_SESSION_VERSION . 17

3.1.1 Parameters . 17
3.1.2 Return values . 17

3.2 RHI_SESSION_FEATURES . 18
3.2.1 Parameters . 18
3.2.2 Return values . 18

3.3 RHI_SESSION_OPEN . 19
3.3.1 Parameters . 19
3.3.2 Return values . 19
3.3.3 Return conditions: . 19
3.3.4 Protocol state on return: . 19

3.4 RHI_SESSION_CLOSE . 20
3.4.1 Parameters . 20
3.4.2 Return values . 20
3.4.3 Return Conditions: . 20
3.4.4 Protocol State on return: . 20

3.5 RHI_SESSION_SEND . 21
3.5.1 Return values . 21
3.5.2 Return Conditions: . 21
3.5.3 Protocol State on return: . 21

3.6 RHI_SESSION_RECEIVE . 22

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

DRAFT

Contents
Contents

3.6.1 Parameters . 22
3.6.2 Return values . 22
3.6.3 Return Conditions: . 22
3.6.4 Protocol State on return: . 22

Chapter 4 Firmware Activity Log
4.1 Introduction . 23

4.1.1 Security Considerations . 23
4.2 RHI_FAL_VERSION . 24

4.2.1 Parameters . 24
4.2.2 Return values . 24

4.3 RHI_FAL_FEATURES . 25
4.3.1 Parameters . 25
4.3.2 Return values . 25

4.4 RHI_FAL_GET_SIZE . 26
4.4.1 Parameters . 26
4.4.2 Return values . 26

4.5 RHI_FAL_READ . 27
4.5.1 Parameters . 27
4.5.2 Return values . 27

4.6 RHI_FAL_CLOSE . 28
4.6.1 Parameters . 28
4.6.2 Return values . 28

Chapter 5 Device Assignment
5.1 Introduction . 29
5.2 DA Types . 30

5.2.1 DA_OBJECT_TYPE . 30
5.3 RHI_DA_VERSION . 31

5.3.1 Parameters . 31
5.3.2 Return values . 31

5.4 RHI_DA_FEATURES . 32
5.4.1 Parameters . 32
5.4.2 Return values . 32

5.5 RHI_DA_OBJECT_SIZE . 33
5.5.1 Parameters . 33
5.5.2 Return values . 33

5.6 RHI_DA_OBJECT_READ . 34
5.6.1 Parameters . 34
5.6.2 Return values . 34

Part A Appendix A
Boot Data Synchronisation . 36

Introduction . 36
System Overview . 36
Security Considerations . 38
System Message Data Structures . 39

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

DRAFT

Preface

Preface

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

http://developer.arm.com

DRAFT

Preface
Rules-based writing

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration
A Declaration is a statement that does one or more of the following:

• Introduces a concept
• Introduces a term
• Describes the structure of data
• Describes the encoding of data

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

Rule
A Rule is a statement that describes the behaviour of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

DRAFT

Preface
Additional reading

A Rule is rendered with the label R.

Goal
A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information
An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale
A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note
An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage
A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Realm Management Monitor specification. (ARM DEN 0137) Arm Limited.

[2] Arm SMC Calling Convention. (ARM DEN 0028 D) Arm Ltd.

[3] Live Firmware Activation SMC Interface. (ARM DEN 0147) Arm Ltd.

[4] NIST Special Publication 800-56A. Recommendation for Pair-Wise Key-Establishment Schemes Using
Discrete Logarithm Cryptography. See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.80
0-56Ar3.pdf

[5] Introducing Arm CCA. (ARM DEN 0125) Arm Limited.

[6] IANA Hash Function Textual Names. See https://www.iana.org/assignments/hash-function-text-names/has
h-function-text-names.xhtml

[7] RME system architecture specification. (ARM DEN 0129) Arm Ltd.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml

DRAFT

Preface
Feedback

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (Realm Host Interface specification).
• The number (DEN0148 1.0-alp2).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

DRAFT
Chapter 1
Realm Host Interface (RHI)

1.1 Overview

I RHI enables software running within Realms to request specific services or data items from the non-secure host.
This is in contrast to the Realm Services Interface (RSI) which provides access to services or data provided by the
Realm Management Monitor (RMM) [1].

RHI supports sets of commands dedicated to specific access cases. This specification covers the usage and call
patterns for these commands.

1.2 Use cases

I There are use cases where it may be necessary for Realm software to communicate with services executing within
the context of the non-secure host responsible for the management of Realms. Use cases may fall into the following
categories:

• To access data relevant to the state of the host platform
• To access a service that maps some state or resource controlled by the host to be accessed by the specific

realm.

The inclusion of different sets of commands may depend upon the use cases addressed by a deployment. Some
command sets have specific uses tied into the programming model required to access deployed features and support
use of the Realm Services Interface. Others are more open ended and will require more usage explanation within
the context of a given deployment.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

11

DRAFT

Chapter 1. Realm Host Interface (RHI)
1.3. Transport

Note

Data received from such host calls is provided from outside of the Trusted Computing Base for Realms. As
such, it is necessary for a use case specific security mechanism to be available for any data received.

1.3 Transport

R All RHI calls use the RSI_HOST_CALL command as a transport.

I Within the RsiHostCall data structure, the gprs[0] value is an SMCCC Function Identifier (FID) which specifies
the function to be called.

I The FID range for RHI is reserved to be 0xC500_0040 – 0XC500_013F.

See also:

• Realm Management Monitor (RMM) architecture specification [1]
• Arm SMCCC calling convention [2]

I In the description below of the RHI commands, parameters are listed corresponding to members of the RsiHostCall
data structure.

1.4 Protocols

RHI commands are organised into a set of protocols, each identified by a numerical index. The table below
summarises the protocols defined in this version of the specification.

RHI Protocol Set Index

Host Session 0x1

FW Activity Log 0x2

Device Assignment 0x3

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

12

DRAFT
Chapter 2
RHI Implementation Features

G The RHI_IMPLEMENTATION_FEATURES interface can be used to determine whether sets of RHI protocols
supported by the current implementation.

R The RHI_IMPLEMENTATION_FEATURES call must be supported by an implementation.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

13

DRAFT

Chapter 2. RHI Implementation Features
2.1. RHI_IMPLEMENTATION_FEATURES

2.1 RHI_IMPLEMENTATION_FEATURES

I The RHI_IMPLEMENTATION_FEATURES call is used to test whether an RHI protocol set is supported by the
host implementation. The RHI protocol set values to be tested are found in the interface summary table

Within each protocol set, there is a Features ABI to determine more information about the supported calls within
the protocol.

Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0040

gprs[1] UInt64 RHI Protocol set value to query

Return values

Argument Type Value

gprs[0] bool if value is TRUE, the implementation supports this protocol
set

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

14

DRAFT
Chapter 3
Host Session

G The following collection of calls are used to establish and use a communication channel between the Realm and an
external entity. This is a general mechanism, which is specialised for a specific purpose by the data passed through
the channel.

I The communication channel is created via a service running in the non-secure host. This service will determine the
relevant external entity, for example a client of the host service managing the Realm.

Note that the channel does not provide any security mechanism. Security must be provided within any exchange of
messages through the channel.

I For an example of a specific protocol using this communication channel, see Appendix A: Boot Data
Synchronisation

I The communication channel can be created in one of two modes:

• BLOCKING: ABI calls do not return until communications are complete
• NON-BLOCKING: ABI calls return immediately and may need to be repeated until communications are

complete.

It is IMPLEMENTATION DEFINED whether either communication type is supported

I The Host Session ABIs cause an internal Host Session State (HSS) to be maintained for a connection. This state
which can be used to determine when communications are complete. The states that a connection can be in are:

• RHI_HSS_SESSION_UNCONNECTED
• RHI_HSS_CONNECTION_IN_PROGRESS
• RHI_HSS_CONNECTION_ESTABLISHED
• RHI_HSS_IO_IN_PROGRESS
• RHI_HSS_IO_COMPLETE
• RHI_HSS_BUFFER_SIZE_DETERMINED

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

15

DRAFT

Chapter 3. Host Session

• RHI_HSS_CONNECTION_CLOSE_IN_PROGRESS

State Diagram:

RHI_HSS_SESSION_UNCONNECTED

RHI_HSS_CONNECTION_IN_PROGRESS

RHI_HSS_CONNECTION_ESTABLISHED

RHI_HSS_IO_IN_PROGRESS

RHI_HSS_IO_COMPLETE

RHI_HSS_BUFFER_SIZE_DETERMINED RHI_HSS_CONNECTION_CLOSE_IN_PROGRESS

RHI_SESSION_OPEN

RHI_SESSION_OPEN-complete

RHI_SESSION_SEND-or-RECEIVE

RHI_SESSION_SEND-or-RECEIVE-complete

RHI_SESSION_SEND-or-RECEIVE-eoxt

RHI_SESSION_RECEIVE-bufsiz RHI_SESSION_RECEIVE-bufsiz-returned RHI_SESSION_CLOSE

RHI_SESSION_CLOSE-complete

U The constants above can be implemented via an enumerated type or by assigning values which are IMPLEMENTA-
TION DEFINED.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

DRAFT

Chapter 3. Host Session
3.1. RHI_SESSION_VERSION

3.1 RHI_SESSION_VERSION

The RHI_SESSION_VERSION ABI returns the implemented numeric version of the RHI_SESSION calls within
this protocol.

R If the protocol set is reported as supported via the Supported Protocols ABI, the RHI_SESSION_VERSION ABI
must be implemented.

3.1.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0041

3.1.2 Return values

Argument Type Description

gprs[0] UInt64 Protocol Set version

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

DRAFT

Chapter 3. Host Session
3.2. RHI_SESSION_FEATURES

3.2 RHI_SESSION_FEATURES

The features ABI provides implementation details for the RHI_SESSION calls within this protocol.

R If the protocol set is reported as supported via the Supported Protocols ABI, the RHI_SESSION_FEATURES ABI
must be implemented.

3.2.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0042

3.2.2 Return values

Argument Type Description

gprs[0] UInt64 ABI calls supported bitmap

gprs[1] UInt64 Connection modes supported bitmap

• ABI calls supported: each bit set in this bitmap indicates that the corresponding call is supported by the host
implementation.

– Bit 0: RHI_SESSION_OPEN supported
– Bit 1: RHI_SESSION_CLOSE supported
– Bit 2: RHI_SESSION_SEND supported
– Bit 3: RHI_SESSION_RECEIVE supported

• Connection Modes supported: indicates which Connection Modes are supported by the host implementation.
– Bit 0: BLOCKING connection mode supported
– Bit 1: NON-BLOCKING connection mode supported

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

DRAFT

Chapter 3. Host Session
3.3. RHI_SESSION_OPEN

3.3 RHI_SESSION_OPEN

Call initiates a communication channel between the Realm and the host determined external entity

3.3.1 Parameters

If the connectionType is NON-BLOCKING, this behaviour also applies to RHI_SESSION_OPEN operations
and the call will return immediately before the host has established any connection with the external entity. The
protocol state will change to RHI_HSS_CONNECTION_IN_PROGRESS to indicate this state. RHI_SESSION_OPEN
can then be called again until the protocol state changes to RHI_HSS_CONNECTION_ESTABLISHED (or error).
For these subsequent calls, the SessionID returned from the first call must be specified. If the protocol state is
’RHI_HSS_SESSION_UNCONNECTED‘ when the RHI_SESSION_OPEN call is made, then the SessionID
parameter is ignored.

If the connectionType is BLOCKING, the call will not return until the host has establised the connection with the
external entity (or error).

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0043

gprs[1] UInt64 SessionID

gprs[2] connectionType BLOCKING or NON-BLOCKING

3.3.2 Return values

Argument Type Desciption

gprs[0] UInt64 Return Code

gprs[1] UInt64 SessionID for the new channel

gprs[2] UInt64 Protocol state for the session

3.3.3 Return conditions:

• RHI_SESS_SUCCESS
• RHI_SESS_PEER_NOT_AVAILABLE: host could not establish a connection to external entity
• RHI_SESS_INVALID_STATE_FOR_OPERATION: state is not RHI_HSS_SESSION_UNCONNECTED
• RHI_SESS_INVALID_SESSION_ID: 0 not passed on initial call or unknown SessionID passed

(NON_BLOCKING)
• RHI_SESS_CONNECTION_TYPE_NOT_SUPPORTED: the implementation does not support this

connection type

3.3.4 Protocol state on return:

• BLOCKING: RHI_HSS_CONNECTION_ESTABLISHED or connection_unconnected (on error)

• NON-BLOCKING: RHI_HSS_CONNECTION_IN_PROGRESS on initial call, this state remains on
subsequent calls until RHI_HSS_CONNECTION_ESTABLISHED or connection_unconnected (error)

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

DRAFT

Chapter 3. Host Session
3.4. RHI_SESSION_CLOSE

3.4 RHI_SESSION_CLOSE

Call closes a previously opened communication channel.

3.4.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0044

gprs[1] UInt64 Channel SessionID

3.4.2 Return values

Argument Type Description

gprs[0] UInt64 Return Code

gprs[1] UInt64 SessionID

gprs[2] UInt64 Protocol state for the session

3.4.3 Return Conditions:

• RHI_SESS_SUCCESS
• RHI_SESS_INVALID_STATE_FOR_OPERATION: state is RHI_HSS_SESSION_UNCONNECTED
• RHI_SESS_PEER_NOT_AVAILABLE: host could not gracefully close session
• RHI_SESS_INVALID_SESSION_ID: unknown SessionID parameter

3.4.4 Protocol State on return:

• BLOCKING: connection_unconnected (RHI_SESS_SUCCESS) or RHI_HSS_CONNECTION_ESTABLISHED
(on error)

• NON-BLOCKING: state changes to RHI_HSS_CONNECTION_CLOSE_IN_PROGRESS and the call
returns immediately. This state remains on subsequent calls until state becomes connection_unconnected or
an error is returned.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

DRAFT

Chapter 3. Host Session
3.5. RHI_SESSION_SEND

3.5 RHI_SESSION_SEND

Call transmits data on previously opened communication channel. Overlapped calls are not supported.

3.5.0.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0045

gprs[1] UInt64 SessionID of channel

gprs[2] Address Realm IPA for buffer containing data, granule aligned

gprs[3] UInt64 Length of data to send in bytes

gprs[4] Offset Offset in buffer from which to send data

3.5.1 Return values

Argument Type Description

gprs[0] UInt64 Return Code

gprs[1] UInt64 SessionID

gprs[2] UInt64 Protocol state for the session

gprs[3] UInt64 Length of data transmitted in bytes

3.5.2 Return Conditions:

• RHI_SESS_SUCCESS: if BLOCKING, operation ended. If NON-BLOCKING, see Protocol State
• RHI_SESS_INVALID_STATE_FOR_OPERATION: valid states are RHI_HSS_CONNECTION_ESTABLISHED

or RHI_HSS_IO_COMPLETE, for first call, or in RHI_HSS_IO_IN_PROGRESS state (NON-BLOCKING)
• RHI_SESS_INVALID_SESSION_ID: unknown SessionID parameter
• RHI_SESS_PEER_NOT_AVAILABLE: communication error to external entity
• RHI_SESS_ACCESS_FAILED: buffer is not readable or is not granule aligned

3.5.3 Protocol State on return:

• BLOCKING: RHI_HSS_IO_COMPLETE (RHI_SESS_SUCCESS) or RHI_HSS_CONNECTION_ESTABLISHED
(on error)

• NON-BLOCKING: RHI_HSS_IO_IN_PROGRESS on initial call, this state remains on subsequent calls
until RHI_HSS_IO_COMPLETE (whether RHI_SESS_SUCCESS or error condition)

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

DRAFT

Chapter 3. Host Session
3.6. RHI_SESSION_RECEIVE

3.6 RHI_SESSION_RECEIVE

Call reads data from Communication channel.

3.6.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0046

gprs[1] UInt64 SessionID of target channel

gprs[2] Address Realm IPA for buffer used to receive data, granule aligned

gprs[3] UInt64 Size of receiving data buffer

gprs[4] Offset Offset in buffer where received data is to be written

If gprs[3] (buffer size) and gprs[2] (buffer address) parameters are both set to 0, then the call is intended to
determine the size of data buffer required, which will be returned in gprs[2].

If only gprs[3] (buffer size) is 0, then no data will be read.

3.6.2 Return values

Argument Type Description

gprs[0] UInt64 Return Code

gprs[0] UInt64 SessionID

gprs[1] UInt64 Protocol state for the session

gprs[2] UInt64 Data length received (or buffer size required)

3.6.3 Return Conditions:

• RHI_SESS_SUCCESS: if BLOCKING, operation ended. If NON-BLOCKING, see Protocol State
• RHI_SESS_INVALID_STATE_FOR_OPERATION: valid states are RHI_HSS_CONNECTION_ESTABLISHED

or RHI_HSS_IO_COMPLETE, for first call, or in RHI_HSS_IO_IN_PROGRESS state (NON-BLOCKING)
• RHI_SESS_INVALID_SESSION_ID: unknown SessionID parameter
• RHI_SESS_PEER_NOT_AVAILABLE: communication error to external entity
• RHI_SESS_ACCESS_FAILED: buffer is not writeable or is not granule aligned

3.6.4 Protocol State on return:

• RHI_HSS_BUFFER_SIZE_DETERMINED if 0 values passed for buffer address and size
• BLOCKING: RHI_HSS_IO_COMPLETE (RHI_SESS_SUCCESS) or RHI_HSS_CONNECTION_ESTABLISHED

(on error)

• NON-BLOCKING: RHI_HSS_IO_IN_PROGRESS on initial call, this state remains on subsequent calls
until RHI_HSS_IO_COMPLETE (whether RHI_SESS_SUCCESS or error condition)

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

DRAFT
Chapter 4
Firmware Activity Log

4.1 Introduction

G These interfaces are used to obtain the Firmware Activity Log (FAL). This log reflects the Firmware changes made
to the CCA Platform. For further details see the Live Firmware Activation specification [3]

I The Firmware Activity Log contains a series of entries that describe changes applied to the firmware that makes
up the CCA Platform. The initial state of the firmware deployed on the CCA Platform is captured at boot time.
Updates to individual components may be made post boot, which will be captured as additional entries in the
Firmware Activity Log. The Firmware Activity Log is maintained within the non-secure host system. The format
and contents of the log is IMPLEMENTATION DEFINED and is intended to be passed to an enlightened verifier
component to support the trustworthiness appraisal of the CCA Platform token. A typical entry within the log
would include at least the following information about a firmware component:

• Component Identity
• Cryptographic measurement of the component in memory
• Identity of the signing authority public key
• The Security Version of the component maintained by Live Firmware Activation

I
4.1.1 Security Considerations

The Firmware Activity Log is an important part of the evidence used by a Relying Party to established the
trustworthiness of a CCA Platform instance. The RHI interface does not provide any security guarantees for
integrity of the data read from the non-secure Host. Data integrity for the log is established by the verifier, using
a measurement entry within the CCA Platform attestation token [1]. This measurement is a compound value,
established by extending a hash measurement of each entry within the Log. The verifier can recompute this
value from the Log entries it receives, and match the attestation report entry to ensure that the log contents are as
expected.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

DRAFT

Chapter 4. Firmware Activity Log
4.2. RHI_FAL_VERSION

4.2 RHI_FAL_VERSION

The RHI_FAL_VERSION ABI returns the implemented numeric version of the RHI_FAL calls within this
protocol.

R If the protocol set is reported as supported via the Supported Protocols ABI, the RHI_FAL_VERSION ABI must
be implemented.

4.2.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0047

4.2.2 Return values

Argument Type Description

gprs[0] UInt64 Protocol Set version

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

DRAFT

Chapter 4. Firmware Activity Log
4.3. RHI_FAL_FEATURES

4.3 RHI_FAL_FEATURES

The features ABI provides implementation details for the FAL calls within this protocol.

R If the protocol set is reported as supported via the Supported Protocols ABI, the FAL_FEATURES ABI must be
implemented.

4.3.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0048

4.3.2 Return values

Argument Type Description

gprs[0] UInt64 ABI calls supported bitmap

• ABI calls supported: each bit set in this bitmap indicates that the corresponding call is supported by the host
implementation.

– Bit 0: RHI_FAL_GET_SIZE supported
– Bit 1: RHI_FAL_READ supported
– Bit 2: RHI_FAL_CLOSE supported

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

DRAFT

Chapter 4. Firmware Activity Log
4.4. RHI_FAL_GET_SIZE

4.4 RHI_FAL_GET_SIZE

The RHI_FAL_GET_SIZE ABI returns the overall size of the FW Activity Log.

4.4.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_0049

4.4.2 Return values

Argument Type Description

gprs[0] UInt64 Size in bytes of the FW Activity Log

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

DRAFT

Chapter 4. Firmware Activity Log
4.5. RHI_FAL_READ

4.5 RHI_FAL_READ

The RHI_FAL_READ ABI fetches the contents of the Firmare Activity Log

4.5.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_004A

gprs[1] Address IPA for Receiving Buffer, granule aligned

gprs[2] UInt64 Offset within buffer where data copy starts

gprs[3] UInt64 Max length of buffer memory

4.5.2 Return values

Argument Type Description

gprs[0] UInt64 Return code

gprs[1] UInt64 Size in bytes written to buffer

gprs[2] UInt64 Remaining size of FAL in bytes to be read

• Return Code:
– RHI_FAL_SUCCESS
– RHI_FAL_ACCESS_FAILED: buffer is not writable or not granule aligned

The ABI returns the number of bytes written to the buffer in gprs[1]. This may be fewer than the buffer size if the
write is the last portion of the log to be transferred. If the number of bytes written is 0, this indicates that the full
log has been transferred.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

DRAFT

Chapter 4. Firmware Activity Log
4.6. RHI_FAL_CLOSE

4.6 RHI_FAL_CLOSE

The RHI_FAL_CLOSE ABI indicates to the host that the FAL has been fully read

4.6.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_004B

4.6.2 Return values

Argument Type Description

gprs[0] UInt64 Return code, value RHI_FAL_SUCCESS

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

DRAFT
Chapter 5
Device Assignment

5.1 Introduction

G Device Assignment (DA) This protocol set supplies ABI calls used to retrieve Device evidence cached within the
Non Secure Host.

I Before these RHI calls can be used to retrieve cached data, relevant RSI calls need to be made to prime the cache.
Failure to make these RSI calls can result in error returns from the RHI calls below. For more details, see the
‘Realm Device Assignment’ chapter of [1].

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

DRAFT

Chapter 5. Device Assignment
5.2. DA Types

5.2 DA Types

5.2.1 DA_OBJECT_TYPE

I The Device Assignment ABIs are used to access multiple object types. The supported types of object are:

• RHI_DA_OBJECT_CERTIFICATE
• RHI_DA_OBJECT_MEASUREMENT
• RHI_DA_OBJECT_INTERFACE_REPORT

RHI_DA_OBJECT_CERTIFICATE objects have PDEV scope.

RHI_DA_OBJECT_MEASUREMENT objects have either PDEV or VDEV scope.

RHI_DA_OBJECT_INTERFACE_REPORT objects have VDEV scope.

U The constants above can be implemented via an enumerated type or by assigning values which are TBD.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

DRAFT

Chapter 5. Device Assignment
5.3. RHI_DA_VERSION

5.3 RHI_DA_VERSION

The RHI_DA_VERSION ABI returns the implemented numeric version of the RHI_DA calls within this protocol.

R If the protocol set is reported as supported via the Supported Protocols ABI, the RHI_DA_VERSION ABI must be
implemented.

5.3.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_004C

5.3.2 Return values

Argument Type Description

gprs[0] UInt64 Protocol Set version

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

DRAFT

Chapter 5. Device Assignment
5.4. RHI_DA_FEATURES

5.4 RHI_DA_FEATURES

The features ABI provides implementation details for the DA calls within this protocol.

R If the protocol set is reported as supported via the Supported Protocols ABI, the DA_FEATURES ABI must be
implemented.

5.4.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_004D

5.4.2 Return values

Argument Type Description

gprs[0] UInt64 ABI calls supported bitmap

• ABI calls supported: each bit set in this bitmap indicates that the corresponding call is supported by the host
implementation.

– Bit 0: RHI_DA_OBJECT_SIZE supported.
– Bit 1: RHI_DA_OBJECT_READ supported.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

DRAFT

Chapter 5. Device Assignment
5.5. RHI_DA_OBJECT_SIZE

5.5 RHI_DA_OBJECT_SIZE

The RHI_DA_OBJECT_SIZE ABI returns the size of the relevant object for the requested VDEV_ID. VDEV_ID
is the ID the host used for VDEV_CREATE.

5.5.1 Parameters

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_004E

gprs[1] UInt64 VDEV_ID

gprs[2] DA_OBJECT_TYPE Type of the target object

5.5.2 Return values

Argument Type Description

gprs[0] UInt64 Return code

gprs[1] UInt64 Size in bytes of the object

• Return Code:
– RHI_DA_SUCCESS.
– RHI_ERROR_INVALID_VDEV_ID: VDEV_ID parameter not found.
– RHI_ERROR_INVALID_DA_OBJECT_TYPE: invalid DA_OBJECT_TYPE.
– RHI_ERROR_DATA_NOT_AVAILABLE: required priming RSI call for object has not been made.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

DRAFT

Chapter 5. Device Assignment
5.6. RHI_DA_OBJECT_READ

5.6 RHI_DA_OBJECT_READ

The RHI_DA_OBJECT_READ ABI fetches a relevant object for a requested VDEV_ID and writes it to a buffer in
NS PAS. VDEV_ID is the ID the host used for VDEV_CREATE.

5.6.1 Parameters

VDEV_ID is the ID the host used for VDEV_CREATE.

Argument Type Description

Imm UInt16 Immediate, value 0

gprs[0] UInt64 FID, value 0xC500_004F

gprs[1] UInt64 VDEV_ID

gprs[2] DA_OBJECT_TYPE Type of the target object

gprs[3] UInt64 Offset within buffer where data copy starts

gprs[4] UInt64 Max length of buffer memory

gprs[5] UInt64 IPA of buffer for read object

5.6.2 Return values

Argument Type Description

gprs[0] UInt64 Return code

gprs[1] UInt64 Size in bytes of data read

• Return Code:
– RHI_DA_SUCCESS.
– RHI_ERROR_INVALID_VDEV_ID: VDEV_ID parameter not found.
– RHI_ERROR_INVALID_DA_OBJECT_TYPE: invalid DA_OBJECT_TYPE.
– RHI_ERROR_DATA_NOT_AVAILABLE: required priming RSI call for object has not been made.
– RHI_ERROR_INVALID_OFFSET: invalid offset for object size.
– RHI_ERROR_INVALID_ADDR: invalid address for PA.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

DRAFT Part A
Appendix A

DRAFT

Boot Data Synchronisation

Boot Data Synchronisation

Introduction

This section describes a protocol for synchronising Realm boot with communications required to obtain parameters
or secret blocks that can be injected into the boot sequence. This ‘Boot Sync Blocks’ Protocol (BSB Protocol) uses
the RHI_SESSION_* calls as a transport.

The main use case for this BSB protocol is to inject values used in the early boot sequence of Realm firmware.
Such values could be UEFI parameters or secrets used to protect user data. Use of the BSB protocol may be
required because:

• there is no network stack available in the early stages of boot
• in order to maintain confidential computing guarantees, these values need to be provided by the User Context

of the Realm initiator, which is known by the host service context, but difficult to establish for the Realm
code at this early stage of boot

In the BSB protocol, messages are exchanged between Realm code and a User Context using a transport provided
by the Host Session RHI calls. The messages have a common encoding, which includes an identifier for the type of
message defined within the BSB protocol and a message specific data block. The BSB protocol does not identify
or restrict the types of values transferred, this can be use case specific. As the Host Interface provides no security
guarantees with respect to any data passed, much of the BSB protocol described here bootstraps an encrypted
channel between the endpoints to protect the confidentiality and integrity of data transferred through the BSB
protocol.

System Overview

There are multiple phases to the communication through the BSB protocol.

• In the first phase, the two communicating parties calculate the secrets required to create a Diffie-Hellman
(DH) [4] key exchange and share them with each other.

• In the second phase, once shared keys have been calculated, the Realm sends the User Context an Attestation
Report that the User Context can validate to confirm that communication is really to a Realm.

• After this point, the channel can be used to supply the relevant data required to specialise the boot sequence,
using the shared key to protect the data.

Phase 1 - protected channel establishment
Within the Realm code, appropriate parameters are chosen for the Diffie-Hellman exchange. The Realm then
generates a random value and uses the chosen DH parameters to create a public value R The Realm code uses the
RHI_SESSION_OPEN ABI to open a Host controlled session to the User Context. The host service is responsible
for routing the message connection to a relevant service.

In the communication flow description below ‘Sent’ refers to the the Realm code using the RHI_SESSION_SEND
ABI and ‘Receive state’ refers to the Realm code using the RHI_SESSION_RECEIVE ABI, both referencing the
SessionID received from the RHI_SESSION_OPEN. All messages within the BSB protocol use data structures
with a common header to encode the message type.

The initial message Sent uses a BOOT_SYNC_KEY_XCHG_REQ data structure. This contains the DH parameters
and the value of R. The User Context service uses the key exchange request parameters provided, along with
another generated random value, to create a public value U. The public values U and R are used to compute a
shared secret K. That K is used to derive an encryption key, KE and a binding key, KB. The User Context prepares
a BOOT_SYNC_KEY_XCHG_RESP data structure containing the value of U, and responds with this data to
the non-secure service. The non-secure service forwards on this data to the Realm. In the meantime, the Realm
is in Receive state until the BOOT_SYNC_KEY_XCHG_RESP data structure is delivered. Once available, U
is extracted and the Realm performs the same cryptographic operations as the User Context (using U and R to
compute K, then deriving KE and KB). Both end parties in the communication should now have identical keys

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

DRAFT

Boot Data Synchronisation

which can be used to protect communication in further phases.

Phase 2 - establishment of trust
Once the communication pathway is established, the User Context can establish the trustworthiness of the Realm.
The Realm code uses the RSI_ATTESTATION_TOKEN_INIT and RSI_ATTESTATION_TOKEN_CONTINUE
ABIs to obtain an Attestation Report (AR). The first of these, RSI_ATTESTATION_TOKEN_INIT, requires a
Challenge parameter that establishes the context for the Report request. The Challenge used in this BSB
protocol is a hash of the computed binding key (KB). The hash algorithm used here is fixed for the overall
BSB protocol as it will also be used within the User Context. The resultant report is encrypted using the
computed encryption key (KE) and a fixed algorithm for the BSB protocol. The encrypted data is packaged into a
BOOT_SYNC_ATTESTATION_REQUEST data structure and Sent to the User Context. The User Context extracts
the data from the BOOT_SYNC_ATTESTATION_REQUEST data structure and uses its computed encryption key,
KE, to decrypt AR. AR is then verified for correctness using an Attestation Service. As well as overall correctness
of AR the verification operation should check:

• that AR was produced by a CCA Platform determined to be trustworthy by an applicable policy
• that code measurements within AR match those for the expected (guest firmware) code in the Realm
• that Challenge claim within AR matches a hash of the binding key, KB, that the User Context computed.

If all of the above checks pass, the User Context can determine that the Realm is trustworthy to received the
(confidential) Boot Data. The verification status, and optionally data from the verification result are packaged in
a BOOT_SYNC_ATTESTATION_RESPONSE data structure. The Realm code waits in Receive State for the
confirmation that the trust exchange has been approved.

Phase 3 - transfer of boot information
The Realm can now make requests for the data required to continue the boot process (e.g UEFI variable
data or secrets required to access encrypted content). Data requests are made by the Realm having Sent a
BOOT_SYNC_BSB_REQUEST data structure and waiting in Receive State for a BOOT_SYNC_BSB_RESPONSE
data structure to be sent from the User Context. The BOOT_SYNC_BSB_REQUEST data structure can have a
variable number of elements, depending upon the data required to continue the Realm boot. This data can be
supplied in a single communication round or in multiple communication rounds.

Once all communications are complete, a BOOT_SYNC_FIN data structure can be Sent by the Realm to signal

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

DRAFT

Boot Data Synchronisation

that no more data is required. No reply is expected to this message.

Flow Diagram

UserContext HostService RMM Realm

RSI_HOST_CALL HOST_SESSION_OPEN

note: failure cases not shown on this flow

SessionID

Create random value r
Choose DH params par
par,r -> public R

RHI_SESSION_OPEN

SessionID

RHI_SESSION_SEND(SessionID, BOOT_SYNC_KEY_XCHG_REQ(salts,IV,R))

Success

BOOT_SYNC_KEY_XCHG_REQ

Create random value u
par,u -> public U
U+R -> shared secret K
Derive KE & KB

BOOT_SYNC_KEY_XCHG_RESP(U)

RHI_SESSION_RECV(SessionID)

BOOT_SYNC_KEY_XCHG_RESP(U)

U+R -> shared secret K
Derive KE & KB

RSIGetAttestationReport(H(KB))

report (AR)

encrypt AR with KE

RHI_SESSION_SEND(SessionID, BOOT_SYNC_ATTESTATION_REQUEST(KE(AR)))

Success

BOOT_SYNC_ATTESTATION_REQUEST(KE(AR))

Decrypt AR
Verify AR to check for:
CCA Platform
Expected Code Measurement
Challenge = H(KB)
prepare BOOT_SYNC_ATTESTATION_RESPONSE with verification status

BOOT_SYNC_ATTESTATION_RESPONSE(verification status)

RHI_SESSION_RECEIVE(SessionID)

BOOT_SYNC_ATTESTATION_RESPONSE(verification status)

RHI_SESSION_SEND(SessionID, KE(BOOT_SYNC_BSB_REQUEST (data items requested)))

Success

KE(BOOT_SYNC_BSB_REQUEST (data items requested))

Decrypt BOOT_SYNC_BSB_REQUEST with KE, Prepare BOOT_SYNC_BSB_RESPONSE with requested data items
Encrypt BOOT_SYNC_BSB_RESPONSE data with KE

BOOT_SYNC_ATTESTATION_RESPONSE(KE(BSB data))

RHI_SESSION_RECEIVE(SessionID)

BOOT_SYNC_ATTESTATION_RESPONSE(KE(BSB data))

Decrypt BSB data with KE
Continue Realm boot

Optionally perform more rounds for BOOT_SYNC_BSB_REQUEST/RESPONSE to collect more data as required

RHI_SESSION_SEND(SessionID, BOOT_SYNC_FIN)

Success

BOOT_SYNC_FIN

RHI_SESSION_CLOSE(SessionID)

Security Considerations

The data path established by the RHI HOST_SESSION. . . ABI calls provides no security guarantees. Any message
on this path could be inspected or modified by the host infrastructure that creates the communication channel. To
mitigate this, the first phase of the BSB protocol establishes a secure channel, using a Diffie-Hellman exchange
such that the two ends of the channel both compute protection keys without the intermediate party knowing these.

Diffie-Hellman exchanges are susceptible to person-in-the-middle attacks, where a component between the
endpoints establishes separate secure connections with each party but then has access to all the communications
traffic. To mitigate this possibility, the Realm supplies an Attestation Report, with bound data obtained from a
binding key computed from the DH shared secret. Verification of the Attestation Report will confirm that it has not
been tampered with in transmission and the bound data can be checked to ensure it matches the User Context value
for the binding key. This mitigation allows detection of the above attack as it would result in different binding keys
for each of the end parties.

The threat model for the BSB protocol may include data injection from an in-the-middle attacker that could insert
malfaesant code in order to reveal later supplied data. To mitigate this, the BSB protocol can work in multiple

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

DRAFT

Boot Data Synchronisation

rounds. In this mode, the Realm state is updated with measurements of data supplied (apparently) from the User
Context and further attestation reports are supplied in sequence. This allows the User Context to further validate
the state of the Realm before supplying sensitive data.

Verification of the Attestation Report also allows the User Context to confirm that the other end of the connection
is running under a CCA Platform and with expected software content in the Realm.

System Message Data Structures

Cryptography Algorithm considerations
The data structures below are structured to support a BSB protocol using the following cryptographic algorithms.
If other algorithms are used to construct a similar BSB protocol then it is likely that some of the fields would
change. The likely candidates for alteration have the variable names below annotated with (*). Array sizes are as
appropriate for the algorithms used.

Algorithms:

• ECDH key using the ECC Curve-P384 for key exchange
• AEAD AES-GCM for encryption
• SHA512 HMAC-based Extract-and-Expand Key Derivation Function (HKDF) for key Derivation
• SHA256 for IV rolling hash

EFI_GUID
The BSB protocol reuses the EFI_GUID structure to define a 128-bit unique identifier value. EFI_GUID is
commonly defined in several code bases.

Type Variable

UINT32 Data1

UINT16 Data2

UINT16 Data3

UINT8[8] Data4

BOOT_SYNC_GUID_BLOB
Common data structure prefix for all BSB protocol messages

Type Variable Notes

EFI_GUID Name GUID identifying message type

UINT32 Length Length in bytes of full data message

GUID definitions for BSB protocol messages
Implementation GUIDs used to for message identities within the following data structures.

GUID Name Value

gArmBootSyncKeyEncData EAB79650-5746-4E46-9EC4-0BDF3D148A1E

gArmBootSyncKeyXchgReqGuid BBD5E1D8-C8E9-48CB-A850-A30B15D08A22

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

DRAFT

Boot Data Synchronisation

GUID Name Value

gArmBootSyncKeyXchgRespGuid D83BF2F8-6B49-4238-859D-7E4C29150995

gArmBootSyncAttReqGuid A31E8A1B-5D80-4336-8C0D-6F653B0CC8D1

gArmBootSyncAttRespGuid 1B3C3C27-51E1-4D1B-9C44-189EAEA48263

gArmBootSyncAttReport 59FC4FCE-B2B2-4DB6-A0CD-3053D9F49738

gArmBootSyncAttResult FE4A5C90-FEC5-4029-B515-699A872E3B01

gArmBootSyncBsbReqGuid 60E65392-591A-43A4-98E8-257985B9FEB0

gArmBootSyncBsbRespGuid 0DA1DE44-D38D-40E2-9D0B-A4BAD90B1A5A

gArmBootSyncRequestOptions 54E1D918-311F-4F3F-B775-9A74A039C438

gArmBootSyncVarData 1DB974DF-3F49-44EB-B324-3CB7BA00F589

gArmBootSyncSecretData 9755286D-E064-41B4-8FC2-54101280525C

gArmBootSyncFinGuid AD96854E-794C-43CA-B91D-61DE98313E45

gArmBootSyncNackGuid 7731492A-093E-49ED-8A54-8AD6B8CEC450

BOOT_SYNC_ENCRYPTED_DATA
Common data structure prefix for all BSB protocol messages that contain an encrypted payload. This data structure
will be followed by EncDataLength bytes of encrypted data that must be decoded with the BSB protocol KE before
being interpreted as the relevant payload data structure.

Type Variable Notes

BOOT_SYNC_GUID_BLOB GUID: gArmBootSyncKeyEncData

UINT8[TAG_SIZE] Tag* AES GCM tag

UINT32 EncDataLength (encrypted) data size beyond this header

BOOT_SYNC_BSB_HEADER
Common data structure used to define the structure of a multi element data block used in the BSB protocol. The
data structure identifies the type and the number of elements contained within the message. This data structure will
be followed by ElementCount number of data structures which will need interpreting per identified type.

Type Variable Notes

BOOT_SYNC_GUID_BLOB GUID: identifies request or response message

UINT32 ElementCount Number of following BOOT_SYNC_BSB_ELEMENT
structures

BOOT_SYNC_BSB_ELEMENT
Common data structure used to identify and package a data packet within a BSB protocol message This data
structure will be followed by the data for the payload (length of message is within GUID_BLOB).

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

DRAFT

Boot Data Synchronisation

Type Variable Notes

BOOT_SYNC_GUID_BLOB GUID identifies the relevant payload

BOOT_SYNC_KEY_XCHG_REQ
Datastructure sent from Realm to User Context to initiate the BSB protocol Key Exchange

Type Variable Notes

BOOT_SYNC_GUID_BLOB GUID: gArmBootSyncKeyXchgReqGuid

UINT32 Version Protocol version in Realm

UINT8[SALT_SIZE] SaltKeyBinding* Salt for Binding Key

UINT8[SALT_SIZE] SaltKeyEncryption* Salt for Encryption Key

UINT8[IV_SIZE] IV* Initialisation vector

UINT32 PEMDataLen Size of Realm DH Public value (PEM format)

UINT8[] PEMData The fixed fields of this structure are followed by
PEMDataLen bytes of PEM data

BOOT_SYNC_KEY_XCHG_RESP
Data structure sent from User Context to Realm to finalise the BSB protocol Key Exchange

Type Variable Notes

BOOT_SYNC_GUID_BLOB GUID: gArmBootSyncKeyXchgRespGuid

UINT32 Version Protocol version in User Context

UINT32 PEMDataLen Size of User Context DH Public value (PEM format)

UINT8[] PEMData The fixed fields of this structure are followed by
PEMDataLen bytes of PEM data

BOOT_SYNC_ATTESTATION_REQUEST
Datastructure sent from Realm to User Context, containing the Attestation Report that can be verified to perform
the trustworthiness step.

Type Variable Notes

BOOT_SYNC_ENCRYPTED_DATA EncDataHeader

BOOT_SYNC_BSB_HEADER BSBHeader GUID: gArmBootSyncAttReqGuid

BOOT_SYNC_BSB_ELEMENT Element[0] GUID: gArmBootSyncAttReport

Note: additional elements would be supplied if extra information is requires to supplement the Attestation Report

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

DRAFT

Boot Data Synchronisation

BOOT_SYNC_ATTESTATION_RESPONSE
Datastructure sent from User Context to Realm, containing the results of verifying the Attestation Report supplied
in the corresponding BOOT_SYNC_ATTESTATION_REQUEST structure. This response could just be a Boolean
SUCCESS / FAILURE or may contain a more detailed attestation result analysis.

Type Variable Notes

BOOT_SYNC_ENCRYPTED_DATA EncDataHeader

BOOT_SYNC_BSB_HEADER BSBHeader GUID: gArmBootSyncAttRespGuid

BOOT_SYNC_BSB_ELEMENT Element[0] GUID: gArmBootSyncAttResult

BOOT_SYNC_BSB_REQUEST
Datastructure sent from Realm to User Context to request the config data items required to continue boot.

Type Variable Notes

BOOT_SYNC_ENCRYPTED_DATA EncDataHeader

BOOT_SYNC_BSB_HEADER BSBHeader GUID: gArmBootSyncBsbReqGuid

BOOT_SYNC_BSB_ELEMENT Element[0] GUID: gArmBootSyncRequestOptions

UNIT64 Options Identifies the data items required

BOOT_SYNC_BSB_RESPONSE
Datastructure sent from User Context to Realm in response to the BOOT_SYNC_BSB_REQUEST message and
containing the requested items. (Typical element content shown as example).

Type Variable Notes

BOOT_SYNC_ENCRYPTED_DATA EncDataHeader

BOOT_SYNC_BSB_HEADER BSBHeader GUID: gArmBootSyncBsbRespGuid

BOOT_SYNC_BSB_ELEMENT Element[0] GUID: gArmBootSyncVarData

UINT8[Element[0].DataLength] data UEFI Variables data

BOOT_SYNC_BSB_ELEMENT Element[1] GUID: gArmBootSyncSecretData

UINT8[Element[1].DataLength] data Secrets data

BOOT_SYNC_FIN
Data structure sent from either party in the BSB protocol requesting termination of communications.

Type Variable Notes

BOOT_SYNC_GUID_BLOB gArmBootSyncFinGuid

UINT64 Reason Connection termination reason

Expected termination values for the Reason variable: SUCCESS - the protocol is terminating gracefully.

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

DRAFT

Boot Data Synchronisation

BOOT_SYNC_NACK
Data structure sent in response to any Request message indicating that the protocol state is incorrect. For
example, if a BOOT_SYNC_BSB_REQUEST is sent by the Realm prior to trust being established, then a
BOOT_SYNC_NACK would be returned.

Type Variable Notes

BOOT_SYNC_GUID_BLOB gArmBootSyncNackGuid

UINT64 Reason NACK reason

Expected termination values are:

• ECONNABORTED - the protocol is in an invalid state e.g. BOOT_SYNC_BSB_REQUEST sent before
BOOT_SYNC_ATTESTATION_RESPONSE received

• ENOTCONN - the connection is unavailable

DEN0148
1.0-alp2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

	Realm Host Interface specification
	Release information
	1.0-alp2 (31-10-2024)
	New features
	Clarifications
	Defects
	Relaxations

	1.0-alp1 (19-09-2024)

	Arm Non-Confidential Document License (“License”)

	Contents
	Preface
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage

	Additional reading
	Feedback
	Feedback on this book

	1 Realm Host Interface (RHI)
	1.1 Overview
	1.2 Use cases
	1.3 Transport
	1.4 Protocols

	2 RHI Implementation Features
	2.1 RHI_IMPLEMENTATION_FEATURES

	3 Host Session
	3.1 RHI_SESSION_VERSION
	3.1.1 Parameters
	3.1.2 Return values

	3.2 RHI_SESSION_FEATURES
	3.2.1 Parameters
	3.2.2 Return values

	3.3 RHI_SESSION_OPEN
	3.3.1 Parameters
	3.3.2 Return values
	3.3.3 Return conditions:
	3.3.4 Protocol state on return:

	3.4 RHI_SESSION_CLOSE
	3.4.1 Parameters
	3.4.2 Return values
	3.4.3 Return Conditions:
	3.4.4 Protocol State on return:

	3.5 RHI_SESSION_SEND
	3.5.0.1 Parameters
	3.5.1 Return values
	3.5.2 Return Conditions:
	3.5.3 Protocol State on return:

	3.6 RHI_SESSION_RECEIVE
	3.6.1 Parameters
	3.6.2 Return values
	3.6.3 Return Conditions:
	3.6.4 Protocol State on return:

	4 Firmware Activity Log
	4.1 Introduction
	4.1.1 Security Considerations

	4.2 RHI_FAL_VERSION
	4.2.1 Parameters
	4.2.2 Return values

	4.3 RHI_FAL_FEATURES
	4.3.1 Parameters
	4.3.2 Return values

	4.4 RHI_FAL_GET_SIZE
	4.4.1 Parameters
	4.4.2 Return values

	4.5 RHI_FAL_READ
	4.5.1 Parameters
	4.5.2 Return values

	4.6 RHI_FAL_CLOSE
	4.6.1 Parameters
	4.6.2 Return values

	5 Device Assignment
	5.1 Introduction
	5.2 DA Types
	5.2.1 DA_OBJECT_TYPE

	5.3 RHI_DA_VERSION
	5.3.1 Parameters
	5.3.2 Return values

	5.4 RHI_DA_FEATURES
	5.4.1 Parameters
	5.4.2 Return values

	5.5 RHI_DA_OBJECT_SIZE
	5.5.1 Parameters
	5.5.2 Return values

	5.6 RHI_DA_OBJECT_READ
	5.6.1 Parameters
	5.6.2 Return values

	A Appendix A
	Boot Data Synchronisation
	Introduction
	System Overview
	Phase 1 - protected channel establishment
	Phase 2 - establishment of trust
	Phase 3 - transfer of boot information
	Flow Diagram

	Security Considerations
	System Message Data Structures
	Cryptography Algorithm considerations
	EFI_GUID
	BOOT_SYNC_GUID_BLOB
	GUID definitions for BSB protocol messages
	BOOT_SYNC_ENCRYPTED_DATA
	BOOT_SYNC_BSB_HEADER
	BOOT_SYNC_BSB_ELEMENT
	BOOT_SYNC_KEY_XCHG_REQ
	BOOT_SYNC_KEY_XCHG_RESP
	BOOT_SYNC_ATTESTATION_REQUEST
	BOOT_SYNC_ATTESTATION_RESPONSE
	BOOT_SYNC_BSB_REQUEST
	BOOT_SYNC_BSB_RESPONSE
	BOOT_SYNC_FIN
	BOOT_SYNC_NACK

