
Arm® Server Base Manageability Requirements 2.1

Platform Design Document
Non-confidential

Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0069E



Server Base Manageability Requirements

Page 2 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Contents

Release information 6
Arm Non-Confidential Document License (“License”) 8

About this document 10
Terms and abbreviations 10
References 12

Cross references 14
Rules-based writing 14

Content item identifiers 14
Content item rendering 15
Content item classes 15

Progressive terminology commitment 16
Feedback 16

1 Scope and background 17
1.1 Scope 17
1.2 Background 18

1.2.1 Host SoC in-band interface 18
1.2.2 SoC side-band interface 19
1.2.3 Host-to-SatMC interface 20
1.2.4 PCIe connection between the Arm SoC and the BMC 20
1.2.5 USB connection between the Arm SoC and the BMC 20
1.2.6 JTAG connection between the Arm SoC and the BMC 20
1.2.7 Additional connectivity between the Arm SoC and the BMC 21
1.2.8 Multi-socket platform 21
1.2.9 Considerations for MCTP over SMBus/I2C and I3C 21

1.3 Arm SoC-BMC interface terminology 21

2 Compliance levels and requirements 23
2.1 Level M1 26

2.1.1 SoC-BMC interface 27
2.1.2 BMC-platform elements interface 28
2.1.3 BMC management services (out-of-band) interface 28

2.2 Level M2 29
2.2.1 SoC-BMC interfaces 30
2.2.2 BMC-platform elements interface 30
2.2.3 BMC-IO device interface 30
2.2.4 BMC management services (out-of-band) interface 30

2.3 Level M2.1 32
2.3.1 SoC-BMC interfaces 33
2.3.2 BMC-platform elements interface 33
2.3.3 BMC-IO device interface 34
2.3.4 BMC management services (out-of-band) interface 34

2.4 Level M3 35
2.4.1 SoC-BMC interface 36
2.4.2 BMC-platform elements interface 37
2.4.3 BMC-IO device interface 37
2.4.4 BMC management services (out-of-band) interface 38
2.4.5 SPDM over MCTP for BMC and side-band devices 38

2.5 Level M4 40
2.5.1 SoC-BMC interface 41
2.5.2 BMC-IO device interface 41
2.5.3 BMC-platform elements interface 41

Page 3 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.5.4 BMC management services (out-of-band) interface 42
2.5.5 SPDM over MCTP for BMC and side-band devices 42

2.6 Level M5a 43
2.6.1 SoC-BMC interface 43
2.6.2 BMC-IO device interface 44
2.6.3 BMC-platform elements interface 45
2.6.4 BMC management services (out-of-band) interface 45
2.6.5 SPDM over MCTP for BMC and side-band devices 45
2.6.6 Host-to-SatMC interface 45

2.7 SBMR checklist 45
2.7.1 SBMR Level M1 checklist 46
2.7.2 SBMR Level M2 checklist 46
2.7.3 SBMR Level M2.1 checklist 46
2.7.4 SBMR Level M3 checklist 47
2.7.5 SBMR Level M4 checklist 47
2.7.6 SBMR Level M5a checklist 48

A OpenBMC 49

B IPMI 50
B.1 Standard IPMI commands 50

B.1.1 Remote power control 50
B.1.2 Boot device selection 50
B.1.3 BMC to host mapping 50
B.1.4 BMC user manipulation 50
B.1.5 Redfish host interface credentials bootstrapping 51
B.1.6 IPMI support verification 51

B.2 Arm standard IPMI commands 51
B.2.1 General IPMI commands format 51
B.2.2 List of Arm standard IPMI commands 52

B.3 IPMI specification clarifications and corrections 52
B.4 SSIF single and multi-part transactions 52

C RAS 55
C.1 Level M1 55

C.1.1 SMBus System Interface (SSIF) in-band interface 55
C.1.2 RAS IPMI message format 56
C.1.3 SoC side-band interface 57
C.1.4 Out-of-band interface 57

C.2 Level M2 and Level M2.1 57
C.2.1 Redfish and IPMI host (in-band) interfaces 58
C.2.2 RAS Redfish message format 58
C.2.3 SoC side-band interface 59
C.2.4 Out-of-band interface 59

C.3 Level M3, M4, and M5a 59
C.3.1 Redfish host (in-band) interface 60
C.3.2 MCTP and PLDM (SoC side-band) interface 60
C.3.3 Out-of-band interface 67

D Platform monitoring and control 69
D.1 Background 69
D.2 IPMI commands to monitor and control managed entities 69
D.3 Redfish schema to monitor and control managed entities 70
D.4 PLDM commands/APIs to monitor and control managed entities 70

D.4.1 Examples of PLDM sensors exposed by SatMC 74

Page 4 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

E Reference implementation of remote debug using OpenOCD 75
E.1 Background 75
E.2 Levels M1, M2, M2.1, M3, M4, M5a 75

F Boot progress codes 77
F.1 IPMI commands for boot progress codes 77

F.1.1 Send boot progress code (NetFn 2Ch, Command 02h) 77
F.1.2 Get boot progress code (NetFn 2Ch, Command 03h) 77

F.2 Boot progress code format 78
F.2.1 IPMI progress code definition 79
F.2.2 PLDM progress code definition 79
F.2.3 Example progress codes (IPMI, PLDM) 80
F.2.4 Example boot progress codes (Redfish) 82

F.3 Common boot progress codes 82

G Trusted communication between MC and system devices 85
G.1 MC and server system device attestation 85
G.2 MC and server system device mutual attestation 85
G.3 MC and server system device measurement 85
G.4 Data encryption between MC and server system device 86
G.5 PA-RoT and AC-RoT responsibilities 86

G.5.1 PA-RoT responsibilities 86
G.5.2 AC-RoT responsibilities 86

H Firmware update 87
H.1 Host-based firmware update 87
H.2 BMC-based firmware update 87
H.3 Firmware inventory 87

Page 5 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Copyright © 2020-2024 Arm Limited. All rights reserved.

Release information

Version Issue E, 2.1 (10 Oct 2024)

• Introduce the concepts of PA-RoT and AC-RoT to Level M5 (461).
• Add MMBI and MCTP over MMBI as an option for host in-band interface for Level M5 (405).
• Add MCTP over PCC as an option between host and SatMC for Level M5 (651).
• Add MCTP over USB as an option for side-band interface in Level M5 (456).
• Add MCTP over USB as an option for BMC to Platform Elements communication in Level M5 (714).
• Add MCTP over USB as an option for BMC-IO communication in Level M5 (683).
• Add optional UART between SatMC and BMC in Level M5 (457).
• Define boot progress code transfer over PLDM (370).
• Require BIOS Redfish settings for Level M5 (354).
• Recommend BMC to be the I3C Side-band primary controller (467).
• Deprecate SBMR Level M0 (746).
• Relax SSIF SMBAlert requirement to a recommendation (652).
• Relax requirement on boot progress code over IPMI (721).
• Relax IPMI boot targets requirements (653).
• Add an M3 note that side-band interface is bi-directional (692).
• Update OCP Baseline Profile requirements to latest version (654).
• Recommendation of minimizing MUX usage for MCTP over I2C/I3C to improve performance for usability

(715).
• Use PLDM CPEREvent standard event class definition (413).
• Update CPER Redfish schema requirements (734).
• Errata for M21_IPMI1, IPMI_8, and checklist inclusion of M1_RAS_1, M1_RAS_2, M2_RAS_1,

M2_RAS2, and M3_RAS_1 (600).
• Errata for NC-SI over RBT and MCTP across SBMR Levels (773).
• Remove deprecated terms for Arm inclusive language commitments (713).
• Clarify that IPMI SSIF is over SMBus, not just I2C (792).

Version Issue D, 2.0 (27 Apr 2022)

• Finalize Level M3 (351).
• Finalize Level M4 (352).
• Add SPDM and MCTP security requirements (347).
• Add optional SoC-BMC UART for DBG2 (366).
• Add BMC initiated firmware updates guidance (304).
• Update M3/M4 OOB requirements (343).
• Update M3/M4 in-band requirements (344).
• Update M3/M4 side-band requirements (345).
• Update M3/M4 BMC-IO requirements (346).
• Add CXL management requirements to M4 (341).
• Update M3/M4 BMC-Platform Elements requirements (398).
• Update JTAG connectivity requirements and security considerations (437).
• Update PLDM platform monitoring (353).
• Update RAS PLDM logging flows (349).
• Update use cases and background, and remove MCTP Host Interface (399).
• PCIe x1 security considerations (481).
• Update OCP Redfish Profile reference (471).
• Clarify RAS CPER format (414).
• Fix "Send Platform Error Record" IPMI command Response data (433).
• Clarify IPMI usage for in-band RAS event logging (439).
• Reference DC-SCM specification (350).
• Update DMTF specification references (402).

Page 6 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

• Add PMCI Architecture paper reference (403).
• Remove SBSG reference (400).
• Inclusive language considerations (401).

Version Issue C, 1.1 (11 Feb 2021)

• SBMR 1.1 release
• Add compliance Level M2.1
• Add standard Boot Progress Code feature
• Clarify IPMI SSIF support
• Miscellaneous typos, clarifications, and editorial changes

Version Issue B, 1.0 (15 Jun 2020)

• License LES-PRE-21585

Version Issue A, 1.0 (30 Jan 2020)

• Initial release, SBMR 1.0

Page 7 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this License
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to
the terms of this License. By using or copying the Document you indicate that you agree to be bound by the
terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control
exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to
the terms of this License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply
with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of
a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further
assist the recipient and does not represent Arm’s view of the scope of its obligations. You acknowledge
and agree that you possess the necessary expertise in system security and functional safety and that you
shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by Arm herein. In
addition, you are responsible for any applications which are used in conjunction with any Arm technology
described in this document, and to minimize risks, adequate design and operating safeguards should be
provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied
approval or endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the
Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT,
TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING
WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF

Page 8 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE
OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this License then Arm may terminate this
License immediately upon giving written notice to Licensee. Licensee may terminate this License at any time.
Upon termination of this License by Licensee or by Arm, Licensee shall stop using the Document and destroy
all copies of the Document in its possession. Upon termination of this License, all terms shall survive except
for the License grants.

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party
in breach. Any termination of this License shall be effective in respect of all Subsidiaries. Any rights granted
to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to
assure that the Document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this License and any translation, the terms of the English version of
this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners. No license, express, implied or otherwise, is
granted to Licensee under this License, to use the Arm trade marks in connection with the Document or any
products based thereon. Visit Arm’s website at http://www.arm.com/company/policies/trademarks for more
information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © 2020-2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

Page 9 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

http://www.arm.com/company/policies/trademarks


Server Base Manageability Requirements

About this document

This document is intended for SBSA [1] -compliant 64-bit Arm based servers. It provides a path to establish a
common foundation for server management, where common capabilities are standardized, and differentiation
truly valuable to the end-users are built on top.

This specification leverages the prevalent industry standard system management specifications of Redfish [2],
Platform Level Data Model (PLDM) [3] Management Component Transport Protocol (MCTP) [4], and Security
Protocol and Data Model (SPDM) [5]. These specifications are defined in the DMTF Redfish Forum, Platform
Management Components Intercommunication (PMCI), and Security Protocols and Data Modles (SPDM)
Working Groups.

Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

AC-RoT Active Component Root of Trust

ACPI Advanced Configuration and Power Interface.

BMC Baseboard Management Controller. The main management controller in an
standards-based, remotely managed platform management subsystem. Also
sometimes used as a generic name for a motherboard-resident management
controller that provides motherboard-specific hardware monitoring and control
functions for the platform management subsystem.

Completer An agent in a computing system that responds to and completes a memory
transaction that was initiated by a Requester.

CXL FM Compute Express Link Fabric Manager

Host The Computer System that is managed.

Host Software The software running on the Host, including operating system and its software
components (such as drivers or applications), as well as pre-boot software such as
UEFI drivers and applications.

IPMI Intelligent Platform Management Interface. It defines common interfaces that allow
IT managers to receive status alerts, send instructions to servers and run
diagnostics over a network versus locally at the server.

Management Controller
(MC)

A microcontroller or processor with a platform or SoC specific device management
functionality. Management Controller may include multiple physical interfaces and
implement various types of protocols for communication with managed devices,
application processors or other MCs. See BMC and SatMC for MC examples.

MCTP Management Component Transport Protocol. A transport independent protocol that
is used for intercommunication within an MCTP Network. Consists of one or more
physical transports that are used to transfer MCTP Packets between MCTP
Endpoints.

MMBI Memory-Mapped BMC Interface. An interface for communication between a
Management Controller (typically a BMC)

Page 10 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Term Meaning

NC-SI Network Controller Sideband Interface. The interface (protocol, messages, and
medium) between a Management Controller and one or more Network Controllers.
It is responsible for providing external network connectivity for the Management
Controller while also allowing the external network interface to be shared with traffic
to and from the host. See [6].

Node For the purpose of this specification, a node is a single server system in a group of
managed servers.

OCP Open Compute Project

OEM Original Equipment Manufacturer. In this document, the final device manufacturer.

PA-RoT Platform Active Root of Trust

PCC ACPI Platform Communications Channel. See [7].

PLDM Platform Level Data Model. An internal facing low level data model that is designed
to be an effective data/control source for mapping under the Common Information
Model (CIM). It defines data structures and commands that abstract platform
management subsystem components.

PMCI Platform Management Component Intercommunication. A working group within the
DMTF industry standards forum, that defines standards to address “inside the box”
communication interfaces between the components of the platform management
subsystem.

RBT RMII-Based Transport. Electrical and timing specification for a physical medium that
is derived from the Reduced Media Independent Interface (RMII) transport.

Redfish Interface An open industry standard specification that specifies a RESTful interface and
schema for hardware management, and that allows users to integrate solutions
within their existing tool chains. Extensions to Redfish can also be made. Swordfish
for example is a SNIA standard that builds upon Redfish’s local storage
management capabilities to address enterprise storage devices.

Requester An agent in a computing system that is capable of initiating memory transactions.

RMII Reduced Media Independent Interface (RMII)

SatMC Satellite Management Controller. A microcontroller or processor that interpret and
process management-related data, and initiate management-related actions on
management devices. It can be part of SoC or can be outside of SoC.

SBSA Server Base System Architecture.

SiP Silicon Partner. In this document, the silicon manufacturer.

SPDM Security Protocol and Data Model. A data model that defines messages, data
objects, and sequences for performing message exchanges between devices over a
variety of transport and physical media. The description of message exchanges
includes authentication of hardware identities and measurement for firmware
identities. The SPDM enables efficient access to low-level security capabilities and
operations. The SPDM can be used with other mechanisms, including non-PMCI-
and DMTF-defined mechanisms.

UEFI Unified Extensible Firmware Interface. See [8]

Page 11 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] DEN 0029 Server Base System Architecture (SBSA). Arm Ltd.

[2] DSP0266 Redfish Specification. DMTF.

[3] DSP0240 Platform Level Data Model (PLDM) Base Specification. DMTF.

[4] DSP0236 Management Component Transport Protocol (MCTP) Base Specification. DMTF.

[5] DSP0274 Security Protocol and Data Model (SPDM) Specification. DMTF.

[6] DSP0222 Network Controller Sideband Interface (NC-SI) Specification. DMTF.

[7] Advanced Configuration and Power Interface (ACPI) Specification. UEFI Forum.

[8] Unified Extensible Firmware Interface (UEFI) Specification. UEFI Forum.

[9] DSP8010 Redfish Schema Bundle. DMTF.

[10] Intelligent Platform Management Interface (IPMI) 2.0, Revision 1.1 (October 2013). Dell, HP, Intel,
NEC.

[11] OCP Baseline Hardware Management Redfish Profile. Open Compute Project.

[12] OCP Server Hardware Management Redfish Profile. Open Compute Project.

[13] DSP2015 Platform Management Communications Infrastructure (PMCI) Architecture White Paper.
DMTF.

[14] DSP0134 SMBIOS Reference Specification. DMTF.

[15] DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification. DMTF.

[16] DSP0282 Memory-Mapped BMC Interface (MMBI) Specification. DMTF.

[17] DSP0284 Management Component Transport Protocol (MCTP) Memory-Mapped BMC Interface
(MMBI) Transport Binding Specification. DMTF.

[18] DSP0238 Management Component Transport Protocol (MCTP) PCIe VDM Transport Binding Specifi-
cation. DMTF.

[19] DEN 0101 Authenticated Debug Access Control Specification (ADAC). Arm Ltd.

[20] DEN 0094 Arm Base System Architecture (BSA). Arm Ltd.

[21] OCP Server Designs and Specifications. Open Compute Project.

[22] OCP Datacenter Secure Control Module Specification. Open Compute Project.

[23] System Management Bus (SMBus) Specification. System Management Interface Forum.

[24] DEN 0044 Arm Base Boot Requirements (BBR). Arm Ltd.

[25] Arm IHI 0031 Arm Debug Interface Architecture Specification, ADIv5. Arm Ltd.

Page 12 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://www.dmtf.org/dsp/DSP0266
https://www.dmtf.org/dsp/DSP0240
https://www.dmtf.org/dsp/DSP0236
https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP0222
https://uefi.org/specifications
https://uefi.org/specifications
https://www.dmtf.org/dsp/DSP8010
https://github.com/opencomputeproject/HWMgmt-OCP-Profiles
https://github.com/opencomputeproject/HWMgmt-OCP-Profiles
https://www.dmtf.org/dsp/DSP2015
https://www.dmtf.org/dsp/DSP0134
https://www.dmtf.org/dsp/DSP0256
https://www.dmtf.org/dsp/DSP0282
https://www.dmtf.org/dsp/DSP0284
https://www.dmtf.org/dsp/DSP0284
https://www.dmtf.org/dsp/DSP0238
https://www.dmtf.org/dsp/DSP0238
https://www.opencompute.org/wiki/Server/SpecsAndDesigns
https://www.opencompute.org/wiki/Hardware_Management/Hardware_Management_Module
https://smbus.org/specs/


Server Base Manageability Requirements

[26] Arm IHI 0074 Arm Debug Interface Architecture Specification, ADIv6. Arm Ltd.

[27] DSP0270 Redfish Host Interface Specification. DMTF.

[28] DSP0272 Redfish Interoperability Profile Specification. DMTF.

[29] DSP8013 Redfish Interoperability Profiles Bundle. DMTF.

[30] DSP2046 Redfish Resource and Schema Guide. DMTF.

[31] DSP0245 Platform Level Data Model (PLDM) IDs and Codes Specification. DMTF.

[32] DSP0248 Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification. DMTF.

[33] DSP0249 Platform Level Data Model (PLDM) State Set Specification. DMTF.

[34] DSP0239 Management Component Transport Protocol (MCTP) IDs and Codes. DMTF.

[35] DSP0241 Platform Level Data Model (PLDM) Over MCTP Binding Specification. DMTF.

[36] DSP0275 Security Protocol and Data Model (SPDM) over MCTP Binding Specification. DMTF.

[37] DSP0277 Secured Messages using SPDM Specification. DMTF.

[38] DSP0276 Secured Messages using SPDM over MCTP Binding Specification. DMTF.

[39] DSP0237 Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specifi-
cation. DMTF.

[40] DSP0233 Management Component Transport Protocol (MCTP) I3C Transport Binding Specification.
DMTF.

[41] DSP0267 Platform Level Data Model (PLDM) for Firmware Update Specification. DMTF.

[42] DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement Specification. DMTF.

[43] NVM Express Management Interface. NVM Express.

[44] DSP0235 NVMe Management Messages over MCTP Binding Specification. DMTF.

[45] OCP Usage Guide for Server Profile. Open Compute Project.

[46] OCP Usage Guide for Baseline Profile. Open Compute Project.

[47] CXL Specification. Compute Express Link.

[48] CXL Type 3 Management Using MCTP CCI ECN. Compute Express Link.

[49] DSP0234 CXL Fabric Manager API over MCTP Binding Specification. DMTF.

[50] DSP0281 CXL Type 3 Device Component Command Interface over MCTP Binding Specification.
DMTF.

[51] DSP0283 Management Component Transport Protocol (MCTP) Universal Serial Bus (USB) Transport
Binding Specification. DMTF.

[52] Architectural Out-of-Band Management ECN. PCI-SIG.

Page 13 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://www.dmtf.org/dsp/DSP0270
https://www.dmtf.org/dsp/DSP0272
https://www.dmtf.org/dsp/DSP8013
https://www.dmtf.org/dsp/DSP2046
https://www.dmtf.org/dsp/DSP0245
https://www.dmtf.org/dsp/DSP0248
https://www.dmtf.org/dsp/DSP0249
https://www.dmtf.org/dsp/DSP0239
https://www.dmtf.org/dsp/DSP0241
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0277
https://www.dmtf.org/dsp/DSP0276
https://www.dmtf.org/dsp/DSP0237
https://www.dmtf.org/dsp/DSP0237
https://www.dmtf.org/dsp/DSP0233
https://www.dmtf.org/dsp/DSP0267
https://www.dmtf.org/dsp/DSP0218
https://nvmexpress.org/specification/nvme-mi-specification/
https://www.dmtf.org/dsp/DSP0235
https://www.opencompute.org/wiki/Hardware_Management/SpecsAndDesigns
https://www.opencompute.org/wiki/Hardware_Management/SpecsAndDesigns
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.dmtf.org/dsp/DSP0234
https://www.dmtf.org/dsp/DSP0281
https://www.dmtf.org/dsp/DSP0283
https://www.dmtf.org/dsp/DSP0283
https://members.pcisig.com/wg/PCI-SIG/document/20406


Server Base Manageability Requirements

[53] OCP Secure Firmware Recovery specification. Open Compute Project.

[54] DSP0292 Management Component Transport Protocol (MCTP) PCC Transport Binding Specification.
DMTF.

[55] DSP0268 Redfish Data Model Specification. DMTF.

[56] Open On-Chip Debugger (OpenOCD) Project. OpenOCD Project.

[57] Platform Initialization (PI) Specification. UEFI Forum.

[58] DEN 0118 Platform Security Firmware Update for the A-profile Arm Architecture. Arm Ltd.

[59] DSP2062 Redfish Firmware Update White Paper. DMTF.

Cross references

This document cross-references sources that are listed in the References section by using the section sign §.

Examples:

• ACPI § 5.6.5 - Reference to the ACPI specification [7] section 5.6.6

• UEFI § 6.1 - Reference to the UEFI specification [8] section 6.1

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the
following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification
must conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple
Declarations and Rules, these are generally grouped into sections and subsections that provide context.
Where appropriate, these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that
an implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent
versions of the specification.

Page 14 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://www.opencompute.org/wiki/Security#Documents
https://www.dmtf.org/dsp/DSP0292
https://www.dmtf.org/dsp/DSP0268
https://openocd.org/
https://uefi.org/specifications
https://www.dmtf.org/dsp/DSP2062


Server Base Manageability Requirements

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration

A Declaration is a statement that does one or more of the following:

• Introduces a concept
• Introduces a term
• Describes the structure of data
• Describes the encoding of data

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

Rule

A Rule is a statement that describes the behaviour of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Page 15 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you
find offensive terms in this document, please contact terms@arm.com.

Feedback

Arm welcomes feedback on its documentation.

If you have any comments or suggestions for additions and improvements create a ticket at

https://support.developer.arm.com.

As part of the ticket include:

• The title (Server Base Manageability Requirements).
• The document ID and version (DEN0069E 2.1).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 16 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://support.developer.arm.com


Server Base Manageability Requirements

1 Scope and background

This document provides a path to establish a common foundation for server management on SBSA-compliant
Arm AArch64 servers where common capabilities are standardized and differentiation truly valuable to the
end-users is built on top.

1.1 Scope

Redfish [2], PLDM [3], and MCTP [4] specifications have been chosen to ease the adoption of Arm, by aligning
the AArch64 server ecosystem to where the existing enterprise server market is moving to.

Redfish is based on industry standard RESTful interface for IT infrastructure. Redfish uses the secure
or standard Hypertext Transfer Protocol (HTTP/HTTPS) to transport resources and configure operations.
Resources (in payload) are JavaScript Object Notation (JSON) formatted, making them equally usable by
apps, UIs and scripts. Redfish resources are schema-backed and human readable, with schemas [9] defined
using JSON Schema, OData 4.0, or OpenAPI formats. Redfish provides a secure, multi-node capable
replacement for IPMI-over-LAN [10]. It is intended to meet Open Compute Project (OCP) [11] [12] remote
machine management requirements.

PLDM and MCTP are industry standards targeting “inside the box” communication. They are defined by the
DMTF Platform Management Component Intercommunication (PMCI) Working Group. For an overview of the
PMCI management stack, see [13]. Figure 3 in that document shows a detailed diagram of the relationship of
each specification in the PMCI Stack, including MCTP and PLDM.

The support for the legacy Intelligent Platform Management Interface (IPMI) [10] is still required as IPMI-based
tools are widely used by end-users. The IPMI contributors group is no longer accepting requests for
contribution. There is no venue for Arm and its ecosystem partners to change or improve the specification.
The adoption of IPMI is therefore “as is”. As the industry becomes ready, this document might make the IPMI
support optional.

This document addresses the need to establish the following common standard interface sets. Figure 1 shows
a high-level diagram of these interface sets:

1. Arm SoC-BMC Interfaces: used by the BMC and SoC to communicate with each other. Some examples
are described in Section 1.2.

2. BMC-Platform Elements Interface: used by the BMC to communicate with the Platform Elements, such
as devices and sensors.

3. BMC-IO Device Interface: used by the BMC to communicate with one type of the Platform Elements: the
IO devices.

4. BMC Management Services (Out-of-Band) Interface: used by system admins via external network to
manage servers remotely.

Page 17 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

IO Device Side-
Band Interface

Platform Elements 
Interface Sensors, FAN, 

Power, ...

Host OS/Firmware 
(Application 
Processors)

Admin

Admin

BMC OOB 
Management 

Services
ARM SoC-BMC 

Interfaces

BMC IO Devices

BMC Platform 
Elements

BMC In-Band 
Management 

Services

Figure 1: Server Management Interfaces

The focus of this document is to provide manageability requirements for various SBMR Mx compliance levels,
as described in Section 2. These are requirements with respect to relevant server management interfaces, as
described in the Table 3 summary below.

This document may also provide some requirements, recommendations, and guidance with respect to other
BMC interfaces with IO devices and platform elements.

1.2 Background

There are several interfaces used for communication and interaction between the Arm SoC and the BMC.

1.2.1 Host SoC in-band interface

This interface is used by the Host Software, such as OS, Hypervisor, and User Software, as well as System
Firmware, such as UEFI [8], to communicate with the BMC. It is typically exposed to Host Software via
SMBIOS [14], ACPI [7] tables (such as SPMI), and/or PCIe configuration space. Arm server systems typically
use one or more of the following in-band interfaces:

• IPMI SSIF Host Interface [10]
• Redfish Host Interface [2]
• MCTP Host Interface [15] over an in-band physical medium, such as Memory-Mapped BMC Interface

(MMBI) [16] [17].

The typical use-cases for this interface are described in Table 2 below.

Page 18 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Table 2: Use cases of host SoC in-band interfaces

Communication
entities

IPMI
SSIF

MCTP
Host
Interface

Redfish
Host
Interface Usage examples

UEFI - BMC
communication

Yes Yes Yes (not
standard)

Reporting SMBIOS [14] table

Yes Yes Reporting boot progress codes

Yes Yes Error reporting (in some cases)

Yes Yes General event logging

Yes Yes BIOS Configuration settings

Yes Yes Yes (not
standard)

General UEFI - BMC data exchange

OS/Hypervisor - BMC
communication

Yes Reading IPMI event log

Yes Redfish Authentication

Yes Yes Error reporting (in some cases)

Yes Yes Some other event logging

User software - BMC
communication

Yes Yes Local server configuration, update,
deployment, monitoring, without going
through the OOB interface.

U Sending large amount of data (such as SMBIOS table) over a slow interface, such as the IPMI SSIF I2C bus,
may impact the boot time. Implementations may choose alternative interfaces for these use-cases, including:

• MCTP Host Interface over a higher bandwidth host interface, such as MMBI [16] [17].
• Redfish Host Interface may also be used. Even though that interface is intended for OS/Hypervisor and

User software communication with the BMC, it can be used for some UEFI - BMC communication using
non-standard OEM Redfish schema extensions.

• Other IMPLEMENTATION DEFINED interfaces, such as PCIe-based mailbox or shared memory.

1.2.2 SoC side-band interface

This interface is used by the BMC firmware to communicate with the Arm SoC, using a Satellite Management
Controller (SatMC). Typical use-cases include:

• Early stages of boot progress codes reporting
• Telemetry, such as Temperature and power
• RAS error reporting
• Early stages of boot event logging

U It is also possible for the side-band interface to be used for some of the use cases of UEFI - BMC
communication, as an alternative path to the Host SoC in-band interface.

U This interface can vary in bandwidth capabilities depending on the physical interface used. For example, USB
2.0 provides up to 480 Mbps communication, which is faster than I3C (12.5 Mbps) and I2C/SMBUs (in the
order of 100s of Kbps).

Page 19 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

1.2.3 Host-to-SatMC interface

The Host-to-SatMC interface is part of the SoC side-band interface. Its primary purpose is to allow the Host
and SatMC to exchange information. The typical use-cases are:

• RAS error reporting (for OS-first RAS errors).
• Platform attestation (where the PRoT is accessible via the SatMC).

1.2.4 PCIe connection between the Arm SoC and the BMC

This interface may exist for the following use cases:

• Remote KVM session using PCIe for exposing a graphics controller (typically implemented in the BMC)
for the host’s video output.

• MCTP side-band communication between the BMC and PCIe devices using PCIe Vendor Defined
Messages (VDM) path [18]. In this usage, the Arm SoC must contain the logic to route the PCIe VDM
messages to the proper IO devices.

• Shared standard memory mailbox communication between the BMC and the SoC host software, using
MMBI [16] and MCTP over MMBI [17].

• Shared non-standard memory mailbox communication between the BMC and the SoC host software.

Note

Security must be considered when using this interface to ensure isolation of host and BMC security domains.
For example, untrusted users that have access to the host software must not be able to access privileged
BMC resources, such as firmware storage.

1.2.5 USB connection between the Arm SoC and the BMC

This interface may exist for the following use cases:

• Remote Media session using USB for exposing a virtual media (CD-ROM, Floppy, USB Disk)
• Remote KVM session using USB for exposing Keyboard/Mouse devices
• Redfish Host Interface using USB for exposing a Network-over-USB interface

U This interface may not necessarily be directly connected or integrated in the Arm SoC. It could be an external
onboard PCIe-based USB controller or PHY that connects to the BMC USB ports.

1.2.6 JTAG connection between the Arm SoC and the BMC

This interface may exist for the following use-cases :

• Remote hardware debug, such as breakpoints and single stepping, using JTAG interface and exposed
over BMC management network.

• Crash dump or scan dump feature, for crash or hang scenarios, using JTAG interface and exposed over
BMC management network.

• Memory/Register dump features using JTAG interface and exposed over BMC management network.

Note

Debug security must be considered on production platforms, either permanently disabled or re-enabled
through authentication per IMPLEMENTATION DEFINED mechanisms. This may include, for example, a
hardware fuse, hardware jumper, protected firmware setting, or using an authenticated debug mechanism,
such as the Arm Authenticated Debug Access Control (ADAC) [19].

Page 20 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

1.2.7 Additional connectivity between the Arm SoC and the BMC

Various physical media interfaces may exist between the Arm SoC and the BMC for the following use cases:

• Access to the Arm SoC thermal and power information and control
• Access to the Arm SoC RAS error information and control

1.2.8 Multi-socket platform

A multi-socket system is a Server system containing two or more SoCs operating coherently and running a
single OS/hypervisor. In such a system, OS owned interfaces, such as the IPMI host interface, the Redfish
host interface, and video console re-direction, must exist as one per system, unless otherwise stated in this
specification.

1.2.9 Considerations for MCTP over SMBus/I2C and I3C

MCTP [4] is used as a transport protocol format that is independent of the underlying physical bus and
data-link layer messaging used on the bus. It is used for intercommunication between various elements of the
management subsystem. The physical bus MCTP communication can vary, and include SMBus/I2C, I3C,
PCIe VDM, and USB, among others.

To improve performance and usability, it is recommended to minimize the use of multiplexers for MCTP over
SMBus/I2C and I3C. With I2C and I3C multiplexers, accesses to MCTP devices are limited to one device at a
time, as the MCTP transactions are blocking until completion.

1.3 Arm SoC-BMC interface terminology

This document will use a specific terminology and definition to refer to different types. For example, terms like
In-Band, Side-Band, and Out-Of-Band have a specific meaning when discussing interfaces to/from the BMC.
The terms relevant to the areas covered are defined in this section.

Table 3: Arm SoC-BMC interface terminology

Name Requester Completer Description / Example / Notes

In
SBMR
Scope?

SoC In-band Interface Arm SoC
(Host OS /
FW)

BMC This is typically IPMI SSIF (I2C interface),
Redfish Host Interface (USB/PCIe network), or
other proprietary interface.

Yes

This interface is invasive to the main processor
complex (i.e. processing cycles are required).

SoC Side-Band
Interface

BMC SoC /
SatMC

This interface can leverage a proprietary
protocol or a more standard transport protocol,
such as MCTP/PLDM.

Yes

This is a multi-requester bi-directional
communication interface.

This could be a SatMC within the SoC, or an
intermediary entity.

Out-of-Band Interface Datacenter
management
network

BMC This is typically IPMI or Redfish commands over
the management network.

Yes

Page 21 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Name Requester Completer Description / Example / Notes

In
SBMR
Scope?

SoC Debug Interface
(JTAG)

BMC SoC This is the JTAG debug interface used for
hardware debugging the software and possibly
firmware executing on the SoC.

Yes

BMC notification pins
(for example: GPIOs
or dedicated pins)

SoC BMC These pins are used for high priority
notifications from the SoC to the BMC, such as
critical thermal events or SoC errors.

Partially
Covered

Some pins can be bi-directional (for example,
PROCHOT).

SoC notification pins
(for example: GPIOs
or dedicated pins)

BMC SoC These pins are used for high priority
notifications from the BMC to the SoC, such as
critical thermal events or SoC errors.

Partially
Covered

Some pins can be bi-directional (for example,
PROCHOT)

Serial Console
(UART)

SoC BMC Used for implementing Serial-over-LAN (SoL).
Arm SoC typically have at least one or more
UARTs.

Yes

Must be an Arm BSA [20] compliant UART
controller on the SoC side. Default Baud rate for
interoperability with commercially available
BMCs is required to be 115200 bits/second.

IO Device Side- Band
Interfaces

BMC IO
Devices
(attached
to the
Arm
SoC)

This is referring to IO devices attached to the
Arm SoC that the BMC may need to monitor
and/or manage.

Partially
Covered

(Broad range of
various interfaces)

Examples of such IO devices can include
side-band interface to firmware storage device,
such as UEFI SPI-NOR flash, PCIe cards, and
NVMe disks.

These interfaces are only partially in scope of
the SBMR compliance requirements. Some
requirements, recommendations and guidance
may be provided based on external
specifications and standards, such as
MCTP/PLDM.

Misc Platform
elements

BMC Platform
Elements

This can include a broad range of interfaces for
power supplies, voltage regulators, platform
sensors, and other platform components.

Partially
Covered

(Broad range of
various Interfaces)

These interfaces are only partially in scope of
the SBMR compliance requirements. Some
recommendations and guidance may be
provided based on external specifications and
standards.

Page 22 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2 Compliance levels and requirements

This specification defines a number of levels of manageability compliance with the intention of steering the
partners to gradually move to the Redfish and PLDM / MCTP standard environment. There is no direct linkage
between these levels and the SBSA [1] levels.

This specification defines a set of requirements and recommendations for each compliance level. The
compliance levels include M1, M2, M2.1, M3, M4, and M5a. Unless otherwise stated in this specification,
each level builds upon the requirements of the previous (lower) level, with any additional requirements or
exceptions documented in each level.

Note

M5a describes preliminary definitions of a future compliance level, for the purpose of public review and
feedback. The ‘a’ denotes that this is an alpha work in-progress compliance level. These definitions are
subject to change in future publications of this specification.

Table 4 below shows the summary of SBMR Compliance levels.

This table is indicative only. The rules in each level describe the specific features that are required to be
compliant to that level. For a checklist of each level’s minimum rules, see Section 2.7.

Table 4: SBMR compliance levels

Level
Out-of-band
Interface

SoC Side-band
Interface

Host/SoC
In-band
Interface

BMC IO Device
Interface

BMC Platform
Element
Interface

Host-to-SatMC
Interface

M1 Required
IPMI

IMPLEMENTATION

DEFINED

Required:
IPMI SSIF.

IMPLEMENTATION

DEFINED

IMPLEMENTATION

DEFINED

IMPLEMENTATION

DEFINED

M2/
M2.1

Required:
Redfish and
IPMI.

IMPLEMENTATION

DEFINED

Required:
IPMI SSIF and
Redfish Host
Interface.

Conditional
Requirement:
If shared
physical NIC is
used, NC-SI
over RBT is
required.

IMPLEMENTATION

DEFINED

IMPLEMENTATION

DEFINED

M3 Required:
Redfish.

Required:
MCTP/PLDM
over
I2C/SMBus or
a higher
bandwidth
interface.

Required:
IPMI SSIF
and
Redfish Host
Interface.

Conditional
Requirement:
If shared
physical NIC is
used, NC-SI
over RBT or
MCTP (over
I2C/SMBus or
a higher
bandwidth
interface) is
required.

IMPLEMENTATION

DEFINED see
[21], [22] and
[10] for
guidance.

IMPLEMENTATION

DEFINED

Page 23 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Level
Out-of-band
Interface

SoC Side-band
Interface

Host/SoC
In-band
Interface

BMC IO Device
Interface

BMC Platform
Element
Interface

Host-to-SatMC
Interface

Recommended:
MCTP/PLDM
for PCIe
devices
(Network and
Storage), and
NVMe-MI over
MCTP (for
NVMe disks),
using
I2C/SMBus or
a higher
bandwidth
interface.

IMPLEMENTATION

DEFINED Other
IO Devices

M4 Required:
Redfish.

Required:
MCTP/PLDM
over I3C.

Required:
IPMI SSIF
and
Redfish Host
Interface.

Conditional
Requirement:
If shared
physical NIC is
used, NC-SI
over RBT or
MCTP (over
I3C or PCIe
VDM) is
required.

IMPLEMENTATION DEFINED |
IMPLEMENTATION DEFINED See
[21], [22] and [10] | | for guidance.
| | | | | | |

Conditional
Requirement:
MCTP/PLDM
for PCIe
devices
(Network and
Storage), and
NVMe-MI over
MCTP (for
NVMe disks),
using I3C or
PCIe VDM,
with I2C as
fallback.

Recommended:
PLDM/MCTP

Recommended:
CXL FM and
CCI over MCTP
for CXL
devices, using
I2C or PCIe
VDM, with I2C
as fallback.

Page 24 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Level
Out-of-band
Interface

SoC Side-band
Interface

Host/SoC
In-band
Interface

BMC IO Device
Interface

BMC Platform
Element
Interface

Host-to-SatMC
Interface

Other IO
Devices IMPLE-
MENTATION

DEFINED.

M5a Required:
Redfish.

Required:
MCTP/PLDM
over USB, I3C,
or PCIe VDM.
SMBus/I2C can
be used only
for initial
discovery or as
a fallback.

Required:
IPMI SSIF
and
Redfish Host
Interface.
Recommended:
MCTP over
MMBI

Conditional
Requirement:
If shared
physical NIC is
used, NC-SI
over RBT or
MCTP (over
I3C or USB or
PCIe VDM) is
required.

IMPLEMENTATION

DEFINED See
[21], [22] and
[10] for
guidance.

Recommended:
MCTP/PLDM
over PCC.

Conditional
Requirement:
MCTP/PLDM
for PCIe
devices
(Network and
Storage), and
NVMe-MI over
MCTP (for
NVMe disks),
using I3C, USB
or PCIe VDM,
with I2C as
fallback.

Recommended:
PLDM/MCTP.

Recommended:
CXL FM and
CCI over MCTP
for CXL
devices, using
I3C, USB or
PCIe VDM,
with I2C as
fallback.

Other IO
Devices IMPLE-
MENTATION

DEFINED.

Page 25 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.1 Level M1

I This section defines the requirements for Level M1-based servers. Figure 2 shows a summary of these
requirements.

IPMI Engine

SoC Side-band 
Interface

System Interface

Host OS/Firmware
(Application Processors)

SoC Side-band 
Interface Library

Shared Network 
ControllerIO Device Side-band 

interface

Platform Elements 
Interface

Sensors, Fans, 
Power, ...

Other Devices 
Connected to SoC 

(with optional device 
side-band connection 

to BMC)

Admin

OOB (IPMI)

IMPDEF connection

Required connection

Conditionally required connection

SoC Side-band Interface 
(events, power, thermal, RAS)

IMPDEF

IMPDEF

IMPDEF

PCIe, SPI, I2C, other interfaces

PCIe x16 
(Network)

Monitor and Control Signals

UART (Serial over LAN, Console, etc)

JTAG (remote debug)

PCIe x1  (Graphics/Video Feature etc.)

USB  (Keyboard, Mouse, Virtual Media)

I2C/SMBus/Alert (IPMI SSIF)

Recommended connection

Figure 2: Server management interfaces for Level M1

Page 26 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.1.1 SoC-BMC interface

R Most SoC-BMC interfaces for the Level M1-based server systems are IMPLEMENTATION DEFINED, with the
exceptions of the requirements and recommendations described in the following subsections.

2.1.1.1 Host SoC in-band interface
RM1_IB_1 M1 compliance requires that an IPMI interface must be supported for communication from the Arm SoC

to the BMC. The IPMI specification [10] defines four supported physical and logical interfaces, including
KCS, BT, SMIC, and SSIF. SBMR requires IPMI SMBus System Interface (SSIF) as the interface for IPMI
in-band communication. The Arm SoC must have an SSIF connection to the BMC for IPMI communication as
described by the IPMI specification. At a minimum, this must be an I2C connection used for sending IPMI
commands to the BMC.

I When using I2C connection for IPMI SSIF, I2C controller on Arm SoC and BMC must conform to the SMBus
specification [23].

I It is recommended that an ALERT pin is also supported to enable BMC notification to the host.

I The recommended SMBus completer address is 20h, as stated by the IPMI specification. However, this is just
a recommendation, and the actual value used is platform specific, and must match whatever value that is
hardcoded in the platform firmware or in the Arm SoC.

I Standard RAS error logging support for level M1 servers is described in Section C.1.

2.1.1.2 Console UART
RM1_UART_1 The Arm SoC must have at least one BSA [20] compliant UART connection to the BMC for the purpose

of serial-over-LAN (SoL) support. This is required for the Host Software, such as OS or UEFI, console
input/output redirection.

RM1_UART_2 Per the BSA [20] and BBR [24], the console UART must be a BSA [20] compliant UART that is exposed to
the host software using the Serial Port Console Redirection (SPCR) ACPI [7] Table. Default baud rate for
interoperability with commercially available BMCs is required to be 115200 bits/second.

I Additional UART console connections from the Arm SoC to the BMC are permitted but are considered
IMPLEMENTATION DEFINED.

2.1.1.3 PCIe
I If remote Keyboard-Video-Mouse (KVM) is supported on the platform, it is strongly recommended that the

Arm SoC have a PCIe connection to the BMC for the purpose of graphics video redirection.

2.1.1.4 USB
I If remote Virtual Media or KVM is supported on the platform, it is strongly recommended the Arm SoC have a

USB host connection, using either an on-chip/SoC USB controller or an external onboard USB controller, to
the BMC for the purpose of enabling remote keyboard, mouse, and virtual media.

2.1.1.5 JTAG
X Remote Debug is an invasive or non-invasive external debug, through a physical interface, such as JTAG, that

is remotely controlled through an out-of-band interface exposed by the platform BMC. Examples of Remote
Debug functions include:

• Crash dump analysis
• Register and memory inspection.
• Stepping through code.
• Low-level bare metal analysis.

RM1_JTAG_1 If support for JTAG based remote debug and crash dump functions is needed, an IEEE 1149.1 JTAG interface
is required:

• Control of the JTAG interface can be exposed over the out-of-band interface.
• Inclusion of control of the TRST signal on the BMC is required.
• Inclusion of the TRST signal on the SoC is IMPLEMENTATION DEFINED.

Page 27 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

• In a multi-socket system, where multiple SoCs which need support for remote debug functions are
connected to the same BMC, the JTAG interfaces shall be daisy-chained, for control by a single JTAG
interface on the BMC.

I Access to some or all debug functionality might be prevented at certain lifecycle states of the SoC. When
such access is prevented, an IMPLEMENTATION DEFINED mechanism should be provided to enable Remote
Debug access.

RM1_JTAG_2 Where a JTAG interface is provided for Remote Debug functions and when Remote Debug access is enabled,
the JTAG interface shall provide access to all TAP controllers that are compliant with the Arm Debug Interface,
ADIv5 [25] or ADIv6 [26].

• The Arm Debug Interface TAP controllers shall provide access to the following for each Arm processor
that needs Remote Debug access:

– The external debug interface.
– The external debug interface for any Cross-Trigger Interfaces (CTI).
– The external debug interface for any Performance Monitor Units (PMU).
– The external debug interface for any processor trace functions (for example, ETM).

• The Arm Debug Interface TAP controllers shall provide access to all components required to route trace
from the processor trace source to any trace sinks.

• Access to other debug functionality is IMPLEMENTATION DEFINED.
• The Arm Debug Interface TAP controllers shall provide access to all components required to enable

access to any of the above components, for example ROM tables and power control requests.

U For a reference implementation and more details, see Section E.

2.1.2 BMC-platform elements interface

I The BMC-Platform Elements interface for Level-M1 based server systems is IMPLEMENTATION DEFINED.
Typically, the SMBus/I2C medium is used.

2.1.3 BMC management services (out-of-band) interface

RM1_OOB_1 Support for IPMI is a requirement for M1-compliant server systems.

R See Section B.1 for minimal IPMI commands required.

Page 28 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.2 Level M2

I This section defines the requirements for Level M2-based servers. Figure 3 shows a summary of these
requirements.

Redfish and IPMI 
Engine

SoC Side-band 
Interface

System Interface

Host OS/Firmware
(Application Processors)

SoC Side-band 
Interface Library

Shared Network 
ControllerIO Device Side-band 

interface

Platform Elements 
Interface

Sensors, Fans, 
Power, ...

Other Devices 
Connected to SoC 

(with optional device 
side-band connection 

to BMC)

Admin

OOB
(Redfish, IPMI)

SoC Side-band Interface 
(events, power, thermal, RAS)

IMPDEF

IMPDEF

NC-SI over 
RBT

PCIe, SPI, I2C, other interfaces

PCIe x16 
(Network)

Monitor and Control Signals

UART (Serial over LAN, Console, etc)

JTAG (remote debug)

PCIe x1  (Graphics/Video Feature)

USB  (Keyboard, Mouse, Virtual Media)

I2C/SMBus/Alert (IPMI SSIF)

USB NIC, or PCIe NIC (Redfish HI)

IMPDEF connection

Required connection

Conditionally required connection

Recommended connection

Figure 3: Server management interfaces for Level M2

Page 29 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.2.1 SoC-BMC interfaces

R For Level M2-based server systems, the requirements and recommendations extend those of the level M1.

2.2.1.1 Host SoC in-band interface
RM2_IB_1 The Host/SoC In-Band interface must be compliant to the Redfish Host Interface Specification [27]. The Arm

SoC must expose this interface using one of the following physical interfaces:

1) The Arm SoC must have a USB connection, using either on-chip USB support or external onboard USB
support with a PCIe USB device, to the BMC. This is required for Redfish Host Interface communication
over USB network device. At a minimum, this must be USB 2.0 connection or faster.

Or

2) The Arm SoC must have a PCIe connection to the BMC. This is required for Redfish Host Interface
communication over PCIe network device.

I In addition to USB or PCIe network device, [27] defines an OEM proprietary method. This proprietary method
is not recommended for M2-compliant systems.

RM2_IB_2 In addition to the Redfish Host Interface, M2-compliance requires that a second Host-SoC in-band interface
based on IPMI must exist.

2.2.1.2 JTAG
RM2_JTAG_1 JTAG connection between the BMC and the SoC remains a conditional requirement in Level M2-based server

systems if support for JTAG-based remote debug and crash dump functions is needed.

RM2_JTAG_2 SBMR Level-M2 compliant SoC and BMC silicon parts are conditionally required to provide the JTAG debug
capability if support for JTAG-based remote debug and crash dump functions is needed. This is to allow for
systems to optionally implement the SoC-BMC JTAG connection using these parts.

2.2.2 BMC-platform elements interface

I The BMC-Platform Elements interface for the Level M2-based server systems is IMPLEMENTATION DEFINED.
Typically, the SMBus/I2C medium is used.

2.2.3 BMC-IO device interface

RM2_IO_1 When using a shared physical NIC interface between the BMC and the Arm SoC, then Network Controller
Side-band Interface (NC-SI) [6] over Reduced Media Independent Interface (RMII) Based Transport (RBT) is
required for Level M2-based server systems.

X NC-SI [6] defines a combination of logical and physical paths that interconnect the BMC and Network
Controller(s) for the purpose of transferring management communication traffic. NC-SI includes the commands,
and associated responses, which the BMC uses to control the status and operation of the Network Controller(s).
NC-SI also includes a mechanism for transporting management traffic and asynchronous notifications.

I The BMC-IO Device Interface for all other IO devices for Level M2-based server systems is IMPLEMENTATION

DEFINED.

2.2.4 BMC management services (out-of-band) interface

RM2_OOB_1 Level M2-based server systems requires that the BMC management services interface supports the Redfish
Interface [2] .

RM2_OOB_2 IPMI support is also a requirement for M2-compliant server systems.

R See Section B.1 for the minimal IPMI commands required.

Page 30 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

RM2_OOB_3 Level M2-based server systems further standardize the BMC management services interface by adopting
the Redfish Interoperability Profiles Specification [28] and the individual profiles contained in the Redfish
Interoperability Profiles Bundle [29]. Supporting OpenCompute Project (OCP) defined profiles is required for
OCP compliant servers. OCP currently defines two Redfish profiles for hardware management:

1. OCP Baseline Hardware Management Redfish Profile [11] . This is the minimum level a Redfish interface
must provide for OCP compliant hardware management.

2. OCP Server Hardware Management Redfish Profile [12]. This profile defines additional requirements on
top of the OCP Baseline profile [11] for OCP compliant server hardware management.

X As Redfish Schema [9] definitions are designed to provide significant flexibility and allow conforming
implementations on a wide variety of products, few properties within the Redfish Schemas are required.
However, consumers and software developers need a more rigidly defined set of required properties (features)
in order to accomplish management tasks. This set allows users to compare implementations, specify needs
to vendors, and allows software to rely on the availability of data. To provide that common ground, a Redfish
Interoperability Profile allows the definition of a set of schemas and property requirements, which meet the
needs of a particular class of product or service.

I Redfish Resource and Schema Guide [30] provides information on how to use the Redfish API, targeted at
consumption of the API.

S A DMTF tool to verify the compliance of a Redfish implementation to the required Redfish profile is available
here. This is also integrated as part of the Arm SBMR Architecture Compliance Test Suite (SBMR-ACS)
which is available here.

Note

Arm can publish Arm-specific profiles if needed. Here, the intent is to adopt the standard profiles, such as
the OCP profile [11] [12].

Page 31 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://github.com/DMTF/Redfish-Interop-Validator
https://github.com/DMTF/Redfish-Interop-Validator
https://github.com/ARM-software/sbmr-acs


Server Base Manageability Requirements

2.3 Level M2.1

I This section defines the requirements for Level M2.1-based servers. Figure 4 shows a summary of these
requirements.

Redfish and IPMI 
Engine

SoC Side-band 
Interface

System Interface

Host OS/Firmware
(Application Processors)

SoC Side-band 
Interface Library

Shared Network 
ControllerIO Device Side-band 

interface

Platform Elements 
Interface

Sensors, Fans, 
Power, ...

Other Devices 
Connected to SoC 

(with optional device 
side-band connection 

to BMC)

Admin

OOB
(Redfish, IPMI)

SoC Side-band Interface 
(events, power, thermal, RAS)

IMPDEF

IMPDEF

NC-SI over 
RBT

PCIe, SPI, I2C, other interfaces

PCIe x16 
(Network)

Monitor and Control Signals

UART (Serial over LAN, Console, etc)

JTAG (remote debug)

PCIe x1  (Graphics/Video Feature)

USB  (Keyboard, Mouse, Virtual Media)

I2C/SMBus/Alert (IPMI SSIF)

USB NIC, or PCIe NIC (Redfish HI)

IMPDEF connection

Required connection

Conditionally required connection

Recommended connection

Figure 4: Server management interfaces for Level M2.1

Page 32 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.3.1 SoC-BMC interfaces

R For Level M2.1-based server systems, the requirements and recommendations extend those of the level M2.

2.3.1.1 Host SoC in-band interface
RM21_IB_1 The In-Band SSIF interface must follow the IPMI specification clarifications that are outlined in Section B.3

and Section B.4 of this specification.

I It is recommended that the SSIF interface supports an SMBAlert pin to enable BMC notification to the host
and improve the performance of the In-Band SSIF interface communication.

I The recommended SMBus completer address is 20h, as stated by the IPMI specification. The actual value
that is used is platform specific, and must match whatever value that is hardcoded in the platform firmware or
in the Arm SoC.

RM21_IPMI1 Level M2.1-based server systems must implement the following industry standard IPMI commands for both
the in-band and out-of-band interfaces:

• Remote Power Control Section B.1.1
• Boot Device Selection Section B.1.2
• BMC/Host Mapping Section B.1.3
• BMC User Manipulation Section B.1.4
• Redfish Host Interface Bootstrapping Section B.1.5. This is required only if the platform supports

bootstrapping Redfish Host Interface temporary credentials to the OS.

RM21_IPMI2 Level M2.1-based server systems must implement the following Arm-defined IPMI commands:

• Send Platform Error Record IPMI Command (as defined in Section C.1.2). This is required only if the
platform supports reporting platform errors to the BMC over the in-band interface using IPMI SSIF.

• Send Boot Progress Code IPMI Command (as defined in Section F.1). This is required only if the
platform supports reporting boot progress codes to the BMC over the in-band interface using IPMI.

• Reporting Platform Error Records and Boot Progress codes using IPMI OEM commands is not permitted.

R If the platform supports reporting platform errors to the BMC using the in-band interface, then the additional
rules in Section C.1 and Section C.2 must be implemented.

I A base server system may implement additional IMPLEMENTATION DEFINED methods and protocols for
reporting these events. When doing so, it is recommended that the standard data format of these events is
used over the IMPLEMENTATION DEFINED transport. This includes:

• Using the CPER format for platform error records, as defined in [8] (UEFI § N).
• Using the Boot Progress Code format as defined in Section F.2.

X Using standard data formats helps reduce fragmentation in BMC firmware and software that interprets the
data.

2.3.1.2 PCIe
RM21_PCI_1 In levels M1 and M2, the PCIe connection between the BMC and the SoC is a recommendation. In Level M2.1,

the interface is upgraded to a conditional requirement in systems that support remote Keyboard-Video-Mouse
(KVM). This interface is not required to support legacy VGA functionality.

2.3.1.3 USB
RM21_USB_1 In levels M1 and M2, the USB connection between the Arm SoC and the BMC is a recommendation. In Level

M2.1, the interface is upgraded to a conditional requirement in systems that support remote Virtual Media or
KVM.

2.3.2 BMC-platform elements interface

R The BMC-Platform Elements interface requirements and recommendations for Level M2.1-based server
systems are the same requirements and recommendations as for Level M2-based server systems.

Page 33 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.3.3 BMC-IO device interface

R The requirements and recommendations for the BMC-IO device interfaces for Level M2.1-based server
systems are the same requirements and recommendations as for Level M2-based server systems.

2.3.4 BMC management services (out-of-band) interface

R The requirements and recommendations for the BMC out-of-band interfaces for Level M2.1-based server
systems are the same requirements and recommendations as for Level M2-based server systems.

Page 34 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.4 Level M3

I This section defines the requirements for Level M3-based servers. Figure 5 shows a summary of these
requirements.

Redfish Engine

SoC Side-band 
Interface

System Interface

Host OS/Firmware
(Application Processors)

SoC Side-band 
Interface Library

IO Device Side-band 
interface

Platform Elements 
Interface

Sensors, Fans, 
Power, ...

Admin

OOB
(Redfish)

MCTP / PLDM over I2C 
(or higher bandwidth interface)

(events/power/thermal/RAS)

IMPDEF

Monitor and Control Signals

UART (Serial over LAN, Console, etc)

JTAG (remote debug)

PCIe x1  
(Video, MCTP over PCIe VDM)

USB  (Keyboard, Mouse, Virtual Media)

I2C/SMBus/Alert (IPMI SSIF)

USB NIC, or PCIe NIC (Redfish HI)

IMPDEF connection

Required connection

Conditionally required connection

Recommended connection

UART (OS Debug)

(*)  BMC -IO MCTP communication over 
I2C or higher bandwidth interface

Shared Network 
Controller

Other Managed I/
O Devices

IMPDEF

PCIe, SPI, I2C, other interfaces

PCIe x16 
(Network)

NC-SCI over 
RBT or MCTP (*)

PCIe devices 
(Networking, 

Storage, ...)
PCIe

MCTP/PLDM (*)

NVMe

NVME-MI over 
MCTP (*)

P
C

Ie
 V

D
M

CXL devices

PLDM / CXL FM / CCI 
over MCTP (*)

Figure 5: Server management interfaces for Level M3

Page 35 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.4.1 SoC-BMC interface

R For Level M3-based server systems, the requirements and recommendations extend those of the level M2.1.

I For OCP compliant servers with modular design that use a BMC daughter card, SBMR recommends adoption
of the Datacenter Secure Control Module 1.0 (DC-SCM) [22].

2.4.1.1 Host SoC in-band interface
R The requirements and recommendations for the Host/SoC In-Band interfaces for Level M3-based server

systems are the same requirements and recommendations as for Level M2.1-based server systems.

2.4.1.2 Debug UART
I For Level M3 based systems, it is recommended that the Arm SoC has an additional BSA [20] compliant

UART connection to the BMC for the purpose of remote OS debugging through the BMC.

I Per the BSA [20] and BBR [24], the debug UART must be a BSA [20] compliant UART that must be exposed to
the host software using the Debug Port Table (DBG2) ACPI [7] Table. The default baud rate for interoperability
with commercially available BMCs should be 115200 bits/second.

2.4.1.3 BMC-SoC Side-Band
RM3_SB_1 Level M3 based server systems standardize this interface based on the DMTF PMCI workgroup standards

which define specifications for primary intercommunication interfaces/data models between BMC and SatMC.

RM3_SB_2 PLDM [3] [31] [32] [33] is used for the purpose of supporting platform-level data models and platform functions.

X PLDM is designed to be an effective interface and data model that provides efficient access to low-level
platform inventory, monitoring, control, event, and data/parameters transfer functions. PLDM defines data
representations and commands that abstract the platform management hardware.

RM3_SB_3 MCTP [4] [34] is used as a transport protocol format that is independent of the underlying physical bus
properties, as well as the “data-link” layer messaging used on the bus.

RM3_SB_4 PLDM over MCTP binding [35] is used as the format of PLDM over MCTP messages.

RM3_SB_5 SPDM [5] is used for the purpose of supporting security related capabilities of the devices.

X SPDM is designed to provide runtime authentication of a device by retrieving the certificate chains from it and
verifying device authenticity by sending unique challenges. SPDM allows the requester to query the device’s
firmware or configuration data measurements for device attestation purposes.

RM3_SB_6 SPDM over MCTP binding [36] is used as the format of SPDM over MCTP messages.

RM3_SB_7 Secure messages using SPDM specifications [37] is used for the purpose of supporting secure transfer
of application data over PMCI transports using SPDM. Secure messages [37] also define the transport
requirements for SPDM records, which form the basis of encryption and message authentication.

RM3_SB_8 Secured Messages using SPDM over MCTP binding [38] is used as the format of SPDM secure messages
over MCTP messages.

RM3_SB_9 For Level M3 based server systems, the physical and data-link layer methods for MCTP communication
are minimally defined by the MCTP over SMBus/I2C binding specification [39]. This interface must support
bi-directional transfer of MCTP packets, which requires that both sides of the communication have completer
addresses. Implementations may choose a higher bandwidth physical data-link, such as MCTP over PCIe
VDM [18] or MCTP over I3C [40]

Note

MIPI Alliance membership may be required to have full access and implementation rights to the I3C
specifications.

Page 36 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

U For Level M3 based server systems, SBMR recommends that PLDM is used for side-band interface BMC-SoC
communication, as illustrated in Section D.4 and Section C.3.

2.4.1.4 JTAG
RM3_JTAG_1 JTAG connection between the BMC and the SoC remains a conditional requirement in Level M3-based server

systems.

RM3_JTAG_2 If JTAG is implemented, the following requirements apply for systems used in production environments:

• The system must implement an IMPLEMENTATION DEFINED method to disable the JTAG connection
between the BMC and the SoC.

• The system must implement an IMPLEMENTATION DEFINED method to disable JTAG remote access (from
the BMC) to one or more subsystems.

• The system may implement an IMPLEMENTATION DEFINED method to re-enable JTAG connection between
the BMC and the SoC.

• The system may implement an IMPLEMENTATION DEFINED method to re-enable JTAG (from the BMC) to
one or more subsystems.

U Examples of such methods to disable/enable JTAG in production systems are described in section
Section 1.2.6.

2.4.2 BMC-platform elements interface

I The BMC-Platform Elements interface for the Level M3-based server systems is IMPLEMENTATION DEFINED,
with additional recommendations and guidance. See:

• Intelligent Platform Management Interface v2.0 (IPMI) specification [10].
• OCP server design and specifications [21].
• OCP Datacenter Secure Control Module (DC-SCM) [22].

U For a list of IPMI commands which aid in monitoring and control of platform elements, see Section D.

2.4.3 BMC-IO device interface

RM3_IO_1 If using shared physical NIC interface between BMC and SoC, then Network Controller Side-band Interface
(NC-SI) [6] over RBT or MCTP is required for Level M3 based server systems.

I Level M3 based server systems are recommended to standardize this interface based on the DMTF
PMCI workgroup standards, which define specifications for primary intercommunication interfaces/data
models between the Management Controller (BMC) and managed entities (IO devices). These are only
recommendations for Level M3 based servers that apply to all PCIe devices in the system (including Network
and Storage Controllers) that support MCTP/PLDM management.

I PLDM [3] [31] [32] [33] is used for the purpose of supporting platform-level data models and platform functions.

X PLDM is designed to be an effective interface and data model that provides efficient access to low-level
platform inventory, monitoring, control, event, and data/parameters transfer functions. PLDM defines data
representations and commands that abstract the platform management hardware.

I MCTP [4] [34] is used as a transport protocol format that is independent of the underlying physical bus
properties, as well as the “data-link” layer messaging used on the bus.

I PLDM over MCTP binding [35] is used as the format of PLDM over MCTP messages.

I PLDM for Firmware Update [41] is used as the messages and data structures used for enabling PLDM devices
firmware inventory and update from the BMC.

I PLDM for Redfish Device Enablement [42] is used as the messages and data structures used for enabling
PLDM devices to participate in Redfish-based management.

Page 37 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

I Level M3 based server systems are recommended to standardize NVMe Management Interface support with
NVMe Management Messages over MCTP.

X Non-Volatile Memory Express (NVMe-MI) [43] is an optimized register interface, command set, and feature
set for managing PCIe based NVMe storage. NVMe Management Interface Commands are used for the
accessing configuration, control, and status functions in NVMe-compatible non-volatile memory devices.
NVMe Management Messages over MCTP Specification [44] defines how NVMe Management Interface
Commands are encapsulated in MCTP Messages and transferred between MCTP Endpoints over the specified
transports.

RM3_IO_2 For Level M3 based server systems, if MCTP/PLDM based management of IO devices is implemented, then
the following requirements apply. The physical and data-link layer methods for MCTP communication are
minimally defined by the MCTP over SMBus/I2C binding specification [39]. Implementations may choose a
higher bandwidth physical data-link, such as MCTP over PCIe VDM [18] or MCTP over I3C [40]

I For BMC-IO devices, SPDM over MCTP support is optional for Level M3 based servers. Conditional
requirements for device measurement and authentication are the same as those for BMC and side-band
devices.

U Section G provides the use cases when BMC and IO devices communication should be secured with SPDM.

I The BMC-IO Device Interface for all other IO devices for Level M3 based server systems is IMPLEMENTATION

DEFINED.

2.4.4 BMC management services (out-of-band) interface

RM3_OOB_1 For Level M3-based server systems, the IPMI out of band interface is not required. It is an implementation
choice whether IPMI out-of-band is supported or not, and if supported, whether it is enabled or disabled by
default.

RM3_OOB_2 Level M3-based server systems must adhere to the following Redfish requirements:

• Must conform to the DMTF Redfish specification [2] version 1.2 or newer.
– The conformance of the platform should be verified by executing the Redfish Service Validator. This

is also integrated as part of the Arm SBMR Architecture Compliance Test Suite (SBMR-ACS).
• Must conform to the OCP Baseline Hardware Management Redfish Profile v1.0.1 or newer [11]. It is also

recommended to conform to the OCP Server Hardware Management Interface Redfish Profile v1.0.0 or
newer.

– The conformance of the platform should be verified by executing the Redfish Interop Validator. The
Redfish Interop Validator reads a Profile file as input.

– The OCP profile JSON files are available at https://github.com/opencomputeproject/OCP-Profiles.
– This is also integrated as part of the Arm SBMR Architecture Compliance Test Suite (SBMR-ACS).

S For more information on using the OCP profiles, see [45] and [46].

2.4.5 SPDM over MCTP for BMC and side-band devices

I For Level M3-based server systems, using the SPDM protocol for communication with side-band devices is
recommended but not required. It is an implementation choice whether SPDM over MCTP is supported or
not, and if supported, whether it is enabled or disabled by default.

U Section G provides the use cases when BMC and side-band communication should be secured with SPDM.
In this context, “side-band devices” refer to any device that intends to communicate with the BMC using
SPDM/MCTP. This includes for example the SatMC, as well as IO Devices and Platform Elements.

R The following are conditional requirements for Level M3-based server systems that implement SPDM over
MCTP data protocol:

RM3_SPDM_1 Must conform to the DMTF SPDM specification [5] version 1.1 or newer.

RM3_SPDM_2 Must conform to the SPDM over MCTP binding specification [36] version 1.0 or newer.

Page 38 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://github.com/DMTF/Redfish-Service-Validator
https://github.com/ARM-software/sbmr-acs
https://github.com/DMTF/Redfish-Interop-Validator
https://github.com/opencomputeproject/OCP-Profiles
https://github.com/ARM-software/sbmr-acs


Server Base Manageability Requirements

I BMC should query the side-band device for SPDM support as part of the device discovery procedure.

I BMC should use SPDM attestation mechanisms to verify side-band device authenticity.

I BMC should request side-band device measurements using the SPDM protocol for side-band device firmware
validity. These measurements may include the device’s mutable or immutable firmware as well as the device’s
hardware and firmware configurations. For device measurement verification, the measurements should be
compared to the known good values.

I Side band devices that have access to system critical or confidential data should enforce SPDM mutual
authentication and validate BMC authenticity.

I BMC and side-band devices may support Secured Messages using SPDM over MCTP binding [38]

I BMC and side-band device may encrypt data using secure messages with SPDM over MCTP (MCTP Type 6
messages) [38] in case the SPDM secure session is established between BMC and side-band device.

Page 39 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.5 Level M4

I This section defines the requirements for Level M4-based servers. Figure 6 shows a summary of these
requirements.

Redfish Engine

SoC Side-band 
Interface

System Interface

Host OS/Firmware
(Application Processors)

SoC Side-band 
Interface Library

Shared Network 
Controller

IO Device Side-band 
interface

Platform Elements 
Interface

Sensors, Fans, 
Power, ...

Other Managed 
I/O Devices

Admin

OOB
(Redfish)

MCTP / PLDM over I3C
(events/power/thermal/RAS)

IMPDEF

IMPDEF

PCIe, SPI, I2C, other interfaces

PCIe x16 
(Network)

Monitor and Control Signals

UART (Serial over LAN, Console, etc)

JTAG (remote debug)

PCIe x1  
(Video, MCTP over PCIe VDM)

USB  (Keyboard, Mouse, Virtual Media)

I2C/SMBus/Alert (IPMI SSIF)

 PCIe NIC (preferred) or USB NIC 
(Redfish HI)

IMPDEF connection

Required connection

Conditionally required connection

Recommended connection

NC-SCI over 
RBT or MCTP (*)

UART (OS Debug)

PCIe devices 
(Networking, 

Storage, ...)
PCIe

MCTP/PLDM (*)

MCTP / PLDM (over I2C/I3C/PCIe)

NVMe

NVME-MI over 
MCTP (*)

(*)  BMC -IO MCTP communication over 
I3C or PCIe VDM. I2C is for fallback only

P
C

Ie
 V

D
M

CXL devices
PLDM / CXL FM / CCI 

over MCTP (*)

Figure 6: Server management interfaces for level M4

Page 40 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.5.1 SoC-BMC interface

R For Level M4-based server systems, the requirements and recommendations extend those of the level M3.

I For OCP compliant servers with modular design that use a BMC daughter card, SBMR recommends adoption
of the Datacenter Secure Control Module 2.0 (DC-SCM) [22]

2.5.1.1 Host SoC in-band interface
I Level M4 servers are recommended to use a PCIe connection to the BMC for communication over PCIe

network device, instead of a USB network device.

2.5.1.2 Host SoC side-band interface
RM4_SB_1 For Level M4 based server systems, the physical and data-link layer methods for MCTP communication are

defined by the MCTP over I3C binding specification [40].

I It is recommended that the BMC acts as an I3C Primary Controller and SatMC acts as an I3C Target. BMC
as MCTP Bus Owner is responsible to discover all the I3C targets and fulfil the MCTP Bus Owner role for I3C
bus.

2.5.2 BMC-IO device interface

R The requirements and recommendations for these interfaces on Level M4 based server systems are the same
as Level M3, with some additional requirements and exceptions:

RM4_IO_1 PCIe device management using MCTP/PLDM is a recommendation in Level M3 based server. For Level
M4 based servers, this is upgraded to a conditional requirement, applying to all PCIe devices in the system
(including Network, Storage Controllers, and NVMe disks) that support MCTP/PLDM management.

RM4_IO_2 Level M4 based server systems also standardize NVMe Management Interface support with NVMe
Management Messages over MCTP. This is a conditional requirement that applies to NVMe devices in the
system that support NVMe-MI MCTP management.

I Level M4 based server systems are recommended to standardize CXL devices management using the CXL
Fabric Manager API [47] [48].

X The CXL FM API over MCTP Specification [49] defines how the CXL FM API messages are encapsulated in
MCTP Messages and transferred between MCTP Endpoints over the specified medium. CXL devices may
also support additional management using PLDM over MCTP, similar to other PCIe devices.

I Level M4 based server systems are also recommended to standardize CXL Type 3 device management with
CXL Component Command Interface (CCI) messages over MCTP.

X The CXL CCI interface [47] [48] is a register interface and command set for managing CXL Type 3 devices.
CXL Type 3 CCI Messages over MCTP Specification [50] defines how the CCI messages are encapsulated in
MCTP Messages and transferred between MCTP Endpoints over the specified transport.

RM4_IO_3 For Level M4 based server systems, the physical and data-link layer methods for MCTP communication
are defined by the MCTP over I3C binding specification [40] or over PCIe VDM binding specification [18].
MCTP over SMBus/I2C [39] should be supported only as fallback for older devices that only support MCTP
management through I2C.

I The BMC-IO Device Interface for all other IO devices for Level M4 based server systems is IMPLEMENTATION

DEFINED.

2.5.3 BMC-platform elements interface

I The BMC-Platform Elements interface for the Level M4-based server systems is IMPLEMENTATION DEFINED,
with additional recommendations and guidance. See:

• Intelligent Platform Management Interface v2.0 (IPMI) specification [10].
• OCP server design and specifications [21].

Page 41 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

• OCP Datacenter Secure Control Module (DC-SCM) [22].

I Level M4 based server systems recommend using the DMTF PMCI workgroup standards, when possible.

X These standards define specifications for primary intercommunication interfaces/data models between
Management Controller (BMC) and managed entities (Platform Elements). Using these standards for
managing platform elements enables advanced functionality such as secure communication, attestation,
firmware updates, configuration, and monitoring of the managed entities. For more information, see [13].

I PLDM [3] [31] [32] [33] is used for the purpose of supporting platform-level data models and platform functions.

X PLDM is designed to be an effective interface and data model that provides efficient access to low-level platform
inventory, monitoring, control, event, and data/parameters transfer functions. For example, temperature,
voltage, or fan sensors can have a PLDM representation that can be used to monitor and control the platform
using a set of PLDM messages. PLDM defines data representations and commands that abstract the platform
management hardware.

I MCTP [4] [34] is used as a transport protocol format that is independent of the underlying physical bus
properties, as well as the “data-link” layer messaging used on the bus.

I PLDM over MCTP binding [35] is used as the format of PLDM over MCTP messages.

I SPDM [5] is used for the purpose of supporting security related capabilities of the devices.

X SPDM is designed to provide runtime authentication of a device by retrieving the certificate chains from it and
verifying device authenticity by sending unique challenges. SPDM allows the requester to query the device’s
firmware or configuration data measurements for device attestation purposes.

I SPDM over MCTP binding [36] is used as the format of SPDM over MCTP messages.

I Secure messages using SPDM specifications [37] is used for the purpose of supporting secure transfer of
application data over PMCI transports using SPDM. Secure messages [37] also defines transport requirements
for SPDM records, which form the basis of encryption and message authentication.

I Secured Messages using SPDM over MCTP binding [38] is used as the format of SPDM secure messages
over MCTP messages.

X This approach abstracts the potential evolutions of the underlying physical medium, enabling future transport
bindings to be defined to support additional media without affecting the base MCTP specification. For the
current popular SMBus/I2C medium, the physical and data-link layer methods for MCTP communication are
defined by the MCTP over SMBus/I2C binding specification [39]. Additional MCTP physical and data-link
layers are defined for I3C [40] and PCIe VDM [18].

U For a list of PLDM commands which aid in monitoring and control of platform elements, see Section D.

2.5.4 BMC management services (out-of-band) interface

R The requirements and recommendations for the BMC out-of-band interfaces for Level M4-based server
systems are the same requirements and recommendations as for Level M3-based server systems.

2.5.5 SPDM over MCTP for BMC and side-band devices

R For Level M4-based server systems, the requirements are the same as for M3-based server systems.

Page 42 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.6 Level M5a

I This section defines the requirements for Level M5a-based servers. Figure 7 shows a summary of these
requirements.

Redfish Engine

SoC Side-band 
Interface

System Interface

Host OS/Firmware
(Application Processors)

SoC Side-band 
Interface Library

Shared Network Controller

IO Device Side-band 
interface

Platform Elements 
Interface

Sensors, Fans, 
Power, ...

Other Managed I/O Devices

Admin

OOB
(Redfish)

MCTP / PLDM over USB, I3C, or PCIe VDM.
I2C/SMBus only for initialization or fallback.

(events/power/thermal/RAS)  (*)

IMPDEF

IMPDEF

PCIe, SPI, I2C, other interfaces

PCIe x16 
(Network)

Monitor and Control Signals

UART (Serial over LAN, Console)

JTAG (remote debug)

PCIe x1   (Video, MCTP over PCIe VDM, MMBI)

USB  (Keyboard, Mouse, Virtual Media)

I2C/SMBus/Alert (IPMI SSIF)

 PCIe NIC (preferred) or USB NIC (Redfish HI)

NC-SCI over 
RBT or MCTP (*)

UART (OS Debug)

PCIe devices (Networking, 
Storage, ...) PCIe

MCTP/PLDM (*)

MCTP / PLDM (over I2C/I3C/PCIe/USB)

NVMe

NVME-MI over 
MCTP (*)

(*) BMC-IO MCTP communication over USB, 
I3C or PCIe VDM.  I2C/SMBus only for 
initialization or fallback.

P
C

Ie
 V

D
M

CXL devices
PLDM / CXL FM / CCI 

over MCTP (*)

Firmware Store

IMPDEF connection

Required connection

Conditionally required connection

Recommended connection

IMPDEF connection

Required connection

Conditionally required connection

Recommended connection

PCC

MCTP Host Interface over MMBI
(using PCIe or other interface)

UART (SatMC Debug)

Figure 7: Server management interfaces for Level M5a

2.6.1 SoC-BMC interface

R For Level M5a-based server systems, the requirements and recommendations extend those of the level M4.

Page 43 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

I It is recommended that the SatMC includes a BSA [20] compliant UART connection to the BMC for the
purpose of remote SatMC debugging. Support for UART flow control is platform IMPLEMENTATION DEFINED.
Using multiplexer of this UART with other UARTs connected to the BMC is platform IMPLEMENTATION DEFINED.

2.6.1.1 Host SoC in-band interface
I For Level M5a based server system, it is recommended that an additional higher bandwidth Host/SoC In-Band

interface communication is implemented using the MCTP protocol over Memory-Mapped BMC Interface
(MMBI) [[16]][17].

RRM5_IB_1 If the system implements MMBI, it must be compliant with the DMTF MMBI specification [16]. The MMBI
physical interface may exist over PCIe MMIO or other interfaces, as supported by [16].

RRM5_IB_2 If the Host/SoC In-Band interface uses the MCTP protocol, then the interface must be discoverable through a
mechanism defined in the MCTP Host Interface Specification [15].

2.6.1.2 Host SoC side-band interface
RM5_SB_1 For Level M5a based server systems, the physical and data-link layer methods for MCTP communication are

defined by one of the following higher bandwidth transport options:

• MCTP over USB binding specification [51], or
• MCTP over I3C binding specification [40],
• MCTP over PCIe VDM binding specification [18]

I If MCTP over PCIe VDM is used, the PCIe bus can be either dedicated PCIe bus between the BMC and the
SatMC, or shared with other PCIe links between the BMC and the SoC. It is recommended that a fallback
side-band interface exists when the PCIe bus is not available, for example, if the PCIe bus is initialized late
during boot, or if the link goes down.

I MCTP over SMBus/I2C [39] can be supported only for initial discovery, or as a fallback if the higher bandwidth
interface is not available.

I If MCTP over USB is used, the USB Host Controller is in the BMC, and the USB Endpoint device in the
SatMC. For bi-directional communication, the BMC continuously polls for content from the SatMC endpoint,
as described in [51].

2.6.1.3 PA-Rot and AC-RoT
I The SoC can contain an AC-RoT responsible for actively monitoring the state of the firmware/software

executing upon the SoC, and detecting any ongoing attack on the SoC.

I If a PA-RoT is present in the platform, the SoC may have an interface to it. The PA-RoT can be either a
discrete system component or integrated in the BMC.

For guidance on the PA-RoT and AC-RoT responsibilities see Section G.5.

2.6.2 BMC-IO device interface

R For Level M5a-based server systems, the requirements and recommendations extend those of the level M4.

RM5_IO_1 For Level M5a based server systems, the physical and data-link layer methods for MCTP communication are
defined by one of the following higher bandwidth transport options:

• MCTP over USB binding specification [51], or
• MCTP over I3C binding specification [40],
• MCTP over PCIe VDM binding specification [18]

I For details on how PCIe devices are managed out-of-band using MCTP and other protocols, see [52].

I If MCTP over PCIe VDM is used, and the PCIe bus is shared with other PCIe links between the BMC and
the SoC, it is recommended that a fallback BMC-IO interface exists when the PCIe bus is not available, for
example, if the PCIe bus is initialized late during boot, or if the link goes down.

Page 44 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

I MCTP over SMBus/I2C [39] can be supported for initial discovery, or as a fallback if the higher bandwidth
interface is not available or not supported on older devices.

I There are other use cases of SMBus/I2c communication between the BMC and IO devices. For example,
OCP Secure Firmware Recovery [53] relies on SMBus/I2C as the firmware recovery protocol interface, and
while that protocol does not require or depend on MCTP, it can co-exist with MCTP on the same physical bus.

2.6.3 BMC-platform elements interface

R For Level M5a-based server systems, the requirements and recommendations extend those of the level M4.

I When MCTP is used for BMC to platform elements communication, it is possible to use several physical and
data-link layers, including I2C/SMBus [39], I3C [40], USB [51], and PCIe VDM [18]. Usage of slower busses
such as I2C/SMBus is not recommended when high bandwidth communication is needed.

I If a PA-RoT is present in the platform, the BMC may have an interface to it. The PA-RoT can be either a
discrete system component or integrated in the BMC.

2.6.4 BMC management services (out-of-band) interface

R For Level M5a-based server systems, the requirements and recommendations extend those of the level M4.

RM5_OOB_1 If the server platform supports user-accessible BIOS settings configuration, the BMC must support the Redfish
BIOS settings resource.

I Platforms may support multiple interfaces to configure the BIOS settings, such as Redfish, local BIOS/UEFI
setup, and other tooling. The priority and synchronization across these interfaces are IMPLEMENTATION

DEFINED. For example, a platform may include an IMPLEMENTATION DEFINED method to enable/disable the
ability to configure BIOS settings locally, and only allow Redfish configuration.

I Redfish settings resource represents the future intended state of a resource. Some resources have properties
that can be updated, and the updates take place immediately. However, some properties need to be updated
at a future point in time, such as after a system reset. SBMR recommends using Redfish settings resource for
BIOS configuration.

I Redfish Resource and Schema Guide [30] provides information on how to use the Redfish interface, targeted
at consumption of the interface.

2.6.5 SPDM over MCTP for BMC and side-band devices

R For Level M5a-based server systems, the requirements and recommendations are the same as for M4-based
server systems.

2.6.6 Host-to-SatMC interface

RM5_HS_1 If the Host-to-SatMC interface uses a PCC mailbox, that mailbox must use PCC subspace structures of type
3 and type 4, and must carry MCTP traffic as defined by the MCTP over PCC binding specifications [54].

RM5_HS_2 If the Host-to-SatMC interface uses the MCTP protocol, then the interface must be discoverable through a
mechanism defined in the MCTP Host Interface Specification [15].

I For Level M5a based server system, it is recommended that the Host-to-SatMC communication is performed
using the MCTP protocol over a PCC mailbox composed of type 3 and type 4 PCC subspace structures [7].

2.7 SBMR checklist

This section lists the minimum SBMR server requirements.

Page 45 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

2.7.1 SBMR Level M1 checklist

Category Rule ID

In-Band M1_IB_1

UART M1_UART_1

UART M1_UART_2

JTAG M1_JTAG_1

JTAG M1_JTAG_2

OOB M1_OOB_1

IPMI IPMI_1

IPMI IPMI_2

IPMI IPMI_3

IPMI IPMI_4

IPMI IPMI_5

IPMI IPMI_6

IPMI IPMI_7

IPMI IPMI_8

RAS M1_RAS_1

RAS M1_RAS_2

2.7.2 SBMR Level M2 checklist

In addition to the SBMR Level M1 rules in Section 2.7.1, the following additional rules are required.

Category Rule ID

In-Band M2_IB_1

In-Band M2_IB_2

JTAG M2_JTAG_1

JTAG M2_JTAG_2

BMC-IO M2_IO_1

OOB M2_OOB_1

OOB M2_OOB_2

OOB M2_OOB_3

RAS M2_RAS_1

RAS M2_RAS_2

2.7.3 SBMR Level M2.1 checklist

In addition to the SBMR Level M2.1 rules in Section 2.7.2, the following additional rules are required.

Page 46 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Category Rule ID

In-Band M21_IB_1

In-Band M21_IB_3

PCIe M21_PCI_1

USB M21_USB_1

IPMI M21_IPMI_1

IPMI M21_IPMI_2

2.7.4 SBMR Level M3 checklist

In addition to the SBMR Level M3 rules in Section 2.7.3, the following additional rules are required.

Category Rule ID

Side-Band M3_SB_1

Side-Band M3_SB_2

Side-Band M3_SB_3

Side-Band M3_SB_4

Side-Band M3_SB_5

Side-Band M3_SB_6

Side-Band M3_SB_7

Side-Band M3_SB_8

Side-Band M3_SB_9

JTAG M3_JTAG_1

JTAG M3_JTAG_2

BMC-IO M3_IO_1

BMC-IO M3_IO_2

OOB M3_OOB_1

OOB M3_OOB_2

SPDM M3_SPDM_1

SPDM M3_SPDM_2

RAS M3_RAS_1

2.7.5 SBMR Level M4 checklist

In addition to the SBMR Level M4 rules in Section 2.7.4, the following additional rules are required.

Page 47 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Category Rule ID

Side-Band M4_SB_1

BMC-IO M4_IO_1

BMC-IO M4_IO_2

BMC-IO M4_IO_3

2.7.6 SBMR Level M5a checklist

In addition to the SBMR Level M4 rules in Section 2.7.5, the following additional rules are required.

Category Rule ID

In-Band M5_IB_1

In-Band M5_IB_2

Side-Band M5_SB_1

BMC-IO M5_IO_1

OOB M5_OOB_1

Host-to-SatMC interface M5_HS_1

Host-to-SatMC interface M5_HS_2

Page 48 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

A OpenBMC

The OpenBMC project is an open-source project that provides a Linux distribution which implements a BMC
firmware stack for devices such as servers, top-of-rack switches, or storage appliances. The OpenBMC stack
uses technologies such as Yocto, Open-Embedded, Systemd and Dbus to allow easy customization for each
server platform.

OpenBMC is a Linux Foundation project hosted at https://github.com/openbmc/openbmc. The project
Technical Steering Committee includes Facebook, Google, IBM, Intel, and Microsoft, a well as Arm.

OpenBMC is a sample implementation of the BMC software. Actual deployment of BMC in SBSA [1]-compliant
AArch64 servers can chose to use this implementation or other commercial solutions.

Page 49 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

https://www.openbmc.org/
https://github.com/openbmc/openbmc


Server Base Manageability Requirements

B IPMI
This section documents the minimum IPMI commands required by SBMR. It also documents the Arm specific
IPMI commands that are defined by this specification.

B.1 Standard IPMI commands

The following are the IPMI commands defined by [10] which are required by this specification.

B.1.1 Remote power control

B.1.1.1 Power on
RIPMI_1 A platform must provide a mechanism for remotely powering an individual node on and initiating the boot

sequence.

B.1.1.2 Power off
RIPMI_2 A platform must provide a mechanism for remotely powering an individual node off. This mechanism should

be provided out-of-band, without dependencies on the host operating system. For example, graceful power
off facilities which rely on the host OS to perform the shutdown would not be sufficient.

B.1.1.3 Graceful power off
RIPMI_3 A platform must provide a mechanism for remotely initiating an OS-controlled power down of a system.

B.1.1.4 IPMI commands required

IPMI Chassis Control Command [10]

B.1.2 Boot device selection

RIPMI_4 Platforms must provide a mechanism to remotely select either a local boot or a network boot on the next
system power up.

U Implementations may limit the IPMI boot device selection command to reasonable boot targets that are
supported by the system, such as PXE, HDD, CD/DVD, or USB. Support for special-purpose boot targets,
such as boot from diagnostics partition, is not required.

B.1.2.1 IPMI commands required
RIPMI_5 The following IPMI boot device selection commands are required:

• IPMI Set System Boot Options Command [10]
• IPMI Get System Boot Options Command [10]

B.1.3 BMC to host mapping

RIPMI_6 It should be possible to automatically determine the mapping between a host and its BMC. The host must be
able to identify its BMC configuration through an in-band mechanism. Alternatively, the BMC must be able to
provide unique identification information about the host, for example host MAC addresses.

B.1.4 BMC user manipulation

RIPMI_7 When an IPMI LAN capable BMC is used to provide platform interfaces, the deployment server must be able
to authenticate to the BMC by using the IPMI System Interface through the in-band interface. This is required
for deployment server to be able to add a private user to the BMC using the host operating system. The
System Interface does not require the user to authenticate to the BMC to manipulate the user settings. Once
the deployment server has defined a user on the BMC, the administrator can authenticate to the BMC over
the IPMI LAN interface. This requires an IPMI-compliant BMC system Interface.

Page 50 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

IPMI%20§%2028.3
IPMI%20§%2028.12
IPMI%20§%2028.13


Server Base Manageability Requirements

B.1.5 Redfish host interface credentials bootstrapping

RIPMI_8 The Redfish in-band Host Interface includes an optional feature to bootstrap temporary Redfish service host
accounts using some IPMI commands. If present, these commands must follow the definitions in version 1.30
or newer of the Redfish Host Interface Specification [27].

B.1.5.1 IPMI commands

• IPMI Get Manager Certificate Fingerprint Command [27]

• IPMI Get Bootstrap Account Credentials [27]

B.1.5.2 Redfish properties
I CredentialBootstrapping property defined in the HostInterface Redfish Schema [9] [55]. Platforms

should implement this property as a writeable configuration setting to allow the administrator to disable the
bootstrapping facility for security reasons.

I CredentialBootstrappingRole property in the Links property defined in the HostInterface Redfish Schema
[9] [55].

B.1.6 IPMI support verification

S A script to verify the basic remote IPMI functionality is available here. The Arm SBMR Architecture Compliance
Test Suite (SBMR-ACS) also provides similar tests for remote and local IPMI functionality, and is available
here.

B.2 Arm standard IPMI commands

This section lists Arm standard IPMI commands that are defined by this specification.

B.2.1 General IPMI commands format

The common components of IPMI message as defined by [10] consist of:

• Network Function (NetFn): A field that identifies the functional class of the message.

• Request/Response identifier: A field that unambiguously differentiates Request Messages from
Response Messages.

• Requester’s ID: Information that identifies the source of the Request.

• Responder’s ID: A field that identifies the Responder to the Request.

• Group Extensions (2Ch, 2Dh): This will allow all the commands to come under a Group for Non-IPMI
groups and requests.

– SBMR uses the Group Extension NetFn (2Ch, 2Dh) option from the IPMI specification [10]. This is
because it gives the Arm ecosystem a broad scope for managing the transport and protocols.

• Command: The messages specified in this document contain a one-byte command field. Commands
are unique within a given Network Function.

• Data: The Data field carries the additional parameters for a request or a response, if any. The first
data byte position in requests, and the second byte in responses, under the Group Extension NetFn
identifies the defining body that specifies command functionality. Software assumes that the command
and completion code field positions will hold command and completion code values.

– SBMR defines the value AEh as the defining body code. This value will be used for all IPMI
commands defined in SBMR.

Page 51 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

Redfish%20Host%20Interface%20§%209.1.1
Redfish%20Host%20Interface%20§%209.1.2
https://git.launchpad.net/~ce-hyperscale/maas/+git/maas/plain/maas-ipmi-test.sh?h=maas-bmc-tests
https://github.com/ARM-software/sbmr-acs
https://github.com/ARM-software/sbmr-acs


Server Base Manageability Requirements

B.2.2 List of Arm standard IPMI commands

Table 11 lists Arm standard IPMI commands that are defined in SBMR.

Table 11: List of Arm standard IPMI commands

Command NetFn Command Code Definition

Send Platform Error Record 2Ch 01h Section C.1.2

Send Boot Progress Code 2Ch 02h Section F.1

B.3 IPMI specification clarifications and corrections

The following section lists corrections and clarifications to the IPMI specification [10] that directly impact IPMI
implementation on Arm-based SBMR systems, including complete support for IPMI SSIF interface. These
corrections are listed here in Table 12 rather than the official IPMI Specification because “No further updates
to the IPMI specification are planned or should be expected” by the IPMI Promoters group.

Table 12: SBMR deviations from the IPMI specification

IPMI
§ Existing language Updated language

12.3 “The combination of a Start transaction followed by
an End transaction can transfer up to 63 bytes of
IPMI message. The Middle transaction is available
when there is a need to transfer an IPMI message
of greater than 64 bytes. As of this writing, there
are no standard IPMI messages to the BMC that
are longer than 63 bytes. Therefore, the ‘middle’
transaction is defined solely as needed by any
OEM/group network functions (network function
codes 2Ch:3Fh) in the particular BMC
Implementation”

“The combination of a Start transaction followed by
an End transaction can transfer up to 64 bytes of
IPMI message. The Middle transaction is available
when there is a need to transfer an IPMI message
of greater than 64 bytes. As of this writing, there
are no standard IPMI messages to the BMC that
are longer than 64 bytes. Therefore, the ‘middle’
transaction is defined solely as needed by any
OEM/group network functions (network function
codes 2Ch:3Fh) in the particular BMC
Implementation”

12.3.1 Table 12 - BMC Multi Part End Table 12 - BMC Multi Part End (see below)

Table 12

Existing Correction

Completer
address
(7)

R/W=0
(1)

SMBus
CMD
=07h

Length IPMI
Data

[PEC] Completer
address
(7)

R/W=0
(1)

SMBus
CMD
=08h

Length IPMI
Data

[PEC]

B.4 SSIF single and multi-part transactions

The SMBus System Interface (SSIF) defines two types of writes, a single-part write, and a multi-part write.
Multi-Part writes are used when more than 32-bytes of IPMI message data need to be written to the BMC. For

Page 52 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

any IPMI commands, where the data size is greater than 32 bytes, SBMR recommends the use of multi-part
writes.

A multi-part write has one Start (SMBus CMD=0x06), zero or more Middle (SMBus CMD=0x07), and one End
(SMBus CMD=0x08) transactions.

Multi-part Start transaction looks like this Table 14:

Table 14: IPMI SSIF multi-part Start transactions

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6+

Completer
Address
(7 bits)

R/W (1
bit)

SMBus
CMD

Length
(8 bits)

NetFN
(6 bits)

LUN (2
bits)

IPMI
CMD (8
bits)

data (1 or
more bytes)

[PEC] (8
bits)

0 0x06 0x20 0x2c 0x## 0xAE Followed
by Data bytes

Note

The NetFun code is “0x2C” and the first byte of IPMI request data is 0xAE to indicate that the IPMI commands
are defined by this specification.

Multi-part Middle transactions look like this Table 15:

Table 15: IPMI SSIF multi-part middle transactions

Byte 1 Byte 2 Byte 3 Byte 4+

Completer
Address (7
bits)

R/W (1 bit) SMBus CMD Length (8
bits)

data (1 or more bytes) [PEC] (8 bits)

0 0x07 0x20 Followed by Data bytes

Multi-part End transactions look like this Table 16:

Table 16: IPMI SSIF multi-part end transactions

Byte 1 Byte 2 Byte 3 Byte 4+

Completer
Address (7
bits)

R/W (1 bit) SMBus CMD Length (8
bits)

data (1 or more bytes) [PEC] (8 bits)

0 0x08 <= 0x20 Followed by Data bytes

Page 53 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

U Considering the clarifications of the IPMI Specification in Section B.3, the following are some examples of
multi-write SSIF transactions of different sizes:

Example 1: sending <= 32 bytes:

• 1st Write transaction: SMBus = 0x6, Length = 0x20

Example 2: sending 64 bytes:

• 1st Write transaction: SMBus = 0x6, Length = 0x20

• 2nd Write transaction: SMBus = 0x8, Length = 0x20

Example 3: sending 95 bytes:

• 1st Write transaction: SMBus = 0x6, Length = 0x20

• 2nd Write transaction: SMBus = 0x7, Length = 0x20

• 3rd Write transaction: SMBus = 0x8, Length = 0x1F

Example 4: Sending 96 bytes:

• 1st Write transaction: SMBus = 0x6, Length = 0x20

• 2nd Write transaction: SMBus = 0x7, Length = 0x20

• 3rd Write transaction: SMBus = 0x8, Length = 0x20

Page 54 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

C RAS
This section covers requirements and guidance for handling and implementing platform Reliability, Availability
and Serviceability (RAS) events.

C.1 Level M1

I Figure 8 shows a conceptual illustration of IPMI based in-band, SoC side-band, and out-of-band RAS
interfaces for Level M1-based server systems.

IPMI Server

Implementation 
Defined Backend

Host OS/Firmware

SoC side-band 
Interface Library

System Interface

OOB IPMI 
(LAN, Serial, SoL)

Admin

In-Band IPMI SSIF 
(I2C/SMBus/Alert)

SoC Side-band Interface

Figure 8: IPMI based RAS Interfaces

C.1.1 SMBus System Interface (SSIF) in-band interface

I For transferring RAS error records generated in Host OS/Firmware, SBMR recommends the use of IPMI
SMBus System Interface (SSIF) as the in-band interface for the Level M1-based server systems. The SSIF
interface is intended to be used by host OS and firmware to communicate with the BMC. Once the host boots
to the OS, this interface is typically used only by the OS.

Page 55 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

I The format of the IPMI command used over this interface to send the RAS platform errors to the BMC is
defined in section Section C.1.2.

I Other IPMI System Interfaces, for example Keyboard Controller Style (KCS), System Management Interface
Chip (SMIC), and Block Transfer (BT), are optional and not expected to be present.

I Figure 9 illustrates the overview of RAS Events interaction with the event receiver and RAS Manager through
SMBus System Interface (SSIF).

System Interface

Event Message Buffer RAS Manager

N
V

 S
to

ra
g

e
 I

F

RAS 
(CPER Data)

NV Storage

Event Receiver

PEF

RAS Events

Figure 9: IPMI based RAS Event Receiver

U Figure 9 represents a conceptual illustration of the way that RAS event messages can be handled by a BMC
device that uses an external non-volatile storage device to hold the RAS Event Log. The figure shows a BMC
with a shared system messaging interface where RAS Event Messages can be delivered from the Host OS or
host firmware.

When the BMC receives a message via the system interfaces, a BMC firmware Message Handler function
recognizes the message as being for the Event functionality in the BMC and passes the message information
on to the Event Receiver function.

The Event Receiver function then takes the message content and issues a request to a RAS Manager function
that formats the message as a Common Platform Error Record (CPER) entry. Finally, the RAS Manager
function calls calls the Non-Volatile Storage Interface to store the event record.

RM1_RAS_1 SBMR requires the error record data format to be in raw Common Platform Error Record (CPER) format
when using this interface. The format of CPER is defined in [8] (UEFI § N). When creating CPER raw files for
logging to or extracting from the BMC, SBMR requires that the CPER data contain a single CPER Section
(Section Descriptor and Section), as defined by [8] (UEFI § N).

C.1.2 RAS IPMI message format

Page 56 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

RM1_RAS_2 The RAS (CPER) IPMI commands follow the general format of Arm defined IPMI commands as outlined in
Section B.2, with Group Extension 2Ch, and defining body AEh.

C.1.2.1 Send Platform Error Record (NetFn 2Ch, Command 01h)

This command is used to send the RAS CPER error record to the BMC.

Request Data

Bytes Data field

1 Group extension defining body (AEh)

2. . . n CPER Error record (Section Descriptor and Section)

Response Data

Bytes Data field

1 Completion Code: 00h: Command completed normally 80h: Command
completed with error

2 Group extension defining body (AEh)

I Because the size of RAS CPER error record format is in the order of KBs, SBMR recommends the use of
SSIF multi-part write transaction. For information on SSIF multi-part transactions, see Section B.3.

C.1.3 SoC side-band interface

I RAS error records can be generated in the host OS or the firmware, then transferred over to the SatMC. RAS
error records can also be generated in the SatMC itself. For both cases, the transport of these error records
over the SoC Side-band interface is IMPLEMENTATION DEFINED for SBMR Level-M1 compliant server systems.

C.1.4 Out-of-band interface

I SBMR recommends a IPMI based tool to extract the stored RAS error records in raw CPER format. The IPMI
based tool is responsible for formatting raw CPER format data into human readable format.

C.2 Level M2 and Level M2.1

RM2_RAS_1 Level M2 and Level M2.1 require Redfish as the out-of-band interface, and both Redfish and IPMI Host
Interfaces as the in-band interfaces.

Page 57 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

I Figure 10 shows a conceptual illustration of these interfaces for RAS.

Redfish and IPMI 
Server

Implementation 
Defined Backend

Host OS/Firmware

SoC side-band 
Interface Library

System Interface

OOB 
(IPMI and Redfish)

Admin

In-Band IPMI SSIF 
(I2C/SMBus/Alert)

In-Band Redfish Host Interface

RAS Event 
Repository

SoC Side-Band Interface
(IMPDEF)

Figure 10: Redfish and IPMI based RAS Interfaces

C.2.1 Redfish and IPMI host (in-band) interfaces

I For transferring RAS error records generated in Host OS/Firmware to the BMC, SBMR recommends IPMI
System Interface as the in-band interface for the Levels M2 and M2.1 based server systems, as defined in
Section C.1 for Level-M1 server systems.

I Arm recommends storing the error records in CPER-like format in the RAS Event Repository non-volatile
storage.

I SBMR recommends that Host Interface and out-of-band API must be the same, where possible, so that client
apps have minimal, if any, change to adapt.

C.2.2 RAS Redfish message format

RM2_RAS_2 The Redfish model for extracting Platform Error Records is defined in DMTF Redfish Schema [9], under the
LogEntry schema. A LogEntry object may contain the following properties to point to the platform error record
diagnostic binary blob:

Page 58 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

• AdditionalDataURI: Pointer to the platform error record binary file that can be downloaded by a client.
SBMR recommends that this file to be formatted as a CPER binary raw file, as defined by Redfish
LogEntry schema.

• AdditionalDataSizeBytes: Size of the diagnostics binary file in bytes

• DiagnosticData: Optional Base64 representation of the platform error record binary. Subject to the
constraints defined in the LogEntry schema.

• DiagnosticDataType: The type of the diagnostics binary file retrieved from AdditionalDataURI or
available in DiagnosticData. For platform error records, this can be OS, PreOS, CPER, CPERSection,
or OEM. When using Redfish to report CPER data, SBMR requires setting this property to CPER when the
content is a complete CPER Record with a Header and one or more Sections, or CPERSection when
the content is a single CPER Section (and a Section Descriptor) without a Header. This allows user
software to distinguish CPER records from other diagnostics files.

• CPER.SectionType: The type of the CPER section.

• CPER.NotificationType: The notification used for the CPER record.

C.2.3 SoC side-band interface

I For transferring RAS error records either generated in Host OS/Firmware and transferred over to
Satellite/Service Management Controller or in the Satellite/Service Management Controller itself, SoC
Side-band interface for SBMR Levels M2-compliant and M2.1-compliant systems is IMPLEMENTATION

DEFINED.

C.2.4 Out-of-band interface

I SBMR recommends a Redfish-based tool to extract the stored RAS error records in CPER-like format from
RAS event repository.

C.3 Level M3, M4, and M5a

RM3_RAS_1 Level M3 adds the additional requirement of MCTP based SoC side-band interface in addition to Redfish as
out-of-band interface and Redfish Host Interface as the in-band interface.

I Figure 11 shows a conceptual illustration of these interfaces for RAS.

Page 59 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Redfish Server

Management 
Component Transport 

Protocol

Host OS/Firmware

PLDM / MCTP 
Interface Library

OOB 
(Redfish)

Admin

In-Band Redfish Host Interface

PLDM Event 
Repository

SoC Side-band MCTP Interface
(I2C, Serial, PCIe, etc.)

Platform Level Data 
Model (PLDM) for 

Redfish Device 
Enablement

Platform Level Data 
Model (PLDM) over 

MCTP Binding 

Figure 11: Redfish/PLDM/MCTP based RAS Interfaces

C.3.1 Redfish host (in-band) interface

I For transferring RAS error records generated in host OS or firmware, the recommendations for Level M3-based
server system are the same recommendations as for Levels M2-based and M2.1-based server systems.

C.3.2 MCTP and PLDM (SoC side-band) interface

I RAS error records can be generated in the host OS or the firmware, then transferred over to the SatMC.
RAS error records can also be generated in the SatMC itself. For both cases, SBMR recommends that
the transport of these error records over the SoC Side-band interface to use the Management Component
Transport Protocol (MCTP) for the Levels M3, M4, and M5a based server systems.

I SBMR recommends Platform Level Data Model (PLDM) as the SoC side-band message definition and data
layer interface for the Levels M3, M4, and M5a based server systems.

I SBMR recommends that the error record data format is in CPER format when using this interface.

I SBMR recommends the use of PlatformEventMessage, PollForPlatformEventMessage, EventMessageSupported
↪→ and EventMessageBufferSize Commands to transfer CPER formatted RAS errors from the SatMC to the

Page 60 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC.

I A new event class CPEREvent is defined to enable this feature. SBMR recommends using the CPEREvent value
07h, which is defined in Table 11 of DSP0248 v 1.3.0 or newer [32]. The format of CPEREvent is defined in
Table 27 of [32].

I SBMR previously defined oemEvent value of FA for use as a temporary CPEREvent event class until an industry
standard value is defined. Some existing implementations are already using the oemEvent value. SBMR
recommends using the standard value defined in [32] v 1.3.0 where possible.

I SBMR recommends the BMC use of pldmMessagePollEvent to allow for asynchronous polling of error event,
as well as the transfer of large CPEREvent messages.

U When the BMC receives a pldmMessagePollEvent, it is a signal that event FIFO contains a large message
that will require multipart transfers. The BMC then uses the PollForPlatformEventMessage command with
TransferOperationFlag set to GeNextPart to initiate the transfer. In response, the SatMC supplies the first
chunk of data along with a transfer handle for the next portion and a transferFlag of Start, which indicates
that this is the first chunk and there is at least one more. The BMC then retrieves the next chunk in the same
fashion, using the nextDataTransferHandle supplied in the previous response.

If the response message transferFlag field is set to Middle, the BMC knows that more data is waiting to be
retrieved, and repeats this process using the most recently received nextDataTransferHandle to obtain the
next data chunk each time.

Finally, when the transferFlag comes back as End, the BMC knows the transfer is complete and can verify
the eventDataIntegrityChecksum against the re-assembled event message. Assuming the transfer was
successful, the BMC can now acknowledge receipt of the event and switch back to asynchronous transfer
of events by sending a final PollForPlatformEventMessage command with TransferOperationFlag set to
AcknowledgementOnly. Finally, the BMC can verify if eventClass field of re-assembled event message is
CPEREvent.

For more details, see [32].

C.3.2.1 RAS PLDM message flows examples
U Figure 12 shows an example flow when BMC and SatMC boot up to exchange the capabilities, such as max

buffer size, supported event types, asynchronous and polling mode.

U Figure 13 shows an example flow that SatMC use asynchronous method to send small event to BMC.

U Figure 14 shows an example flow that SatMC use asynchronous method to notify BMC to switch to polled
event transfer to receive a large multi-part event.

U Figure 15 shows an example flow that BMC use polling method to receive a large multi-part event.

U Figure 16 shows an example flow that BMC use polling method to receive a small event.

U Figure 17 shows an example flow that SatMC reports an empty event queue when BMC try to poll an event
back.

Page 61 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC

Satellite 
Management 

Controller

EventMessageSupported(Version, TID)

return(EventClass[N])

CPEREvent (0xFA)
Supported?

EventMessageBufferSize(SatMCMaxBufferSize)

return(MaxBufferSize)

pldmMessagePollEvent(0x05)
Supported?

SetEventReceiver(eventMessageGolbalEnable=enableAsync)

return(PLDM_BASE_CODE)

Optional - PlatformEventMessage(CPEREvent)

return(PLDM_BASE_CODE)

Figure 12: RAS side-band flow – boot initialization

Page 62 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC

Satellite 
Management 

Controller

PlatformEventMessage(CPEREvent)

return(PLDM_BASE_CODE)

decode the CPER-formatted eventData

Store decoded CPER to event log repo.

SoC
Hardware

Error

Generate CPER Event
(< MaxBufferSize)

*NOTE: This an error 
sensor that has event 
generation enabled.  

Figure 13: RAS side-band flow – Asynchronous small event

Page 63 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC
Satellite 

Management 
Controller

PlatformEventMessage(pldmMessagePollEvent, 
eventData.EventID=0x0001

eventData.DataTransferHandle=FIRST_PART])

return(PLDM_BASE_CODE)

decode the CPER-formatted eventData

Store decoded CPER to event log repo.

SoC
Hardware

Error 

Generate 
CPER Event
(> MaxBufferSize)

PollForPlatformEventMessage (GetNextPart, 0xFFFF,
dataTransferHandle=FIRST_PART)

return(eventId=0x0001,
nextDataHandle=SECOND_PART, 

Middle=0x1, 
EventClass=CPEREvent, 

EventDataSize, 
EventData )

PollForPlatformEventMessage (GetNextPart, 0xFFFF,
dataTransferHandle=SECOND_PART)

return(eventId=0x0001,
nextDataHandle=THIRD_PART,

Middle=0x01,  
EventClass=CPEREvent, 

EventDataSize, 
EventData )

PollForPlatformEventMessage (GetNextPart, 0xFFFF,
dataTransferHandle=THIRD_PART)

return(eventId=0x0001,
nextDataHandle,

End=0x04,  
EventClass=CPEREvent, 

EventDataSize, 
EventData, 

EventDataIntegrityChecksum )

PollForPlatformEventMessage (AcknowlegdementOnly,0x0001)

return(eventID=0x0000(emtpy queue))

*NOTE: This an error 
sensor that has event 
generation enabled.  

Figure 14: RAS side-band flow – SatMC async notification for BMC to switch to poll for large event

Page 64 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC
Satellite 

Management 
Controller

decode the CPER-formatted eventData

Store decoded CPER to event log repo.

SoC
Hardware

Async Error Event

Queue up 
CE CPER for polling

PollForPlatformEventMessage (GetFirstPart, 0x0000)

return(eventId=0x0100,
nextDataHandle, 

Start=0x00, 
EventClass=CPEREvent, 

EventDataSize, 
EventData )

PollForPlatformEventMessage (GetNextPart, 0xFFFF)

return(eventId=0x0100,
nextDataHandle,

Middle=0x01,  
EventClass=CPEREvent, 

EventDataSize, 
EventData )

PollForPlatformEventMessage (GetNextPart, 0xFFFF)

return(eventId=0x0100,
nextDataHandle,

End=0x04,  
EventClass=CPEREvent,  

EventDataSize, 
EventData, 

EventDataIntegrityChecksum )

PollForPlatformEventMessage (AcknowlegdementOnly,0x0100)

return(eventID=0x0000(emtpy queue))

CPER Event 
Polling Thread
(e.g. Polls for corrected
errors)

*NOTE: This an error 
sensor that has event 
generation disabled.  

Figure 15: RAS side-band flow – BMC polling to receive large event

Page 65 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC
Satellite 

Management 
Controller

decode the CPER-formatted eventData

Store decoded CPER to event log repo.

SoC
Hardware

Async Error Event

Queue up 
CE CPER for polling

PollForPlatformEventMessage (GetFirstPart, 0x0000)

return(eventId=0x0100,
nextDataHandle, 

StartAndEnd=0x05, 
EventClass=CPEREvent, 

EventDataSize, 
EventData )

PollForPlatformEventMessage (AcknowlegdementOnly,0x0100)

return(eventID=0x0000(emtpy queue))

CPER Event 
Polling Thread
(e.g. Polls for corrected
errors)

*NOTE: This an error 
sensor that has event 
generation disabled.  

Figure 16: RAS side-band flow – BMC polling to receive small event

Page 66 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMC
Satellite 

Management 
Controller

SoC
Hardware

PollForPlatformEventMessage (GetFirstPart, 0x0000)

return(eventID=0x0000(emtpy queue))

CPER Event 
Polling Thread
(e.g. Polls for corrected
errors)

*NOTE: This an error 
sensor that has event 
generation disabled.  

Figure 17: RAS side-band flow – SatMC reporting of empty event queue

C.3.3 Out-of-band interface

I SBMR recommends a Redfish based tool to extract the stored RAS error records in a CPER format from the
PLDM event repository.

U When the BMC receives the CPER binary from the SatMC and stores it in its local repository, the BMC
generates corresponding event log entry to Redfish event log repository as explained in Section C.2.2. A
Redfish based tool can then retrieve the CPER binary data from BMC by iterating through the Redfish log
entries, looking for a Log entry with LogDiagnosticDataType set to CPER or CPERSection. When found, the
tool can download the CPER file pointed to by the AdditionalDataURI property of the Redfish log entry for that
error event. Alternatively, the tool can retrieve the DiagnosticData Base64 representation of the CPER binary.

Figure 18 shows the CPER dataflow from SatMC to Remote Redfish base tool.

Page 67 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

CPER log 1

CPER log 2

HTTP GET
Https://<ip>/redfish/v1/Managers/BMC/LogService/Log/Entries/1

Host OS/Firmware

AdminAdmin

RAS Error 
Event

in CPER 
format

PLDM event FIFO

CPER log
local storage

Redfish Event

Return(Part1 of CEPR log 1)

PollForPlatfromEventMessage(GetFirstPart)

Return(End of CEPR log 1)

PollForPlatfromEventMessage(GetNextPart)

BMC generates Redfish 
Event 

For received CPER log

HTTP GET URI=[path_to_cper_logl]

[Redfish Log Entry]
EntryType=Event
LogDiagnosticDataType=CPER
AdditionalDataURI=[path_to_cper_log]

Figure 18: Out-of-band interface for RAS/CPER event log

Page 68 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

D Platform monitoring and control

D.1 Background

A managed entity refers to the physical or logical entity that is being managed through management
parameters. Examples of physical entities include fans, processors, power supplies, circuit cards, and
chassis. Examples of logical entities include virtual processors, cooling domains, and system security states.

D.2 IPMI commands to monitor and control managed entities

I SBMR recommends the following list of IPMI commands for monitoring and control of managed entities.

1. Get Sensor Reading
2. Get Sensor Reading Factors
3. Set Sensor Hysteresis
4. Get Sensor Hysteresis
5. Set Sensor Thresholds
6. Get Sensor Thresholds
7. Set Sensor Event Enable
8. Get Sensor Event Enable
9. Re-arm Sensor Events

10. Get Sensor Event Status
11. Set Sensor Type
12. Get Sensor Type
13. Set Sensor Reading and Event Status

For more details, see the IPMI Specification [10].

Sensor data records (SDRs)

I SBMR recommends SDR Type 01h, Full Sensor Record, to describe the managed entities. For more details,
see the IPMI Specification [10].

I SBMR recommends the following list of IPMI commands for management of Sensor Data Records (SDRs) of
managed entities.

1. Get Device SDR Info
2. Get Device SDR
3. Reserve Device SDR Repository
4. Get SDR Repository Info
5. Get SDR
6. Add SDR
7. Partial Add SDR
8. Clear SDR Repository

X Sensor Data Records (SDRs) are data records that contain information about the type and number of
managed entities in the platform, sensor threshold support, event generation capabilities, and information on
what types of readings the sensor provides.

The general SDR format consists of three main components: the Record Header, Record Key fields, and the
Record Body.

Sensor Type Code, Offset and Unit

I SBMR recommends the use of Sensor Type values and sensor-specific event offsets (if any) as defined by
[10] for managed entities. For more details on the Sensor Type values, see [10] (IPMI § Table 42-3).

For a list of sensor unit codes, see [10] (IPMI § Table 43-15).

Page 69 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Entity IDs

I SBMR recommends the use of Entity IDs which identify the sensor association with a physical container.
SBMR reserves the following Entity IDs in Table 19 to identify SoC firmware (for example, pre-EFI firmware),
and SoC Management Software (for example, Satellite/Service Management Software). These values are
reserved from the OEM System Integrator defined range 0xD0 – 0xFF.

Table 19: IPMI entity IDs

Code Entity Comments

0xE0 SoC Management Software This value identifies firmware or software running on a
satellite/service management controller within/outside Arm
SoC.

0xE1 SoC firmware This value identifies pre-EFI firmware on Arm SoCs

For a complete list of entity IDs, see [10] (IPMI § Table 43-13).

D.3 Redfish schema to monitor and control managed entities

I SBMR recommends the use of the Redfish schema for sensor as defined by [9] [2].

D.4 PLDM commands/APIs to monitor and control managed entities

I SBMR recommends that the SatMC supports the following list of PLDM commands in Table 20 and Table 21
for monitoring and control of SoC-connected Numeric and State managed entities/effecters:

Note

The “M”, “C”, “O” below stand for Mandatory, Conditional, and Optional, respectively.

Table 20: PLDM platform commands

PLDM Platform command M/C/O Responder Description

SetNumericSensorEnable C SatMC To be implemented when SatMC

GetSensorReading C SatMC has numeric sensor(s)

SetSensorThresholds O SatMC

SetStateSensorEnables C SatMC To be implemented when SatMC

GetStateSensorReadings C SatMC has state sensor(s)

SetNumericEffecterEnable C SatMC To be implemented when SatMC

SetNumericEffecterValue C SatMC has numeric effecter(s)

GetNumericEffecterValue O SatMC

SetStateEffecterEnables C SatMC To be implemented when SatMC

SetStateEffecterStates C SatMC has state effecter(s)

Page 70 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

PLDM Platform command M/C/O Responder Description

GetStateEffecterStates O SatMC

SetTID C SatMC To be implemented when SatMC

GetTID O SatMC supports event message logging.

SetEventReceiver C SatMC

GetEventReceiver O SatMC

PlatformEventMessage C BMC

PollForPlatformEventMessage C SatMC To be implemented when SatMC

needs to log large event message.

Table 21: PLDM FRU commands

PLDM FRU command M/C/O Responder Description

GetFRURecordTableMetadata M SatMC BMC uses the command to check if SatMC has FRU
data available

GetFRURecordTable M SatMC BMC uses the command to get FRU data

of SatMC back.

Platform Descriptor Records (PDRs)

X Platform Descriptor Records (PDRs) provide semantic information for managed entities. PDRs are optional
for PLDM-based platform monitoring, and whether they are used or not depends on the PLDM sub-system
implementation. It is possible to support PLDM-based platform monitoring using PLDM-only accesses, or
using PLDM with Device PDRs, as explained in PLDM for Platform Monitoring and Control Specification § 8.3
[32]

I If PDRs are used, SBMR recommends the following list of PLDM commands in Table 22 for management of
PDRs of managed entities:

Table 22: PLDM PDR FRU commands

PLDM FRU command M/C/O Responder Description

GetPDRRepositoryInfo C SatMC If PDRs are used, then SatMC must implement this
command if PDRs are used. This is needed for BMC to
check if any PDR is available.

GetPDR C SatMC If PDRs are used, then SatMC must implement this
command if PDRs are used. This is needed for the BMC
to fetch PDRs to identify the SatMC.

RunInitAgent O BMC The command is optional depending on implementation.
It will be useful to have another management controller,
system firmware, or another entity to trigger the PLDM
initialization process.

Page 71 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

For more details on the PLDM Commands, see [32].

I If PDRs are used, SBMR recommends the following types of Platform Descriptor Records (PDRs) in Table 23
to be implemented.

Table 23: PLDM PDR types

PDR type M/C/O Responder Description

FRU Record Set PDR C SatMC If PDRs are used, then SatMC must implement this PDR,
with the Entity Type Field value set to 0x2E (Management
Controller Firmware) for BMC to identify itself.

Terminus Locator PDR C BMC If PDRs are used, then SatMC must implement this PDR.
BMC needs to update the PDR when there is new SatMC
added to system. The event log viewer needs the data to
identify where the event messages are originating from.

Numeric Sensor PDR O SatMC

Numeric Sensor
Initialization PDR

O SatMC If PDRs are used, SatMC should implement this PDRs if
SatMC supports Numeric Sensor(s) and BMC has no
knowledge of accessing this SatMC.

State Sensor PDR O SatMC If PDRs are used, SatMC should implement

State Sensor Initialization
PDR

O SatMC this PDRs if SatMC supports State Sensor(s) and BMC
has no knowledge of accessing these sensors.

Numeric Effecter PDR O SatMC If PDRs are used, SatMC should implement this

Numeric Effecter
Initialization PDR

O SatMC PDRs if SatMC supports Numeric Effecter(s) and BMC
has no knowledge of accessing these sensors.

State Effecter PDR O SatMC If PDRs are used, SatMC should implement this

State Effecter Initialization
PDR

O SatMC PDRs if SatMC supports State Effecter(s) and BMC has
no knowledge of accessing these sensors.

U The flowchart in Figure 19 shows how the BMC uses PLDM commands and PDRs to retrieve sensor / platform
monitoring data from a SatMC.

Page 72 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

BMCBMC
Satellite 

Management 
Controller

Satellite 
Management 

Controller

GetPDRRepositoryInfo

Return(repositorySize)

GetPDR(recordHandle=0x0)

Return(first PDR)

GetPDR(recordHandle)

return(last PDR)

GetFRUTableMetadata

Return(FRUTableLEngth)

GetFRURecordTable(TansferOperationFlag=0x01

return(NextDataTransferHandle, FirstPortion)

GetFRURecordTable(TransferHandle)

Return(last Portion)

RunInitAgent

SetTID

Return

SetEventReceiver

Return

SetSensorThresholds(First Numeric SensorID)

Return

SetSensorThresholds(Last Numeric SensorID)

Return

SetNumericSensorEnable(Frst SensorID) or
SetStateSensorEnables(First SensorID)

Return

SetNumericSensorEnable(Last SensorID) or
SetStateSensorEnables(Last SensorID)

Return

GetSensorReading(First SensorID) or
GetStateSensorReadings(First SensorID)

Return(SensorData)

GetSensorReading(Last SensorID) or
GetStateSensorReadings(Last SensorID)

Return(SensorData)

SetStateSensorEnables(Frst State  SensorID)

Polling Event

Figure 19: BMC PLDM/PDR monitoring from SatMC
Page 73 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential
DEN0069E

2.1



Server Base Manageability Requirements

D.4.1 Examples of PLDM sensors exposed by SatMC

I The types and numbers count of sensors exposed by SatMC is IMPLEMENTATION DEFINED. SBMR
recommends that the SatMC utilizes Set ID/Entity ID codes that are defined in [33] whenever possible.

U The following table Table 24 shows examples of typical sensors that would exist in a server SoC.

Table 24: Examples of PLDM sensors

Name
Sensor
Type Entity Type Set ID Description

CPU temp. Numeric 135,
Processor

N/A Needed by BMC thermal management. The
type/number of temp sensors is IMPLEMENTATION

DEFINED.

CPU Power
State

State 135,
Processor

288,
Processor
Power Sate

The Set ID value of the state sensor PDR should
be 288 if the ACPI power state in [33] table 10 can
be applied to the CPU/SoC in system.

CPU Power
Meter

Numeric 135,
Processor

N/A The Numeric sensor shows the current power
consumption of CPU/SoC. The sensor can be
implemented if SatMC has ability to measure the
current of CPU/SoC.

CPU
Performance
Level

State 135,
Processor

289, Power-
Performance
State

The Set ID of state sensor PDR should be value
289 if the ACPI power state in [33] table 10 can be
applied to the CPU/SoC in system.

DIMM Group
N max. temp

Numeric 66,
Memory
module

N/A
1. Reporting the hottest temperature in the

DIMM group for BMC thermal management
2. To be implemented when SatMC can

access to the SPD of DIMM.
3. The number of DIMM group depends on

CPU/SoC design. It could be 1 or many.

DIMM Group
N Power
Meter

State 66,
Memory
Module

N/A
1. The Numeric sensor shows the current

power consumption of DIMM group N.
2. It can be implemented if SatMC has ability

to measure the power consumption of
DIMMs in system.

3. The number of DIMM group depends on
CPU/SoC design. It could be 1 or many.

Page 74 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

E Reference implementation of remote debug using OpenOCD

E.1 Background

BMC Remote debug is the act of gaining visibility and control of the hardware and software behaviors of a
Server SoC, using a debug client which is not directly connected to the Server SoC, but connected to a debug
server running on a baseboard manageability controller (BMC).

E.2 Levels M1, M2, M2.1, M3, M4, M5a

U This section describes a reference solution for implementing BMC remote debug using OpenOCD for SBMR
Levels M1, M2, M2.1, M4, M4, and M5a compliant Servers.

This reference solution for BMC remote debug integrates open source OpenOCD inside the open source
OpenBMC stack. OpenOCD implements support for Arm Debug Interface debugging architecture.

S OpenOCD includes in-built JTAG controller drivers which need to be compiled in to the OpenOCD binary to
support a specific JTAG controller. Support for a new JTAG controller can be added by writing a new driver.

S OpenOCD provides one of these TCP/IP port-based interface for communication:

1. Gdb port (default port : 3333)
2. Tcl port (default port : 6666)
3. Telnet port (default port : 4444)

U Figure 20 shows a reference implementation of remote debug feature using GNU MCU Eclipse plugin and
OpenOCD using JTAG interface.

Page 75 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

http://openocd.org/


Server Base Manageability Requirements

OpenOCD 
(GDB Server, Arm ADI 

Driver)

JTAG (Requester) 
controller driver

Host OS/Firmware

GNU MCE Eclipse plugin 
for OpenOCD, 
AARCH64 GDB Client

Debug 
Port

A
cce

ss P
o

rt

A
cce

ss P
o

rt

C
P

U
 0

C
P

U
 n

S
o

C
 

C
o

n
fig

JT
A

G
TCP/IP

(GDB port:3333)

JTAG

Figure 20: Reference implementation of remote debug.

U Client running on the remote machine connected to OpenOCD GDB Server running on the BMC. OpenOCD
includes a JTAG controller (requester) driver for the BMC platform, which aids in communication with the
Server SoC Arm Debug Interface.

U User/Administrator can use Graphical User Interface (GUI) based integrated development environment (IDE)
Eclipse which supports OpenOCD via the GDB Hardware Debugging plug-in. OpenOCD GDB remote debug
Server running on baseboard manageability controller (BMC) listens on port 3333 for OpenOCD aware GDB
debug client connections. OpenOCD also requires the SoC configuration of the system under debug which
should provide hardware specific details. For more information, see OpenOCD user guide [56].

U User/Administrator can now access the debug functions remotely through the BMC including but not limited
to:

• Full memory and register access
• Run and stop
• Software and hardware breakpoints and watchpoints
• Target reset (restart)
• Binary program downloading
• Step-over-range
• Single stepping

Page 76 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

F Boot progress codes

F.1 IPMI commands for boot progress codes

R The Boot Progress Code IPMI commands follow the general format of Arm-defined IPMI commands as
outlined in Section B.2, with Group Extension 2Ch, and defining body AEh.

F.1.1 Send boot progress code (NetFn 2Ch, Command 02h)

R This command is used to send the Boot Progress Code to the BMC.

Request Data

Bytes Data field

1 Group extension defining body (AEh)

2-10 Boot Progress Code record (9 bytes). The
format is defined in Section F.2 below

Response Data

Bytes Data field

1 Completion Code: 00h: Command completed
normally 80h: Command completed with error

2 Group extension defining body (AEh)

I Arm recommends that the caller reads the command Response Data from the BMC after sending the
command “Send Boot Progress Code”. This ensures that the SSIF TX/RX buffers are emptied before sending
another write.

U Callers can choose to not read back Response Data after sending the command “Send Boot Progress Code”.
In such cases, some SSIF transactions, especially multi-part SSIF messages, might get dropped. Whether
these transactions are dropped depends on the rate in which subsequent writes are sent, and the BMC
thread load. Be careful not to mix high frequency “Send Boot Progress Code” messages with multi-part SSIF
messages, like the command “Send Platform Error Record”. Arm also recommends that the caller reads the
response of at least the last progress code that is sent to the BMC at the end of boot.

F.1.2 Get boot progress code (NetFn 2Ch, Command 03h)

R This command is used to read the last Boot Progress Code that was received by the BMC from the command
“Send Boot Progress Code”.

Request Data

Bytes Data field

1 Group extension defining body (AEh)

Response Data

Page 77 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Bytes Data field

1 Completion Code: 00h: Command completed
normally 80h: Command completed with error

2 Group extension defining body (AEh)

3-11 Boot Progress Code record (9 bytes). The
format is defined in Section F.2

F.2 Boot progress code format

R The format of the Boot Progress Code data follows the definitions of EFI_STATUS_CODE_TYPE and
EFI_STATUS_CODE_VALUE, as defined in the PI Specification [57] (PI § Vol 1-4.7, PI § Vol 2-14.2, PI § Vol 3- 6).

R If the PI Specification [57] adds new definitions, such as new classes, sub-classes, or operations, it is assumed
that the values are valid for usage in this specification.

R The boot progress code is composed of EFI_STATUS_CODE_TYPE, EFI_STATUS_CODE_VALUE and Instance:

• EFI_STATUS_CODE_TYPE (4 Bytes)
– 32-bit field matching EFI_STATUS_CODE_TYPE as defined by the PI Specification [57] (PI § Vol 1-4.7,

PI § Vol 2-14.2, PI § Vol 3- 6). The field is composed of the following sub-fields:
– STATUS_CODE_TYPE (1 Byte)

* 0x01 = PROGRESS_CODE

* 0x02 = ERROR_CODE

* 0x03 = DEBUG_CODE
– STATUS_CODE_RESERVED (2 Bytes)

* Reserved by PI Specification. set to 0x0000
– STATUS_CODE_SEVERITY (2 Bytes)

* 0x40 = ERROR_MINOR

* 0x80 = ERROR_MAJOR

* 0x90 = ERROR_UNRECOVERED

* 0xa0 = ERROR_UNCONTAINED
• EFI_STATUS_CODE_VALUE (4 Bytes)

– 32-bit field that follows the format of EFI_STATUS_CODE_VALUE as defined by the PI Specification [57]
(PI § Vol 1-4.7, PI § Vol 2-14.2, PI § Vol 3- 6).

– EFI_STATUS_CODE_OPERATION (2 Bytes)

* 0x0000-0x0FFF : Shared by all sub-classes in a class

* 0x1000-0x7FFF : Subclass Specific

* 0x8000-0xFFFF : OEM specific. This specification further divides the OEM range into the
following sub-ranges:
· 0x8000-0xBFFF : OEM/ODM reserved range
· 0xC000-0xDFFF : SiP reserved range
· 0xE000-0xFFFF : SBMR reserved range (for use by this specification)

– EFI_STATUS_CODE_SUBCLASS (1 Byte)

* 0x00-0x7F : Defined or Reserved byPI specification

* 0x80-0xFF : Reserved for OEM use. This specification further divides the OEM range into the
following sub-ranges:
· 0x80-0xBF : OEM/ODM reserved range
· 0xC0-0xDF : SiP reserved range
· 0xE0-0xFF : SBMR reserved range (for use by this specification)

– EFI_STATUS_CODE_CLASS (1 Byte)

* 0x00 = COMPUTING_UNIT

* 0x01 = PERIPHERAL

Page 78 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

* 0x02 = IO_BUS

* 0x03 = SOFTWARE

* 0x04-0x7F : Reserved by the PI Specification

* 0x80-0xFF : Reserved for OEM use. This specification further divides the OEM range into the
following sub-ranges:
· 0x80-0xBF OEM/ODM reserved range
· 0xC0-0xDF SiP reserved range
· 0xE0-0xFF SBMR reserved range (for use by this specification)

• Instance
– Matches the Instance parameter of ReportStatusCode() PEI service and DXE Protocol interface, as

defined by the PI Specification [57] (PI § Vol 1-4.7, PI § Vol 2-14.2, PI § Vol 3- 6).
– This is an optional field. When unknown, the Instance value is 0.

F.2.1 IPMI progress code definition

I The IPMI boot progress code definition follows Section F.2, as defined in the PI specification [57].

R Table Table 29 defines the layout of the IPMI boot progress code.

Table 29: IPMI progress code definition

Byte offset
Size
(Bytes) Description

0 1 STATUS_CODE_TYPE

1 2 STATUS_CODE_RESERVED

3 1 STATUS_CODE_SEVERITY

4 2 EFI_STATUS_CODE_OPERATION

6 1 EFI_STATUS_CODE_SUBCLASS

7 1 EFI_STATUS_CODE_CLASS

8 1 Instance

F.2.2 PLDM progress code definition

I The PLDM boot progress code definition follows Section F.2, as defined in the PI specification [57].

R The boot progress code is encoded as a PLDM numeric sensor of uint64 sensorDataSize [32].

R Table Table 29 defines the layout of the PLDM boot progress code.

Table 30: PLDM progress code definition

Byte offset
Size
(Bytes) Description

0 1 STATUS_CODE_TYPE

1 2 STATUS_CODE_RESERVED

3 1 STATUS_CODE_SEVERITY

4 2 EFI_STATUS_CODE_OPERATION

6 1 EFI_STATUS_CODE_SUBCLASS

Page 79 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Byte offset
Size
(Bytes) Description

7 1 EFI_STATUS_CODE_CLASS

I The progress code representation as a PLDM numeric sensor does not capture the Instance number. It is
assumed that a single instance exists.

F.2.3 Example progress codes (IPMI, PLDM)

U The following are some examples of Boot Progress Codes that are based on standard Status Code values
that are defined by [57].

Example 1 - Host processor power-on initialization

UEFI
Definition

EFI_STATUS_CODE_TYPE EFI_PROGRESS_CODE 0x00000001

EFI_STATUS_CODE_VALUE EFI_COMPUTING_UNIT_HOST_PROCESSOR |
EFI_CU_HP_PC_POWER_ON_INIT =
(EFI_COMPUTING_UNIT | 0x00010000)|
(EFI_SUBCLASS_SPECIFIC | 0x00000000) =
(0x00000000 | 0x00010000)|
(0x1000 | 0x00000000)

0x00011000

Instance 0 0x00

• IPMI raw send boot progress command:
– 0x2C 0x02 0xAE 0x01 0x00 0x00 0x00 0x00 0x10 0x01 0x00 0x00

• PLDM raw numeric sensor reading:
– 0x01 0x00 0x00 0x00 0x00 0x10 0x01 0x00

Example 2 - ResetSystem() PEI service is called

UEFI
Definition

EFI_STATUS_CODE_TYPE EFI_PROGRESS_CODE 0x00000001

EFI_STATUS_CODE_VALUE EFI_SOFTWARE_PEI_SERVICE |
EFI_SW_PS_PC_RESET_SYSTEM =
(EFI_SOFTWARE | 0x000F0000)|
(EFI_SUBCLASS_SPECIFIC | 0x00000010) =
(0x03000000 | 0x000F0000)|
(0x1000 | 0x00000010)

0x030F1010

Instance 0 0x00

• IPMI raw send boot progress command:
– 0x2C 0x02 0xAE 0x01 0x00 0x00 0x00 0x10 0x10 0x0F 0x03 0x00

• PLDM raw numeric sensor reading:
– 0x01 0x00 0x00 0x00 0x10 0x10 0x0F 0x03

Example 3 – PCI bus resource allocation

Page 80 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

UEFI
Definition

EFI_STATUS_CODE_TYPE EFI_PROGRESS_CODE 0x00000001

EFI_STATUS_CODE_VALUE EFI_IO_BUS_PCI | EFI_IOB_PCI_RES_ALLOC =
(EFI_IO_BUS | 0x00010000)|
(EFI_SUBCLASS_SPECIFIC | 0x00000001) =
(0x02000000 | 0x00010000)|
(0x1000 | 0x00000001)

0x02011001

Instance 0 0x00

• IPMI raw send boot progress command:
– 0x2C 0x02 0xAE 0x01 0x00 0x00 0x00 0x01 0x10 0x01 0x02 0x00

• PLDM raw numeric sensor reading:
– 0x01 0x00 0x00 0x00 0x01 0x10 0x01 0x02

Example 4 – Uncorrectable memory error on DIMM 2

UEFI
Definition

EFI_STATUS_CODE_TYPE EFI_ERROR_CODE ERROR_UNRECOVERED = 0x90 0x90000002

EFI_STATUS_CODE_VALUE EFI_COMPUTING_UNIT_MEMORY |
EFI_CU_MEMORY_EC_UNCORRECTABLE =
(EFI_COMPUTING_UNIT | 0x00050000)|
(EFI_SUBCLASS_SPECIFIC | 0x00000003) =
(0x00000000 | 0x00050000)|
(0x1000 | 0x00000003)

0x00051003

Instance 2 0x02

• IPMI raw send boot progress command:
– 0x2C 0x02 0xAE 0x02 0x00 0x00 0x00 0x03 0x10 0x05 0x00 0x02

• PLDM raw numeric sensor reading:
– 0x02 0x00 0x00 0x90 0x03 0x10 0x05 0x00

Example 5 – OEM specific I2C bus error on bus 4

UEFI
Definition

EFI_STATUS_CODE_TYPE EFI_ERROR_CODE ERROR_UNRECOVERED = 0x90 0x90000002

EFI_STATUS_CODE_VALUE EFI_IO_BUS_I2C |
EFI_IO_PLATFORM_SPECIFIC_ERROR2 =
EFI_IO_BUS | 0x000C0000 |
(EFI_OEM_SPECIFIC | 0x00000012) =
(0x02000000 | 0x000C0000)|
(0x8000 | 0x00000012)

0x020C8012

Instance 4 0x04

• IPMI raw send boot progress command:
– 0x2C 0x02 0xAE 0x02 0x00 0x00 0x00 0x12 0x80 0x0C 0x02 0x04

• PLDM raw numeric sensor reading:
– 0x02 0x00 0x00 0x90 0x03 0x10 0x05 0x00

Page 81 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

F.2.4 Example boot progress codes (Redfish)

DMTF Redfish Schema [9] and [55] version 2020.3 and newer introduced a method to read the last Boot
Progress Code using the ComputerSystem.BootProgress Redfish object. Using this feature, the user can read
the last Boot Progress Code that was reported by system firmware to the BMC. The DMTF schema defines
a handful of standard boot progress codes and a method for reporting implementation-specific OEM defined
codes.

I SBMR recommends that Level M2.1-based server systems report the Boot Progress Codes through Redfish
out-of-band and in-band interfaces. When possible, implementations should use the DMTF-defined standard
codes. If the Boot Progress Code does not map to one of the DMTF defined codes, SBMR recommends
reporting the codes as defined in Section F.2. Achieve this by setting the Redfish BootProgress.LastState
property to OEM and setting the BootProgress.OEMLastState property to the 8-byte hex values defined in
Section F.2, not including the Instance number.

U Here is an example of the Redfish JSON mockup for Boot Progress property and how it maps to the UEFI
and IPMI and PLDM definitions:

Example 1 - Host processor power-on initialization

(See Example 1 in Section F.2.3)

• UEFI PI Status Code Definition:
– EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_POWER_ON_INIT, Instance = 0

• IPMI command to send the progress code to the BMC:
– 0x2C 0x02 0xAE 0x01 0x00 0x00 0x00 0x00 0x10 0x01 0x00 0x00

• PLDM raw numeric sensor reading:
– 0x01 0x00 0x00 0x00 0x00 0x10 0x01 0x00

• Redfish JSON mockup when reading the Progress Code from the Redfish interface:

{
"BootProgress ": {

"LastState ": "OEM",
"OemLastState" : "0 x0100000000100100",
"LastStateTime ": "2020 -03 -13 T04 :14:13+06:00" ,

},
}

F.3 Common boot progress codes

Table 36 and Table 37 describe some common combinations of Boot Progress Codes and Boot Error Codes
that can be used. For the raw values of these definitions, see PI Specification [57] and Section F.2.

Table 36: Boot progress codes

Name Progress Code

Driver eXecution Environment
(DXE) Core started

EFI_SOFTWARE_DXE_CORE | EFI_SW_DXE_CORE_PC_ENTRY_POINT

DXE Variable Block NVRAM init EFI_SOFTWARE_EFI_BOOT_SERVICE | BS_PC_NVRAM_INIT

DXE CPU Init Begin EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_PC_INIT_BEGIN

Powering on and Configuring CPU EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_POWER_ON_INIT

DXE CPU Init End EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_PC_INIT_END

DXE SoC Devices Init EFI_COMPUTING_UNIT_CHIPSET | EFI_CHIPSET_PC_DXE_SB_DEVICES_INIT

Page 82 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Name Progress Code

DXE handoff to UEFI Boot Device
Selection (BDS) phase

EFI_SOFTWARE_DXE_CORE | EFI_SW_DXE_CORE_PC_HANDOFF_TO_NEXT

BDS Connect UEFI Drivers EFI_SOFTWARE_DXE_BS_DRIVER |
EFI_SW_DXE_BS_PC_BEGIN_CONNECTING_DRIVERS

PCI Bus Init EFI_IO_BUS_PCI | EFI_IOB_PC_INIT

PCI Bus Enumeration EFI_IO_BUS_PCI | EFI_IOB_PCI_BUS_ENUM

PCI Bus Request Resources EFI_IO_BUS_PCI | EFI_IOB_PC_ENABLE

PCI Bus Assigned Resources EFI_IO_BUS_PCI | EFI_IOB_PC_ENABLE

Console Out Devices Connected EFI_PERIPHERAL_LOCAL_CONSOLE | EFI_P_PC_INIT

Input Devices connected EFI_PERIPHERAL_KEYBOARD | EFI_P_PC_INIT

USB Init EFI_IO_BUS_USB | EFI_IOB_PC_INIT

USB HotPlug EFI_IO_BUS_USB | EFI_IOB_PC_HOTPLUG

USB Device Detect EFI_IO_BUS_USB | EFI_IOB_PC_ENABLE

Serial ATA Init EFI_IO_BUS_ATA_ATAPI | EFI_IOB_PC_INIT

Serial ATA Detect EFI_IO_BUS_ATA_ATAPI | EFI_IOB_PC_DETECT

SCSI Init EFI_IO_BUS_SCSI | EFI_IOB_PC_INIT

SCSI Detect EFI_IO_BUS_SCSI | EFI_IOB_PC_DETECT

Fixed Media Init EFI_PERIPHERAL_FIXED_MEDIA | EFI_P_PC_INIT

Fixed Media Detect EFI_PERIPHERAL_FIXED_MEDIA | EFI_P_PC_PRESENCE_DETECT

Removable Devices Init EFI_PERIPHERAL_REMOVABLE_MEDIA | EFI_P_PC_INIT

Removable Devices Detect EFI_PERIPHERAL_REMOVABLE_MEDIA | EFI_P_PC_PRESENCE_DETECT

SMBus Init EFI_IO_BUS_SMBUS | EFI_IOB_PC_INIT

I2C Init EFI_IO_BUS_I2C | EFI_IOB_PC_INIT

Setup Verifying Password EFI_SOFTWARE_DXE_BS_DRIVER |
EFI_SW_DXE_BS_PC_VERIFYING_PASSWORD

Setup Start EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_PC_USER_SETUP

Setup Input Wait EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_PC_INPUT_WAIT

UEFI Ready to Boot Event EFI_SOFTWARE_DXE_BS_DRIVER |
EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT

UEFI Exit Boot Services EFI_SOFTWARE_EFI_BOOT_SERVICE | EFI_SW_BS_PC_EXIT_BOOT_SERVICES

UEFI Exit Boot Services Event EFI_SOFTWARE_DXE_BS_DRIVER |
EFI_SW_DXE_BS_PC_EXIT_BOOT_SERVICES_EVENT

Set Virtual Address Map Begin EFI_SOFTWARE_EFI_RUNTIME_SERVICE |
EFI_SW_RS_PC_SET_VIRTUAL_ADDRESS_MAP

Set Virtual Address Map End EFI_SOFTWARE_DXE_BS_DRIVER |
EFI_SW_DXE_BS_PC_VIRTUAL_ADDRESS_CHANGE_EVENT

Reset System EFI_SOFTWARE_EFI_RUNTIME_SERVICE | EFI_SW_RS_PC_RESET_SYSTEM

Page 83 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

Error Codes

Table 37: Boot error codes

Name PI Status

DXE Arch protocol is not
available

EFI_SOFTWARE_DXE_CORE | EFI_SW_DXE_CORE_EC_NO_ARCH

PCI Out Of Resources EFI_IO_BUS_PCI | EFI_IOB_EC_RESOURCE_CONFLICT

No Console Out EFI_PERIPHERAL_LOCAL_CONSOLE | EFI_P_EC_NOT_DETECTED

No Console In EFI_PERIPHERAL_KEYBOARD | EFI_P_EC_NOT_DETECTED

Invalid Password EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_EC_INVALID_PASSWORD

Boot Option Failed EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_EC_BOOT_OPTION_FAILED

HDD SMART Error EFI_IO_BUS_ATA_ATAPI | EFI_IOB_ATA_BUS_SMART_OVERTHRESHOLD

Flash not available EFI_COMPUTING_UNIT_MEMORY | EFI_CU_MEMORY_EC_UPDATE_FAIL

Page 84 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

G Trusted communication between MC and system devices

The information in this section is provided for guidance only. The dependencies and security relation between
MCs and managed system devices are platform specific. The sequence and timing of data exchange between
MCs and system devices are IMPLEMENTATION DEFINED. Communication between MCs follows the MCs to
a system device communication model. In this section, an MC refers to any Management Controller in the
system, such as a BMC or a SatMC.

Server systems that operate with confidential or platform sensitive data should consider including additional
security features for protecting the integrity and validity of data exchanged between MC and system devices.
This section describes use cases in which MC and a system device should implement an additional security
mechanism for protecting the integrity of system data. Examples of such mechanisms are attestation, device
measurement, and data encryption.

MC should query a device’s status to ensure that the system device boot sequence is complete. MC should
initiate at least one attestation/measurement request to the system device during system runtime. For
system devices that support runtime firmware update, configuration update or reset, MC should initiate
attestation/measurement of the system device for every firmware update or reset event.

The use cases assume that the implementation of MC and the system device includes support for the specific
security related request and data exchange protocol. Both MC and the device should provide a mechanism
for querying available security features, such as SPDM over MCTP.

G.1 MC and server system device attestation

If MC should ensure the validity of a device’s identity before initiating data exchange with the system device,
MC should request authentication data from this device. The authentication of the system device should be
verifiable using a certificate or chain of certificates and issuing a unique challenge request to this device. The
attestation procedure allows MC to confirm that the target device is authentic and has not been altered or
replaced.

For the attestation data exchange diagram, see [5] (SPDM v1.1.0 § 211 and § 292).

G.2 MC and server system device mutual attestation

If MC and the system device should ensure the validity of their identity before initiating data exchange, mutual
authentication should be initiated. The authentication of MC and the system device should be verifiable
using a certificate or chain of certificates and issuing a unique challenge request to each other. The mutual
attestation procedure allows MC and the system device to confirm that they are both authentic and have not
been altered or replaced.

For the mutual attestation data exchange diagram, see [5] (SPDM v1.1.0 § 306).

G.3 MC and server system device measurement

If MC should ensure that the system device has a valid version of firmware(s) and configuration data, MC
should send a request for measurements to this device. It is recommended that MC initiates a device
attestation procedure before the device measurement request. The device measurement data can be used by
the MC to decide to disable communication with devices with unknown, altered, or outdated firmware with
possible security issue.

For the measurement data exchange diagram, see [5].

Page 85 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1

SPDM%20v1.1.0,%20§%20319


Server Base Manageability Requirements

G.4 Data encryption between MC and server system device

If MC and the system device should transfer and process system sensitive data, confidential data, or system
critical commands, the data traffic should be protected from being captured or altered during the transmission
between MC and this device. MC and the system device should be able to negotiate encryption parameters for
each session. It is recommended that MC initiates a device attestation procedure before setting up encrypted
communication with this device.

For setting up a secure session, see [5] (SPDM v1.1.0 § 95).

For secure message format, see [5] (SPDM v1.0.0 § 50).

G.5 PA-RoT and AC-RoT responsibilities

The platform can optionally integrate a PA-RoT and/or an AC-RoT component. The PA-RoT can be optionally
integrated in the BMC or be an isolated component. The AC-RoT, when present, must be integrated into the
SoC.

Below are examples of the responsibilities of either component. The lists provide guidance only, are of
informative nature and are not exhaustive.

G.5.1 PA-RoT responsibilities

1. The PA-RoT acts as the root of trust (RoT) on the platform secure boot process. The PA-RoT
authenticates any firmware it loads from flash before allowing that firmware to execute.

2. The PA-RoT can control a platform Firmware Store. Writes to this Firmware Store should be first
authenticated by the PA-RoT.

3. The PA-RoT can periodically monitor the Firmware Store to detect any unauthorized changes to its
content.

G.5.2 AC-RoT responsibilities

1. The AC-RoT acts both as an SoC activity monitor (with the intent of detecting any ongoing malicious
activity), and as a provider of security related services to the SoC.

Page 86 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

H Firmware update

This section provides guidance about firmware update on SBMR compliant systems.

X The Server lifecycle management requires the firmware to be managed, which includes reporting the installed
firmware inventory.

There can be several firmware images in a server. Each firmware image type is typically kept at rest in a
specific non-volatile memory.

A server can contain several non-volatile memory regions where firmware images are kept. These non-volatile
memories can be:

• BMC owned.
• Peripheral device owned.
• Host owned.

The firmware can be updated following a Host-based or BMC-based firmware update procedure.

I It is recommended that the Host-based and BMC-based flows do not co-exist on a server. It is otherwise
challenging to keep the two flows synchronized.

H.1 Host-based firmware update

The firmware update package originates in the Host. The Host firmware is responsible for writing the firmware
images either directly or indirectly using the SatMC.

The Host-based firmware update flow is described in [58].

H.2 BMC-based firmware update

The firmware update package is received by the BMC over a Redfish interface, or alternatively from the Host
using the Redfish host interface, as described in [59]. Alternatively, an IMPLEMENTATION DEFINED method,
such as IPMI OEM commands, can be used. If the server supports Redfish, then this is the recommended
medium for firmware update package delivery to the server.

The BMC orchestrates the firmware image writes to the non-volatile memory where the image is kept at rest.

Depending on which non-volatile memory the image type is kept at rest, the BMC will either:

• Use PLDM for firmware update messaging over the BMC-IO interface to transfer the firmware images to
the non-volatile memory controlled by a peripheral device [41], if the server complies with level M3 or
higher. If a PLDM/MCTP communication channel does not exist, then an IMPLEMENTATION DEFINED

communication protocol is used. CXL and NVMe devices may use CXL [50] and NVMe [44] specific
messaging over a MCTP channel for firmware update.

– Example subsystems that can have their firmware updated in this manner: PCIe devices (such as
network, storage, GPU, and NVMe) as well as CXL devices.

• Directly commit the updated firmware images to the non-volatile memory controlled by the BMC. The
BMC should take care when overwriting data that could be accessed by another entity.

– Example subsystems that can have their firmware updated in this manner: Host, SatMC FW and
PSUs.

H.3 Firmware inventory

The different firmware images are directly observable by the entity that owns the non-volatile memory where
the firmware images reside. The entities that own non-volatile memory, containing firmware, should provide a

Page 87 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1



Server Base Manageability Requirements

mechanism for the images to be discovered by relevant entities in the server.

The Host and any peripheral device are recommended to use PLDM for firmware update messaging [41],
over the BMC-IO interface, to present the firmware inventory to a BMC or SatMC. If the BMC-IO interface
does not support PLDM/MCTP, then an IMPLEMENTATION DEFINED mechanism may be used instead. The
Host can opt to provide FW inventory to the BMC through SMBIOS [14], but that is not recommended for
components that may be updated dynamically.

CXL and NVMe devices may use CXL [50] and NVMe [44] specific messaging over a MCTP channel for
firmware discovery.

NVMe and CXL devices can be hot-plugged. At a device hotplug event, the firmware discovery should be
performed.

The BMC exposes the firmware inventory to an external entity using Redfish [59].

Page 88 of 88 Copyright © 2020-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0069E
2.1


	Release information
	Arm Non-Confidential Document License (“License”)
	About this document
	Terms and abbreviations
	References
	Cross references

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage


	Progressive terminology commitment
	Feedback

	1 Scope and background
	1.1 Scope
	1.2 Background
	1.2.1 Host SoC in-band interface
	1.2.2 SoC side-band interface
	1.2.3 Host-to-SatMC interface
	1.2.4 PCIe connection between the Arm SoC and the BMC
	1.2.5 USB connection between the Arm SoC and the BMC
	1.2.6 JTAG connection between the Arm SoC and the BMC
	1.2.7 Additional connectivity between the Arm SoC and the BMC
	1.2.8 Multi-socket platform
	1.2.9 Considerations for MCTP over SMBus/I2C and I3C

	1.3 Arm SoC-BMC interface terminology

	2 Compliance levels and requirements
	2.1 Level M1
	2.1.1 SoC-BMC interface
	2.1.1.1 Host SoC in-band interface
	2.1.1.2 Console UART
	2.1.1.3 PCIe
	2.1.1.4 USB
	2.1.1.5 JTAG

	2.1.2 BMC-platform elements interface
	2.1.3 BMC management services (out-of-band) interface

	2.2 Level M2
	2.2.1 SoC-BMC interfaces
	2.2.1.1 Host SoC in-band interface
	2.2.1.2 JTAG

	2.2.2 BMC-platform elements interface
	2.2.3 BMC-IO device interface
	2.2.4 BMC management services (out-of-band) interface

	2.3 Level M2.1
	2.3.1 SoC-BMC interfaces
	2.3.1.1 Host SoC in-band interface
	2.3.1.2 PCIe
	2.3.1.3 USB

	2.3.2 BMC-platform elements interface
	2.3.3 BMC-IO device interface
	2.3.4 BMC management services (out-of-band) interface

	2.4 Level M3
	2.4.1 SoC-BMC interface
	2.4.1.1 Host SoC in-band interface
	2.4.1.2 Debug UART
	2.4.1.3 BMC-SoC Side-Band
	2.4.1.4 JTAG

	2.4.2 BMC-platform elements interface
	2.4.3 BMC-IO device interface
	2.4.4 BMC management services (out-of-band) interface
	2.4.5 SPDM over MCTP for BMC and side-band devices

	2.5 Level M4
	2.5.1 SoC-BMC interface
	2.5.1.1 Host SoC in-band interface
	2.5.1.2 Host SoC side-band interface

	2.5.2 BMC-IO device interface
	2.5.3 BMC-platform elements interface
	2.5.4 BMC management services (out-of-band) interface
	2.5.5 SPDM over MCTP for BMC and side-band devices

	2.6 Level M5a
	2.6.1 SoC-BMC interface
	2.6.1.1 Host SoC in-band interface
	2.6.1.2 Host SoC side-band interface
	2.6.1.3 PA-Rot and AC-RoT

	2.6.2 BMC-IO device interface
	2.6.3 BMC-platform elements interface
	2.6.4 BMC management services (out-of-band) interface
	2.6.5 SPDM over MCTP for BMC and side-band devices
	2.6.6 Host-to-SatMC interface

	2.7 SBMR checklist
	2.7.1 SBMR Level M1 checklist
	2.7.2 SBMR Level M2 checklist
	2.7.3 SBMR Level M2.1 checklist
	2.7.4 SBMR Level M3 checklist
	2.7.5 SBMR Level M4 checklist
	2.7.6 SBMR Level M5a checklist


	A OpenBMC
	B IPMI
	B.1 Standard IPMI commands
	B.1.1 Remote power control
	B.1.1.1 Power on
	B.1.1.2 Power off
	B.1.1.3 Graceful power off
	B.1.1.4 IPMI commands required

	B.1.2 Boot device selection
	B.1.2.1 IPMI commands required

	B.1.3 BMC to host mapping
	B.1.4 BMC user manipulation
	B.1.5 Redfish host interface credentials bootstrapping
	B.1.5.1 IPMI commands
	B.1.5.2 Redfish properties

	B.1.6 IPMI support verification

	B.2 Arm standard IPMI commands
	B.2.1 General IPMI commands format
	B.2.2 List of Arm standard IPMI commands

	B.3 IPMI specification clarifications and corrections
	B.4 SSIF single and multi-part transactions

	C RAS
	C.1 Level M1
	C.1.1 SMBus System Interface (SSIF) in-band interface
	C.1.2 RAS IPMI message format
	C.1.2.1 Send Platform Error Record (NetFn 2Ch, Command 01h)

	C.1.3 SoC side-band interface
	C.1.4 Out-of-band interface

	C.2 Level M2 and Level M2.1
	C.2.1 Redfish and IPMI host (in-band) interfaces
	C.2.2 RAS Redfish message format
	C.2.3 SoC side-band interface
	C.2.4 Out-of-band interface

	C.3 Level M3, M4, and M5a
	C.3.1 Redfish host (in-band) interface
	C.3.2 MCTP and PLDM (SoC side-band) interface
	C.3.2.1 RAS PLDM message flows examples

	C.3.3 Out-of-band interface


	D Platform monitoring and control
	D.1 Background
	D.2 IPMI commands to monitor and control managed entities
	D.3 Redfish schema to monitor and control managed entities
	D.4 PLDM commands/APIs to monitor and control managed entities
	D.4.1 Examples of PLDM sensors exposed by SatMC


	E Reference implementation of remote debug using OpenOCD
	E.1 Background
	E.2 Levels M1, M2, M2.1, M3, M4, M5a

	F Boot progress codes
	F.1 IPMI commands for boot progress codes
	F.1.1 Send boot progress code (NetFn 2Ch, Command 02h)
	F.1.2 Get boot progress code (NetFn 2Ch, Command 03h)

	F.2 Boot progress code format
	F.2.1 IPMI progress code definition
	F.2.2 PLDM progress code definition
	F.2.3 Example progress codes (IPMI, PLDM)
	F.2.4 Example boot progress codes (Redfish)

	F.3 Common boot progress codes

	G Trusted communication between MC and system devices
	G.1 MC and server system device attestation
	G.2 MC and server system device mutual attestation
	G.3 MC and server system device measurement
	G.4 Data encryption between MC and server system device
	G.5 PA-RoT and AC-RoT responsibilities
	G.5.1 PA-RoT responsibilities
	G.5.2 AC-RoT responsibilities


	H Firmware update
	H.1 Host-based firmware update
	H.2 BMC-based firmware update
	H.3 Firmware inventory


