
Arm® Compiler for Embedded
Version 6.23

Arm® C and C++ Libraries and Floating-Point
Support User Guide
Non-Confidential
Copyright © 2014–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
100073_6.23_01_en

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Arm® Compiler for Embedded Arm® C and C++ Libraries and Floating-
Point Support User Guide

This document is Non-Confidential.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (100073_6.23_01_en) was issued on 2024-10-16. There might be a later issue at
https://developer.arm.com/documentation/100073

The product version is 6.23.

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This document is intended for software developers and describes the features available in Arm®

Compiler for Embedded 6 C and C++ standard libraries and the Arm C Micro-library (microlib).

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 218

https://developer.arm.com/documentation/100073
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

Contents

1. The Arm C and C++ Libraries... 10
1.1 Support level definitions...10
1.2 Linking with the C library...16
1.3 C and C++ runtime libraries.. 16
1.3.1 Compliance with the Application Binary Interface (ABI) for the Arm architecture.....................17
1.3.2 Increasing portability of object files to other CLIBABI implementations......................................18
1.3.3 Arm C and C++ library directory structure.. 19
1.3.4 Selection of Arm C and C++ library variants based on build options...19
1.3.5 T32 C libraries... 21
1.4 C++ and C libraries and the std namespace... 22
1.5 Multithreaded support in Arm C libraries...22
1.5.1 Arm C libraries and multithreading...22
1.5.2 Arm C libraries and reentrant functions..23
1.5.3 Arm C libraries and thread-safe functions..23
1.5.4 Use of static data in the C libraries... 24
1.5.5 Use of the __user_libspace static data area by the C libraries... 25
1.5.6 C library functions to access subsections of the __user_libspace static data area.....................26
1.5.7 Reimplementation of legacy function __user_libspace() in the C library...................................... 27
1.5.8 Management of locks in multithreaded applications.. 27
1.5.9 How to ensure reimplemented mutex functions are called..29
1.5.10 Using the Arm C library in a multithreaded environment...30
1.5.11 Thread safety in the Arm C library.. 31
1.5.12 The floating-point status word in a multithreaded environment...31
1.6 Multithreaded support in Arm C++ libraries [ALPHA]...32
1.6.1 Arm C++ libraries and multithreading [ALPHA]...32
1.6.2 Clocks [ALPHA]... 34
1.6.3 Mutexes [ALPHA]..35
1.6.4 Condition variables [ALPHA]..36
1.6.5 Threads [ALPHA]...38
1.6.6 Miscellaneous functions [ALPHA]...41
1.6.7 Thread safety in the Arm C++ library..42
1.6.8 Supported C++ Concurrency Features [ALPHA]...42

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

1.6.9 Guard variables [ALPHA]...43
1.6.10 Exceptions [ALPHA]... 44
1.6.11 Standard library concurrency constructs [ALPHA]... 45
1.6.12 Thread-safe initialization of Mutexes and Condition variables [ALPHA]....................................46
1.7 Support for building an application with the C library.. 48
1.7.1 Using the C library with an application... 48
1.7.2 Using the C and C++ libraries with an application in a semihosting environment..................... 49
1.7.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality.....................................50
1.7.4 Using the libraries in a nonsemihosting environment.. 51
1.7.5 Direct semihosting C library function dependencies..52
1.7.6 Indirect semihosting C library function dependencies... 53
1.7.7 C library API definitions for targeting a different environment..54
1.8 Support for building an application without the C library.. 55
1.8.1 Standalone C library functions.. 55
1.8.2 Creating an application as bare machine C without the C library... 58
1.8.3 Integer and floating-point compiler functions and building an application without the C
library...58
1.8.4 Bare machine integer C...59
1.8.5 Bare machine C with floating-point processing...59
1.8.6 Customized C library startup code and access to C library functions..60
1.8.7 Using low-level functions when exploiting the C library...61
1.8.8 Using high-level functions when exploiting the C library..62
1.8.9 Using malloc() when exploiting the C library..62
1.9 Tailoring the C library to a new execution environment...62
1.9.1 Initialization of the execution environment and execution of the application............................ 63
1.9.2 C++ initialization, construction and destruction..64
1.9.3 Exceptions system initialization... 64
1.9.4 Library functions called from main()...65
1.9.5 Program exit and the assert macro.. 66
1.10 Assembler macros that tailor locale functions in the C library..67
1.10.1 Link time selection of the locale subsystem in the C library..67
1.10.2 Runtime selection of the locale subsystem in the C library... 69
1.10.3 Definition of locale data blocks in the C library... 69
1.10.4 LC_CTYPE data block..71
1.10.5 LC_COLLATE data block.. 74
1.10.6 LC_MONETARY data block..75

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

1.10.7 LC_NUMERIC data block..75
1.10.8 LC_TIME data block...76
1.11 Modification of C library functions for error signaling, error handling, and program exit....... 77
1.12 Stack and heap memory allocation and the Arm C and C++ libraries...78
1.12.1 Library heap usage requirements of the Arm C and C++ libraries..79
1.12.2 Choosing a heap implementation for memory allocation functions... 79
1.12.3 Stack pointer initialization and heap bounds... 82
1.12.4 Legacy support for __user_initial_stackheap().. 85
1.12.5 Avoiding the heap and heap-using library functions supplied by Arm.......................................86
1.13 Tailoring input/output functions in the C and C++ libraries..87
1.14 Target dependencies on low-level functions in the C and C++ libraries.......................................87
1.15 The C library printf family of functions..89
1.16 The C library scanf family of functions.. 90
1.17 Redefining low-level library functions to enable direct use of high-level library functions in the
C library..90
1.18 The C library functions fread(), fgets() and gets()...94
1.19 Reimplementing __backspace() in the C library...94
1.20 Reimplementing __backspacewc() in the C library... 95
1.21 Redefining target-dependent system I/O functions in the C library..96
1.22 Tailoring non-input/output C library functions...97
1.23 Real-time integer division in the Arm libraries..98
1.24 ISO C library implementation definition...98
1.24.1 How the Arm C library fulfills ISO C specification requirements.. 99
1.24.2 mathlib error handling...100
1.24.3 ISO-compliant implementation of signals supported by the signal() function in the C library
and additional type arguments...100
1.24.4 ISO-compliant C library input/output characteristics..102
1.24.5 Standard C++ library implementation definition...103
1.25 C library functions and extensions..107
1.26 C and C++ library naming conventions... 108
1.27 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function
prototypes..111
1.28 Using library functions with execute-only memory...111

2. The Arm C Micro-library..112
2.1 Using microlib... 112
2.1.1 Entering and exiting programs linked with microlib... 113

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

2.1.2 Configuring the stack and heap for use with microlib...113
2.1.3 Tailoring the microlib input/output functions.. 114
2.1.4 Library heap usage requirements of microlib...115
2.1.5 Building an application with microlib...115
2.2 Differences between microlib and the default C library...116
2.3 ISO C features missing from microlib... 117

3. Floating-point Support..119
3.1 Controlling the Arm floating-point environment.. 121
3.1.1 Floating-point functions for compatibility with Microsoft products... 121
3.1.2 C99-compatible functions for controlling the Arm floating-point environment.......................122
3.1.3 C99 rounding mode and floating-point exception macros... 123
3.1.4 Exception flag handling...123
3.1.5 Functions for handling rounding modes... 125
3.1.6 Functions for saving and restoring the whole floating-point environment............................... 125
3.1.7 Functions for temporarily disabling exceptions...126
3.1.8 Arm floating-point compiler extensions to the C99 interface... 127
3.1.9 Example of a custom exception handler...128
3.1.10 Exception trap handling by signals.. 129
3.2 mathlib double and single-precision floating-point functions..130
3.3 IEEE 754 arithmetic.. 131
3.3.1 Basic data types for IEEE 754 arithmetic...131
3.3.2 Single precision data type for IEEE 754 arithmetic... 131
3.3.3 Double precision data type for IEEE 754 arithmetic...133
3.3.4 Sample single precision floating-point values for IEEE 754 arithmetic......................................134
3.3.5 Sample double precision floating-point values for IEEE 754 arithmetic....................................135
3.3.6 IEEE 754 arithmetic and rounding...136
3.3.7 Exceptions arising from IEEE 754 floating-point arithmetic...137
3.3.8 Exception types recognized by the Arm floating-point environment... 138
3.3.9 IEEE 754 binary to decimal compliance... 140

4. The C and C++ Library Functions Reference..142
4.1 __aeabi_errno_addr()..142
4.2 alloca()... 142
4.3 clock().. 143
4.4 _clock_init()...144
4.5 __default_signal_handler()...145

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

4.6 errno..146
4.7 _findlocale().. 146
4.8 _fisatty().. 147
4.9 _get_lconv().. 148
4.10 getenv()...149
4.11 _getenv_init()... 149
4.12 __heapstats()..150
4.13 __heapvalid()..151
4.14 lconv structure... 152
4.15 localeconv()..154
4.16 longjmp()...155
4.17 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(),
_membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(),
_membitmovewl(), _membitmovewb()...156
4.18 _platform_pre_stackheap_init()..158
4.19 posix_memalign().. 159
4.20 __raise()...160
4.21 _rand_r()..161
4.22 remove()... 161
4.23 rename()... 162
4.24 __rt_entry...163
4.25 __rt_exit()..164
4.26 __rt_fp_status_addr()... 164
4.27 __rt_heap_extend()...165
4.28 __rt_lib_init()...166
4.29 __rt_lib_shutdown()..167
4.30 __rt_raise()..167
4.31 __rt_stackheap_init().. 168
4.32 setjmp()...169
4.33 setlocale()... 170
4.34 _srand_r()..171
4.35 strcasecmp()...172
4.36 strlcat()..173
4.37 strlcpy()...173
4.38 strncasecmp().. 174
4.39 strnlen().. 175

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

4.40 _sys_close().. 175
4.41 _sys_command_string()... 176
4.42 _sys_ensure()... 176
4.43 _sys_exit()...177
4.44 _sys_flen()...177
4.45 _sys_istty()..178
4.46 _sys_open().. 179
4.47 _sys_read()..180
4.48 _sys_seek()... 181
4.49 _sys_tmpnam2()..181
4.50 _sys_tmpnam().. 182
4.51 _sys_write().. 183
4.52 system().. 184
4.53 time()... 184
4.54 _ttywrch()... 185
4.55 __user_heap_extend()..186
4.56 __user_heap_extent()...187
4.57 __user_setup_stackheap()...188
4.58 __vectab_stack_and_reset.. 189
4.59 wcscasecmp().. 190
4.60 wcsncasecmp()..191
4.61 wcstombs()...191
4.62 Thread-safe C library functions... 192
4.63 C library functions that are not thread-safe... 194
4.64 Legacy function __user_initial_stackheap()...196

5. Floating-point Support Functions Reference.. 199
5.1 _clearfp()... 199
5.2 _controlfp()...200
5.3 __fp_status()... 201
5.4 __ieee_status()... 204
5.5 _statusfp()...207

Proprietary notice..209

Product and document information... 211
Product status...211

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Contents

Revision history.. 211
Conventions...215

Useful resources.. 218

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1. The Arm C and C++ Libraries
The C library uses the standard Arm semihosted environment to provide facilities such as file input
and output. This environment is supported by the Arm® DSTREAM debug and trace unit, the Arm
RVI debug unit, and the Fixed Virtual Platform (FVP) models.

You can reimplement any of the target-dependent functions of the C library as part of your
application. Reimplementing functions enables you to tailor the C library and, therefore, the C++
library, to your own execution environment.

You can also tailor many of the target-independent functions to your own application-specific
requirements. For example:

• The malloc family.

• The ctype family.

• All the locale-specific functions.

Many of the C library functions are independent of any other function and contain no target
dependencies. You can easily exploit these functions from assembler code.

Functions in the C library are responsible for:

• Creating an environment in which a C or C++ program can execute. This includes:

◦ Creating a stack.

◦ Creating a heap, if required.

◦ Initializing the parts of the library the program uses.

• Starting execution by calling main().

• Supporting use of ISO-defined functions by the program.

• Catching runtime errors and signals and, if required, terminating execution on error or program
exit.

1.1 Support level definitions
Arm® Compiler for Embedded 6 is built on Clang and LLVM technology. Therefore, it has more
functionality than the set of product features described in the documentation.

Arm welcomes feedback regarding the use of all Arm Compiler for Embedded 6 features, and
intends to support users to a level that is appropriate for that feature. You can contact support at
https://developer.arm.com/support.

The following definitions clarify the levels of support and guarantees on functionality that are
expected from these features.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 218

https://developer.arm.com/support

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Identification in the documentation
All features that are documented in the Arm Compiler for Embedded 6 documentation are product
features, except where explicitly stated. The limitations of non-product features are explicitly
stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested,
and is expected to be stable across feature and update releases.

• Arm intends to give advance notice of significant functionality changes to product features.

• If you have a support and maintenance contract, Arm provides full support for use of all
product features.

• Arm welcomes feedback on product features.

• Any issues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler for Embedded.

In addition to fully supported product features, some product features are only alpha or beta
quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

• Arm endeavors to document known limitations on beta product features.

• Beta product features are expected to eventually become product features in a future
release of Arm Compiler for Embedded 6.

• Arm encourages the use of beta product features, and welcomes feedback on them.

• Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler for Embedded.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are identified with [ALPHA].

• Arm endeavors to document known limitations of alpha product features.

• Arm encourages the use of alpha product features, and welcomes feedback on them.

• Any issues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler for Embedded.

Community features
Arm Compiler for Embedded 6 is built on LLVM technology and preserves the functionality of that
technology where possible. This means that there are additional features available in Arm Compiler
for Embedded that are not listed in the documentation. These additional features are known as

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

community features. For information on these community features, see the Clang Compiler User's
Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

• Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

• Functionality might change significantly between feature releases.

• Arm makes no guarantees that community features are going to remain functional across
update releases, although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for this. Arm is interested in understanding your use of these features, and welcomes
feedback on them. Arm supports customers using these features on a best-effort basis, unless the
features are unsupported. Arm accepts defect reports on these features, but does not guarantee
that these issues are going to be fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:

• The following figure shows the structure of the Arm Compiler for Embedded 6 toolchain:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 218

http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Figure 1-1: Integration boundaries in Arm Compiler for Embedded 6

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

C/C++
Source code

GNU syntax
Assembly

Source code
headers

Objects Objects Objects

Scatter/Steering/
Symdefs file

Image

LLVM Project
libc++

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to this is if the interaction is codified in one
of the standards supported by Arm Compiler for Embedded 6. See Application Binary Interface
(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 218

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• The Clang implementations of compiler features, particularly those that have been present for a
long time in other toolchains, are likely to be mature. The functionality of new features, such as
support for new language features, is likely to be less mature and therefore more likely to have
limited functionality.

Deprecated features
A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler for
Embedded. Arm does not make any guarantee regarding the testing or maintenance of deprecated
features. Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, see the Arm Compiler
for Embedded documentation and Release Notes. Where appropriate, each Arm Compiler
document includes notes for features that are deprecated, and also provides entries in the changes
appendix of that document.

Unsupported features
With both the product and community feature categories, specific features and use cases are
known not to function correctly, or are not intended for use with Arm Compiler for Embedded 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:

• The Clang option -stdlib=libstdc++ is not supported.

• -mabi=aapcs-soft is not supported for A-profile targets in AArch64 state. The aapcs-soft ABI
is defined only for Armv8-R AArch64 targets. For more information, see the Soft-float section
of the Procedure Call Standard for the Arm 64-bit Architecture.

• -mabi=aapcs-soft is not supported for C++ source language modes.

• C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

• Use of C11 library features is unsupported.

• Any community feature that is exclusively related to non-Arm architectures is not supported.

• Except for Armv6-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

• The long double data type is not supported for AArch64 state because of limitations in the
current Arm C library.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 218

https://github.com/ARM-software/abi-aa/blob/c87dc3acda429fa412ea5952bd00725b6e11b11c/aapcs64/aapcs64.rst#L2032
https://developer.arm.com/documentation/100073/0623/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• C complex arithmetic is not supported, because of limitations in the current Arm C library.

• Complex numbers are defined in C++ as a template, std::complex. Arm Compiler for
Embedded supports std::complex with the float and double types, but not the long
double type because of limitations in the current Arm C library.

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers
depends on whether or not you are building for Armv8-M targets.

• You must take care when mixing translation units that are compiled with and without the
[COMMUNITY] -fsigned-char option, and that share interfaces or data structures.

The Arm ABI defines char as an unsigned byte, and this is the interpretation
used by the C libraries supplied with the Arm compilation tools.

• There are limitations with the Control Flow Integrity (CFI) sanitizer implementation, -
fsanitize=cfi, which requires Link-Time Optimization (LTO), -flto. The following are likely to
occur:

◦ When using features such as C++ I/O streams, the linker might report errors for a rejected
local symbol, L6654E, or that a symbol is not preserved by the LTO code generation, L6137E.

◦ The linker might report a diagnostic that a symbol has a size that extends outside of its
containing section, L6783E or L6784E.

Use the linker option --diag_suppress 6783 or --diag_suppress 6784 to suppress the
diagnostic.

Alternatives to C complex numbers not being supported
If you are building for Armv8-M targets, consider using the free and open-source CMSIS-DSP
library that includes a data type and library functions for complex number support in C. For more
information about CMSIS-DSP and complex number support see the following sections of the
CMSIS documentation:

• Complex Math Functions

• Complex Matrix Multiplication

• Complex FFT Functions

If you are not building for Armv8-M targets, consider modifying the affected part of your project to
use the C++ standard library type std::complex instead.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 218

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.2 Linking with the C library
When you write an application in C, you might find that you have to link it with the C library, even
if it makes no direct use of C library functions.

This link occurs because the compiler might implicitly generate calls to C library functions to
improve your application, even though calls to such functions might not exist in your source code.

Even if your application does not have a main() function, meaning that the C library is not
initialized, some C library functions are still legitimately available and the compiler might implicitly
generate calls to these functions.

However, you can avoid linking in the C library by reimplementing the functions that are called
implicitly.

Related information
C and C++ runtime libraries on page 16
Standalone C library functions on page 55
Avoid linking in the Arm Compiler for Embedded libraries

1.3 C and C++ runtime libraries
Arm provides the standard C library, C micro-library, and C++ runtime libraries to support compiled
C and C++.

standard C library
A C library consisting of:

• All functions defined by the ISO C99 library standard.

• Target-dependent functions that implement the C library functions in the semihosted
execution environment. You can redefine these functions in your own application.

• Functions called implicitly by the compiler.

• Arm extensions that are not defined by the ISO C library standard, but are included in the
library.

C micro-library
A C library that you can use as an alternative to standard C library. It is a micro-library that is
ideally suited for deeply embedded applications that have to fit within small-sized memory.
The C micro-library, microlib, consists of:

• Functions that are highly optimized to achieve the minimum code size.

• Functions that are not compliant with the ISO C library standard.

• Functions that are not compliant with the 1985 IEEE 754 standard for binary floating-
point arithmetic.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 218

https://developer.arm.com/documentation/100748/0623/Embedded-Software-Development/Avoid-linking-in-the-Arm-Compiler-for-Embedded-libraries

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

C++
A C++ library that you can use with standard C library. It consists of:

• Functions defined by the ISO C++ library standard.

• The libc++ library.

The C++ libraries depend on the C library for target-specific support. There are no target
dependencies in the C++ libraries.

Arm does not guarantee the compatibility of C++ compilation units compiled
with different major or minor versions of Arm® Compiler for Embedded and
linked into a single image. Therefore, Arm recommends that you always build
your C++ code from source with a single version of the toolchain.

You can mix C++ with C code or C libraries.

Related information
Linking with the C library on page 15
Standalone C library functions on page 55
The Arm C and C++ Libraries on page 10
The Arm C Micro-library on page 112
Standard C++ library implementation definition on page 103
ISO C library standard
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version

1.3.1 Compliance with the Application Binary Interface (ABI) for the Arm
architecture

The ABI for the Arm Architecture is a family of specifications that describes the processor-specific
aspects of the translation of a source program into object files.

Object files produced by any toolchain that conforms to the relevant aspects of the ABI can be
linked together to produce a final executable image or library.

Each document in the specification covers a specific area of compatibility. For example, the C
Library ABI for the Arm Architecture (CLIBABI) describes the parts of the C library that are expected
to be common to all conforming implementations.

The ABI documents contain several areas that are marked as platform specific. To define a
complete execution environment these platform-specific details have to be provided. This gives rise
to a number of supplemental specifications, for example the Arm GNU/Linux ABI supplement.

The Base Standard ABI for the Arm Architecture (BSABI) enables you to use A32 and T32 objects
and libraries from different producers that support the ABI for the Arm® Architecture. The Arm

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 218

http://www.iso.org
http://ieeexplore.ieee.org/

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

compilation tools fully support the BSABI, including support for Debug With Arbitrary Record Format
(DWARF) 3 debug tables (DWARF Debugging Standard Version 3).

The Arm C and C++ libraries conform to the standards described in the BSABI and the CLIBABI.
The libc++ library conforms to the C++ ABI for the Arm Architecture (CPPABI), with the exception of
Array Construction and Delete helper functions.

All C++ compilation units that are to be linked into a single image must be compiled
with the same version of the C++ standard library ABI. If the ABI version changes
between Arm Compiler for Embedded releases, then you must recompile your
object files.

If you are unable to recompile some of your object files, then contact Arm Support
at https://developer.arm.com/support.

Related information
Increasing portability of object files to other CLIBABI implementations on page 18
Standard C++ library implementation definition on page 103
Application Binary Interface (ABI) for the Arm Architecture
DWARF Debugging Standard

1.3.2 Increasing portability of object files to other CLIBABI
implementations

You can request full CLIBABI portability to increase the portability of your object files to other
implementations of the CLIBABI.

About this task

Increasing portability reduces the performance of some library operations.

There are a number of methods you can use to request full CLIBABI portability.

Procedure
1. Specify #define _AEABI_PORTABILITY_LEVEL 1 before you #include any library headers, such

as <stdlib.h>.
2. Specify -D_AEABI_PORTABILITY_LEVEL=1 on the compiler command line.

Related information
Compliance with the Application Binary Interface (ABI) for the Arm architecture on page 17
Application Binary Interface (ABI) for the Arm Architecture

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 218

https://developer.arm.com/support
https://developer.arm.com/documentation/ihi0036/latest
http://dwarfstd.org/
https://developer.arm.com/documentation/ihi0036/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.3.3 Arm C and C++ library directory structure

The libraries are installed in the armlib and libcxx subdirectories within <install_directory>/lib.

armlib

Contains the variants of the Arm C library, the floating-point arithmetic library (fplib), and the
math library (mathlib).

libcxx

Contains all libc++ and libc++abi libraries.

The accompanying header files for these libraries are installed in <install_directory>/include.

Comments inside source files and header files that are provided by Arm might not
be accurate and must not be treated as documentation about the product.

To specify an alternative top-level lib directory, set either one of the environment variables
ARMCOMPILER6LIB or ARMLIB, to point to the new directory, or use the --libpath option.

You must not identify the armlib and libcxx directories separately because the directory structure
might change in future releases. The linker finds them from the location of lib.

• The Arm C libraries are supplied in binary form only.

• The Arm libraries must not be modified. If you want to create a new
implementation of a library function, place the new function in an object file, or
your own library, and include it when you link the application. Your version of
the function is used instead of the standard library version.

• Normally, only a few functions in the ISO C library require reimplementing to
create a target-dependent application.

• The libc++ and libc++abi libraries provided with Arm® Compiler for Embedded
6 are based on the open-source libc++ and libc++abi libraries. The modifications
made by Arm are covered by restrictions described in the end user license
agreement.

1.3.4 Selection of Arm C and C++ library variants based on build options

When you build your application, you must make certain choices such as the target architecture,
instruction set, and byte order. You communicate these choices to the compiler using build options.
The linker then selects appropriate C and C++ library variants compatible with these build options.

Choices that influence the Arm C and C++ library variant include the following:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Target Architecture and instruction set
A32 or T32 (AArch32 state instruction sets).

Microlib is not supported for AArch64 state.

Byte order
Big-endian or little-endian.

Floating-point support
• Software (SoftVFP).

• Hardware (VFP).

• Software or hardware with half-precision or double-precision extensions.

• No floating-point support.

Software floating-point is supported for AArch32 state, but is not available for
AArch64 state.

Position independence
Position independent code uses PC-relative addressing modes where possible and otherwise
accesses global data through the Global Offset Table (GOT).

Different ways to access your data are as follows:

• By absolute address.

• Relative to sb (Read/Write Position Independent).

• Relative to pc (-fbare-metal-pie).

Different ways to access your code are as follows:

• By absolute address when appropriate.

• Relative to pc (read-only position independent).

A bare-metal Position Independent Executable (PIE) is an executable that does not need to be
executed at a specific address but can be executed at any suitably aligned address.

The standard C libraries provide variants to support all of these options.

You can only achieve position independent C++ code with -fbare-metal-pie.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Position independence is not supported in microlib.

When you link your assembler code, C or C++ code, the linker selects appropriate C and C++
library variants compatible with the build options you specified. There is a variant of the ISO C
library for each combination of major build options.

Related information
-fropi, fnoropi compiler option
-frwpi, fnorwpi option
-marm compiler option
-mbig-endian compiler option
-mfpu compiler option
-mlittle-endian compiler option
-mthumb compiler option
--fpu=name linker option
--ropi linker option
--rwpi linker option
--arm assembler option
--bigend assembler option
--fpu assembler option
--littleend assembler option
--thumb assembler option

1.3.5 T32 C libraries

There are several variations of the T32 libraries. It depends on the architecture target or processor
as to which one is used.

Arm®v7-A and Armv7-R use a T32 library. It contains a small number of A32 instructions that are
used to significantly improve performance.

Armv7-M, Armv7 E-M, and Armv8-M.mainline have their own T32 library.

Armv6-M and Armv8-M.baseline have their own T32 library.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fropi---fno-ropi
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-frwpi---fno-rwpi
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-marm
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-mbig-endian
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-mfpu
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-mlittle-endian
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-mthumb
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--fpu-name--armlink-
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--ropi
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--rwpi
https://developer.arm.com/documentation/101754/0623/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--arm
https://developer.arm.com/documentation/101754/0623/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--bigend
https://developer.arm.com/documentation/101754/0623/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--fpu-name--armasm-
https://developer.arm.com/documentation/101754/0623/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--littleend
https://developer.arm.com/documentation/101754/0623/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--thumb

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.4 C++ and C libraries and the std namespace
All C++ standard library names, including the C library names, if you include them, are defined in
the namespace std.

Standard library names are defined using the following C++ syntax:

#include <cstdlib> // instead of stdlib.h

This means that you must qualify all the library names using one of the following methods:

• Specify the standard namespace, for example:

std::printf("example\n");

• Use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

errno is a macro, so it is not necessary to qualify it with a namespace.

1.5 Multithreaded support in Arm C libraries
Describes the features that are supported by the Arm C libraries for creating multithreaded
applications.

1.5.1 Arm C libraries and multithreading

The Arm C libraries support multithreading, for example, where you are using a Real-Time Operating
System (RTOS).

In this context, the following definitions are used:

Threads
Mean multiple streams of execution sharing global data between them.

Process
Means a collection of all the threads that share a particular set of global data.

If there are multiple processes on a machine, they can be entirely separate and do not share any
data (except under unusual circumstances). Each process might be a single-threaded process or
might be divided into multiple threads.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Where you have single-threaded processes, there is only one flow of control. In multithreaded
applications, however, several flows of control might try to access the same functions, and
the same resources, concurrently. To protect the integrity of resources, any code you write for
multithreaded applications must be reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application
handle resources.

Related information
Using the Arm C library in a multithreaded environment on page 29
Arm C libraries and reentrant functions on page 23
Arm C libraries and thread-safe functions on page 23

1.5.2 Arm C libraries and reentrant functions

A reentrant function does not hold static data over successive calls, and does not return a pointer
to static data.

For this type of function, the caller provides all the data that the function requires, such as pointers
to any workspace. This means that multiple concurrent invocations of the function do not interfere
with each other.

A reentrant function must not call non-reentrant functions.

Related information
Arm C libraries and thread-safe functions on page 23
Arm C libraries and multithreading on page 22

1.5.3 Arm C libraries and thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks.

Thread safety concerns only how a function is implemented and not its external interface. In
C, local variables are held in processor registers, or if the compiler runs out of registers, are
dynamically allocated on the stack. Therefore, any function that does not use static data, or other
shared resources, is thread-safe.

Related information
Arm C libraries and reentrant functions on page 23
Arm C libraries and multithreading on page 22

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.5.4 Use of static data in the C libraries

Static data refers to persistent read/write data that is not stored on the stack or the heap. Callouts
from the C library enable access to static data.

Static data can be external or internal in scope, and is:

• At a fixed address, when compiled with -fnorwpi. This is the default.

• At a fixed address relative to the static base, register r9, when compiled with -frwpi.

• At a fixed address relative to the program counter (pc), when compiled with -fbare-metal-pie.

Libraries that use static data might be reentrant, but this depends on their use of the
__user_libspace static data area, and on the build options you choose:

• When compiled with -fnorwpi, read/write static data is addressed in a position-dependent
fashion. This is the default. Code from these variants is single-threaded because it uses read/
write static data.

• When compiled with -frwpi, read/write static data is addressed in a position independent
fashion using offsets from the static base register sb. Code from these variants is reentrant and
can be multithreaded if each thread uses a different static base value.

The following describes how the C libraries use static data:

• The default floating-point arithmetic libraries fz_* and fj_* do not use static data and are
always reentrant. For software floating-point, the f_* and g_* libraries use static data to store
the Floating-Point (FP) status word. For hardware floating-point, the f_* and g_* libraries do not
use static data.

• All statically-initialized data in the C libraries is read-only.

• All writable static data is zero-initialized.

• Most C library functions use no writable static data and are reentrant whether built with:

◦ Default build options, -fnorwpi.

◦ Reentrant build options, -frwpi.

• Some functions have static data implicit in their definitions. You must not use these in a
reentrant application unless you build it with -frwpi and the callers use different values in sb.

Exactly which functions use static data in their definitions might change in future
releases.

Callouts from the C library enable access to static data. C library functions that use static data can
be categorized as:

• Functions that do not use any static data of any kind, for example fprintf().

• Functions that manage a static state, such as malloc(), rand(), and strtok().

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Functions that do not manage a static state, but use static data in a way that is specific to the
implementation in Arm® Compiler for Embedded, for example isalpha().

When the C library does something that requires implicit static data, it uses a callout to a function
you can replace. These functions are shown in the following table. They do not use semihosting.

Table 1-1: C library callouts

Function Description

__rt_errno_addr() Called to get the address of the variable errno

__rt_fp_status_addr() Called by the floating-point support code to get the address of the
floating-point status word

locale functions The function __user_libspace() creates a block of private
static data for the library

The default implementation of __user_libspace creates a 96-byte block in the ZI region. Even
if your application does not have a main() function, the __user_libspace() function does not
normally have to be redefined.

Exactly which functions use static data in their definitions might change in future
releases.

Related information
Reimplementation of legacy function __user_libspace() in the C library on page 26
Assembler macros that tailor locale functions in the C library on page 67
Arm C libraries and multithreading on page 22
__rt_fp_status_addr() on page 164
-fropi, -fnoropi option
-frwpi, -fnorwpi option
Semihosting for AArch32 and AArch64

1.5.5 Use of the __user_libspace static data area by the C libraries

The __user_libspace static data area holds the static data for the C libraries. The C libraries use
the __user_libspace area to store a number of different types of data.

This is a block of 96 bytes of zero-initialized data, supplied by the C library. It is also used as a
temporary stack during C library initialization.

The default Arm C libraries use the __user_libspace area to hold:

• errno, used by any function that is capable of setting errno. By default, __rt_errno_addr()
returns a pointer to errno.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fropi---fno-ropi
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-frwpi---fno-rwpi
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• The Floating-Point (FP) status word for software floating-point (exception flags, rounding mode).
It is unused in hardware floating-point. By default, __rt_fp_status_addr() returns a pointer to
the FP status word.

• A pointer to the base of the heap (that is, the __Heap_Descriptor), used by all the malloc-
related functions.

• The current locale settings, used by functions such as setlocale(), but also used by all other
library functions that depend on them. For example, the ctype.h functions have to access the
LC_CTYPE setting.

How the C and C++ libraries use the __user_libspace area might change in future
releases.

Related information
__aeabi_atexit() in C++ ABI for the Arm Architecture

1.5.6 C library functions to access subsections of the __user_libspace static
data area

The __user_perproc_libspace() and __user_perthread_libspace() functions return subsections
of the __user_libspace static data area.

__user_perproc_libspace()

Returns a pointer to memory for storing data that is global to an entire process. This data is
shared between all threads.

In AArch32 state, returns a pointer to 96 bytes of 4-byte aligned memory.

In AArch64 state, returns a pointer to 192 bytes of 8-byte aligned memory.

__user_perthread_libspace()

Returns a pointer to memory for storing data that is local to a particular thread. This means
that __user_perthread_libspace() returns a different address depending on the thread it is
called from.

In AArch32 state, returns a pointer to 96 bytes of 4-byte aligned memory.

In AArch64 state, returns a pointer to 192 bytes of 8-byte aligned memory.

Related information
Use of the __user_libspace static data area by the C libraries on page 25
Reimplementation of legacy function __user_libspace() in the C library on page 26

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 218

https://github.com/ARM-software/abi-aa/tree/main/cppabi64

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.5.7 Reimplementation of legacy function __user_libspace() in the C library

The __user_libspace() function returns a pointer to a block of private static data for the C library.
This function does not normally have to be redefined.

If you are writing an operating system or a process switcher, then typically you use the
__user_perproc_libspace() and __user_perthread_libspace() functions (which are always
available) rather than reimplement __user_libspace().

If you have legacy source code that reimplements __user_libspace(), you do not have to change
the reimplementation for single-threaded processes. However, you are likely to be required
to do so for multithreaded applications. For multithreaded applications, use either or both of
__user_perproc_libspace() and __user_perthread_libspace(), instead of __user_libspace().

Related information
C library functions to access subsections of the __user_libspace static data area on page 26

1.5.8 Management of locks in multithreaded applications

A thread-safe function protects shared resources from concurrent access using locks. There
are functions in the C library that you can reimplement, that enable you to manage the locking
mechanisms and so prevent the corruption of shared data such as the heap.

These functions are mutex functions, where the lifecycle of a mutex is one of initialization, iterative
acquisition and releasing of the mutex as required, and then optionally freeing the mutex when it
is never going to be required again. The mutex functions wrap onto your own Real-Time Operating
System (RTOS) calls, and their function prototypes are:

int _mutex_initialize(mutex *m);

This function accepts a pointer to a pointer-sized word and initializes it as a valid mutex.

By default, _mutex_initialize() returns zero for a nonthreaded application. Therefore, in a
multithreaded application, _mutex_initialize() must return a nonzero value on success so
that at runtime, the library knows that it is being used in a multithreaded environment.

Ensure that _mutex_initialize() initializes the mutex to an unlocked state.

This function must be supplied if you are using mutexes.

void _mutex_acquire(mutex *m);

This function causes the calling thread to obtain a lock on the supplied mutex.

_mutex_acquire() returns immediately if the mutex has no owner. If the mutex is owned by
another thread, _mutex_acquire() must block until it becomes available.

_mutex_acquire() is not called by the thread that already owns the mutex.

This function must be supplied if you are using mutexes.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

void _mutex_release(mutex *m);

This function causes the calling thread to release the lock on a mutex acquired by
_mutex_acquire().

The mutex remains in existence, and can be re-locked by a subsequent call to
mutex_acquire().

_mutex_release() assumes that the mutex is owned by the calling thread.

This function must be supplied if you are using mutexes.

void _mutex_free(mutex *m);

This function causes the calling thread to free the supplied mutex. Any operating system
resources associated with the mutex are freed. The mutex is destroyed and cannot be reused.

_mutex_free() assumes that the mutex is owned by the calling thread.

This function is optional. If you do not supply this function, the C library does not attempt to
call it.

The mutex data structure type that is used as the parameter to the _mutex_*() functions is not
defined in any of the Arm® Compiler for Embedded toolchain header files, but must be defined
elsewhere. Typically, it is defined as part of RTOS code.

Functions that call _mutex_*() functions create 4 bytes of memory for AArch32 and 8 bytes of
memory for AArch64. This memory holds the mutex data structure. __Heap_Initialize() is one
such function.

For the C library, a mutex is specified as a single pointer-sized word of memory that can be placed
anywhere. However, if your mutex implementation requires more space than this, or demands that
the mutex be in a special memory area, then you must treat the default mutex as a pointer to a real
mutex.

A typical example of a reimplementation framework for _mutex_initialize(), _mutex_acquire(),
and _mutex_release() is as follows, where SEMAPHORE_ID, CreateLock(), AcquireLock(), and
ReleaseLock() are defined in the RTOS, and (...) implies additional parameters:

int _mutex_initialize(SEMAPHORE_ID *sid)
{
 /* Create a mutex semaphore */
 *sid = CreateLock(...);
 return 1;
}
void _mutex_acquire(SEMAPHORE_ID *sid)
{
 /* Task sleep until get semaphore */
 AcquireLock(*sid, ...);
}
void _mutex_release(SEMAPHORE_ID *sid)
{
 /* Release the semaphore. */
 ReleaseLock(*sid);
}
void _mutex_free(SEMAPHORE_ID *sid)

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

{
 /* Free the semaphore. */
 FreeLock(*sid, ...);
}

• _mutex_release() releases the lock on the mutex that was acquired by
_mutex_acquire(), but the mutex still exists, and can be re-locked by a
subsequent call to _mutex_acquire().

• It is only when the optional wrapper function _mutex_free() is called that the
mutex is destroyed. After the mutex is destroyed, it cannot be used without first
calling _mutex_initialize() to set it up again.

Related information
How to ensure reimplemented mutex functions are called on page 29
Using the Arm C library in a multithreaded environment on page 29
Thread safety in the Arm C library on page 31
Thread safety in the Arm C++ library on page 42

1.5.9 How to ensure reimplemented mutex functions are called

If your reimplemented _mutex_*() functions are within an object that is contained within a library
file, the linker does not automatically include the object.

This can result in the _mutex_*() functions being excluded from the image you have built.

To ensure that your _mutex_*() functions are called, you can either:

• Place your mutex functions in a non-library object file. This helps to ensure that they are
resolved at link time.

• Place your mutex functions in a library object file, and arrange a non-weak reference to
something in the object.

• Place your mutex functions in a library object file, and have the linker explicitly
extract the specific object from the library on the command line by writing
<libraryname>.a(<objectfilename>.o) when you invoke the linker.

Related information
Using the Arm C library in a multithreaded environment on page 29
Thread safety in the Arm C library on page 31
Thread safety in the Arm C++ library on page 42
Management of locks in multithreaded applications on page 27

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.5.10 Using the Arm C library in a multithreaded environment

There are a number of requirements you must fulfill before you can use the Arm C library in a
multithreaded environment.

To use the Arm C library in a multithreaded environment, you must provide:

• An implementation of __user_perthread_libspace() that returns a different block of memory
for each thread. This can be achieved by either:

◦ Returning a different address depending on the thread it is called from.

◦ Having a single __user_perthread_libspace block at a fixed address and swapping its
contents when switching threads.

You can use either approach to suit your environment.

You do not have to reimplement __user_perproc_libspace() unless there is a specific reason
to do so. In the majority of cases, there is no requirement to reimplement this function.

• A way to manage multiple stacks.

A simple way to do this is to use the Arm two-region memory model. Using this means that you
keep the stack that belongs to the primary thread entirely separate from the heap. Then you
must allocate more memory for additional stacks from the heap itself.

• Thread management functions, for example, to create or destroy threads, to handle thread
synchronization, and to retrieve exit codes.

The Arm C libraries supply no thread management functions of their own so you
must supply any that are required.

• A thread-switching mechanism.

The Arm C libraries supply no thread-switching mechanisms of their own. This is
because there are many different ways to do this and the libraries are designed
to work with all of them.

You only have to provide implementations of the mutex functions if you require them to be called.

In some applications, the mutex functions might not be useful. For example, a co-operatively
threaded program does not have to take steps to ensure data integrity, provided it avoids calling its
yield function during a critical section. However, in other types of application, for example where
you are implementing preemptive scheduling, or in a Symmetric Multi-Processor (SMP) model, these
functions play an important part in handling locks.

If all of these requirements are met, you can use the Arm C library in your multithreaded
environment. The following behavior applies:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Some functions work independently in each thread.

• Some functions automatically use the mutex functions to mediate multiple accesses to a shared
resource.

• Some functions are still nonreentrant so a reentrant equivalent is supplied.

• A few functions remain nonreentrant and no alternative is available.

Related information
Arm C libraries and multithreading on page 22

1.5.11 Thread safety in the Arm C library

Arm C library functions are either always thread-safe, never thread-safe, or thread-safe in certain
circumstances.

In the Arm C library:

• Some functions are never thread-safe, for example setlocale().

• Some functions are inherently thread-safe, for example memcpy().

• Some functions, such as malloc(), can be made thread-safe by implementing the _mutex_*
functions.

• Other functions are only thread-safe if you pass the appropriate arguments, for example
tmpnam().

Threading problems might occur when your application makes use of the Arm C library in a way
that is hidden, for example, if the compiler implicitly calls functions that you have not explicitly
called in your source code. Familiarity with the thread-safe C library functions and C library
functions that are not thread-safe can help you to avoid this type of threading problem, although in
general, it is unlikely to arise.

Related information
How to ensure reimplemented mutex functions are called on page 29
Using the Arm C library in a multithreaded environment on page 29
Thread safety in the Arm C++ library on page 42
Management of locks in multithreaded applications on page 27

1.5.12 The floating-point status word in a multithreaded environment

Applicable to variants of the software floating-point libraries that require a status word, the
floating-point status word is safe to use in a multithreaded environment, even with software
floating-point.

A status word for each thread is stored in its own __user_perthread_libspace block.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

In a hardware floating-point environment, the floating-point status word is stored in
a Vector Floating-Point (VFP) register. In this case, your thread-switching mechanism
must keep a separate copy of this register for each thread.

In Arm® Compiler for Embedded 6, floating-point library variants are selected by default. For more
information see the armclang command-line option -ffp-mode.

Related information
Thread safety in the Arm C library on page 31

1.6 Multithreaded support in Arm C++ libraries [ALPHA]
Describes the features that the Arm C++ libraries support for creating multithreaded applications.
These features are [ALPHA]-supported.

This topic describes an [ALPHA] feature. See Support level definitions.

1.6.1 Arm C++ libraries and multithreading [ALPHA]

The C++ Thread Porting Application Programming Interface (API) is an [ALPHA]-supported API that
enables the use of C++11 and later concurrency constructs with Arm® Compiler for Embedded
6. Operating system or library vendors must provide an implementation of this API to enable the
seamless use of C++11 and later concurrency constructs within user applications.

This topic describes an [ALPHA] feature. See Support level definitions.

The C++11 and later standards offer several high-level concurrency constructs intended to simplify
parallel programming and make multithreaded programs portable across platforms. Future versions
of the C++ standard are set to introduce additional high-level concurrency constructs. For more
information, see https://isocpp.org/std/status.

Most standard library implementations expect an underlying operating system or library platform to
provide a comprehensive set of primitive concurrency constructs on top of which these higher level
constructs can be built.

The default standard C++ library supplied with Arm Compiler for Embedded 6 has been built
without concurrency support to avoid passing these dependencies to target bare-metal systems.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-ffp-mode
https://isocpp.org/std/status

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Arm Compiler for Embedded 6 includes a special variant of the standard C++ library that enables
support for C++11 and later concurrency constructs. This library variant requires platform vendors
to provide an implementation of the threading API described in this document. On certain
architectures, for example the Armv6-M architecture, this threaded library variant might contain
library calls to various __atomic_* functions. On these architectures, platform vendors must also
provide an implementation of an atomics library as discussed in LLVM Atomic Instructions and
Concurrency Guide.

To select the threaded standard C++ library variant instead of the default variant use
the appropriate C++ standard with the compiler option -std= and the compiler option -
D_ARM_LIBCPP_EXTERNAL_THREADS together with linker option --stdlib=threaded_libc++. For
example, for C++11 use -std=c++11 -D_ARM_LIBCPP_EXTERNAL_THREADS.

Platform vendors can selectively implement subsets of the porting API based on the dependencies
between the high-level C++11 and later concurrency constructs and the underlying platform
concurrency primitives.

Arm Compiler for Embedded 6 provides C++ libraries that are based on open-source LLVM
technology. The libraries for multithreaded applications are:

• The standard library, libc++.

• Low level support for the standard library, libc++abi.

• Exception unwinding support library, libunwind.

The C++ Thread Porting API enables these libraries to correctly operate in different multithreaded
environments.

The C++ Thread Porting API is independent of the multithreaded support API
provided in the Arm C library. For more information, see Multithreaded support
in Arm C libraries. Platform vendors must implement both of these APIs, to the
respective specifications, to ensure correct operation of multithreaded programs.
The C++ Thread Porting API is declared in the arm-tpl.h header file of the Arm
Compiler for Embedded 6 distribution.

The C++ Thread Porting API functional areas include:

• Clocks.

• Mutexes.

• Conditional variables.

• Threads.

• Miscellaneous functions.

Related information
-D (armclang)
-std
--stdlib

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 218

http://llvm.org/docs/Atomics.html#libcalls-atomic
http://llvm.org/docs/Atomics.html#libcalls-atomic
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-D--armclang-
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--stdlib

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.6.2 Clocks [ALPHA]

The C++ Thread Porting API provides clock functions in the arm-tpl.h header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Syntax
Types:

struct __ARM_TPL_timespec_t {
 time_t tv_sec;
 long tv_nsec;
};

Functions:

int __ARM_TPL_clock_realtime(__ARM_TPL_timespec_t* ts);

int __ARM_TPL_clock_monotonic(__ARM_TPL_timespec_t* ts);

Parameters
ts

A time variable that the function must populate.

Returns
These functions must return zero if successful, or return non-zero if not successful to indicate an
error.

Operation
The function __ARM_TPL_clock_realtime() must populate the ts argument with the current
system-wide (wall-clock) time.

The function __ARM_TPL_clock_monotonic() must populate the ts argument with the elapsed time
since some fixed point in time.

Time measurements produced by __ARM_TPL_clock_monotonic() must be steady.
That is, the measurements must increase at a fixed rate relative to the real time.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.6.3 Mutexes [ALPHA]

The C++ Thread Porting API provides mutex functions in the arm-tpl.h header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Syntax
Types:

struct __ARM_TPL_mutex_t {
 _Atomic uintptr_t data;
};

Functions:

int __ARM_TPL_recursive_mutex_init(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_trylock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_destroy(__ARM_TPL_mutex_t* __m);

Parameters
__m

A pointer to an underlying platform-specific mutex type.

Returns
These functions must return zero if successful, or return non-zero if not successful to indicate an
error.

Operation
The API uses the __ARM_TPL_mutex_t type to encapsulate a pointer to an underlying platform-
specific mutex type. The semantics of these functions are:

• The functions __ARM_TPL_mutex_lock() and __ARM_TPL_mutex_trylock() must operate
on an initialize-on-first-use basis with respect to __m->data. If the value __m->data is zero,
an implementation must first initialize __m->data to point to a valid platform mutex before
carrying out the requested locking operation. This initialization must be thread-safe. For more
information, see Thread-safe initialization of Mutexes and Condition variables [ALPHA].

• The function __ARM_TPL_mutex_lock() must lock the mutex represented at __m, blocking the
calling thread until the mutex becomes available. If the function is successful, it must return
zero, with the calling thread as the owner of the underlying mutex.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• The function __ARM_TPL_mutex_trylock() is similar to __ARM_TPL_mutex_lock(), except if
the mutex at __m is already locked, it must return immediately unsuccessfully. If the function
successfully performs the lock, it must return zero. Otherwise, it must return non-zero.

• The functions __ARM_TPL_mutex_unlock() and __ARM_TPL_mutex_destroy() must return zero
if the value __m->data is zero. Otherwise, they must perform the requested operation on the
platform mutex pointed to by __m->data and then return zero if successful, or return non-zero
if not successful.

• The function __ARM_TPL_mutex_unlock() must unlock the mutex represented at __m. If the
mutex at __m was initialized as a recursive mutex, it is unlocked only when the lock count
reaches zero.

• The function __ARM_TPL_mutex_destroy() must destroy the mutex represented at __m. It is
guaranteed that an already destroyed __ARM_TPL_mutex_t object is not re-referenced through
any API functions afterward.

• The function __ARM_TPL_recursive_mutex_init() must initialize the platform mutex pointed to
by __m->data as a recursive mutex. There is no requirement for this initialization to be thread-
safe.

1.6.4 Condition variables [ALPHA]

The C++ Thread Porting API provides functions for condition variables in the arm-tpl.h header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Syntax
Type:

struct __ARM_TPL_condvar_t {
 _Atomic uintptr_t data;
};

Functions:

int __ARM_TPL_condvar_signal(__ARM_TPL_condvar_t* __cv);

int __ARM_TPL_condvar_broadcast(__ARM_TPL_condvar_t* __cv);

int __ARM_TPL_condvar_wait(__ARM_TPL_condvar_t* __cv, __ARM_TPL_mutex_t* __m);

int __ARM_TPL_condvar_timedwait(__ARM_TPL_condvar_t* __cv, __ARM_TPL_mutex_t* __m,
 __ARM_TPL_timespec_t* __ts);

int __ARM_TPL_condvar_monotonic_timedwait(__ARM_TPL_condvar_t* __cv,
 __ARM_TPL_mutex_t* __m, __ARM_TPL_timespec_t* __ts);

int __ARM_TPL_condvar_destroy(__ARM_TPL_condvar_t* __cv);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Parameters
__cv

A pointer to an underlying platform-specific condition variable type.

__m

A pointer to an underlying platform-specific mutex type.

__ts

A time limit for the blocking operation.

Returns
These functions must return zero if successful, or return non-zero if not successful to indicate an
error.

The __ARM_TPL_condvar_wait() function must return zero to indicate success when a thread is
unblocked as a result of the condition variable being signaled. This function must return a non-zero
value to indicate any error conditions.

If the __ARM_TPL_condvar_timedwait() function returns because of the timeout expiring, its return
value must be non-zero.

The functions __ARM_TPL_condvar_signal(), __ARM_TPL_condvar_broadcast(), and
__ARM_TPL_condvar_destroy() must return zero if the value __cv->data is zero. Otherwise, they
must perform the requested operation on the platform condition variable pointed to by __cv->data
and return zero if successful, or return non-zero if not successful.

Operation
The C++ Thread Porting API uses the __ARM_TPL_condvar_t type to encapsulate a pointer to an
underlying platform-specific condition variable type. The semantics of the functions are:

• The functions __ARM_TPL_condvar_wait() and __ARM_TPL_condvar_timedwait() must operate
on an initialize-on-first-use basis with respect to __cv->data. If the value __cv->data is zero,
an implementation must first initialize __cv->data to point to a valid platform condition variable
before carrying out the requested operation. This initialization must be thread-safe. For more
information, see Thread-safe initialization of Mutexes and Condition variables [ALPHA].

• The function __ARM_TPL_condvar_wait() must cause the calling thread (which is guaranteed
to be the owner of the mutex __m) to block until the condition variable, __cv, is signaled by a
different thread or the calling thread is interrupted. For the duration where the calling thread
is blocked, the mutex __m must be unlocked. When this function returns, the unblocked thread
must be the owner of the mutex, __m, regardless of the reason for unblocking. The reason for
unblocking might be:

◦ Condition variable is signaled.

◦ The current thread is interrupted.

• The function __ARM_TPL_condvar_timedwait() behaves similar to __ARM_TPL_condvar_wait(),
except that it allows an explicit time limit to be specified for the blocking operation. The
time limit is specified with respect to the wall-clock time, corresponding to the function
__ARM_TPL_clock_realtime().

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• The function __ARM_TPL_condvar_monotonic_timedwait() is similar to
__ARM_TPL_condvar_timedwait() but uses the monotonic clock as its reference, corresponding
to the function __ARM_TPL_clock_monotonic().

• The function __ARM_TPL_condvar_signal() must unblock at least one of the threads blocked
on the condition variable __cv. The function __ARM_TPL_condvar_broadcast() must unblock all
the threads blocked on the condition variable __cv. If more than one thread is unblocked as a
result of a call to one of these functions, they must all contend for the respective mutexes with
which they originally invoked __ARM_TPL_condvar_wait() or __ARM_TPL_condvar_timedwait()
functions.

• The function __ARM_TPL_condvar_destroy() must destroy the condition variable represented in
__cv. It is guaranteed that an already destroyed __ARM_TPL_condvar_t object is not referenced
through any API functions afterward.

1.6.5 Threads [ALPHA]

The C++ Thread Porting API provides thread function prototypes in the arm-tpl.h header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Syntax
Types:

typedef uint32_t __ARM_TPL_thread_id;

struct __ARM_TPL_thread_t {
 uintptr_t data;
};

typedef uint32_t __ARM_TPL_tls_key;

Functions:

int __ARM_TPL_thread_create(__ARM_TPL_thread_t* __t, void* (*__f)(void*), void*
 __arg);

__ARM_TPL_thread_id __ARM_TPL_thread_get_current_id();

__ARM_TPL_thread_id __ARM_TPL_thread_get_id(const __ARM_TPL_thread_t* __t);

int __ARM_TPL_thread_id_compare(__ARM_TPL_thread_id tid1, __ARM_TPL_thread_id tid2);

int __ARM_TPL_thread_join(__ARM_TPL_thread_t* __t);

int __ARM_TPL_thread_detach(__ARM_TPL_thread_t* __t);

void __ARM_TPL_thread_yield();

int __ARM_TPL_thread_nanosleep(const __ARM_TPL_timespec_t *req, __ARM_TPL_timespec_t
 *rem);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

unsigned __ARM_TPL_thread_hw_concurrency();

int __ARM_TPL_tls_create(__ARM_TPL_tls_key* __key, void (*__at_exit) (void*));

int __ARM_TPL_tls_set(__ARM_TPL_tls_key __key, void* __p);

void* __ARM_TPL_tls_get(__ARM_TPL_tls_key __key);

Parameters
__t

A thread on which the function is to perform the required action.

__f

A routine to run.

__arg

Arguments for the routine __f.

__tid1 and __tid2
The threads to compare.

req

A minimum interval to block the calling thread.

rem

The remaining time interval of the original request.

__key

A unique process-wide thread local storage identifier.

__at_exit

The function to invoke when the __ARM_TPL_tls_create function exits. __at_exit() must
have *__key as its only argument.

__p

A value to associate with *__key for the calling thread.

Returns
__ARM_TPL_thread_create

If __t has already terminated, this function must return zero immediately. The function must
return zero if successful, or return non-zero to indicate an error if not successful.

__ARM_TPL_thread_get_current_id()

The function must return the thread identifier for the calling thread.

__ARM_TPL_thread_get_id()

The function must return the corresponding thread identifier for the argument __t.

__ARM_TPL_thread_id_compare()

The function must return positive if t1 > t2, zero if t1 == t2, and negative if t1 < t2.
The function must return zero if successful, or return non-zero to indicate an error if not
successful.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

__ARM_TPL_tls_get()

The function must return the value bound to the __key argument for the calling thread. It is
guaranteed that __ARM_TPL_tls_get() is not invoked from thread-local destructor functions
registered in __ARM_TPL_tls_create(). The function must return zero if successful, or return
non-zero to indicate an error if not successful.

__ARM_TPL_thread_nanosleep()

The function must return zero if successful, or return non-zero to indicate an error if not
successful.

__ARM_TPL_thread_hw_concurrency()

The function must return the number of concurrent threads supported by the
underlying platform. The sole use of this function is for the implementation of the
std::hardware_concurrency() function.

__ARM_TPL_thread_join()

If __t does not represent a joinable thread or refers to the calling thread itself, this function
must return a non-zero value to indicate error. The function must return zero if successful, or
return non-zero to indicate an error if not successful.

__ARM_TPL_thread_detach()

The function must return zero if successful, or return non-zero to indicate an error if not
successful.

__ARM_TPL_tls_create()

The function must return zero if successful, or return non-zero to indicate an error if not
successful.

__ARM_TPL_tls_set()

The function must return zero if successful, or return non-zero to indicate an error if not
successful.

Operation
The C++ Thread Porting API uses the __ARM_TPL_thread_t type to encapsulate a pointer to an
underlying platform-specific thread type. The types __ARM_TPL_thread_id and __ARM_TPL_tls_key
are identifiers of threads and instances of thread local storage created within the system. The
semantics of the functions are:

• The __ARM_TPL_thread_create() function must initialize __t->data to point to a newly
allocated system thread structure. There is no requirement for this initialization to be thread
safe. The newly allocated thread must be scheduled to run the __f routine with __arg as its
sole argument.

• The function __ARM_TPL_thread_join() must cause the calling thread to block until the thread
represented in __t terminates. When a thread __t has been joined to, it is guaranteed not to
be accessed again. Therefore, any system resources accessible through __t must be reclaimed
before returning from this function. All threads are created in a joinable state, calling either
__ARM_TPL_thread_join() or __ARM_TPL_thread_detach() on an argument __t makes the
thread represented in __t non-joinable.

• The function __ARM_TPL_thread_detach() must cleanup any system resources accessible
through __t while allowing the underlying thread to continue execution. As with

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

__ARM_TPL_thread_join(), invoking this function on an argument __t causes the underlying
thread to become non-joinable.

• The function __ARM_TPL_thread_yield() must force the calling thread to relinquish the
processor until it becomes eligible for execution again.

• The function __ARM_TPL_thread_nanosleep() must cause the calling thread to be blocked for
a minimum interval specified by req. The thread might be interrupted due to a signal being
delivered to it, in which case either the corresponding signal handler must be invoked or the
process must be terminated. When the argument rem is provided (non-null), and the function
returns before having the requested time interval elapsed, rem must be populated to indicate
the remaining time interval of the original request (time requested - actual time elapsed).

• The __ARM_TPL_tls_create() function must initialize *__key to identify a unique process-
wide thread local storage. Upon creation, each __key must be bound to a NULL value, as if
__ARM_TPL_tls_set(*__key, NULL) was invoked. Individual threads within the current process
might later bind thread specific values to this key using the __ARM_TPL_tls_set() function.
There is no requirement for the initialization of *__key to be thread safe. If the __at_exit
argument is provided (non-null), and a thread has a non-null binding for that *__key at the point
of termination, the system must ensure that __at_exit(void*) is invoked with the current
binding for *__key as the only argument.

• The function __ARM_TPL_tls_set() must associate the value __p with *__key for the calling
thread. It is guaranteed that __key has been obtained using __ARM_TPL_tls_create(). It is also
guaranteed that __ARM_TPL_tls_set() is not invoked from thread-local destructor functions
registered in __ARM_TPL_tls_create().

1.6.6 Miscellaneous functions [ALPHA]

The C++ Thread Porting API provides functions in the arm-tpl.h header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Syntax
Type:

typedef volatile unsigned long __ARM_TPL_exec_once_flag;

Function:

int __ARM_TPL_execute_once(__ARM_TPL_exec_once_flag *__flag, void(*__func)(void));

Parameters
__flag

Can be used to determine whether the routine __func has already been invoked.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

__func

The routine to call.

Returns
__ARM_TPL_execute_once() returns an int where zero indicates successful completion (correctly
executing the __func() function on first invocation, or not executing __func() on a subsequent
invocation). A non-zero return value indicates an error.

Operation
The first invocation of the __ARM_TPL_execute_once() function by any thread within the current
process for a given __func argument must result in a call to the __func() routine. Subsequent
calls to __ARM_TPL_execute_once() for the same __func argument must not have any effect. The
argument __flag can be used to determine whether the routine __func has already been invoked.

The behavior of __ARM_TPL_execute_once() is undefined if __flag has automatic storage
duration or is not initialized by _LIBCPP_EXEC_ONCE_INITIALIZER (defined in libcxx/include/
__external_threading).

1.6.7 Thread safety in the Arm C++ library

The functions contained within the libc++ library are fully-supported for use in single-threaded
environments, and [ALPHA]-supported for use in multithreaded environments.

This topic includes descriptions of [ALPHA] features. See Support level definitions.

Related information
How to ensure reimplemented mutex functions are called on page 29
Using the Arm C library in a multithreaded environment on page 29
Thread safety in the Arm C library on page 31
Management of locks in multithreaded applications on page 27

1.6.8 Supported C++ Concurrency Features [ALPHA]

The following sections identify the high-level C++ concurrency constructs supported by the
multithreaded Arm C++ libraries. For each of the features, the underlying section of the thread
porting API required for the correct functionality of that feature is also identified.

This topic describes an [ALPHA] feature. See Support level definitions.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Some language features require extra runtime support when operating in a multithreaded
environment. The C++ language features of concern here are initialization of guard variables and
exceptions.

1.6.9 Guard variables [ALPHA]

To ensure thread-safety of certain initializations, the compiler calls out to helper functions in the
libc++abi library.

This topic describes an [ALPHA] feature. See Support level definitions.

For example, in the following code snippet, the compiler must ensure that the Counter c is
constructed once only, even when multiple threads call getCount().

class Counter {
public:
 Counter(int x) : _m(x) {}
 int inc() {return _m++;}
private:
 int _m;
}

int getCount() {
 static Counter c(42);
 return c.inc();
}

To support such thread-safe initializations, you must provide the implementations for the following
subset of constructs from the Mutexes [ALPHA] and Condition variables [ALPHA] sections of the
API:

Types
struct __ARM_TPL_mutex_t{
 _Atomic uintptr_t data;
};
struct __ARM_TPL_condvar_t{
 _Atomic uintptr_t data;
};

Functions
int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_condvar_broadcast(__ARM_TPL_condvar_t* __cv);

int __ARM_TPL_condvar_wait(__ARM_TPL_condvar_t* __cv, __ARM_TPL_mutex_t* __m);

The ABI functions __cxa_guard_acquire(), __cxa_guard_release(), and __cxa_guard_abort()
need not be reimplemented under this scheme.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Parameters
__m

A pointer to an underlying platform-specific mutex type.

__cv

A pointer to an underlying platform-specific condition variable type.

1.6.10 Exceptions [ALPHA]

The C++ runtime (libc++abi and libunwind) must take special measures when allocating and
handling exceptions in a threaded environment.

This topic describes an [ALPHA] feature. See Support level definitions.

An implementation of the following subset of the thread porting API is required for the correct
operation of exceptions in a threaded environment:

Syntax
Types:

struct __ARM_TPL_mutex_t{
 _Atomic uintptr_t data;
};
typedef uint32_t __ARM_TPL_tls_key;

Functions:

int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_tls_create(__ARM_TPL_tls_key* __key, void (*__at_exit) (void*));

void* __ARM_TPL_tls_get(__ARM_TPL_tls_key __key);

int __ARM_TPL_tls_set(__ARM_TPL_tls_key __key, void* __p);

int __ARM_TPL_execute_once(__ARM_TPL_exec_once_flag* flag, void(*func)(void));

Parameters
__m

A pointer to an underlying platform-specific mutex type.

__key

A unique process-wide thread local storage identifier.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

__at_exit

The function to invoke when the __ARM_TPL_tls_create function exits. __at_exit() must
have *__key as its only argument.

__p

A value to associate with *__key for the calling thread.

flag

Can be used to determine whether the routine func has already been invoked.

func

The routine to call.

Operation
For more information about the __ARM_TPL_mutex_lock() and __ARM_TPL_mutex_unlock()
functions and, see Mutexes [ALPHA].

For more information about the __ARM_TPL_tls_create(), __ARM_TPL_tls_get(), and
__ARM_TPL_tls_set() functions, see Threads [ALPHA].

For more information about the __ARM_TPL_execute_once() function, see Miscellaneous functions
[ALPHA].

1.6.11 Standard library concurrency constructs [ALPHA]

The C++ standard library, beginning with the C++11 standard, provides various high-level
concurrency constructs. Presently, these constructs are spread across the headers <atomic>,
<chrono>, <mutex>, <shared_mutex>, <condition_variable>, <thread>, and <future>.

This topic describes an [ALPHA] feature. See Support level definitions.

The following sections identify how the functionality of each of these headers maps to the Arm®

Compiler for Embedded thread porting API introduced in Arm C++ libraries and multithreading
[ALPHA]. They also identify any additional dependencies or expected limitations.

<atomic> header
The functionality of this header does not depend on the thread porting API.

The following table summarizes the level of support for the <atomic> header on various Arm
architectures.

Architecture T (Template parameter) atomic<T> atomic<T*>

Armv7-A, Armv7-R, Armv8-A,
Armv8-R

Any types Supported Supported

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Architecture T (Template parameter) atomic<T> atomic<T*>

Armv7-M, Armv8-M Integral types (including
<stdint.h> defined types)

Supported Supported

Armv7-M, Armv8-M Complex types Unsupported Supported

Armv6-M Any types Unsupported Unsupported

None of the targets support the functions atomic_thread_fence() and atomic_signal_fence().

<chrono> header
This header requires a full implementation of the Clocks [ALPHA] section of the thread porting API.

<mutex> and <shared_mutex> headers
These headers require a full implementation of the Mutexes [ALPHA] section of the thread
porting API. In addition, the time-related subset of constructs (for example, std::timed_mutex and
std::recursive_timed_mutex) defined in these headers requires an implementation of the Clocks
[ALPHA] section of the porting API.

<condition_variable> header
This header requires a full implementation of the Condition variables [ALPHA] section of
the thread porting API. In addition, the time-related subset of constructs (for example,
std::condition_variable::wait_for()) defined in this header requires an implementation of the
Clocks [ALPHA] section of the porting API.

<thread> and <future> headers
These headers require a full implementation of the Threads [ALPHA] section of the thread porting
API. In addition, the time-related subset of constructs (for example, std::thread::sleep_until()
and std::future::wait_for()) defined in these headers requires an implementation of the Clocks
[ALPHA] section of the porting API.

1.6.12 Thread-safe initialization of Mutexes and Condition variables
[ALPHA]

The Mutexes and Condition Variable parts of the porting API must adopt an initialize-on-first-use
strategy. Implementations must ensure that such initializations are thread-safe.

This topic describes an [ALPHA] feature. See Support level definitions.

Consider the following sample implementation of the __ARM_TPL_mutex_lock() function:

// [1] Include the header for your operating system, which defines a
// platform-specific API for mutexes. The names below were created for this
// example only.
#include <platform.h>

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

// Assume that platform.h declares the following types and functions:
// struct platform_mutex_t;
// platform_mutex_t *alloc_platform_mutex();
// void lock_platform_mutex(platform_mutex_t *p);
// void unlock_platform_mutex(platform_mutex_t *p);
// void destroy_platform_mutex(platform_mutex_t *p);

// [2] Include the Arm TPL header, which defines the functions that you must
// implement.
#include <arm-tpl.h>

// [3] Implement the Arm TPL functions according to the API that your operating
// system provides.

void __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m) {
 if (__m->data == 0) {
 __m->data = static_cast<uintptr_t>(alloc_platform_mutex());
 }
 lock_platform_mutex(reinterpret_cast<platform_mutex_t*>(__m->data));
}

The anatomy of this snippet can be understood as follows:

1. Assume the underlying system (included through platform.h) provides the type
__platform_mutex_t and the functions alloc_platform_mutex(), lock_platform_mutex(),
unlock_platform_mutex(), and destroy_platform_mutex().

2. The porting API header (arm-tpl.h) is then included, which defines the type
__ARM_TPL_mutex_t and the prototypes for the various porting API functions.

3. The implementations of the various porting API functions follow.

This implementation of __ARM_TPL_mutex_lock() method leads to a race condition if multiple
threads attempt to lock the same std::mutex object. Therefore, an implementation must ensure
that __m->data initializes atomically. The following sections illustrate possible solutions to this
problem.

Global locking
An implementation might employ a platform provided mutex to guard the initialization of *__m as
follows:

static platform_mutex_t guard_mut;

void __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m) {
 volatile __ARM_TPL_mutex_t *__vm = __m;
 if (__vm->data == 0) {
 lock_platform_mutex(&guard_mut);
 if (__vm->data == 0)
 __vm->data = static_cast<uintptr_t>(alloc_platform_mutex());
 unlock_platform_mutex(&guard_mut);
 }
 lock_platform_mutex(static_cast<platform_mutex_t*>(*__vm));
}

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

This solution could result in reduced performance because threads must contend
for the shared mutex guard_mut for each initial std::mutex lock operation.

Lock free
An implementation avoiding global locking is achievable using the lock-free concurrency constructs
available through the <stdatomic.h> header. The following snippet atomically attempts to initialize
__m->data, and undo its attempt if another thread has already done the initialization:

#include <cstdint>
#include <stdatomic.h>

int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t *__m) {
 if (__m->data == 0){
 uintptr_t mut_new = reinterpret_cast<uintptr_t>(alloc_platform_mutex());
 uintptr_t mut_null = 0;
 if (!atomic_compare_exchange_strong(&__m->data, &mut_null, mut_new))
 destroy_platform_mutex(reinterpret_cast<platform_mutex_t*>(mut_new));
 }
 return lock_platform_mutex(reinterpret_cast<platform_mutex_t*>(__m->data));
}

The Arm®v6-M architecture does not support this method.

1.7 Support for building an application with the C library
Describes the Arm® Compiler for Embedded features that are supported when building an
application with the C library.

1.7.1 Using the C library with an application

Depending on how you use the C and C ++ libraries with your application, you might have to
reimplement particular functions.

You can use the C and C ++ libraries with an application in the following ways:

• Build a non-hosted application that, for example, can be embedded into ROM.

• Build an application that does not use main() and does not initialize the library. This application
has restricted library functionality, unless you reimplement some functions.

Related information
Using the C and C++ libraries with an application in a semihosting environment on page 49
Using the libraries in a nonsemihosting environment on page 51
Standalone C library functions on page 55
Semihosting for AArch32 and AArch64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.7.2 Using the C and C++ libraries with an application in a semihosting
environment

If you are developing an application to run in a semihosted environment for debugging, you
must have an execution environment that supports A32 or T32 semihosting trap instructions for
AArch32 state or A64 semihosting trap instruction for AArch64 state.

The execution environment can be provided by either:

• Using the standard semihosting functionality that is present by default in, for example, the
Arm® DSTREAM debug and trace unit.

• Implementing your own handler for the semihosting calls.

It is not necessary to write any new functions or include files if you are using the default
semihosting functionality of the C and C++ libraries.

The Arm debug agents support semihosting, but the memory map assumed by the C library might
require tailoring to match the hardware being debugged.

Arm Compiler for Embedded supports semihosting by generating trap instructions such as HLT,
SVC, or BKPT depending on the architecture or profile. Debug agents can trap these instructions to
perform semihosting operations on the host.

The HLT instruction is architecturally UNDEFINED for Armv7-A and Armv7-R
architectures, in both A32 and T32 state.

Architecture Instruction Set Trap Instruction

Armv8-A and Armv8-R A64 HLT 0xF000

HLT 0xF000Armv8-A and Armv8-R A32

SVC 0x123456

HLT 0x3CArmv8-A and Armv8-R T32

SVC 0xAB

HLT 0xF000Armv7-A and Armv7-R A32

SVC 0x123456

HLT 0x3CArmv7-A and Armv7-R T32

SVC 0xAB

Any architecture with M-profile T32 BKPT 0xAB

For AArch32 in architectures with A-profile or R-profile, Arm Compiler for Embedded supports two
different semihosting implementations:

• Semihosting using the SVC instruction. This is the default and legacy implementation.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Semihosting using the HLT instruction. This implementation is required for semihosting in
hardware debug environments with mixed AArch32 and AArch64 states.

There are separate libraries for SVC-based and HLT-based semihosting. Arm Compiler for
Embedded uses the HLT-based semihosting library if your code references the symbol
__use_hlt_semihosting. To do this, either:

• IMPORT __use_hlt_semihosting from assembly language.

• __asm(".global __use_hlt_semihosting\n\t") from C.

If you do not use the symbol __use_hlt_semihosting, then by default, Arm Compiler for
Embedded emits SVC instructions for semihosting calls. This symbol does not have an effect on M-
profile architectures, or in AArch64 state.

We strongly discourage mixing HLT and SVC semihosting mechanisms within the same executable.
The library only uses either SVC or HLT instructions, rather than a mixture. However, you must
ensure that you do not mix SVC and HLT instructions when using:

• inline assembly.

• <arm_compat.h> header file.

Related information
Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality on page 50
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

1.7.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O
functionality

You can use $Sub$$ to provide a mixture of semihosted and nonsemihosted functionality.

For example, given an implementation of fputc() that writes directly to a UART, and a semihosted
implementation of fputc(), you can provide both of these depending on the nature of the FILE *
pointer passed into the function:

int $Super$$fputc(int c, FILE *fp);
int $Sub$$fputc(int c, FILE *fp)
{
 if (fp == (FILE *)MAGIC_NUM) // where MAGIC_NUM is a special value that
 { // is different to all normal FILE * pointer
 // values.
 write_to_UART(c);
 return c;
 }
 else
 {
 return $Super$$fputc(c, fp);
 }
}

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Related information
Using the C and C++ libraries with an application in a semihosting environment on page 49
Semihosting for AArch32 and AArch64

1.7.4 Using the libraries in a nonsemihosting environment

Some C library functions use semihosting. If you use the libraries in a nonsemihosting environment,
you must ensure that semihosting function calls are dealt with appropriately.

If you do not want to use semihosting, either:

• Remove all calls to semihosting functions.

• Reimplement the lower-level functions, for example, fputc(). You are not required to
reimplement all semihosting functions. You must, however, reimplement the functions that you
are using in your application.

You must reimplement functions that the C library uses to isolate itself from target
dependencies. For example, if you use printf() you must reimplement fputc(). If you do not
use the higher-level input/output functions like printf(), you do not have to reimplement the
lower-level functions like fputc().

• Implement a handler for all of the semihosting calls to be handled in your own specific way.
One such example is for the handler to intercept the calls, redirecting them to your own
nonsemihosted, that is, target-specific, functions.

To guarantee that no functions using semihosting are included in your application, use either:

• #pragma import(__use_no_semihosting) in C source code.

• __asm(".global __use_no_semihosting\n\t") in C or C++ source code.

• .global __use_no_semihosting in GNU syntax assembly language source code.

• IMPORT __use_no_semihosting in legacy armasm assembly language source code.

You only need to add __use_no_semihosting once, anywhere in any source file.

If you include a library function that uses semihosting and also reference __use_no_semihosting,
the library detects the conflicting symbols and the linker reports an error. For example, to identify
the objects that are using semihosting when using an Arm®v8-M processor:

1. Link with armlink --cpu=8-M --verbose --list err.txt.

2. Search err.txt for occurrences of __Iusesemihosting.

For example:

...
Loading member sys_exit.o from c_2.l.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

reference : __Iusesemihosting
definition: _sys_exit
...

This example shows that the semihosting-using function _sys_exit is linked-in from the C
library. To prevent the C library being linked-in, you must provide your own implementation of
this function.

There are no target-dependent functions in the C++ library, although some C++ functions use
underlying C library functions that are target-dependent.

Related information
Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality on page 50
Linking with the C library on page 15

1.7.5 Direct semihosting C library function dependencies

A table showing the functions that depend directly on semihosting.

Table 1-4: Direct semihosting dependencies

Function Description

__user_initial_stackheap() Sets up and returns the locations of the stack and the heap. If
you are using a scatter file at the link stage, you might have to
reimplement this function.

The linker issues an error when no semihosting is requested and
__user_initial_stackheap() is not reimplemented.

_sys_exit()

_ttywrch()

Error signaling, error handling, and program exit.

_sys_command_string()

_sys_close()

_sys_iserror()

_sys_istty()

_sys_flen()

_sys_open()

_sys_read()

_sys_seek()

_sys_write()

_sys_tmpnam2()

_sys_tmpnam()

Tailoring input/output functions in the C and C++ libraries.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Function Description
clock()

_clock_init()

remove()

rename()

system()

time()

Tailoring other C library functions.

Related information
Using the C and C++ libraries with an application in a semihosting environment on page 49
Semihosting for AArch32 and AArch64

1.7.6 Indirect semihosting C library function dependencies

A table showing functions that depend indirectly on one or more of the directly dependent
functions.

You can use this table as an initial guide, but it is recommended that you use one of the following
to identify any other functions with indirect or direct dependencies on semihosting at link time:

• __asm(".global __use_no_semihosting\n\t") in C source code.

• .global __use_no_semihosting in GNU syntax assembly language source code.

• IMPORT __use_no_semihosting in legacy armasm assembly language source code.

Table 1-5: Indirect semihosting dependencies

Function Usage

__user_setup_stackheap() Sets up and returns the locations of the stack and the heap.

__raise() Catching, handling, or diagnosing C library exceptions, without C
signal support. (Tailoring error signaling, error handling, and program
exit.)

__default_signal_handler() Catching, handling, or diagnosing C library exceptions, with C signal
support. (Tailoring error signaling, error handling, and program exit.)

__Heap_Initialize() Choosing or redefining memory allocation. Avoiding the heap and
heap-using C library functions supplied by Arm®.

ferror(), fputc(), __stdout Reimplementing the printf family. (Tailoring input/output
functions in the C and C++ libraries.).

__backspace(), fgetc(), __stdin Reimplementing the scanf family. (Tailoring input/output functions
in the C and C++ libraries.).

fwrite(), fputs(), puts(), fread(), fgets(),
gets(), ferror()

Reimplementing the stream output family. (Tailoring input/output
functions in the C and C++ libraries.).

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

1.7.7 C library API definitions for targeting a different environment

In addition to the direct and indirect semihosting dependent functions, there are a number of
functions and files that might be useful when building for a different environment.

The following table shows these functions and files.

Table 1-6: Published API definitions

File or function Description

__main(), __rt_entry() Initializes the runtime environment and executes the user
application

__rt_lib_init(), __rt_exit(), __rt_lib_shutdown() Initializes or finalizes the runtime library

LC_CTYPE locale Defines the character properties for the local alphabet

rt_sys.h A C header file describing all the functions whose default,
semihosted, implementations use semihosting calls

rt_heap.h A C header file describing the storage management abstract data
type

rt_locale.h A C header file describing the five locale category filing systems, and
defining some macros that are useful for describing the contents of
locale categories

rt_misc.h A C header file describing miscellaneous unrelated public interfaces
to the C library

rt_memory.s An empty, but commented, prototype implementation of the
memory model

If you are reimplementing a function that exists in the standard Arm library, the linker uses an
object or library from your project rather than the standard Arm library.

Do not replace or delete libraries supplied by Arm. You must not overwrite the
supplied library files. Place your reimplemented functions in separate object files or
libraries instead.

Related information
--list=filename linker option
--verbose linker option
Semihosting for AArch32 and AArch64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 218

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--list-filename
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--verbose
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.8 Support for building an application without the C
library

Describes the Arm® Compiler for Embedded features that are supported and not supported when
building an application without the C library.

1.8.1 Standalone C library functions

If your application does not initialize the C library, several functions are not available in your
application.

Creating an application that has a main() function causes the C library initialization functions to be
included as part of __rt_lib_init.

If your application does not have a main() function, the C library is not initialized and the following
functions are not available in your application:

• Low-level stdio functions that have the prefix _sys_.

• Signal-handling functions, signal() and raise() in signal.h.

• Other functions, such as atexit().

The following table shows header files, and the functions they contain, that are available with an
uninitialized library. Some otherwise unavailable functions can be used if the library functions they
depend on are reimplemented.

Table 1-7: Standalone C library functions

Function Description

alloca.h Functions in this file work without any library initialization or
function reimplementation. You must know how to build an
application with the C library to use this header file.

assert.h Functions listed in this file require high-level stdio,
__rt_raise(), and _sys_exit(). You must be familiar with
tailoring error signaling, error handling, and program exit to use this
header file.

ctype.h Functions listed in this file require the locale functions.

errno.h Functions in this file work without the requirement for any library
initialization or function reimplementation.

fenv.h Functions in this file work without the requirement for any
library initialization and only require the reimplementation of
__rt_raise().

float.h This file does not contain any code. The definitions in the file do not
require library initialization or function reimplementation.

inttypes.h Functions listed in this file require the locale functions.

limits.h Functions in this file work without the requirement for any library
initialization or function reimplementation.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Function Description
locale.h Call setlocale() before calling any function that uses locale

functions. For example:

setlocale(LC_ALL, "C");

See the contents of locale.h for more information on the
following functions and data structures:

• setlocale() selects the appropriate locale as specified by
the category and locale arguments.

• lconv is the structure used by locale functions for formatting
numeric quantities according to the rules of the current locale.

• localeconv() creates an lconv structure and returns a
pointer to it.

• _get_lconv() fills the lconv structure pointed to by the
parameter. This ISO extension removes the requirement for
static data within the library.

locale.h also contains constant declarations used with locale
functions.

math.h For functions in this file to work, you must first call _fp_init()
and reimplement __rt_raise().

setjmp.h Functions in this file work without any library initialization or
function reimplementation.

signal.h Functions listed in this file are not available without library
initialization. You must know how to build an application with the C
library to use this header file.

__rt_raise() can be reimplemented for error and exit handling.
You must be familiar with tailoring error signaling, error handling,
and program exit.

stdarg.h Functions listed in this file work without any library initialization or
function reimplementation.

stddef.h This file does not contain any code. The definitions in the file do not
require library initialization or function reimplementation.

stdint.h This file does not contain any code. The definitions in the file do not
require library initialization or function reimplementation.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Function Description
stdio.h The following dependencies or limitations apply to these functions:

• The high-level functions such as printf(), scanf(),
puts(), fgets(), fread(), fwrite(), and perror()
depend on lower-level stdio functions fgetc(), fputc(),
and __backspace(). You must reimplement these lower-level
functions when using the standalone C library.

However, you cannot reimplement the _sys_ prefixed
functions (for example, _sys_read()) when using the
standalone C library because the layer of stdio that calls the
sys functions requires library initialization.

You must be familiar with tailoring the input/output functions
in the C and C++ libraries.

• The printf() and scanf() family of functions require
locale.

• The remove() and rename() functions are system-specific
and probably not usable in your application.

stdlib.h Most functions in this file work without any library initialization
or function reimplementation. The following functions depend on
other functions being instantiated correctly:

• ato*() requires locale.

• strto*() requires locale.

• malloc(), calloc(), realloc(), and free() require
heap functions.

• atexit() is not available when building an application
without the C library.

string.h Functions in this file work without any library initialization, with the
exception of strcoll() and strxfrm(), that require locale.

time.h mktime() and localtime() can be used immediately

time() and clock() are system-specific and are probably not
usable unless reimplemented

asctime(), ctime(), and strftime() require locale.

wchar.h Wide character library functions added to ISO C by Normative
Addendum 1 in 1994.

The following dependencies or limitations apply to these functions:

• The high-level functions such as swprintf(), vswprintf(),
swscanf(), and vswscanf() depend on lower-level
stdio functions such as fgetwc() and fputwc(). You
must reimplement these lower-level functions when using the
standalone C library. See Target dependencies on low-level
functions in the C and C++ libraries for more information.

• The high-level functions such as swprintf(), vswprintf(),
swscanf(), and vswscanf() require locale.

• All the conversion functions (for example, btowc, wctob,
mbrtowc, and wcrtomb) require locale.

• wcscoll() and wcsxfrm() require locale.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Function Description
wctype.h Wide character library functions added to ISO C by Normative

Addendum 1 in 1994. This requires locale.

Related information
Creating an application as bare machine C without the C library on page 58
Assembler macros that tailor locale functions in the C library on page 67
Tailoring input/output functions in the C and C++ libraries on page 87
Modification of C library functions for error signaling, error handling, and program exit on page
77
Integer and floating-point compiler functions and building an application without the C library on
page 58
Using high-level functions when exploiting the C library on page 61
Using low-level functions when exploiting the C library on page 61

1.8.2 Creating an application as bare machine C without the C library

Bare machine C applications do not automatically use the full C runtime environment provided by
the C library.

Even though you are creating an application without the library, some functions from the library
that are called implicitly by the compiler must be included. There are also many library functions
that can be made available with only minor reimplementations.

Related information
Standalone C library functions on page 55

1.8.3 Integer and floating-point compiler functions and building an
application without the C library

There are several compiler helper functions that the compiler uses to handle operations that do not
have a short machine code equivalent. These functions require __rt_raise().

For example, integer divide uses a function that is implicitly called by the compiler if there is no
divide instruction available in the target instruction set. Arm®v7-R and Armv7-M architectures
use the instructions SDIV and UDIV in T32 state. Other versions of the Arm architecture also use
compiler functions that are implicitly invoked.

Integer divide, and all the floating-point functions for a floating-point mode that involves throwing
exceptions, require __rt_raise() to handle math errors. Reimplementing __rt_raise() enables all
the math functions, and it avoids having to link in all the signal-handling library code.

Related information
Creating an application as bare machine C without the C library on page 58

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.8.4 Bare machine integer C

If you are writing a program in C that does not use the library and is to run without any
environment initialization, there are a number of requirements you must fulfill.

These requirements are:

• Reimplement __rt_raise() if you are using the heap.

• Not define main(), to avoid linking in the library initialization code.

• Write an assembly language veneer that establishes the register state required to run C. This
veneer must branch to the entry function in your application.

• Provide your own RW/ZI initialization code.

• Ensure that your initialization veneer is executed by, for example, placing it in your reset
handler.

• For AArch32 targets, build your application using -mfpu=none.

For AArch64 targets, use -mcpu or -march to disable floating-point instructions and registers.

When you have met these requirements, link your application normally. The linker uses the
appropriate C library variant to find any required compiler functions that are implicitly called.

Many library facilities require __user_libspace for static data. Even without the initialization code
activated by having a main() function, __user_libspace is created automatically and uses 96 bytes
in the ZI segment.

Related information
Creating an application as bare machine C without the C library on page 58

1.8.5 Bare machine C with floating-point processing

If you want to use floating-point processing in an application without the C library, there are a
number of requirements you must fulfill.

These requirements are:

• Reimplement __rt_raise() if you are using the heap.

• Not define main(), to avoid linking in the library initialization code.

• Write an assembly language veneer that establishes the register state required to run C. This
veneer must branch to the entry function in your application. The register state required to run
C primarily comprises the stack pointer.

The register state also consists of sb, the static base register, if Read/Write Position Independent
(RWPI) code applies.

• Provide your own RW/ZI initialization code.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Ensure that your initialization veneer is executed by, for example, placing it in your reset
handler.

• Use the appropriate FPU option when you build your application.

• Call _fp_init() to initialize the floating-point status register before performing any floating-
point operations.

Do not build your application with the -mfpu=none option.

Certain floating-point modes when used with software floating-point support require a floating-
point status word. This mode is enabled by default in Arm® Compiler for Embedded 6, but
you can disable it with the armclang command-line option -ffp-mode=fast. In such cases, you
can also define the function __rt_fp_status_addr() to return the address of a writable data
word to be used instead of the floating-point status register. If you rely on the default library
definition of __rt_fp_status_addr(), this word resides in the program data section, unless
you define __user_perthread_libspace() (or in the case of legacy code that does not yet use
__user_perthread_libspace(), __user_libspace()).

Related information
Creating an application as bare machine C without the C library on page 58

1.8.6 Customized C library startup code and access to C library functions

If you build an application with customized startup code, you must either avoid functions that
require initialization or provide the initialization and low-level support functions.

When building an application without the C library, if you create an application that includes a
main() function, the linker automatically includes the initialization code necessary for the execution
environment. There are situations where this is not desirable or possible. For example, a system
running a Real-Time Operating System (RTOS) might have its execution environment configured by
the RTOS startup code.

You can create an application that consists of customized startup code and still use many of the
library functions. You must either:

• Avoid functions that require initialization.

• Provide the initialization and low-level support functions.

The functions you must reimplement depend on how much of the library functionality you require:

• If you want only the compiler support functions for division, structure copy, and floating-point
arithmetic, you must provide __rt_raise(). This also enables very simple library functions such
as those in errno.h, setjmp.h, and most of string.h to work.

• If you call setlocale() explicitly, locale-dependent functions are activated. This enables you to
use the atoi family, sprintf(), sscanf(), and the functions in ctype.h .

• armclang uses full IEEE math by default, therefore __rt_fp_status_addr() is always required.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Implementing high-level input/output support is necessary for functions that use fprintf()
or fputs(). The high-level output functions depend on fputc() and ferror(). The high-level
input functions depend on fgetc() and __backspace().

Implementing these functions and the heap enables you to use almost the entire library.

Setting up ROPI and RWPI at C library startup
If you are using either ROPI or RWPI, or both ROPI and RWPI, then C library startup must be done
in a certain way:

Startup with either ROPI or RWPI, or both ROPI and RWPI
The operating system is responsible for picking the runtime addresses of each segment, and
loading them into RAM before entering the __main function of the C library. No scatter-
loading is done after entering __main. This method works with both ROPI and RWPI, and
allows loading code from hardware, such as an SD card or external flash.

Startup with RWPI
The operating system picks the runtime address of the RW segment, sets r9 to that address,
then calls __main. The scatter-loader copies, and potentially decompresses, the RW segment
to the runtime address of that segment. This method requires that the RO segment is not
position independent, so cannot be used with ROPI.

Related information
Creating an application as bare machine C without the C library on page 58

1.8.7 Using low-level functions when exploiting the C library

If you are using the libraries in an application that does not have a main() function, you must
reimplement some functions in the library.

__rt_raise() is essential if you are using the heap.

If rand() is called, srand() must be called first. This is done automatically during
library initialization but not when you avoid the library initialization.

Related information
Using high-level functions when exploiting the C library on page 61
Standalone C library functions on page 55

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.8.8 Using high-level functions when exploiting the C library

High-level I/O functions can be used if the low-level functions are reimplemented.

High-level I/O functions are those such as fprintf(), printf(), scanf(), puts(), fgets(),
fread(), fwrite(), and perror(). Low-level functions are those such as fputc(), fgetc(), and
__backspace(). Most of the formatted output functions also require a call to setlocale().

Anything that uses locale must not be called before first calling setlocale(). setlocale() selects
the appropriate locale. For example, setlocale(LC_ALL, "C"), where LC_ALL means that the
call to setlocale() affects all locale categories, and "C" specifies the minimal environment for C
translation. Locale-using functions include the functions in ctype.h and locale.h, the printf()
family, the scanf() family, ato*, strto*, strcoll/strxfrm, and most of time.h.

Related information
Using low-level functions when exploiting the C library on page 61
Standalone C library functions on page 55

1.8.9 Using malloc() when exploiting the C library

If heap support is required for bare machine C, you must implement _init_alloc() and
__rt_heap_extend().

_init_alloc() must be called first to supply initial heap bounds, and __rt_heap_extend() must be
provided even if it only returns failure. Without __rt_heap_extend(), certain library functionality is
included that causes problems when you are writing bare machine C.

Prototypes for both _init_alloc() and __rt_heap_extend() are in rt_heap.h.

Related information
Creating an application as bare machine C without the C library on page 58

1.9 Tailoring the C library to a new execution environment
Tailoring the C library to a new execution environment involves reimplementing functions to
produce an application for a new execution environment, for example, embedded in ROM or used
with an RTOS.

Functions whose names start with a single or double underscore are used as part of the low-level
implementation. You can reimplement some of these functions. Additional information on these
library functions is available in the rt_heap.h, rt_locale.h, rt_misc.h, and rt_sys.h include files
and the rt_memory.s assembler file.

Related information
C++ initialization, construction and destruction on page 64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Library functions called from main() on page 65
Initialization of the execution environment and execution of the application on page 63
Program exit and the assert macro on page 66
Exceptions system initialization on page 64
__rt_entry on page 162
__rt_exit() on page 163

1.9.1 Initialization of the execution environment and execution of the
application

You can customize execution initialization by defining your own __main that branches to
__rt_entry.

The entry point of a program is at __main in the C library where library code:

1. Copies non-root (RO and RW) execution regions from their load addresses to their execution
addresses. Also, if any data sections are compressed, they are decompressed from the load
address to the execution address.

2. Zeroes ZI regions.

3. Branches to __rt_entry.

If you do not want the library to perform these actions, you can define your own __main that
branches to __rt_entry. Use the armclang option -e or armlink option --entry to specify __main
as the entry point. For example:

 .global __rt_entry

 .global __main
__main:
 B __rt_entry

The library function __rt_entry() runs the program as follows:

1. Sets up the stack and the heap by one of a number of means that include calling
__user_setup_stackheap(), calling __rt_stackheap_init(), or loading the absolute addresses
of scatter-loaded regions.

2. Calls __rt_lib_init() to initialize referenced library functions, initialize the locale and, if
necessary, set up argc and argv for main().

For C++, calls the constructors for any top-level objects by way of __cpp_initialize__aeabi_.

3. Calls main(), the user-level root of the application.

From main(), your program might call, among other things, library functions.

4. Calls exit() with the value returned by main().

Related information
Direct semihosting C library function dependencies on page 52

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Semihosting for AArch32 and AArch64

1.9.2 C++ initialization, construction and destruction

The C++ standard places certain requirements on the construction and destruction of objects with
static storage duration. The static constructors are executed before main(), the destructors are
called after the program exits.

The library must ensure that all the static constructors within a translation unit are called in the
order of declaration, and the static destructors are called in reverse order of declaration. There is
no way to determine the initialization order between translation units.

Each translation unit containing static constructors has an initialization function. This function calls
the static constructors for the translation unit, and registers the static destructors with a call to
__aeabi_atexit(). Function-local static objects with destructors also register their destructors
using __aeabi_atexit().

The location of the per translation unit initialization function is stored in an .init_array section. At
link time the .init_array sections must be collated together into a single contiguous .init_array
section. The linker will generate an error if this is not possible.

The library routine __cpp_initialize__aeabi_ is called from the C library startup code
__rt_lib_init(), before main(). __cpp_initialize__aeabi_ walks through the .init_array,
calling each function in turn.

On exit __rt_lib_shutdown() calls cxa_finalize() which calls the static destructors registered
with __aeabi_atexit().

The __aeabi_atexit() function calls malloc().

Related information
Tailoring the C library to a new execution environment on page 62

1.9.3 Exceptions system initialization

The exceptions system can be initialized either on demand (that is, when first used), or before
entering main().

Initialization on demand has the advantage of not allocating heap memory unless the exceptions
system is used, but has the disadvantage that it becomes impossible to throw any exception (such
as std::bad_alloc) if the heap is exhausted at the time of first use.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

The default behavior is to initialize on demand. To initialize the exceptions system before entering
main(), include the following function in the link:

extern "C" void __cxa_get_globals(void);
extern "C" void __ARM_exceptions_init(void)
{
 __cxa_get_globals();
}

Although you can place the call to __cxa_get_globals() directly in your code, placing it in
__ARM_exceptions_init() ensures that it is called as early as possible. That is, before any global
variables are initialized and before main() is entered.

__ARM_exceptions_init() is weakly referenced by the library initialization mechanism, and is called
if it is present as part of __rt_lib_init().

The exception system is initialized by calls to various library functions, for example,
std::set_terminate(). Therefore, you might not have to initialize before the entry
to main().

Related information
Tailoring the C library to a new execution environment on page 62

1.9.4 Library functions called from main()

The function main() can call a number of user-customizable functions in the C library.

The function main() is the user-level root of the application. It requires the execution environment
to be initialized and input/output functions to be capable of being called. While in main() the
program might perform one of the following actions that calls user-customizable functions in the C
library:

• Extend the stack or heap.

• Call library functions that require a callout to a user-defined function, for example
__rt_fp_status_addr() or clock().

• Call library functions that use locale or CTYPE.

• Perform floating-point calculations that require the floating-point unit or floating-point library.

• Input or output directly through low-level functions, for example putc(), or indirectly through
high-level input/output functions and input/output support functions, for example, fprintf()
or sys_open().

• Raise an error or other signal, for example ferror.

Related information
Initialization of the execution environment and execution of the application on page 63
Tailoring the C library to a new execution environment on page 62

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Assembler macros that tailor locale functions in the C library on page 67
Tailoring input/output functions in the C and C++ libraries on page 87
Tailoring non-input/output C library functions on page 97
Modification of C library functions for error signaling, error handling, and program exit on page
77

1.9.5 Program exit and the assert macro

A program can exit normally at the end of main() or it can exit prematurely because of an error.
The behavior of the assert macro depends on a number of conditions:

1. If the NDEBUG macro is defined (on the command line or as part of a source file), the assert
macro has no effect.

2. If the NDEBUG macro is not defined, the assert expression (the expression given to the assert
macro) is evaluated. If the result is TRUE, that is != 0, the assert macro has no more effect.

3. If the assert expression evaluates to FALSE, the assert macro calls the __aeabi_assert()
function if any of the following are true:

• __OPT_SMALL_ASSERT is defined.

• __ASSERT_MSG is defined.

• _AEABI_PORTABILITY_LEVEL is defined and not 0.

4. If the assert expression evaluates to FALSE and the conditions specified in point 3 do not apply,
the assert macro calls abort(). Then:

a. abort() calls __rt_raise().

b. If __rt_raise() returns, abort() tries to finalize the library.

If you are creating an application that does not use the library, __aeabi_assert() works if you
reimplement abort() and the stdio functions.

Another solution for retargeting is to reimplement the __aeabi_assert() function itself. The
function prototype is:

void __aeabi_assert(const char *<expr>, const char *<file>, int <line>);

where:

• <expr> points to the string representation of the expression that was not TRUE.

• <file> and <line> identify the source location of the assertion.

The behavior for __aeabi_assert() supplied in the Arm C library is to print a message on stderr
and call abort().

Related information
Tailoring the C library to a new execution environment on page 62

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.10 Assembler macros that tailor locale functions in the C
library

Applications use locales when they display or process data that depends on the local language or
region, for example, character set, monetary symbols, decimal point, time, and date.

Locale-related functions are declared in the include file, rt_locale.

Related information
C library API definitions for targeting a different environment on page 54

1.10.1 Link time selection of the locale subsystem in the C library

The locale subsystem of the C library can be selected at link time or can be extended to be
selectable at runtime.

The following list describes the use of locale categories by the library:

• The default implementation of each locale category is for the C locale. The library also provides
an alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale category that you
can select at link time.

• Both the C and ISO8859-1 default implementations usually provide one locale for each
category to select at runtime.

• You can replace each locale category individually.

• You can include as many of your own locales in each category as you choose, and you can
name your own locales as you choose.

• Each locale category uses one word in the private static data of the library.

• The locale category data is read-only and position independent.

• scanf() forces the inclusion of the LC_CTYPE locale category, but in either of the default locales
this adds only 260 bytes of read-only data to several kilobytes of code.

Related information
ISO8859-1 implementation on page 67
Shift-JIS and UTF-8 implementation on page 68

1.10.1.1 ISO8859-1 implementation

The default implementation of each locale category is for the C locale. The library also provides
an alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale category that you can
select at link time.

The following table shows the ISO8859-1 (Latin-1 alphabet) locale categories.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Table 1-8: Default ISO8859-1 locales

Symbol Description

__use_iso8859_ctype Selects the ISO8859-1 (Latin-1) classification of characters. This is
essentially 7-bit ASCII, except that the character codes 160-255
represent a selection of useful European punctuation characters,
letters, and accented letters.

__use_iso8859_collate Selects the strcoll / strxfrm collation table appropriate to the
Latin-1 alphabet. The default C locale does not require a collation
table.

__use_iso8859_monetary Selects the Sterling monetary category using Latin-1 coding.

__use_iso8859_numeric Selects separation of thousands with commas in the printing of
numeric values.

__use_iso8859_locale Selects all the ISO8859-1 selections described in this table.

To select the associated locale, you can import these symbols using a file-scope
inline assembly statement in a C language source file, such as:

__asm(".global __use_utf8_ctype");

There is no ISO8859-1 version of the LC_TIME category.

Related information
Writing inline assembly code
__asm

1.10.1.2 Shift-JIS and UTF-8 implementation

The Shift-JIS and UTF-8 locales let you use Japanese and Unicode characters.

The following table shows the Shift-JIS (Japanese characters) or UTF-8 (Unicode characters) locale
categories.

Table 1-9: Default Shift-JIS and UTF-8 locales

Function Description

__use_sjis_ctype Sets the character set to the Shift-JIS multibyte encoding of
Japanese characters.

__use_utf8_ctype Sets the character set to the UTF-8 multibyte encoding of all
Unicode characters.

To select the associated locale, you can import these symbols using a file-scope
inline assembly statement in a C language source file, such as:

__asm(".global __use_utf8_ctype");

The following list describes the effects of Shift-JIS and UTF-8 encoding:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 218

https://developer.arm.com/documentation/100748/0623/Using-Assembly-and-Intrinsics-in-C-or-C---Code/Writing-inline-assembly-code
https://developer.arm.com/documentation/101754/0623/armclang-Reference/Compiler-specific-Keywords-and-Operators/--asm

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• The ordinary ctype functions behave correctly on any byte value that is a self-contained
character in Shift-JIS. For example, half-width katakana characters that Shift-JIS encodes as
single bytes between A6 and DF are treated as alphabetic by isalpha().

UTF-8 encoding uses the same set of self-contained characters as the ASCII character set.

• The multibyte conversion functions such as mbrtowc(), mbsrtowcs(), and wcrtomb(), all convert
between wide strings in Unicode and multibyte character strings in Shift-JIS or UTF-8.

• printf("%ls") converts a Unicode wide string into Shift-JIS or UTF-8 output, and
scanf("%ls") converts Shift-JIS or UTF-8 input into a Unicode wide string.

Related information
Writing inline assembly code
__asm

1.10.2 Runtime selection of the locale subsystem in the C library

The C library function setlocale() selects a locale at runtime for the locale category, or categories,
specified in its arguments.

It does this by selecting the requested locale separately in each locale category. In effect, each
locale category is a small filing system containing an entry for each locale.

The rt_locale.h and rt_locale.s header files describe what must be implemented and provide
some useful support macros.

Related information
setlocale() on page 170

1.10.3 Definition of locale data blocks in the C library

Locale data blocks let you customize your own locales.

The locale data blocks are defined using a set of assembly language macros provided in
rt_locale.s. Therefore, the recommended way to define locale blocks is by writing an assembly
language source file. The Arm® Compiler for Embedded toolchain provides a set of macros for each
type of locale data block. You define each locale block in the same way with a _begin macro, some
data macros, and an _end macro.

Prototype
Begin the definition of a locale block:

 LC_<TYPE>_begin <prefix>, <name>

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 218

https://developer.arm.com/documentation/100748/0623/Using-Assembly-and-Intrinsics-in-C-or-C---Code/Writing-inline-assembly-code
https://developer.arm.com/documentation/101754/0623/armclang-Reference/Compiler-specific-Keywords-and-Operators/--asm

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Specify the data for a locale block:

 LC_<TYPE>_<function>

End the definition of a locale block:

 LC_<TYPE>_end

Arguments
<TYPE>

One of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME

<prefix>

The prefix for the assembler symbols defined within the locale data.

<name>

The textual name for the locale data.

<function>

A specific function, table(), full_wctype(), or multibyte(), related to your locale data.

Operation
When specifying locale data, you must call the macro repeatedly for each respective function.

To specify the data for your locale block, call the macros for that locale type in the order specified
for that particular locale type.

Example: Fixed locale block
To write a fixed function that always returns the same locale, you can use the _start symbol name
defined by the macros. The following shows how this is implemented for the CTYPE locale:

 GET rt_locale.s
 AREA my_locales, DATA, READONLY
 LC_CTYPE_begin my_ctype_locale, "MyLocale"
 ... ; include other LC_CTYPE_xxx macros here
 LC_CTYPE_end
 AREA my_locale_func, CODE, READONLY
_get_lc_ctype FUNCTION
 LDR r0, =my_ctype_locale_start
 BX lr
 ENDFUNC

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Example: Multiple contiguous locale blocks
Contiguous locale blocks suitable for passing to the _findlocale() function must be declared
in sequence. You must call the macro LC_index_end to end the sequence of locale blocks. The
following shows how this is implemented for the CTYPE locale:

 GET rt_locale.s
 AREA my_locales, DATA, READONLY
my_ctype_locales
 LC_CTYPE_begin my_first_ctype_locale, "MyLocale1"
 ... ; include other LC_CTYPE_xxx macros here
 LC_CTYPE_end
 LC_CTYPE_begin my_second_ctype_locale, "MyLocale2"
 ... ; include other LC_CTYPE_xxx macros here
 LC_CTYPE_end
 LC_index_end
 AREA my_locale_func, CODE, READONLY
 IMPORT _findlocale
_get_lc_ctype FUNCTION
 LDR r0, =my_ctype_locales
 B _findlocale
 ENDFUNC

Related information
LC_CTYPE data block on page 71
LC_COLLATE data block on page 73
LC_MONETARY data block on page 75
LC_NUMERIC data block on page 75
LC_TIME data block on page 76

1.10.4 LC_CTYPE data block

The LC_CTYPE data block configures character classification and conversion.

When defining a locale data block in the C library, the macros that define an LC_CTYPE data block
are as follows:

1. Call LC_CTYPE_begin with a symbol name and a locale name.

2. Call LC_CTYPE_table repeatedly to specify 256 table entries. LC_CTYPE_table takes a single
argument in quotes. This argument must be a comma-separated list of table entries. Each table
entry describes one of the 256 possible characters, and can be either an illegal character (IL) or
the bitwise OR of one or more of the following flags:

Table 1-10: LC_CTYPE_table

Table entry flag Meaning

__S Whitespace characters

__P Punctuation characters

__B Printable space characters

__L Lowercase letters

__U Uppercase letters

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Table entry flag Meaning

__N Decimal digits

__C Control characters

__X Hexadecimal digit letters A-F and a-f

__A Alphabetic but neither uppercase nor lowercase, such as
Japanese katakana

A printable space character is defined as any character where the result of both
isprint() and isspace() is true.

__A must not be specified for the same character as either __N or __X.

3. If required, call one or both of the following optional macros:

• LC_CTYPE_full_wctype. Calling this macro without arguments causes the C99 wide-
character ctype functions (iswalpha(), iswupper(), …) to return useful values across the full
range of Unicode when this LC_CTYPE locale is active. If this macro is not specified, the wide
ctype functions treat the first 256 wchar_t values as the same as the 256 char values,
and the rest of the wchar_t range as containing illegal characters.

• LC_CTYPE_multibyte defines this locale to be a multibyte character set. Call this macro
with three arguments. The first two arguments are the names of functions that perform
conversion between the multibyte character set and Unicode wide characters. The last
argument is the value that must be taken by the C macro MB_CUR_MAX for the respective
character set. The two function arguments have the following prototypes:

size_t internal_mbrtowc(char32_t *pwc, char c, mbstate_t *pstate, int
 wchar32);

size_t internal_wcrtomb(char *s, char32_t w, mbstate_t *pstate, int wchar32);

internal_mbrtowc()

Takes one byte, c, as input, and updates the mbstate_t pointed to by pstate as
a result of reading that byte. If the byte completes the encoding of a multibyte
character, it writes the corresponding wide character into the location pointed to by
pwc, and returns 1 to indicate that it has done so. If not, it returns -2 to indicate the
state change of mbstate_t and that no character is output. Otherwise, it returns -1 to
indicate that the encoded input is invalid.

internal_wcrtomb()

Takes one wide character, w, as input, and writes some number of bytes into the
memory pointed to by s. It returns the number of bytes output, or -1 to indicate that
the input character has no valid representation in the multibyte character set.

The wchar32 parameter specifies whether the wide character is 32-bit (1) or 16-bit (0).
If your code does not use the C11/C++11 headers <uchar.h> or <cuchar>, the wchar32
parameter can be ignored because it defaults to the current definition of wchar_t.

4. Call LC_CTYPE_end, without arguments, to finish the locale block definition.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Example: LC_CTYPE data block
;#
 LC_CTYPE_begin utf8_ctype, "UTF-8"

 ;
 ; Single-byte characters in the low half of UTF-8 are exactly
 ; the same as in the normal "C" locale.
 LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x00-0x08
 LC_CTYPE_table "__C|__S, __C|__S, __C|__S, __C|__S, __C|__S"
 ; 0x09-0x0D(BS,LF,VT,FF,CR)
 LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x0E-0x16
 LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x17-0x1F
 LC_CTYPE_table "__B|__S" ; space
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P, __P" ; !"#$%&'(
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ;)*+,-./
 LC_CTYPE_table "__N, __N, __N, __N, __N, __N, __N, __N, __N, __N" ; 0-9
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ; :;<=>?@
 LC_CTYPE_table "__U|__X, __U|__X, __U|__X, __U|__X, __U|__X, __U|__X" ; A-F
 LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; G-P
 LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; Q-Z
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P" ; [\]^_`
 LC_CTYPE_table "__L|__X, __L|__X, __L|__X, __L|__X, __L|__X, __L|__X" ; a-f
 LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; g-p
 LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; q-z
 LC_CTYPE_table "__P, __P, __P, __P" ; {|}~
 LC_CTYPE_table "__C" ; 0x7F
 ;
 ; Nothing in the top half of UTF-8 is valid on its own as a
 ; single-byte character, so they are all illegal characters (IL).
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 ;
 ; The UTF-8 ctype locale wants the full version of wctype.
 LC_CTYPE_full_wctype
 ;
 ; UTF-8 is a multibyte locale, so we must specify some
 ; conversion functions. MB_CUR_MAX is 6 for UTF-8 (the lead
 ; bytes 0xFC and 0xFD are each followed by five continuation
 ; bytes).
 ;
 ; The implementations of the conversion functions are not
 ; provided in this example.
 ;
 IMPORT utf8_mbrtowc
 IMPORT utf8_wcrtomb
 LC_CTYPE_multibyte utf8_mbrtowc, utf8_wcrtomb, 6
 LC_CTYPE_end

Related information
Definition of locale data blocks in the C library on page 69

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.10.5 LC_COLLATE data block

The LC_COLLATE data block configures collation of strings.

When defining a locale data block in the C library, the macros that define an LC_COLLATE data block
are as follows:

1. Call LC_COLLATE_begin with a symbol name and a locale name.

2. Call one of the following alternative macros:

• Call LC_COLLATE_table repeatedly to specify 256 table entries. LC_COLLATE_table takes
a single argument in quotes. This must be a comma-separated list of table entries. Each
table entry describes one of the 256 possible characters, and can be a number indicating its
position in the sorting order. For example, if character A is intended to sort before B, then
entry 65 (corresponding to A) in the table, must be smaller than entry 66 (corresponding to
B).

• Call LC_COLLATE_no_table without arguments. This indicates that the collation order is the
same as the string comparison order. Therefore, strcoll() and strcmp() are identical.

3. Call LC_COLLATE_end, without arguments, to finish the locale block definition.

Example LC_COLLATE data block
LC_COLLATE_begin iso88591_collate, "ISO8859-1"
LC_COLLATE_table "0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07"
LC_COLLATE_table "0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f"
LC_COLLATE_table "0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17"
LC_COLLATE_table "0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f"
LC_COLLATE_table "0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27"
LC_COLLATE_table "0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f"
LC_COLLATE_table "0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37"
LC_COLLATE_table "0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f"
LC_COLLATE_table "0x40, 0x41, 0x49, 0x4a, 0x4c, 0x4d, 0x52, 0x53"
LC_COLLATE_table "0x54, 0x55, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x60"
LC_COLLATE_table "0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x71, 0x72"
LC_COLLATE_table "0x73, 0x74, 0x76, 0x79, 0x7a, 0x7b, 0x7c, 0x7d"
LC_COLLATE_table "0x7e, 0x7f, 0x87, 0x88, 0x8a, 0x8b, 0x90, 0x91"
LC_COLLATE_table "0x92, 0x93, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9e"
LC_COLLATE_table "0xa5, 0xa6, 0xa7, 0xa8, 0xaa, 0xab, 0xb0, 0xb1"
LC_COLLATE_table "0xb2, 0xb3, 0xb6, 0xb9, 0xba, 0xbb, 0xbc, 0xbd"
LC_COLLATE_table "0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5"
LC_COLLATE_table "0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd"
LC_COLLATE_table "0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5"
LC_COLLATE_table "0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd"
LC_COLLATE_table "0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5"
LC_COLLATE_table "0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed"
LC_COLLATE_table "0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5"
LC_COLLATE_table "0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd"
LC_COLLATE_table "0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x4b"
LC_COLLATE_table "0x4e, 0x4f, 0x50, 0x51, 0x56, 0x57, 0x58, 0x59"
LC_COLLATE_table "0x77, 0x5f, 0x61, 0x62, 0x63, 0x64, 0x65, 0xfe"
LC_COLLATE_table "0x66, 0x6d, 0x6e, 0x6f, 0x70, 0x75, 0x78, 0xa9"
LC_COLLATE_table "0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x89"
LC_COLLATE_table "0x8c, 0x8d, 0x8e, 0x8f, 0x94, 0x95, 0x96, 0x97"
LC_COLLATE_table "0xb7, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xff"
LC_COLLATE_table "0xa4, 0xac, 0xad, 0xae, 0xaf, 0xb4, 0xb8, 0xb5"
LC_COLLATE_end

Related information
Definition of locale data blocks in the C library on page 69

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.10.6 LC_MONETARY data block

The LC_MONETARY data block configures formatting of monetary values.

When defining a locale data block in the C library, the macros that define an LC_MONETARY data
block are as follows:

1. Call LC_MONETARY_begin with a symbol name and a locale name.

2. Call the LC_MONETARY data macros as follows:

a. Call LC_MONETARY_fracdigits with two arguments: frac_digits and int_frac_digits from
the lconv structure.

b. Call LC_MONETARY_positive with four arguments: p_cs_precedes, p_sep_by_space,
p_sign_posn and positive_sign.

c. Call LC_MONETARY_negative with four arguments: n_cs_precedes, n_sep_by_space,
n_sign_posn and negative_sign.

d. Call LC_MONETARY_currsymbol with two arguments: currency_symbol and int_curr_symbol.

e. Call LC_MONETARY_point with one argument: mon_decimal_point.

f. Call LC_MONETARY_thousands with one argument: mon_thousands_sep.

g. Call LC_MONETARY_grouping with one argument: mon_grouping.

3. Call LC_MONETARY_end, without arguments, to finish the locale block definition.

Example LC_MONETARY data block
LC_MONETARY_begin c_monetary, "C"
LC_MONETARY_fracdigits 255, 255
LC_MONETARY_positive 255, 255, 255, ""
LC_MONETARY_negative 255, 255, 255, ""
LC_MONETARY_currsymbol "", ""
LC_MONETARY_point ""
LC_MONETARY_thousands ""
LC_MONETARY_grouping ""
LC_MONETARY_end

Related information
Definition of locale data blocks in the C library on page 69

1.10.7 LC_NUMERIC data block

The LC_NUMERIC data block configures formatting of numeric values that are not monetary.

When defining a locale data block in the C library, the macros that define an LC_NUMERIC data block
are as follows:

1. Call LC_NUMERIC_begin with a symbol name and a locale name.

2. Call the LC_NUMERIC data macros as follows:

a. Call LC_NUMERIC_point with one argument: decimal_point from lconv structure.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

b. Call LC_NUMERIC_thousands with one argument: thousands_sep.

c. Call LC_NUMERIC_grouping with one argument: grouping.

3. Call LC_NUMERIC_end, without arguments, to finish the locale block definition.

Example LC_NUMERIC data block
LC_NUMERIC_begin c_numeric, "C"
LC_NUMERIC_point "."
LC_NUMERIC_thousands ""
LC_NUMERIC_grouping ""
LC_NUMERIC_end

Related information
Definition of locale data blocks in the C library on page 69

1.10.8 LC_TIME data block

The LC_TIME data block configures formatting of date and time values.

When defining a locale data block in the C library, the macros that define an LC_TIME data block are
as follows:

1. Call LC_TIME_begin with a symbol name and a locale name.

2. Call the LC_TIME data macros as follows:

a. Call LC_TIME_week_short seven times to provide the short names for the days of the week.
Sunday being the first day. Then call LC_TIME_week_long and repeat the process for long
names.

b. Call LC_TIME_month_short twelve times to provide the short names for the days of the
month. Then call LC_TIME_month_long and repeat the process for long names.

c. Call LC_TIME_am_pm with two arguments that are respectively the strings representing
morning and afternoon.

d. Call LC_TIME_formats with three arguments that are respectively the standard date/time
format used in strftime("%c"), the standard date format strftime("%x"), and the standard
time format strftime("%X"). These strings must define the standard formats in terms of
other simpler strftime primitives. The example below shows that the standard date/time
format is permitted to reference the other two formats.

e. Call LC_TIME_c99format with a single string that is the standard 12-hour time format used
in strftime("%r") as defined in C99.

3. Call LC_TIME_end, without arguments, to finish the locale block definition.

Example LC_TIME data block
LC_TIME_begin c_time, "C"
LC_TIME_week_short "Sun"
LC_TIME_week_short "Mon"
LC_TIME_week_short "Tue"
LC_TIME_week_short "Wed"
LC_TIME_week_short "Thu"

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

LC_TIME_week_short "Fri"
LC_TIME_week_short "Sat"
LC_TIME_week_long "Sunday"
LC_TIME_week_long "Monday"
LC_TIME_week_long "Tuesday"
LC_TIME_week_long "Wednesday"
LC_TIME_week_long "Thursday"
LC_TIME_week_long "Friday"
LC_TIME_week_long "Saturday"
LC_TIME_month_short "Jan"
LC_TIME_month_short "Feb"
LC_TIME_month_short "Mar"
LC_TIME_month_short "Apr"
LC_TIME_month_short "May"
LC_TIME_month_short "Jun"
LC_TIME_month_short "Jul"
LC_TIME_month_short "Aug"
LC_TIME_month_short "Sep"
LC_TIME_month_short "Oct"
LC_TIME_month_short "Nov"
LC_TIME_month_short "Dec"
LC_TIME_month_long "January"
LC_TIME_month_long "February"
LC_TIME_month_long "March"
LC_TIME_month_long "April"
LC_TIME_month_long "May"
LC_TIME_month_long "June"
LC_TIME_month_long "July"
LC_TIME_month_long "August"
LC_TIME_month_long "September"
LC_TIME_month_long "October"
LC_TIME_month_long "November"
LC_TIME_month_long "December"
LC_TIME_am_pm "AM", "PM"
LC_TIME_formats "%a %b %e %T %Y", "%m/%d/%y", "%H:%M:%S"
LC_TIME_c99format "%I:%M:%S %p"
LC_TIME_end

Related information
Definition of locale data blocks in the C library on page 69

1.11 Modification of C library functions for error signaling,
error handling, and program exit

All trap or error signals raised by the C library go through the __raise() function. You can
reimplement this function or the lower-level functions that it uses.

The IEEE 754 standard for floating-point processing states that the default response
to an exception is to proceed without a trap. You can modify floating-point error
handling by tailoring the functions and definitions in fenv.h.

The rt_misc.h header file contains more information on error-related functions.

The following table shows the trap and error-handling functions.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Table 1-11: Trap and error handling

Function Description

_sys_exit() Called, eventually, by all exits from the library.

errno Is a static variable used with error handling.

__rt_errno_addr() Is called to obtain the address of the variable errno.

__raise() Raises a signal to indicate a runtime anomaly.

__rt_raise() Raises a signal to indicate a runtime anomaly.

__default_signal_handler() Displays an error indication to the user.

_ttywrch() Writes a character to the console. The default implementation of
_ttywrch() is semihosted and, therefore, uses semihosting calls.

__rt_fp_status_addr() This function is called to obtain the address of the floating-point
status word.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

1.12 Stack and heap memory allocation and the Arm C and
C++ libraries

The Arm C and C++ libraries require you to specify where the stack pointer begins, but specifying
the heap is optional. However, some library functions use the heap, either explicitly (for example
malloc) or implicitly (for example fopen).

If you are providing a heap, you must:

• Understand the heap usage requirements of the Arm C and C++ libraries.

• Configure the size and placement of the heap.

• Consider which heap implementation you want to use.

If you are not providing a heap, you must:

• Understand the heap usage requirements of the Arm C and C++ libraries.

• Understand how to avoid or reimplement the heap-using functions.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.12.1 Library heap usage requirements of the Arm C and C++ libraries

Functions such as malloc() and other dynamic memory allocation functions explicitly allocate
memory when used. However, some library functions and mechanisms implicitly allocate memory
from the heap.

If heap usage requirements are significant to your code development (for example, you might be
developing code for an embedded system with a tiny memory footprint), you must be aware of
both implicit and explicit heap requirements.

In C standardlib, implicit heap usage occurs as a result of:

• Calling the library function fopen() and the first time that an I/O operation is applied to the
resulting stream.

• Passing command-line arguments into the main() function.

The size of heap memory allocated for fopen() is 80 bytes for the FILE structure. When the first I/
O operation occurs, and not until the operation occurs, an additional default of 512 bytes of heap
memory is allocated for a buffer associated with the operation. You can reconfigure the size of this
buffer using setvbuf().

When fclose() is called, the default 80 bytes of memory is kept on a free list for possible re-use.
The 512-byte buffer is freed on fclose().

Declaring main() to take arguments requires 256 bytes of implicitly allocated memory from the
heap. This memory is never freed because it is required for the duration of main(). In microlib,
main() must not be declared to take arguments, so this heap usage requirement only applies to
standardlib. In the standardlib context, it only applies if you have a heap.

The memory sizes quoted might change in future releases.

Related information
Library heap usage requirements of microlib on page 115

1.12.2 Choosing a heap implementation for memory allocation functions

malloc(), realloc(), calloc(), and free() are built on a heap abstract data type. You can choose
between Heap1 or Heap2, the two provided heap implementations.

The available heap implementations are:

• Heap1, the default implementation, implements the smallest and simplest heap manager.

• Heap2 provides an implementation with the performance cost of malloc() or free() growing
logarithmically with the number of free blocks.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

The default implementations of malloc(), realloc(), and calloc() maintain an 8-
byte aligned heap for AArch32 and a 16-byte aligned heap for AArch64.

Heap1
Heap1, the default implementation, implements the smallest and simplest heap manager. The
heap is managed as a single-linked list of free blocks that are held in increasing address order. This
implementation has low overheads. However, the performance cost of malloc() or free() grows
linearly with the number of free blocks and might be too slow for some use cases.

If you expect more than 100 unallocated blocks, Arm recommends that you use Heap2 when you
require near constant-time performance.

The allocation policy is first-fit by address. For AArch32, the smallest block that can be allocated
is 4 bytes and there is an extra overhead of 4 bytes. For AArch64, the smallest allocation is 8
bytes, and there is an extra overhead of 8 bytes per allocation. For AArch64 with heap memory
tagging protection, the smallest allocation is 0 bytes, and there is an extra overhead of 16 bytes per
allocation.

Heap2
Heap2 provides an implementation with the performance cost of malloc() or free() growing
logarithmically with the number of free blocks.

The allocation policy is first-fit by address. For AArch32, the smallest block that can be allocated
is 12 bytes and there is an extra overhead of 4 bytes. For AArch64, the smallest allocation is 24
bytes and there is an extra overhead of 8 bytes per allocation. For AArch64 with heap memory
tagging protection, the smallest allocation is 16 bytes and there is an extra overhead of 16 bytes
per allocation.

Heap2 is recommended when you require near constant-time performance in the presence
of hundreds of free blocks. To select the alternative standard implementation, use one of the
following:

• IMPORT __use_realtime_heap when using the legacy armasm-syntax assembly language.

• __asm(".global __use_realtime_heap\n\t") from C.

The Heap2 real-time heap implementation must know the maximum address space that the heap
can span. The smaller the address range, the more efficient the algorithm is.

The heap must fit within 16MB of address space.

By default, the heap extent is taken to be 16MB starting at the beginning of the heap
(defined as the start of the first chunk of memory that is given to the heap manager by
__rt_initial_stackheap() or __rt_heap_extend()).

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

For AArch32 targets, the heap bounds are given by:

struct __heap_extent {
 unsigned base;
 size_t range;
};
__attribute__((value_in_regs)) struct __heap_extent __user_heap_extent(
 unsigned ignore1, size_t ignore2);

For AArch64 targets, the heap bounds are given by:

struct __heap_extent {
 unsigned long base;
 size_t range;
};
__attribute__((value_in_regs)) struct __heap_extent __user_heap_extent(
 unsigned long ignore1, size_t ignore2);

The function prototype for __user_heap_extent() is in rt_misc.h.

(The Heap1 algorithm does not require the bounds on the heap extent. Therefore, it never calls this
function.)

You must implement __user_heap_extent() if:

• You require a heap to span more than 16MB of address space.

• Your memory model can supply a block of memory at a lower address than the first one
supplied.

If you know in advance that the address space bounds of your heap are small, you do not have to
implement __user_heap_extent(), but it speeds up the heap algorithms if you do.

If this routine is not defined, the input parameters are the default values that are used. You can, for
example, leave the default base value unchanged and only adjust the size.

The size field that is returned must be a power of two. If this requirement is not
met, the library does not check the size and fails in unexpected ways. If you return a
size of zero, the extent of the heap is set to 4GB.

Heap protection with memory tagging
The library provides an alternative implementation of malloc(), realloc(), calloc(), and free()
that provide heap protection using the memory tagging extension (heap memory tagging). These
alternative implementations are only available for the AArch64 state for architectures with the
memory tagging extension. The memory tagging extension is OPTIONAL in Arm®v8.5-A and later
architectures. For information on enabling the OPTIONAL memory tagging extension, see the
armclang option -mcpu.

To enable heap protection, you must use one of the following:

• .global __use_memtag_heap when using GNU-syntax assembly language.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-mcpu

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• __asm(".global __use_memtag_heap\n\t") from C.

You can use the implementation with heap protection irrespective of whether you
are using Heap1 or Heap2.

Related information
Avoiding the heap and heap-using library functions supplied by Arm on page 86
Overview of memory tagging

1.12.3 Stack pointer initialization and heap bounds

The C library requires you to specify where the stack pointer begins. If you intend to use Arm
library functions that use the heap, for example, malloc(), calloc(), or if you define argc and argv
command-line arguments for main(), the C library also requires you to specify which region of
memory the heap is initially expected to use.

You must always specify where the stack pointer begins. The initial stack pointer must be aligned to
a multiple of 8 bytes for AArch32 and a multiple of 16 bytes for AArch64.

You might have to configure the heap if, for example:

• You intend to use Arm library functions that use the heap, for example, malloc(), calloc().

• You define argc and argv command-line arguments for main().

If you are using the C library's initialization code, use any of the following methods to configure the
stack and heap:

• Use the symbols __initial_sp, __heap_base, and __heap_limit.

• Use a scatter file to define ARM_LIB_STACKHEAP, ARM_LIB_STACK, or ARM_LIB_HEAP regions.

To support these regions for the SysV linking model, you must use the armlink
option --bare_metal_sysv with --sysv.

• Implement __user_setup_stackheap() or __user_initial_stackheap().

The first two methods are the only methods that microlib supports for defining
where the stack pointer starts and for defining the heap bounds.

If you are not using the C library initialization code (see Standalone C library functions), use the
following method to configure the stack and heap:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 218

https://developer.arm.com/documentation/100748/0623/Security-features-supported-in-Arm-Compiler-for-Embedded/Overview-of-memory-tagging

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Set up the stack pointer manually at your application's entry point.

• Call _init_alloc() to set up an initial heap region, and implement __rt_heap_extend() if you
need to add memory to it later.

Configuring the stack and heap with symbols
Define the symbol __initial_sp to point to the top of the stack.

If using the heap, also define symbols __heap_base and __heap_limit.

You can define these symbols in an assembly language file.

For example:

__attribute__((naked)) void dummy_function(void)
{
 __asm(".global __initial_sp\n\t"
 ".global __heap_base\n\t"
 ".global __heap_limit\n\t"
 ".equ __initial_sp, STACK_BASE\n\t"
 ".equ __heap_base, HEAP_BASE\n\t"
 ".equ __heap_limit, (HEAP_BASE+HEAP_SIZE)\n\t"
);
}

The constants STACK_BASE, HEAP_BASE and HEAP_SIZE can be defined in a header file, for example
stack.h, as follows:

/* stack.h */
#define HEAP_BASE 0x20100000 /* Example memory addresses */
#define STACK_BASE 0x20200000
#define HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
#define STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

This method of specifying the initial stack pointer and heap bounds is supported by
both the standard C library (standardlib) and the micro C library (microlib).

Configuring the stack and heap with a scatter file
In a scatter file, either:

• Define ARM_LIB_STACK and ARM_LIB_HEAP regions.

If you do not intend to use the heap, only define an ARM_LIB_STACK region.

• Define an ARM_LIB_STACKHEAP region.

If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The heap
starts at the bottom.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Configuring the stack and heap with __user_setup_stackheap()
Implement __user_setup_stackheap() to set up the stack pointer and return the bounds of the
initial heap region.

Configuring the heap from bare machine C using _init_alloc and __rt_heap_extend
If you are using a heap implementation from bare machine C (that is an application that does not
define main() and does not initialize the C library) you must define the base and top of the heap as
well as providing a heap extension function.

1. Call _init_alloc(<base>, <top>) to define the base and top of the memory you want to
manage as a heap.

The parameters of _init_alloc(<base>, <top>) must be eight-byte aligned.

2. Define the function unsigned __rt_heap_extend(unsigned size, void **block) to handle
calls to extend the heap when it becomes full.

Stack and heap collision detection
By default, if memory allocated for the heap is destined to overlap with memory that lies in close
proximity with the stack, the potential collision of heap and stack is automatically detected and
the requested heap allocation fails. If you do not require this automatic collision detection, you can
save a small amount of code size by disabling it with __asm(".global __use_two_region_memory\n
\t").

The memory allocation functions (malloc(), realloc(), calloc(),
posix_memalign()) attempt to detect allocations that collide with the current stack
pointer. Such detection cannot be guaranteed to always be successful.

Although it is possible to automatically detect expansion of the heap into the stack, it is not
possible to automatically detect expansion of the stack into heap memory.

For legacy purposes, it is possible for you to bypass all of these methods and behavior. You can do
this by defining the following functions to perform your own stack and heap memory management:

• __rt_stackheap_init()

• __rt_heap_extend()

Extending heap size at runtime
To enable the heap to extend into areas of memory other than the region of memory that is
specified when the program starts, you can redefine the function __user_heap_extend().

__user_heap_extend() returns blocks of memory for heap usage in extending the size of the heap.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Related information
Legacy support for __user_initial_stackheap() on page 85
__user_heap_extend() on page 185
__user_heap_extent() on page 187
Legacy function __user_initial_stackheap() on page 196
__rt_heap_extend() on page 165
__rt_stackheap_init() on page 168
__user_setup_stackheap() on page 188
__vectab_stack_and_reset on page 189
--bare_metal_sysv

1.12.4 Legacy support for __user_initial_stackheap()

Defined in rt_misc.h, __user_initial_stackheap() is supported for backwards compatibility with
earlier versions of the Arm C and C++ libraries. However Arm recommends not using this option if
possible.

Arm recommends that you use __user_setup_stackheap() instead of
__user_initial_stackheap().

The differences between __user_initial_stackheap() and __user_setup_stackheap() are:

• __user_initial_stackheap() receives the stack pointer (containing the same value it had on
entry to __main()) in r1, and is expected to return the new stack base in r1.

__user_setup_stackheap() receives the stack pointer in sp, and returns the stack base in sp.

• __user_initial_stackheap() is provided with a small temporary stack to run on. This
temporary stack enables __user_initial_stackheap() to be implemented in C, providing that
it uses no more than 88 bytes of stack space.

__user_setup_stackheap() has no temporary stack and cannot usually be implemented in C.

Using __user_setup_stackheap() instead of __user_initial_stackheap() reduces code size,
because __user_setup_stackheap() has no requirement for a temporary stack.

Exceptions
When you must create the heap and stack in C code rather than in assembly code,
you cannot use the __user_setup_stackheap() function. Therefore, you must use the
__user_initial_stackheap() function instead.

If your implementation is sufficiently complex that it warrants the use of a temporary stack when
setting up the initial heap and stack, use either:

• __user_setup_stackheap() and manually set up the temporary stack yourself.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 218

https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--bare-metal-sysv

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• __user_initial_stackheap(), which sets up the temporary stack for you.

Related information
Stack pointer initialization and heap bounds on page 82

1.12.5 Avoiding the heap and heap-using library functions supplied by Arm

If you are developing embedded systems that have limited RAM or that provide their own heap
management (for example, an operating system), you might require a system that does not define a
heap area.

To avoid using the heap you can either:

• Reimplement the functions in your own application.

• Write the application so that it does not call any heap-using function.

You can reference the __use_no_heap or __use_no_heap_region symbols in your code to guarantee
that no heap-using functions are linked in from the Arm library. You are only required to import
these symbols once in your application, for example, using either:

• IMPORT __use_no_heap from assembly language.

• __asm(".global __use_no_heap\n\t") from C.

If you include a heap-using function and also reference __use_no_heap or __use_no_heap_region,
the linker reports an error. For example, the following sample code results in the linker error shown:

#include <stdio.h>
#include <stdlib.h>

__asm(".global __use_no_heap\n\t");
void main()
{
 char *p = malloc(256);
 ...
}

Error: L6915E: Library reports error: __use_no_heap was requested, but malloc was
 referenced

To find out which objects are using the heap, link with --verbose --list=out.txt, search the
output for the relevant symbol (in this case malloc), and find out what object referenced it.

__use_no_heap guards against the use of malloc(), realloc(), free(), and any function that uses
those functions. For example, calloc() and other stdio functions.

__use_no_heap_region has the same properties as __use_no_heap, but in addition, guards against
other things that use the heap memory region. For example, if you declare main() as a function
taking arguments, the heap region is used for collecting argc and argv.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Related information
Indirect semihosting C library function dependencies on page 53
Semihosting for AArch32 and AArch64

1.13 Tailoring input/output functions in the C and C++
libraries

The input/output library functions, such as the high-level fscanf() and fprintf(), and the low-
level fputc() and ferror(), and the C++ object std::cout, are not target-dependent. However,
the high-level library functions perform input/output by calling the low-level ones. These low-level
functions call system I/O functions that are target-dependent.

To retarget input/output, you can:

• Avoid the high-level library functions.

• Redefine the low-level library functions.

• Redefine the system I/O functions.

Whether redefining the low-level library functions or redefining the system I/O functions is
a better solution depends on your use. For example, UARTs write a single character at a time
and the default fputc() uses buffering, so redefining this function without a buffer might suit a
UART. However, where buffer operations are possible, redefining the system I/O functions would
probably be more appropriate.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

1.14 Target dependencies on low-level functions in the C
and C++ libraries

Higher-level C and C++ library input/output functions are built on lower-level functions. If you
define your own versions of the lower-level functions, you can use the library versions of the
higher-level functions directly.

The following table shows the dependencies of the higher-level functions on lower-level functions.

fgetc() uses __FILE, but fputc() uses __FILE and ferror().

• You must provide definitions of __stdin and __stdout if you use any of their
associated high-level functions. This applies even if your reimplementations of
other functions, such as fgetc() and fputc(), do not reference any data stored
in __stdin and __stdout.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 218

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• When targeting the strict ANSI C standard, you must provide your own
implementation of the __FILE structure. For example:

struct __FILE { int handle; /* Add whatever you need here */ };

• If you choose to reimplement fgetc(), fputc(), and __backspace(), be aware
that fopen() and related functions use the Arm layout for the __FILE structure.
You might also have to reimplement fopen() and related functions if you define
your own version of __FILE.

Table key:

1. __FILE, the file structure.

2. __stdin, the standard input object of type __FILE.

3. __stdout, the standard output object of type __FILE.

4. fputc(), outputs a character to a file.

5. ferror(), returns the error status accumulated during file I/O.

6. fgetc(), gets a character from a file.

7. fgetwc().

8. fputwc().

9. __backspace(), moves the file pointer to the previous character.

10. __backspacewc().

High-level function Low-level object

1 2 3 4 5 6 7 8 9 10

fgets x - - - x x - - - -

fgetws x - - - - - x - - -

fprintf x - - x x - - - - -

fputs x - - x - - - - - -

fputws x - - - - - - x - -

fread x - - - - x - - - -

fscanf x - - - - x - - x -

fwprintf x - - - x - - x - -

fwrite x - - x - - - - - -

fwscanf x - - - - - x - - x

getchar x x - - - x - - - -

gets x x - - x x - - - -

getwchar x x - - - - x - - -

perror x - x x - - - - - -

printf x - x x x - - - - -

putchar x - x x - - - - - -

puts x - x x - - - - - -

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

High-level function Low-level object

1 2 3 4 5 6 7 8 9 10
putwchar x - x - - - - x - -

scanf x x - - - x - - x -

vfprintf x - - x x - - - - -

vfscanf x - - - - x - - x -

vfwprintf x - - - x - - x - -

vfwscanf x - - - - - x - - x

vprintf x - x x x - - - - -

vscanf x x - - - x - - x -

vwprintf x - x - x - - x - -

vwscanf x x - - - - x - - x

wprintf x - x - x - - x - -

wscanf x x - - - - x - - x

Related information
Tailoring input/output functions in the C and C++ libraries on page 87
The C library printf family of functions on page 89
The C library scanf family of functions on page 90
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspace() in the C library on page 94
Reimplementing __backspacewc() in the C library on page 95
Redefining target-dependent system I/O functions in the C library on page 96

1.15 The C library printf family of functions
The printf family consists of _printf(), printf(), _fprintf(), fprintf(), vprintf(), and
vfprintf().

All these functions use __FILE opaquely and depend only on the functions fputc() and ferror().
The functions _printf() and _fprintf() are identical to printf() and fprintf() except that they
cannot format floating-point values.

The standard output functions of the form _printf(...) are equivalent to:

fprintf(& __stdout, ...)

where __stdout has type __FILE.

Related information
The C library scanf family of functions on page 90

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspace() in the C library on page 94
Reimplementing __backspacewc() in the C library on page 95
Redefining target-dependent system I/O functions in the C library on page 96
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87

1.16 The C library scanf family of functions
The scanf() family consists of scanf() and fscanf().

These functions depend only on the functions fgetc(), __FILE, and __backspace().

The standard input function of the form scanf(...) is equivalent to:

fscanf(& __stdin, ...)

where __stdin is of type __FILE.

Related information
The C library printf family of functions on page 89
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspace() in the C library on page 94
Reimplementing __backspacewc() in the C library on page 95
Redefining target-dependent system I/O functions in the C library on page 96
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87

1.17 Redefining low-level library functions to enable direct
use of high-level library functions in the C library

If you define your own version of __FILE, your own fputc() and ferror() functions, and the
__stdout object, you can use all of the printf() family, fwrite(), fputs(), puts(), and the C++
object std::cout unchanged from the library.

These examples show you how to do this. However, consider modifying the system I/O functions
instead of these low-level library functions if you require real file handling.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

You are not required to reimplement every function shown in these examples. Only reimplement
the functions that are used in your application.

If the standard library implementation of a symbol and the object containing your
implementation are selected at link time, then the linker emits a multiply defined
symbol error.

When this error occurs there is a reference to a symbol that is defined in the
standard library implementation but which is not defined in your implementation.
You can use the armlink option --verbose to see what objects the linker has
extracted from the libraries.

Retargeting printf()
/* Defining __FILE_INCOMPLETE as 1 allows compilation of __FILE with
 * a strict ANSI C standard without conflict with stdio.h.
 */
#define __FILE_INCOMPLETE 1
#include <stdio.h>

struct __FILE
{
 int handle;
 /* Whatever you require here. If the only file you are using is */
 /* standard output using printf() for debugging, no file handling */
 /* is required. */
};
/* FILE is typedef'd in stdio.h. */
FILE __stdout;
int fputc(int ch, FILE *f)
{
 /* Your implementation of fputc(). */
 return ch;
}
int ferror(FILE *f)
{
 /* Your implementation of ferror(). */
 return 0;
}
void test(void)
{
 printf("Hello world\n");
}

The stdio.h header file defines __FILE when strict ANSI mode is detected. Strict
ANSI mode is turned on with -std=c90 or -std=c99, but not with -std=gnu90 or -
std=gnu99.

If you redefine __FILE when using strict ANSI mode, the linker emits an error
about multiply defined symbols. To avoid this error, define the __FILE_INCOMPLETE
macro as the value 1 before including stdio.h. This prevents stdio.h defining its
own version of __FILE. Alternatively you can define this value using the armclang
command line option -D rather than modifying your program. For example, use -
D__FILE_INCOMPLETE.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Be aware of endianness with fputc(). fputc() takes an int parameter, but
contains only a character. Whether the character is in the first or the last byte of
the integer variable depends on the endianness. The following code sample avoids
problems with endianness:

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
{
 /* example: write a character to an LCD */
 char tempch = ch; // temp char avoids endianness issue
 sendchar(&tempch); // sendchar(&ch) would not work everywhere
 return ch;
}

Retargeting cout
File 1: Reimplement any functions that require reimplementation.

#include <stdio.h>
namespace std {
 struct __FILE
 {
 int handle;
 /* Whatever you require here. If the only file you are using is */
 /* standard output using printf() for debugging, no file handling */
 /* is required. */
 };
 FILE __stdout;
 FILE __stdin;
 FILE __stderr;
 int fgetc(FILE *f)
 {
 /* Your implementation of fgetc(). */
 return 0;
 }
 int fputc(int c, FILE *stream)
 {
 /* Your implementation of fputc(). */
 }
 int ferror(FILE *stream)
 {
 /* Your implementation of ferror(). */
 }
 long int ftell(FILE *stream)
 {
 /* Your implementation of ftell(). */
 }
 FILE* fopen(const char* name, const char* mode)
 {
 /* Your implementation of fopen(). */
 return 0;
 }
 int fclose(FILE *f)
 {
 /* Your implementation of fclose(). */
 return 0;
 }
 int fseek(FILE *f, long nPos, int nMode)
 {
 /* Your implementation of fseek(). */
 return 0;
 }
 int fflush(FILE *f)

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

 {
 /* Your implementation of fflush(). */
 return 0;
 }
}

File 2: Print "Hello world" using your reimplemented functions.

#include <stdio.h>
#include <iostream>
using namespace std;
int main()
{
 cout << "Hello world\n";
 return 0;
}

By default, fread() and fwrite() call fast block input/output functions that are part of the Arm
stream implementation. If you define your own __FILE structure instead of using the Arm stream
implementation, fread() and fwrite() call fgetc() instead of calling the block input/output
functions.

If you redefine some but not all of the library functions relating to file handling, the
linker might emit errors about symbols being multiply defined. These errors can be
emitted when a reference to a library member function causes other members to be
loaded which then clash with your redefinition.

In this example you must include the redefinition of fopen() to prevent this
problem.

Related information
The C library printf family of functions on page 89
The C library scanf family of functions on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspace() in the C library on page 94
Reimplementing __backspacewc() in the C library on page 95
Redefining target-dependent system I/O functions in the C library on page 96
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87
Identifying the source of some link errors
--verbose (armlink)
-D (armclang)

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 218

https://developer.arm.com/documentation/100748/0623/Getting-Image-Details/Identifying-the-source-of-some-link-errors
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--verbose
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-D--armclang-

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.18 The C library functions fread(), fgets() and gets()
The functions fread(), fgets(), and gets() are implemented as fast block input/output functions
where possible.

These fast implementations are part of the Arm stream implementation and they bypass fgetc().
Where the fast implementation is not possible, they are implemented as a loop over fgetc() and
ferror(). Each uses the FILE argument opaquely.

If you provide your own implementation of __FILE, __stdin (for gets()), fgetc(), and ferror(),
you can use these functions, and the C++ object std::cin directly from the library.

Related information
The C library printf family of functions on page 89
The C library scanf family of functions on page 90
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
Reimplementing __backspace() in the C library on page 94
Reimplementing __backspacewc() in the C library on page 95
Redefining target-dependent system I/O functions in the C library on page 96
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87

1.19 Reimplementing __backspace() in the C library
The function __backspace() is used by the scanf family of functions, and must be reimplemented if
you retarget the stdio arrangements at the fgetc() level.

Normally, you are not required to call __backspace() directly, unless you are
implementing your own scanf -like function.

The syntax is:

int __backspace(FILE *stream);

__backspace(stream) must only be called after reading a character from the stream. You must
not call it after a write, a seek, or immediately after opening the file, for example. It returns to the
stream the last character that was read from the stream, so that the same character can be read
from the stream again by the next read operation. This means that a character that was read from
the stream by scanf but that is not required (that is, it terminates the scanf operation) is read
correctly by the next function that reads from the stream.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

__backspace is separate from ungetc(). This is to guarantee that a single character can be pushed
back after the scanf family of functions has finished.

The value returned by __backspace() is either 0 (success) or EOF (failure). It returns EOF only if used
incorrectly, for example, if no characters have been read from the stream. When used correctly,
__backspace() must always return 0, because the scanf family of functions do not check the error
return.

The interaction between __backspace() and ungetc() is:

• If you apply __backspace() to a stream and then ungetc() a character into the same stream,
subsequent calls to fgetc() must return first the character returned by ungetc(), and then the
character returned by __backspace().

• If you ungetc() a character back to a stream, then read it with fgetc(), and then backspace
it, the next character read by fgetc() must be the same character that was returned to the
stream. That is the __backspace() operation must cancel the effect of the fgetc() operation.
However, another call to ungetc() after the call to __backspace() is not required to succeed.

• The situation where you ungetc() a character into a stream and then __backspace()
another one immediately, with no intervening read, never arises. __backspace() must only
be called after fgetc(), so this sequence of calls is illegal. If you are writing __backspace()
implementations, you can assume that the ungetc() of a character into a stream followed
immediately by a __backspace() with no intervening read, never occurs.

Related information
The C library printf family of functions on page 89
The C library scanf family of functions on page 90
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspacewc() in the C library on page 95
Redefining target-dependent system I/O functions in the C library on page 96
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87

1.20 Reimplementing __backspacewc() in the C library
__backspacewc() is the wide-character equivalent of __backspace().

__backspacewc() behaves in the same way as __backspace() except that it pushes back the last
wide character instead of a narrow character.

Related information
The C library printf family of functions on page 89
The C library scanf family of functions on page 90

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspace() in the C library on page 94
Redefining target-dependent system I/O functions in the C library on page 96
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87

1.21 Redefining target-dependent system I/O functions in
the C library

The default target-dependent I/O functions use semihosting. If you redefine any of these
functions, then you must redefine all those functions.

The function prototypes are provided in rt_sys.h. These functions are called by the C standard
I/O library functions. For example, _sys_open() is called by fopen() and freopen(). _sys_open()
uses the strings __stdin_name, __stdout_name, and __stderr_name during C library initialization
to identify which standard I/O device handle to return. If _sys_open() does not use these strings,
then you can leave the values as the default, that is :tt.

stdin, stdout, and stderr are assumed to be interactive devices. They are line-
buffered at program startup, regardless of what _sys_istty reports for them. An
exception is if they have been redirected on the command line.

The following example shows you how to redefine the required functions for a device that supports
writing but not reading.

Example of retargeting the system I/O functions
/*
 * These names are used during library initialization as the
 * file names opened for stdin, stdout, and stderr.
 * As we define _sys_open() to always return the same file handle,
 * these can be left as their default values.
 */
const char __stdin_name[] = ":tt";
const char __stdout_name[] = ":tt";
const char __stderr_name[] = ":tt";

FILEHANDLE _sys_open(const char *name, int openmode)
{
 return 1; /* everything goes to the same output */
}
int _sys_close(FILEHANDLE fh)
{
 return 0;
}
int _sys_write(FILEHANDLE fh, const unsigned char *buf,
 unsigned len, int mode)
{
 your_device_write(buf, len);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

 return 0;
}
int _sys_read(FILEHANDLE fh, unsigned char *buf,
 unsigned len, int mode)
{
 return -1; /* not supported */
}
void _ttywrch(int ch)
{
 char c = ch;
 your_device_write(&c, 1);
}
int _sys_istty(FILEHANDLE fh)
{
 return 0; /* buffered output */
}
int _sys_seek(FILEHANDLE fh, long pos)
{
 return -1; /* not supported */
}
long _sys_flen(FILEHANDLE fh)
{
 return -1; /* not supported */
}

rt_sys.h defines the type FILEHANDLE. The value of FILEHANDLE is returned by _sys_open() and
identifies an open file on the host system.

If the system I/O functions are redefined, both normal character I/O and wide character I/O work.
That is, you are not required to do anything extra with these functions for wide character I/O to
work.

Related information
The C library printf family of functions on page 89
The C library scanf family of functions on page 90
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 90
The C library functions fread(), fgets() and gets() on page 93
Reimplementing __backspace() in the C library on page 94
Reimplementing __backspacewc() in the C library on page 95
Tailoring input/output functions in the C and C++ libraries on page 87
Target dependencies on low-level functions in the C and C++ libraries on page 87

1.22 Tailoring non-input/output C library functions
In addition to tailoring input/output C library functions, many C library functions that are not input/
output functions can also be tailored.

Implementation of these ISO standard functions depends entirely on the target operating system.

The default implementation of these functions is semihosted. That is, each function uses
semihosting.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

1.23 Real-time integer division in the Arm libraries
The Arm library provides a real-time division routine and a standard division routine.

The standard division routine supplied with the Arm libraries provides good overall performance.
However, the amount of time required to perform a division depends on the input values. For
example, a division that generates a four-bit quotient might require only 12 cycles while a 32-bit
quotient might require 96 cycles. Depending on your target, some applications require a faster
worst-case cycle count at the expense of lower average performance. For this reason, the Arm
library provides two divide routines.

The real-time routine:

• Always executes in fewer than 45 cycles.

• Is faster than the standard division routine for larger quotients.

• Is slower than the standard division routine for typical quotients.

• Returns the same results.

• Does not require any change in the surrounding code.

Real-time division is not available in the libraries for the Arm®v6-M and Armv8-
M.baseline architecture.

The Armv7-M, Armv7-R, and Armv8-M.mainline architectures support hardware
floating-point divide. Code running on these architectures do not require the library
divide routines.

Select the real-time divide routine using either of the following methods:

• IMPORT __use_realtime_division from assembly language.

• __asm(".global __use_realtime_division\n\t") from C.

1.24 ISO C library implementation definition
Describes how the libraries fulfill the requirements of the ISO specification.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.24.1 How the Arm C library fulfills ISO C specification requirements

The ISO specification leaves some features to implementors, but requires that implementation
choices be documented.

The implementation of the generic Arm C library in this respect is as follows:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error might occur when the program is
linked with the standard libraries. If it is not linked with standard libraries, no error is diagnosed.

• The __aeabi_assert() function prints information on the failing diagnostic on stderr and then
calls the abort() function:

*** assertion failed: expression, file name, line number

The behavior of the assert macro depends on the conditions in operation at
the most recent occurrence of #include <assert.h>. See Program exit and the
assert macro for more information about the behavior of the assert macro.

• The following functions test for character values in the range EOF (-1) to 255 inclusive:

◦ isalnum()

◦ isalpha()

◦ iscntrl()

◦ islower()

◦ isprint()

◦ isupper()

◦ ispunct()

• The fully POSIX-compliant functions remquo(), remquof(), and remquol() return the remainder
of the division of x by y and store the quotient of the division in the pointer *quo. An
implementation-defined integer value defines the number of bits of the quotient that are
stored. In the Arm C library, this value is set to 4.

• C99 behavior, with respect to mathlib error handling, is enabled by default.

Related information
mathlib error handling on page 99
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100
ISO-compliant C library input/output characteristics on page 102
Program exit and the assert macro on page 66
C and C++ library naming conventions on page 108

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.24.2 mathlib error handling

The error handling of mathematical functions is consistent with Annex F of the ISO/IEC C99
standard.

Related information
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100
ISO-compliant C library input/output characteristics on page 102
How the Arm C library fulfills ISO C specification requirements on page 98

1.24.3 ISO-compliant implementation of signals supported by the signal()
function in the C library and additional type arguments

The signal() function supports a number of signals.

The following table shows the signals supported by the signal() function. It also shows which
signals use an additional argument to give more information about the circumstance in which the
signal was raised. The additional argument is given in the <type > parameter of __raise(). For
example, division by floating-point zero results in a SIGFPE signal with a corresponding additional
argument of FE_EX_DIVBYZERO.

Table 1-13: Signals supported by the signal() function

Signal Number Description Additional argument

SIGABRT 1 Returned when the abort()
function is called.

The abort() function is
triggered when there is an
untrapped C++ exception, or
when an assertion fails.

None

SIGFPE 2 Signals any arithmetic exception,
for example, division by zero.
Used by hard and soft floating-
point and by integer division.

A set of bits from
FE_EX_INEXACT,
FE_EX_UNDERFLOW,
FE_EX_OVERFLOW,
FE_EX_DIVBYZERO,
FE_EX_INVALID, DIVBYZERO
[1]

SIGILL 3 Illegal instruction. None

SIGINT [2] 4 Attention request from user. None

SIGSEGV [2] 5 Bad memory access. None

SIGTERM [2] 6 Termination request. None

SIGSTAK 7 Obsolete. None

SIGRTRED 8 Redirection failed on a runtime
library input/output stream.

Name of file or device being re-
opened to redirect a standard
stream

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Signal Number Description Additional argument
SIGRTMEM 9 Out of heap space during

initialization or after corruption.
Size of failed request

SIGUSR1 10 User-defined. User-defined

SIGUSR2 11 User-defined. User-defined

SIGPVFN 12 A pure virtual function was called
from C++.

-

SIGCPPL 13 Not supported. -

SIGOUTOFHEAP 14 Not supported. Size of the failed request in bytes

reserved >=15 Reserved. Reserved

Table notes
[1] These constants are defined in fenv.h. FE_EX_DIVBYZERO is for floating-point division.
DIVBYZERO is for integer division.

[2] The library never generates this signal. It is available for you to raise manually, if required.

Although SIGSTAK exists in signal.h, this signal is not generated by the C library and is considered
obsolete.

A signal number greater than SIGUSR2 can be passed through __raise() and caught by the default
signal handler, but it cannot be caught by a handler registered using signal().

signal() returns an error code if you try to register a handler for a signal number greater than
SIGUSR2.

The default handling of all recognized signals is to print a diagnostic message and call exit(). This
default behavior applies at program startup and until you change it.

The IEEE 754 standard for floating-point processing states that the default action
to an exception is to proceed without a trap. A raised exception in floating-point
calculations does not, by default, generate SIGFPE. You can modify floating-point
error handling by tailoring the functions and definitions in fenv.h. However you
must compile these functions using a fully-conforming floating-point model, such as
the armclang default.

For all the signals in the above table, when a signal occurs, if the handler points to a function, the
equivalent of signal(sig, SIG_DFL) is executed before the call to the handler.

If the SIGILL signal is received by a handler specified to by the signal() function, the default
handling is reset.

Related information
mathlib error handling on page 99
ISO-compliant C library input/output characteristics on page 102
How the Arm C library fulfills ISO C specification requirements on page 98

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

1.24.4 ISO-compliant C library input/output characteristics

The generic Arm C library has defined input/output characteristics.

These input/output characteristics are as follows:

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline character do
appear when read back in.

• No NUL characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end of the file.

• A write to a text stream causes the associated file to be truncated beyond the point where the
write occurred if this is the behavior of the device category of the file.

• If semihosting is used, the maximum number of open files is limited by the available target
memory.

• A zero-length file exists, that is, where no characters have been written by an output stream.

• A file can be opened many times for reading, but only once for writing or updating. A file
cannot simultaneously be open for reading on one stream, and open for writing or updating on
another.

• stdin, stdout, and stderr are assumed to be interactive devices. They are line-buffered at
program startup, regardless of what _sys_istty reports for them. An exception is if they have
been redirected on the command line.

• localtime() is implemented and returns the local time. gmtime() is not implemented and
returns NULL. Therefore converting between time-zones is not supported.

• The status returned by exit() is the same value that was passed to it. For definitions of
EXIT_SUCCESS and EXIT_FAILURE, see the header file stdlib.h. Semihosting, however, does not
pass the status back to the execution environment.

• The error messages returned by the strerror() function are identical to those given by the
perror() function.

• If the size of area requested is zero, calloc() and realloc() return NULL.

• If the size of area requested is zero, malloc() returns a pointer to a zero-size block.

• abort() closes all open files and deletes all temporary files.

• fprintf() prints %p arguments in lowercase hexadecimal format as if a precision of 8 had been
specified. If the variant form (%#p) is used, the number is preceded by the character @.

• fscanf() treats %p arguments exactly the same as %x arguments.

• fscanf() always treats the character "-" in a %...[...] argument as a literal character.

• ftell(), fsetpos() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the messages shown in the following table.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Table 1-14: perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number

Others Unknown error

The following characteristics are unspecified in the Arm C library. They must be specified in an ISO-
compliant implementation:

• The validity of a filename.

• Whether remove() can remove an open file.

• The effect of calling the rename() function when the new name already exists.

• The effect of calling getenv() (the default is to return NULL, no value available).

• The effect of calling system().

• The value returned by clock().

Related information
mathlib error handling on page 99
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100
How the Arm C library fulfills ISO C specification requirements on page 98

1.24.5 Standard C++ library implementation definition

The Standard C++ library in Arm® Compiler for Embedded 6 is based on the LLVM libc++ project.

This topic includes descriptions of [ALPHA] and [COMMUNITY] features. See
Support level definitions.

The following sections describe the limitations of the Standard C++ library in Arm Compiler for
Embedded 6.

Support for C++98
Arm Compiler for Embedded 6 C++ libraries support the C++98 standard, except:

• Where the C++11 standard deviates from the C++98 standard. For example, where
std::deque<T>::insert() returns an iterator, as required by the C++11 standard, but the C+
+98 standard requires it to return void. Information about how the C++11 standard deviates
from the C++98 standard is available in Annex "C Compatibility" of the C++11 standard
definition.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• Where the libc++ library deviates from the C++98 standard library:

For std::raw_storage_iterator, the C++98 standard requires
the raw_storage_iterator class template to be inherited from
std::iterator<std::output_iterator_tag,void,void,void,void>. However, in libc++ the
raw_storage_iterator class template is inherited from an instantiation of std::iterator with a
different list of template arguments.

Support for C++03
Arm Compiler for Embedded 6 C++ libraries support the C++03 standard, except:

• Where the C++11 standard deviates from the C++03 standard. For example, where
std::deque<T>::insert() returns an iterator, as required by the C++11 standard, but the C+
+03 standard requires it to return void. Information about how the C++11 standard deviates
from the C++03 standard is available in Annex "C Compatibility" of the C++11 standard
definition.

• Where the libc++ library deviates from the C++03 standard library:

For std::raw_storage_iterator, the C++03 standard requires
the raw_storage_iterator class template to be inherited from
std::iterator<std::output_iterator_tag,void,void,void,void>. However, in libc++ the
raw_storage_iterator class template is inherited from an instantiation of std::iterator with a
different list of template arguments.

• When compiling with any optimization other than -O0, Arm Compiler for Embedded might
omit a call to a replaceable global allocation function and the corresponding deallocation
function. When it does so, the storage is instead provided by the implementation or provided
by extending the allocation of another new expression. This rule is part of the C++14 standard,
but Arm Compiler for Embedded also applies the rule for C++03 and C++11.

Support for C++11
Arm Compiler for Embedded 6 C++ libraries support most of C++11.

• Thread support, <thread>, and other concurrency features, are [ALPHA] supported.

• When compiling with any optimization other than -O0, Arm Compiler for Embedded might
omit a call to a replaceable global allocation function and the corresponding deallocation
function. When it does so, the storage is instead provided by the implementation or provided
by extending the allocation of another new expression. This rule is part of the C++14 standard,
but Arm Compiler for Embedded also applies the rule for C++03 and C++11.

Support for C++14
Arm Compiler for Embedded 6 C++ libraries support most of C++14. Thread support, <thread>,
and other concurrency features, are [ALPHA] supported.

Support for C++17
The following C++17 features are not supported in Arm Compiler for Embedded 6:

• Parallel algorithms and execution policies.

• The filesystem library. That is, the header file <filesystem>.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

• The constants hardware_destructive_interference_size and
hardware_constructive_interference_size in the header <new>.

• Library features that rely on C11:

◦ Mathematical special functions in the headers <cmath> and <math.h>.

◦ The struct timespec, the function timespec_get(), and the macro TIME_UTC in the headers
<ctime> and <time.h>.

◦ The function aligned_alloc() in the headers <cstdlib> and <stdlib.h>.

Support for exceptions
Arm Compiler for Embedded 6 supports:

• C++ libraries with exceptions.

• C++ libraries without exceptions. These libraries are compiled with the armclang option -fno-
exceptions.

Linking objects that have been compiled with -fno-exceptions automatically selects the libraries
without exceptions. You can use the linker option --no_exceptions to diagnose whether the
objects being linked contain exceptions.

• By default, C++ sources are compiled with exceptions support. You can use the
-fno-exceptions option to disable exceptions support.

• By default, C sources are compiled without exceptions support. You can use the
-fexceptions option to enable exceptions support.

• If an exception propagates into a function that has been compiled without
exceptions support, then the program terminates.

• If the C++ libraries built without exception support are put in an error state,
then an exception is not thrown, but the program behavior is undefined.

Support for Array Construction and Delete helper functions
Arm Compiler for Embedded 6 is not compatible with C++ objects from other compilers that use
Array Construction and Delete helper functions.

Support for Atomic [ALPHA]
Arm Compiler for Embedded 6 provides access to the atomic operations library <atomic> as an
[ALPHA] feature.

[ALPHA] Arm Compiler for Embedded 6 does not provide an implementation
of libatomic. You must either provide an implementation of libatomic or only
use the atomic operation library for types for which the hardware can provide
synchronization primitives.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Support for multithreading [ALPHA]
The default standard C++ library shipped in Arm Compiler for Embedded 6 does not support
multithreading. This variant of the standard C++ library does not support the concurrency
constructs available through the headers, that includes <thread> and <mutex>. A multithreaded
[ALPHA]-supported variant of the C++ library is also included in Arm Compiler for Embedded 6.

Support for thread-safe static initialization of local variables in C++
The default C++ library in Arm Compiler for Embedded 6 contains trivial implementations of the
following one-time construction API functions, which are not thread-safe:

extern "C" int __cxa_guard_acquire(int *guard_object);

extern "C" void __cxa_guard_release(int *guard_object);

extern "C" void __cxa_guard_abort(int *guard_object);

• This does not apply to the [ALPHA]-supported multithreaded C++ libraries.
Contact the Arm Support team for more information.

• For thread-safe static initialization of local variables in C++, you must provide
your own thread-safe implementation of these functions.

These API functions are described in more detail in the Run-time ABI for the Arm Architecture, see
ABI for the Arm 32-bit Architecture. On the Armv6-M architecture, you must also provide thread-
safe atomic helper functions.

Support for Armv6-M atomic helper functions
The Arm Compiler for Embedded 6 Armv6-M libraries contain trivial implementations of the
following atomic helper functions, which are not thread-safe:

uint32_t __user_cmpxchg_4(uint32_t *ptr, uint32_t old, uint32_t new);

uint16_t __user_cmpxchg_2(uint16_t *ptr, uint16_t old, uint16_t new);

uint8_t __user_cmpxchg_1(uint8_t *ptr, uint8_t old, uint8_t new);

uint64_t __atomic_exchange_8(uint64_t *dest, uint64_t val, int model);

uint32_t __atomic_exchange_4(uint32_t *dest, uint32_t val, int model);

uint16_t __atomic_exchange_2(uint16_t *dest, uint16_t val, int model);

uint8_t __atomic_exchange_1(uint8_t *dest, uint8_t val, int model);

For atomic access on the Armv6-M architecture, you must provide your own
thread-safe implementation of the atomic helper functions.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 218

https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Library extensions
All libc++ experimental features that are not part of the C++ standard are [COMMUNITY]-
supported. In particular, the headers <ext/*> and <experimental/*> are [COMMUNITY]-
supported.

Related information
Arm C and C++ library directory structure on page 19
The LLVM Compiler Infrastructure
The LLVM libc++ library

1.25 C library functions and extensions
The Arm C library is fully compliant with the ISO C99 library standard and provides a number of
GNU, POSIX, BSD-derived, and Arm® Compiler for Embedded-specific extensions.

The following table describes these extensions.

Table 1-15: C library extensions

Function Header file definition Extension

wcscasecmp() wchar.h GNU extension with Arm library support

wcsncasecmp() wchar.h GNU extension with Arm library support

wcstombs() stdlib.h POSIX extended functionality

posix_memalign() stdlib.h POSIX extended functionality

alloca() alloca.h Common nonstandard extension to many C
libraries

strlcpy() string.h Common BSD-derived extension to many C
libraries

strlcat() string.h Common BSD-derived extension to many C
libraries

strcasecmp() string.h Standardized by POSIX

strncasecmp() string.h Standardized by POSIX

_fisatty() stdio.h Specific to Arm Compiler for Embedded

__heapstats() stdlib.h Specific to Arm Compiler for Embedded

__heapvalid() stdlib.h Specific to Arm Compiler for Embedded

Related information
wcscasecmp() on page 190
wcsncasecmp() on page 190
wcstombs() on page 191
alloca() on page 142
strlcat() on page 172
strlcpy() on page 173
strcasecmp() on page 172

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 218

http://llvm.org/
http://libcxx.llvm.org/

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

strncasecmp() on page 174
_fisatty() on page 147
__heapstats() on page 150
__heapvalid() on page 151

1.26 C and C++ library naming conventions
The library filename identifies how the variant was built.

This topic includes descriptions of [ALPHA] and [COMMUNITY] features. See
Support level definitions.

The library naming convention described in this documentation applies to the
current release of the Arm compilation tools. Do not rely on C and C++ library
names. They might change in future releases.

Normally, you do not have to list any of the C and C++ libraries explicitly on the linker command
line. The Arm linker automatically selects the correct C or C++ libraries to use, and it might use
several, based on the accumulation of the object attributes.

The values for the fields of the filename, and the relevant build options are:

[<root>]/[<prefix>]_[<arch>][<fpu>][<position-independence>][<enum>][<wchar>]

[<exception>][<threading>][<pacbti>].[<endian>]

Not all build options are included in the library filename.

Build option Value Description

<root> armlib Arm C library

- libcxx libc++ library

<prefix> c ISO C and C++ basic runtime support

- libcpp libc++ library

- libcpp-experimental C++ library for future or incomplete C++ standards. Use of this library is a
[COMMUNITY] feature.

- libunwind C++ exception unwinder library

- libcppabi libc++abi runtime library

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Build option Value Description
- f IEEE-compliant library with a fixed rounding mode (round to nearest) and

no inexact exceptions

- fj IEEE-compliant library with a fixed rounding mode (round to nearest) and
no exceptions

- fz Behaves like the fj library, but additionally flushes denormals and infinities
to zero. This library behaves like the Arm® VFP in Fast mode. This is the
default.

- g IEEE-compliant library with configurable rounding mode and all IEEE
exceptions

- h Compiler support (helper function) library

- m Math library

- mc Non ISO C-compliant ISO C micro-library basic runtime support

- mf Non IEEE 754 floating-point compliant micro-library support

<arch> p A T32 only library for use with the Armv6-M and Armv8-M.baseline
architectures

- w A T32 only library for use with Armv7-M, Armv7 E-M, and Armv8-
M.mainline architectures

- x A T32 only library for use with the Armv8.1-M.mainline architecture

- 2 A T32 interworking library, with a small number of A32 instructions, for
use with Armv7-A and Armv7-R architectures

- 8 A combined A32 and T32 interworking library for use with the Armv8-A,
Armv9-A, and Armv8-R architectures, in AArch32 state

- o An A64 library for use with the Armv8-A and Armv9-A architectures, in
AArch64 state

- r An A64 library for use with the Armv8.3-A and later architectures, in
AArch64 state. This library has support for return address signing and
Branch Target Identification (BTI).

- a An A64 library for use with the Armv8.5-A and later architectures, in
AArch64 state. This library has support for return address signing, BTI, and
stack tagging. Use of this library is an [ALPHA] feature.

- b An A64 library for use with the Armv8-R architecture, in AArch64 state

- c An A64 library for use with the Armv8-R architecture, in AArch64 state.
This library has support for return address signing. Use of this library is an
[ALPHA] feature.

<fpu> m A variant of the library for processors that have single-precision hardware
floating-point only, such as the Cortex®-M4 processor

- v Uses VFP instruction set

- s Soft VFP

Note:
If none of v, m, or s are present in a library name, the library provides no
floating-point support.

<position-independence> e Position independent access to static data

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Build option Value Description
- f FPIC addressing is enabled (used by armclang option -fbare-metal-

pie)

Note:
If both e and f are not present in a library name, the library uses position-
dependent access to static data.

<enum> n Compatible with the default compiler option, -fno-short-enums

<wchar> u Indicates the size of wchar_t. When present, the library is compatible
with the compiler option, -fno-short-wchar. Otherwise, it is
compatible with -fshort-wchar.

<exception> x This only applies to the C++ library. x indicates that the library is built
with exception handling. Libraries without x are built without exception
handling.

<threading> z This only applies to the C++ library. z indicates that the library is a
multithreaded variant of the C++ library. Use of this library is an [ALPHA]
feature.

Libraries without z are built without multithreading support.

<pacbti> a Indicates that the library has both pointer authentication and BTI enabled.
For example c_xa.l is the Armv8.1-M PACBTI enabled variant of c_x.l,
which in turn can be thought of as the Armv8.1-M with Main Extension
variant of c_w.l.

Note:
These libraries use M-profile PACBTI instructions, but only M-profile
PACBTI instructions that are in hint space. On an M-profile target
without the PACBTI Extension, the subset of PACBTI instructions that
these libraries use behave as a NOP. This means that code from these
libraries still executes successfully on an M-profile target without the
PACBTI Extension. However, on an M-profile target without the PACBTI
Extension, the library code does not benefit from the security protection
that is provided by the PACBTI Extension.

Note:
There is only one library variant for the Armv8.1-M PACBTI extension.
This variant provides both pointer authentication and BTI. It is not
possible to specify a library variant that supports only one or the other.

<endian> l Little-endian

- b Big-endian

Examples
The following examples show how the build option values make up the filename.

Filename Build options

armlib/c_2.b Arm C library/ISO C and C++ basic runtime support. A big-endian T32 interworking library, with a small
number of A32 instructions, for use with Armv7-A and Armv7-R architectures.

libcxx/libcpp_8f.l libc++ library/libc++ library. A combined little-endian A32 and T32 interworking library for use with
Armv8-A, Armv9-A, and Armv8-R architectures, in AArch32 state. FPIC addressing is enabled.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C and C++ Libraries

Not all variant/name combinations are valid. See the armlib and libcxx directories
for the libraries that are supplied with Arm Compiler for Embedded.

The linker command-line option --info libraries provides information on every library that is
automatically selected for the link stage.

Related information
Armv8.1-M PACBTI extension mitigations against ROP and JOP style attacks
-fbare-metal-pie
-fshort-enums, -fno-short-enums
-fshort-wchar, -fno-short-wchar
--info=topic[,topic,…] linker option

1.27 Using macro__ARM_WCHAR_NO_IO to disable FILE
declaration and wide I/O function prototypes

You can define the macro __ARM_WCHAR_NO_IO to cause the wchar.h and cwchar header files not to
declare FILE or the wide I/O function prototypes.

Declaring the FILE type can lead to better consistency in debug information.

1.28 Using library functions with execute-only memory
Arm® Compiler for Embedded lets you build applications for execute-only memory. However, the
Arm C and C++ libraries are not execute-only compliant.

If your application calls library functions, the library objects included in the image are not execute-
only compliant. You must ensure these objects are not assigned to an execute-only memory region.

Arm does not provide libraries that are built without literal pools. The libraries still
use literal pools, even when you use the -mexecute-only option.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 218

https://developer.arm.com/documentation/100748/0623/Security-features-supported-in-Arm-Compiler-for-Embedded/Armv8-1-M-PACBTI-extension-mitigations-against-ROP-and-JOP-style-attacks
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fbare-metal-pie
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fshort-enums---fno-short-enums
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fshort-wchar---fno-short-wchar
https://developer.arm.com/documentation/101754/0623/armlink-Reference/armlink-Command-line-Options/--info-topic--topic-----armlink-

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

2. The Arm C Micro-library
The Arm C Micro-library (microlib) is an alternative library to the default C standard library
(standardlib). It is intended for use with deeply embedded applications that must fit into extremely
small memory footprints.

These applications do not run under an operating system.

• Microlib does not attempt to be an ISO C-compliant library.

• Microlib has no support for AArch64 execution state.

Microlib is highly optimized for small code size. It has less functionality than the default C library
and some ISO C features are completely missing. Some library functions are also slower.

Functions in microlib are responsible for:

• Creating an environment that a C program can execute in. This includes:

◦ Creating a stack.

◦ Creating a heap, if required.

◦ Initializing the parts of the library the program uses.

• Starting execution by calling main().

Microlib has less error checking than standardlib, including input sanitization. For
use cases that expect untrusted input we recommend either to use standardlib or to
perform input sanitization on any untrusted input.

2.1 Using microlib
To use microlib, you need to make some alterations to your software.

• Your program must have a main() function that takes no arguments and never returns.

• Microlib provides a limited stdio subsystem. To use high-level I/O functions you must
reimplement the base I/O functions.

• To use microlib, you must specify an initial pointer for the stack. You can specify the initial
pointer in a scatter file or using the __initial_sp symbol.

• Library heap usage requirements for microlib differ to those of standardlib:

◦ The size of heap memory allocated for fopen() is 20 bytes for the FILE structure.

◦ No buffer is ever allocated.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

To build a program using microlib, you must use the command-line option --
library_type=microlib.

2.1.1 Entering and exiting programs linked with microlib

Microlib requires a main() function that takes no arguments and never returns.

Use main() to begin your program. Do not declare main() to take arguments. Microlib does not
support command-line arguments from an operating system.

Your program must not return from main(). This is because microlib does not contain any code to
handle exit from main(). Microlib does not support programs that call exit().

You can ensure that your main() function does not return, by inserting an endless loop at the end
of the function. For example:

void main(void)
{
 ...
 while (1); // endless loop to prevent return from main()
}

2.1.2 Configuring the stack and heap for use with microlib

To use microlib, you must specify an initial pointer for the stack. You can specify the initial pointer
in a scatter file or using the __initial_sp symbol.

To use the heap functions, for example, malloc(), calloc(), realloc() and free(), you must
specify the location and size of the heap region.

To configure the stack and heap for use with microlib, use either of the following methods:

• Define the symbol __initial_sp to point to the top of the stack. If using the heap, also define
symbols __heap_base and __heap_limit.

__initial_sp must be aligned to a multiple of eight bytes.

__heap_limit must point to the byte beyond the last byte in the heap region.

• In a scatter file, either:

◦ Define ARM_LIB_STACK and ARM_LIB_HEAP regions.

If you do not intend to use the heap, only define an ARM_LIB_STACK region.

◦ Define an ARM_LIB_STACKHEAP region.

If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The
heap starts at the bottom.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

Examples
To set up the initial stack and heap pointers using GNU-syntax assembly language:

 .global __initial_sp
.equ __initial_sp, 0x10000 ; top of the stack
 .global __heap_base
.equ __heap_base, 0x400000 ; start of the heap
 .global __heap_limit
.equ __heap_limit, 0x800000 ; end of the heap

To set up the initial stack pointer using inline assembler in C.

__asm(".global __initial_sp\n\t"
 ".equ __initial_sp, 0x10000\n\t" /* equal to the top of the stack */
);

To set up the heap pointer using inline assembler in C.

__asm(".global __heap_base\n\t"
 ".equ __heap_base, 0x400000\n\t" /* equal to the start of the heap */
 ".global __heap_limit\n\t"
 ".equ __heap_limit, 0x800000\n\t" /* equal to the end of the heap */
);

2.1.3 Tailoring the microlib input/output functions

Microlib provides a limited stdio subsystem. To use high-level I/O functions you must reimplement
the base I/O functions.

Microlib provides a limited stdio subsystem that supports unbuffered stdin, stdout, and stderr
only. This enables you to use printf() for displaying diagnostic messages from your application.

To use high-level I/O functions you must provide your own implementation of the following base
functions so that they work with your own I/O device.

fputc()

Implement this base function for all output functions. For example, fprintf(), printf(),
fwrite(), fputs(), puts(), putc(), and putchar().

fgetc()

Implement this base function for all input functions. For example, fscanf(), scanf(),
fread(), read(), fgets(), gets(), getc(), and getchar().

__backspace()

Implement this base function if your input functions use scanf() or fscanf().

Conversions that are not supported in microlib are %lc, %ls, and %a.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

2.1.4 Library heap usage requirements of microlib

Library heap usage requirements for microlib differ to those of standardlib.

The differences are:

• The size of heap memory allocated for fopen() is 20 bytes for the FILE structure.

• No buffer is ever allocated.

You must not declare main() to take arguments if you are using microlib.

The size of heap memory allocated for fopen() might change in future releases.

Related information
Library heap usage requirements of the Arm C and C++ libraries on page 78

2.1.5 Building an application with microlib

To build a program using microlib, you must use the command-line option --
library_type=microlib. You can use this option with the legacy assembler or linker.

Use --library_type=microlib with the linker to override all other options.

Assembler option
armclang --target arm-arm-none-eabi -march=armv8-a -c main.c
armclang --target arm-arm-none-eabi -march=armv8-a -c extra.c
armasm --cpu=8-A.32 --library_type=microlib more.s
armlink --cpu=8-A.32 -o image.axf main.o extra.o more.o

The request to the linker to use microlib is made as a result of assembling more.s with --
library_type=microlib.

Linker option
armclang --target arm-arm-none-eabi -march=armv8-a -c main.c
armclang --target arm-arm-none-eabi -march=armv8-a -c extra.c
armlink --cpu=8-A.32 --library_type=microlib -o image.axf main.o extra.o

Neither object file contains the attribute requesting that the linker link against microlib, so the linker
selects microlib as a result of being explicitly asked to do so on the command line.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

2.2 Differences between microlib and the default C library
There are a number of differences between microlib and the default C library.

The main differences are:

• Microlib is not compliant with the ISO C library standard. Some ISO features are not supported
and others have less functionality.

• Microlib is not compliant with the IEEE 754 standard for binary floating-point arithmetic.

• Microlib is highly optimized for small code size.

• Locales are not configurable. The default C locale is the only one available.

• main() must not be declared to take arguments and must not return. In main, argc and argv
parameters are undefined and cannot be used to access command-line arguments.

• Microlib provides limited support for C99 functions. Specifically, microlib does not support the
following C99 functions:

◦ <fenv.h> functions:

feclearexcept fegetenv fegetexceptflag
fegetround feholdexcept feraiseexcept
fesetenv fesetexceptflag fesetround
fetestexcept feupdateenv

◦ Wide characters in general:

btowc fgetwc fgetws fputwc
fputws fwide fwprintf fwscanf
getwc getwchar iswalnum iswalpha
iswblank iswcntrl iswctype iswdigit
iswgraph iswlower iswprint iswpunct
iswspace iswupper iswxdigit mblen
mbrlen mbsinit mbsrtowcs mbstowcs
mbtowc putwc putwchar swprintf
swscanf towctrans towlower towupper
ungetwc vfwprintf vfwscanf vswprintf
vswscanf vwprintf vwscanf wcscat
wcschr wcscmp wcscoll wcscspn
wcsftime wcslen wcsncat wcsncmp
wcsncpy wcspbrk wcsrchr wcsrtombs
wcsspn wcsstr wcstod wcstof
wcstoimax wcstok wcstol wcstold
wcstoll wcstombs wcstoul wcstoull
wcstoumax wcsxfrm wctob wctomb
wctrans wctype wmemchr wmemcmp
wmemcpy wmemmove wmemset wprintf
wscanf

◦ Auxiliary <math.h> functions:

ilogb ilogbf ilogbl
lgamma lgammaf lgammal
logb logbf logbl
nextafter nextafterf nextafterl
nexttoward nexttowardf nexttowardl

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

◦ Functions relating to program startup and shutdown and other OS interaction:

_Exit atexit exit
system time

• Microlib does not support C++.

• Microlib does not support operating system functions.

• Microlib does not support position independent code.

• Microlib does not provide mutex locks to guard against code that is not thread-safe.

• Microlib does not support wide characters or multibyte strings.

• Microlib does not support the bit-aligned memory functions _membitcpy[b|h|w][b|l]() and
membitmove[b|h|w][b|l]().

• Microlib can be used only with the armclang command-line option -ffp-mode=fast.

• The level of ANSI C stdio support that is provided can be controlled with __asm(".global
__use_full_stdio\n\t").

• __asm(".global __use_smaller_memcpy\n\t") selects a smaller, but slower, version of
memcpy().

• setvbuf() and setbuf() always fail because all streams are unbuffered.

• feof() and ferror() always return 0 because the error and EOF indicators are not supported.

• Microlib has no support in AArch64 state.

• When compiling a program that uses the microlib character classification functions in ctype.h,
if the variable to classify does not represent an ASCII character, the behavior of these functions
is undefined.

• Microlib provides its own integer division routine, which is optimized for code size. However it
is possible to select the standard C library routine instead, which is optimized for performance.
To use the standard C library integer division with microlib, use either of the following methods:

◦ IMPORT __use_standardlib_division from assembly language.

◦ __asm(".global __use_standard_division\n\t") from C.

2.3 ISO C features missing from microlib
Microlib does not support all ISO C90 features.

Major ISO C90 features not supported by microlib are:

Wide character and multibyte support
All functions dealing with wide characters or multibyte strings are not supported by microlib.
A link error is generated if these are used. For example, mbtowc(), wctomb(), mbstowcs(), and
wcstombs(). All functions defined in Normative Addendum 1 are not supported by microlib.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The Arm C Micro-library

Operating system interaction
Almost all functions that interact with an operating system are not supported by microlib. For
example, abort(), exit(), atexit(), assert(), time(), system(), and getenv(). An exception
is clock(). A minimal implementation of clock() has been provided, which returns only -1,
not the elapsed time. You may reimplement clock() (and _clock_init(), which it needs), if
required.

File I/O
By default, all the stdio functions that interact with a file pointer return an error if called. The
only exceptions to this are the three standard streams stdin, stdout, and stderr.

You can change this behavior using __asm(".global __use_full_stdio\n\t"). Use of this
assembler directive provides a microlib version of stdio that supports ANSI C, with only the
following exceptions:

• The error and EOF indicators are not supported, so feof() and ferror() return 0.

• All streams are unbuffered, so setvbuf() and setbuf() fail.

Configurable locale
The default C locale is the only one available.

Signals
The functions signal() and raise() are provided but microlib does not generate signals. The
only exception to this is if the program explicitly calls raise().

Floating-point support
Floating-point support diverges from IEEE 754 in the following ways, but uses the same data
formats and matches IEEE 754 in operations involving only normalized numbers:

• Operations involving NaNs, infinities or input denormals produce indeterminate results.
Operations that produce a result that is nonzero but very small in value, return zero.

• IEEE exceptions cannot be flagged by microlib, and there is no fp_status() register in
microlib.

• The sign of zero is not treated as significant by microlib, and zeroes that are output from
microlib floating-point arithmetic have an unknown sign bit.

• Only the default rounding mode is supported.

Position independent and thread-safe code
Microlib has no reentrant variant. Microlib does not provide mutex locks to guard against
code that is not thread-safe. Use of microlib is not compatible with position independent
compilation modes.

Although ROPI code can be linked with microlib, the resulting binary is not ROPI-compliant
overall.

Command-line arguments
In main, argc, and argv parameters are undefined and cannot be used to access command-
line arguments.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3. Floating-point Support
The Arm floating-point (FP) environment is an implementation of the IEEE 754-1985 standard for
binary floating-point arithmetic. However, there is no guarantee that armclang generates floating-
point exceptions in compliance with the IEEE 754-1985 standard when compiling C/C++ code.

The underlying library system is IEEE 754:1985 compliant, at least if you use the -ffp-mode=full
model that enables all the optional features. Therefore, if you write floating-point code in assembly
language, it behaves as you expect. But if you write your floating-point code in C, compiler
optimizations might affect which exceptions you get.

Software floating-point is supported for AArch32 state, but is not available for
AArch64 state.

An Arm system might have:

• A VFP coprocessor.

• No floating-point hardware.

If you compile for a system with a hardware VFP coprocessor, the Arm® Compiler for Embedded
makes use of it. If you compile for a system without a coprocessor, the compiler implements the
computations in software. For example, the compiler option -mfloat-abi=hard selects a hardware
VFP coprocessor and the option -mfloat-abi=soft specifies that arithmetic operations are to be
performed in software, without the use of any coprocessor instructions.

In Arm Compiler for Embedded 6, there is no command-line option to exclude both
hardware and software floating-point computations. If the compiler encounters
floating-point types in the source code, it uses software-based floating-point library
functions.

Floating-point considerations:

• The Arm C libraries can avoid using floating-point instructions in non-FP builds for the
following:

◦ A-profile targets in AArch32 state only.

◦ R-profile targets in AArch32 state only.

◦ M-profile targets.

• You must check third-party libraries distributed in binary form with the vendor. Arm Compiler
for Embedded cannot detect floating-point instructions in such libraries.

Behavior of nextafter() in Arm Compiler for Embedded
The Arm C and C++ libraries implement the IEEE 754 standard for nextafter(). Therefore, when x
= y, nextafter(x,y) returns x. Also, comparisons ignore the sign of zero. Therefore, +0 = -0.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Example: Non-floating-point build for Cortex-A9 target
1. Create the file float.c containing the following code:

float add(float a, float b)
{
 return a + b;
}

2. Compile with the command:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a9 -O1 -S float.c

The following assembly code is generated in float.s, which includes the FP instructions vmov
and vadd:

 ...
add:
 .fnstart
 .cfi_sections .debug_frame
 .cfi_startproc
@ %bb.0:
 vmov s0, r1
 vmov s2, r0
 vadd.f32 s0, s2, s0
 vmov r0, s0
 bx lr
 ...

3. Compile again with the command:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a9+nofp -O1 -S float.c

The following assembly code is generated in float.s, this time without any floating-point
instructions:

 ...
add:
 .fnstart
 .cfi_sections .debug_frame
 .cfi_startproc
@ %bb.0:
 .save {r11, lr}
 push {r11, lr}
 ...
 bl __aeabi_fadd
 pop {r11, pc}
 ...

In this case, the assembler calls the software floating-point library routine __aeabi_fadd.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3.1 Controlling the Arm floating-point environment
The Arm compilation tools supply several different interfaces to the floating-point environment, for
compatibility and porting ease.

These interfaces enable you to change the rounding mode, enable and disable trapping of
exceptions, and install your own custom exception trap handlers.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

Related information
Floating-point functions for compatibility with Microsoft products on page 121
C99-compatible functions for controlling the Arm floating-point environment on page 121
Arm floating-point compiler extensions to the C99 interface on page 127
__ieee_status() on page 204
__fp_status() on page 201

3.1.1 Floating-point functions for compatibility with Microsoft products

Functions defined in float.h give compatibility with Microsoft products to ease porting of floating-
point code to the Arm® architecture.

These functions require you to select a floating-point model that supports exceptions. In Arm
Compiler for Embedded 6, this floating-point model is disabled by default, and can be enabled by
the armclang command-line option -ffp-mode=full. However, compiler optimizations can prevent
floating-point exceptions from being generated. You can still use the float.h functions, but you
might observe unexpected floating-point exception behavior in instances where an optimization
has removed a floating-point operation that it considers unnecessary.

Related information
Controlling the Arm floating-point environment on page 120
_clearfp() on page 199
_controlfp() on page 200
_statusfp() on page 207

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3.1.2 C99-compatible functions for controlling the Arm floating-point
environment

The compiler supports all functions defined in the C99 standard, and functions that are not C99-
standard.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler for Embedded 6 this floating-point model is disabled by default. To
enable it, use the armclang command-line option -ffp-mode=full.

The C99-compatible functions are the only interface that enables you to install custom exception
trap handlers with the ability to define your own return value. All the function prototypes, data
types, and macros for this functionality are defined in fenv.h.

C99 defines two data types, fenv_t and fexcept_t. The C99 standard does not give information
about these types, so for portable code you must treat them as opaque. The compiler defines them
to be structure types.

The type fenv_t is defined to hold all the information about the current floating-point environment.
This comprises:

• The rounding mode.

• The exception sticky flags.

• Whether each exception is masked.

• What handlers are installed, if any.

The type fexcept_t is defined to hold all the information relevant to a given set of exceptions.

Related information
Controlling the Arm floating-point environment on page 120
C99 rounding mode and floating-point exception macros on page 122
Exception flag handling on page 123
Functions for handling rounding modes on page 124
Functions for saving and restoring the whole floating-point environment on page 125
Functions for temporarily disabling exceptions on page 126
Arm floating-point compiler extensions to the C99 interface on page 127

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3.1.3 C99 rounding mode and floating-point exception macros

C99 defines a macro for each rounding mode and each exception

The following functionality requires a floating-point model that supports exceptions.
In Arm® Compiler for Embedded 6 this floating-point model is disabled by default.
To enable it, use the armclang command-line option -ffp-mode=full.

The C99 rounding mode and exception macros are:

• FE_DIVBYZERO

• FE_INEXACT

• FE_INVALID

• FE_OVERFLOW

• FE_UNDERFLOW

• FE_ALL_EXCEPT

• FE_DOWNWARD

• FE_TONEAREST

• FE_TOWARDZERO

• FE_UPWARD

The exception macros are bit fields. The macro FE_ALL_EXCEPT is the bitwise OR of all of them.

Related information
Functions for handling rounding modes on page 124
C99-compatible functions for controlling the Arm floating-point environment on page 121

3.1.4 Exception flag handling

The feclearexcept(), fetestexcept(), and feraiseexcept() functions let you clear, test and raise
exceptions. The fegetexceptflag() and fesetexceptflag() functions let you save and restore
information about a given exception.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler for Embedded 6 this floating-point model is disabled by default. To
enable it, use the armclang command-line option -ffp-mode=full.

C99 defines these functions as follows:

void feclearexcept(int excepts);

int fetestexcept(int excepts);

void feraiseexcept(int excepts);

The feclearexcept() function clears the sticky flags for the given exceptions. The fetestexcept()
function returns the bitwise OR of the sticky flags for the given exceptions, so that if the
Overflow flag was set but the Underflow flag was not, then calling fetestexcept(FE_OVERFLOW|
FE_UNDERFLOW) would return FE_OVERFLOW.

The feraiseexcept() function raises the given exceptions, in unspecified order. If an exception trap
is enabled for an exception raised this way, it is called.

C99 also provides functions to save and restore all information about a given exception. This
includes the sticky flag, whether the exception is trapped, and the address of the trap handler, if
any. These functions are:

void fegetexceptflag(fexcept_t *flagp, int excepts);

void fesetexceptflag(const fexcept_t *flagp, int excepts);

The fegetexceptflag() function copies all the information relating to the given exceptions into the
fexcept_t variable provided. The fesetexceptflag() function copies all the information relating to
the given exceptions from the fexcept_t variable into the current floating-point environment.

You can use fesetexceptflag() to set the sticky flag of a trapped exception to 1
without calling the trap handler, whereas feraiseexcept() calls the trap handler for
any trapped exception.

Related information
C99-compatible functions for controlling the Arm floating-point environment on page 121

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3.1.5 Functions for handling rounding modes

The fegetround() and fesetround functions let you get and set the current rounding mode.

The following functionality requires a floating-point model that supports exceptions.
In Arm® Compiler for Embedded 6 this floating-point model is disabled by default.
To enable it, use the armclang command-line option -ffp-mode=full.

C99 defines these functions as follows:

int fegetround(void);

int fesetround(int round);

The fegetround() function returns the current rounding mode. The current rounding mode has a
value equal to one of the C99 rounding mode macros or exceptions.

The fesetround() function sets the current rounding mode to the value provided. fesetround()
returns zero for success, or nonzero if its argument is not a valid rounding mode.

Related information
C99 rounding mode and floating-point exception macros on page 122
C99-compatible functions for controlling the Arm floating-point environment on page 121

3.1.6 Functions for saving and restoring the whole floating-point
environment

The fegetenv and fesetenv functions let you save and restore the entire floating-point
environment.

The following functionality requires a floating-point model that supports exceptions.
In Arm® Compiler for Embedded 6 this floating-point model is disabled by default.
To enable it, use the armclang command-line option -ffp-mode=full.

C99 defines these functions as follows:

void fegetenv(fenv_t *envp);

void fesetenv(const fenv_t *envp);

The fegetenv() function stores the current state of the floating-point environment into the fenv_t
variable provided. The fesetenv() function restores the environment from the variable provided.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Like fesetexceptflag(), fesetenv() does not call trap handlers when it sets the sticky flags for
trapped exceptions.

Related information
C99-compatible functions for controlling the Arm floating-point environment on page 121

3.1.7 Functions for temporarily disabling exceptions

The feholdexcept and feupdateenv functions let you temporarily disable exception trapping.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler for Embedded 6 this floating-point model is disabled by default. To
enable it, use the armclang command-line option -ffp-mode=full.

These functions let you avoid risking exception traps when executing code that might cause
exceptions. This is useful when, for example, trapped exceptions are using the Arm default
behavior. The default is to cause SIGFPE and terminate the application.

int feholdexcept(fenv_t *envp);

void feupdateenv(const fenv_t *envp);

The feholdexcept() function saves the current floating-point environment in the fenv_t variable
provided, sets all exceptions to be untrapped, and clears all the exception sticky flags. You can
then execute code that might cause unwanted exceptions, and make sure the sticky flags for
those exceptions are cleared. Then you can call feupdateenv(). This restores any exception traps
and calls them if necessary. For example, suppose you have a function, frob(), that might cause
the Underflow or Invalid Operation exceptions (assuming both exceptions are trapped). You are
not interested in Underflow, but you want to know if an invalid operation is attempted. You can
implement the following code to do this:

fenv_t env;
feholdexcept(&env);
frob();
feclearexcept(FE_UNDERFLOW);
feupdateenv(&env);

Then, if the frob() function raises Underflow, it is cleared again by feclearexcept(), so no trap
occurs when feupdateenv() is called. However, if frob() raises Invalid Operation, the sticky flag is
set when feupdateenv() is called, so the trap handler is invoked.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

This mechanism is provided by C99 because C99 specifies no way to change exception trapping
for individual exceptions. A better method is to use __ieee_status() to disable the Underflow trap
while leaving the Invalid Operation trap enabled. This has the advantage that the Invalid Operation
trap handler is provided with all the information about the invalid operation (that is, what operation
was being performed, and on what data), and can invent a result for the operation. Using the C99
method, the Invalid Operation trap handler is called after the fact, receives no information about
the cause of the exception, and is called too late to provide a substitute result.

Related information
C99-compatible functions for controlling the Arm floating-point environment on page 121

3.1.8 Arm floating-point compiler extensions to the C99 interface

The Arm C library provides some extensions to the C99 interface to enable it to do everything that
the Arm floating-point environment is capable of. This includes trapping and untrapping individual
exception types, and installing custom trap handlers.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler for Embedded 6 this floating-point model is disabled by default. To
enable it, use the armclang command-line option -ffp-mode=full.

The types fenv_t and fexcept_t are not defined by C99 to be anything in particular. Arm Compiler
for Embedded defines them both to be the same structure type.

In AArch32 state, fenv_t and fexcept_t have the following structure:

typedef struct{
 unsigned __statusword;
 __ieee_handler_t __invalid_handler;
 __ieee_handler_t __divbyzero_handler;
 __ieee_handler_t __overflow_handler;
 __ieee_handler_t __underflow_handler;
 __ieee_handler_t __inexact_handler;
} fenv_t, fexcept_t;

The members of this structure are:

• __statusword, the same status variable that the function __ieee_status() sees, laid out in the
same format.

• Five function pointers giving the address of the trap handler for each exception. By default,
each is NULL. This means that if the exception is trapped, the default exception trap action
happens. The default is to cause a SIGFPE signal.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

In AArch64 state, fenv_t and fexcept_t have the following structure:

typedef struct{
 unsigned __statusword;
} fenv_t, fexcept_t;

Related information
Controlling the Arm floating-point environment on page 120
Example of a custom exception handler on page 128
__ieee_status() on page 204
C99-compatible functions for controlling the Arm floating-point environment on page 121

3.1.9 Example of a custom exception handler

This example exception trap handler overrides the division by zero exception to return 1 rather
than an invalid operation exception.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler for Embedded 6 this floating-point model is disabled by default. To
enable it, use the armclang command-line option -ffp-mode=full.

Suppose you are converting some Fortran code into C. The Fortran numerical standard requires 0
divided by 0 to be 1, whereas IEEE 754 defines 0 divided by 0 to be an Invalid Operation and so
by default it returns a quiet NaN. The Fortran code is likely to rely on this behavior, and rather than
modifying the code, it is probably easier to make 0 divided by 0 return 1.

After the handler is installed, dividing 0.0 by 0.0 returns 1.0.

Custom exception handler example
#include <fenv.h>
#include <signal.h>
#include <stdio.h>
__softfp __ieee_value_t myhandler(__ieee_value_t op1, __ieee_value_t op2,
 __ieee_edata_t edata)
{
 __ieee_value_t ret;
 if ((edata & FE_EX_FN_MASK) == FE_EX_FN_DIV)
 {
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_FLOAT)
 {
 if (op1.f == 0.0 && op2.f == 0.0)
 {
 ret.f = 1.0;
 return ret;
 }

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

 }
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_DOUBLE)
 {
 if (op1.d == 0.0 && op2.d == 0.0)
 {
 ret.d = 1.0;
 return ret;
 }
 }
 }
 /* For all other invalid operations, raise SIGFPE as usual */
 raise(SIGFPE);
}
int main(void)
{
 float i, j, k;
 fenv_t env;
 fegetenv(&env);
 env.statusword |= FE_IEEE_MASK_INVALID;
 env.invalid_handler = myhandler;
 fesetenv(&env);
 i = 0.0;
 j = 0.0;
 k = i/j;
 printf("k is %f\n", k);
}

Related information
Arm floating-point compiler extensions to the C99 interface on page 127

3.1.10 Exception trap handling by signals

You can use the SIGFPE signal to handle exceptions.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler for Embedded 6 this floating-point model is disabled by default. To
enable it, use the armclang command-line option -ffp-mode=full.

If an exception is trapped but the trap handler address is set to NULL, a default trap handler is used.

The default trap handler raises a SIGFPE signal. The default handler for SIGFPE prints an error
message and terminates the program.

If you trap SIGFPE, you can declare your signal handler function to have a second parameter
that tells you the type of floating-point exception that occurred. This feature is provided

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

for compatibility with Microsoft products. The values are _FPE_INVALID, _FPE_ZERODIVIDE,
_FPE_OVERFLOW, _FPE_UNDERFLOW and _FPE_INEXACT. They are defined in float.h. For example:

void sigfpe(int sig, int etype)
{
 printf("SIGFPE (%s)\n",
 etype == _FPE_INVALID ? "Invalid Operation" :
 etype == _FPE_ZERODIVIDE ? "Divide by Zero" :
 etype == _FPE_OVERFLOW ? "Overflow" :
 etype == _FPE_UNDERFLOW ? "Underflow" :
 etype == _FPE_INEXACT ? "Inexact Result" :
 "Unknown");
}
signal(SIGFPE, (void(*)(int))sigfpe);

To generate your own SIGFPE signals with this extra information, you can call the function
__rt_raise() instead of the ISO function raise(). For example:

__rt_raise(SIGFPE, _FPE_INVALID);

__rt_raise() is declared in rt_misc.h.

Related information
Example of a custom exception handler on page 128
Exceptions arising from IEEE 754 floating-point arithmetic on page 137
Controlling the Arm floating-point environment on page 120
Arm floating-point compiler extensions to the C99 interface on page 127
C99-compatible functions for controlling the Arm floating-point environment on page 121
__rt_raise() on page 167

3.2 mathlib double and single-precision floating-point
functions

The math library, mathlib, provides double-precision and single-precision functions for
mathematical calculations.

For example, to calculate a cube root, you can use cbrt() (double-precision) or cbrtf() (single-
precision).

ISO/IEC 14882 specifies that in addition to the double versions of the math functions in
<cmath>, C++ adds float (and long double) overloaded versions of these functions. The Arm
implementation extends this in scope to include the additional math functions that do not exist in
C90, but that do exist in C99.

In C++, std::cbrt() on a float argument selects the single-precision version of the function, and
the same type of selection applies to other floating-point functions in C++.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3.3 IEEE 754 arithmetic
The Arm floating-point environment is an implementation of the IEEE 754 standard for binary
floating-point arithmetic.

Related information
Single precision data type for IEEE 754 arithmetic on page 131
Double precision data type for IEEE 754 arithmetic on page 133
IEEE 754 arithmetic and rounding on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 137
Basic data types for IEEE 754 arithmetic on page 131
Sample single precision floating-point values for IEEE 754 arithmetic on page 134
Sample double precision floating-point values for IEEE 754 arithmetic on page 135

3.3.1 Basic data types for IEEE 754 arithmetic

Arm floating-point values are stored in one of two data types, single-precision and double-
precision. In this documentation, they are called float and double, these being the
corresponding C data types.

Related information
Sample single precision floating-point values for IEEE 754 arithmetic on page 134
Sample double precision floating-point values for IEEE 754 arithmetic on page 135
IEEE 754 arithmetic on page 130
Single precision data type for IEEE 754 arithmetic on page 131
Double precision data type for IEEE 754 arithmetic on page 133
IEEE 754 arithmetic and rounding on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 137

3.3.2 Single precision data type for IEEE 754 arithmetic

A float value is 32 bits wide.

The structure is:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Figure 3-1: IEEE 754 single-precision floating-point format

31 23 2230 0

S Exp Frac

The <S> field gives the sign of the number. It is 0 for positive, or 1 for negative.

The <Exp> field gives the exponent of the number, as a power of two. It is biased by 0x7F (127), so
that very small numbers have exponents near zero and very large numbers have exponents near
0xFF (255).

For example:

• If <Exp> = 0x7D (125), the number is between 0.25 and 0.5 (not including 0.5).

• If <Exp> = 0x7E (126), the number is between 0.5 and 1.0 (not including 1.0).

• If <Exp> = 0x7F (127), the number is between 1.0 and 2.0 (not including 2.0).

• If <Exp> = 0x80 (128), the number is between 2.0 and 4.0 (not including 4.0).

• If <Exp> = 0x81 (129), the number is between 4.0 and 8.0 (not including 8.0).

The Frac field gives the fractional part of the number. It usually has an implicit 1 bit on the front
that is not stored to save space.

For example, if <Exp> is 0x7F:

• If <Frac> = 00000000000000000000000 (binary), the number is 1.0.

• If <Frac> = 10000000000000000000000 (binary), the number is 1.5.

• If <Frac> = 01000000000000000000000 (binary), the number is 1.25.

• If <Frac> = 11000000000000000000000 (binary), the number is 1.75.

In general, the numeric value of a bit pattern in this format is given by the formula:

(-1)S * 2(<Exp>-0x7F) * (1 + Frac * 2-23)

Numbers stored in this form are called normalized numbers.

The maximum and minimum exponent values, 0 and 255, are special cases. Exponent 255 can
represent infinity and store Not a Number (NaN) values. Infinity can occur as a result of dividing by
zero, or as a result of computing a value that is too large to store in this format. NaN values are
used for special purposes. Infinity is stored by setting <Exp> to 255 and Frac to all zeros. If <Exp> is
255 and Frac is nonzero, the bit pattern represents a NaN.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Exponent 0 can represent very small numbers in a special way. If <Exp> is zero, then the Frac field
has no implicit 1 on the front. This means that the format can store 0.0, by setting both Exp and
Frac to all 0 bits. It also means that numbers that are too small to store using Exp >= 1 are stored
with less precision than the ordinary 23 bits. These numbers are called denormals.

Related information
IEEE 754 arithmetic on page 130
Double precision data type for IEEE 754 arithmetic on page 133
IEEE 754 arithmetic and rounding on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 137
Basic data types for IEEE 754 arithmetic on page 131
Sample single precision floating-point values for IEEE 754 arithmetic on page 134
Sample double precision floating-point values for IEEE 754 arithmetic on page 135

3.3.3 Double precision data type for IEEE 754 arithmetic

A double value is 64 bits wide.

The structure is:

Figure 3-2: IEEE 754 double-precision floating-point format

63 52 5162 0

S Exp Frac

As with single-precision float data types, S is the sign, Exp the exponent, and Frac the fraction.
Most of the detail of float values remains true for double values, except that:

• The Exp field is biased by 0x3FF (1023) instead of 0x7F, so numbers between 1.0 and 2.0 have
an Exp field of 0x3FF.

• The Exp value representing infinity and NaNs is 0x7FF (2047) instead of 0xFF.

Related information
IEEE 754 arithmetic on page 130
Single precision data type for IEEE 754 arithmetic on page 131
IEEE 754 arithmetic and rounding on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 137
Basic data types for IEEE 754 arithmetic on page 131
Sample single precision floating-point values for IEEE 754 arithmetic on page 134
Sample double precision floating-point values for IEEE 754 arithmetic on page 135

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

3.3.4 Sample single precision floating-point values for IEEE 754 arithmetic

Sample float bit patterns, together with their mathematical values.

Table 3-1: Sample single-precision floating-point values

Float value S Exp Frac Mathematical value

0x3F800000 0 0x7F 000...000 1.0

0xBF800000 1 0x7F 000...000 -1.0

0x3F800001 [1] 0 0x7F 000...001 1.000 000 119

0x3F400000 0 0x7E 100...000 0.75

0x00800000 [2] 0 0x01 000...000 1.18*10-38

0x00000001 [3] 0 0x00 000...001 1.40*10-45

0x7F7FFFFF [4] 0 0xFE 111...111 3.40*1038

0x7F800000 0 0xFF 000...000 Plus infinity

0xFF800000 1 0xFF 000...000 Minus infinity

0x00000000 [5] 0 0x00 000...000 0.0

0x7FC00000 [6] 0 0xFF 100...000 Quiet NaN

Table notes
[1] The smallest representable number that can be seen to be greater than 1.0. The amount
that it differs from 1.0 is known as the machine epsilon. This amount is 0.000 000 119 in
float, and 0.000 000 000 000 000 222 in double. The machine epsilon gives a rough
idea of the number of significant figures the format can keep track of. float can do six or
seven places. double can do fifteen or sixteen.

[2] The smallest value that can be represented as a normalized number in each format.
Numbers smaller than this can be stored as denormals, but are not held with as much
precision.

[3] The smallest positive number that can be distinguished from zero. This is the absolute
lower limit of the format.

[4] The largest finite number that can be stored. Attempting to increase this number by
addition or multiplication causes overflow and generates infinity (in general).

[5] Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero, is
treated differently by some operations, although the comparison operations (for example ==
and !=) report that the two types of zero are equal.

[6] There are two types of NaNs, signaling NaNs and quiet NaNs. The first bit of Frac
contains 1 for Quiet NaNs and zero for signaling NaNs. The difference is that signaling NaNs
cause an exception when used, whereas quiet NaNs do not. However, in Arm® Compiler for
Embedded 6.17 the behavior in how NaN values are treated when converting or truncating
to float has changed. The signalling bit is not honored, resulting in a quiet NaN value.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Related information
Basic data types for IEEE 754 arithmetic on page 131
Sample double precision floating-point values for IEEE 754 arithmetic on page 135
IEEE 754 arithmetic on page 130
Single precision data type for IEEE 754 arithmetic on page 131
Double precision data type for IEEE 754 arithmetic on page 133
IEEE 754 arithmetic and rounding on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 137

3.3.5 Sample double precision floating-point values for IEEE 754 arithmetic

Sample double bit patterns, together with their mathematical values.

Table 3-2: Sample double-precision floating-point values

Double value S Exp Frac Mathematical value

0x3FF00000 00000000 0 0x3FF 000...000 1.0

0xBFF00000 00000000 1 0x3FF 000...000 -1.0

0x3FF00000 00000001 [1] 0 0x3FF 000...001 1.000 000 000 000 000 222

0x3FE80000 00000000 0 0x3FE 100...000 0.75

0x00100000 00000000 [2] 0 0x001 000...000 2.23*10-308

0x00000000 00000001 [3] 0 0x000 000...001 4.94*10-324

0x7FEFFFFF FFFFFFFF [4] 0 0x7FE 111...111 1.80*10308

0x7FF00000 00000000 0 0x7FF 000...000 Plus infinity

0xFFF00000 00000000 1 0x7FF 000...000 Minus infinity

0x00000000 00000000 [5] 0 0x000 000...000 0.0

0x7FF00000 00000001 0 0x7FF 000...001 Signaling NaN

0x7FF80000 00000000 [6] 0 0x7FF 100...000 Quiet NaN

Table notes
[1] The smallest representable number that can be seen to be greater than 1.0. The amount
that it differs from 1.0 is known as the machine epsilon. This amount is 0.000 000 119 in
float, and 0.000 000 000 000 000 222 in double. The machine epsilon gives a rough
idea of the number of significant figures the format can keep track of. float can do six or
seven places. double can do fifteen or sixteen.

[2] The smallest value that can be represented as a normalized number in each format.
Numbers smaller than this can be stored as denormals, but are not held with as much
precision.

[3] The smallest positive number that can be distinguished from zero. This is the absolute
lower limit of the format.

[4] The largest finite number that can be stored. Attempting to increase this number by
addition or multiplication causes overflow and generates infinity (in general).

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

[5] Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero, is
treated differently by some operations, although the comparison operations (for example ==
and !=) report that the two types of zero are equal.

[6] There are two types of NaNs, signaling NaNs and quiet NaNs. The first bit of Frac
contains 1 for Quiet NaNs and zero for signaling NaNs. The difference is that signaling NaNs
cause an exception when used, whereas quiet NaNs do not. However, in Arm® Compiler for
Embedded 6.17 the behavior in how NaN values are treated when converting or truncating
to float has changed. The signalling bit is not honored, resulting in a quiet NaN value.

Related information
Basic data types for IEEE 754 arithmetic on page 131
Sample single precision floating-point values for IEEE 754 arithmetic on page 134
IEEE 754 arithmetic on page 130
Single precision data type for IEEE 754 arithmetic on page 131
Double precision data type for IEEE 754 arithmetic on page 133
IEEE 754 arithmetic and rounding on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 137

3.3.6 IEEE 754 arithmetic and rounding

IEEE 754 defines different rounding rules to use when calculating arithmetic results.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

Arithmetic is generally performed by computing the result of an operation as if it were stored
exactly (to infinite precision), and then rounding it to fit in the format. Apart from operations whose
result already fits exactly into the format (such as adding 1.0 to 1.0), the correct answer is generally
somewhere between two representable numbers in the format. The system then chooses one of
these two numbers as the rounded result. It uses one of the following methods:

Round to nearest
The system chooses the nearer of the two possible outputs. If the correct answer is exactly
halfway between the two, the system chooses the output where the least significant bit of
Frac is zero. This behavior ("round to nearest, ties to even") prevents various undesirable
effects.

This is the default mode when an application starts up. It is the only mode supported by the
ordinary floating-point libraries. Hardware floating-point environments and the enhanced
floating-point libraries support all four rounding modes.

Round up, or round toward plus infinity
The system chooses the larger of the two possible outputs (that is, the one further from zero
if they are positive, and the one closer to zero if they are negative).

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Round down, or round toward minus infinity
The system chooses the smaller of the two possible outputs (that is, the one closer to zero if
they are positive, and the one further from zero if they are negative).

Round toward zero, or chop, or truncate
The system chooses the output that is closer to zero, in all cases.

Related information
IEEE 754 arithmetic on page 130
Single precision data type for IEEE 754 arithmetic on page 131
Double precision data type for IEEE 754 arithmetic on page 133
Exceptions arising from IEEE 754 floating-point arithmetic on page 137
Basic data types for IEEE 754 arithmetic on page 131
Sample single precision floating-point values for IEEE 754 arithmetic on page 134
Sample double precision floating-point values for IEEE 754 arithmetic on page 135

3.3.7 Exceptions arising from IEEE 754 floating-point arithmetic

Floating-point arithmetic operations can run into various problems. These are known as exceptions,
because they indicate unusual or exceptional situations.

For example, the result computed might be either too big or too small to fit into the format, or
there might be no way to calculate the result (as in trying to take the square root of a negative
number, or trying to divide zero by zero).

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The Arm floating-point environment can handle an exception by inventing a plausible result for the
operation and returning that result, or by trapping the exception.

For example, the square root of a negative number can produce a NaN, and trying to compute a
value too big to fit in the format can produce infinity. If an exception occurs and is ignored, a flag
is set in the floating-point status word to tell you that something went wrong at some time in the
past.

When an exception occurs, a piece of code called a trap handler is run. The system provides a
default trap handler that prints an error message and terminates the application. However, you can
supply your own trap handlers to clean up the exceptional condition in whatever way you choose.
Trap handlers can even supply a result to be returned from the operation.

For example, if you had an algorithm where it was convenient to assume that 0 divided by 0 was
1, you could supply a custom trap handler for the Invalid Operation exception to identify that
particular case and substitute the answer you required.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Related information
Example of a custom exception handler on page 128
Exception trap handling by signals on page 129
Controlling the Arm floating-point environment on page 120
Arm floating-point compiler extensions to the C99 interface on page 127
C99-compatible functions for controlling the Arm floating-point environment on page 121
__rt_raise() on page 167

3.3.8 Exception types recognized by the Arm floating-point environment

The Arm floating-point environment recognizes a number of different types of exception.

The Arm® Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

The following types of exception are recognized:

Invalid Operation exception
This occurs when there is no sensible result for an operation. This can happen for any of the
following reasons:

• Performing any operation on a signaling NaN, except the simplest operations (copying
and changing the sign).

• Adding plus infinity to minus infinity, or subtracting an infinity from itself.

• Multiplying infinity by zero.

• Dividing 0 by 0, or dividing infinity by infinity.

• Taking the remainder from dividing anything by 0, or infinity by anything.

• Taking the square root of a negative number (not including minus zero).

• Converting a floating-point number to an integer if the result does not fit.

• Comparing two numbers if one of them is a NaN.

If the Invalid Operation exception is not trapped, these operations return a quiet NaN. The
exception is conversion to an integer. This returns zero because there are no quiet NaNs in
integers.

Divide by Zero exception
This occurs if you divide a finite nonzero number by zero. Be aware that:

• Dividing zero by zero gives an Invalid Operation exception.

• Dividing infinity by zero is valid and returns infinity.

If Divide by Zero is not trapped, the operation returns infinity.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Overflow exception
This occurs when the result of an operation is too big to fit into the format. This happens,
for example, if you add the largest representable number to itself. The largest float value is
0x7F7FFFFF.

If Overflow is not trapped, the operation returns infinity, or the largest finite number,
depending on the rounding mode.

Underflow exception
This can occur when the result of an operation is too small to be represented as a normalized
number (with Exp at least 1).

The situations that cause Underflow depend on whether it is trapped or not:

• If Underflow is trapped, it occurs whenever a result is too small to be represented as a
normalized number.

• If Underflow is not trapped, it only occurs if the result requires rounding. So, for example,
dividing the float number 0x00800000 by 2 does not signal Underflow, because the
result 0x00400000 is exact. However, trying to multiply the float number 0x00000001 by
1.5 does signal Underflow.

For readers familiar with the IEEE 754 specification, the chosen
implementation options in Arm Compiler for Embedded are to detect
tininess before rounding, and to detect loss of accuracy as an inexact
result.

If Underflow is not trapped, the result is rounded to one of the two nearest representable
denormal numbers, according to the current rounding mode. The loss of precision is
ignored and the system returns the best result it can.

• The Inexact Result exception happens whenever the result of an operation requires
rounding. This would cause significant loss of speed if it had to be detected on every
operation in software, so the ordinary floating-point libraries do not support the Inexact
Result exception. The enhanced floating-point libraries, and hardware floating-point
systems, all support Inexact Result. If Inexact Result is not trapped, the system rounds the
result in the usual way. The flag for Inexact Result is also set by Overflow and Underflow
if either one of those is not trapped.

All exceptions are untrapped by default.

Related information
Exception flag handling on page 123
Example of a custom exception handler on page 128
Exception trap handling by signals on page 129
IEEE 754 arithmetic on page 130
Exceptions arising from IEEE 754 floating-point arithmetic on page 137
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

Sample single precision floating-point values for IEEE 754 arithmetic on page 134
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version

3.3.9 IEEE 754 binary to decimal compliance

It is possible to control the accuracy of conversions between binary and decimal values by
importing symbols. However doing so can result in a difference between compile time and runtime
binary and decimal conversion.

In addition to floating point arithmetic, IEEE 754 also specifies how conversions between
binary floating point values and decimal strings are performed. For example, the binary to
decimal conversions that the printf() function performs. The opposite conversion, from a string
representation of a decimal to a floating point binary value, happens when you use scanf() or
strtod(). Decimal to binary floating point conversion also happens when source code containing a
decimal float literal is compiled.

Unlike normal arithmetic, IEEE 754 permits a small amount of rounding error during these
conversions. However, the standard also stipulates that the same result is obtained whether the
conversion is done at compile time or at runtime.

The compile time conversions performed by armclang are always as accurate as possible. At
runtime, using the same level of accuracy is often not desirable in an embedded application.
Making runtime conversions as accurate as possible has the potential to use a large amount of
stack space and CPU time. Therefore, armclang provides the following symbols to specify the
method of binary to decimal conversion at runtime:

• __use_embedded_btod - a less accurate conversion that uses less memory, and is more suitable
for many embedded applications. Runtime conversions are less accurate than compile time
conversions.

• __use_accurate_btod - a more accurate conversion that uses more memory and is slower.
Runtime conversions match compile time conversions.

If you do not explicitly specify one of these symbols, then the default runtime conversion depends
on the floating point mode specified using the -ffp-mode compiler option:

• -ffp-mode=std, ffp-mode=fast - embedded quality binary to decimal conversions by default.

• -ffp-mode=full - accurate binary to decimal conversions by default.

You can, for example, choose to compile using -ffp-mode=full but specify the
__use_embedded_btod symbol in your code in to reduce the amount of stack space used.

If you do use embedded quality runtime conversion, then the compile time and
runtime accuracy differ, which does not comply with IEEE 754. To comply with this
aspect of IEEE 754, you must use accurate runtime conversions. Either:

• Use the -ffp-mode=full compiler option.

• Specify the __use_accurate_btod symbol in your program.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 218

http://ieeexplore.ieee.org/

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support

The following C program shows an example of using the __use_accurate_btod symbol:

#include <stdio.h>
#include <stdlib.h>

asm(".global __use_accurate_btod\n");

double f(void) { return 1.4846104720181057291e-20 ; }
double g(void) { return atof("1.4846104720181057291e-20"); }

int main(void)
{
 // 0x1.186f5b75e5accp-66 always
 printf("f()=%a\n", f());

 // 0x1.186f5b75e5accp-66 accurate mode
 // 0x1.186f5b75e5acbp-66 embedded mode
 printf("g()=%a\n", g());

 return 0;
}

The values output by printf() for f() and g() are identical because of the __use_accurate_btod
symbol. Without this symbol, the accuracy of the conversion performed at runtime by the atof()
function depends on the -ffp-mode option used.

Related information
-ffp-mode

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-ffp-mode

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4. The C and C++ Library Functions
Reference

The standard C and C++ library functions that are extensions to the C Standard or that differ in
some way to the standard.

Some of the standard functions interact with the Arm retargetable semihosting environment. Such
functions are also documented.

4.1 __aeabi_errno_addr()
The __aeabi_errno_addr() returns the address of the C library errno variable when the C library
attempts to read or write errno.

Syntax
volatile int *__aeabi_errno_addr(void);

Parameters
None.

Returns
Returns the address of the C library errno variable when the C library attempts to read or write
errno.

Operation
The library provides a default implementation. It is unlikely that you have to reimplement this
function.

This function is not part of the C library standard, but the Arm C library supports it as an extension.

Related information
C Library ABI for the Arm Architecture

4.2 alloca()
Declared in alloca.h, the alloca() function allocates local storage in a function. It returns a
pointer to the number of bytes of memory allocated.

Syntax
void *alloca(size_t <size>);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 218

https://github.com/ARM-software/abi-aa/tree/main/clibabi32

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Parameters
<size>

The number of bytes of memory to allocate.

Returns
Returns a pointer to a memory location of size <size> in bytes allocated on the stack.

Operation
The default implementation returns an eight-byte aligned block of memory on the stack.

Memory returned from alloca() must never be passed to free(). Instead, the memory is de-
allocated automatically when the function that called alloca() returns.

alloca() must not be called through a function pointer. You must take care when
using alloca() and setjmp() in the same function, because memory allocated by
alloca() between calling setjmp() and longjmp() is de-allocated by the call to
longjmp().

This function is a common nonstandard extension to many C libraries.

Related information
Arm C libraries and thread-safe functions on page 23
Standalone C library functions on page 55
longjmp() on page 155
setjmp() on page 169

4.3 clock()
This function is the standard C library clock function from time.h.

Syntax
clock_t clock(void);

Parameters
None.

Returns
The returned value is an unsigned integer.

Operation
The default implementation of this function uses semihosting.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

If the units of clock_t differ from the default of centiseconds, you must define __CLK_TCK on the
compiler command line or in your own header file. The value in the definition is used for CLK_TCK
and CLOCKS_PER_SEC. The default value is 100 for centiseconds.

If you reimplement clock() you must also reimplement _clock_init().

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.4 _clock_init()
Declared in rt_misc.h, the _clock_init() function is an initialization function for clock(). It is not
part of the C library standard, but the Arm C library supports it as an extension.

Syntax
void _clock_init(void);

Parameters
None.

Returns
None.

Operation
You can reimplement this function in an implementation-specific way. It is called from the library
initialization code, so that you do not have to call it from your application code.

You must reimplement this function if you reimplement clock().

The initialization that _clock_init() applies enables clock() to return the time that has elapsed
since the program was started.

An example of how you might reimplement _clock_init() might be to set the timer to zero.
However, if your implementation of clock() relies on a system timer that cannot be reset, then
_clock_init() could instead read the time at startup (when called from the library initialization

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

code), with clock() subsequently subtracting the time that was read at initialization, from the
current value of the timer. In both cases, some form of initialization is required of _clock_init().

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.5 __default_signal_handler()
Declared in rt_misc.h, the __default_signal_handler() function handles a raised signal. The
default action is to print an error message and exit.

This function is not part of the C library standard, but the Arm C library supports it as an extension.

Syntax
int __default_signal_handler(int <signal>, intptr_t <type>);

Parameters
<signal>

An integer that holds the signal number.

<type>

An integer, string constant, or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Returns
The default signal handler returns a nonzero value to indicate that the caller has to arrange for the
program to exit.

Operation
You can replace the default signal handler by defining:

int __default_signal_handler(int <signal>, intptr_t <type>);

The interface is the same as __raise(), but this function is only called after the C signal handling
mechanism has declined to process the signal.

A complete list of the defined signals is in signal.h.

The signals used by the libraries might change in future releases of Arm® Compiler
for Embedded.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Related information
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100

4.6 errno
The C library errno variable is defined in the implicit static data area of the library. This area is
identified by __user_libspace().

Syntax
(*(volatile int *) __aeabi_errno_addr())

Parameters
None.

Returns
The return value is a pointer to a variable of type int, containing the currently applicable instance of
errno.

Operation
You can define __aeabi_errno_addr() if you want to place errno at a user-defined location instead
of the default location identified by __user_libspace().

Legacy versions of errno.h might define errno in terms of __rt_errno_addr()
rather than __aeabi_errno_addr(). The function name __rt_errno_addr() is a
legacy from pre-ABI versions of the tools, and is still supported to ensure that
object files generated with those tools link successfully.

Related information
__aeabi_errno_addr() on page 142
Use of the __user_libspace static data area by the C libraries on page 25

4.7 _findlocale()
Declared in rt_locale.h, _findlocale() searches a set of contiguous locale data blocks for the
requested locale, and returns a pointer to that locale. This function is not part of the C library
standard, but the Arm C library supports it as an extension.

Syntax
void const *_findlocale(void const *<index>, const char *<name>);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Parameters
<index>

A pointer to a set of locale data blocks that are contiguous in memory and that end with a
terminating value. The terminating value is set by the LC_index_end macro.

<name>

The name of the locale to find.

Returns
Returns a pointer to the requested data block.

Operation
You can use _findlocale() as an optional helper function when defining your own locale setup.

The _get_lc_*() functions, for example, _get_lc_ctype(), are expected to return a pointer
to a locale definition created using the assembler macros. If you only want to write one locale
definition, you can write an implementation of _get_lc_ctype() that always returns the same
pointer. However, if you want to use different locale definitions at runtime, then the _get_lc_*()
functions have to be able to return a different data block depending on the name passed to them
as an argument. _findlocale() provides an easy way to do this.

Related information
Assembler macros that tailor locale functions in the C library on page 67
Link time selection of the locale subsystem in the C library on page 67
Runtime selection of the locale subsystem in the C library on page 69
Definition of locale data blocks in the C library on page 69

4.8 _fisatty()
Declared in stdio.h, the _fisatty() function determines whether the given stdio stream is
attached to a terminal device or a normal file. This function is not part of the C library standard, but
the Arm C library supports it as an extension.

Syntax
int _fisatty(FILE *<stream>);

Parameters
<stream>

A stdio stream destination.

Returns
The return value indicates the stream destination:

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

0

A file.

1

A terminal.

Negative
An error.

Operation
This function calls the _sys_istty() low-level function on the underlying file handle.

Related information
_sys_istty() on page 178

4.9 _get_lconv()
Declared in locale.h, _get_lconv() performs the same function as the standard C library function,
localeconv(), except that it delivers the result in user-provided memory instead of an internal
static variable.

Syntax
void _get_lconv(struct lconv *<lc>);

Parameters
<lc>

An lconv structure. _get_lconv() sets the components of an lconv structure with values
appropriate for the formatting of numeric quantities.

Returns
The existing lconv structure <lc> is filled with formatting data.

Operation
This extension to the ISO C library does not use any static data. If you are building an application
that must conform strictly to the ISO C standard, use localeconv() instead.

Related information
_findlocale() on page 146
lconv structure on page 152
localeconv() on page 154
setlocale() on page 170

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.10 getenv()
This function is the standard C library getenv() function from stdlib.h. It gets the value of a
specified environment variable.

Syntax
char *getenv(const char *<name>);

Parameters
<name>

The name of an environment variable to get the value of.

Returns
The return value is a pointer to a string associated with the matched list member. The array
pointed to must not be modified by the program, but might be overwritten by a subsequent call to
getenv().

Operation
The default implementation returns NULL, indicating that no environment information is available.

If you reimplement getenv(), we recommend that you reimplement it in such a way that it searches
some form of environment list for the input string, <name>. The set of environment names and the
method for altering the environment list are implementation-defined. getenv() does not depend on
any other function, and no other function depends on getenv().

A function closely associated with getenv() is _getenv_init(). _getenv_init() is called during
startup if it is defined, to enable a user reimplementation of getenv() to initialize itself.

4.11 _getenv_init()
Declared in rt_misc.h, the _getenv_init() function enables a user version of getenv() to initialize
itself. This function is not part of the C library standard, but the Arm C library supports it as an
extension.

Syntax
void _getenv_init(void);

Parameters
None.

Returns
None.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Operation
If this function is defined, the C library initialization code calls it when the library is initialized, that
is, before main() is entered.

4.12 __heapstats()
Declared in stdlib.h, the __heapstats() function displays statistics on the state of the storage
allocation heap. This function is not part of the C library standard, but the Arm C library supports it
as an extension.

Syntax
void __heapstats(int (*<dprint>)(void *<param>, char const *<format>,...), void
 *<param>);

Parameters
<dprint>

An output function that is to output the results.

<param>

A pointer to an extra data word to pass to <dprint>.

<format>

The format specifier for the output.

Returns
None.

Operation
The default implementation in the compiler gives information on how many free blocks exist, and
estimates their size ranges.

The __heapstats() function generates output as follows:

32272 bytes in 2 free blocks (avge size 16136)
1 blocks 2^12+1 to 2^13
1 blocks 2^13+1 to 2^14

Line 1 of the output displays the total number of bytes, the number of free blocks, and the average
size. The following lines give an estimate of the size of each block in bytes, expressed as a range.
__heapstats() does not give information on the number of used blocks.

The function outputs its results by calling the output function dprint(), that must work like
fprintf(). The first parameter passed to dprint() is the supplied pointer <param>. You can pass

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

fprintf() itself, provided you cast it to the right function pointer type. This type is defined as a
typedef for convenience. It is called __heapprt. For example:

__heapstats((__heapprt)fprintf, stderr);

If you call fprintf() on a stream that you have not already sent output to, the
library calls malloc() internally to create a buffer for the stream. If this happens in
the middle of a call to __heapstats(), the heap might be corrupted. Therefore, you
must ensure you have already sent some output to stderr.

If you are using the default one-region memory model, heap memory is allocated only as it is
required. This means that the amount of free heap changes as you allocate and deallocate memory.
For example, the sequence:

int *ip;
__heapstats((__heapprt)fprintf,stderr); // print initial free heap size
ip = malloc(200000);
free(ip);
__heapstats((__heapprt)fprintf,stderr); // print heap size after freeing

gives output such as:

4076 bytes in 1 free blocks (avge size 4076)
1 blocks 2^10+1 to 2^11
2008180 bytes in 1 free blocks (avge size 2008180)
1 blocks 2^19+1 to 2^20

4.13 __heapvalid()
Declared in stdlib.h, the __heapvalid() function performs a consistency check on the heap. This
function is not part of the C library standard, but the Arm C library supports it as an extension.

Syntax
int __heapvalid(int (*<dprint>)(void *<param>, char const *<format>,...), void
 *<param>, int <verbose>);

Parameters
<dprint>

An output function that is to output the results.

<param>

A pointer to an extra data word to pass to <dprint>.

<format>

The format specifier for the output.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

<verbose>

If the <verbose> parameter is nonzero, __heapvalid() outputs full information about every
free block. Otherwise, it only outputs errors.

Returns
The returned value is an integer, where 0 indicates the heap is not valid.

Operation
This function assumes a single contiguous block of memory for the heap. If you use the
__rt_heap_extend() function to add a non-contiguous block of memory to the heap, then you
must not use __heapvalid().

The function outputs its results by calling the output function dprint(), that must work like
fprintf(). The first parameter passed to dprint() is the supplied pointer <param>. You can pass
fprintf() itself, provided you cast it to the right function pointer type. This type is defined as a
typedef for convenience. It is called __heapprt.

The following example shows how to use __heapvalid():

int IsVerbose = 0;
fprintf(stderr, "fprintf called on stderr prior to use with __heapvalid\n");

if(!__heapvalid((__heapprt) fprintf, stderr, IsVerbose))
{
 /* handle invalid heap, for example by exiting */
}

If you call fprintf() on a stream that you have not already sent output to, the
library calls malloc() internally to create a buffer for the stream. If the malloc()
happens in the middle of a call to __heapvalid(), the heap might be corrupted.
Therefore, you must ensure you have already sent some output to the stream used.
That is, stderr in this example.

Related information
__rt_heap_extend() on page 165

4.14 lconv structure
Defined in locale.h, the lconv structure contains numeric formatting information.

The structure is filled by the functions _get_lconv() and localeconv().

The definition of lconv from locale.h is as follows.

struct lconv {
 char *decimal_point;
 /* The decimal point character used to format non monetary quantities */

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

 char *thousands_sep;
 /* The character used to separate groups of digits to the left of the */
 /* decimal point character in formatted non monetary quantities. */
 char *grouping;
 /* A string whose elements indicate the size of each group of digits */
 /* in formatted non monetary quantities. See below for more details. */
 char *int_curr_symbol;
 /* The international currency symbol applicable to the current locale.*/
 /* The first three characters contain the alphabetic international */
 /* currency symbol in accordance with those specified in ISO 4217. */
 /* Codes for the representation of Currency and Funds. The fourth */
 /* character (immediately preceding the null character) is the */
 /* character used to separate the international currency symbol from */
 /* the monetary quantity. */
 char *currency_symbol;
 /* The local currency symbol applicable to the current locale. */
 char *mon_decimal_point;
 /* The decimal point used to format monetary quantities. */
 char *mon_thousands_sep;
 /* The separator for groups of digits to the left of the decimal point*/
 /* in formatted monetary quantities. */
 char *mon_grouping;
 /* A string whose elements indicate the size of each group of digits */
 /* in formatted monetary quantities. See below for more details. */
 char *positive_sign;
 /* The string used to indicate a non negative-valued formatted */
 /* monetary quantity. */
 char *negative_sign;
 /* The string used to indicate a negative-valued formatted monetary */
 /* quantity. */
 char int_frac_digits;
 /* The number of fractional digits (those to the right of the */
 /* decimal point) to be displayed in an internationally formatted */
 /* monetary quantities. */
 char frac_digits;
 /* The number of fractional digits (those to the right of the */
 /* decimal point) to be displayed in a formatted monetary quantity. */
 char p_cs_precedes;
 /* Set to 1 or 0 if the currency_symbol respectively precedes or */
 /* succeeds the value for a non negative formatted monetary quantity. */
 char p_sep_by_space;
 /* Set to 1 or 0 if the currency_symbol respectively is or is not */
 /* separated by a space from the value for a non negative formatted */
 /* monetary quantity. */
 char n_cs_precedes;
 /* Set to 1 or 0 if the currency_symbol respectively precedes or */
 /* succeeds the value for a negative formatted monetary quantity. */
 char n_sep_by_space;
 /* Set to 1 or 0 if the currency_symbol respectively is or is not */
 /* separated by a space from the value for a negative formatted */
 /* monetary quantity. */
 char p_sign_posn;
 /* Set to a value indicating the position of the positive_sign for a */
 /* non negative formatted monetary quantity. See below for more details*/
 char n_sign_posn;
 /* Set to a value indicating the position of the negative_sign for a */
 /* negative formatted monetary quantity. */
};

The elements of grouping and mon_grouping are interpreted as follows:

CHAR_MAX

No additional grouping is to be performed.

0

The previous element is repeated for the remainder of the digits.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

other
The value is the number of digits that comprise the current group. The next element is
examined to determine the size of the next group of digits to the left of the current group.

The value of p_sign_posn and n_sign_posn are interpreted as follows:

0

Parentheses surround the quantity and currency symbol.

1

The sign string precedes the quantity and currency symbol.

2

The sign string is after the quantity and currency symbol.

3

The sign string immediately precedes the currency symbol.

4

The sign string immediately succeeds the currency symbol.

Related information
_findlocale() on page 146
_get_lconv() on page 148
localeconv() on page 154
setlocale() on page 170

4.15 localeconv()
Declared in stdlib.h, localeconv() creates and sets the components of an lconv structure with
values appropriate for the formatting of numeric quantities according to the rules of the current
locale.

Syntax
struct lconv *localeconv(void);

Parameters
None.

Returns
The function returns a pointer to the filled-in object. The structure pointed to by the return value
is not modified by the program, but might be overwritten by a subsequent call to the localeconv()
function. In addition, calls to the setlocale() function with categories LC_ALL, LC_MONETARY, or
LC_NUMERIC might overwrite the contents of the structure.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Operation
The members of the structure with type char * are strings. Any of these, except for
decimal_point, can point to an empty string, "", to indicate that the value is not available in the
current locale or is of zero length.

The members with type char are non-negative numbers. Any of the members can be CHAR_MAX to
indicate that the value is not available in the current locale.

This function is not thread-safe, because it uses an internal static buffer. _get_lconv() provides a
thread-safe alternative.

Related information
_findlocale() on page 146
lconv structure on page 152
_get_lconv() on page 148
setlocale() on page 170

4.16 longjmp()
Declared in setjmp.h, the longjmp() function restores the registers saved by the most recent call
to setjmp() in the same invocation of the program, with the corresponding jmp_buf argument.

Syntax
void longjmp(jmp_buf <env>, int <val>)

Parameters
<env>

The buffer that contains the registers that are stored by the setjmp() function.

<val>

The value to return from setjmp(). If it is equal to 0, then setjmp() returns the value 1.

Operation
longjmp() restores the set of registers pointed to by the <env> parameter. The following table
shows the registers that are restored for AArch64 state and AArch32 state by this function:

Architecture Restored registers1

AArch64 state2 X18-X29, SP, D8-D15

AArch32 state with VFP3 R4-R11, SP, D8-D15

AArch32 state without VFP3 R4-R11, SP

Table notes
1 Although LR is restored, there is no guarantee that the value stored by setjmp() is
preserved.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

2 Storing the X18 register ensures that -fsanitize=shadow-call-stack works correctly with
the setjmp() and longjmp() functions. If the platform uses X18 to store a program-wide
value, such as a pointer to a shared memory buffer, then the program must be aware that
longjmp() restores the value of X18 to the value when calling setjmp(). If the value in X18
has changed since the call to setjmp(), then this restore might cause a problem.

3 For Arm®v8-M, if you enable Pointer Authentication Codes (PAC) branch protection with the
-mbranch-protection=<protection> option, then longjmp() also restores R12 (IP).

The behavior is undefined in the following cases:

• There has been no call to setjmp().

• The function containing the call to setjmp() terminated execution, for example with a return
statement, before longjmp() could restore the registers.

All accessible objects have values at the time longjmp() is called. However, the values of objects of
automatic storage duration that do not have the volatile type and have changed between the
setjmp() and longjmp() calls cannot be determined.

Because the longjmp() function bypasses the usual function call and return mechanism, the
function executes correctly in contexts of interrupts, signals, and any of their associated functions.
However, if the longjmp() function is invoked from a nested signal handler, the behaviour is
undefined. A nested signal handler invokes a function as a result of a signal raised during the
handling of another signal.

Related information
alloca() on page 142
setjmp() on page 169
-ffixed-x18
-fsanitize, -fno-sanitize

4.17 _membitcpybl(), _membitcpybb(), _membitcpyhl(),
_membitcpyhb(), _membitcpywl(), _membitcpywb(),
_membitmovebl(), _membitmovebb(),
_membitmovehl(), _membitmovehb(),
_membitmovewl(), _membitmovewb()

Similar to the standard C library memcpy() and memmove() functions. Declared in string.h, these
nonstandard C library functions provide bit-aligned memory operations.

Syntax
void _membitcpy[b|h|w][b|l](void *<dest>, const void *<src>, int <dest_offset>, int
 <src_offset>, size_t <nbits>);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-ffixed-x18
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fsanitize---fno-sanitize

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

void _membitmove[b|h|w][b|l](void *<dest>, const void *<src>, int <dest_offset>, int
 <src_offset>, size_t <nbits>);

Parameters
<dest>

The destination memory location.

<src>

The source memory location.

<dest_offset>

An offset from the destination memory location <dest>:

• If positive, the offset is after the destination memory location.

• If negative, the offset is before the destination memory location.

<src_offset>

An offset from the source memory location <src>:

• If positive, the offset is after the source memory location.

• If negative, the offset is before the source memory location.

<nbits>

The number of contiguous bits to copy.

Returns
None.

Operation
To define a contiguous sequence of bits, a form of ordering is required. The variants of each
function define this order, as follows:

• Functions whose second-last character is b, for example _membitcpybl(), are byte-oriented.
Byte-oriented functions consider all of the bits in one byte to come before the bits in the next
byte.

• Functions whose second-last character is h are halfword-oriented.

• Functions whose second-last character is w are word-oriented.

Within each byte, halfword, or word, the bits can be considered to go in different order depending
on the endianness. Functions ending in b, for example _membitmovewb(), are bitwise big-endian.
This means that the Most Significant Bit (MSB) of each byte, halfword, or word (as appropriate) is
considered to be the first bit in the word, and the Least Significant Bit (LSB) is considered to be the
last. Functions ending in l are bitwise little-endian. They consider the LSB to come first and the
MSB to come last.

As with memcpy() and memmove(), the bitwise memory copying functions copy as fast as they can in
their assumption that source and destination memory regions do not overlap, whereas the bitwise
memory move functions ensure that source data in overlapping regions is copied before being
overwritten.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

On a little-endian platform, the bitwise big-endian functions are distinct, but the bitwise little-
endian functions use the same bit ordering, so they are synonymous symbols that refer to the same
function. On a big-endian platform, the bitwise big-endian functions are all effectively the same,
but the bitwise little-endian functions are distinct.

4.18 _platform_pre_stackheap_init()
If defined, _platform_pre_stackheap_init is called by __rt_entry before stack and heap
initialization. Define this function to perform hardware initialization after scatter-loading but before
stack and heap initialization.

Because _platform_pre_stackheap_init is called before the stack initialization, either it must not
use the stack or the SP must already be valid.

Invalidating the Armv8 instruction cache
To invalidate the Arm®v8 instruction cache after scatter-loading and before initialization of the
stack and heap, you must:

• Implement instruction cache invalidation code in _platform_pre_stackheap_init.

• Ensure that all code that is executed from the program entry, up to and including
_platform_pre_stackheap_init, is located in a root region.

Where a processor starts in AArch64 state, then switches to AArch32 state, it is possible that
addresses are speculatively prefetched, and therefore cached, while in AArch64 state. If the MMU
has remained off while in AArch64 state, a processor is allowed to speculatively prefetch from any
address either within:

• The same page as an architecturally executed instruction.

• The following page, where page is the smallest supported granule sizeof for the processor.

If you have AArch64 startup code that switches to AArch32 state to run __main and then run C/C+
+ applications, then the cache invalidation must be done in AArch32 state.

Example
Invalidate caches in AArch64 as follows:

_platform_pre_stackheap_init:
 dsb ish // ensure all previous stores have completed
 // before invalidating
 ic ialluis // I cache invalidate all inner shareable to PoU
 // (which includes secondary cores)
 dsb ish // ensure completion on inner shareable domain
 // (which includes secondary cores)
 isb
 b InvalidateUDCaches // only needed if the MMU is on at this point

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

b is a tail-call to avoid saving the return address.

Related information
__rt_entry on page 162
Placement of code in a root region

4.19 posix_memalign()
Declared in stdlib.h, the posix_memalign() function provides aligned memory allocation. This
function is fully POSIX-compliant.

Syntax
int posix_memalign(void **<memptr>, size_t <alignment>, size_t <size>);

Parameters
<memptr>

A pointer to an aligned memory location.

<alignment>

The alignment, which must be a power of two and a multiple of sizeof(void *).

<size>

The number of bytes of memory to allocate, and must be a multiple of <alignment>.

Returns
The returned address is written to the void * variable pointed to by <memptr>.

The integer return value from the function is zero on success, or an error code on failure.

If no block of memory can be found with the requested size and alignment, the function returns
ENOMEM and the value of *<memptr> is undefined.

Operation
You can free memory allocated by posix_memalign() using the standard C library free() function.

Related information
The Open Group Base Specifications, IEEE Std 1003.1

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 218

https://developer.arm.com/documentation/101754/0623/armlink-Reference/Scatter-loading-Features/Placement-of-Arm-C-and-C---library-code/Placement-of-code-in-a-root-region
http://www.opengroup.org

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.20 __raise()
Declared in rt_misc.h, the __raise() function raises a signal to indicate a runtime anomaly. It is
not part of the C library standard, but the Arm C library supports it as an extension.

Syntax
int __raise(int <signal>, intptr_t <type>);

Parameters
<signal>

An integer that holds the signal number.

<type>

An integer, string constant, or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Returns
There are three possibilities for a __raise() return condition:

no return
The handler performs a long jump or restart.

0

The signal was handled.

nonzero
The calling code must pass that return value to the exit code. The default library
implementation calls _sys_exit(rc) if __raise() returns a nonzero return code <rc>.

Operation
If the user has configured the handling of the signal by calling signal(), then __raise() takes the
action specified by the user. That is, either to ignore the signal or to call the user-provided handler
function. Otherwise, __raise() calls __default_signal_handler(), which provides the default
signal handling behavior.

You can replace the __raise() function by defining:

int __raise(int signal, intptr_t type);

This enables you to bypass the C signal mechanism and its data-consuming signal handler vector,
but otherwise gives essentially the same interface as:

int __default_signal_handler(int signal, intptr_t type);

The default signal handler of the library uses the <type> parameter of __raise() to vary the
messages it outputs.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Related information
Thread safety in the Arm C library on page 31
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100

4.21 _rand_r()
Declared in stdlib.h, the _rand_r() function is a reentrant version of the rand() function. It
calculates a sequence of pseudo-random integers in the range 0 to RAND_MAX.

Syntax
int _rand_r(struct _rand_state *<buffer>);

Parameters
<buffer>

A pointer to a user-supplied buffer storing the state of the random number generator.

Returns
Returns a pseudo-random integer.

Operation
This function enables you to explicitly supply your own buffer in thread-local storage.

Related information
_srand_r() on page 171

4.22 remove()
This function is the standard C library remove() function from stdio.h.

Syntax
int remove(const char *<filename>);

Parameters
<filename>

The file to remove.

Returns
Returns zero if the operation succeeds or nonzero if it fails.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Operation
The default implementation of this function uses semihosting.

remove() causes the file whose name is the string pointed to by <filename> to be removed.
Subsequent attempts to open the file result in failure, unless it is created again. If the file is open,
the behavior of the remove() function is implementation-defined.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.23 rename()
This function is the standard C library rename() function from stdio.h.

Syntax
int rename(const char *<old>, const char *<new>);

Parameters
<old>

The original name of the file to rename.

<new>

The new name for the file.

Returns
Returns zero if the operation succeeds or nonzero if it fails. If the operation returns nonzero and
the file existed previously it is still known by its original name.

Operation
The default implementation of this function uses semihosting.

rename() causes the file whose name is the string pointed to by <old> to be subsequently known
by the name given by the string pointed to by <new>. The file named <old> is effectively removed. If
a file named by the string pointed to by <new> exists prior to the call of the rename() function, the
behavior is implementation-defined.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 218

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.24 __rt_entry
The symbol __rt_entry is the starting point for a program using the Arm C library.

Syntax
__rt_entry

Parameters
None.

Returns
None.

Operation
Control passes to __rt_entry after all scatter-loaded regions have been relocated to their
execution addresses.

The default implementation of __rt_entry performs the following actions:

1. Performs hardware initialization by calling _platform_pre_stackheap_init(), if this function is
defined.

2. Sets up the heap and stack.

3. Initializes the C library by calling __rt_lib_init.

4. Calls main().

5. Shuts down the C library, by calling __rt_lib_shutdown.

6. Exits.

__rt_entry must end with a call to one of the following functions:

exit()

Calls atexit()-registered functions and shuts down the library.

__rt_exit()

Shuts down the library but does not call atexit() functions.

_sys_exit()

Exits directly to the execution environment. It does not shut down the library and does not
call atexit() functions.

Related information
_platform_pre_stackheap_init() on page 158

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.25 __rt_exit()
Declared in rt_misc.h, the __rt_exit() function shuts down the library but does not call functions
registered with atexit(). The __rt_exit() function is not part of the C library standard, but the
Arm C library supports it as an extension.

Syntax
void __rt_exit(int <code>);

Parameters
<code>

Not used by the standard function.

Returns
This function does not return.

Operation
atexit()-registered functions are called by exit().

atexit() shuts down the C library by calling __rt_lib_shutdown(), and then calls _sys_exit() to
terminate the application. Reimplement _sys_exit() rather than __rt_exit().

Related information
_sys_exit() on page 177

4.26 __rt_fp_status_addr()
Declared in rt_fp.h, the __rt_fp_status_addr() function returns the address of the floating-point
status word. This function is not part of the C library standard, but the Arm C library supports it as
an extension.

Default
The default floating-point status is 0.

Syntax
unsigned *__rt_fp_status_addr(void);

Parameters
None.

Returns
The address of the floating-point status word. By default, the floating-point status word resides in
__user_libspace.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Operation
If __rt_fp_status_addr() is not defined, the default implementation from the C library is used. The
value is initialized when __rt_lib_init() calls _fp_init(). The constants for the status word are
listed in fenv.h.

Related information
Thread safety in the Arm C library on page 31

4.27 __rt_heap_extend()
Declared in rt_heap.h, the __rt_heap_extend() function returns a new aligned block of memory to
add to the heap, if possible.

If you reimplement __rt_stackheap_init(), you must reimplement this function. An incomplete
prototype implementation is in rt_memory.s.

This function is not part of the C library standard, but the Arm C library supports it as an extension.

Syntax
extern size_t __rt_heap_extend(size_t <size>, void **<block>);

Parameters
<size>

The amount to extend the heap.

<block>

The address of the block of memory to use to extend the heap.

Returns
The default implementation extends the heap if there is sufficient free heap memory. If it cannot,
it calls __user_heap_extend() if it is implemented. On exit, r0 is the size of the block acquired, or
0 if nothing could be obtained, and the memory location r1 pointed to on entry contains the base
address of the block.

Operation
The calling convention is ordinary AAPCS. On entry, r0 is the minimum size of the block to add,
and r1 holds a pointer to a location to store the base address.

The default implementation has the following characteristics:

• The returned size is one of the following:

◦ In AArch32 state, a multiple of 8 bytes of at least the requested size.

◦ In AArch64 state, a multiple of 16 bytes of at least the requested size.

◦ 0, denoting that the request cannot be honored.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

• The returned base address is aligned on:

◦ In AArch32 state, an 8-byte boundary.

◦ In AArch64 state, a 16-byte boundary.

• Size is measured in bytes.

• The function is subject only to Procedure Call Standard for the Arm Architecture (AAPCS)
constraints.

Related information
Stack pointer initialization and heap bounds on page 82

4.28 __rt_lib_init()
Declared in rt_misc.h, this is the library initialization function and is the companion to
__rt_lib_shutdown().

Syntax
For AArch32 targets:

extern __attribute__((value_in_regs)) struct __argc_argv __rt_lib_init(unsigned
 <heapbase>, unsigned <heaptop>);

For AArch64 targets:

extern __attribute__((value_in_regs)) struct __argc_argv __rt_lib_init(unsigned long
 <heapbase>, unsigned long <heaptop>);

Parameters
<heapbase>

The start of the heap memory block.

<heaptop>

The end of the heap memory block.

Returns
This function returns argc and argv ready to be passed to main(). The structure is returned in the
registers.

For AArch32 targets:

struct __argc_argv
{
 int argc;
 char **argv;
 void *r2; // optional extra arguments that on entry to main() are
 void *r3; // found in registers R2 and R3.
};

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

For AArch64 targets:

struct __argc_argv
{
 long argc;
 char **argv;
 void *r2; // optional extra arguments that on entry to main() are
 void *r3; // found in registers X2 (alias for R2) and X3 (alias for R3).
};

Operation
This function is called immediately after __rt_stackheap_init() and is passed an initial chunk of
memory to use as a heap. This function is the standard Arm C library initialization function and it
must not be reimplemented.

4.29 __rt_lib_shutdown()
Declared in rt_misc.h, __rt_lib_shutdown() is the library shutdown function and is the
companion to __rt_lib_init().

Syntax
void __rt_lib_shutdown(void);

Parameters
None.

Operation
This function is provided in case a user must call it directly. It is the standard Arm C library
shutdown function and must not be reimplemented.

4.30 __rt_raise()
Declared in rt_misc.h, the __rt_raise() function raises a signal to indicate a runtime anomaly.

This function is not part of the C library standard, but the Arm C library supports it as an extension.

Syntax
void __rt_raise(int <signal>, intptr_t <type>);

Parameters
<signal>

An integer that holds the signal number.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

<type>

An integer, string constant, or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Returns
None.

Operation
Redefine this function to replace the entire signal handling mechanism for the library. The default
implementation calls __raise().

Depending on the value returned from __raise():

no return
The handler performed a long jump or restart and __rt_raise() does not regain control.

0

The signal was handled and __rt_raise() exits.

nonzero
If __raise() returns a nonzero return code <rc>, the default library implementation calls
_sys_exit(rc).

Related information
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 100

4.31 __rt_stackheap_init()
The __rt_stackheap_init() function sets up the stack pointer and returns a region of memory
for use as the initial heap. This function is not part of the C library standard, but the Arm C library
supports it as an extension.

Syntax
__rt_stackheap_init()

Parameters
None.

Returns
On return from this function, SP must point to the top of the stack region, r0 must point to the
base of the heap region, and r1 must point to the limit of the heap region.

Operation
This function is called from the library initialization code.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

A user-defined memory model (that is, __rt_stackheap_init() and __rt_heap_extend()) is
allocated 16 bytes of storage from the __user_perproc_libspace area if required. It accesses this
storage by calling __rt_stackheap_storage() to return a pointer to its 16-byte region.

Related information
Stack pointer initialization and heap bounds on page 82

4.32 setjmp()
Declared in setjmp.h, the setjmp() function saves the required registers in its jmp_buf argument,
for later use by the longjmp() function.

Syntax
int setjmp(jmp_buf <env>);

Parameters
<env>

A buffer that is used to store the required registers.

Returns
If the return is from a direct invocation, the setjmp() function returns the value zero.

If the return is from a call to the longjmp() function, the setjmp() function returns a non-zero
value.

Operation
This function saves the following registers to the buffer pointed to by <env>:

Architecture Stored registers1

AArch64 state2 X18-X29, SP, D8-D15

AArch32 state with VFP3 R4-R11, SP, D8-D15

AArch32 state without VFP3 R4-R11, SP

Table notes
1 Although LR is stored, there is no guarantee that the value is preserved when restored by
longjmp().

2 Storing the X18 register ensures that -fsanitize=shadow-call-stack works correctly with
the setjmp() and longjmp() functions. If the platform uses X18 to store a program-wide
value, such as a pointer to a shared memory buffer, then the program must be aware that
longjmp() restores the value of X18 to the value when calling setjmp(). If the value in X18
has changed since the call to setjmp(), then this restore might cause a problem.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

3 For Arm®v8-M, if you enable Pointer Authentication Codes (PAC) branch protection with the
-mbranch-protection=<protection> option, then setjmp() also stores R12 (IP).

Related information
alloca() on page 142
longjmp() on page 155
-ffixed-x18
-fsanitize, -fno-sanitize
-mbranch-protection

4.33 setlocale()
Declared in locale.h, the setlocale() function selects the appropriate locale as specified by the
<category> and <locale> arguments. Use the setlocale() function to change or query part or all
of the current locale.

Syntax
char *setlocale(int <category>, const char *<locale>);

Parameters
<category>

The effect of the <category> argument for each value is:

LC_COLLATE

Affects the behavior of strcoll().

LC_CTYPE

Affects the behavior of the character handling functions.

LC_MONETARY

Affects the monetary formatting information returned by localeconv().

LC_NUMERIC

Affects the decimal-point character for the formatted input/output functions and
the string conversion functions and the numeric formatting information returned by
localeconv().

LC_TIME

Can affect the behavior of strftime(). For currently supported locales, the option has
no effect.

LC_ALL

Affects all locale categories. This is the bitwise OR of all the locale categories.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-ffixed-x18
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-fsanitize---fno-sanitize
https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-mbranch-protection

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

<locale>

A value of "C" for <locale> specifies the minimal environment for C translation. An empty
string, "", for <locale> specifies the implementation-defined native environment. At program
startup, the equivalent of setlocale(LC_ALL, "C") is executed.

Valid <locale> values depend on which __use_<X>_ctype symbol is imported
(__use_iso8859_ctype, __use_sjis_ctype, or __use_utf8_ctype), and on user-defined
locales.

Only one __use_<X>_ctype symbol can be imported.

Returns
If a pointer to a string is given for <locale> and the selection is valid, the string associated with the
specified category for the new locale is returned. If the selection cannot be honored, a null pointer
is returned and the locale is not changed.

A null pointer for <locale> causes the string associated with the category for the current locale to
be returned and the locale is not changed.

If <category> is LC_ALL and the most recent successful locale-setting call uses a category other
than LC_ALL, a composite string might be returned. The string returned when used in a subsequent
call with its associated category restores that part of the program locale. The string returned is not
modified by the program, but might be overwritten by a subsequent call to setlocale().

Related information
ISO8859-1 implementation on page 67
Shift-JIS and UTF-8 implementation on page 68
Definition of locale data blocks in the C library on page 69

4.34 _srand_r()
Declared in stdlib.h, this is a reentrant version of the srand() function.

Syntax
int _srand_r(struct _rand_state *<buffer>, unsigned int <seed>);

Parameters
<buffer>

A pointer to a user-supplied buffer storing the state of the random number generator.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

<seed>

A seed for a new sequence of pseudo-random numbers to be returned by subsequent calls
to _rand_r().

Returns
Returns a pseudo-random integer.

Operation
This function enables you to explicitly supply your own buffer that can be used for thread-local
storage.

If _srand_r() is repeatedly called with the same seed value, the same sequence of pseudo-random
numbers is repeated. If _rand_r() is called before any calls to _srand_r() have been made with the
same buffer, undefined behavior occurs because the buffer is not initialized.

Related information
_rand_r() on page 161

4.35 strcasecmp()
Declared in string.h, the strcasecmp() function performs a case-insensitive string comparison
test.

Syntax
extern _ARMABI int strcasecmp(const char *<s1>, const char *<s2>);

Parameters
<s1> and <s2>

The strings on which to perform a case-insensitive comparison as defined by the current
locale.

Returns
Returns an integer:

• If greater than zero, <s1> is greater than <s2>.

• If equal to zero, <s1> is equal to <s2>.

• If less than zero, <s1> is less than <s2>.

Related information
Application Binary Interface for the Arm Architecture

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 218

https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.36 strlcat()
Declared in string.h, the strlcat() function concatenates two strings.

Syntax
extern size_t strlcat(char *<dst>, const char *<src>, size_t <size>);

Parameters
<dst>

The string to which the string <src> is to be appended.

<src>

A NUL-terminated string to append to the end of <dst>.

<size>

The total length of the concatenated string to create, including NUL.

Returns
The strlcat() function returns the total length of the string that would have been created if
there was unlimited space. This might or might not be equal to the length of the created string,
depending on whether there was enough space. This means that you can call strlcat() once to
find out how much space is required, then allocate it if you do not have enough, and finally call
strlcat() a second time to create the required string.

Operation
strlcat() appends up to <size>-strlen(<dst>)-1 bytes from the NUL-terminated string <src> to
the end of <dst>. It takes the full size of the buffer, not only the length, and terminates the result
with NUL when <size> is greater than 0. Include a byte for the NUL character in your <size> value.

This function is a common BSD-derived extension to many C libraries.

4.37 strlcpy()
Declared in string.h, the strlcpy() function copies up to <size>-1 characters from the NUL-
terminated string <src> to <dst>.

Syntax
extern size_t strlcpy(char *<dst>, const char *<src>, size_t <size>);

Parameters
<dst>

The string to which the string <src> is to be appended.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

<src>

A NUL-terminated string to append to the end of <dst>.

<size>

The total length of the concatenated string to create, including NUL.

Returns
The strlcpy() function returns the total length of the string that would have been copied if there
was unlimited space. This might or might not be equal to the length of the create string actually,
depending on whether there was enough space. This means that you can call strlcpy() once to
find out how much space is required, then allocate it if you do not have enough, and finally call
strlcpy() a second time to do the required copy.

Operation
strlcpy() takes the full size of the buffer, not only the length, and terminates the result with NUL
when <size> is greater than 0. Include a byte for the NUL character in your <size> value.

This function is a common BSD-derived extension to many C libraries.

4.38 strncasecmp()
Declared in string.h, the strncasecmp() function performs a case-insensitive string comparison
test of not more than a specified number of characters.

Syntax
extern _ARMABI int strncasecmp(const char *<s1>, const char *<s2>, size_t <n>);

Parameters
<s1> and <s2>

The strings on which to perform a case-insensitive comparison as defined by the current
locale.

<n>

The maximum number of characters to compare.

Returns
Returns an integer:

• If greater than zero, <s1> is greater than <s2>.

• If equal to zero, <s1> is equal to <s2>.

• If less than zero, <s1> is less than <s2>.

Related information
Application Binary Interface for the Arm Architecture

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 218

https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.39 strnlen()
Declared in string.h, the strnlen() function gets the length of a fixed size string and returns the
number of characters preceding the first null character.

Syntax
size_t strnlen(const char *<s>, size_t <maxlen>);

Parameters
<s>

The string for which the length is to be determined.

<maxlen>

The maximum number of characters to search in the specified string.

Returns
If a null character is present in the first <maxlen> characters, then returns the number of characters
preceding the null character. Otherwise, it returns <maxlen>.

4.40 _sys_close()
Declared in rt_sys.h, the _sys_close() function closes a file previously opened with _sys_open().
The default implementation provided by the Arm C libraries uses semihosting.

Syntax
int _sys_close(FILEHANDLE <fh>);

Parameters
<fh>

The file handle of the file to close.

Returns
The return value is 0 if successful. A nonzero value indicates an error.

Operation
This function must be defined if any input/output function is to be used.

Related information
_sys_open() on page 179
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.41 _sys_command_string()
Declared in rt_sys.h, the _sys_command_string() function retrieves the command line that
invoked the current application from the environment that called the application.

The default implementation provided by the Arm C libraries uses semihosting.

Syntax
char *_sys_command_string(char *<cmd>, int <len>);

Parameters
<cmd>

A pointer to a buffer that can store the command line. It is not required that the command
line is stored in <cmd>.

<len>

The length of the buffer.

Returns
The function must return either:

• A pointer to the command line, if successful. This can be either a pointer to the <cmd> buffer if
it is used, or a pointer to wherever else the command line is stored.

• NULL, if not successful.

Operation
This function is called by the library startup code to set up argv and argc to pass to main().

You must not assume that the C library is fully initialized when this function is
called. For example, you must not call malloc() from within this function. This is
because the C library startup sequence calls this function before the heap is fully
configured.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.42 _sys_ensure()
This function is deprecated. It is never called by any other library function, and you are not required
to reimplement it if you are retargeting standard I/O (stdio).

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.43 _sys_exit()
Declared in rt_sys.h, this is the library exit function. All exits from the library eventually call
_sys_exit().

Syntax
void _sys_exit(int <return_code>);

Parameters
<return_code>

The return code is advisory. An implementation might attempt to pass it to the execution
environment.

Operation
This function must not return. You can intercept application exit at a higher level by either:

• Implementing the C library function exit() as part of your application. You lose atexit()
processing and library shutdown if you do this.

• Implementing the function __rt_exit(int n) as part of your application. You lose library
shutdown if you do this, but atexit() processing is still performed when exit() is called or
main() returns.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.44 _sys_flen()
Declared in rt_sys.h, the _sys_flen() function returns the current length of a file. The default
implementation provided by the Arm C libraries uses semihosting.

Syntax
long _sys_flen(FILEHANDLE <fh>);

Parameters
<fh>

The file handle of the file for which the length is to be obtained.

Returns
This function returns the current length of the file <fh>, or a negative error indicator.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Operation
This function is used by _sys_seek() to convert an offset relative to the end of a file into an offset
relative to the beginning of the file.

You do not have to define _sys_flen() if you do not intend to use fseek().

If you retarget at system _sys_*() level, you must supply _sys_flen(), even if the underlying
system directly supports seeking relative to the end of a file.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.45 _sys_istty()
Declared in rt_sys.h, the _sys_istty() function determines whether a file handle is attached to
an interactive device. The default implementation provided by the Arm C libraries uses semihosting.

Syntax
int _sys_istty(FILEHANDLE <fh>);

Parameters
<fh>

The file handle of a file.

Returns
The return value is one of the following values:

0

<fh> is not attached to an interactive device.

1

<fh> is attached to an interactive device.

other
An error occurred.

Restrictions
stdin, stdout, and stderr are assumed to be interactive devices. They are line-buffered at program
startup, regardless of what _sys_istty reports for them. An exception is if they have been
redirected on the command line.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

This restriction does not apply when using microlib. In microlib, stdin, stdout, and
stderr are always unbuffered.

Operation
The Arm libraries call __sys_istty() to determine whether a file handle (that is being used for an
output file stream) is attached to an interactive device.

For file streams that are attached to interactive devices, the Arm library:

• Provides unbuffered behavior by default, in the absence of a call to setbuf() or setvbuf().

• Prohibits seeking.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.46 _sys_open()
Declared in rt_sys.h, the _sys_open() function opens a file. The default implementation provided
by the Arm C libraries uses semihosting.

Syntax
FILEHANDLE _sys_open(const char *<name>, int <openmode>);

Parameters
<name>

The name of a file to open.

<openmode>

A bitmap containing bits that mostly correspond directly to the ISO mode specification.
Target-dependent extensions are possible, but freopen() must also be extended.

Returns
The return value is -1 if an error occurs.

Operation
The _sys_open() function is required by fopen() and freopen(). These functions in turn are
required if any file input/output function is to be used.

Related information
_sys_close() on page 175
Direct semihosting C library function dependencies on page 52

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Semihosting for AArch32 and AArch64

4.47 _sys_read()
Declared in rt_sys.h, the _sys_read() function reads the contents of a file into a buffer. The
default implementation provided by the Arm C libraries uses semihosting.

Syntax
int _sys_read(FILEHANDLE <fh>, unsigned char *<buf>, unsigned <len>, int <mode>);

Parameters
<fh>

The file handle for a file to read.

<buf>

A buffer to hold the contents of the file.

<len>

The number of bytes to read from the file.

<mode>

This parameter is provided for historical reasons. It contains nothing useful and must be
ignored.

Returns
The return value is one of the following:

• The number of bytes not read (that is, <len> minus the number of bytes that were read).

• An error indication.

• An EOF indicator. The EOF indication involves the setting of 0x80000000 in the normal result.

Reading up to and including the last byte of data does not turn on the EOF indicator. The EOF
indicator is only reached when an attempt is made to read beyond the last byte of data. The target-
independent code is capable of handling:

• The EOF indicator being returned in the same read as the remaining bytes of data that precede
the EOF.

• The EOF indicator being returned on its own after the remaining bytes of data have been
returned in a previous read.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 218

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.48 _sys_seek()
Declared in rt_sys.h, the _sys_seek() function puts the file pointer at offset <pos> from the
beginning of the file. The default implementation provided by the Arm C libraries uses semihosting.

Syntax
int _sys_seek(FILEHANDLE <fh>, long <pos>);

Parameters
<fh>

The file handle of a file.

<pos>

The location in the file to begin the read or write.

Returns
The result is:

• Negative if an error occurs.

• Non-negative if no error occurs.

Operation
This function sets the current read or write position to the new location <pos> relative to the start
of the current file <fh>.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.49 _sys_tmpnam2()
Declared in rt_sys.h, _sys_tmpnam2() converts the file number <fileno> for a temporary file to a
unique filename, for example, tmp0001. The default implementation provided by the Arm C libraries
uses semihosting.

Syntax
int _sys_tmpnam2(char *<name>, int <fileno>, unsigned <maxlength>);

Parameters
<name>

A unique filename for the created temporary file.

<fileno>

The file number to use for the temporary file.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

<maxlength>

The maximuum length of the temporary file.

Returns
On success, the return value is 0, and the output filename is written to the buffer <name>.

On failure, a negative value is returned. This causes the tmpnam() or tmpfile() call to fail in turn.

Operation
If tmpnam() or tmpfile() is used, then one of _sys_tmpnam() and _sys_tmpnam2() must be defined.

The _sys_tmpnam2() function replaces the older _sys_tmpnam() function, which had
no way to report a failure. We recommend that you use _sys_tmpnam2().

Related information
_sys_tmpnam() on page 182
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.50 _sys_tmpnam()
Declared in rt_sys.h, _sys_tmpnam() converts the file number <fileno> for a temporary file to a
unique filename, for example, tmp0001. The default implementation provided by the Arm C libraries
uses semihosting.

Syntax
void _sys_tmpnam(char *<name>, int <fileno>, unsigned <maxlength>);

Parameters
<name>

A unique filename for the created temporary file.

<fileno>

The file number to use for the temporary file.

<maxlength>

The maximuum length of the temporary file.

Returns
Returns the filename in <name>.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Operation
If tmpnam() or tmpfile() is used, then one of _sys_tmpnam() and _sys_tmpnam2() must be defined.

The _sys_tmpnam() function is deprecated. We recommend that you use
_sys_tmpnam2() instead.

Related information
_sys_tmpnam2() on page 181
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.51 _sys_write()
Declared in rt_sys.h, the _sys_write() function writes the contents of a buffer to a file previously
opened with _sys_open(). The default implementation provided by the Arm C libraries uses
semihosting.

Syntax
int _sys_write(FILEHANDLE <fh>, const unsigned char *<buf>, unsigned <len>, int
 <mode>);

Parameters
<fh>

The file handle for a file to read.

<buf>

A buffer to hold the contents of the file.

<len>

The number of bytes to read from the file.

<mode>

The <mode> parameter is provided for historical reasons. It contains nothing useful and must
be ignored.

Returns
The return value is either:

• A positive number representing the number of characters not written. Therefore, any nonzero
return value denotes a failure.

• A negative number indicating an error.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.52 system()
This is the standard C library system() function from stdlib.h.

Default
The default implementation of this function uses semihosting.

Syntax
int system(const char *<string>);

Parameters
<string>

The command to run by the command processor of the host environment.

Returns
If the argument is a NULL pointer, the system function returns nonzero only if a command processor
is available.

If the argument is not a NULL pointer, the system() function returns an implementation-defined
value.

Operation
system() passes the string pointed to by <string> to the host environment to be run by a
command processor in an implementation-defined manner. A null pointer can be used for
<string>, to inquire whether a command processor exists.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.53 time()
This function is the standard C library time() function from time.h.

Default
The default implementation of this function uses semihosting.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 218

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Syntax
time_t time(time_t *<timer>);

Parameters
<timer>

A pointer for storing the seconds value.

Returns
If the calendar time is not available, returns the value ((time_t)-1). If <timer> is not a NULL
pointer, the return value is also stored in <timer>.

The return value is an approximation of the current calendar time.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.54 _ttywrch()
Declared in rt_sys.h, the _ttywrch() function writes a character to the console. The console
might have been redirected. You can use this function as a last resort error handling routine.

Syntax
void _ttywrch(int <ch>);

Parameters
<ch>

A character to write to the console.

Operation
The default implementation of this function uses semihosting.

You can redefine this function, or __raise(), even if there is no other input/output. For example, it
might write an error message to a log kept in nonvolatile memory.

Related information
Semihosting for AArch32 and AArch64

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 218

https://developer.arm.com/documentation/100863/latest
https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.55 __user_heap_extend()
Declared in rt_misc.h, the __user_heap_extend() function can be defined to return extra blocks of
memory, separate from the initial one, to be used by the heap.

Syntax
extern size_t __user_heap_extend(int <var0>, void **<base>, size_t
 <requested_size>);

Parameters
<ignore>

Not used.

<base>

A pointer to a block of at least the <requested_size>.

<requested_size>

The requested size in bytes.

Returns
If defined, this function must return the size and base address of an eight-byte aligned heap
extension block.

The size of the block pointed to by <base>. 0 is returned if no such block can be returned, in which
case the value stored at <base> is never used.

Operation
There is no default implementation of this function. If you define this function, it must have the
following characteristics:

• The <requested_size> is one of the following:

◦ In AArch32 state, a multiple of 8 bytes of at least the requested size.

◦ In AArch64 state, a multiple of 16 bytes of at least the requested size.

◦ 0, denoting that the request cannot be honored.

• The returned <base> address is aligned on:

◦ In AArch32 state, an 8-byte boundary.

◦ In AArch64 state, a 16-byte boundary.

• Size is measured in bytes.

• The function is subject only to Procedure Call Standard for the Arm Architecture (AAPCS)
constraints.

• The first argument is always zero on entry and can be ignored. The base is returned in the
register holding this argument.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

The function __user_heap_extend() is only weakly referenced by the C library. This
means that unused section elimination might unexpectedly remove this function at
link time, and in this case, the heap cannot be extended. To prevent this, you can
use armlink --keep to prevent the function being eliminated. Alternatively, include
an explicit reference to __user_heap_extend() from a part of the application code
that you are sure is not going to be removed at link time.

Related information
Stack pointer initialization and heap bounds on page 82

4.56 __user_heap_extent()
If defined, the __user_heap_extent() function returns the bounds of the memory available to the
Heap2 allocator.

See rt_misc.h.

If you provide an implementation of this function, then you must link with either the
--keep or --no_remove armlink options. Otherwise, the unused section elimination
feature of the linker might remove your implementation.

Syntax
For AArch32 targets:

extern __attribute__((value_in_regs)) struct __heap_extent
 __user_heap_extent(unsigned <ignore1>, size_t <ignore2>);

For AArch64 targets:

extern __attribute__((value_in_regs)) struct __heap_extent
 __user_heap_extent(unsigned long <ignore1>, size_t <ignore2>);

Parameters
<ignore1> and <ignore2>

The default values for the base address and size of the heap. They are for information only
and can be ignored.

Returns
The function returns the base address of the heap and the total number of bytes available to the
heap, rounded up to the next power of two.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

For example, if you want to specify that all your heap allocations come from address 0x80000000
and above, and that the heap has a total maximum size of 3MiB, then __user_heap_extent() needs
to return base=0x80000000 and range=0x400000, which is 3MiB rounded up to the next power of
two.

Operation
You only need to implement this function if you are using the Heap2 allocator, which is also part of
the C library. This function has no default implementation. The Heap2 allocator calls it during heap
initialization to determine the maximum address range that the heap can occupy.

Related information
Stack pointer initialization and heap bounds on page 82

4.57 __user_setup_stackheap()
__user_setup_stackheap() sets up and returns the locations of the initial stack and heap.

Syntax
__user_setup_stackheap()

Parameters
None.

Returns
The locations of the initial stack and heap.

Operation
If you define this function, it is called by the C library during program start-up.

When __user_setup_stackheap() is called, sp has the same value it had on entry to the
application. If this was set to a valid value before calling the C library initialization code, it can be
left at this value. If sp is not valid, __user_setup_stackheap() must change this value before using
any stack and before returning.

__user_setup_stackheap() returns the:

• Heap base, if the program uses the heap:

◦ In AArch32 state, register R0 contains the heap base.

◦ In AArch64 state, register X0 contains the heap base.

• Stack base in sp.

• Heap limit, if the program uses the heap and uses two-region memory:

◦ In AArch32 state, register R2 contains the heap limit.

◦ In AArch64 state, register X2 contains the heap limit.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

If this function is reimplemented, it must:

• Preserve the registers required by the PCS, except for SP.

• Ensure alignment of the stack and heap:

◦ In AArch32 state, ensure that the stack base and heap base are a multiple of 8 to maintain
8-byte alignment of the stack and heap.

◦ In AArch64 state, ensure that the stack base and heap base are a multiple of 16 to maintain
16-byte alignment of the stack and heap.

To create a version of __user_setup_stackheap() that inherits sp from the execution environment
and does not have a heap:

• In AArch32 state, set r0 and r2 to zero and return.

• In AArch64 state, set x0 and x2 to zero and return.

There is no limit to the size of the stack. However, if the heap region grows into the stack, malloc()
attempts to detect the overlapping memory and fails the new memory allocation request.

Any reimplementation of __user_setup_stackheap() must be in assembler.

Related information
Direct semihosting C library function dependencies on page 52
Semihosting for AArch32 and AArch64

4.58 __vectab_stack_and_reset
__vectab_stack_and_reset is a library section that provides a way for the initial values of sp and
pc to be placed in the vector table. The vector table starts at address 0x0 for M-profile processors,
such as Cortex®-M1 and Cortex-M3 embedded applications.

__vectab_stack_and_reset requires the existence of a main() function in your source code.
Without a main() function, if you place the __vectab_stack_and_reset section in a scatter file, an
error is generated to the following effect:

Error: L6236E: No section matches selector - no section to be FIRST/LAST

If the normal start-up code is bypassed, that is, if there is intentionally no main() function, you are
responsible for setting up the vector table without __vectab_stack_and_reset.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 218

https://developer.arm.com/documentation/100863/latest

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

The following segment is part of a scatter file. It includes a minimal vector table and shows the use
of __vectab_stack_and_reset to place the initial sp and pc values at addresses 0x0 and 0x4 in the
vector table:

;; Maximum of 256 exceptions (256*4 bytes == 0x400)
VECTORS 0x0 0x400
{
 ; First two entries provided by library
 ; Remaining entries provided by the user in exceptions.c
 * (:gdef:__vectab_stack_and_reset, +FIRST)
 * (exceptions_area)
}
CODE 0x400 FIXED
{
 * (+RO)
}

Related information
Stack pointer initialization and heap bounds on page 82

4.59 wcscasecmp()
Declared in wchar.h, the wcscasecmp() function performs a case-insensitive string comparison test
on wide characters. This function is a GNU extension to the libraries. It is not POSIX-standardized.

Syntax
int wcscasecmp(const wchar_t * __restrict <s1>, const wchar_t * __restrict <s2>);

Parameters
<s1> and <s2>

The wide character strings on which to perform a case-insensitive comparison.

Returns
Returns an integer:

• If greater than zero, <s1> is greater than <s2>.

• If equal to zero, <s1> is equal to <s2>.

• If less than zero, <s1> is less than <s2>.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

4.60 wcsncasecmp()
Declared in wchar.h, the wcsncasecmp() function performs a case-insensitive string comparison
test of not more than a specified number of wide characters. This function is a GNU extension to
the libraries. It is not POSIX-standardized.

Syntax
int wcsncasecmp(const wchar_t * __restrict <s1>, const wchar_t * __restrict <s2>,
 size_t <n>);

Parameters
<s1> and <s2>

The wide character strings on which to perform a case-insensitive comparison.

<n>

The maximum number of characters to compare.

Returns
Returns an integer:

• If greater than zero, <s1> is greater than <s2>.

• If equal to zero, <s1> is equal to <s2>.

• If less than zero, <s1> is less than <s2>.

4.61 wcstombs()
Declared in wchar.h, the wcstombs() function works as described in the ISO C standard, with
extended functionality as specified by POSIX.

Syntax
size_t wcstombs(char *<s>, const wchar_t *<pwcs>, size_t <n>);

Parameters
<s>

The wide character strings to convert.

<pwcs>

An array of multibyte characters.

<n>

The maximum number of characters in the string <s> to convert.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Returns
If a code is encountered that does not correspond to a valid multibyte character, the wcstombs()
function returns (size_t)-1. Otherwise, the wcstombs() function returns the number of bytes
modified, not including a terminating null character, if any.

Operation
Converts a sequence of wide characters to a corresponding sequence of multibyte characters.

If <s> is a NULL pointer, wcstombs() returns the length required to convert the entire array
regardless of the value of <n>, but no values are stored.

4.62 Thread-safe C library functions
The following table shows the C library functions that are thread-safe.

Table 4-3: Functions that are thread-safe

Functions Description

calloc(), free(), malloc(), realloc() The heap functions are thread-safe if the _mutex_* functions are
implemented.

All threads share a single heap and use mutexes to avoid
data corruption when there is concurrent access. Each heap
implementation is responsible for doing its own locking. If you
supply your own allocator, it must also do its own locking. This
enables it to do fine-grained locking if required, rather than
protecting the entire heap with a single mutex (coarse-grained
locking).

alloca() alloca() is thread-safe because it allocates memory on the stack.

abort(), raise(), signal(), fenv.h The Arm signal handling functions and floating-point exception traps
are thread-safe.

The settings for signal handlers and floating-point traps are
global across the entire process and are protected by locks. Data
corruption does not occur if multiple threads call signal() or
an fenv.h function at the same time. However, be aware that
the effects of the call act on all threads and not only on the calling
thread.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Functions Description
clearerr(), fclose(), feof(), ferror(), fflush(),
fgetc(), fgetpos(), fgets(), fopen(), fputc(), fputs(),
fread(), freopen(), fseek(), fsetpos(), ftell(),
fwrite(), getc(), getchar(), gets(), perror(), putc(),
putchar(), puts(), rewind(), setbuf(), setvbuf(),
tmpfile(), tmpnam(), ungetc()

The stdio library is thread-safe if the _mutex_* functions are
implemented.

Each individual stream is protected by a lock, so two threads can
each open their own stdio stream and use it, without interfering
with one another.

If two threads both want to read or write the same stream, locking
at the fgetc() and fputc() level prevents data corruption, but
it is possible that the individual characters output by each thread
might be interleaved in a confusing way.

Note:
tmpnam() also contains a static buffer but this is only used if
the argument is NULL. To ensure that your use of tmpnam() is
thread-safe, supply your own buffer space.

fprintf(), printf(), vfprintf(), vprintf(), fscanf(),
scanf()

When using these functions:

• The standard C printf() and scanf() functions use stdio
so they are thread-safe.

• The standard C printf() function is susceptible to changes
in the locale settings if called in a multithreaded program.

clock() clock() contains static data that is written once at program
startup and then only ever read. Therefore, clock() is thread-safe
provided no extra threads are already running at the time that the
library is initialized.

errno errno is thread-safe.

Each thread has its own errno stored in a
__user_perthread_libspace block. This means that each
thread can call errno-setting functions independently and then
check errno afterwards without interference from other threads.

atexit() The list of exit functions maintained by atexit() is process-global
and protected by a lock.

In the worst case, if more than one thread calls atexit(), the
order that exit functions are called cannot be guaranteed.

abs(), acos(), asin(), atan(), atan2(), atof(), atol(),
atoi(), bsearch(), ceil(), cos(), cosh(), difftime(),
div(), exp(), fabs(), floor(), fmod(), frexp(), labs(),
ldexp(), ldiv(), log(), log10(), memchr(), memcmp(),
memcpy(), memmove(), memset(), mktime(), modf(), pow(),
qsort(), sin(), sinh(), sqrt(), strcat(), wcscat(),
strchr(), wcschr(), strcmp(), wcscomp(), strcpy(),
wcscpy(), strcspn(), wcsspn(), strlcat(), strlcpy(),
strlen(), wcslen(), strncat(), wcsncat(), strncmp(),
wcsncmp(), strncpy(), wcsncpy(), strpbrk(), wcspbrk(),
strrchr(), wcsrchr(), strspn(), wcsspn(), strstr(),
wcsstr(), tan(), tanh()

These functions are inherently thread-safe.

longjmp(), setjmp() Although setjmp() and longjmp() keep data in
__user_libspace, they call the __alloca_* functions, that are
thread-safe.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Functions Description
remove(), rename(), time() These functions use interrupts that communicate with the Arm

debugging environments. Typically, you have to reimplement these
for a real-world application.

snprintf(), sprintf(), vsnprintf(), vsprintf(),
sscanf(), isalnum(), iswalnum(), isalpha(),
iswalpha(), isblank(), iswblank(), iscntrl(),
iswcntrl(), isdigit(), iswdigit(), isgraph(),
iswgraph(), islower(), iswlower(), isprint(),
iswprint(), ispunct(), iswpunct(), isspace(),
iswspace(), isupper(), iswupper(), isxdigit(),
iswdigit(), iswctype(), tolower(), towlower(),
toupper(), towupper(), towctrans(), strcoll(),
wcsoll(), strtod(), wcstod(), strtol(), wcstol(),
strtoul(), wcstoul(), strftime(), strxfrm(),
wcsxfrm()

When using these functions, the string-based functions read the
locale settings. Typically, they are thread-safe. However, if you
change locale in mid-session, you must ensure that these functions
are not affected.

The string-based functions, such as sprintf() and sscanf(), do
not depend on the stdio library.

stdin, stdout, stderr These functions are thread-safe.

Related information
alloca() on page 142

4.63 C library functions that are not thread-safe
The following table shows the C library functions that are not thread-safe.

Table 4-4: Functions that are not thread-safe

Functions Description

asctime(), localtime(), strtok() These functions are all thread-unsafe. Each contains a static buffer
that might be overwritten by another thread between a call to the
function and the subsequent use of its return value.

Arm supplies reentrant versions, _asctime_r(),
_localtime_r(), and _strtok_r(). We recommend that you
use these functions instead to ensure safety.

Note:
These reentrant versions take additional parameters.
_asctime_r() takes an additional parameter that is a pointer to
a buffer that the output string is written into. _localtime_r()
takes an additional parameter that is a pointer to a struct tm,
that the result is written into. _strtok_r() takes an additional
parameter that is a pointer to a char pointer to the next token.

exit() Do not call exit() in a multithreaded program even if you have
provided an implementation of the underlying _sys_exit() that
actually terminates all threads.

In this case, exit() cleans up before calling _sys_exit() so
disrupts other threads.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Functions Description
gamma(), lgamma(), lgammaf(), lgammal() These extended mathlib functions use a global variable, _signgam,

so are not thread-safe.

Note:
If migrating from RVCT, be aware that gamma() is deprecated in
Arm® Compiler 4.1 and later.

mbrlen(), mbsrtowcs(), mbrtowc(), wcrtomb(),
wcsrtombs()

The C90 multibyte conversion functions (defined in stdlib.h) are
not thread-safe, for example mblen() and mbtowc(), because
they contain internal static state that is shared between all threads
without locking.

However, the extended restartable versions (defined in wchar.h)
are thread-safe, for example mbrtowc() and wcrtomb(),
provided you pass in a pointer to your own mbstate_t object. You
must exclusively use these functions with non-NULL mbstate_t
* parameters if you want to ensure thread-safety when handling
multibyte strings.

rand(), srand() These functions keep internal state that is both global and
unprotected. This means that calls to rand() are never thread-
safe.

We recommend that you do one of the following:

• Use the reentrant versions _rand_r() and _srand_r()
supplied by Arm. These use user-provided buffers instead of
static data within the C library.

• Use your own locking to ensure that only one thread ever calls
rand() at a time, for example, by defining $Sub$$rand() if
you want to avoid changing your code.

• Arrange that only one thread ever needs to generate random
numbers.

• Supply your own random number generator that can have
multiple independent instances.

Note:
_rand_r() and _srand_r() both take an additional parameter
that is a pointer to a buffer storing the state of the random
number generator.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Functions Description
setlocale(), localeconv() setlocale() is used for setting and reading locale settings. The

locale settings are global across all threads, and are not protected by
a lock. If two threads call setlocale() to simultaneously modify
the locale settings, or if one thread reads the settings while another
thread is modifying them, data corruption might occur. Also, many
other functions, for example strtod() and sprintf(), read the
current locale settings. Therefore, if one thread calls setlocale()
concurrently with another thread calling such a function, there
might be unexpected results.

Multiple threads reading the settings simultaneously is thread-safe
in simple cases and if no other thread is simultaneously modifying
those settings, but where internally an intermediate buffer is
required for more complicated returned results, unexpected results
can occur unless you use a reentrant version of setlocale(). We
recommend that you either:

• Choose the locale you want and call setlocale() once
to initialize it. Do this before creating any additional threads
in your program so that any number of threads can read the
locale settings concurrently without interfering with one
another.

• Use the reentrant version _setlocale_r() supplied by
Arm. This returns a string that is either a pointer to a constant
string, or a pointer to a string stored in a user-supplied buffer
that can be used for thread-local storage, rather than using
memory within the C library. The buffer must be at least
_SETLOCALE_R_BUFSIZE bytes long, including space for a
trailing NUL.

Be aware that _setlocale_r() is not fully thread-safe when
accessed concurrently to change locale settings. This access is not
lock-protected.

Also, be aware that localeconv() is not thread-safe. Call the Arm
function _get_lconv() with a pointer to a user-supplied buffer
instead.

Related information
_rand_r() on page 161
_srand_r() on page 171

4.64 Legacy function __user_initial_stackheap()
If you have legacy source code you might see __user_initial_stackheap(), from rt_misc.h. This
is an old function that is only supported for backwards compatibility with legacy source code.

We recommend not using __user_initial_stackheap() in new code. Instead, use
its modern equivalent, __user_setup_stackheap().

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

Syntax
For AArch32 targets:

extern __attribute__((value_in_regs)) struct __initial_stackheap \
 __user_initial_stackheap(unsigned R0, \
 unsigned SP, \
 unsigned R2, \
 unsigned SL);

For AArch64 targets:

extern __attribute__((value_in_regs)) struct __initial_stackheap \
 __user_initial_stackheap(unsigned long R0, \
 unsigned long SP, \
 unsigned long R2, \
 unsigned long SL);

Operation
__user_initial_stackheap() returns the:

• Heap base in r0.

• Stack base in r1, that is, the highest address in the stack region.

• Heap limit in r2.

If this function is reimplemented, it must:

• Use no more than 88 bytes of stack.

• Not corrupt registers other than r12 (ip) when targeting AArch32.

• Not corrupt registers other than r16 (ip0) and r17 (ip1) when targeting AArch64.

• Maintain 8-byte alignment of the heap when targeting AArch32.

• Maintain 16-byte alignment of the heap when targeting AArch64.

When __user_initial_stackheap() is called, the argument in r1 is the value that sp had when
__main() was called. The default implementation of __user_initial_stackheap(), using the
semihosting SYS_HEAPINFO, is given by the library in module sys_stackheap.o.

To create a version of __user_initial_stackheap() that inherits sp from the execution
environment and does not have a heap, set r0 and r2 to the value of r1 and return.

There is no limit to the size of the stack. However, if the heap region grows into the stack, malloc()
attempts to detect the overlapping memory and fails the new memory allocation request.

For AArch32 targets, the definition of __initial_stackheap in rt_misc.h is:

struct __initial_stackheap {
 unsigned heap_base; /* low-address end of initial heap */
 unsigned stack_base; /* high-address end of initial stack */
 unsigned heap_limit; /* high-address end of initial heap */
 unsigned stack_limit; /* unused */

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

The C and C++ Library Functions Reference

};

For AArch64 targets, the definition of __initial_stackheap in rt_misc.h is:

struct __initial_stackheap {
 unsigned long heap_base; /* low-address end of initial heap */
 unsigned long stack_base; /* high-address end of initial stack */
 unsigned long heap_limit; /* high-address end of initial heap */
 unsigned long stack_limit; /* unused */
};

The value of stack_base is 1 greater than the highest address used by the stack
because a full-descending stack is used.

Related information
Stack pointer initialization and heap bounds on page 82

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

5. Floating-point Support Functions
Reference

The floating-point functions that Arm® Compiler for Embedded supports.

The following are supported:

• _clearfp()

• _controlfp()

• __fp_status()

• __ieee_status()

• _statusfp()

5.1 _clearfp()
Defined in float.h, the _clearfp() function is provided for compatibility with Microsoft products.

Syntax
unsigned _clearfp(void);

Parameters
None.

Returns
Returns the previous values of all five exception sticky flags.

Operation
_clearfp() clears all five exception sticky flags. You can use the _controlfp() argument macros,
for example _EM_INVALID and _EM_ZERODIVIDE, to test bits of the returned result.

This function requires a floating-point model that supports exceptions. In Arm®

Compiler for Embedded 6, this floating-point model is disabled by default. To
enabled it, use the armclang command-line option -ffp-mode=full. However,
compiler optimizations can prevent floating-point exceptions from being generated.
You can still use the float.h functions, but you might observe unexpected floating-
point exception behavior in instances where an optimization has removed a floating-
point operation that it considers unnecessary.

Related information
_controlfp() on page 200

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

_statusfp() on page 207

5.2 _controlfp()
Defined in float.h, the _controlfp() function is provided for compatibility with Microsoft
products. It enables you to control exception traps and rounding modes.

Syntax
unsigned int _controlfp(unsigned int <new>, unsigned int <mask>);

Parameters
<new> and <mask>

For every bit of <mask> that is zero, the corresponding control word bit is unchanged. For
every bit of <mask> that is nonzero, the corresponding control word bit is set to the value of
the corresponding bit of <new>.

This behavior is different to that of __ieee_status() or __fp_status(), where
you can toggle a bit by setting a zero in the mask word and a one in the flags
word.

The following table describes the macros you can use to form the arguments to
_controlfp():

Table 5-1: _controlfp argument macros

Macro Description

_MCW_EM Mask containing all exception bits

_EM_INVALID Bit describing the Invalid Operation exception

_EM_ZERODIVIDE Bit describing the Divide by Zero exception

_EM_OVERFLOW Bit describing the Overflow exception

_EM_UNDERFLOW Bit describing the Underflow exception

_EM_INEXACT Bit describing the Inexact Result exception

_MCW_RC Mask for the rounding mode field

_RC_CHOP Rounding mode value describing Round Toward Zero

_RC_UP Rounding mode value describing Round Up

_RC_DOWN Rounding mode value describing Round Down

_RC_NEAR Rounding mode value describing Round To Nearest

The values of these macros are not guaranteed to remain the same in future
versions of Arm products. To ensure that your code continues to work if the
value changes in future releases, use the macro rather than its value.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

Returns
The return value is the previous state of the control word.

Restrictions
The Arm® Compiler for Embedded toolchain does not support floating-point exception trapping for
AArch64 targets.

Operation
_controlfp() modifies a control word using a mask to isolate the bits to modify.

This function requires a floating-point model that supports exceptions. In Arm
Compiler for Embedded 6, this floating-point model is disabled by default. To
enabled it, use the armclang command-line option -ffp-mode=full. However,
compiler optimizations can prevent floating-point exceptions from being generated.
You can still use the float.h functions, but you might observe unexpected floating-
point exception behavior in instances where an optimization has removed a floating-
point operation that it considers unnecessary.

Example: Set the rounding mode to round down
_controlfp(_RC_DOWN, _MCW_RC);

Example: Trap the Invalid Operation exception and untrap all other exceptions
_controlfp(_EM_INVALID, _MCW_EM);

Example: Untrap the Inexact Result exception
_controlfp(0, _EM_INEXACT);

Related information
_clearfp() on page 199
_statusfp() on page 207

5.3 __fp_status()
Defined in stdlib.h, __fp_status() is the same as __ieee_status() but it uses an older style
of status word layout. The compiler still supports the __fp_status() function for backwards
compatibility.

Syntax
unsigned int __fp_status(unsigned int <mask>, unsigned int <flags>);

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

Parameters
<mask> and <flags>

Bit-fields that correspond directly to the floating-point status register in the FPE/FPA and
fplib.

The layout of the status word as seen by __fp_status() is as follows:

Figure 5-1: Floating-point status word layout

031 24 23 21 20 16 15 13 12 8 7 5 4

System ID Masks StickyFPA onlyR R R

The fields in the status word are as follows:

• Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative flags, for
each exception. The sticky flag for an exception is set to 1 whenever that exception
happens and is not trapped. Sticky flags are never cleared by the system, only by the
user. The mapping of exceptions to bits is:

◦ Bit 0 (0x01) is for the Invalid Operation exception

◦ Bit 1 (0x02) is for the Divide by Zero exception.

◦ Bit 2 (0x04) is for the Overflow exception.

◦ Bit 3 (0x08) is for the Underflow exception.

◦ Bit 4 (0x10) is for the Inexact Result exception.

• Bits 8 to 12 (values 0x100 to 0x1000) control various aspects of the Floating-Point
Architecture (FPA). The FPA is obsolete and the Arm compilation tools do not support it.
Any attempt to write to these bits is ignored.

• Bits 16 to 20 (values 0x10000 to 0x100000) are the exception masks. These control
whether each exception is trapped or not. If a bit is set to 1, the corresponding exception
is trapped. If a bit is set to 0, the corresponding exception sets its sticky flag and returns a
plausible result.

• Bits 24 to 31 contain the system ID that cannot be changed. It is set to 40 for software
floating-point, to 80 or above for hardware floating-point, and to 0 or 1 if a hardware
floating-point environment is being faked by an emulator.

• Bits marked R are reserved. They cannot be written to by the __fp_status() call, and you
must ignore anything you find in them.

In addition to defining the __fp_status() call, stdlib.h also defines the following constants
to be used for the arguments:

#define __fpsr_IXE 0x100000
#define __fpsr_UFE 0x80000

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

#define __fpsr_OFE 0x40000
#define __fpsr_DZE 0x20000
#define __fpsr_IOE 0x10000
#define __fpsr_IXC 0x10
#define __fpsr_UFC 0x8
#define __fpsr_OFC 0x4
#define __fpsr_DZC 0x2
#define __fpsr_IOC 0x1

Returns
The current value of the status register, and also sets the writable bits of the word (the exception
control and flag bytes) to:

new = (old & ~mask) ^ flags;

Restrictions
The Arm® Compiler for Embedded toolchain does not support floating-point exception trapping for
AArch64 targets.

The rounding mode cannot be changed with the __fp_status() call.

Operation
The Arm Compiler for Embedded toolchain supports an interface to the status word in the floating-
point environment. Some older versions of the Arm libraries implemented a function called
__fp_status() to provide this interface.

This function requires a floating-point model that supports exceptions. In Arm
Compiler for Embedded 6, this floating-point model is disabled by default. To
enabled it, use the armclang command-line option -ffp-mode=full. However,
compiler optimizations can prevent floating-point exceptions from being generated.
You can still use the float.h functions, but you might observe unexpected floating-
point exception behavior in instances where an optimization has removed a floating-
point operation that it considers unnecessary.

Example: Trap the Invalid Operation exception and untrap all other exceptions
__fp_status(_fpsr_IXE | _fpsr_UFE | _fpsr_OFE |
 _fpsr_DZE | _fpsr_IOE, _fpsr_IOE);

Example: Untrap the Inexact Result exception
__fp_status(_fpsr_IXE, 0);

Example: Clear the Underflow sticky flag
__fp_status(_fpsr_UFC, 0);

Related information
Controlling the Arm floating-point environment on page 120

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

__ieee_status() on page 204

5.4 __ieee_status()
Defined in fenv.h, __ieee_status() modifies the writable parts of the status word according to the
parameters.

Syntax
unsigned int __ieee_status(unsigned int <mask>, unsigned int <flags>);

Parameters
<mask> and <flags>

__ieee_status() can perform four different operations on each bit of the status word,
depending on the corresponding bits in <mask> and <flags>.

Table 5-2: Status word bit modification

Bit of mask Bit of flags Effect

0 0 Leave alone

0 1 Toggle

1 0 Set to 0

1 1 Set to 1

The layout of the status word as seen by __ieee_status() is as follows:

Figure 5-2: IEEE status word layout

031 24 23 21 20 16 15 13 12 8 7 5 4

S ticky

25 22 19 18

FZ RM MasksR RRR VFPVFP

262728

RQC

The fields in the status word are as follows:

• Bits 0 to 4 corresponding to the values 0x1 to 0x10, respectively, are the sticky flags, or
cumulative flags, for each exception. The sticky flag for an exception is set to 1 whenever
that exception happens and is not trapped. Sticky flags are never cleared by the system,
only by the user. The mapping of exceptions to bits is:

◦ Bit 0 (0x01) is for the Invalid Operation exception.

◦ Bit 1 (0x02) is for the Divide by Zero exception.

◦ Bit 2 (0x04) is for the Overflow exception.

◦ Bit 3 (0x08) is for the Underflow exception.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

◦ Bit 4 (0x10) is for the Inexact Result exception.

• Bits 8 to 12 corresponding to the values 0x100 to 0x1000 are the exception masks. These
control whether each exception is trapped or not. If a bit is set to 1, the corresponding
exception is trapped. If a bit is set to 0, the corresponding exception sets its sticky flag
and returns a plausible result.

• Bits 16 to 18, and bits 20 and 21, are used by VFP hardware to control the VFP vector
capability. The __ieee_status() call does not let you modify these bits. Bits 22 and 23
control the rounding mode. See the following table:

Table 5-3: Rounding mode control

Bits Rounding mode

00 Round to nearest

01 Round up

10 Round down

11 Round toward zero

The relevant libraries are selected by default in Arm® Compiler for
Embedded 6. For more information, see the armclang command-line
option -ffp-mode.

• Bit 24 enables FZ (Flush-to-zero) mode if it is set. In FZ mode, denormals are forced to
zero to speed up processing because denormals can be difficult to work with and slow
down floating-point systems. Setting this bit reduces accuracy but might increase speed.

◦ The FZ bit in the IEEE status word is not supported by any of the
fplib variants. This means that switching between flushing to zero
and not flushing to zero at runtime is not possible with any variant of
fplib. However, you can set flushing to zero or not flushing to zero at
compile time as a result of the library you choose to build with.

◦ Arm Compiler for Embedded 6 does not support the flushing of
denormal half-precision values. Armv8.2-A and later application profile
architectures provide a separate FPSCR.FZ16 bit to control the Flush-
to-zero behavior. Setting FZ16 to 1 is unsupported.

◦ Some functions are not provided in hardware. They exist only in the
software floating-point libraries. So these functions cannot support
the FZ mode, even when you are compiling for a hardware VFP
architecture. As a result, behavior of the floating-point libraries is
not consistent across all functions when you change the FZ mode
dynamically.

• Bit 27 indicates that saturation has occurred in an Advanced SIMD saturating integer
operation. This is accessible through the __ieee_status() call.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 218

https://developer.arm.com/documentation/101754/0623/armclang-Reference/armclang-Command-line-Options/-ffp-mode

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

• Bits marked R are reserved. They cannot be written to by the __ieee_status() call, and
you must ignore anything you find in them.

In addition to defining the __ieee_status() call, fenv.h also defines the following constants
to be used for the arguments:

#define FE_IEEE_FLUSHZERO (0x01000000)
#define FE_IEEE_ROUND_TONEAREST (0x00000000)
#define FE_IEEE_ROUND_UPWARD (0x00400000)
#define FE_IEEE_ROUND_DOWNWARD (0x00800000)
#define FE_IEEE_ROUND_TOWARDZERO (0x00C00000)
#define FE_IEEE_ROUND_MASK (0x00C00000)
#define FE_IEEE_MASK_INVALID (0x00000100)
#define FE_IEEE_MASK_DIVBYZERO (0x00000200)
#define FE_IEEE_MASK_OVERFLOW (0x00000400)
#define FE_IEEE_MASK_UNDERFLOW (0x00000800)
#define FE_IEEE_MASK_INEXACT (0x00001000)
#define FE_IEEE_MASK_ALL_EXCEPT (0x00001F00)
#define FE_IEEE_INVALID (0x00000001)
#define FE_IEEE_DIVBYZERO (0x00000002)
#define FE_IEEE_OVERFLOW (0x00000004)
#define FE_IEEE_UNDERFLOW (0x00000008)
#define FE_IEEE_INEXACT (0x00000010)
#define FE_IEEE_ALL_EXCEPT (0x0000001F)

Returns
Returns the previous value of the whole word, and also modifies the writable bits of the word (the
exception control and flag bytes) to:

new = (old & ~mask) ^ flags;

Restrictions
The Arm Compiler for Embedded toolchain does not support floating-point exception trapping for
AArch64 targets.

Operation
The Arm Compiler for Embedded toolchain supports an interface to the status word in the floating-
point environment. This interface is provided as function __ieee_status() and it is generally the
most efficient function to use for modifying the status word for VFP.

The Arm Compiler for Embedded toolchain does not support floating-point
exception trapping for AArch64 targets.

This function requires a floating-point model that supports exceptions. In Arm
Compiler for Embedded 6, this floating-point model is disabled by default. To
enabled it, use the armclang command-line option -ffp-mode=full. However,
compiler optimizations can prevent floating-point exceptions from being generated.
You can still use the float.h functions, but you might observe unexpected floating-

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

point exception behavior in instances where an optimization has removed a floating-
point operation that it considers unnecessary.

Example: Set the rounding mode to round down
__ieee_status(FE_IEEE_ROUND_MASK, FE_IEEE_ROUND_DOWNWARD);

Example: Trap the Invalid Operation exception and untrap all other exceptions
__ieee_status(FE_IEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_INVALID);

Example: Untrap the Inexact Result exception
__ieee_status(FE_IEEE_MASK_INEXACT, 0);

Example: Clear the Underflow sticky flag
__ieee_status(FE_IEEE_UNDERFLOW, 0);

Related information
Controlling the Arm floating-point environment on page 120
Arm floating-point compiler extensions to the C99 interface on page 127
C and C++ library naming conventions on page 108
Exceptions arising from IEEE 754 floating-point arithmetic on page 137

5.5 _statusfp()
Defined in float.h, the _statusfp() function is provided for compatibility with Microsoft products.

Syntax
unsigned _statusfp(void);

Parameters
None.

Returns
Returns the current value of the exception sticky flags.

Operation
You can use the _controlfp() argument macros, for example _EM_INVALID and _EM_ZERODIVIDE, to
test bits of the returned result.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Floating-point Support Functions Reference

This function requires a floating-point model that supports exceptions. In Arm®

Compiler for Embedded 6, this floating-point model is disabled by default. To
enabled it, use the armclang command-line option -ffp-mode=full. However,
compiler optimizations can prevent floating-point exceptions from being generated.
You can still use the float.h functions, but you might observe unexpected floating-
point exception behavior in instances where an optimization has removed a floating-
point operation that it considers unnecessary.

Related information
_clearfp() on page 199
_controlfp() on page 200

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 218

https://www.arm.com/company/policies/trademarks

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0623-
01

16 October
2024

Non-
Confidential

Arm Compiler for Embedded v6.23 Release.

0622-
00

13 March 2024 Non-
Confidential

Arm Compiler for Embedded v6.22 Release.

0621-
00

11 October
2023

Non-
Confidential

Arm Compiler for Embedded v6.21 Release.

0620-
01

19 April 2023 Non-
Confidential

Documentation update 1 for Arm Compiler for Embedded
v6.20 Release.

0620-
00

15 March 2023 Non-
Confidential

Arm Compiler for Embedded v6.20 Release.

0619-
00

12 October
2022

Non-
Confidential

Arm Compiler for Embedded v6.19 Release.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Issue Date Confidentiality Change

0618-
00

22 March 2022 Non-
Confidential

Arm Compiler for Embedded v6.18 Release.

0617-
00

20 October
2021

Non-
Confidential

Arm Compiler for Embedded v6.17 Release.

0616-
01

12 March 2021 Non-
Confidential

Documentation update 1 for Arm Compiler v6.16 Release.

0616-
00

3 March 2021 Non-
Confidential

Arm Compiler v6.16 Release.

0615-
01

14 December
2020

Non-
Confidential

Documentation update 1 for Arm Compiler v6.15 Release.

0615-
00

7 October
2020

Non-
Confidential

Arm Compiler v6.15 Release.

0614-
00

26 February
2020

Non-
Confidential

Arm Compiler v6.14 Release.

0613-
00

9 October
2019

Non-
Confidential

Arm Compiler v6.13 Release.

0612-
00

27 February
2019

Non-
Confidential

Arm Compiler v6.12 Release.

0611-
00

25 October
2018

Non-
Confidential

Arm Compiler v6.11 Release.

0610-
00

14 March 2018 Non-
Confidential

Arm Compiler v6.10 Release.

0609-
00

25 October
2017

Non-
Confidential

Arm Compiler v6.9 Release.

0608-
00

30 July 2017 Non-
Confidential

Arm Compiler v6.8 Release.

0607-
00

5 April 2017 Non-
Confidential

Arm Compiler v6.7 Release.

G 4 November
2016

Non-
Confidential

Arm Compiler v6.6 Release.

F 29 June 2016 Non-
Confidential

Arm Compiler v6.5 Release.

E 24 February
2016

Non-
Confidential

Arm Compiler v6.4 Release.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Issue Date Confidentiality Change

D 18 November
2015

Non-
Confidential

Arm Compiler v6.3 Release.

C 30 June 2015 Non-
Confidential

Arm Compiler v6.02 Release.

B 15 December
2014

Non-
Confidential

Arm Compiler v6.01 Release.

A 14 March 2014 Non-
Confidential

Arm Compiler v6.00 Release.

Change history
The first table is for the first release. Then, each table compares the new issue of the manual with
the last released issue of the manual. Release numbers match the revision history in Document
release information on page 211.

Table 2: Issue 0615-01

Change Topics affected

Added a note about linking with either the --keep or --
no_remove armlink option.

• __user_heap_extent().

Corrected return types for __ARM_TPL_execute_once,
__ARM_TPL_thread_nanosleep, and __ARM_TPL_tls_set

• Threads [ALPHA].

• Miscellaneous functions [ALPHA].

• Threads [ALPHA].

Updated list of thread-safe C library functions. • Thread-safe C library functions.

Clarified return value for __heapvalid() • __heapvalid().

Removed gamma(), gamma_r(), j0(), j1(), jn(),
lgamma_r(), scalb(), significand(), y0(), y1(), yn()
functions from documentation as they are no longer supported.

• Floating-point Support Functions Reference.

Document the __use_standardlib_division symbol, which
allows microlib users to select the standardlib implementation of the
32-bit integer division functions if desired

• Differences between microlib and the default C library.

Progressive terminology commitment added to Proprietary notices
section (all documents).

• Proprietary notices

Table 3: Issue 0616-00

Change Topics affected

Added a note about the compatibility of C++ compilation units
compiled with different major or minor versions of Arm Compiler for
Embedded.

• C and C++ runtime libraries.

Added a note about the impact of changing the version of the C++
standard library ABI between Arm Compiler for Embedded releases.

• Compliance with the Application Binary Interface (ABI) for the
Arm architecture.

Added new topic describing IEEE 754 binary to decimal
compliance and use of the __use_accurate_btod and
__use_embedded_btod symbols.

• IEEE 754 binary to decimal compliance.

Added information about libc++ experimental features. • Standard C++ library implementation definition.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Table 4: Issue 0617-00

Change Topics affected

Reorganized the sections in the Arm C Micro-library chapter. • The Arm C Micro-library.

Added information about the Armv8.1-M PACBTI extension. • C and C++ library naming conventions.

Bare-metal Position Independent Executable (PIE) is no longer
deprecated and is supported for both AArch64 state and AArch32
state.

• C and C++ library naming conventions.

• Selection of Arm C and C++ library variants based on build
options.

Removed notes about Thread Local Storage (TLS) being a
[COMMUNITY] feature. TLS is now supported without the -
femulated-lts commmand-line option.

• Thread Local Storage in C.

• Thread Local Storage in C++.

Updated to mention that the behavior in how NaN values are
treated when converting or truncating to float has changed.

• Sample single precision floating-point values for IEEE 754
arithmetic.

• Sample double precision floating-point values for IEEE 754
arithmetic.

Updated the SysV scatter file support for ARM_LIB_STACKHEAP,
ARM_LIB_STACK, or ARM_LIB_HEAP keywords.

• Stack pointer initialization and heap bounds.

Table 5: Issue 0618-00

Change Topics affected

Added details for the
__ARM_TPL_condvar_monotonic_timedwait() function.

• Condition variables [ALPHA].

Clarified the implementation-defined behavior of nextafter(). • Floating-point Support.

Added note about importing symbols for locales. • ISO8859-1 implementation.

• Shift-JIS and UTF-8 implementation.

Table 6: Issue 0619-00

Change Topics affected

Documented the new Armv8-R AArch64 libraries. • C and C++ library naming conventions.

Updated the library naming conventions table. • C and C++ library naming conventions.

Added details how to avoid linking to the C library. • Linking with the C library.

Added floating-point considerations. • Floating-point Support.

Documented that the _sys_tmpnam() function is deprecated, and
added details of the new _sys_tmpnam2() function.

• _sys_tmpnam().

• _sys_tmpnam2().

Updated the code examples that show how to redefine low level
library functions.

• Redefining low-level library functions to enable direct use of
high-level library functions in the C library.

For std::vector<bool>::const_reference and
std::bitset::const_reference, the const_reference
type is defined as bool. The statement that they did not conform
to the standards has been removed.

• Standard C++ library implementation definition.

Documented setting up ROPI and RWPI at startup. • Customized C library startup code and access to C library
functions.

Documented features not supported in C++17. • Standard C++ library implementation definition.

Added the Useful resources topic. • Useful resources.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Table 7: Issue 0620-00

Change Topics affected

Updated the description of the __thread and thread_local
keywords.

• Thread Local Storage in C++.

Updated the support for the C++17 standard library header
<memory_resource>.

• Standard C++ library implementation definition.

Clarified the description of floating-point considerations. • Floating-point Support.

Table 8: Issue 0621-00

Change Topics affected

Clarified misleading C++ statements. • Arm C++ libraries and multithreading [ALPHA].

Moved the content of About floating-point support. • Floating-point Support.

Moved the content of C and C++ library features. • The Arm C and C++ Libraries.

Moved the content of Summary of the C and C++ runtime libraries. • C and C++ runtime libraries.

Updated the link to the C++ ABI for the Arm Architecture. • Use of the __user_libspace static data area by the C libraries.

Updated the link to the C Library ABI for the Arm Architecture. • __aeabi_errno_addr().

Added note about microlib security implications. • The Arm C Micro-library.

Updated notes about software floating-point support. • Floating-point Support.

• Selection of Arm C and C++ library variants based on build
options.

Table 9: Issue 0622-00

Change Topics affected

Formatted the descriptions of the library functions to clarify the
descriptions and return values.

• Floating-point Support Functions Reference.

• The C and C++ Library Functions Reference.

The descriptions for Thread Local Storage in C and Thread Local
Storage in C++ have been moved to the User Guide. See Thread
Local Storage.

Table 10: Issue 0623-01

Change Topics affected

Minor update to Table 4-3: Functions that are thread-safe. • Thread-safe C library functions.

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 218

https://developer.arm.com/documentation/100748/0623/Thread-Local-Storage
https://developer.arm.com/documentation/100748/0623/Thread-Local-Storage
https://developer.arm.com/glossary

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 216 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 218

Arm® Compiler for Embedded Arm® C and C++ Libraries and
Floating-Point Support User Guide

Document ID: 100073_6.23_01_en
Issue 01

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm Compiler for Embedded User Guide 100748 Non-Confidential

Arm Compiler for Embedded Reference
Guide

101754 Non-Confidential

Arm Compiler for Embedded Migration and
Compatibility Guide

100068 Non-Confidential

Arm Compiler for Embedded Errors and
Warnings Reference Guide

100074 Non-Confidential

Arm Support - -

Arm® architecture and specifications Document ID Confidentiality

C Library ABI for the Arm Architecture - Non-Confidential

Run-time ABI for the Arm Architecture - Non-Confidential

Copyright © 2014–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 218

http://developer.arm.com/documentation
https://developer.arm.com/documentation/100748/0623
https://developer.arm.com/documentation/101754/0623
https://developer.arm.com/documentation/101754/0623
https://developer.arm.com/documentation/100068/0623
https://developer.arm.com/documentation/100068/0623
https://developer.arm.com/documentation/100074/0623
https://developer.arm.com/documentation/100074/0623
https://developer.arm.com/support
https://github.com/ARM-software/abi-aa/blob/main/clibabi32/clibabi32.rst
https://github.com/ARM-software/abi-aa/blob/main/rtabi32/rtabi32.rst

	Arm® Compiler for Embedded Arm® C and C++ Libraries and Floating-Point Support User Guide
	Contents
	1. The Arm C and C++ Libraries
	1.1 Support level definitions
	1.2 Linking with the C library
	1.3 C and C++ runtime libraries
	1.3.1 Compliance with the Application Binary Interface (ABI) for the Arm architecture
	1.3.2 Increasing portability of object files to other CLIBABI implementations
	1.3.3 Arm C and C++ library directory structure
	1.3.4 Selection of Arm C and C++ library variants based on build options
	1.3.5 T32 C libraries

	1.4 C++ and C libraries and the std namespace
	1.5 Multithreaded support in Arm C libraries
	1.5.1 Arm C libraries and multithreading
	1.5.2 Arm C libraries and reentrant functions
	1.5.3 Arm C libraries and thread-safe functions
	1.5.4 Use of static data in the C libraries
	1.5.5 Use of the __user_libspace static data area by the C libraries
	1.5.6 C library functions to access subsections of the __user_libspace static data area
	1.5.7 Reimplementation of legacy function __user_libspace() in the C library
	1.5.8 Management of locks in multithreaded applications
	1.5.9 How to ensure reimplemented mutex functions are called
	1.5.10 Using the Arm C library in a multithreaded environment
	1.5.11 Thread safety in the Arm C library
	1.5.12 The floating-point status word in a multithreaded environment

	1.6 Multithreaded support in Arm C++ libraries [ALPHA]
	1.6.1 Arm C++ libraries and multithreading [ALPHA]
	1.6.2 Clocks [ALPHA]
	1.6.3 Mutexes [ALPHA]
	1.6.4 Condition variables [ALPHA]
	1.6.5 Threads [ALPHA]
	1.6.6 Miscellaneous functions [ALPHA]
	1.6.7 Thread safety in the Arm C++ library
	1.6.8 Supported C++ Concurrency Features [ALPHA]
	1.6.9 Guard variables [ALPHA]
	1.6.10 Exceptions [ALPHA]
	1.6.11 Standard library concurrency constructs [ALPHA]
	1.6.12 Thread-safe initialization of Mutexes and Condition variables [ALPHA]

	1.7 Support for building an application with the C library
	1.7.1 Using the C library with an application
	1.7.2 Using the C and C++ libraries with an application in a semihosting environment
	1.7.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality
	1.7.4 Using the libraries in a nonsemihosting environment
	1.7.5 Direct semihosting C library function dependencies
	1.7.6 Indirect semihosting C library function dependencies
	1.7.7 C library API definitions for targeting a different environment

	1.8 Support for building an application without the C library
	1.8.1 Standalone C library functions
	1.8.2 Creating an application as bare machine C without the C library
	1.8.3 Integer and floating-point compiler functions and building an application without the C library
	1.8.4 Bare machine integer C
	1.8.5 Bare machine C with floating-point processing
	1.8.6 Customized C library startup code and access to C library functions
	1.8.7 Using low-level functions when exploiting the C library
	1.8.8 Using high-level functions when exploiting the C library
	1.8.9 Using malloc() when exploiting the C library

	1.9 Tailoring the C library to a new execution environment
	1.9.1 Initialization of the execution environment and execution of the application
	1.9.2 C++ initialization, construction and destruction
	1.9.3 Exceptions system initialization
	1.9.4 Library functions called from main()
	1.9.5 Program exit and the assert macro

	1.10 Assembler macros that tailor locale functions in the C library
	1.10.1 Link time selection of the locale subsystem in the C library
	1.10.1.1 ISO8859-1 implementation
	1.10.1.2 Shift-JIS and UTF-8 implementation

	1.10.2 Runtime selection of the locale subsystem in the C library
	1.10.3 Definition of locale data blocks in the C library
	1.10.4 LC_CTYPE data block
	1.10.5 LC_COLLATE data block
	1.10.6 LC_MONETARY data block
	1.10.7 LC_NUMERIC data block
	1.10.8 LC_TIME data block

	1.11 Modification of C library functions for error signaling, error handling, and program exit
	1.12 Stack and heap memory allocation and the Arm C and C++ libraries
	1.12.1 Library heap usage requirements of the Arm C and C++ libraries
	1.12.2 Choosing a heap implementation for memory allocation functions
	1.12.3 Stack pointer initialization and heap bounds
	1.12.4 Legacy support for __user_initial_stackheap()
	1.12.5 Avoiding the heap and heap-using library functions supplied by Arm

	1.13 Tailoring input/output functions in the C and C++ libraries
	1.14 Target dependencies on low-level functions in the C and C++ libraries
	1.15 The C library printf family of functions
	1.16 The C library scanf family of functions
	1.17 Redefining low-level library functions to enable direct use of high-level library functions in the C library
	1.18 The C library functions fread(), fgets() and gets()
	1.19 Reimplementing __backspace() in the C library
	1.20 Reimplementing __backspacewc() in the C library
	1.21 Redefining target-dependent system I/O functions in the C library
	1.22 Tailoring non-input/output C library functions
	1.23 Real-time integer division in the Arm libraries
	1.24 ISO C library implementation definition
	1.24.1 How the Arm C library fulfills ISO C specification requirements
	1.24.2 mathlib error handling
	1.24.3 ISO-compliant implementation of signals supported by the signal() function in the C library and additional type arguments
	1.24.4 ISO-compliant C library input/output characteristics
	1.24.5 Standard C++ library implementation definition

	1.25 C library functions and extensions
	1.26 C and C++ library naming conventions
	1.27 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function prototypes
	1.28 Using library functions with execute-only memory

	2. The Arm C Micro-library
	2.1 Using microlib
	2.1.1 Entering and exiting programs linked with microlib
	2.1.2 Configuring the stack and heap for use with microlib
	2.1.3 Tailoring the microlib input/output functions
	2.1.4 Library heap usage requirements of microlib
	2.1.5 Building an application with microlib

	2.2 Differences between microlib and the default C library
	2.3 ISO C features missing from microlib

	3. Floating-point Support
	3.1 Controlling the Arm floating-point environment
	3.1.1 Floating-point functions for compatibility with Microsoft products
	3.1.2 C99-compatible functions for controlling the Arm floating-point environment
	3.1.3 C99 rounding mode and floating-point exception macros
	3.1.4 Exception flag handling
	3.1.5 Functions for handling rounding modes
	3.1.6 Functions for saving and restoring the whole floating-point environment
	3.1.7 Functions for temporarily disabling exceptions
	3.1.8 Arm floating-point compiler extensions to the C99 interface
	3.1.9 Example of a custom exception handler
	3.1.10 Exception trap handling by signals

	3.2 mathlib double and single-precision floating-point functions
	3.3 IEEE 754 arithmetic
	3.3.1 Basic data types for IEEE 754 arithmetic
	3.3.2 Single precision data type for IEEE 754 arithmetic
	3.3.3 Double precision data type for IEEE 754 arithmetic
	3.3.4 Sample single precision floating-point values for IEEE 754 arithmetic
	3.3.5 Sample double precision floating-point values for IEEE 754 arithmetic
	3.3.6 IEEE 754 arithmetic and rounding
	3.3.7 Exceptions arising from IEEE 754 floating-point arithmetic
	3.3.8 Exception types recognized by the Arm floating-point environment
	3.3.9 IEEE 754 binary to decimal compliance

	4. The C and C++ Library Functions Reference
	4.1 __aeabi_errno_addr()
	4.2 alloca()
	4.3 clock()
	4.4 _clock_init()
	4.5 __default_signal_handler()
	4.6 errno
	4.7 _findlocale()
	4.8 _fisatty()
	4.9 _get_lconv()
	4.10 getenv()
	4.11 _getenv_init()
	4.12 __heapstats()
	4.13 __heapvalid()
	4.14 lconv structure
	4.15 localeconv()
	4.16 longjmp()
	4.17 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(), _membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(), _membitmovewl(), _membitmovewb()
	4.18 _platform_pre_stackheap_init()
	4.19 posix_memalign()
	4.20 __raise()
	4.21 _rand_r()
	4.22 remove()
	4.23 rename()
	4.24 __rt_entry
	4.25 __rt_exit()
	4.26 __rt_fp_status_addr()
	4.27 __rt_heap_extend()
	4.28 __rt_lib_init()
	4.29 __rt_lib_shutdown()
	4.30 __rt_raise()
	4.31 __rt_stackheap_init()
	4.32 setjmp()
	4.33 setlocale()
	4.34 _srand_r()
	4.35 strcasecmp()
	4.36 strlcat()
	4.37 strlcpy()
	4.38 strncasecmp()
	4.39 strnlen()
	4.40 _sys_close()
	4.41 _sys_command_string()
	4.42 _sys_ensure()
	4.43 _sys_exit()
	4.44 _sys_flen()
	4.45 _sys_istty()
	4.46 _sys_open()
	4.47 _sys_read()
	4.48 _sys_seek()
	4.49 _sys_tmpnam2()
	4.50 _sys_tmpnam()
	4.51 _sys_write()
	4.52 system()
	4.53 time()
	4.54 _ttywrch()
	4.55 __user_heap_extend()
	4.56 __user_heap_extent()
	4.57 __user_setup_stackheap()
	4.58 __vectab_stack_and_reset
	4.59 wcscasecmp()
	4.60 wcsncasecmp()
	4.61 wcstombs()
	4.62 Thread-safe C library functions
	4.63 C library functions that are not thread-safe
	4.64 Legacy function __user_initial_stackheap()

	5. Floating-point Support Functions Reference
	5.1 _clearfp()
	5.2 _controlfp()
	5.3 __fp_status()
	5.4 __ieee_status()
	5.5 _statusfp()

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

