
Platform Security Firmware
Update for the A-profile Arm

Architecture

Document number DEN0118

Document quality EAC1

Document version 1.0 A

Document confidentiality Non-confidential

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.

Release information

Date Version Changes

2024/Oct/20 1.0 A EAC1 • Add note about FF-A version recommended for the transport
2024/Mar/30 1.0 A EAC0 • First release of the specification

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this License (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this License. By using or copying the
Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that is not
itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions, information,
scope, and data. This document was produced using reasonable efforts based on information available as of the date of issue
of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and
that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible
for any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without notice. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT
OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this License then Arm may terminate this License immediately upon giving
written notice to Licensee. Licensee may terminate this License at any time. Upon termination of this License by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
License, all terms shall survive except for the License grants.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach. Any
termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this License and any translation, the terms of the English version of this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No license, express, implied or otherwise, is granted to Licensee under this
License, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © 2022, 2023, 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

http://www.arm.com/company/policies/trademarks

Contents

Platform Security Firmware Update for the A-profile Arm Ar-
chitecture

Release information . ii
Arm Non-Confidential Document License (“License”) iii

Conventions . vii
Typographical conventions . vii
Numbers . vii
Pseudocode descriptions . vii
Assembler syntax descriptions . vii

References . viii
Feedback . ix

Feedback on this book . ix
Inclusive terminology commitment . ix

Glossary

Chapter 1 Introduction

Chapter 2 Firmware Store update architecture overview
2.1 System boot on platforms with an updatable Firmware Store. 16

2.1.1 Platform Boot . 16
2.2 Recovery Mode . 17

Chapter 3 Firmware Store update protocol
3.1 Firmware Store design . 19
3.2 Firmware Store update protocol GUIDs . 20

3.2.1 Firmware Store state machine . 20
3.3 Firmware Store management . 23

3.3.1 Image directory . 23
3.3.2 Anti-rollback counter management . 24
3.3.3 Protocol-updatable images . 24
3.3.4 Telemetry . 25

3.4 Firmware Store Update ABI . 27
3.4.1 Transport layer . 27
3.4.2 ABI definition . 28

Part A A/B Firmware Store design guidance

Chapter A1 Firmware bank selection
A1.1 Platform Boot . 44

Chapter A2 Recovery Mode

Chapter A3 A/B Firmware Store design
A3.1 A/B Firmware Store state machine . 47

A3.1.1 A/B Firmware Store Staging state . 47
A3.2 Firmware Store management . 49

A3.2.1 Firmware update metadata . 49
A3.2.2 Metadata Version 2 . 50

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents
Contents

A3.2.3 Metadata version 1 . 52
A3.2.4 Metadata integrity check . 53

Chapter A4 State variable updates by the Update Agent
A4.1 fwu_end_staging . 55
A4.2 fwu_accept_image . 56
A4.3 fwu_select_previous . 57

Part B In-band updates on systems with a Platform Controller

Chapter B1 ABI implementation in B2

Chapter B2 AP and PCtr synchronization in B1 and B2

Chapter B3 AP boot

Chapter B4 Example AP to PCtr interaction via PLDM type 5 messaging

Part C Update Agent in the Normal World

Chapter C1 State machine

Chapter C2 Firmware directory information

Part D Security Risk Analysis

Chapter D1 Trust and information flows
D1.1 Assets . 71
D1.2 Security goals . 72
D1.3 Model assumptions . 73
D1.4 Threats . 74
D1.5 Platform models . 75
D1.6 NV memory controlled by the Secure World 75

D1.6.1 Mitigations . 75
D1.7 NV memory controlled by the Normal World 78

Part E UEFI end-to-end example design

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents
Conventions

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

http://developer.arm.com

Contents
References

References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Platform Security Boot Guide. (1.1) Arm.

[2] Unified Extensible Firmware Interface. (2.8) UEFI Forum Inc.

[3] Arm Firmware Framework for Armv8-A. (1) Arm.

[4] UEFI Platform Initialization Specification. (1.8) UEFI.

[5] Platform Level Data Model (PLDM) for Firmware Update Specification. (1.1.0) DMTF.

[6] STRIDE chart. See https://www.microsoft.com/security/blog/2007/09/11/stride-chart

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

https://www.microsoft.com/security/blog/2007/09/11/stride-chart

Contents
Feedback

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or suggestions for additions and improvements create a ticket at
https://support.developer.arm.com/. As part of the ticket include:

• The title (Platform Security Firmware Update for the A-profile Arm Architecture).
• The number (DEN0118 1.0 A).
• The section name to which your comments refer.
• The page number(s) to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change. We believe that this document contains no offensive terms. If
you find offensive terms in this document, please contact terms@arm.com.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

https://support.developer.arm.com/

Glossary

Glossary

BMC

Baseboard management controller

Client

The entity that holds the firmware images to be updated.

CPU rendezvous

Pause all CPUs but the worker CPU. Note that CPU rendezvous for the purposes of live activation implies the
usage of PSCI_CPU_PAUSE.

FF-A implementation

The supervisory software in EL2, EL3, S-EL2 that implements the FF-A protocol.

Firmware componenet activation

The procedure that places a particular firmawre component instance in execution on the platform.

Firmware Store

The non-volatile memory containing the firmware images that are executed on the platform.

FM

Runtime Firmware Manager

FSM

Finite state machine

FW

Firmware

GPT

GUID Partition Table

GUID

Globally Unique Identifier

Live activation

The procedure of activating a firmware image instance, replacing a previously running instance, while the system
remains in execution.

LSB

Least Significant Byte

MBZ

Must be zero

NV

Non-volatile

Protocol-updatable bank

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Glossary

A collection of firmware images updatable using the protocol defined in this document.

RoT

Root of trust

ROTPK

Root of trust public key

Secure State

The Arm Execution state that enables access to the Secure and Non-secure systems resources, for example memory,
peripherals, and System registers.

Update Agent

The entity that receives the firmware images sent from the Client and which serializes these to the Firmware Store.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Chapter 1
Introduction

This document defines an architecture for firmware update on Arm A-profile systems.

The document defines the concept of an Update Agent that controls the Firmware Store. The Update Agent can be
implemented within a Secure Partition, in the Secure World – The Firmware Store update ABI (3.4 Firmware
Store Update ABI), defined in this document, allows for the firmware blobs to be communicated to the Update
Agent by a Client in the Host OS.

Updates to the Firmware Store involve an Update Client and an Update Agent. The Client transfers the firmware
images to the Update Agent. The latter component writes the images to the Firmware Store.

A common system design will place the Update Agent in the Secure World, while the Client executes in the
Non-secure World. This document defines a set of primitives (Firmware Store update ABI, 3.4 Firmware Store
Update ABI) for the Client to transfer the firmware images to the Update Agent, when the agent is in the Secure
World.

The security properties of the protocol, defined in this document, rely on a trusted boot procedure to be implemented.
The trusted boot procedure must comply with PSBG [1].

The Update Client in the Host OS can use the Firmware Store update ABI directly. This allows for higher OS
availability because the update to the Firmware Store, and eventual flash erase requests, can be performed by the
Update Agent while the OS is running. Progress information can also be provided to a user. This contrasts with
other firmware blocking interfaces, such as UEFI UpdateCapsule, where progress information cannot be presented
to the user, and in some instances, interrupts cannot be delivered to the Host OS.

Alternatively, the firmware can implement the UEFI [2] UpdateCapsule interface, and expose it to the Host OS as a
UEFI runtime service. In this alternative, the OS installs new firmware by passing a FMP [2] formatted capsule to
the capsule update abstraction[2] defined in UEFI. The UpdateCapsule implementation uses the Firmware Store
update ABI to transfer the images, contained in the Capsule to the Update Agent. UpdateCapsule is blocking

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

12

Chapter 1. Introduction

from the point of view of the Host OS, and hence the Firmware Store update operation will be perceived as a
long-running uninterruptible procedure where the calling PE is unavailable.

The second activity in firmware update, image activation, is commonly conducted via a full system reset.

Advanced platforms may implement activation in a reboot-less manner, called live activation. In a live activation
flow, a sub-set of the firmware images becomes active without a full system reset. This functionality is out of scope
for the current specification.

Note

This document is one of a set of resources provided by Arm that can help organisations develop products
that meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified scheme
provides a framework and methodology that helps silicon manufacturers, system software providers and OEMs
to develop more secure products. Arm resources that support PSA Certified range from threat models, standard
architectures that simplify development and increase portability, and open-source partnerships that provide
ready-to-use software. You can read more about PSA Certified here: www.psacertified.org and find more Arm
resources here: developer.arm.com/platform-security-resources.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

13

www.psacertified.org
https://developer.arm.com/platform-security-resources

Chapter 2
Firmware Store update architecture overview

Staging
Area

Update
Agent

EL3

EL2

EL1

EL0

SecureNon-secure

new FW
Firmware

Store

Update Client

Figure 2.1: Firmware Store update system diagram

The diagram in Figure 2.1 depicts a possible system architecture where the Client and Update Agent execute
in the Non-secure and Secure World respectively. The details of the Firmware Store (size, geometry, number of
banks) are not visible to the Client. The Client simply interfaces with the Update Agent using the update ABI, see
3.4 Firmware Store Update ABI. The Update Agent manages the Firmware Store in a platform-specific manner.

A system contains the following entities:

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

14

Chapter 2. Firmware Store update architecture overview

1. Firmware update client (Client)
• Originator of the firmware images to be updated.

2. Firmware update agent (Update Agent)
• Entity that receives the firmware images, transmitted from the Client, and is responsible for serializing

those to the Firmware Store (a NV storage).
• Optionally, the Update Agent can perform firmware image authentication before updating the Firmware

Store.

Messages exchanged between the Client and the Update Agent, use FF-A as a transport, and thus are forwarded by
firmware compliant with the FF-A protocol [3] running at EL2/EL3/S-EL2/S-EL1.

The Update Agent context is identified by the update_agent_guid GUID (see Table 3.1)

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

15

Chapter 2. Firmware Store update architecture overview
2.1. System boot on platforms with an updatable Firmware Store.

2.1 System boot on platforms with an updatable Firmware Store.

The system boot process has the following stages:

• immutable
– Firmware present in a (generally) non-writable memory.
– If a secondary stage is not present, the immutable stage must be aware of the protocol-updatable stage

presence.
• (optional) secondary

– single image firmware present in a writable non-volatile memory. This stage cannot be updated using
the protocol defined in this document, its update procedure is IMPLEMENTATION DEFINED, see 2.2
Recovery Mode.

– this stage must be aware of the protocol-updatable stage presence.
• protocol-updatable

– The stage that is updated using the Firmware Store update protocol, defined in this document.
– The protocol-updatable images can contain any other firmware images not involved in the boot process.
– The protocol-updatable images can be kept in a Firmware Store structured as a set of banks (the number

of banks is IMPLEMENTATION DEFINED), see 3.1 Firmware Store design.
* The immutable or secondary stage elect the bank to boot the platform with. This is IMPLEMENTA-

TION DEFINED.

2.1.1 Platform Boot

The trusted boot procedure starts at the immutable stage, optionally flowing to the secondary stage and afterwards
to the protocol-updatable stage.

bankboot_index (protocol-updatable)

Normal
World

Bootloader

BMC/
Immutable Secondary

Warm reset
(Failed boot)

Successful
bootSecure

World FW

Cold reset

authenticate
bankboot_index

Figure 2.2: Boot overview

The immutable or secondary stage select the protocol-updatable images to boot the system with. The details of the
protocol-updatable image selection are IMPLEMENTATION DEFINED.

The immutable or secondary stage may implement logic to detect failures in the boot process of the protocol-
updatable images. This enables fail-safe boot. The details of the fail-safe procedure and adopted policies are
IMPLEMENTATION DEFINED.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

Chapter 2. Firmware Store update architecture overview
2.2. Recovery Mode

2.2 Recovery Mode

The Firmware Store update protocol allows for a fail-safe update of the protocol-updatable images. The Firmware
Store update functionality relies on several firmware components. Some of these components are updatable.

It is recommended that a new set of firmware images is tested, prior to field updates, to ensure that the new set of
firmware images can still perform a subsequent update to the Firmware Store.

In rare scenarios, a system may become unable to perform updates to the Firmware Store. In such a scenario,
or when the secondary stage must be updated, a recovery mode is used. The existence of a recovery mode is
mandatory. The recovery mode implementation details are IMPLEMENTATION DEFINED.

The recovery mode can be implemented as:

• BMC assisted update.
• recovery mode executed from the immutable stage.

The recovery mode must:

• be able to write to the Firmware Store where the protocol-updatable images are stored at rest.
• be able to correctly configure the Firmware Store (details are IMPLEMENTATION DEFINED).
• if a secondary stage exists, be able to write to the medium where the secondary stage is stored at.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

Chapter 3
Firmware Store update protocol

A Firmware Store is controlled by an Update Agent in the Secure World. On some platform designs, the Update
Agent can alternatively be in the Normal World.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter 3. Firmware Store update protocol
3.1. Firmware Store design

3.1 Firmware Store design

Firmware
Store

bank0 bank1 bank#banks-1

image
type 0

image
type N

image
type 1

image
type N

image
type 1

image
type 0

image
type N

Figure 3.1: Firmware Store

The Firmware Store may have an IMPLEMENTATION DEFINED number of firmware banks (#banks), each bank
contains an IMPLEMENTATION DEFINED number of firmware images (#images). Although the types of firmware
images, on each bank, are allowed to differ between banks, it is expected that most banks contain the same image
types.

At any point in time there is an active bank, denoted as bankactive_index. The platform is expected to always boot
using the firmware in the bankactive_index. A situation where the platform boots with a firmware bank different
than the active bank constitutes a system failure scenario. The situation can only happen if the firmware in the
active bank is inoperative.

The Update Agent can implement a scheme where the active bank is kept intact while an update bank is being
overwritten. This scheme is commonly referred to as A/B updates. Any details around the number of banks and
the policy that the Update Agent uses to maintain the firmware banks are IMPLEMENTATION DEFINED.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter 3. Firmware Store update protocol
3.2. Firmware Store update protocol GUIDs

3.2 Firmware Store update protocol GUIDs

The following GUIDs are used in the protocol definition. The GUIDs are referred to, in this document, by their
GUID name.

The update_agent_guid value is the identifier of the Update Agent, it can be used to bootstrap the communication
between the Client and the Update Agent, as is detailed in 3.4.1.1 Dynamic shared buffer setup phase.

The fwu_directory_guid is the identifier of the image directory provided by the Update Agent. The image directory
contains details about the FW images managed by the Update Agent, for more information see 3.3.1 Image
directory.

The metadata_guid is the identifier of the metadata partition type when the metadata is stored within a GPT [2],
see A3.2.4.1 Metadata integration with GPT for more information.

Table 3.1: protocol defined GUIDs

GUID GUID name description

6823a838-1b06-470e-9774-0cce8bfb53fd update_agent_guid Update Agent context GUID

deee58d9-5147-4ad3-a290-77666e2341a5 fwu_directory_guid The image directory GUID, see
3.3.1 Image directory

8a7a84a0-8387-40f6-ab41-a8b9a5a60d23 metadata_guid The GUID of the metadata type, see
A3.2.1 Firmware update metadata

3.2.1 Firmware Store state machine

The Firmware Store can be in one of the following states:

• Regular - all the images in the active bank have been accepted.
• Staging - the procedure to update images in the Firmware Store is undergoing.
• Trial - the Firmware Store has been updated, at least one of the firmware images in the active bank has not

been accepted yet.

Trial Regular

Staging

fwu_begin_staging

fwu_select_previous

fwu_cancel_staging fwu_end_staging

factory
provisioning

all active images accepted

fwu_end_staging
(with all images

accepted)

fwu_accept_image
[acceptance_preconditions]

Figure 3.2: Firmware Store FSM

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Chapter 3. Firmware Store update protocol
3.2. Firmware Store update protocol GUIDs

The diagram in Figure 3.2 depicts the state machine of a generic Firmware Store. The Firmware Store transitions
between states (that are visible from the Client) as a direct result of the Client invoking primitives from the
Firmware Store update ABI.

The Update Agent may impose that an image is activated prior to being accepted by a Client (see
acceptance_preconditions guard in Figure 3.2). This is a per-image platform-specific policy, discoverable from the
client_permission field in Table 3.3, in the Image Directory.

The state transitions occur at the following boundaries:

• Regular to Staging:
– when a fwu_begin_staging call returns successfully (see 3.4.2 ABI definition).

• Staging to Trial:
– when the call fwu_end_staging returns successfully.

• Trial to Regular:
– once all firmware images in the active bank are accepted.

A detailed description of the Staging state is provided in 3.2.1.1 Staging state, the Trial state is covered in 3.2.1.2
Trial state.

3.2.1.1 Staging state
New firmware images can only be communicated from the Client to the Update Agent during a Staging state.

The system transitions from the Regular to the Staging state once the fwu_begin_staging call successfully
completes.

The Client must open an image, by invoking fwu_open, before writing to the image.

Once a firmware image context is open, a sequence of fwu_write_stream calls transmit the firmware image to the
Update Agent. The sequence diagram of the FW image transfer is shown in Figure 3.3.

transfer
bank

Update Agent

fwu_open

Client

transfer
image

fwu_write_stream

status

fwu_commit

status

handle

Figure 3.3: Staging procedure

The Update Agent can authenticate the staged firmware images before committing those to the Firmware Store.
This optional procedure is performed at the fwu_commit call. The image authentication procedure is detailed in

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter 3. Firmware Store update protocol
3.2. Firmware Store update protocol GUIDs

3.3.3.1 Image authentication.

The image authentication may fail, this is communicated to the Client by the fwu_commit call returning a
AUTH_FAIL status code, see 3.4.2.8 fwu_commit for further details.

The Staging state correctly terminates when the fwu_end_staging call returns successfully.

The Staging state fails if:

1. the system resets prior to the Client calling fwu_end_staging.
2. the Client calls cancel_staging.

When the staging fails, the system will transition back to the Regular state.

3.2.1.2 Trial state
The system is in the Trial state if any of the firmware images in the active bank are pending acceptance, see 3.3.3
Protocol-updatable images. A Client can instruct the images to be accepted during the fwu_commit call. Hence,
from a Client point of view, the Trial state is optional.

While in the Trial state, the anti-rollback counters must not be updated.

Anti-rollback counter values must be updated once the Firmware Store transitions to the Regular state.

A platform design may allow public keys to be enrolled in-band using the update ABI defined in 3.4.2 ABI
definition, or via a separate out-of-band mechanism (e.g. a BMC). The details of key enrollment are currently out
of scope of this specification and are considered IMPLEMENTATION DEFINED. A key installation procedure is
performed with the intent of permanently replacing a previous key. A newly installed public key must be used
during a boot in the Trial state to authenticate the firmware images signed with its private pair. Any previous public
key that has been superseded cannot be discarded until the Trial state terminates correctly. In the advent of a Trial
state failure, the previous public key must be reinstated.

While booting in the Trial state, the trusted boot procedure must check that a firmware image meets the version
requirements of a subsequent Regular state boot. If the firmware image does not meet the version requirements of
a subsequent Regular state, the boot procedure fails.

The Client must invoke fwu_accept_image, for all the images currently unaccepted, in order for the Trial state to
successfully terminate.

The Trial state fails if the Client calls fwu_select_previous_bank.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter 3. Firmware Store update protocol
3.3. Firmware Store management

3.3 Firmware Store management

3.3.1 Image directory

The Client discovers details on the firmware images, handled by the Update Agent, via the image directory. The
Client reads the image directory, by opening the file with GUID fwu_directory_guid and reading from it, using the
ABI defined in 3.4.2 ABI definition.

All fields in the image directory have a little-endian byte ordering.

The image directory is created by the Update Agent and reflects the information of the firmware bank that booted
the platfrom.

The contents of the directory are represented as an image_directory aggregate holding a list of image_info_entries
with num_images (#images) elements. The image_info aggregate contains information held entirely by the Update
Agent.

The Client opens the image directory with handle_imgdir = fwu_open(fwu_directory_guid). The Client obtains
the image_info, from the Update Agent, by calling fwu_read_stream(handle_imgdir, . . .) until the EOF.

Table 3.2: image_directory version 2

field
offset
(bytes) size (bytes) Description

directory_version 0h 4h the version of the fields in the img_info_entry
array. Must be set to 2 for the data structure
definined in this document.

img_info_offset 4h 4h the offset of the img_info_entry array relative
to the start of this data structure.

num_images 8h 4h the number of entries in the img_info_entry
array.

correct_boot Ch 4h boolean stating if the platform booted with the
active bank.

img_info_size 10h 4h the size, in bytes, of an entry in the
img_info_entry array.

reserved 14h 4h

img_info_entry[] 18h – array of Table 3.3 elements

The directory_version field determines the version of the img_info_entry.

Table 3.3: img_info_entry version 2

field
offset
(bytes) size (bytes) Description

img_type_guid 0h 10h GUID identifying the image type

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter 3. Firmware Store update protocol
3.3. Firmware Store management

field
offset
(bytes) size (bytes) Description

client_permissions 10h 4h bitfield specifying the access permissions that
the Client has on the image:

• [31:3] : MBZ
• [2] : acceptance preconditions

– 0 : the image can be accepted at any
point in the Trial state.

– 1 : the image must be activated
before it can be accepted.

• [1] : Read
• [0] : Write

img_max_size 14h 4h the maximum image size that can be installed.

lowest_accepted_version 18h 4h the lowest version of the image that can execute
on the platform (dictated by an anti-rollback
counter, details are IMPLEMENTATION
DEFINED).

img_version 1Ch 4h the image version in the bankboot_index.

accepted 20h 4h the acceptance status of the image in the
bankboot_index.

reserved 24h 4h MBZ

3.3.2 Anti-rollback counter management

There exists at least one anti-rollback counter in the platform, as required in PSBG [1]. The anti-rollback counter
value is monotonically increasing.

During image authentication, the image version is compared against the value of the anti-rollback counter that the
image is bound to. If an image has a lower value than the anti-rollback counter, then that image must not execute
on the platform.

Every anti-rollback counter must:

• be readable by the immutable or secondary bootloader stages.
• be readable by the Update Agent, if the Update Agent performs the optional FW image authentication.
• be writable to by its managing entity.

The managing entity of each anti-rollback counter is IMPLEMENTATION DEFINED.

The Client can only communicate new anti-rollback counter values to the Update Agent during the Staging state.
The format by which a new anti-rollback counter value is communicated to the Update Agent is IMPLEMENTATION
DEFINED.

The anti-rollback counter must be updated, by its managing entity, after the end of a Trial state and before the
completion of the subsequent system boot in the Regular state.

3.3.3 Protocol-updatable images

The protocol-updatable firmware images are transferred from the Client to the Update Agent using the ABI defined
in 3.4.2 ABI definition. The firmware image format is IMPLEMENTATION DEFINED.

A firmware image, in a firmware bank, can have either an accepted or unaccepted status.

The Client can set the accepted status of an image by calling:

• fwu_commit: the client sets the accepted status of an image in the bankupdate_index, see 3.4.2 ABI definition.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter 3. Firmware Store update protocol
3.3. Firmware Store management

• fwu_image_accept: the Client changes the accepted status of an image in the bankactive_index to be accepted,
see 3.4.2 ABI definition.

Some firmware images require activation before the Client is allowed to accept them. A Client can discover if this
is the case from bit 2 of the client_permission field on the Image Directory.

3.3.3.1 Image authentication
Updated firmware images must be authenticated prior to the first execution on the platform. The image
authentication should be PSBG compliant [1].

The authentication procedure:

1. must happen during a PSBG compliant trusted boot procedure [1].
2. is optionally performed by the Update Agent, prior to writing the image to the Firmware Store, as part of the

fwu_commit function handling.

The (optional) image authentication procedure, implemented in the Update Agent, requires the Update Agent to
have access to the ROTPK and the entire chain of trust. The method of provisioning the ROTPK and the chain of
trust to the Update Agent is IMPLEMENTATION DEFINED.

Every firmware image is bound to a specific anti-rollback counter. The image to anti-rollback counter binding is
IMPLEMENTATION DEFINED.

To be allowed execution in the platform, any firmware image must have a version that is greater or equal than its
associated anti-rollback counter.

The image authentication procedure is composed of the following checks:

• firmware image creator authenticity check, the procedure is IMPLEMENTATION DEFINED.
• verification that the firmware image version is greater than the anti-rollback counter.

A failure of either check results in an image authentication failure.

Note: Prior to updating the images, using the protocol described in this document, the Client may opt to perform
an image authentication using a different chain of trust. This procedure is IMPLEMENTATION DEFINED.

3.3.4 Telemetry

The Update Agent keeps track of the telemetry related to Firmware Store updates. The telemetry values are reset
after a successful call to fwu_begin_staging.

The quantities tracked in the telemetry are:

• authentication work: the units of authentication work performed since the last successful call to
fwu_begin_staging.

• image copy work: the units of image copying work performed since the last successful call to
fwu_begin_staging.

• erase work: the units of erase work performed, on the non-volatile memory where the Firmware Store is
located, since the last successful call to fwu_begin_staging.

• write work: the units of write work performed, on the non-volatile memory where the Firmware Store is
located, since the last successful call to fwu_begin_staging.

The progress on each unit can be computed as the ratio between the units of work and respective total field. For
instance, the authentication progress (auth_progress) can be computed as:

auth_progress = auth_work
total_auth

3.3.4.1 Telemetry shared buffer
The Update Agent shares the telemetry with the Update Client via a shared memory buffer. The telemetry is laid
out in the buffer following the layout specified in Table 3.4.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter 3. Firmware Store update protocol
3.3. Firmware Store management

The usage of a shared buffer, for the telemetry exchange, allows for concurrent telemetry production and
consumption on separate PEs. The telemetry provided is a crude progress estimate. Different telemetry fields can
hold progress snapshots obtained at slightly different time instants.

The memory attributes and physical address of the memory shared buffer are IMPLEMENTATION DEFINED and
must be agreed upon between the Update Agent and the Update Client.

The base address of the telemetry buffer must be 64KiB aligned. To prevent erroneous telemetry being read, read
and write accesses to the fields in the telemetry buffer should use the load and store instruction with the same size
as the field.

Table 3.4: Firmware Store telemetry version 1

Field
offset
(bytes) size (bytes) Description

telemetry_version 0h 4h The version of the telemetry data structure.

auth_work 4h 2h The authentication work units performed since the last
fwu_begin_staging call.

total_auth 6h 2h The total authentication work units to be performed.

img_copy_work 8h 2h The blob copying work units performed since the last
fwu_begin_staging call.

total_img_copy Ah 2h The total image copying work units to be performed.

erase_work Ch 2h The erase work units performed since the last
fwu_begin_staging call.

total_erase Eh 2h The total erase work units to be performed.

write_work 10h 2h The write work units performed since the last
fwu_begin_staging call.

total_write 12h 2h The total write work units to be performed.

state 14h 1h The state of the Firmware Store. Can be one of:
• 0: “Regular”
• 1: “Staging”
• 2: “Trial”

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4 Firmware Store Update ABI

3.4.1 Transport layer

The Firmware Store update ABI uses FF-A as the transport layer [3].

Note

Arm recommends that FF-A version 1.2 (ffa_msg_send_direct_req2) is used for the Update Agent
implementation. FF-A version 1.2 enables the service UUID to be clearly specified in the transfer. The service
UUID information is required for some frameworks where the Update Agent can be realized (e.g. StMM).

If the Update Agent does not support FF-A version 1.2, it can alternatively support FF-A version 1.1. In this
case, the Update Agent and the Client must place the EFI_MM_COMMUNICATE_HEADER, as defined in the
UEFI PI specification [4], at the start of the shared memory buffer when exchanging messages.

Prior to calling any Firmware Store update function, the Client must have a shared buffer with the Update Agent to
carry the Firmware Store update ABI messages.

This buffer can be statically provisioned by means of a carve-out, agreed by the Client and Update Agent in an
IMPLEMENTATION DEFINED manner.

Alternatively the Client can set a shared buffer dynamically by following the procedure listed in 3.4.1.1 Dynamic
shared buffer setup phase.

3.4.1.1 Dynamic shared buffer setup phase
The Client must trigger the following procedure with the Update Agent:

1. Client obtains the SP id of the Update Agent (update_agent_id) using the ffa_partition_info_get call with
update_agent_guid as a parameter.

2. Client shares the page pointed to by client_buffer_va with the Update Agent by calling ffa_mem_share
passing update_agent_id and client_buffer_va as parameters. The Client receives a globally unique handle
(buffer_handle) to the shared buffer.

3. Client sends a synchronous message to the Update Agent communicating buffer_handle.
4. Update Agent retrieves the VA of the page referred to by buffer_handle (update_agent_buffer_va).
5. Update Agent sends a synchronous response to the Client signaling a successful buffer exchange.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

FF-A
implemenatation

Client

ffa_partition_info_get(update_agent_uuid)

update_agent_id

ffa_mem_share(update_agent_id, client_buffer_ipa, ...)

buffer_handle

ffa_msg_send_direct_req(update_agent_id, 0, buffer_handle)

Update Agent

ffa_mem_retrieve_req(buffer_handle, ...)

ffa_retrieve_resp(update_agent_buffer_ipa)

ffa_msg_send_direct_resp(client_id, 0, success, interface_version)

Figure 3.4: Transport layer setup

After a successful completion of the setup phase, the Firmware Store update ABI calls can be issued. In case of
failure in the setup phase, the Client must assume the Firmware Store update protocol to be unavailable.

3.4.2 ABI definition

The ABI calls rely on FF-A synchronous messages and the buffer exchanged during the setup phase. The
communication buffer has a size of comm_buffer_size bytes. The Client keeps the VA of the shared buffer in
client_buffer_va. The Update Agent keeps the VA of the shared buffer in update_agent_buffer_va.

The calls defined in this ABI are a contract between the caller (Client) and the callee (Update Agent).

The caller must:

1. fill in the argument structure, as defined in the function argument definition below, onto the shared buffer.
2. call ffa_msg_send_direct_req2 with a update_agent_id destination and the update_agent_guid as the service

UUID.

The callee must:

1. fill in the return structure, as defined in the function return definition below, onto the shared buffer.
2. call ffa_msg_send_direct_resp2.

The Client and the Update Agent may agree on a transport protocol level header placed at the start of the
communication buffer, before the argument/result headers. This is outside the scope of this document.

Both the argument and result headers must be aligned at an 8 byte boundary.

All fields in the Argument and Return structures are in little-endian byte ordering.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.1 fwu_discover
This call indicates the version of the ABI alongside a list of the implemented functions. The array function_presence
contains num_func entries. Every entry in function_presence[] contains a 2-byte integer that denotes the function
id.

If the Update Agent implements a function, identified by a given function_id, that function_id must be an entry of
the function_presence array. The entries of the function_presence array must be unique and defined in ascending
function_id order.

3.4.2.1.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=0 0 4

3.4.2.1.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • SUCCESS

service_status 4 2 the status of the service provider.
• 0: operative – the service provider is fully operative,

the remainder fields are applicable.
• -1: init_error – the service provider failed to initialize

for an unspecified reason.
• all other values are reserved.

version_major 6 1 the ABI major version, set to 1 for the ABI definition on
this document.

version_minor 7 1 the ABI minor version, set to 0 for the ABI definition on
this document.

off_function_presence 8 2 the offset (in bytes) of the function_presence array relative
to the start of this data structure.

num_func 10 2 the number of entries in the function_presence array.

max_payload_size 12 8 the maximum number of bytes that a payload can contain.

flags 20 4 flags listing the update capabilities.
• flags[0]

– 1 : partial update supported
– 0 : partial update not supported

• flags[31:1] : Reserved, must be zero.
vendor_specific_flags 24 4 Vendor specific update capabilities flags.

function_presence[] 28 num_func array of bytes indicating functions that are implemented.
The value function_presence[index] specifies the features of
the function with function_id = index.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.2 fwu_begin_staging
This call indicates to the Update Agent that a new staging process will commence. The Client can only invoke this
call during the Regular and Staging states. When the call is invoked during the Staging state, any transient state
that might be held by the Update Agent is discarded.

It is IMPLEMENTATION DEFINED if this call is disallowed when the platform did not boot with the active bank.

3.4.2.2.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=16 0 4

reserved 4 4 Reserved, must be zero.

vendor_flags 8 4 Vendor specific staging flags.

partial_update_count 12 4 The number of elements in the update_guid
array. If this field is greater than 0, then
update_guid[] contains an indication of the
images the Client intends to update. The Client
is not mandated to provide this indication. If
this field is 0 both partial and full updates are
allowed.

update_guid[] 16 partial_update_count.16 An array of image type GUIDs that the Update
Client will update during the Staging state.

3.4.2.2.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS
• FWU_DENIED: The Firmware Store is in the Trial

state or the platform did not boot correctly (and the
platform only allows updates when executing from
the active bank).

• FWU_BUSY: The Client is temporarily prevented
from entering the Staging state.

• FWU_UNKNOWN: One of more GUIDs in the
update_guid field are unknown to the Update Agent.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.3 fwu_end_staging
The Client informs the Update Agent that all the images, meant to be updated, have been transferred to the Update
Agent and that the staging has terminated. This call can only be invoked from the Staging state. The Client must
ensure that all image handles are closed before invoking this call.

On successful completion of this call, the Update Agent must update the active bank to the firmware bank that was
just updated. The details of Firmware Store bank management are IMPLEMENTATION DEFINED.

3.4.2.3.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=17 0 4

3.4.2.3.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS
• FWU_DENIED: The system is not in a Staging state.
• FWU_BUSY: There are open image handles.
• FWU_AUTH_FAIL: At least one of the updated

images fails to authenticate.
• FWU_NOT_AVAILABLE: the Update Agent does

not support partial updates, and the Client has not
updated all the images.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.4 fwu_cancel_staging
The Client cancels the staging procedure and the system transitions back to the Regular state. This call can only be
invoked from the Staging state.

3.4.2.4.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=18 0 4

3.4.2.4.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS
• FWU_DENIED: The system is not in a Staging state

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.5 fwu_open
The open call returns a handle to the image with GUID=image_guid. The Client uses the handle in subsequent
calls to read from or write to the image. An image can have a single active handle. If multiple fwu_open calls are
performed on a given GUID, only the last returned handle is valid.

3.4.2.5.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=19 0 4

image_type_guid 4 16 GUID of the image to be opened

op_type 20 1 The operation that the Client will perform on the image.
This field takes the following values:

• 0: open the stream for reading,
• 1: open the stream for writing,
• all other calues reserved.

3.4.2.5.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS: Call completed correctly.
Remaining return fields are valid

• FWU_UNKNOWN: image type with
GUID=image_type_guid does not exist

• FWU_DENIED: An image cannot be openned for
write outside of ths Staging state

• FWU_NOT_AVAILABLE: the Update Agent does
not support the op_type for this image.

handle 4 4 staging context identifier

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.6 fwu_write_stream
The call writes at most max_payload_size bytes to the Update Agent context pointed to by handle, where
max_payload_size = comm_buffer_size - offset_of(fwu_write_stream_arguments, payload). The data to be written
is passed in the payload present in the shared buffer, after the end of the arguments header. A Client can only
invoke the call during a Staging state.

arguments header

client_buffer_va

payloadmax_payload_size

comm_buffer_size

Figure 3.5: fwu_write_stream arguments in shared buffer

3.4.2.6.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=20 0h 4

handle 4h 4 The handle of the context being written to.

data_len 8h 4 Size of the data present in the payload

payload Ch – The data to be transferred

3.4.2.6.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS
• FWU_UNKNOWN: unrecognized handle
• FWU_OUT_OF_BOUNDS: less than data_len bytes

available in the image.
• FWU_NO_PERMISSION: The image cannot be

written to.
• FWU_DENIED: The system is not in a Staging state

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.7 fwu_read_stream
The call reads at most max_payload_size bytes from the Update Agent context pointed to by handle.

The data to be read is passed in the payload contained in the shared buffer, after the end of the “Returns” header.

• The field total_bytes, in the return, can be used by the Client after a first invocation to reserve enough memory
to store the file being read.

• The field total_bytes can also be used by the Client to track when EOF is reached.
• EOF is also detected by a read_stream if: 0 ⩽ read_bytes < max_payload_size, where max_payload_size =

comm_buffer_size - offset_of(read_stream_return, payload).

return header

client_buffer_va

payloadmax_payload_size

comm_buffer_size

Figure 3.6: fwu_read_stream returns in shared buffer

3.4.2.7.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=21 0 4

handle 4 4 The handle of the context being read from.

3.4.2.7.2 Returns

field
offset
(bytes) size (bytes) description

status 0h 4 • FWU_SUCCESS: remaining return fields are valid.
• FWU_UNKNOWN: handle is not recognized.
• FWU_NO_PERMISSION: The image cannot be read

from.
• FWU_DENIED: The image cannot be temporarily

read from.
read_bytes 4h 4

total_bytes 8h 4

payload Ch –

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.8 fwu_commit
The call closes the image pointed to by handle. A return of AUTH_FAIL signals an image authentication failure in
the Update Agent. As with SUCCESS, an AUTH_FAIL return status implies that the handle is closed.

The Update Agent must set the image acceptance status to:

• “not accepted”: if acceptance_req > 0;
• “accepted”: if acceptance_req = 0;

The Client passes the max_atomic_len hint argument, specifying the length of time (nanoseconds) that the Client
can withstand the Update Agent to execute continuously without yielding back. If max_atomic_len=0 then the
Client can tolerate an unbounded execution time by the Update Agent. The Update Agent should yield back to the
Client before max_atomic_len nanoseconds elapse.

When the Update Agent yields before completing the call, it must return the RESUME status. If the Update Agent
returns the RESUME status, then it must also return the total_work and progress fields.

Note: The ratio of progress and total_work gives the proportion of outstanding work.

The Update Agent must continue calling fwu_commit, while the return is RESUME. For any subsequent
fwu_commit call following a RESUME return status, the acceptance_req argument is ignored by the Update Agent.

At the end of a successful fwu_commit call, the Update Agent guarantees that the firmware image has been
persisted to the Firmware Store on the current firmware bank being updated.

Note: An Update Agent implementation is allowed to persist parts of the blob during the fwu_write_stream call –
this is IMPLEMENTATION DEFINED.

If the image was open for writing and the Client has not written any data to it, the Update Agent must erase the
current contents of the image.

3.4.2.8.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=22 0h 4

handle 4h 4 The handle of the context being closed.

acceptance_req 8h 4 If positive, the Client requests the image to be marked as
unaccepted.

max_atomic_len Ch 4 Hint, maximum time (in ns) that the Update Agent can
execute continuously without yielding back to the Client. A
value of 0 means that the Update Agent can execute for an
unbounded time.

3.4.2.8.2 Returns

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

field
offset
(bytes) size (bytes) description

status 0h 4 • FWU_SUCCESS
• FWU_UNKNOWN: unrecognized handle.
• FWU_AUTH_FAIL: image closed, authentication

failed.
• FWU_RESUME: the Update Agent yielded, the

Client must invoke the call again.
• FWU_DENIED: the image can only be accepted

after activation, acceptance_req must be > 0.
progress 4h 4 • Units of work already completed by the Update

Agent.
total_work 8h 4 • Units of work the Update Agent must perform until

fwu_commit returns successfully.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.9 fwu_accept_image
The call sets the status of the firmware image, with type = image_type_guid, to “accepted” in the active firmware
bank. This call can only be invoked if the system booted correctly (with bankactive_index).

3.4.2.9.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=23 0 4

reserved 4 4 Reserved, must be zero.

image_type_guid 8 10h

3.4.2.9.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS
• FWU_UNKNOWN: image with

type=image_type_guid is not managed by the Update
Agent.

• FWU_DENIED: the system has not booted with the
active bank, or the image cannot be accepted before
being activated.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.10 fwu_select_previous
The call rolls back the firmware to the previous active firmware. The Update Agent returns DENIED if the previous
active firmware cannot boot the platform (e.g. the previous active bank does not contain valid firmware, or the
firmware has a version that is lower than the current anti-rollback counters).

A platform can opt to only allow this call when:

• the Firmware Store is in the Trial state, or
• the platform failed to boot with the active bank.

3.4.2.10.1 Arguments

field
offset
(bytes) size (bytes) description

function_id=24 0 4

3.4.2.10.2 Returns

field
offset
(bytes) size (bytes) description

status 0 4 • FWU_SUCCESS
• FWU_DENIED: the previous active bank cannot

boot the platform, or the Firmware Store is not in the
Trial state, or the platform booted with the active
bank.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter 3. Firmware Store update protocol
3.4. Firmware Store Update ABI

3.4.2.11 Return status

status value

FWU_SUCCESS 0

FWU_UNKNOWN -1

FWU_BUSY -2

FWU_OUT_OF_BOUNDS -3

FWU_AUTH_FAIL -4

FWU_NO_PERMISSION -5

FWU_DENIED -6

FWU_RESUME -7

FWU_NOT_AVAILABLE -8

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Part A
A/B Firmware Store design guidance

This appendix provides guidance on how a platform can deploy an A/B Firmware Store design. This appendix
provides guidance and as such the aspects described in this Appendix are not mandatory for compliance with the
specification.

The guidance specifies:

• how an A/B Firmware Store can be implemented, with a GPT layout and a metadata data structure,
• how the platform boot process determines the firmware bank to use,
• guidance on the Update Agent implementation to perform bank management during Firmware Store updates.

The diagram in Figure 1 depicts a possible system architecture where the Client and Update Agent execute in the
Non-secure and Secure World respectively. In this example system, there exist two firmware image banks (bank0
and bank1). At any point in time there is a single active image bank and a single update image bank. The number
of banks in the system is platform defined, see 3.1 Firmware Store design for more information.

Client

Staging
Area

FW update
TA

Secure
storage TA

NV memory

bank1 bank0 metadata

EL3

EL2

EL1

EL0

Update Agent

SecureNon-secure

new FW

Figure 1: System diagram

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter A1
Firmware bank selection

The immutable or secondary stages select the firmware bank, containing the protocol-updatable images, to boot
the platform with. The immutable or secondary stages must be able to read and interpret the image metadata (see
Table A3.2).

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter A1. Firmware bank selection
A1.1. Platform Boot

A1.1 Platform Boot

The immutable or secondary stage select the protocol-updatable bank to boot the system with (bankboot_index).
Out of a cold reset: boot_index=active_index.

max_failed_boots: the maximum number of consecutive failed attempts to boot with a given bank. The immutable
or secondary stages can identify a failed boot attempt by, for instance, inspecting the watchdog state. The
mechanism to determine a failed boot attempt is IMPLEMENTATION DEFINED.

The max_failed_boots is a platform constant, its value is IMPLEMENTATION DEFINED.

Each boot_index assignment in the following list is attempted at most max_failed_boot times. After
max_failed_boots consecutive warm rests, caused by a failure to boot the platform with a given assignment, the
next assignment in the list must be attempted:

1. boot_index← active_index
2. boot_index← previous_active_index, if active_index ̸= previous_active_index, AND bankpreviousactiveindex

is valid or accepted (see Table A3.2), otherwise attempt item 3)
3. boot_index← IMPLEMENTATION DEFINED bank index.

The active_index and previous_active_index are fields maintained by the Update Agent in the metadata, see A3.2.1
Firmware update metadata.

The immutable or secondary stages can detect a boot failure during the protocol-updatable stage by inspecting a
reset syndrome register. The nature of the reset syndrome register is IMPLEMENTATION DEFINED.

An authentication failure of a protocol-updatable bank implies a boot failure of that bank. An authentication failure
is permanent until a bank is updated.

The boot_index and the metadata version must be propagated to the Update Agent. The mechanism to propagate
these values to the Update Agent is IMPLEMENTATION DEFINED.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter A2
Recovery Mode

The platform recovery mode must be able to correctly update the firmware update metadata (See A3.2.1 Firmware
update metadata).

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter A3
A/B Firmware Store design

On A/B Firmware Stores, there exits an active and an update bank.

The active_index is maintained by the Update Agent in the metadata, see A3.2.1 Firmware update metadata.

The update_index is only visible to the Update Agent. The update_index value is set by the Update Agent during
its initialization and kept as a volatile variable.

Additionally, the Update Agent records, in the metadata, the previous active bank (previous_active_index). The
bank identified by previous_active_index can be used as a fallback to boot the platform when an updated bank fails
to properly boot.

All bank indices take values in the {0, . . . , #banks-1} range.

The initialization of the firmware banks at system provisioning is IMPLEMENTATION DEFINED.

The bank classification is determined by the active_index and update_index state variables in the following manner:

• update bank: bankupdate_index

• active bank: bankactive_index

A Client can only write to images in the update bank.

When coming out of a cold reset, the platform attempts to boot with bankactive_index. For further information
about banks and the boot process see A1.1 Platform Boot.

Note: a scenario where active_index = update_index is legal if #banks=1. For systems where #banks = 1 then
active_index = update_index = 0.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter A3. A/B Firmware Store design
A3.1. A/B Firmware Store state machine

A3.1 A/B Firmware Store state machine

Like in the general design, at any given time the Firmware Store can be in one of the following states:

• Regular
• Staging
• Trial

Regular bank0
-previous_active_index=1

- active_index=0
- update_index=1

Trial bank1
-previous_active_index=0

- active_index=1
- update_index=0

fwu_begin_staging

Regular bank1
-previous_active_index=0

- active_index=1
- update_index=0

Trial bank0
-previous_active_index=1

- active_index=0
- update_index=1

all FW images in bank1 accepted

fwu_select_previous

Staging bank1
-previous_active_index=1

- active_index=0
- update_index=1

fail
fwu_end_staging

Staging bank0
-previous_active_index=0

- active_index=1
- update_index=0

fwu_begin_staging
fwu_end_staging

fail

fwu_select_previous

all FW images in bank0 accepted

Figure A3.1: High level A/B Firmware Store FSM

The diagram in Figure A3.1 depicts the state machine of a particular Firmware Store implementation. In this
example the Firmware Store has 2 different firmware banks (bank0 and bank1). For more information on the
firmware banks see 3.1 Firmware Store design.

The following state variables are defined for the A/B Firmware Store:

1. active_index: integer indicating which firmware bank is currently active. The variable is kept in the metadata
region, see Table A3.2. Its value is updated, by the Update Agent, during the handling of a fwu_end_staging
call (see 3.4.2 ABI definition).

2. previous_active_index: integer indicating which firmware bank was active prior to the last successful update
to the Firmware Store. The variable is kept in the metadata region, see Table A3.2. Its value is updated, by
the Update Agent, during the handling of a fwu_end_staging call (see 3.4.2 ABI definition).

3. update_index: integer indicating which firmware bank will be overwritten during a Staging state. This
variable is set by the Update Agent at system boot and only visible to the Update Agent. The update_index
must respect the following constraint:

• if #banks > 1: update_index ̸= active_index.

4. image accepted status: Field recorded per-image and per-bank (see Table A3.8). The accepted status of all
images in the bankactive_index determine if the Firmware Store is in the Trial state, see 3.2.1.2 Trial state.

A3.1.1 A/B Firmware Store Staging state

The firmware image authentication procedure, before committing images to the Firmware Store, is:

• optional: if #banks > 1
• mandatory: if #banks = 1

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter A3. A/B Firmware Store design
A3.1. A/B Firmware Store state machine

The Update Agent overwrites the images in bankupdate_index. The Update Agent must set bank_state[update_index]
← 0xFF (invalid) before any content in the bankupdate_index is overwritten. This ensures that a bootloader,
following the guidance in A1.1 Platform Boot, would not attempt to boot the platform with a potentially corrupted
bank.

While handling a successful fwu_end_staging call, the Update Agent must:

• update previous_active_index, see A4.1 fwu_end_staging.
• update active_index, see A4.1 fwu_end_staging.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter A3. A/B Firmware Store design
A3.2. Firmware Store management

A3.2 Firmware Store management

A3.2.1 Firmware update metadata

Metadata Read/Write
Update Agent

BMC/
immutable/
secondary Read

Figure A3.2: Metadata usage for Update Agent and early bootloader

The metadata is a collection of fields, maintained by the Update Agent, as defined in Table A3.2. The metadata
serves primarily as an information exchange channel between the Update Agent and the early stage bootloader.

As seen in Figure A3.2, the metadata is read by the early stage bootloader (BMC, immutable or secondary).
The information in the metadata instructs the early stage bootloader about the bank to boot the platform with
(active_index). The Update Agent in turn maintains the metadata. The Update Agent stores in the metadata the
bank indices (active_index and previous_active_index), it also restores the metadata (in the unlikely event it gets
corrupted).

The Update Agent records the state of the different banks in the bank_state array. The entry n of the bank_state
array relates to bankn. The bank states are the following:

• invalid: one or more images are corrupted or empty.
• valid: all images in the bank are intact, but one or more are unaccepted.
• accepted: all images in the bank are accepted and intact.

Note

If the metadata contains a Firmware Store description (fw_store_desc, see Table A3.3), for a bank to be in the
accepted state then all firmware images in that bank must be marked as accepted. This means that all of the
img_bank_info data structures corresponding to that bank must have the field accepted set to 1.

The early stage bootloader should never attempt to load a bank in invalid state.

If the active bank has a valid state, then the Firmware Store is in the Trial state. If the active bank is in the accepted
state, it follows that the Firmware Store must be in the Regular state.

For any banks, other than the active bank, the accepted and valid bank states are equivalent from the early stage
bootloader point of view.

The non-volatile memory where the metadata is stored is IMPLEMENTATION DEFINED and agreed between the
Update Agent and the immutable or secondary stages.

The metadata must:

• be readable by the immutable and secondary stages.
• be writable by the Update Agent.
• hold field values in a little-endian representation at the offsets defined in Table A3.2

The metadata is versioned using a 4 byte integer – version field in Table A3.2.

The metadata size is determined by the metadata_size field.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter A3. A/B Firmware Store design
A3.2. Firmware Store management

Note

On version 1 of the metadata, the values #images and #banks were assumed to be platform-specific constants
and were known by the entities that interact with the metadata. Also, version 1 did not include a metadata_size
field. The metadata size was derived, independently by any entity that interacts with the metadata, via the linear
function defined in Table A3.1.

On version 2 of the metadata, the metadata size is specified in the metadata_field, maintained by the Update
Agent. Additionally, version 2 of the metadata restrict the maximum number of firmware banks to 4.

The Metadata v2 allows platforms to carry a platform-specific data blob right after the metadata data structure.
The metadata_size is equal to the size of the metadata data structure plus the platform-specific data blob. This
means the platform-specific data blob is reflected in the crc_32 computation.

The metadata size, as a function of metadata version, is shown in Table A3.1.

Table A3.1: Metadata size per version

metadata version metadata_size

1 10h + #images.(20h + #banks.18h)

2 metadata_size

There exists a CRC-32 field in the metadata, crc_32. The crc_32 value is updated in the following manner:

• crc_32← CRC32(metadata[4: metadata_size]).

The metadata representation is replicated to ensure reliable operation.

Metadata management at serialization by the Update Agent: When the Update Agent introduces changes to
the Metadata, it must update the replicas in sequence. The representation of the two metadata replicas must be kept
in a disjoint set of non-volatile memory blocks.

Metadata management at early system boot: the immutable or secondary stage must use an intact metadata.
The metadata replicas are inspected, using the procedure described in A3.2.4 Metadata integrity check, to ensure
that they are intact.

Metadata management at Update Agent initialization: During its initialization, the Update Agent must check
both metadata replicas for corruption (see A3.2.4 Metadata integrity check). If one of the metadata replicas is
found to be corrupted, the Update Agent overwrites the corrupted metadata with the intact replica.

The metadata replication and update in series guarantees reliability against system failures while the metadata is
being updated. The replication and update in series does not detect malicious updates nor does it protect against
erroneous updates to the metadata.

Note: The metadata can be maliciously crafted, it should be treated as an insecure information source.

A3.2.2 Metadata Version 2

Table A3.2: Metadata version 2

field
offset
(bytes)

size
(bytes) Description

crc_32 0h 4h

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter A3. A/B Firmware Store design
A3.2. Firmware Store management

field
offset
(bytes)

size
(bytes) Description

version 4h 4h The version of the metadata structure. Must be 2 for the data structure defined in
this document.

active_index 8h 4h

previous_active_index Ch 4h

metadata_size 10h 4h The size in bytes of the complete metadata structure.

descriptor_offset 14h 2h The offset, from the start of this data structure, where the fw_store_desc starts (if
one exists). If the fw_store_desc does not exist, then this field must be set to 0.

reserved 16h 2h Reserved, must be zero.

bank_state[4] 18h 4h The state of each bank. Each entry is an 8-bit value, the entry index is the index of
the bank it relates to.
Each bank_state entry can take one of the following values:

• 0xFF: invalid – One or more images in the bank are corrupted or were
partially overwritten.

• 0xFE: valid – The bank contains a valid set of images, but some images are in
an unaccepted state.

• 0xFC: accepted – all of the images in the bank are valid and have been
accepted.

Note: a platform may have #banks < 4. The Update Agent must ensure
bank_state[idx]=0xFF, for any idx such that #banks ⩽ idx < 4.

reserved 1Ch 4h Reserved, must be zero.

fw_store_desc (Table A3.3) 20h – The data structure described in Table A3.3. This data structure is optional and it is
only present if descriptor_offset > 0.

Note

A platform may choose not to carry a fw_store_desc (Table A3.3) data structure in the metadata. This is
indicated by descriptor_offset > 0.

Table A3.3: Firmware Store description 2

field
offset
(bytes) size (bytes) Description

num_banks 0h 1h The number of firmware banks in the Firmware Store. Must
not exceed 4 for this version of the data structure.

reserved 1h 1h Reserved, must be zero.

num_images 2h 2h The number of entries in the img_entry array.

img_entry_size 4h 2h The size in bytes of the Table A3.4 data structure. Must be
set to (20h + num_banks.18h) for the data structure defined
in this document.

bank_info_entry_size 6h 2h The size in bytes of the Table A3.5 data structure. Must be
set to 18h for the data structure defined in this document.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter A3. A/B Firmware Store design
A3.2. Firmware Store management

field
offset
(bytes) size (bytes) Description

img_entry [num_images] 8h num_images.img_entry_size array of aggregate in Table A3.4

Table A3.4: Metadata image entry version 2 (img_entry)

field
offset
(bytes) size (bytes) Description

img_type_guid 0h 10h GUID identifying the image type

location_guid 10h 10h the GUID of the storage volume where the
image is located

img_bank_info[] 20h bank_info_entry_size.num_banks the properties of images with img_type_guid in
the different FW banks. Type described in
Table A3.5

Table A3.5: Image properties in a given FW bank version 2 (img_bank_info)

field
offset
(bytes) size (bytes) Description

img_guid 0h 10h the guid of the image in this bank

accepted 10h 4h • [0] : bit describing the image acceptance
status – 1 means the image is accepted

• [31:1] : MBZ
reserved 14h 4h reserved (MBZ)

The metadata layout is defined in Table A3.2. The metadata contains an array of image entries (defined in Table
A3.4) with #images elements.

A3.2.3 Metadata version 1

Table A3.6: Metadata version 1

field
offset
(bytes) size (bytes) Description

crc_32 0h 4h

version 4h 4h

active_index 8h 4h

previous_active_index Ch 4h

img_entry [#images] 10h #images.(20h + #banks.18h) array of aggregate in Table A3.7

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter A3. A/B Firmware Store design
A3.2. Firmware Store management

Table A3.7: Metadata image entry version 1 (img_entry)

field
offset
(bytes) size (bytes) Description

img_type_uuid 0h 10h UUID identifying the image type

location_uuid 10h 10h the UUID of the storage volume where the
image is located

img_bank_info[#banks] 20h 18h.#banks the properties of images with img_type_uuid in
the different FW banks. Type described in
Table A3.8

Table A3.8: Image properties in a given FW bank version 1 (img_bank_info)

field
offset
(bytes) size (bytes) Description

img_uuid 0h 10h the uuid of the image in this bank

accepted 10h 4h • [0] : bit describing the image acceptance
status – 1 means the image is accepted

• [31:1] : MBZ
reserved 14h 4h reserved (MBZ)

A3.2.4 Metadata integrity check

The integrity of the metadata must be verified before its information is consumed. The procedure to check the
metadata integrity is detailed below:

metadata_check_integrity(metadata):

if metadata.version = 1:
metadata_size <- 10h + #images.(20h + #banks.18h)

else:
metadata_size <- metadata.metadata_size

crc <- CRC32(metadata[4:metadata_size])

if crc != metadata.crc_32:
return False

return True

A3.2.4.1 Metadata integration with GPT
It is recommended that the layout of the Firmware Store is defined by a GPT [2].

When embedded in a GPT, each metadata replica occupies a single partition with PartitionTypeGUID = meta-
data_guid.

The platform may possess different Firmware Stores (where firmware images are kept at rest). All firmware images
of the same type should be located in the same Firmware Store. The location_guid of each image type should
match the DiskGUID [2] of the medium the image is located on.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter A4
State variable updates by the Update Agent

For an A/B Firmware Store using a metadata, the Update Agent should perform bank management following the
design specified in the current Appendix. The following sections specify how the Update Agent should change the
variable of some state variables while handling specific ABI calls.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A4. State variable updates by the Update Agent
A4.1. fwu_end_staging

A4.1 fwu_end_staging

During a successful call the Update Agent performs the following steps in order:

1. if update_index ̸= active_index then previous_active_index is updated: previous_active_index ← ac-
tive_index.

2. the active_index is updated: active_index← update_index.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter A4. State variable updates by the Update Agent
A4.2. fwu_accept_image

A4.2 fwu_accept_image

The call sets the firmware image acceptance status in the metadata (img_bank_info[active_index].accepted <- 1),
for the image with type = image_type_guid.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter A4. State variable updates by the Update Agent
A4.3. fwu_select_previous

A4.3 fwu_select_previous

The Update Agent performs the following actions while handling this call:

• the active_index is updated: active_index← previous_active_index.
• the previous_active_index is updated: IMPLEMENTATION DEFINED assignment.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Part B
In-band updates on systems with a Platform Controller

In some systems the firmware store is managed by a Platform Management Controller (PCtr). Examples of a PCtr
are the BMC or the eRoT.

Client

Staging
Area

FW update
TA

NV memory

bank1 bank0 metadata

EL3

EL2

EL1

EL0

Update Agent

SecureNon-secure

new FW

PCtr

Figure 1: System diagram with PCtr

The PCtr can restrict the Application Processor (AP) processor from accessing the firmware Store.

The AP may thus be unable to directly update the firmware images in the Firmware Store.

There are two possible models (B1 and B2) with respect to how the PCtr obstructs the view that the AP has to the
NV storage:

B1 B2

AP has direct R/W access to Firmware Store Y N

AP accesses the Firmware Store indirectly via the PCtr Y Y

• B1: AP has read and write access to the entire Firmware Store.
• B2: AP can only indirectly read and write to the NV storage by delegating to the PCtr.

In B1 the AP must synchronize with the PCtr to ensure that the PCtr will not concurrently access the update bank.

In B2 the AP must send the firmware images to the PCtr using the Firmware Store update ABI previously defined.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter B1
ABI implementation in B2

The ABI implementation between the PCtr and the AP requires:

• a shared buffer between the AP and the PCtr;
• an event triggered by the AP, delivered to the PCtr which the PCtr must acknowledge back to the AP.
• an event triggered by the PCtr, delivered to the AP, where the PCtr signals request termination.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter B2
AP and PCtr synchronization in B1 and B2

Whether the AP can access the Firmware Store directly (B1) or indirectly via the PCtr (B2), the AP must inform
the PCtr when the AP intends to enter a phase where it will write to the NV storage.

When transitioning to the Staging state, the AP performs an IMPLEMENTATION DEFINED synchronization with the
PCtr. This synchronization mechanism gives the AP full permission to directly, or indirectly via the PCtr, access
the NV storage.

The synchronization mechanism requires:

• an event triggered by the AP and delivered to the PCtr, which the PCtr must acknowledge.

While the AP is in the Staging state, the PCtr can only write to the NV storage if the AP commands it to.

The PCtr can deny the AP entrance into the Staging state via an IMPLEMENTATION DEFINED return to the request
from the AP.

The Staging state terminates:

• if the AP resets;
• if the AP explicitly calls fwu_cancel_staging;
• if the AP explicitly calls fwu_end_staging.

Once the Staging state terminates the PCtr regains the right to access the NV storage.

If the AP takes too long in the Staging state, the PCtr can send an IMPLEMENTATION DEFINED termination event.
The termination event signals to the AP that:

• the PCtr can resume writing to the Firmware Store;
• the AP must cease any direct accesses or that indirect write requests, via the PCtr, will be denied.

Once the PCtr has sent the termination event it can resume writing to NV storage immediately.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter B3
AP boot

In B2 the PCtr can create the illusion that there exists a single firmware bank in the NV storage. In this case, the
platform does not require a FWU metadata exposed to the AP.

In B1 the PCtr must maintain a FWU Metadata such that the AP bootloader knows which bank to boot with.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter B4
Example AP to PCtr interaction via PLDM type 5 messaging

For platforms adopting model B2, the AP must communicate with the PCtr. The platform may choose to implement
the communication between the AP and the PCtr by means of MCTP messaging over USB or I3C. In the firmware
update context the communication between the Update Agent in the AP and the PCtr can be performed using
PLDM type 5 messages.

The Client sets the system in the Staging state. After all the firmware images are exchanged between the Client
and the Update Agent, the Update Agent crafts a firmware update package, as defined in Section 7 of the PLDM
for Firmware Update [5].

Once all the firmware images are either communicated to the firmware devices or written to the Firmware Store
the PCtr send a AcceptFirmware message.

The Update Agent in the AP terminates the exchange by invoking ActivateFirmware.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter B4. Example AP to PCtr interaction via PLDM type 5 messaging

Host PCtr

RequestUpdate

SUCCESS

RequestFirmwareData

SUCCESS

RequestFirmwareData

Send requested FW snippet

SUCCESS

Send requested FW snippet

ActivateFirmware

SUCCESS

ApplyComplete

SUCCESS

Figure B4.1: Information exchange between the AP and the PCtr during an image update

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Part C
Update Agent in the Normal World

Some firmware image types can reside in a Firmware Store controlled by the Normal World. For these firmware
image types, the Client may execute from within the context that has read/write access to the Firmware Store. In
that case, the Client takes the role of the Update Agent and is responsible for writing the firmware images to the
Firmware Store.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter C1
State machine

The Firmware Store update state machine is composed only of the Regular and Trial states. The state transitions
occur at the following boundaries:

• Regular to Trial: Once the Client updates the active_index field in the metadata and the new bankactive_index
has any un-accepted firmware images.

• Trial to Regular: Once the Client has marked all images in the bankactive_index as accepted in the metadata.

The Firmware Store must not be updated while in the Trial state.

Once the Client initializes, it sets the update_index variable respecting the following constraints:

• if #banks=1: update_index = active_index
• if #banks>1: update_index ̸= active_index

After writing each firmware image, the Client must set the image entry metadata field img_bank_info[update_index].accepted
to:

• 0: if the Client intends to defer the image acceptance;
• 1: if the Client intends to accept the image immediately.

Once the Client has updated all the firmware images it must set the following state variables:

• previous_active_index← active_index
• active_index← update_index

The system is in the Trial state while any image in the current bankactive_index is not accepted.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter C2
Firmware directory information

The Client must be able to obtain the data otherwise provided by the firmware directory (see 3.3.1 Image directory).

The following fields are present in the metadata:

• active_index
• per-image img_guid
• per-image bankactive_index accepted flag.

The remaing firmware directory fields must be obtained by the Client via an IMPLEMENTATION DEFINED procedure.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Part D
Security Risk Analysis

Chapter D1
Trust and information flows

The threat model and security properties of the FW update protocol are described in this appendix. Two distinct
platform models are considered. The platform models are distinguished by the entity that can write to the mediums
where the assets are kept in. The two platform models are the following:

1. The Client execution context does not have direct access to any of the assets.
2. The Client execution context has direct read/write access to some of the assets.

The threats, assets, security goals and assumptions are common to both platform designs. The mitigations are
discussed separately for each platform model.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter D1. Trust and information flows
D1.1. Assets

D1.1 Assets

The following list shows the platform assets:

• A1: FW images
• A2: Rollback counter values
• A3: FWU Metadata
• A4: Chain of trust

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter D1. Trust and information flows
D1.2. Security goals

D1.2 Security goals

The FW update framework must achieve the following goals:

• G1: the Firmware update framework cannot be used to corrupt the boot procedure of the current system:
– G1.1 FWU metadata cannot be corrupted by the Client;
– G1.2 Active FW bank cannot be corrupted by the Client.

• G2 FW images may be inaccessible to the Client.
• G3 The trusted boot procedure cannot be sidestepped or subvertible by the Client.

Additionally, for a platforms that must ensure only authentic images are written to the Firmware Store, the
following goal applies:

• G4 Firmware images must be authenticated before being committed to flash by the Update Agent.

Note: achieving the goals listed above may be impossible on systems where the Update Agent and Client exist in
the same security domain, unless schemes such as flash locking before OS runtime are used.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter D1. Trust and information flows
D1.3. Model assumptions

D1.3 Model assumptions

The threat model assumes an attacker with the following capabilities:

• Malicious Client (SW execution at EL1/EL2).
• Light physical attacks (e.g. SPI/I2C probe, ability to unplug device from power source).

The threat model below assumes that:

• A trusted boot procedure is implemented, thus preventing images that fail to authenticate from executing on
the platform.

• The Update Agent may optionally authenticate the images before writing these to flash. The implementation
of the image authentication prior to flash commit is a platform vendor choice.

Logging of installation attempts is currently considered out of scope for this specification.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter D1. Trust and information flows
D1.4. Threats

D1.4 Threats

Threat ID STRIDE type [6] Attack type
Attacked
asset Description

T1 Spoofing SW FW store Attacker installs unauthenticated FW images
to gain execution capability in the system.

T2 Tampering SW FW store Attacker downgrades a FW image to exploit a
vulnerability of a previous FW version.

T3 Tampering SW Anti-rollback
counter

Attacker decrements an anti-rollback counter
to enable a revoked FW image to execute on
the platform.

T4 Tampering SW Chain of
trust

Attacker alters CoT to enable unauthenticated
images to execute.

T5 Tampering Physical FWU
metadata,
FW store

Attacker resets platform during firmware
update to leave system in an
inconsistent/exploitable state.

T6 Information
disclosure

SW FW store Attacker without permissions accesses data in
FW store.

T7.1 Denial of service SW FW store Attacker overwrites the FW store to prevent
parts of the system from becoming online.

T7.2 Denial of service Physical FW store Attacker overwrites the FW store to prevent
parts of the system from becoming online.

T8 Denial of service SW FWU
metadata

Attacker alters the FWU metadata to prevent
anti-rollback counter increments.

T9.1 Elevation of
privilege

SW FWU metadata | Attacker swaps image GUIDs in the FWU
metadata to enable an authenticated image to execute at
higher exception level.

T9.2 Elevation of
privilege

Physical FWU metadata | Attacker swaps image GUIDs in the FWU
metadata to enable an authenticated image to execute at
higher exception level.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter D1. Trust and information flows
D1.5. Platform models

D1.5 Platform models

D1.6 NV memory controlled by the Secure World

The platform trust relationships are shown in Figure D1.1. The Client trusts and sends information to the Update
Agent. The Update Agent sends information to the Client, via the FW directory file. The Update Agent distrusts
the Client.

Both the Update Agent and the Client trust the immutable and secondary bootloader stages.

Information
flow
trust

boundary

Update AgentClient

BMC,
Immutable or
Secondary

bootloader stages

OS
FW

Store

EL3 Runtime FW

anti-
rollback
counter

Chain of
Trust

FWU
Metadata

Figure D1.1: System diagram of the Secure World controlled NV storage model

D1.6.1 Mitigations

Threat ID Mitigation Notes

T1 FW images can be authenticated before being
written to flash. Otherwise the image will fail the
authentication check in the mandatory trusted
boot procedure.

–

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter D1. Trust and information flows
D1.6. NV memory controlled by the Secure World

Threat ID Mitigation Notes

T2 The platform owner must have updated the
anti-rollback counter value to prevent a
vulnerable image from executing on the platform.
The Update Agent detects the FW image
downgrade attempt before writing to flash.
Otherwise the image will fail the authentication
check in the mandatory trusted boot procedure.

–

T3 The mechanism to change the anti-rollback
counter is IMPLEMENTATION DEFINED. The
anti-rollback counter is controlled by the
Immutable/ Secondary or EL3 runtime FW and
thus is the responsibility of these
implementations to safeguard the correct
anti-rollback counter behaviour.

transferred: the mitigation is the responsibility
of the Immutable/Secondary and Secure World
runtime FW implementations.

T4 The CoT is not be writable to using the FWU
ABI. The CoT is placed in a NV memory
location inaccessible to the Client.

–

T5 The trusted boot procedure ensures only
authenticated images execute on the platform.
The rules around FWU metadata update ensure
that inconsistent FWU metadata are corrected
before usage.

A glitch in the FW update will lead to 1) the
FWU metadata getting corrupted or 2) some of
the installed FW images getting partially
updated.

1) The FWU metadata is replicated and hence
there will be an intact FWU metadata that
can be used to correct the corrupted one. If
the power failure occurred between the
correct update of one of the replicas but
before the update of the other replica, then
it is IMPLEMENTATION DEFINED which
replica is used to overwrite the other.

2) The trusted boot procedure ensure that all
images are authenticated prior to
execution. A partially updated image will
lead to an authentication failure with a
very high likelihood. A failure to boot
with the updated bank leads to a boot from
the previous active which is not affected
by the power failure during the update
process.

T6 The Update Agent validates the Client
permission to access the image before outputting
any information to the Client.
If the attacker has physical access, then the
attacker is able to read the content of the flash.
Security sensitive data must be encrypted to
mitigate this attack.

–

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter D1. Trust and information flows
D1.6. NV memory controlled by the Secure World

Threat ID Mitigation Notes

T7.1 The Update Agent validates the Client
permission to write to the image.
The Update Agent authenticates the images
before these are written to flash.
If the image cannot be authenticated, then it still
holds true that the Client can only update a
single bank.
If the platform has multiple banks, the current
active bank will always be intact and available as
a fallback.

The complete updated “certificate CoT” may not
be available at the time of image write. In that
case the image cannot be authenticated.

T7.2 Unmitigated An attacker with physical access will be able to
alter the FW store.

T8 The FWU metadata is outside of the Client trust
boundary, only accessible to the Update Agent.
The FWU ABI definition does not allow the
Client to alter the FWU metadata.

–

T9.1 The FWU metadata is outside of the Client trust
boundary, only accessible to the Update Agent.
The FWU ABI definition does not allow the
Client to alter the FWU metadata.

–

T9.2 The trusted boot procedure and the intact CoT
will detect the image GUID swap and lead to a
failed boot.

T9.2 mitigation leads unmitigated DoS.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter D1. Trust and information flows
D1.7. NV memory controlled by the Normal World

D1.7 NV memory controlled by the Normal World

The platform trust relationships are shown in Figure D1.2.

In this platform model the FW store and the FWU metadata are kept in a NV memory that the can be written to
from the Normal World. The Chain of Trust can also be partially placed in the same medium as the FW store.

The Update Agent and the Client are in the same trust domain. The Client and the Update Agent trust each other.

Both the Update Agent and the Client trust the immutable and secondary bootloader stages.

Information
flow
trust

boundary

Update AgentClient

BMC,
Immutable or
Secondary

bootloader stages

OS
FW

Store

EL3 Runtime FW

anti-
rollback
counter

Chain of
Trust

FWU
Metadata

Figure D1.2: System diagram of the Normal World controlled NV storage model

Threat ID Mitigation Notes

T1 Trusted boot detects unauthenticated image, boot
fails.

T1 mitigation does not mitigate against DoS
attack

T2 The platform owner must have updated the
anti-rollback counter value to prevent a
vulnerable image from executing on the platform.
Trusted boot detects the anti-rollback condition
violation

T2 mitigation does not mitigate against DoS
attack

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter D1. Trust and information flows
D1.7. NV memory controlled by the Normal World

Threat ID Mitigation Notes

T3 The mechanism to change the anti-rollback
counter is IMPLEMENTATION DEFINED. The
anti-rollback counter is controlled by the
Immutable/Secondary or EL3 runtime FW and
thus is the responsibility of these
implementations to safeguard the correct
anti-rollback counter behaviour.

transferred: mitigation is the responsibility of
the Immutable/Secondary and EL3 runtime FW
implementations

T4 CoT is authenticated must be authenticated by
the Immutable/Secondary stage using the
platform root of trust.

transferred: mitigation is the responsibility of
the Immutable/Secondary implementations.

T5 The trusted boot procedure ensures only
authenticated images execute on the platform.
The rules around FWU metadata update ensure
that inconsistent FWU metadata are corrected
before usage.

A glitch in the FW update will lead to 1) the
FWU metadata getting corrupted or 2) some of
the installed FW images getting partially
updated.

1) The FWU metadata is replicated and hence
there will be an intact FWU metadata that
can be used to correct the corrupted one. If
the power failure occurred between the
correct update of one of the replicas but
before the update of the other replica, then
it is IMPLEMENTATION DEFINED which
replica is used to overwrite the other.

2) The trusted boot procedure ensure that all
images are authenticated prior to
execution. A partially updated image will
lead to an authentication failure with a
very high likelihood. A failure to boot
with the updated bank leads to a boot from
the previous active which is not affected
by the power failure during the update
process.

T6 Sensitive FW images can be installed and stored
in an encrypted form to preserve confidentiality.

transferred: Security sensitive images must be
encrypted when in the FW store.

T7.1 Unmitigated The FW store is in the same trust domain as the
Client.

T7.2 Unmitigated An attacker with physical access will be able to
alter the FW store.

T8 Unmitigated The FWU metadata is in the same trust domain
as the Client.

T9.1 The trusted boot procedure and the intact CoT
will detect the image GUID swap and lead to a
failed boot.

T9.1 mitigation leads unmitigated DoS.

T9.2 The trusted boot procedure and the intact CoT
will detect the image GUID swap and lead to a
failed boot.

T9.2 mitigation leads unmitigated DoS.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Part E
UEFI end-to-end example design

A particular platform may chose to implement the FW update client in Normal World FW which implements the
UEFI interfaces.

The FW update Client takes shape both in the FMP (or multiple FMPs) and UpdateCapsule implementations
withing UEFI.

OS
FMP

Update
ClientUpdate Agent

FWU ABI
(Section 5)

ESRT

UpdateCapsule

BMC, immutable
or secondary

Metadata
(Section 4)

Metadata
(Section 4)

NV memory

Figure 1: End-to-end UEFI example design

The following table lists the different interfaces in the system and the agents that interact over the interface.

Interface Provider Consumer Description

FWU ABI Update Agent Update Client (FMP +
UpdateCapsule)

Set of primitives used to transmit FW images
from the Client to the Update Agent in Secure
World.

FWU
Metadata

Update Agent BMC, Immutable or
Secondary bootloader
stages

The datastructure describing the FW bank
structure, the acceptance status of each image
and the active bank selection. The BMC,
Immutable or Secondary stage bootloaders use
the FWU metadata information to determine
which FW images must be loaded from the FW
Store.

Update
Capsule

UEFI implementation OS The interface over which the OS passes a FMP
Capsule containing the FW to be updated.

ESRT UEFI Implementation OS A UEFI configuration table used to present the
different image types and their versions present
in the system. The table is created before
ExitBootServices and retrieved by the OS
loader.

A FW update involving the UEFI implementation involves the following steps:

1. The OS communicates the set of images to be updated by passing an FMP formatted capsule via the
UpdateCapsule interface.

2. The UEFI implementation receives the capsule, passing the different images to the responsible FMP. The
FMP communicates the FW images to the Update Agent.

3. The UpdateCapsule implementation tracks all the images being installed by the responsible FMPs. After all
the images in the Capsule are installed, the UpdateCapsule implementation signals the completion of the
Staging state.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

1. If the Capsule contained a partial set of images, the Update Agent should copy the non-updated images
from the active bank, or keep the image in the update bank untouched if it has the same version or same
digest as the version in the active bank.

2. At this point the full CoT is always available, the Update Agent can perform an optional authentication
of all images just updated. The Update Agent returns an error code if the authentication fails.

3. The Update Agent performs the required changes in the Metadata.
4. The UpdateCapsule implementation returns confirming correct termination of the Staging state.
5. The OS resets the platform.
6. The platform boots. While there are unaccepted images in the active bank, the platform is in the Trial state.

1. The UEFI implementation constructs the ESRT indicating the acceptance status of each FW image.

DEN0118
1.0 A

Copyright © 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

	Release information
	Arm Non-Confidential Document License (“License”)
	Contents
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	References
	Feedback
	Feedback on this book
	Inclusive terminology commitment

	Glossary
	1 Introduction
	2 Firmware Store update architecture overview
	2.1 System boot on platforms with an updatable Firmware Store.
	2.1.1 Platform Boot

	2.2 Recovery Mode

	3 Firmware Store update protocol
	3.1 Firmware Store design
	3.2 Firmware Store update protocol GUIDs
	3.2.1 Firmware Store state machine
	3.2.1.1 Staging state
	3.2.1.2 Trial state

	3.3 Firmware Store management
	3.3.1 Image directory
	3.3.2 Anti-rollback counter management
	3.3.3 Protocol-updatable images
	3.3.3.1 Image authentication

	3.3.4 Telemetry
	3.3.4.1 Telemetry shared buffer

	3.4 Firmware Store Update ABI
	3.4.1 Transport layer
	3.4.1.1 Dynamic shared buffer setup phase

	3.4.2 ABI definition
	3.4.2.1 fwu_discover
	3.4.2.1.1 Arguments
	3.4.2.1.2 Returns

	3.4.2.2 fwu_begin_staging
	3.4.2.2.1 Arguments
	3.4.2.2.2 Returns

	3.4.2.3 fwu_end_staging
	3.4.2.3.1 Arguments
	3.4.2.3.2 Returns

	3.4.2.4 fwu_cancel_staging
	3.4.2.4.1 Arguments
	3.4.2.4.2 Returns

	3.4.2.5 fwu_open
	3.4.2.5.1 Arguments
	3.4.2.5.2 Returns

	3.4.2.6 fwu_write_stream
	3.4.2.6.1 Arguments
	3.4.2.6.2 Returns

	3.4.2.7 fwu_read_stream
	3.4.2.7.1 Arguments
	3.4.2.7.2 Returns

	3.4.2.8 fwu_commit
	3.4.2.8.1 Arguments
	3.4.2.8.2 Returns

	3.4.2.9 fwu_accept_image
	3.4.2.9.1 Arguments
	3.4.2.9.2 Returns

	3.4.2.10 fwu_select_previous
	3.4.2.10.1 Arguments
	3.4.2.10.2 Returns

	3.4.2.11 Return status

	A A/B Firmware Store design guidance
	A1 Firmware bank selection
	A1.1 Platform Boot

	A2 Recovery Mode
	A3 A/B Firmware Store design
	A3.1 A/B Firmware Store state machine
	A3.1.1 A/B Firmware Store Staging state

	A3.2 Firmware Store management
	A3.2.1 Firmware update metadata
	A3.2.2 Metadata Version 2
	A3.2.3 Metadata version 1
	A3.2.4 Metadata integrity check
	A3.2.4.1 Metadata integration with GPT

	A4 State variable updates by the Update Agent
	A4.1 fwu_end_staging
	A4.2 fwu_accept_image
	A4.3 fwu_select_previous

	B In-band updates on systems with a Platform Controller
	B1 ABI implementation in B2
	B2 AP and PCtr synchronization in B1 and B2
	B3 AP boot
	B4 Example AP to PCtr interaction via PLDM type 5 messaging

	C Update Agent in the Normal World
	C1 State machine
	C2 Firmware directory information

	D Security Risk Analysis
	D1 Trust and information flows
	D1.1 Assets
	D1.2 Security goals
	D1.3 Model assumptions
	D1.4 Threats
	D1.5 Platform models
	D1.6 NV memory controlled by the Secure World
	D1.6.1 Mitigations

	D1.7 NV memory controlled by the Normal World

	E UEFI end-to-end example design

