
Learn the architecture - An introduction to AMBA
AXI
Version 3.0

Non-Confidential
Copyright © 2020–2022, 2024 Arm Limited (or its
affiliates).
All rights reserved.

Issue 04
102202_0300_04_en

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Learn the architecture - An introduction to AMBA AXI

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0300-04 2 October 2024 Non-Confidential Fixed minor technical issue

0300-03 12 October 2022 Non-Confidential Fixed minor technical issue

0300-02 12 March 2021 Non-Confidential Clarifying transfers and transactions

0200-01 15 February 2021 Non-Confidential Terminology updates

0100-01 25 August 2020 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 63

https://www.arm.com/company/policies/trademarks

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 63

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Contents

Contents

1. Overview...6

2. What is AMBA, and why use it?.. 7

3. AXI protocol overview.. 11

4. Channel transfers and transactions... 17

5. Channel signals..30

6. Atomic accesses..41

7. Transfer behavior and transaction ordering.. 49

8. Check your knowledge... 61

9. Related information... 62

10. Next steps..63

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Overview

1. Overview
This guide introduces the main features of Advanced Microcontroller Bus Architecture (AMBA) AXI.
The guide explains the key concepts and details that help you implement the AXI protocol.

In this guide, we describe:

• What AMBA is.

• Why AMBA is so popular in modern SoC design.

• The concepts of transfers and transactions, which underpin how AMBA operates.

• The different channel signals and the functionality that they provide.

• Exclusive access transfers, which allow multiple managers to access the same subordinate at
the same time.

• The rules and conditions that the AMBA protocol dictates.

• The key attributes and support for common elements like mixed endian structures.

This document focuses on the key concepts of AXI, as defined in AXI4, and highlighting differences
to AXI3 where applicable. AXI5 extended AXI4 and introduced a number of performance and Arm
architecture features. The key concepts described here still apply, but the additional functionality of
AXI5 is not covered here.

At the end of this guide, you can Check your knowledge.

Diversity and inclusion are important values to Arm. Because of this, we
are re-evaluating the terminology we use in our documentation. Older Arm
documentation, including the AMBA AXI and ACE protocol specification, uses the
terms master and slave. This guide uses replacement terminology, as follows:

• The new term manager is synonymous with master in older documentation.

• The new term subordinate is synonymous with slave in older documentation.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 63

https://developer.arm.com/documentation/ihi0022/latest

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

What is AMBA, and why use it?

2. What is AMBA, and why use it?
The Advanced Microcontroller Bus Architecture, or AMBA, is an open-standard, on-chip
interconnect specification for the connection and management of functional blocks in system-on-a-
chip (SoC) designs.

Essentially, AMBA protocols define how functional blocks communicate with each other.

The following diagram shows an example of an SoC design. This SoC has several functional blocks
that use AMBA protocols, like AXI, to communicate with each other:

Figure 2-1: System diagram

Where is AMBA used?
AMBA simplifies the development of designs with multiple processors and large numbers of
controllers and peripherals. However, the scope of AMBA has increased over time, going far
beyond just microcontroller devices.

Today, AMBA is widely used in a range of ASIC and SoC parts. These parts include applications
processors that are used in devices like IoT subsystems, smartphones, and networking SoCs.

Why use AMBA?
AMBA provides several benefits:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

What is AMBA, and why use it?

• Efficient IP reuse: IP reuse is an essential component in reducing SoC development costs
and timescales. AMBA specifications provide the interface standard that enables IP reuse.
Therefore, thousands of SoCs, and IP products, are using AMBA interfaces.

• Flexibility: AMBA offers the flexibility to work with a range of SoCs. IP reuse requires a common
standard while supporting a wide variety of SoCs with different power, performance, and
area requirements. Arm offers a range of interface specifications that are optimized for these
different requirements.

• Compatibility: A standard interface specification, like AMBA, allows compatibility between IP
components from different design teams or vendors.

• Support: AMBA is well supported. It is widely implemented and supported throughout the
semiconductor industry, including support from third-party IP products and tools.

Bus interface standards like AMBA, are differentiated through the performance that they enable.
The two main characteristics of bus interface performance are:

• Bandwidth: The rate at which data can be driven across the interface. In a synchronous system,
the maximum bandwidth is limited by the product of the clock speed and the width of the data
bus.

• Latency: The delay between the initiation and completion of a transaction. In a burst-based
system, the latency figure often refers to the completion of the first transfer rather than the
entire burst.

The efficiency of your interface depends on the extent to which it achieves the maximum
bandwidth with zero latency.

How has AMBA evolved?
AMBA has evolved over the years to meet the demands of processors and new technologies, as
shown in the following diagram:

Figure 2-2: Key AMBA specifications

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

What is AMBA, and why use it?

AMBA
Arm introduced AMBA in the late 1990s. The first AMBA buses were the Advanced System Bus
(ASB) and the Advanced Peripheral Bus (APB). ASB has been superseded by more recent protocols,
while APB is still widely used today.

APB is designed for low-bandwidth control accesses, for example, register interfaces on system
peripherals. This bus has a simple address and data phase and a low complexity signal list.

AMBA 2
In 1999, AMBA 2 added the AMBA High-performance Bus (AHB), which is a single clock-edge
protocol. A simple transaction on the AHB consists of an address phase and a subsequent data
phase. Access to the target device is controlled through a MUX, admitting access to one manager
at a time. AHB is pipelined for performance, while APB is not pipelined for design simplicity.

AMBA 3
In 2003, Arm introduced the third generation, AMBA 3, which includes ATB and AHB-Lite.

Advanced Trace Bus (ATB), is part of the CoreSight on-chip debug and trace solution.

AHB-Lite is a subset of AHB. This subset simplifies the design for a bus with a single manager.

Advanced eXtensible Interface (AXI), the third generation of AMBA interface defined in the AMBA
3 specification, is targeted at high performance, high clock frequency system designs. AXI includes
features that make it suitable for high-speed submicrometer interconnect.

AMBA 4
In 2010, the AMBA 4 specifications were introduced, starting with AMBA 4 AXI4 and then AMBA
4 AXI Coherency Extensions (ACE) in 2011.

ACE extends AXI with additional signaling introducing system-wide coherency. This system-wide
coherency allows multiple processors to share memory and enables technology like big.LITTLE
processing. At the same time, the ACE-Lite protocol enables one-way coherency. One-way
coherency enables a network interface to read from the caches of a fully coherent ACE processor.

The AXI4-Stream protocol is designed for unidirectional data transfers from manager to
subordinate with reduced signal routing, which is ideal for implementation in FPGAs.

AMBA 5
In 2014, the AMBA 5 Coherent Hub Interface (CHI) specification was introduced, with a
redesigned high-speed transport layer and features designed to reduce congestion. There have
been several editions of the CHI protocol, and each new version adds new features.

In 2016, the AHB-Lite protocol was updated to AHB5, to complement the Armv8-M architecture,
and extend the TrustZone security foundation from the processor to the system.

In 2019, the AMBA Adaptive Traffic Profiles (ATP) was introduced. ATP complements the existing
AMBA protocols and is used for modeling high-level memory access behavior in a concise, simple,
and portable way.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

What is AMBA, and why use it?

AXI5, ACE5 and ACE5-Lite extend prior generations, to include a number of performance and
scalability features to align with and complement AMBA CHI. Some of the new features and
options include:

• Support for high frequency, non-blocking coherent data transfer between many processors.

• A layered model to allow separation of communication and transport protocols for flexible
topologies, such as a cross-bar, ring, mesh or ad hoc.

• Cache stashing to allow accelerators or IO devices to stash critical data within a CPU cache for
low latency access.

• Far atomic operations enable the interconnect to perform high-frequency updates to shared
data.

• End-to-end data protection and poisoning signalling.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

AXI protocol overview

3. AXI protocol overview
AXI is an interface specification that defines the interface of IP blocks, rather than the interconnect
itself.

The following diagram shows how AXI is used to interface an interconnect component:

Figure 3-1: AXI interface

AXI
Manager

AXI
Manager

AXI
Subordinate

AXI
Subordinate

AXI
I n t e r c onnect
c ompone n t

There are only two AXI interface types, manager and subordinate. These interface types are
symmetrical. All AXI connections are between manager interfaces and subordinate interfaces.

AXI interconnect interfaces contain the same signals, which makes integration of different IP
relatively simple. The previous diagram shows how AXI connections join manager and subordinate
interfaces. The direct connection gives maximum bandwidth between the manager and subordinate
components with no extra logic. And with AXI, there is only a single protocol to validate.

AXI in a multi-manager system
The following diagram shows a simplified example of an SoC system, which is composed of
managers, subordinates, and the interconnect that links them all:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

AXI protocol overview

Figure 3-2: Multi master high-level

CompleterSubordinate 1

AXI P r o t o c ol

Manager interface

Subordinate interface

Subordinate 2

Manager 1

I n t e r - c onnection a r chi t ectu r e

Manager 2

Subordinate 3 Subordinate 4

An Arm processor is an example of a manager, and a simple example of a subordinate is a memory
controller.

The AXI protocol defines the signals and timing of the point-to-point connections between
manager and subordinates.

The AXI protocol is a point-to-point specification, not a bus specification. Therefore,
it describes only the signals and timing between interfaces.

The previous diagram shows that each AXI manager interface is connected to a single AXI
subordinate interface. Where multiple managers and subordinates are involved, an interconnect
fabric is required. This interconnect fabric also implements subordinate and manager interfaces,
where the AXI protocol is implemented.

The following diagram shows that the interconnect is a complex element that requires its own AXI
manager and subordinate interfaces to communicate with external function blocks:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

AXI protocol overview

Figure 3-3: Multi master interconnect

The following diagram shows an example of an SoC with various processors and function blocks:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

AXI protocol overview

Figure 3-4: System diagram

The previous diagram shows all the connections where AXI is used. You can see that AXI3 and
AXI4 are used within the same SoC, which is common practice. In such cases, the interconnect
performs the protocol conversion between the different AXI interfaces.

AXI channels
The AXI specification describes a point-to-point protocol between two interfaces: a manager and a
subordinate. The following diagram shows the five main channels that each AXI interface uses for
communication:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

AXI protocol overview

Figure 3-5: Axi channels

Manager

R ead D a ta (R)

R ead A dd r ess (AR)

W ri t e R esponse (B)

W ri t e D a ta (W)

W ri t e A dd r ess (A W)

Subordinate

Write operations use the following channels:

• The manager sends an address on the Write Address (AW) channel and transfers data on the
Write Data (W) channel to the subordinate.

• The subordinate writes the received data to the specified address. Once the subordinate
has completed the write operation, it responds with a message to the manager on the Write
Response (B) channel.

Read operations use the following channels:

• The manager sends the address it wants to read on the Read Address (AR) channel.

• The subordinate sends the data from the requested address to the manager on the Read Data
(R) channel. The subordinate can also return an error message on the Read Data (R) channel. An
error occurs if, for example, the address is not valid, or the data is corrupted, or the access does
not have the right security permission.

Each channel is unidirectional, so a separate Write Response channel is needed
to pass responses back to the manager. However, there is no need for a Read
Response channel, because a read response is passed as part of the Read Data
channel.

Using separate address and data channels for read and write transfers helps to maximize the
bandwidth of the interface. There is no timing relationship between the groups of read and write
channels. This means that a read sequence can happen at the same time as a write sequence.

Each of these five channels contains several signals, and all these signals in each channel have the
prefix as follows:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

AXI protocol overview

• AW for signals on the Write Address channel

• AR for signals on the Read Address channel

• W for signals on the Write Data channel

• R for signals on the Read Data channel

• B for signals on the Write Response channel

B stands for buffered, because the response from the subordinate happens after all
writes have completed.

Main AXI features
The AXI protocol has several key features that are designed to improve bandwidth and latency of
data transfers and transactions, as you can see here:

• Independent read and write channels: AXI supports two different sets of channels, one for
write operations, and one for read operations. Having two independent sets of channel helps
to improve the bandwidth performances of the interfaces. This is because read and write
operations can happen at the same time.

• Multiple outstanding addresses: AXI allows for multiple outstanding addresses. This means that
a manager can issue transactions without waiting for earlier transactions to complete. This can
improve system performance because it enables parallel processing of transactions.

• No strict timing relationship between address and data operations: With AXI, there is no strict
timing relationship between the address and data operations. This means that, for example,
a manager could issue a write address on the Write Address channel, but there is no time
requirement for when the manager has to provide the corresponding data to write on the Write
Data channel.

• Support for unaligned data transfers: For any burst that is made up of data transfers wider
than one byte, the first bytes accessed can be unaligned with the natural address boundary.
For example, a 32-bit data packet that starts at a byte address of 0x1002 is not aligned to the
natural 32-bit address boundary.

• Out-of-order transaction completion: Out-of-order transaction completion is possible with AXI.
The AXI protocol includes transaction identifiers, and there is no restriction on the completion
of transactions with different ID values. This means that a single physical port can support out-
of-order transactions by acting as several logical ports, each of which handles its transactions in
order.

• Burst transactions based on start address: AXI managers only issue the starting address for
the first transfer. For any following transfers, the subordinate will calculate the next transfer
address based on the burst type.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

4. Channel transfers and transactions
This section explains the handshake principle for AXI channels, and shows how the handshake is
the underpinning mechanism for all read and write transactions.

Channel handshake
The AXI4 protocol defines five different channels, as described in AXI channels. All of these
channels share the same handshake mechanism that is based on the VALID and READY signals, as
shown in the following diagram:

Figure 4-1: Handshake

Valid

Ready

So
ur

ce

D
es

tin
at

io
n

The VALID signal goes from the source to the destination, and READY goes from the destination to
the source.

Whether the source or destination is a manager or subordinate depends on which channel is being
used. For example, the manager is a source for the Read Address channel, but a destination for the
Read Data channel.

The source uses the VALID signal to indicate when valid information is available. The VALID signal
must remain asserted, meaning set to high, until the destination accepts the information. Signals
that remain asserted in this way are called sticky signals.

The destination indicates when it can accept information using the READY signal. The READY
signal goes from the channel destination to the channel source.

This mechanism is not an asynchronous handshake, and requires the rising edge of the clock for the
handshake to complete.

Differences between transfers and transactions
When designing interconnect fabric, you must know the capabilities of the managers and
subordinates that are being connected. Knowing this information lets you include sufficient
buffering, tracking, and decode logic to support the various data transfer ordering possibilities that
allow performance improvements in faster devices.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 63

https://developer.arm.com/documentation/102202/0200/Channel-transfers-and-transactions?lang=en

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Using standard terminology makes understanding the interactions between connected components
easier. AXI makes a distinction between transfers and transactions:

• A transfer is a single exchange of information, with one VALID and READY handshake.

• A transaction is an entire burst of transfers, containing an address transfer, one or more data
transfers, and, for write sequences, a response transfer.

Channel transfer examples
This section examines some examples of possible handshakes between source and destination.
It shows several possible combinations of VALID and READY sequences that conform to the AXI
protocol specifications.

In the first example, shown in the following diagram, we have a clock signal, followed by an
information bus, and then the VALID and READY signals:

Figure 4-2: Example transfer

This example has the following sequence of events:

1. In clock cycle 2, the VALID signal is asserted, indicating that the data on the information
channel is valid.

2. In clock cycle 3, the following clock cycle, the READY signal is asserted.

3. The handshake completes on the rising edge of clock cycle 4, because both READY and VALID
signals are asserted.

The following diagram shows another example:
Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 18 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-3: Example transfer

This example has the following sequence of events:

1. In clock cycle 1, the READY signal is asserted.

2. The VALID signal is not asserted until clock cycle 3.

3. The handshake completes on the rising edge of clock cycle 4, when both VALID and READY
are asserted.

The final example shows both VALID and READY signals being asserted during the clock cycle 3, as
seen in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-4: Example transfer

Again, the handshake completes on the rising edge of clock cycle 4, when both VALID and READY
are asserted.

In all three examples, information is passed down the channel when READY and VALID are
asserted on the rising edge of the clock signal.

Read and write handshakes must adhere to the following rules:

• A source cannot wait for READY to be asserted before asserting VALID.

• A destination can wait for VALID to be asserted before asserting READY.

These rules mean that READY can be asserted before or after VALID, or even at the same time.

Write transaction: single data item
This section describes the process of a write transaction for a single data item, and the different
channels that are used to complete the transaction.

This write transaction involves the following channels:

• Write Address (AW)

• Write (W)

• Write Response (B)

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

First, there is a handshake on the Write Address (AW) channel, as shown in the following diagram:

Figure 4-5: Write single

Clock cy cle 1 2 3 4 n n+1 n+2 n+3

A CLK

AW ADDR
A W V ALID

A WREA DY

WD A T A

WV ALID

WREADY

WLAST

BRESP

B V ALID

BREADY

A dd r ess

A W
 c

ha
nn

el
W

 c
ha

nn
el

B
ch

an
ne

l

This handshake is where the manager communicates the address of the write to the subordinate.
The handshake has the following sequence of events:

1. The manager puts the address on AWADDR and asserts AWVALID in clock cycle 2.

2. The subordinate asserts AWREADY in clock cycle 3 to indicate its ability to receive the address
value.

3. The handshake completes on the rising edge of clock cycle 4.

After this first handshake, the manager transfers the data to the subordinate on the Write (W)
channel, as shown in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-6: Write single

Clock cy cle 1 2 3 4 n n+1 n+2 n+3

A CLK

AW ADDR
A W V ALID

A WREA DY

WD A T A

WV ALID

WREADY

WLAST

BRESP

B V ALID

BREADY

A dd r ess

D a ta

A W
 c

ha
nn

el
W

 c
ha

nn
el

B
ch

an
ne

l

The data transfer has the following sequence of events:

1. The subordinate is waiting for data with WREADY set to high in clock cycle n.

2. The manager puts the data on the WDATA bus and asserts WVALID in clock cycle n+2.

3. The handshake completes on the rising edge of clock cycle n+3

Finally, the subordinate uses the Write Response (B) channel, to confirm that the write transaction
has completed once all WDATA has been received. This response is shown in the following
diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-7: Write single

Clock cy cle 1 2 3 4 n n+1 n+2 n+3

A CLK

AW ADDR
A W V ALID

A WREA DY

WD A T A

WV ALID

WREADY

WLAST

BRESP

B V ALID

BREADY

A dd r ess

D a ta

O k a y

A W
 c

ha
nn

el
W

 c
ha

nn
el

B
ch

an
ne

l

The write response has the following sequence of events:

1. The manager asserts BREADY.

2. The subordinate drives BRESP to indicate success or failure of the write transaction, and
asserts BVALID.

The handshake completes on the rising edge of clock cycle n+4.

Write transaction: multiple data items
AXI is a burst-based protocol, which means that it is possible to transfer multiple data in a single
transaction. We can transfer a single address on the AW channel to transfer multiple data, with
associated burst width and length information.

The following diagram shows an example of a multiple data transfer:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-8: Write multiple

Clock cy cle 1 2 3 4 5 6 7 8 9 10 11 12

A CLK

AW ADDR
A W V ALID

A WREA DY

WD A T A

WV ALID

WREADY

WLAST

BRESP

B V ALID

BREADY

A W
 c

ha
nn

el
W

 c
ha

nn
el

B
ch

an
ne

l

A dd r ess

D a ta D a ta D a ta

O k a y

In this case, the AW channel indicates a sequence of three transfers, and on the W channel, we see
three data transfers.

The manager drives the WLAST high to indicate the final WDATA. This means that the subordinate
can either count the data transfers or just monitor WLAST.

Once all WDATA transfers are received, the subordinate gives a single BRESP value on the B
channel. One single BRESP covers the entire burst. If the subordinate decides that any of the
transfers contain an error, it must wait until the entire burst has completed before it informs the
manager that an error occurred.

Read transaction: single data item
This section looks in detail at the process of a read transaction for a single data item, and the
different channels used to complete the transaction.

This write transaction involves the following channels:

• Read Address (AR)

• Read (R)

First, there is a handshake on the Read Address (AR) channel, as shown in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-9: Read single

A CLK

Clock cy cle 1 2 3 4 5 n n+1 n+2 n+3

ARADDR
AR V ALID

ARREADY

RD A T A

R V ALID

RREADY

RLAST

RRESP

A dd r ess

A
R

ch
an

ne
l

R
ch

an
ne

l

The handshake has the following sequence of events:

1. In clock cycle 2, the manager communicates the address of the read to the subordinate on
ARADDR and asserts ARVALID.

2. In clock cycle 3, the subordinate asserts ARREADY to indicate that it is ready to receive the
address value.

The handshake completes on the rising edge of clock cycle 4.

Next, on the Read (R) channel, the subordinate transfers the data to the manager. The following
diagram shows the data transfer process:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-10: Read single

A CLK

Clock cy cle 1 2 3 4 5 n n+1 n+2 n+3

ARADDR
AR V ALID

ARREADY

RD A T A

R V ALID

RREADY

RLAST

RRESP

A dd r ess

O k a y

D a ta

A
R

ch
an

ne
l

R
ch

an
ne

l

The data transfer handshake has the following sequence of events:

1. In clock cycle n, the manager indicates that it is waiting to receive the data by asserting
RREADY.

2. The subordinate retrieves the data and places it on RDATA in clock cycle n+2. In this case,
because this is a single data transaction, the subordinate also sets the RLAST signal to high.
At the same time, the subordinate uses RRESP to indicate the success or failure of the read
transaction to the manager, and asserts RVALID.

3. Because RREADY is already asserted by the manager, the handshake completes on the rising
edge of clock cycle n+3.

Read transaction: multiple data items
The AXI protocol also allows a read burst of multiple data transfer in the same transaction. This is
similar to the write burst that is described in Write transaction: multiple data items.

The following diagram shows an example of a burst read transfer:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-11: Read multiple

A CLK

ARADDR
AR V ALID

ARREADY

RD A T A

R V ALID

RREADY

RLAST

RRESP

A dd r ess

D a ta D a ta D a ta

O k a y O k a y O k a y

A
R

ch
an

ne
l

R
ch

an
ne

l

In this example, we transfer a single address on the AR channel to transfer multiple data items, with
associated burst width and length information.

Here, the AR channel indicates a sequence of three transfers, therefore on the R channel, we see
three data transfers from the subordinate to the manager.

On the R channel, the subordinate transfers the data to the manager. In this example, the manager
is waiting for data as shown by RREADY set to high. The subordinate drives valid RDATA and
asserts RVALID for each transfer.

One difference between a read transaction and a write transaction is that for a read transaction
there is an RRESP response for every transfer in the transaction. This is because, in the write
transaction, the subordinate has to send the response as a separate transfer on the B channel. In
the read transaction, the subordinate uses the same channel to send the data back to the manager
and to indicate the status of the read operation.

If an error is indicated for any of the transfers in the transaction, the full indicated length of the
transaction must still be completed. There is no such thing as early burst termination.

Active transactions
Active transactions are also known as outstanding transactions.

An active read transaction is a transaction for which the read address has been transferred, but the
last read data has not yet been transferred at the current point in time.

With reads, the data must come after the address, so there is a simple reference point for when the
transaction starts. This is shown in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-12: Active read

For write transactions, the data can come after the address, but leading write data is also allowed.
The start of a write transaction can therefore be either of the following:

• The transfer of the write address

• The transfer of leading write information

Therefore, an active write transaction is a transaction for which the write address or leading write
data has been transferred, but the write response has not yet been transferred.

The following diagram shows an active write transaction where the write address has been
transferred, but the write response has not yet been transferred:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel transfers and transactions

Figure 4-13: Active write

The following diagram shows an active write transaction where the leading write data has been
transferred, but the write response has not yet been transferred:

Figure 4-14: Active write

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

5. Channel signals
This section introduces the main AXI signals and attributes, and explains how they are used to
improve system performance. It focuses on AXI3 and AXI4; AXI5 will be covered in a future
iteration.

The AXI protocol defines five channels: three for write signals, and two for read signals.

Write channel signals
The channels used for a write transaction are:

• Write Address

• Write Data

• Write Response

The following table shows the Write Address channel signals:

Write Address (AW) channel signals AXI version

AWVALID AXI3 and AXI4

AWREADY AXI3 and AXI4

AWADDR[31:0] AXI3 and AXI4

AWSIZE[2:0] AXI3 and AXI4

AWBURST[1:0] AXI3 and AXI4

AWCACHE[3:0] AXI3 and AXI4

AWPROT[2:0] AXI3 and AXI4

AWID[x:0] AXI3 and AXI4

AWLEN[3:0]

AWLEN[7:0]

AXI3 only

AXI4 only

AWLOCK[1:0]

AWLOCK

AXI3 only

AXI4 only

AWQOS[3:0] AXI4 only

AWREGION[3:0] AXI4 only

AWUSER[x:0] AXI4 only

The following table shows the Write Data channel signals:

Write Data (W) channel signals AXI version

WVALID AXI3 and AXI4

WREADY AXI3 and AXI4

WLAST AXI3 and AXI4

WDATA[x:0] AXI3 and AXI4

WSTRB[x:0] AXI3 and AXI4

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Write Data (W) channel signals AXI version
WID[x:0]] AXI3 only

WUSER[x:0] AXI4 only

The following table shows the Write Response channel signals:

Write response (B) channel signals AXI version

BWVALID AXI3 and AXI4

BWREADY AXI3 and AXI4

BRESP[1:0] AXI3 and AXI4

BID[x:0] AXI3 and AXI4

BUSER[x:0] AXI4 only

All the signals in each channel have the same prefix:

• AW for the Write Address channel

• W for the Write Data channel

• B for the Write Response channel

There are some differences between the AXI3 protocol and the AXI4 protocol for the write
channels:

• For the write address channel, the AWLEN signal is wider for the AXI4 protocol. Therefore,
AXI4 is able to generate longer bursts than AXI3.

• AXI4 reduces the AWLOCK signal to a single bit to only accommodate exclusive transfers
because locked transfers are not supported.

• AXI4 adds the AWQOS signal to the AW channel. This signal supports the concept of quality of
service (QoS) in the AXI4 protocol.

• AXI4 adds the AWREGION signal to the AW channel. This signal supports subordinate regions
which allow for multiple logical interfaces from a single physical subordinate interface.

• AXI4 removes the WID signal from the W channel. This is because write data reordering is no
longer allowed.

• AXI4 adds user-defined signals to each channel.

Read channel signals
The channels used for a read transaction are:

• Read Address

• Read Data

The following table shows the Read Address channel signals:

Read Address (AR) channel signals AXI version

ARVALID AXI3 and AXI4

AREADY AXI3 and AXI4

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Read Address (AR) channel signals AXI version
ARADDR[31:0] AXI3 and AXI4

ARSIZE[2:0] AXI3 and AXI4

ARBURST[1:0] AXI3 and AXI4

ARCACHE[3:0] AXI3 and AXI4

ARPROT[2:0] AXI3 and AXI4

ARID[x:0] AXI3 and AXI4

ARLEN[3:0]

ARLEN[7:0]

AXI3 only

AXI4 only

ARLOCK[1:0]

ARLOCK

AXI3 only

AXI4 only

ARQOS[3:0] AXI4 only

ARREGION[3:0] AXI4 only

ARUSER[x:0] AXI4 only

The following table shows the Read Data channel signals:

Read Data (R) channel signals AXI version

RVALID |AXI3 and AXI4|

RREADY |AXI3 and AXI4|

RLAST AXI3 and AXI4

RDATA[x:0] AXI3 and AXI4

RRESP[1:0] AXI3 and AXI4

RID[x:0]] AXI3 and AXI4

RUSER[x:0] AXI4 only

All the signals in each channel have the same prefix:

• AR for the Read Address channel

• R for the Read Data channel

There are some differences between the AXI3 protocol and the AXI4 protocol for the read
channels:

• For the AXI4 protocol, the read address length signal ARLEN is wider. Therefore, AXI4 is able to
generate longer read bursts than AXI3.

• AXI4 reduces the ARLOCK signal to a single bit to only accommodate exclusive transfers
because locked transfers are not supported.

• As with the write channel signals, the concepts of quality of service and subordinate regions
apply to read transactions. These use the ARQOS and ARREGION signals in the AR channel.

• AXI4 adds user-defined signals to the two read channels.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Data size, length, and burst type
Each read and write transaction has attributes that specify the data length, size, and the burst
signal attributes for that transaction.

In the following list of attributes, x stands for write and read, so they apply to both the Write
Address channel and the Read Address channel:

• AxLEN describes the length of the transaction in the number of transfers.

◦ For AXI3, AxLEN[3:0] has 4 bits, which specifies a range of 1-16 transfers in a transaction.

◦ For AXI4, AxLEN[7:0] has 8 bits, which specifies a range of 1-256 data transfers in a
transaction.

• AxSize[2:0] describes the maximum number of bytes to transfer in each data transfer. Three
bits of encoding indicate 1, 2, 4, 8, 16, 32, 64, or 128 bytes per transfer.

• AxBURST[1:0] describes the burst type of the transaction: fixed, incrementing, or wrapping.
The following table shows the different properties of these burst types:

Value Burst type Usage notes Length
(number of
transfers)

Alignment

0x00 FIXED Reads the same address repeatedly. Useful for FIFO s. 1-16 Fixed byte lanes only defined
by start address and size.

0x01 INCR Incrementing burst.

The subordinate increments the address for each transfer in the burst
from the address for the previous transfer.

The incremental value depends on the size of the transfer, as defined
by the AxSIZE attribute.

Useful for block transfers.

AXI3: 1-16

AXI4: 1-256

Unaligned t ransfers are
supported.

0x10 WRAP Wrapping burst.

Similar to an incrementing burst, except that if an upper address limit
is reached, the address wraps around to a lower address.

Commonly used for cache line accesses.

2, 4, 8, or 16 The start address must be
aligned to the transfer size.

0x11 RESERVED Not for use.

Protection level support
AXI provides access permissions signals, AWPROT and ARPROT, that can protect against illegal
transactions downstream in the system. For example, if a transaction does not have the correct
level of protection, a memory controller could refuse read or write access by using these signals.

This is useful for security solutions like Arm TrustZone, where a processor has two separate states,
Secure and Non-secure.

AxPROT defines three levels of access protection, as shown in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Figure 5-1: Protection levels

The AxPROT bit allocations specify the following attributes:

• AxPROT[0] (P) identifies an access as unprivileged or privileged:

◦ 1 indicates privileged access.

◦ 0 indicates unprivileged access.

Although some processors support multiple levels of privilege, the only distinction that AXI can
provide is between privileged and unprivileged access.

• AxPROT[1] (NS) identifies an access as Secure or Non-secure:

◦ 1 indicates a Non-secure transaction.

◦ 0 indicates a Secure transaction.

• AxPROT[2] (I) indicates whether the transaction is an instruction access or a data access:

◦ 1 indicates an instruction access.

◦ 0 indicates a data access.

The AXI protocol defines this indication as a hint. It is not accurate in all cases, for example, where
a transaction contains a mix of instruction and data items. The Arm AXI specification for both AXI
3 and AXI 4 recommends that a manager sets bit 2 to zero to indicate a data access, unless the
access is specifically known to be an instruction access.

Cache support
Modern SoC systems often contain caches that are placed in several points of the system. For
example, the level 2 cache might be external to the processor, or the level 3 caches might be in
front of the memory controller.

To support systems that use different caching policies, the AWCACHE and ARCACHE signals
indicate how transactions are required to progress through a system.

The following diagram shows the AxCACHE bit allocations:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Figure 5-2: Cache support

The AxCACHE bit allocations specify the following attributes:

• AxCACHE [0] (B) is the bufferable bit. When this bit is set to 1, the interconnect or any
component can delay the transaction reaching its final destination for any number of cycles.
The bufferable bit indicates whether the response can come from an intermediate point, or
whether the response must come from the destination subordinate.

• AxCACHE [1] is the cacheable bit in AXI3, or the modifiable bit in AXI4. This bit indicates that
the attributes of a transaction at the final destination do not have to match the attributes of
the original transaction. For writes, setting the modifiable bit means that several different writes
can be merged, or a single write can be broken into multiple transactions. For reads, setting the
modifiable bit means that the contents of a location can be prefetched, or the values from a
single fetch can be used for multiple read transactions.

• AxCACHE [2] is the RA bit. The RA bit indicates that on a read, the allocation of the transaction
is recommended, but not mandatory. If either AxCACHE [2] or AxCACHE [3] is asserted, then
the transaction must be looked up in a cache as it could have been allocated in this cache by
another manager.

• AxCACHE [3] is the WA bit. The WA bit indicates that on a write, the allocation of the
transaction is recommended, but not mandatory. If either AxCACHE [2] or AxCACHE [3] is
asserted, then the transaction must be looked up in a cache as it could have been allocated in
this cache by another manager.

If AxCACHE [1], the cacheable bit, is not asserted, then AxCACHE [2] and
AxCACHE [3] cannot be asserted.

The reason for including read and write allocation on both read and write address buses is that it
allows a system-level cache to optimize its performance.

For example, consider a cache that sees a read access defined as “write-allocate, but not read-
allocate”. In this case, the cache knows that the address might be stored in the cache because it
could have been allocated on a previous write, and therefore it must do a cache lookup.

However, now consider that the cache sees a read access that is defined as “no write-allocate
and no read-allocate”. In this case, the cache knows that the address has not been allocated in the
cache. The cache can avoid the lookup and immediately pass the transaction through to the other
side. The cache can only do this if it knows both the read and write allocate for every transaction.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

It is not a requirement that caches operate in this way, but the AXI protocol is defined with RA and
WA for both reads and writes to allow this mode of operation if you or your cache designer want
to implement it.

Response signaling
AXI provides response signaling for both read and write transactions.

For read transactions, the response information from the subordinate is signaled on the read data
channel using RRESP.

For write transactions, the response information is signaled on the write response channel using
BRESP.

RRESP and BRESP are both composed of two bits, and the encoding of these signals can transfer
four responses, as shown in the following table:

Response
code

Description

00 -
OKAY

Normal access success or exclusive access failure.

OKAY is the response that is used for most transactions. OKAY indicates that a normal access has been successful.

This response can also indicate that an exclusive access has failed. An exclusive access is when more than one manager can
access a subordinate at once, but the se managers cannot access the same memory range.

01 -
EXOKAY

Exclusive access okay.

EXOKAY indicates that either the read or write portion of an exclusive access has been successful.

10 -
SLVERR

Subordinate error.

SLVERR is used when the access has reached the subordinate successfully, but the subordinate wants to return an error
condition to the originating manager.

This indicates an unsuccessful transaction. For example, when there is an unsupported transfer size attempted, or a write
access attempted to read-only location.

11 -
DECERR

Decode error.

DECERR is often generated by an interconnect component to indicate that there is no subordinate at the transaction address.

Write data strobes The write data strobe signal is used by a manager to tell a subordinate which
bytes of the data bus are required. Write data strobes are useful for cache accesses for efficient
movement of sparse data arrays. In addition to using write data strobes, you can optimize data
transfers using unaligned start addresses.

The write channel has one strobe bit per byte on the data bus. These bits make the WSTRB signal.

A manager must ensure that the write strobes are set to 1 only for byte lanes that contain valid
data.

For example, consider a 64-bit write data bus. The WSTRB signal has 8 bits, one for each byte. The
following diagram shows how example WSTRB values specify which byte lanes are valid:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Figure 5-3: Write data strobes

F o r 64 bit W D A T A bus

W STRB = 0 x F C

W STRB = 0x3C

W STRB = 0x81

W STRB = 0 x E8

63

7 6 5 4 3 2 1 0

56 55 48 47 40 39 32 31 24 23 16 15 87 0

7 6 5 4 3 2 1 0

7 6 5 4 3 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

2

Looking at the first example, we suppose that the valid data are only in the top six significant bytes
of the data bus, from byte 7 to byte 2. This means that the manager has to control the WSTRB
signal with the hexadecimal value 0xFC.

Similarly, the remaining examples specify valid data bus byte lanes as follows:

• Valid data only in bytes 2, 3, 4, and 5 of the data bus requires a WSTRB signal value of 0x3C.

• Valid data only in bytes 0 and 7 of the data bus requires a WSTRB signal value of 0x81.

• Valid data only in bytes 3, 5, 6, and 7 of the data bus requires a WSTRB signal value of 0xE8.

Byte lane strobes offer efficient movement of sparse data arrays. Using this method, write
transactions can be early terminated by setting the remaining transfer byte lane strobes to 0,
although the remaining transfers must still be completed. The WSTRB signal can also change
between transfers in a transaction.

There is no equivalent signal for the read channel. This is because the manager indicates the
transfer required and can mask out any unwanted bytes received from the subordinate.

Atomic accesses with the lock signal
The AxLOCK signal is used to indicate when atomic accesses are being performed. See Atomic
accesses for more information and an explanation of the concept and operation of exclusive access
transfers.

The AXI protocol provides two mechanisms to support atomicity:

• Locked accesses A locked transfer locks the channel, which remains locked until an unlocked
transfer is generated. Locked accesses are similar to the mechanism supported with the AHB
protocol. When a manager uses the AxLOCK signals for a transaction to show that it is a
locked transaction, then the interconnect must ensure that only that manager can access the
targeted subordinate region, until an unlocked transaction from the same manager completes.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

An arbiter within the interconnect must enforce this restriction. Because locked accesses
require the interconnect to prevent any other transactions occurring while the locked sequence
is in progress, they can have an important impact on the interconnect performance. Locked
transactions should only be used for legacy devices. Only AXI3 supports locked accesses. AXI4
does not support locked accesses.

• Exclusive accesses Exclusive accesses are more efficient than locked transactions, and they
allow multiple managers to access a subordinate at the same time. The exclusive access
mechanism enables the implementation of semaphore-type operations, without requiring the
bus to remain locked to a particular manager during the operation. Because locked accesses are
not as efficient as exclusive accesses, and most components do not require locked transactions,
they have been removed from the AXI4 protocol.

In AXI3, the AxLOCK signal consists of two bits with the following values:

• 0b00 - Normal

• 0b01 - Exclusive

• 0b10 - Locked

• 0b11 - Reserved

In AXI4, the AxLOCK signal consists of one bit, with the following values:

• 0b0 - Normal

• 0b1 - Exclusive

Quality of service
The AXI4 protocol introduces extra signals to support the quality of service (QoS).

Quality of service allows you to prioritize transactions allowing you to improve system
performance, by ensuring that more important transactions are dealt with higher priority.

There are two quality of service signals:

• AWQOS is sent on the Write Address channel for each write transaction.

• ARQOS is sent on the Read Address channel for each read transaction.

Both signals are 4 bits wide, where the value 0x0 indicates the lowest priority, and the value 0xF
indicates the highest priority.

The default system-level implementation of quality of service is that any component with a choice
of more than one transaction processes the transaction with the higher QoS value first.

The following diagram shows an example system with a Direct Memory Controller (DMC),
specifically the DMC-400. This controller manages transactions to DRAM:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Figure 5-4: Qos

In practice, some elements, like the CPU, require memory accesses that are far more important than
those of other components, like the GPU or the VPU.

When appropriate QoS values are assigned to transactions, the interconnect can arbitrate higher
priority transaction ahead of lower priority transactions and the DMC reorders transactions to
ensure that the correct priority is given.

Region signaling
Region signaling is an optional feature in AXI4.

When you use region identifiers, it means that a single physical interface on a subordinate can
provide multiple logical interfaces. Each logical interface can have a different location in the system
address map.

When the region identifier is used, the subordinate does not have to support the address decode
between the different logical interfaces.

Region signaling uses two 4-bit region identifiers, AWREGION and ARREGION. These region
identifiers can uniquely identify up to 16 different regions.

User signals
The AXI4 interface signal set has the option to include a set of user-defined signals, called the User
signals.

User signals can be used on each channel to transfer extra custom control information between
manager and subordinate components. These signals are optional and do not have to be
supported on all channels. If they are used, then the width of the User signals is defined by the
implementation and can be different on each channel.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Channel signals

Because the AXI protocol does not define the functions of these User signals,
interoperability issues can arise if two components use the same User signals in a
way that is incompatible.

AXI channel dependencies
The AXI protocol defines dependencies between the different channels.

Three of the main dependencies are as follows:

• WLAST transfer must complete before BVALID is asserted.

◦ The manager must send all the write data before a write response can be seen by the
manager. This dependency does not exist in AXI3 but is introduced for AXI4:

◦ In AXI3, the address does not have to be seen before a write response is sent.

◦ In AXI4, all of the data and the address must have been transferred before the manager can
see a write response.

• RVALID cannot be asserted until ARADDR has been transferred.

◦ The subordinate cannot transfer any read data without it seeing the address first. This is
because the subordinate cannot send data back to the manager if it does not know the
address that the data will be read from.

• WVALID can assert before AWVALID.

◦ A manager could use the Write Data channel to send data to the subordinate, before
communicating the address where the subordinate should write these data.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

6. Atomic accesses
An atomic access is a term for a series of accesses to a memory region. Atomic accesses are used
by managers when they would like to perform a sequence of accesses to a particular memory
region, while being sure that the original data in the region are not corrupted by writes from other
managers. This sequence is commonly a read, modify, and write sequence.

There are two types of atomic accesses:

• Locked While a manager is performing a transaction sequence with locked accesses, accesses
from any other managers to the same subordinate are rejected.

• Exclusive When a manager successfully performs a transaction sequence with exclusive
accesses, other managers can access the subordinate but not the memory region that is being
accessed.

Locked accesses
Locked transactions should only be used for legacy devices. AXI4 does not support locked
transactions, but AXI3 implementations must support locked transactions.

Before a manager can start a locked sequence of transactions, it must ensure that it has no other
transactions waiting to complete.

A transaction with the AxLOCK signal set indicates a locked transaction. A locked sequence of
transactions forces the interconnect to reject access to the subordinate from any other managers.

The locked sequence must always complete with a final transaction that does not have the
AxLOCK signal set. This final transaction is still included in the locked sequence, but effectively
removes the lock to allow other managers access to the subordinate.

Because locked accesses require the interconnect to prevent any other transactions occurring
while the locked sequence is in progress, they have an important impact on the interconnect
performance.

The following diagram shows the AXI locked access operation with an example using two
managers, M0 and M1:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

Figure 6-1: AXI locked access operation

Before a manager can start a locked sequence of transactions, the manager must ensure that it has
no other transactions that are waiting to complete.

When M0 uses a lock signal for a transaction to indicate that it is a locked transaction, then the
interconnect uses an arbiter to ensure that only M0 can access the targeted subordinate. The
interconnect blocks any accesses from M1 until an unlocked transaction from M0 completes.

The following diagram shows how locked access works with a sequence of transactions:

Figure 6-2: Locked access with a sequence of transactions

R ead

M odif y

W ri t e

M1

AxLock

I n
 t e

 r c
 on

ne
ct

M0

Subordinate

The steps in this example are as follows:

1. Manager M0 initiates a sequence of READ, MODIFY, and WRITE. The first transaction, READ,
has the LOCK signal asserted, indicating that it starts a locked transaction.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

2. The interconnect locks out any other transactions. From this point, manager M1 has no access
to the subordinate.

3. The final transaction in the sequence, WRITE, does not have the LOCK signal asserted. This
transaction indicates the end of the locked sequence. The interconnect removes the lock, and
other managers can now access the subordinate.

Figure 6-3: Other managers can now access the subordinate

M0

I n
 t e

 r c
 on

ne
ct

M1

Subordinate

Exclusive accesses
With AXI 4, exclusive accesses perform atomic operations more efficiently than locked accesses.
This is because exclusive accesses use the interconnect bandwidth more effectively.

In an exclusive access sequence, other managers can access the subordinate at the same time, but
only one manager will be granted access to the same memory range.

The mechanism that is used for exclusive accesses can provide semaphore-type operations without
requiring the bus to remain dedicated to a particular manager during the operation. This means that
the bus access latency and the maximum achievable bandwidth are not affected.

Exclusive accesses can be composed of more than one data transfer, but all the transactions must
have identical address channel attributes.

A hardware exclusive access monitor is required by the subordinate to record the transaction
information for the exclusive sequence so that it knows the memory range that is being accessed
and the identity of the manager performing the access.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

If no other manager accesses the monitored range until the exclusive sequence is completed, the
access is atomic.

The subordinate is open to accesses from other managers, resulting in overall increased fairness in
bandwidth utilization for the system.

Exclusive access hardware monitor operation
The basic mechanism of an exclusive access is governed by an exclusive access monitor that you
must implement.

The following diagram shows an example where the manager M0 performs an exclusive read from
an address:

Figure 6-4: The manager M0 performs an exclusive read from an address

M emor y

M0

M1

Ex clusi v e
a cc ess moni t o r

ha r d w a r e

The response from the exclusive access monitor hardware is one of the following:

• EXOKAY: The value is read, and the ID of the transaction is stored in the exclusive access
monitor hardware.

• OKAY: The value is read, but there is no support for exclusive access, and the manager should
treat this response as an error for the exclusive operation.

At some later time, if EXOKAY was received during the exclusive read, M0 attempts to complete
the exclusive sequence by performing an exclusive write to the same address. The exclusive write
uses the same transaction ID as the exclusive read.

The response from the exclusive access monitor hardware is one of the following:

• EXOKAY: No other manager has written to that location since the exclusive read access, so the
write is successful. In this case, the exclusive write updates memory.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

• OKAY: Another manager, for example M1, has written to the location since the exclusive read
access, so the write fails. In this case, the memory location is not updated.

Some subordinates require extra logic to support exclusive access. The exclusive access monitoring
hardware monitors only one address for each transaction ID. It should be implemented so that it
can monitor every possible exclusive ID that can be seen.

Exclusive transaction pairs: both pass
This section describes an example of two successful exclusive access sequences that both pass.

The following diagram shows a system containing a manager, with its AXI manager interface, and a
subordinate:

Figure 6-5: Two successful exclusive access sequences. Both pass

Subordinate interface

Subordinate

Manager / Interconnect

Manager interface

Ex clusi v e A cc ess M oni t oring H a r d w a r e

ID

0

1

Address

Address Data

0xB000 0x2

0xA000 0x1

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

The subordinate interface includes exclusive access monitoring hardware that can save the ID and
the address accessed for each transaction.

The following table describes the different transactions in the example sequence. All transactions in
the table are exclusive accesses:

Transaction number Read or write Transaction ID Address Data xRESP

1 R 0 0xA000 0x1 EXOKAY

2 R 1 0xB000 0x2 EXOKAY

3 W 0 0xA000 0x3 EXOKAY

4 W 1 0xB000 0x4 EXOKAY

The transaction sequence shown in the previous table proceeds as follows:

1. The first transaction is the manager, which performs a read exclusive transaction with ID 0
from address 0xA000. The exclusive access monitoring hardware saves the ID and address of
this transaction in its table, and the subordinate responds with the read data, 0x1. Because
exclusive accesses are correctly supported for this subordinate, the exclusive access monitoring
hardware responds with an EXOKAY response.

2. Next, the manager performs a new read exclusive transaction with ID 1 from address 0xB000.
Again, the exclusive access monitoring hardware saves the details of this new transaction in
the table, and the subordinate responds with the read data, 0x2. Because exclusive accesses
are correctly supported for this subordinate, the exclusive access monitoring hardware again
responds with an EXOKAY response. At this moment in our example there are two separate
exclusive sequences ongoing.

3. After the manager has completed its operation, it performs a write exclusive transaction with
ID 0 to address 0xA000. The exclusive access monitoring hardware checks the detail of this
transaction in the table and, because of the existing record with ID 0 and address 0xA000,
responds to the manager with an EXOKAY response. This means that no other manager has
accessed this memory location, and the subordinate updates it with the new value it receives,
which in this example is 0x3. The exclusive access monitoring hardware removes the ID and
address for this transaction from its table, because the exclusive access sequence for that
address location is now complete.

4. Finally, the manager performs a new write exclusive transaction with ID 1 to address 0xB000.
The exclusive access monitoring hardware checks the detail of this transaction in its table.
Seeing an existing record with ID 1 and address 0xB000, it again responds to the manager
with an EXOKAY response. This means that no other manager has accessed this memory
location, and the subordinate updates it with the new value received, which in our example
is 0x4. Again, the exclusive access monitoring hardware removes the ID and address for this
transaction from its table, because the exclusive access sequence for that address location is
now complete.

Exclusive transaction pairs: one pass, one fail
This section describes an example of two exclusive access sequences, where the first one succeeds
and the second one fails.

The following diagram shows a system containing a manager, with its AXI manager interface, and a
subordinate:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

Figure 6-6: Two exclusive access sequences, where the first one succeeds and the second one
fails

Subordinate interface

Subordinate

Manager / Interconnect

Manager interface

Ex clusi v e A cc ess M oni t oring H a r d w a r e

ID

0

1

Address

Address Data

0xA000 0x1

The subordinate interface includes exclusive access monitoring hardware that can save the ID and
the address accessed for each transaction.

The following table describes the different transactions in the example sequence. All transactions in
the table are exclusive accesses:

Transaction number Read or write Transaction ID Address Data xRESP

1 R 0 0xA000 0x1 EXOKAY

2 R 1 0xA000 0x1 EXOKAY

3 W 0 0xA000 0x3 EXOKAY

4 W 1 0xA000 0x4 OKAY

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Atomic accesses

The transaction sequence shown in the previous table proceeds as follows:

1. The first transaction is the manager performing a read exclusive transaction with ID 0 from
address 0xA000. The exclusive access monitoring hardware saves the ID and address of
this transaction in its table, and the subordinate responds with the read data, 0x1. Because
exclusive accesses are correctly supported for this subordinate, the exclusive access monitoring
hardware responds with an EXOKAY response.

2. Later, the manager performs a new read exclusive transaction with ID 1 from the same address
as the first transaction, 0xA000. The exclusive access monitoring hardware saves the detail of
this new transaction in the table, and the subordinate responds with the read data, 0x1. Again,
because exclusive accesses are correctly supported for this subordinate, the exclusive access
monitoring hardware responds with an EXOKAY response. At this moment in our example, we
have two different ongoing exclusive sequences to the same memory location.

3. After the manager has completed its operation, it performs an exclusive write transaction
with ID 0 to address 0xA000. The exclusive access monitoring hardware checks the detail of
this transaction in its table and, seeing a record with ID 0 and address 0xA000, responds to
the manager with an EXOKAY response. This means that no other manager has updated this
memory location, and the subordinate can update it with the new value received, which in our
example is 0x3. Because the content of the address location 0xA000 has been modified, the
exclusive access monitoring hardware removes from its table all the entries that match that
location address.

4. Finally, the manager performs a new write exclusive transaction with ID 1 again to address
0xA000. The exclusive access monitoring hardware checks the detail of this transaction in its
table. Not finding any records with the address 0xA000, it responds with an OKAY response.
The OKAY response means that a previous write operation has been performed on this
memory location which updated the data. In this case, the subordinate cannot update the
memory location with the new value, 0x4. This situation is an exclusive access failure. In this
case, the manager must restart the full exclusive access sequence beginning with the exclusive
read and then the exclusive write again.

This example demonstrates how exclusive accesses implement non-blocking behavior. It is this
behavior that provides greater system throughput when compared with LOCK accesses.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

7. Transfer behavior and transaction
ordering

This section of the guide analyzes some example sequences of read and write transactions, to
help you understand the relationships between the different AXI channels. This section also
explains some of the rules that govern transactions and how transfer IDs can support out-of-order
transactions.

We will also look at:

• Unaligned transfers, and how they help optimize bandwidth utilization

• The differences between big-endian and little-endian encoding, with some simple examples

• The main parameters that are related to the AXI interfaces. These parameters are useful when
implementing an interconnect

Examples of simple transactions
Examples of simple transactions help to explain the relationships between the different AXI
channels.

The following diagram shows a time representation of several valid transactions on the five
channels of an AXI3 or AXI4 interface:

Figure 7-1: A time representation of several valid transactions

AW

W

B

AR

A

A0 A1 A2 AL

A

R

C

B

B0 BL

B

C0 CL

D

D0 D1 D2 DL

The different transactions in this example are as follows:

1. Transaction A, which is a write transaction that contains four transfers. The manager first puts
the address A on the AW channel, then soon puts the sequence of four data transfers on the
W channel, ending with AL where L stands for last. Once all four data transfers complete, the
subordinate responds on the channel.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

2. While transaction A was occurring, the manager also used the read channels to perform a read
transaction, C, which contains two transfers. Because this is a read transaction, there is no
response from the subordinate on a different channel when the transaction completes. Instead,
the response from the subordinate is included in the R channel at the same time as the data.

3. Once transaction C completes, the manager uses the Read Address channel AR to send a
new read address, D, to the subordinate. In this case, the response from the subordinate
is not immediate. This is indicated by the empty time slot between D and D0. Delays like
this can happen. The subordinate is not obliged to answer immediately. For example, the
subordinate could be busy performing another operation, or it could take time to retrieve the
data. Eventually, the subordinate responds with four sequential transfers, D0 through DL, on
the R channel.

4. Finally, while the read transaction D is ongoing, the manager uses the Write Address channel,
AW, to send a new address, B, to the subordinate for a write operation. The manager puts
the data B0 on the W channel at the same time as it puts the corresponding address B on the
AW channel. There is a delay in this example between data transfers B0 and BL, and another
delay before the response B. The transaction completes only when the subordinate sends the
response to the manager. All of these examples are valid transactions.

The following diagram shows the same sequence of read and write transactions in a different, but
still valid, timeline:

Figure 7-2: Same sequence of read and write transactions in a different timeline

AW

W

B

AR

A

A0 A1 A2 AL

A

B

B0

R

C

BL

B

C0 CL

D

D0 D1 D2 DL

In this example, the manager starts transaction B before it has finished transaction A.

The manager uses the Write Address channel, AW, to start a new transaction by transferring a new
address B to the subordinate before it has finished transferring the data for transaction A on the W
channel.

The data for transaction B is transferred to the subordinate when all the data for transaction A
have completed. The manager does not wait for a response on the B channel for transaction A
before it starts to transfer the data for transaction B.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

At the same time, the manager uses the Read Address channel to transfer in sequence the read
addresses C and D for the subordinate. The subordinate responds in sequence to the two read
requests.

This example shows a different valid combination of read and write transactions happening on the
different channels. This shows the flexibility of the AXI protocol and the possibility to optimize the
interconnect performance.

Transfer IDs
The AXI protocol defines an ID signals bus for each channel. Marking each transaction with an
ID gives the possibility to complete transactions out of order. This means that transactions to
faster memory regions can complete without waiting for earlier transactions to slower memory
regions. The use of transfer IDs enables the implementation of a high-performance interconnect,
maximizing data throughput and system efficiency. This feature can also improve system
performance because it reduces the effect of transaction latency.

The ID signal buses are as follows:

• AWID

• WID

• BID

• ARID

• RID

The AXI protocol supports out-of-order transactions by enabling each interface to act as multiple
ordered interfaces. According to the AXI protocol specifications, all transactions with a given ID
must be ordered. However, there is no restriction on the ordering of transactions with different IDs.

When working with transfer IDs, follow these rules:

• All transfers must have an ID.

• All transfers in a transaction must have the same ID.

• Managers can support multiple IDs for multiple threads.

• Subordinates generally need a configurable ID width.

You should also remember these two important AXI parameters for ID signals:

• The write ID width, which is the number of bits used for the AWID, WID and BID buses

• The read ID width, which is the number of bits used for the ARID and RID buses

Write transaction ordering rules
There are three AXI ordering rules for write transactions.

The rules are as follows:

• Write data on the W channel must follow the same order as the address transfers on the AW
channel. The following diagram illustrates this rule:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

Figure 7-3: Write data on the W channel must follow the same order as the address transfers on
the AW channel

A WID

AW

W

BID

0

A

I

B

AL B0 B1 BLA0

D

In this example, the manager issues address A then B, so data must start with A0 before B0.

The interleaving of write data with different IDs on the W channel was permitted in
AXI3, but is deprecated in AXI4 and later.

• Transactions with different IDs can complete in any order. The following diagram illustrates this
rule:

Figure 7-4: Transactions with different IDs can complete in any order

A WID

AW

W

BID

0

A

I

B

AL B0 B1 BLA0

D

I

B

0

A

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

In this example, transaction B completes before transaction A, even though transaction A started
first.

• A manager can have multiple outstanding transactions with the same ID, but they must be
performed in order and complete in order. The following diagram illustrates this rule:

Figure 7-5: A manager can have multiple outstanding transactions with the same ID, but they
must be performed in order and complete in order

A WID

AW

W

BID

0

A

I

B

0

C

AL B0 B1 BL C0 CLA0

D

I

B

0

A

0

C

In this example, transaction B has a different ID from the other transactions, so it can complete at
any point. However, transactions A and C have the same ID, so they must complete in the same
order as they were issued: A first, then C.

Read transaction ordering rules
There are three ordering rules for read transactions.

The rules are as follows:

• Read data for different IDs on the R channel has no ordering restrictions. This means that
the subordinate can send it in any order. The following diagram shows an example where
transaction B is serviced before A, even though the address for transaction A is received first:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

Figure 7-6: Transaction B is serviced before A, even though the address for transaction A is
received first

ARID

AR

0

A

I

B

RID

R B0

I

• The read data for the different IDs on the R channel can be interleaved, with the RID value
differentiating which transaction the data relates to. The following diagram shows an example
where R data for transactions A and B are interleaved:

Figure 7-7: R data for transactions A and B are interleaved

ARID

AR

0

A

I

B

B0

I

A0 A1 B1 BL A2 AL

0 I 0 0I0RID

R

• For transactions with the same ID, read data on the R channel must be returned in the order
that they were requested. The following diagram shows an example where transactions A and
C have the same RID value of 0:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

Figure 7-8: Transactions A and C have the same RID value of 0

ARID

AR

0

A

I

B

0

C

0

C0

0

CLB0

I

A0 A1 B1 BL A2 AL

0 I 0 0I0RID

R

Because transaction A was requested before transaction C, the subordinate must return all four R
data values for A before the data values for C.

Read and write channel ordering
Read and write channels have no ordering rules in relation to each other. This means that they
can complete in any order. So, if a manager requires ordering for a specific sequence of reads and
writes, the manager must ensure that the transaction order is respected by explicitly waiting for
transactions to complete before issuing new ones.

The following diagram shows an example where the manager requires a specific ordering for a
write-read-write transaction sequence from an address:

Figure 7-9: The manager requires a specific ordering for a write-read-write transaction sequence
from an address

Write
Address

Write
Data

Write
Response

Read
Address

A

A0 A1 AL

A

Read
Data

A

A

AL

A

A0 A1 AL

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

The sequence of operations is as follows:

1. The manager starts the first write transaction.

2. The manager ensures that the subordinate has completed the write transaction by waiting for
the signal on the Write Response channel.

3. The manager starts the read transaction.

4. The manager waits for the final response on the Read Data channel.

5. The manager starts the second transaction.

Unaligned transfer start address
The AXI protocol supports transactions with an unaligned start address that only affects the first
transfer in a transaction. After the first transfer in a transaction, all other transfers are aligned.

The AXI protocol also supports unaligned transfers using the strobe signals. See
Write data strobes for more information.

An unaligned transfer is where the AxADDR values do not have to be aligned to the width of
the transaction. For example, a 32-bit data packet that starts at a byte address of 0x1002 is not
aligned to the natural 32-bit address boundary because 0x1002 is not exactly divisible by 0x20.

The following example shows a 5-beat 32-bit transfer starting at an unaligned address of 0x01:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

Figure 7-10: A 5-beat 32-bit transfer starting at an unaligned address of 0x01

If the transaction were aligned to a start address of 0x00, the result would be a five-beat burst
with a width of four bytes giving a maximum data transfer of 20 bytes. However, we have an
unaligned start address of 0x1. This reduces the total data volume of the transfer, but it does not
mean a final unaligned transfer to complete the burst and make up the volume. In this example,
the first transfer starts at address 0x01 and contains three bytes. All the following transfers in the
burst are aligned with the bus width and are composed of four bytes each.

The following example shows a five-beat 16-bit-sized transaction starting at address 0x03:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

Figure 7-11: A five-beat 16-bit-sized transaction starting at address 0x03

If the transaction were aligned to a start address of 0x00, the result would be a five-beat burst
with a width of two bytes giving a maximum data transfer of 10 bytes. In this example, the first
transfer starts at an unaligned address of 0x03 and contains one byte. All the following transfers in
the burst are aligned with the bus width and are composed of two bytes each.

The AXI protocol does not require the subordinate to take special action based on any alignment
information from the manager.

Endianness support
The AXI protocol supports mixed-endian structures in the same memory space by using Big
Endian-8 (BE-8) mode. Compared to little-endian mode, the same byte lanes are used in BE-8
mode, but the order of the bytes is reversed.

Mixed-endian structures using BE-32 are more complicated than those using BE-8,
because byte lanes are not the same as little-endian mode.

The following example shows both little-endian and big-endian representations of the same four-
byte word:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

Figure 7-12: Little-endian and big-endian representations of the same four-byte word

AxADDR Ax SIZE

0x0 0x2 (W o r d)

Little E ndian

31:24 23:16 15:8 7:0

3 2 1 0

AxADDR Ax SIZE

0x0 0x2 (W o r d)

B ig E ndian [BE-8]

31:24 23:16 15:8 7:0

0 1 2 3

For a four-byte word in little-endian mode, the most significant byte uses the most significant byte
lane, which is byte lane 3. In BE-8 mode, the most significant byte uses the least significant byte
lane, which is byte lane 0.

The following example shows both little-endian and big-endian representations of the same two-
byte word:

Figure 7-13: Little-endian and big-endian representations of the same two-byte word

AxADDR AxSIZE

0x0 0x1 (Halfword)

Little Endian

31:24 23:16 15:8 7:0

1 0

AxADDR AxSIZE

0x0 0x1 (Halfword)

Big Endian [BE-8]

31:24 23:16 15:8 7:0

0 1

For a halfword of two bytes in little-endian mode, the most significant byte uses byte lane 1, and
the least significant byte uses byte lane 0. Again, in big-endian BE-8 mode, the lanes that are used
by the two bytes are switched. The most significant byte uses byte lane 0, and least significant byte
uses byte lane 1.

Finally, for a single byte, there is no difference between little-endian and big-endian mode, as
shown in the following example:

Figure 7-14: For a single byte, there is no difference between little-endian and big-endian mode

AxADDR AxSIZE

0x0 0x0 Byte

Little Endian

31:24 23:16 15:8 7:0

0

AxADDR AxSIZE

0x0 0x0 Byte

Big Endian [BE-8]

31:24 23:16 15:8 7:0

0

In both cases, the byte uses byte lane 0.

In a configurable endianness component like an Arm core, which supports BE-8, the reordering of
the bytes should be performed internally, so that nothing has to be done at the interconnect level.
On the other hand, a custom device that is connected to the AXI interconnect, which is BE-8 by

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Transfer behavior and transaction ordering

nature, would already have the correct order of bytes. Having BE-8 in the AXI protocol eases the
support for dynamic endianness switching.

Read and write interface attributes
This section of the guide highlights some of the most important attributes for configuring AXI write
and read channels.

The write interface attributes include the following:

• Write issuing capability: Represents the maximum number of active write transactions the
manager interface can generate

• Write interleave capability (AXI3 only): The number of active write transactions for which the
manager interface is capable of transmitting data.

• Write acceptance capability (AXI3 only): Represents the maximum number of active write
transactions the subordinate interface can accept

• Write interleave depth attribute: Represents the number of active write transactions that the
subordinate interface can receive data from

The read interface attributes include the following:

• Read issuing capability attribute: Represents the maximum number of active read transactions
that a manager interface can generate

• Read acceptance capability: The maximum number of active read transactions that a
subordinate interface can accept

• Read data reordering depth: The number of active read transactions for which a subordinate
interface can transmit data, counted from the earliest transaction

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Check your knowledge

8. Check your knowledge
Q: What burst type must a manager issue if it wants to write to a FIFO: fixed, wrapping, or
incrementing?

A: Fixed. A FIFO works by writing to and reading from a fixed address.

Q: All AXI4 channels share the same handshake mechanism. The VALID signal goes from the
source to the destination to indicate when valid information is available. Which signal goes from
the destination to the source to indicate when it can accept information?

A: The READY signal.

Q: What is the purpose of transfer IDs?

A: Marking transactions with different IDs allows transactions with different IDs to complete out
of order. This means that transactions to faster memory regions can complete without waiting for
earlier transactions to slower memory regions.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 63

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0

Related information

9. Related information
Here are some resources related to material in this guide:

• AMBA specifications

• AMBA on Arm developer

• Arm video tutorials:

◦ AXI channels

◦ AXI’s main features

◦ The AXI protocol

◦ The AXI protocol in a multi-manager system design

◦ Introduction to the AMBA AXI protocol

◦ What is AMBA, and why use it?

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 63

https://www.arm.com/architecture/system-architectures/amba/amba-specifications
https://developer.arm.com/architectures/system-architectures/amba
https://www.youtube.com/watch?v=25XlR0jl7TA
https://www.youtube.com/watch?v=SgJpfT4lKzg&t=61s
https://www.youtube.com/watch?v=Tp6O0EsKcG8
https://www.youtube.com/watch?v=3-bw1l2fPRE&t=1s
https://www.youtube.com/watch?v=fQc0YEAV6Dw
https://www.youtube.com/watch?v=CZlDTQzOfq4

Learn the architecture - An introduction to AMBA AXI Document ID: 102202_0300_04_en
Version 3.0
Next steps

10. Next steps
This guide has provided an overview of the main topics relating to AMBA AXI, including the use
and operation of the different channels and signals.

This knowledge will be useful as you learn more about AMBA AXI by reading the AMBA AXI and
ACE protocol specification. You can put your knowledge into action to develop interfaces that
implement the AMBA AXI protocol.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 63

https://developer.arm.com/documentation/ihi0022/latest
https://developer.arm.com/documentation/ihi0022/latest

	Learn the architecture - An introduction to AMBA AXI
	Contents
	1. Overview
	2. What is AMBA, and why use it?
	3. AXI protocol overview
	4. Channel transfers and transactions
	5. Channel signals
	6. Atomic accesses
	7. Transfer behavior and transaction ordering
	8. Check your knowledge
	9. Related information
	10. Next steps

