
Arm® Streamline
Version 9.3

Target Setup Guide for Bare-metal Applications

Non-Confidential
Copyright © 2021–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
101815_9.3_00_en

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Arm® Streamline Target Setup Guide for Bare-metal Applications

This document is Non-Confidential.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (101815_9.3_00_en) was issued on 2024-09-05. There might be a later issue at
http://developer.arm.com/documentation/101815

The product version is 9.3.

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This book is intended for users who need to use Arm® Streamline Performance Analyzer on targets
that have no operating system, or on targets that have lightweight real-time operating systems. It
describes how to configure and use the Barman agent on your target, and how to capture a profile
with Streamline.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 53

http://developer.arm.com/documentation/101815
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Contents

Contents

1. Bare-metal Support.. 5
1.1 Bare-metal support overview...5

2. Profiling with the bare-metal agent... 6
2.1 Profiling with Barman...6
2.2 Data synchronization..7
2.3 Data storage...7
2.4 Profiling with on-target RAM buffer.. 8
2.4.1 Configuring Barman.. 8
2.4.2 Extracting and importing data..14
2.4.3 Barman use case script... 15
2.5 Profiling with System Trace Macrocell...16
2.5.1 STM workflow... 16
2.5.2 Importing an STM trace.. 18
2.6 Profiling with Instrumentation Trace Macrocell...19
2.6.1 ITM workflow...19
2.6.2 Importing an ITM trace... 22
2.7 Interfacing with Barman... 22
2.7.1 Configuration #defines.. 23
2.7.2 Annotation #defines...24
2.7.3 Barman public API.. 25
2.7.4 External functions to implement...34
2.7.5 Write barman profile data to your own data storage mechanism... 38
2.7.6 Write barman profile data in the memory buffer to custom storage..39
2.7.7 Write barman profile data to custom storage..40
2.8 Custom counters.. 43
2.8.1 Configuring custom counters...43
2.8.2 Sampled and nonsampled counters..44
2.9 Using the bare-metal generation mechanism from the command line.. 45

3. Examples... 47
3.1 Examples using Barman.. 47

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Contents

Proprietary notice.. 48

Product and document information..50
Product status... 50
Revision history...50
Conventions... 51

Useful resources...53

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Bare-metal Support

1. Bare-metal Support
Describes the bare-metal support available in Streamline.

1.1 Bare-metal support overview
Bare-metal support allows Streamline to visualize elements of the system state of a target device
that is running with no operating system or a light-weight real-time operating system.

For bare-metal support, you can profile your application using the agent Barman.

Barman consists of two C source files that you build into the executable that runs on the target
device. A configuration and generation utility generates these files.

Related information
Profiling with Barman on page 6

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

2. Profiling with the bare-metal agent
This section explains how to profile your application with the bare-metal agent (Barman) with
different data storage modes.

2.1 Profiling with Barman
Barman consists of two C source files, barman.c and barman.h, that you build into the executable
that runs on the target device. A configuration and generation utility generates these files.

To use Barman, you must modify your existing executable to do the following:

• Initialize Barman at runtime.

• Periodically call the data collection routines that Barman provides.

• Optionally, stop the capture.

• Optionally, extract the raw data that Barman collects and provide it to Streamline for analysis.

Barman has the following features:

• It captures PMU counter values from Cortex®-A and Cortex-R class processors.

• It captures sampled PC values.

• It captures custom counters.

• It allows you to control the sample rate.

• It writes the data that it collects to memory.

• It has low data collection overhead.

Barman supports the following Arm® architectures:

• Armv7-A

• Armv7-R

• Armv7-M

• Armv8-A, both AArch32 and AArch64.

• Armv8-R

• Armv8-M

• Armv9-A

Barman is only intended for use in a development environment. Arm does not
recommend including Barman in a released product without performing a security
audit of the source code.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Related information
Data storage on page 7
Profiling with on-target RAM buffer on page 7
Profiling with System Trace Macrocell on page 16
Profiling with Instrumentation Trace Macrocell on page 19
Interfacing with Barman on page 22

2.2 Data synchronization
On Cortex®-A and Cortex-R systems Barman uses load/store exclusive operations to synchronize
processor access to shared state and data storage. The memory used for Barman program data
must be backed by a memory pages that support exclusive operations on the target platform.

See the Arm Architecture Reference Manual Synchronization and Semaphore section for the memory
requirements for exclusive operations.

2.3 Data storage
Barman uses a simple abstraction layer for handling the storage of collected data. Typically, the
data that Barman collects is stored in a RAM buffer on the target.

You can choose from the following data storage modes provided:

Linear RAM buffer mode
Data collection stops when the buffer is full. This mode ensures that no collected data is lost,
but no further data can be recorded.

Circular RAM buffer mode
Data collection continues after the buffer is full and the oldest data is lost as the newest data
overwrites it. This mode gives you control over when the data collection ends.

STM Interface
System Trace Macrocell (STM) data is collected on a DSTREAM device that is connected to
the target, or by another similar method. You then dump the STM trace into a host directory,
which you can import into Streamline for analysis.

ITM Interface
Instrumentation Trace Macrocell (ITM) data is collected on a DSTREAM device that is
connected to the target, or by another similar method. You then dump the ITM trace into a
host directory, which you can import into Streamline for analysis.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

2.4 Profiling with on-target RAM buffer
For Barman to be able to use either of the RAM buffer modes, you must provide the RAM buffer
on the target device. The RAM buffer is a dedicated, contiguous area of RAM that Barman can
write data to.

On multiprocessor systems, the RAM buffer must be at the same address for all processors. It is
your responsibility to allocate memory for the RAM buffer, either statically or dynamically.

This section describes how to collect profiling data using the RAM buffer on the target device.

2.4.1 Configuring Barman

You must configure Barman with the configuration and generation utility before you compile the
binary executable to be analyzed. Barman must then be built into the executable.

About this task
The configuration and generation utility is a wizard dialog available from the Streamline menu. The
generated header and source files, and the configuration XML file, are then saved into a folder of
your choice. The generation mechanism is also accessible from the command line.

Procedure
1. Access this utility from Streamline > Generate Barman Sources.
2. Configure the default configuration options, such as:

• The number of processor elements.

• Whether you intend to supply executable image memory map information.

• Whether you intend to provide process or task level information (for example if you are
running an RTOS).

• The data storage mode (linear or circular RAM buffer).

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-1: Select configuration options dialog.

Barman uses statically allocated, fixed sized headers for information such as details of the active
processors on the system, and task, thread, and process information.

Max number of mmap layout records and Max number of task information records are the
maximum amount of space in the header for storing the task, thread, and process information.
For example, if you have an RTOS with a fixed number of threads, specify the number of
threads here. Max number of mmap layout records specifies the number of address mapping
entries for mapping sections of the ELF image to addresses in memory. If you have a single ELF
image that is physically mapped to memory, leave this value as zero.

The Minimum sample period is the minimum time in nanoseconds between samples. Set this
value to be an integer multiple of the timer sampling rate. For example, if you have a fixed
timer interrupt operating at 1000Hz, but due to memory constraints you want to sample at
100Hz, set Minimum sample period to 10000000. This value ensures that there is at least
10ms between each sample.

To provide your own implementation of the memory functions for Barman, for example memcpy
and memset, deselect Enable builtin memory functions.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

See Profiling with System Trace Macrocell for information about using the STM
Interface data storage backend.

See Profiling with Instrumentation Trace Macrocell for information about using
the ITM Interface data storage backend.

See the gator protocol documentation in <install_directory>/sw/streamline/
protocol/gator/ for more information about pmus.xml and events.xml.

3. Select the target processor from the pre-defined list.

Figure 2-2: Select processors to target dialog.

4. Select the PMU counters to collect during the capture session by double-clicking on them in
the Available events list. Alternatively you can drag and drop the events into the Selected
events list. To deselect events, drag and drop them back into the Available events list.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-3: Select events to trace dialog.

5. Add custom counters.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-4: Add custom counters dialog.

6. Select generator options.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-5: Select generator options dialog.

7. Finish.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-6: Summary information.

Results
The setup process produces the following output:

• A configuration file, barman.xml, which contains the settings that were entered into the
configuration wizard, and which can be used to reproduce the same configuration later.

• barman.c. You must compile and link this file into the bare-metal executable.

• barman.h. You must include this header when calling any of the functions within the agent. It
also declares function prototypes for the functions you must implement.

• barman_in_memory_helpers.py. You can use this file as a use case script in Arm® Development
Studio. It helps you dump the contents of the in-memory capture buffer.

You need the compiler flag --gnu for armcc (Arm® Compiler 5) to compile barman.c.

Related information
Barman use case script on page 15

2.4.2 Extracting and importing data

You must extract the data from the RAM buffer when the capture is complete.

For example, you could choose to do one of the following:

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

• Save the data to the file system of the target device, if one exists.

• Retrieve the data from RAM using JTAG during a debug session.

• Transfer the data over one of the available communication interfaces, for example ethernet or
USB.

After extracting the raw data, give the data file a .raw extension. You can import this file into
Streamline by clicking Import Capture File(s)… . The imported data is then available for
Streamline to analyze.

If you added a custom pmus.xml or events.xml file during the configuration and generation stage,
you must provide a copy of the same file into the .apc directory that is created for the imported
capture. The files must be named pmus.xml and events.xml and must be placed in the directory
alongside the barman.raw file for them to be detected and used.

2.4.3 Barman use case script

Streamline generates the file barman_in_memory_helpers.py with the Barman agent sources
when you select an in-memory data storage backend. You can use it as a use case script in Arm®

Development Studio to help you dump the contents of the in-memory capture buffer.

Run the script with the following command:

usecase run "barman_in_memory_helpers.py" <usecase_command>

Two use case commands are available:

get_parameters
Prints the current details of the buffer and information about how to dump it.

dump
Dumps the contents of the memory buffer in a file that you specify with the option --file
<PATH> .

Examples
The following examples show how to use these use case commands.

• To use the get_parameters use case command, enter:

usecase run "barman_in_memory_helpers.py" get_parameters

Output:

Barman memory buffer details:
 Base address: 0x0000000000001580
 Dump length: 1787404
 Bytes written: 1785996 of 67099264 (2.7%)

To dump this buffer use the command:
 dump memory <PATH> 0x1580 +1787404

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Or use the usecase command 'dump':
 usecase run "barman_in_memory_helpers.py" dump --file <PATH>

• To use the dump use case command, enter:

usecase run "barman_in_memory_helpers.py" dump --file barman.raw

Output:

Executing command:
 dump binary memory "barman.raw" 0x1580 +1787404

Memory successfully dumped to file barman.raw

Related information
Configuring Barman on page 8
Use case scripts

2.5 Profiling with System Trace Macrocell
This section describes the collection of profiling data using System Trace Macrocell (STM).

Further information about STM, including the Technical Reference Manual, can be found on System
Trace Macrocell Arm Developer documentation.

2.5.1 STM workflow

The workflow for STM involves a complex series of interactions between the applications involved.

1. Generate Barman agent code for STM using the Barman Generator Wizard dialog in
Streamline.

a. Select STM Interface as the data storage backend.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 53

https://developer.arm.com/documentation/101470/latest/Debugging-with-Scripts/Use-case-scripts
https://developer.arm.com/documentation/#&cf[navigationhierarchiesproducts]=%20IP%20Products,System%20IP,CoreSight%20Debug%20and%20Trace,CoreSight%20Components,System%20Trace%20Macrocell
https://developer.arm.com/documentation/#&cf[navigationhierarchiesproducts]=%20IP%20Products,System%20IP,CoreSight%20Debug%20and%20Trace,CoreSight%20Components,System%20Trace%20Macrocell

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-7: Select STM backend.

b. Specify the STM parameters for your project.

Figure 2-8: STM configuration.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Barman reserves the channels following the channel number that you
specify. The number of channels reserved is the Maximum number of CPU
cores specified on the previous page of the wizard.

c. Complete the remainder of the wizard as for a standard bare-metal project.

2. Add the Barman agent files that the wizard generates to your project.

3. Instrument your bare-metal application code with Barman agent calls (initialization, periodic
sampling).

4. Compile and link your project.

5. Connect your target to a DSTREAM device.

6. Configure your target for collecting STM data into its RAM buffer.

7. Run the application on a target.

8. When you want to end the profiling, stop the application.

9. Dump the STM trace from the DSTREAM device into a directory.

10. Let Streamline import the trace file dump. Streamline reformats it and prepares it for analysis.

• If you are using Arm® Development Studio, you can dump the STM trace
into a directory using the following command:

trace dump <directory> STM

• If you do not launch your bare-metal application from within Arm
Development Studio, you must handle connecting to DSTREAM, obtaining
the trace file, and importing it into Streamline.

Related information
Configuring Barman on page 8

2.5.2 Importing an STM trace

Import STM trace files into Streamline for analysis.

Procedure
1. Click Import Capture File(s)… in the Streamline Data view.
2. Select the import file type STM Trace Files (STPv2).

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-9: Selecting the STM file type.

3. Select the trace file to import.
4. Click Open and a new dialog box opens.
5. Enter the location of the barman.xml file that the Barman Generator Wizard produced.

This file contains information about how to find relevant data in the trace file. For example, the
channel numbers used.

6. Click OK.

Results
Streamline then reformats the data, and converts the STM trace file into a Barman agent raw file.

Related information
Import an STM trace from the command line

2.6 Profiling with Instrumentation Trace Macrocell
This section describes the collection of profiling data using Instrumentation Trace Macrocell (ITM).

2.6.1 ITM workflow

The workflow for ITM involves a complex series of interactions between the applications involved.

1. Generate Barman agent code for ITM using the Barman Generator Wizard dialog in Streamline.

a. Select ITM Interface as the data storage backend.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 53

https://developer.arm.com/documentation/101816/0903/Use-Streamline-from-the-command-line/Streamline-command-line-options/Import-modes

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-10: Select ITM backend.

Barman uses ports 16-19 for ITM.

b. Complete the remainder of the wizard as for a standard bare-metal project.

c. If you selected a Cortex®-M processor, select the number of cycles for the PC sampling
interval.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Figure 2-11: Select PC sampling interval.

2. Add the Barman agent files that the wizard generates to your project.

3. Instrument your bare-metal application code with Barman agent calls (initialization, periodic
sampling).

4. Compile and link your project.

5. Connect your target to a DSTREAM device.

6. Configure your target for collecting ITM data into its RAM buffer.

7. Run the application on a target.

8. When you want to end the profiling, stop the application.

9. Dump the ITM trace from the DSTREAM device into a directory.

10. Let Streamline import the trace file dump. Streamline reformats it and prepares it for analysis.

• If you are using Arm® Development Studio, you can dump the ITM trace into a
directory using the following command:

trace dump <directory> ITM

• If you do not launch your bare-metal application from within Arm Development
Studio, you must handle connecting to DSTREAM, obtaining the trace file, and
importing it into Streamline.

Related information
Configuring Barman on page 8

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

2.6.2 Importing an ITM trace

Import ITM trace files into Streamline for analysis.

Procedure
1. Click Import Capture File(s)… in the Streamline Data view.

Streamline imports the ITM traces as synchronized streams. If you want
individual streams, clear the checkbox in Window > Preferences > Streamline >
Bare-Metal.

2. Select the import file type ITM Trace Files.

Figure 2-12: Selecting the ITM file type.

3. Select the trace file to import.
4. Click Open and a new dialog box opens.
5. Enter the location of the barman.xml file that the Barman Generator Wizard produced.

This file contains information about how to find relevant data in the trace file. For example, the
channel numbers used.

6. Click OK.

Results
Streamline then reformats the data, and converts the ITM trace file into a Barman agent raw file.

Related information
Import an ITM trace from the command line

2.7 Interfacing with Barman
When Barman is linked into your executable code, the code must call the following functions:

1. barman_initialize to initialize Barman.

2. barman_enable_sampling to enable sampling.

3. The appropriate sample function, barman_sample_counters or
barman_sample_counters_with_program_counter, to periodically collect data.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 53

https://developer.arm.com/documentation/101816/0903/Use-Streamline-from-the-command-line/Streamline-command-line-options/Import-modes

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

In a multiprocessor system, a call to one of the sampling functions only reads the counters for the
processor element the code is executing on.

If you are running a preemptive kernel, RTOS, or similar, you must ensure that the thread running
a call to a sampling function is not migrated from one processor element to another during the
execution of the call.

In a multiprocessor system, if you are using periodic sampling (for example with a timer interrupt),
you must provide a mechanism to call the sampling function for each processor element. In other
words, to capture the counters of each processor element, there must be a timer interrupt or
thread that is run separately on each processor element.

To sample code running at EL3 using Barman, some additional configuration may
be required. By default, counting of events is prohibited when the processor is
executing at EL3. To change this behavior:

• When EL3 is using Aarch64, the register field MDCR_EL3.SPME must be 1

• When EL3 is using Aarch32, the register field SDCR.SPME must be 1

See the Arm Architecture Reference Manual Prohibiting event and cycle counting
section for more information.

2.7.1 Configuration #defines

The configuration UI configures the following defines, which are stored in barman.h. They can be
overridden at compile time as compiler parameters.

Table 2-1: Defines available for configuration

Define Description

BM_CONFIG_ENABLE_LOGGING Enables logging of messages when set to true.

BM_CONFIG_ENABLE_DEBUG_LOGGING If BM_CONFIG_ENABLE_LOGGING is true, enables debug messages
when set to true.

BM_CONFIG_ENABLE_BUILTIN_MEMFUNCS Enables the use of built-in memory functions such as
__builtin_memset and __builtin_memcpy when set to true.

BM_CONFIG_MAX_CORES The maximum number of processor elements supported.

BM_CONFIG_MAX_MMAP_LAYOUTS The maximum number of mmap layout entries to be stored in the
data header. Configure to reflect the number of sections to be
mapped for any process images.

BM_CONFIG_MAX_TASK_INFOS The maximum number of distinct task entries that will be stored in
the data. For single-threaded applications, this number can be zero,
indicating that no information is provided.

For multi-threaded applications or RTOS, this value indicates
the maximum number of entries to store in the data header for
describing processes, threads, and tasks.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Define Description
BM_CONFIG_MIN_SAMPLE_PERIOD The minimum period between samples in nanoseconds. If this value

is greater than zero, calls to sampling functions are rate limited to
ensure that there is a minimum interval of nanoseconds between
samples.

BARMAN_DISABLED Disables the Barman entry points at compile time when defined to
a nonzero value. Use to conditionally disable calls to Barman, for
example in production code.

2.7.2 Annotation #defines

Color macros to use for annotations.

Table 2-2: Color macros to use for annotations

Define Description

BM_ANNOTATE_COLOR_<color_name> Named annotation color, where <color_name> is one of the
following colors:

RED

BLUE

GREEN

PURPLE

YELLOW

CYAN

WHITE

LTGRAY

DKGRAY

BLACK

BM_ANNOTATE_COLOR_CYCLIC Annotation color that cycles through a predefined set.

BM_ANNOTATE_COLOR_RGB(<R>, <G>,) Create an annotation color from its components, where <R>, <G>,
and are defined as follows:

R

The red component, where 0 ≤ R ≤ 255.

B

The blue component, where 0 ≤ B ≤ 255.

G

The green component, where 0 ≤ G ≤ 255.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

2.7.3 Barman public API

Use the bare-metal agent by calling the following public API functions.

barman_initialize
The prototype of barman_initialize varies depending on the datastore chosen.

When using the linear or circular RAM buffer:

BM_NONNULL((1, 3, 4))
bm_bool barman_initialize(bm_uint8 * buffer, bm_uintptr buffer_length,

When using STM:

BM_NONNULL((2, 3, 4))
bm_bool barman_initialize_with_stm_interface(void *
 stm_configuration_registers, void * stm_extended_stimulus_ports,

When using ITM on Arm® M-profile architectures:

BM_NONNULL((1, 2))
bm_bool barman_initialize_with_itm_interface(

When using ITM on Arm A- or R-profile architectures:

BM_NONNULL((1, 2, 3))
bm_bool barman_initialize_with_itm_interface(void * itm_registers,

The remaining parameters for each datastore are the same:

 const char * target_name,
 const struct bm_protocol_clock_info * clock_info,
#if BM_CONFIG_MAX_TASK_INFOS > 0
 bm_uint32 num_task_entries,
 const struct bm_protocol_task_info * task_entries,
#endif
#if BM_CONFIG_MAX_MMAP_LAYOUTS > 0
 bm_uint32 num_mmap_entries,
 const struct bm_protocol_mmap_layout * mmap_entries,
#endif
 bm_uint32 timer_sample_rate);

Table 2-3: barman_initialize function information

Description Initialize Barman.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Parameters buffer

Pointer to in memory buffer.

buffer_length

Length of the in memory buffer.

stm_configuration_registers

Base address of the STM configuration registers. This
parameter can be NULL if it is initialized elsewhere, for
example by the debugger.

stm_extended_stimulus_ports

Base address of the STM extended stimulus ports.

itm_registers

Base address of the ITM registers.

datastore_config

Pointer to the configuration to pass to
barman_ext_datastore_initialize.

target_name

Name of the target device.

clock_info

Information about the monotonic clock used for
timestamps.

num_task_entries

Length of the array of task entries in
task_entries. If this value is greater than
BM_CONFIG_MAX_TASK_INFOS, it is truncated.

task_entries

The task information descriptors. Can be NULL.

num_mmap_entries

The length of the array of mmap entries in
mmap_entries. If this value is greater than
BM_CONFIG_MAX_MMAP_LAYOUT, it is truncated.

mmap_entries

The mmap image layout descriptors. Can be NULL.

timer_sample_rate

Timer-based sampling rate in Hertz. Zero indicates
no timer-based sampling (assumes a maximum 4GHz
sample rate). This value is informative only, and is used
for reporting the timer frequency in the Streamline UI.

Return value BM_TRUE

On success.

BM_FALSE

On failure.

If BM_CONFIG_MAX_TASK_INFOS ≤ 0, num_task_entries and task_entries are
not present.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

If BM_CONFIG_MAX_MMAP_LAYOUTS ≤ 0, num_mmap_entries and mmap_entries are
not present.

barman_enable_sampling
void barman_enable_sampling(void);

Table 2-4: barman_enable_sampling function information

Description Enables sampling. Call when all PMUs are enabled and the data
store is configured.

barman_disable_sampling
void barman_disable_sampling(void);

Table 2-5: barman_disable_sampling function information

Description Disables sampling without reconfiguring the PMU. To resume
sampling, call barman_enable_sampling.

barman_sample_counters
void barman_sample_counters(bm_bool sample_return_address);

Table 2-6: barman_sample_counters function information

Description Reads the configured PMU counters for the current processing
element and inserts them into the data store. Can also insert
a Program Counter record using the return address as the PC
sample.

Parameter sample_return_address

BM_TRUE to sample the return address as PC,
BM_FALSE to ignore.

• The Call Paths view displays the PC values. This view is blank
if the application does not call barman_sample_counters
with sample_return_address == BM_TRUE, or
barman_sample_counters_with_program_counter with pc != BM_NULL.

• Application code that is not doing periodic sampling typically calls this
function with sample_return_address == BM_TRUE.

• This function must be run on the processing element for the PMU that
it intends to sample from. It must not be migrated to another processing
element for the duration of the call. This is necessary as it needs to
program the per processing element PMU registers.

barman_sample_counters_with_program_counter
void barman_sample_counters_with_program_counter(const void * pc);

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Table 2-7: barman_sample_counters_with_program_counter function information

Description Reads the configured PMU counters for the current processing
element and inserts them into the data store.

Parameter pc

The PC value to record. The PC entry is not inserted if
pc == BM_NULL.

• The Call Paths view displays the PC values. This view is blank if the
application does not call barman_sample_counters_with_program_counter
with pc != BM_NULL, or barman_sample_counters with
sample_return_address == BM_TRUE.

• A periodic interrupt handler typically calls this function, with pc ==
<the_exception_return_address>.

• This function must be run on the processing element for the PMU that
it intends to sample from. It must not be migrated to another processing
element for the duration of the call. This is necessary as it needs to
program the per processing element PMU registers.

The following functions are available if BM_CONFIG_MAX_TASK_INFOS > 0 :

barman_add_task_record
bm_bool barman_add_task_record(bm_uint64 timestamp, const struct
 bm_protocol_task_info * task_entry);

Table 2-8: barman_add_task_record function information

Description Adds a task information record.

Parameters timestamp

The timestamp at which the record is inserted.

task_entry

The new task entry.

Return value BM_TRUE

On success.

BM_FALSE

On failure.

barman_record_task_switch
void barman_record_task_switch(enum bm_task_switch_reason reason);

Table 2-9: barman_record_task_switch function information

Description Records that a task switch has occurred. Call this function
after the new task is made the current task, so a call to
barman_ext_get_current_task_id returns the new task
ID. For example, insert it into the scheduler of an RTOS just
after the new task is selected to record the task switch.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Parameter reason

Reason for the task switch.

Call after the task switch has occurred so that bm_ext_get_current_task
returns the task_id of the switched to task.

The following function is available if BM_CONFIG_MAX_MMAP_LAYOUTS > 0:

barman_add_mmap_record
bm_bool barman_add_mmap_record(bm_uint64 timestamp, const struct
 bm_protocol_mmap_layout * mmap_entry);

Table 2-10: barman_add_mmap_record function information

Description Adds a mmap information record.

Parameters timestamp

The timestamp at which the record is inserted.

mmap_entry

The new mmap entry.

Return value BM_TRUE

On success.

BM_FALSE

On failure.

Data types associated with the public API functions:

bm_protocol_clock_info
struct bm_protocol_clock_info
{
 bm_uint64 timestamp_base;
 bm_uint64 timestamp_multiplier;
 bm_uint64 timestamp_divisor;
 bm_uint64 unix_base_ns;
};

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Table 2-11: bm_protocol_clock_info function information

Description Defines information about the monotonic clock used in the
trace. Timestamp information is stored in arbitrary units within
samples. Arbitrary units reduce the overhead of making the
trace by removing the need to transform the timestamp into
nanoseconds at the point the sample is recorded. The host
expects timestamps to be in nanoseconds. The arbitrary
timestamp information is transformed to nanoseconds
according to the following formula:

bm_uint64 nanoseconds = (((timestamp -
timestamp_base) * timestamp_multiplier) /
timestamp_divisor);

Therefore for a clock that already returns time in nanoseconds,
timestamp_multiplier and timestamp_divisor should
be configured as 1 and 1. If the clock counts in microseconds
then the multiplier and divisor should be set to 1000 and 1. If
the clock counts at a rate of n Hertz, then the multiplier should
be set to 1000000000 and the divisor to n.

Members timestamp_base

The base value of the timestamp so that this value is
zero in the trace.

timestamp_multiplier

The clock rate ratio multiplier.

timestamp_divisor

The clock rate ratio divisor

unix_base_ns

The Unix timestamp base value, in nanoseconds, so a
timestamp_base maps to a unix_base Unix time
value.

bm_protocol_task_info
struct bm_protocol_task_info
{
 bm_task_id_t task_id;
 const char * task_name;
};

Table 2-12: bm_protocol_task_info function information

Description A task information record. Describes information about a unique
task within the system.

Members task_id

The task ID.

task_name

The name of the task.

bm_protocol_mmap_layout
struct bm_protocol_mmap_layout
{
#if BM_CONFIG_MAX_TASK_INFOS > 0

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

 bm_task_id_t task_id;
#endif
 bm_uintptr base_address;
 bm_uintptr length;
 bm_uintptr image_offset;
 const char * image_name;
};

Table 2-13: bm_protocol_mmap_layout function information

Description An MMAP layout record. Describes the position of an
executable image (or section thereof) in memory, allowing the
host to map PC values to the appropriate executable image.

Members task_id

The task ID to associate with the map.

base_address

The base address of the image, or image section.

length

The length of the image, or image section.

image_offset

The image section offset.

image_name

The name of the image.

bm_task_switch_reason
enum bm_task_switch_reason
{
 BM_TASK_SWITCH_REASON_PREEMPTED = 0,
 BM_TASK_SWITCH_REASON_WAIT = 1
};

Table 2-14: bm_task_switch_reason function information

Description Reason for a task switch.

Members BM_TASK_SWITCH_REASON_PREEMPTED

Thread is preempted.

BM_TASK_SWITCH_REASON_WAIT

Thread is blocked waiting, for example on I/O.

WFI and WFE event handling functions:

barman_wfi
void barman_wfi(void);

Table 2-15: barman_wfi function information

Description Wraps WFI instruction and sends events before and after the
WFI to log the time in WFI. This function is safe to use in place
of the usual WFI asm instruction, as it degenerates to just a
WFI instruction when Barman is disabled.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

barman_wfe
void barman_wfe(void);

Table 2-16: barman_wfe function information

Description Wraps WFE instruction and sends events before and after the
WFE to log the time in WFE. This function is safe to use in
place of the usual WFE asm instruction as it degenerates to just
a WFE instruction when Barman is disabled.

barman_before_idle
void barman_before_idle(void);

Table 2-17: barman_before_idle function information

Description Call before a WFI or WFE, or other similar halting event, to log
entry into the paused state. Can be used in situations where
barman_wfi() or barman_wfe() is not suitable.

• You must use barman_before_idle in a pair with barman_after_idle().

• Using barman_wfi() or barman_wfe() is usually preferred, as it takes care
of calling the before and after functions.

barman_after_idle
void barman_after_idle(void);

Table 2-18: barman_after_idle function information

Description Call after a WFI or WFE, or other similar halting event, to log
exit from the paused state. Can be used in situations where
barman_wfi() or barman_wfe() is not suitable.

• You must use barman_after_idle in a pair with barman_before_idle().

• Using barman_wfi() or barman_wfe() is usually preferred, as it takes care
of calling the before and after functions.

Functions for recording textual annotations:

barman_annotate_channel
void barman_annotate_channel(bm_uint32 channel, bm_uint32 color, const char *
 string)

Table 2-19: barman_annotate_channel function information

Description Adds a string annotation with a display color, and assigns it to a
channel.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Parameters channel

The channel number.

color

The annotation color from bm_annotation_colors .

text

The annotation text, or null to end the previous
annotation.

Annotation channels and groups are used to organize annotations within the
threads and processes section of the Timeline view. Each annotation channel
appears in its own row under the thread. Channels can also be grouped
and displayed under a group name, using the barman_annotate_name_group
function.

barman_annotate_name_channel
void barman_annotate_name_channel(bm_uint32 channel, bm_uint32 group, const
 char * name)

Table 2-20: barman_annotate_name_channel function information

Description Defines a channel and attaches it to an existing group.

Parameters channel

The channel number.

group

The group number.

name

The name of the channel.

The channel number must be unique within the task.

barman_annotate_name_group
void barman_annotate_name_group(bm_uint32 group, const char * name)

Table 2-21: barman_annotate_name_group function information

Description Defines an annotation group.

Parameters group

The group number.

name

The name of the group.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

The group identifier, group, must be unique within the task.

barman_annotate_marker
void barman_annotate_marker(bm_uint32 color, const char * text)

Table 2-22: barman_annotate_marker function information

Description Adds a bookmark with a string and a color to the Timeline view
and Log view. The string is displayed in the Timeline view when
you hover over the bookmark, and in the Message column in
the Log view.

Parameters color

The marker color from bm_annotation_colors .

text

The marker text, or null for no text.

bm_annotation_colors
Table 2-23: bm_annotation_colors function information

Description Color macros for annotations. See Annotation #defines .

2.7.4 External functions to implement

You must provide the following external functions.

barman_ext_get_timestamp
extern bm_uint64 barman_ext_get_timestamp(void);

Table 2-24: barman_ext_get_timestamp function information

Description Reads the current sample timestamp value, which must
be provided for the time at the point of the call. The timer
must provide monotonically incrementing values from an
implementation defined start point. The counter must not
overflow during the period that it is used. The counter is in
arbitrary units. The mechanism for converting those units to
nanoseconds is described as part of the protocol data header.

Return value The timestamp value in arbitrary units.

The following functions have weak linkage implementations that can be overridden if necessary:

barman_ext_disable_interrupts_local
extern bm_uintptr barman_ext_disable_interrupts_local(void);

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Table 2-25: barman_ext_disable_interrupts_local function information

Description Disables interrupts on the local processor only. Used to
allow atomic accesses to certain resources, for example PMU
counters.

Return value The current interrupt enablement status value.
This value must be preserved and passed to
barman_ext_enable_interrupts_local to restore the
previous state.

A weak implementation of this function is provided that modifies DAIF on
AArch64, or CPSR on AArch32.

barman_ext_enable_interrupts_local
extern void barman_ext_enable_interrupts_local(bm_uintptr previous_state);

Table 2-26: barman_ext_enable_interrupts_local function information

Description Enables interrupts on the local processor only.

Parameter previous_state

The value that was previously returned from
barman_ext_disable_interrupts_local.

A weak implementation of this function is provided that modifies DAIF on
AArch64, or CPSR on AArch32.

The following functions must be defined if BM_CONFIG_MAX_CORES > 1:

barman_ext_map_multiprocessor_affinity_to_core_no
extern bm_uint32 barman_ext_map_multiprocessor_affinity_to_core_no(bm_uintptr
 mpidr);

Table 2-27: barman_ext_map_multiprocessor_affinity_to_core_no function information

Description Given the MPIDR register, returns a unique processor number.
The implementation must return a value between 0 and N,
where N is the maximum number of processors in the system.
For any valid permutation of the arguments, a unique value
must be returned. This value must not change between
successive calls to this function for the same argument values.
See the following example.

Parameter mpidr

The value of the MPIDR register.

Return value The processor number.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Example

//
// Example implementation where processors are arranged as follows:
//
// aff2 | aff1 | aff0 | cpuno
// -----+------+------+------
// 0 | 0 | 0 | 0
// 0 | 0 | 1 | 1
// 0 | 0 | 2 | 2
// 0 | 0 | 3 | 3
// 0 | 1 | 0 | 4
// 0 | 1 | 1 | 5
//
bm_uint32 barman_ext_map_multiprocessor_affinity_to_core_no(bm_uintptr mpidr)
{
 return (mpidr & 0x03) + ((mpidr >> 6) & 0x4);
}

This function only needs defining when BM_CONFIG_MAX_CORES > 1.

barman_ext_map_multiprocessor_affinity_to_cluster_no
extern bm_uint32
 barman_ext_map_multiprocessor_affinity_to_cluster_no(bm_uintptr mpidr);

Table 2-28: barman_ext_map_multiprocessor_affinity_to_cluster_no function information

Description Given the MPIDR register, return the appropriate cluster
number. Cluster IDs should be numbered from 0 to N, where
N is the number of clusters in the system. See the following
example.

Parameter mpidr

The value of the MPIDR register.

Return value The cluster number.

Example

//
// Example implementation which is compatible with the example implementation
 of
// barman_ext_map_multiprocessor_affinity_to_core_no given above.
//
bm_uint32 barman_ext_map_multiprocessor_affinity_to_cluster_no(bm_uintptr
 mpidr)
{
 return ((mpidr >> 8) & 0x1);
}

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

This function only needs defining when BM_CONFIG_MAX_CORES > 1.

The following function must be defined if BM_CONFIG_MAX_TASK_INFOS > 0:

barman_ext_get_current_task_id
extern bm_task_id_t barman_ext_get_current_task_id(void);

Table 2-29: barman_ext_get_current_task_id function information

Description Returns the current task ID.

The following functions must be defined if BM_CONFIG_ENABLE_LOGGING != 0:

barman_ext_log_info
void barman_ext_log_info(const char * message, ...);

Table 2-30: barman_ext_log_info function information

Description Prints an info message.

Parameter message

barman_ext_log_warning
void barman_ext_log_warning(const char * message, ...);

Table 2-31: barman_ext_log_warning function information

Description Prints a warning message.

Parameter message

barman_ext_log_error
void barman_ext_log_error(const char * message, ...);

Table 2-32: barman_ext_log_error information

Description Prints an error message.

Parameter message

The following function must be defined if BM_CONFIG_ENABLE_DEBUG_LOGGING != 0:

barman_ext_log_debug
void barman_ext_log_debug(const char * message, ...);

Table 2-33: barman_ext_log_debug function information

Description Prints a debug message.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Parameter message

2.7.5 Write barman profile data to your own data storage mechanism

You can interface with barman and instruct it to store capture data in a RAM buffer, or to stream
the data, and write it to an external data storage backend of your choice.

Collecting profiling data with barman is not supported for Cortex®-M targets.

Barman allows you to collect capture data in the RAM buffer on your target, or to stream the data
using a trace probe (such as a DSTREAM). The captured or streamed data can then be:

• Processed and saved by a debugger:

◦ To learn about processing profile data stored on an on-target RAM buffer, see: Profiling with
on-target RAM buffer.

◦ To learn about processing profile data streaming from your target, see: Profiling with System
Trace Macrocell and Profiling with Instrumentation Trace Macrocell.

• Processed or streamed directly to your own data handler or storage:

◦ To learn about writing data from the on-target RAM buffer to your own storage location,
see: Write barman profile data in the memory buffer to custom storage.

When processing data stored in a RAM buffer, your in-memory buffer must
be large enough to hold this data until the end of the capture when that
data can be written out.

◦ To learn about writing data to your own storage location instead of the on-target RAM
buffer, see: Write barman profile data to custom storage.

When data is streamed to your own storage location, you do not need to provide as much
memory in advance, and can capture a lot more data over a longer period of time.

▪ You can also use this mechanism to stream data off the target, as your
capture continues to run, either through your network or through
physical device connection cables (for example, USB).

▪ This method is only supported in Arm® Streamline Performance Analyzer
version 8.7, and later versions.

Related information
Profiling with System Trace Macrocell on page 16
Profiling with Instrumentation Trace Macrocell on page 19

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

Write barman profile data in the memory buffer to custom storage on page 39
Write barman profile data to custom storage on page 39

2.7.6 Write barman profile data in the memory buffer to custom storage

This topic describes how to interface, and instruct, barman to store capture data in a RAM buffer
then write out the data to a storage of your choice.

Procedure
1. Follow the steps in Configuring Barman to configure barman to use an on-target RAM buffer.

As part of the integration process, you must initialize the barman agent with a user-provided
memory buffer. Because you are providing the memory buffer, you can choose how to save its
contents when the profiled code has finished running.

2. After the sampling has stopped, store the contents of the memory buffer using your chosen
mechanism. You can, for example, save to file or send over a network connection if your
platform supports these options.
The following example stops the sampling by calling barman_disable_sampling(), and stores
the memory buffer contents to a file called barman.raw:

/* Define the RAM buffer used to store the capture data.
 */
#define SIZE 4096*4096
bm_uint8 data[SIZE] __attribute__((aligned(8)));

/* Application initializes Barman.
 */
void my_app_profiling_setup_code()
{
 barman_initialize(data, SIZE, "barman-example", &clock_info, 0);
 barman_enable_sampling();
}

/* Application provides a mechanism to stop profiling and save the buffer.
 */
void my_app_profiling_tear_down_code()
{
 barman_disable_sampling();
 /* This function uses the API that your embedded software or RTOS
 * provides to store the buffer contents to a file.
 */
 write_byte_buffer_to_file("barman.raw", data, SIZE);
}

Related information
Write barman profile data to custom storage on page 39
Write barman profile data to your own data storage mechanism on page 38

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

2.7.7 Write barman profile data to custom storage

This task describes how to interface with, and instruct, barman to store (or stream) captured data to
storage of your choice.

Procedure
1. To configure barman to use an in-memory buffer, follow the steps in Configuring Barman .

This step generates the barman.c and barman.h files. The following steps override the backend
selected in the configuration tool.

When initializing the barman library, use the barman_initialize_with_user_supplied function
instead of barman_initialize.

The first argument passed to barman_initialize_with_user_supplied gets passed directly to
the barman_ext_streaming_backend_init function shown in the following example.

2. Prepare your code by implementing the functions described in the barman-ext-streaming-
backend.h header file that is available on GitHub:
For example, you can implement the functions as:

/**
 * Initialize the backend.
 *
 * @param config Pointer to some configuration data.
 * @return True if successful.
 */
 bm_bool barman_ext_streaming_backend_init(void * config);

/**
 * Write data as a frame.
 *
 * @param data Data to write in the frame.
 * @param length Length of the frame.
 * @param channel Channel to write the frame on.
 * @param flush_header Set to BM_TRUE when the frame contains an update.
 * to the header. Indicates to flush the channel after writing the frame.
 */
 void barman_ext_streaming_backend_write_frame(const bm_uint8 * data, bm_uintptr
 length, bm_uint16 channel, bm_bool flush_header);

/**
 * Shutdown the backend.
 */
 void barman_ext_streaming_backend_close(void);

/**
 * Get the channel bank.
 *
 * If banked by a core this is just the core number.
 * If not banked by a core, this should always be 0.
 *
 * @return The bank
 */
 bm_uint32 barman_ext_streaming_backend_get_bank(void);

• The function barman_ext_streaming_backend_init must perform whatever necessary
setup (for example, opening the data file), and returns BM_TRUE on success, or BM_FALSE on
failure.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 53

https://github.com/ARM-software/gator/blob/main/barman/src/data-store/barman-ext-streaming-backend.h

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

• The function barman_ext_streaming_backend_close must be called when the capture is
disabled, and used to close any relevant storage (for example, by closing the data file).

• The function barman_ext_streaming_backend_get_bank must return barman_get_core_no()
in a multicore system, or return 0:

bm_uint32 barman_ext_streaming_backend_get_bank(void)
{
 return barman_get_core_no();
}

• The function barman_ext_streaming_backend_write_frame must be called for each data
record, and store the records to the data store according to the following pseudocode:

{
 /* Note: When the host has multiple cores or threads, so that it is
 * possible for multiple cores to call this function in parallel,
 * then you must ensure to synchronize here.
 */

 if (flush_header) {
 assert(data_store_is_empty || (previous_header_length == length));
 /** Write (or overwrite) the existing header at the start of the
 * data store.
 */
 write_blob_to_data_store_at_offset_zero(data, length);
 } else {
 assert(received_header);

 /** You must prefix the data record with a length field. Note:
 * This following example code produces a little-endian length,
 * but for big-endian targets this must be changed.
 */
 bm_uint8 length_header[8] = {
 length >> (0 * 8),
 length >> (1 * 8),
 length >> (2 * 8),
 length >> (3 * 8),
 length >> (4 * 8),
 length >> (5 * 8),
 length >> (6 * 8),
 length >> (7 * 8),
 };

 /** Append the size, which depends on if the target is 32-bit
 * (4-bytes) or 64-bit (8-bytes), to the end of the data store.
 */
 write_blob_to_end_of_data_store(length_header, sizeof(bm_uintptr));

 /** Now append the data to the end of the data store.
 */
 write_blob_to_end_of_data_store(data, length);
 }
}

For example, on a POSIX-like API, you could implement
write_blob_to_data_store_at_offset_zero and write_blob_to_end_of_data_store as:

static int file_handle;
static bm_uintptr header_length = 0;

static void write_blob(const bm_uint8 * data, bm_uintptr length)
{

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

 while (length > 0)
 {
 int result = write(file_handle, data, length);

 assert(result > 0);
 length -= result;
 data += result;
 }
}

static void write_blob_to_end_of_data_store(const bm_uint8 * data, bm_uintptr
 length)
{
 off_t new_offset = lseek(file_handle, 0, SEEK_END);
 assert((new_offset > 0) && (new_offset >= header_length));
 write_blob(data, length);
}

static void write_blob_to_data_store_at_offset_zero(const bm_uint8 * data,
 bm_uintptr length)
{
 assert((header_length == 0) || (header_length == length));
 header_length = length;
 off_t new_offset = lseek(file_handle, 0, SEEK_SET);

 assert(new_offset == 0);

 write_blob(data, length);
 new_offset = lseek(file_handle, 0, SEEK_END);

 assert(new_offset >= length);
}

3. Compile your application with the following options:

• -DBM_CONFIG_USE_DATASTORE=BM_CONFIG_USE_DATASTORE_STREAMING_USER_SUPPLIED - Sets a
user-supplied datastore.

• -DBM_CONFIG_STREAMING_DATASTORE_USER_SUPPLIED_NUMBER_OF_BANKS=<n> - Passes
the number of banks in the user-supplied datastore. <n> is the maximum number of
CPUs on the system. In other words, one greater than the largest value returned by
barman_get_core_no().

• -DBM_CONFIG_STREAMING_DATASTORE_USER_SUPPLIED_NUMBER_OF_CHANNELS=<n> - Passes the
number of channels in the user-supplied datastore. <n> is a number greater than, or equal
to, 1, and is the number of buffers per CPU to use for temporary storage.

./<compiler-command> <options> -
DBM_CONFIG_USE_DATASTORE=BM_CONFIG_USE_DATASTORE_STREAMING_USER_SUPPLIED
 -DBM_CONFIG_STREAMING_DATASTORE_USER_SUPPLIED_NUMBER_OF_BANKS=<n> -
DBM_CONFIG_STREAMING_DATASTORE_USER_SUPPLIED_NUMBER_OF_CHANNELS=<n> <source>

Related information
Write barman profile data in the memory buffer to custom storage on page 39
Write barman profile data to your own data storage mechanism on page 38
GitHub

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 53

https://github.com/ARM-software/gator/blob/main/barman/src/data-store/barman-ext-streaming-backend.h

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

2.8 Custom counters
You can configure one custom chart, with one or more series, in the configuration wizard.

2.8.1 Configuring custom counters

You can configure chart properties for custom counters.

The following chart properties can be configured:

Name
Human readable name for the chart.

Series Composition
Defines how to arrange series on the chart (stacked, overlay, or logarithmic).

Rendering Type
Defines how to render series on the chart (filled, line, or bar).

Per Processor
Indicates whether the data in the chart is per processor.

Average Selection
Sets whether the cross-section marker in Streamline displays average values.

Average Cores
Sets whether Streamline averages the values of multiple cores when viewing the aggregate
data of a per processor chart.

Percentage
Sets whether to display data as a percentage of the maximum value in the chart.

The following series properties can be configured:

Name
Human readable name for the series.

Units
Defines the unit type to display in Streamline.

Sampled
When set to true, the value for this counter is sampled along with the PMU counters. When
false, you must call a function to update the counter value.

Multiplier
Number to multiply by for fixed-point math. As the data sent from the agent is int64, it must
be scaled. For example, the value 123 with a multiplier of 0.01 can represent the value 1.23.

Class
Specifies the nature of the data that is fed into the chart as follows:

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

delta
Used for values that increment or are accumulated over time, such as hardware
performance counters. The exact time when the data occurs is unknown and therefore
the data is interpolated between timestamps.

incident
The same as delta, except the exact time is known so no interpolation is calculated.
Used for counters such as software trace.

absolute
Used for singular or impulse values, such as system memory used.

Display
The display value determines how to calculate the data when zooming out for each time bin
as follows:

accumulate
Sum up the data (valid only for delta and incident class counters).

hertz
Does the same as accumulate then normalizes the value to one second (valid only for
delta and incident class counters).

minimum
Display the smallest value encountered (valid only for absolute class counters).

maximum
Display the largest value encountered (valid only for absolute class counters).

average
Display the average (valid only for absolute class counters).

Color
The color to display the series in. If not set, Streamline selects a color.

Description
Human readable description for the series. This description becomes the tooltip when
hovering over the series in Streamline.

2.8.2 Sampled and nonsampled counters

Sampled counters are polled when the PMU counter values are read.

For each sampled custom counter, a function prototype is generated of the following form:

extern bm_bool barman_cc_<chart_name>_<series_name>_sample_now(bm_uint64 *
 value_out);

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

For example:

extern bm_bool barman_cc_interrupts_fiq_sample_now(bm_uint64 * value_out);

You must implement this function to set the value of the uint64 at *value_out to the value of the
counter, then return BM_TRUE. If the counter value cannot be sampled, for example due to another
thread accessing the hardware, the function can return BM_FALSE and be skipped.

You are responsible for writing nonsampled counters to the capture. For each nonsampled series,
the following two functions are declared:

bm_bool barman_cc_<chart_name>_<series_name>_update_value(bm_uint64 timestamp,
 bm_uint32 core, bm_uint64 value);

bm_bool barman_cc_<chart_name>_<series_name>_update_value_now(bm_uint64 value);

For example:

bm_bool barman_cc_interrupts_fiq_update_value(bm_uint64 timestamp, bm_uint32 core,
 bm_uint64 value);

bm_bool barman_cc_interrupts_fiq_update_value_now(bm_uint64 value);

The second function is a shorthand for the first that passes the current timestamp and core
number to the appropriate arguments.

When you call these functions, the value for the counter is stored to the capture.

2.9 Using the bare-metal generation mechanism from the
command line

You can pass the configured, and optionally modified, XML file produced in the bare-metal
configuration process to the command line. The generator then outputs the source and header
files.

Enter streamline -generate-bare-metal-agent <options>

The following command-line arguments are available:

-c, -config <config.xml>
The configuration file to use to generate the bare-metal agent.

-p, -pmus <pmus.xml>
Specify the path to your pmus.xml file.

-e, -events <events.xml>
Specify the path to your events.xml file.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Profiling with the bare-metal agent

-o, -output <output_path>
Specify the output path to where the generated files will be written.

Related information
Streamline command-line options

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 53

https://developer.arm.com/documentation/101816/0903/Use-Streamline-from-the-command-line

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Examples

3. Examples
This section contains information about the bare-metal examples that are supplied with Streamline.

3.1 Examples using Barman
Streamline includes several examples of how to use Barman.

You can find these examples in <install_directory>/sw/streamline/examples/barman.

Streamline_bare_metal_ARMv8_AArch64
A demonstration of how to use Barman with AArch64, from configuring the bare-metal agent
to analyzing the results.

Streamline_bare_metal_Cortex_R5
A demonstration of how to use Barman with Arm® Cortex®-R5, from configuring the bare-
metal agent to analyzing the results.

Streamline_bare_metal_M_profile
A demonstration of how to use Barman with Armv7-M and Armv8-M, from configuring the
bare-metal agent to analyzing the results.

u-boot-instrumentation
An example of how to modify U-Boot to allow it to be profiled using Barman.

RTX5_Cortex-A9_Blinky_Streamline A demonstration of how to use Barman with the CMSIS
RTX5 RTOS on a Cortex-A9 processor, collection of profiling information from RAM with
DSTREAM, and analysis in Streamline.

RTX5_Cortex-M33_Blinky_Streamline A demonstration of how to use Barman with the CMSIS
RTX5 RTOS on a Cortex-M33 processor, collection of profiling information via ITM with DSTREAM,
and analysis in Streamline.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 53

https://www.arm.com/company/policies/trademarks

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0903-00 5 September 2024 Non-Confidential New document for v9.3

0902-00 7 June 2024 Non-Confidential New document for v9.2

0901-00 12 April 2024 Non-Confidential New document for v9.1

0900-00 15 February 2024 Non-Confidential New document for v9.0

0809-00 23 November 2023 Non-Confidential New document for v8.9

0808-00 28 September 2023 Non-Confidential New document for v8.8

0807-00 3 August 2023 Non-Confidential New document for v8.7

0806-00 8 June 2023 Non-Confidential New document for v8.6

0805-00 20 April 2023 Non-Confidential New document for v8.5

0804-00 14 February 2023 Non-Confidential New document for v8.4

0803-00 17 November 2022 Non-Confidential New document for v8.3

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Issue Date Confidentiality Change

0802-00 19 August 2022 Non-Confidential New document for v8.2

0801-00 20 May 2022 Non-Confidential New document for v8.1

0800-00 18 February 2022 Non-Confidential New document for v8.0

0709-00 18 November 2021 Non-Confidential New document for v7.9

0708-00 20 August 2021 Non-Confidential New document for v7.8

Change history
For information about the latest technical changes to Arm® Streamline, see the Arm Performance
Studio Release Notes.

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 53

https://developer.arm.com/documentation/107649/latest
https://developer.arm.com/documentation/107649/latest
https://developer.arm.com/glossary

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Convention Use
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 53

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_9.3_00_en
Issue 00

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm Streamline User Guide 101816 Non-Confidential

Arm Development Studio Getting Started
Guide

101469 Non-Confidential

Arm Development Studio User Guide 101470 Non-Confidential

Non-Arm resources Document ID Organization

Sources for Arm® Streamline Performance
Analyzer's gator daemon

- GitHub

Copyright © 2021–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 53

https://developer.arm.com/documentation
https://developer.arm.com/documentation/101816/latest
https://developer.arm.com/documentation/101469/latest
https://developer.arm.com/documentation/101469/latest
https://developer.arm.com/documentation/101470/latest
https://github.com/ARM-software/gator/blob/main/barman/src/data-store/barman-ext-streaming-backend.h

	Arm® Streamline Target Setup Guide for Bare-metal Applications
	Contents
	1. Bare-metal Support
	1.1 Bare-metal support overview

	2. Profiling with the bare-metal agent
	2.1 Profiling with Barman
	2.2 Data synchronization
	2.3 Data storage
	2.4 Profiling with on-target RAM buffer
	2.4.1 Configuring Barman
	2.4.2 Extracting and importing data
	2.4.3 Barman use case script

	2.5 Profiling with System Trace Macrocell
	2.5.1 STM workflow
	2.5.2 Importing an STM trace

	2.6 Profiling with Instrumentation Trace Macrocell
	2.6.1 ITM workflow
	2.6.2 Importing an ITM trace

	2.7 Interfacing with Barman
	2.7.1 Configuration #defines
	2.7.2 Annotation #defines
	2.7.3 Barman public API
	2.7.4 External functions to implement
	2.7.5 Write barman profile data to your own data storage mechanism
	2.7.6 Write barman profile data in the memory buffer to custom storage
	2.7.7 Write barman profile data to custom storage

	2.8 Custom counters
	2.8.1 Configuring custom counters
	2.8.2 Sampled and nonsampled counters

	2.9 Using the bare-metal generation mechanism from the command line

	3. Examples
	3.1 Examples using Barman

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

