
Arm® Cortex®-M33 Processor
Revision r1p0

Technical Reference Manual

Non-Confidential
Copyright © 2016–2018, 2020, 2023–2024 Arm
Limited (or its affiliates).
All rights reserved.

Issue 08
100230_0100_08_en

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm® Cortex®-M33 Processor Technical Reference Manual

This document is Non-Confidential.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (100230_0100_08_en) was issued on 2024-08-01. There might be a later issue at
http://developer.arm.com/documentation/100230

The product revision is r1p0.

See also: Proprietary Notice | Product and document information | Useful resources

Start Reading
If you prefer, you can skip to the start of the content.

Intended audience
This manual is written to help system designers, system integrators, verification engineers, and
software programmers who are implementing a System on Chip (SoC) device based on the Cortex®-
M33 processor.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 137

http://developer.arm.com/documentation/100230
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Contents

Contents

1. Introduction.. 8
1.1 About the processor.. 8
1.2 About the processor architecture... 9
1.3 Processor configuration options... 10
1.4 Component blocks... 11
1.4.1 Processor core... 13
1.4.2 Security attribution and memory protection..13
1.4.3 Floating-Point Unit..13
1.4.4 Nested Vectored Interrupt Controller..14
1.4.5 Cross Trigger Interface Unit... 14
1.4.6 ETM..15
1.4.7 MTB..15
1.4.8 Debug and trace... 15
1.5 Interfaces.. 16
1.6 Compliance...17
1.7 Design process..18
1.8 Documentation..19
1.9 Product revisions.. 20

2. Programmers Model.. 22
2.1 About the programmers model...22
2.2 Modes of operation and execution..22
2.3 Instruction set summary... 23
2.4 Memory model..24
2.4.1 Private Peripheral Bus..25
2.4.2 Unaligned accesses...26
2.5 Exclusive monitor... 26
2.6 Processor core registers summary..26
2.7 Exceptions.. 28
2.7.1 Exception handling and prioritization...28

3. System Control..30
3.1 System control register summary... 30

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Contents

3.2 Identification register summary...33
3.3 Configuration and Control Register... 38
3.4 Auxiliary Control Register...39
3.5 CPUID Base Register...41
3.6 Auxiliary Feature Register 0...42

4. Security Attribution and Memory Protection... 43
4.1 About security attribution and memory protection... 43
4.2 SAU register summary.. 44
4.3 MPU register summary... 45

5. Nested Vectored Interrupt Controller...47
5.1 NVIC programmers model..47
5.1.1 NVIC register summary... 47
5.1.2 Interrupt Controller Type Register.. 48

6. Floating-Point Unit...50
6.1 About the FPU..50
6.2 FPU functional description...50
6.2.1 FPU views of the register bank...50
6.2.2 Modes of operation..50
6.2.3 Compliance with the IEEE 754 standard.. 51
6.2.4 Exceptions...51
6.3 FPU programmers model..52
6.3.1 Floating-point system registers..52
6.3.2 Low-power operation...53

7. External coprocessors... 54
7.1 About external coprocessors... 54
7.2 Operation..54
7.3 Usage restrictions... 55
7.4 Data transfer rates... 55
7.5 Configuring which coprocessors are included in Secure and Non-secure states...........................55
7.6 Debug access to coprocessor registers usage constraints..56
7.7 Exceptions and context switch... 57

8. Arm Custom Instructions... 58
8.1 Arm Custom Instructions support..58

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Contents

8.2 Operation..59
8.3 Usage restrictions... 60

9. Debug.. 64
9.1 Debug functionality..64

9.1.1 CoreSight™ discovery..64
9.1.2 Debugger actions for identifying the processor..66
9.1.3 Processor ROM table identification and entries..66
9.1.4 System Control Space registers...68
9.1.5 Debug register summary...68
9.2 About the D-AHB interface...69

10. Instrumentation Trace Macrocell Unit.. 71
10.1 ITM programmers model..71
10.1.1 ITM register summary table...71
10.1.2 ITM Trace Privilege Register.. 72
10.1.3 ITM Integration Mode Control Register..73
10.1.4 Integration Mode Write ATB Valid Register...74
10.1.5 Integration Mode Read ATB Ready Register... 75

11. Data Watchpoint and Trace Unit... 76
11.1 DWT functional description.. 76
11.2 DWT programmers model... 77

12. Cross Trigger Interface..79
12.1 About the Cross Trigger Interface... 79
12.2 CTI functional description..79
12.3 CTI programmers model...81

13. Breakpoint Unit.. 82
13.1 About the Breakpoint Unit.. 82
13.2 BPU programmers model...82
13.3 BPU functional description..83

A. Debug Access Port.. 84
A.1 About the Debug Access Port..84
A.1.1 Configuration options.. 85
A.2 Functional description...86

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Contents

A.3 DAP register summary..87
A.3.1 AHB-AP register summary... 87
A.3.2 Debug port register summary... 87
A.4 DAP register descriptions...88
A.4.1 AHB-AP register descriptions..88
A.4.2 Debug port registers..94

B. Trace Port Interface Unit... 107
B.1 About the TPIU..107
B.2 TPIU functional description...107
B.2.1 TPIU Formatter... 108
B.2.2 Serial Wire Output format... 109
B.3 TPIU programmers model..109
B.3.1 Asynchronous Clock Prescaler Register..110
B.3.2 Formatter and Flush Status Register... 111
B.3.3 Formatter and Flush Control Register...112
B.3.4 TRIGGER Register.. 113
B.3.5 Integration Test FIFO Test Data 0 Register... 114
B.3.6 Integration Test ATB Control Register 2.. 115
B.3.7 Integration Test FIFO Test Data 1 Register... 116
B.3.8 Integration Test ATB Control 0 Register.. 117
B.3.9 Integration Mode Control...118
B.3.10 Device Configuration Register.. 118
B.3.11 Device Type Identifier Register.. 119

C. UNPREDICTABLE Behaviors.. 121
C.1 Use of instructions defined in architecture variants..121
C.2 Use of Program Counter - R15 encoding..121
C.3 Use of Stack Pointer - as a general purpose register R13...121
C.4 Register list in load and store multiple instructions.. 122
C.5 Exception-continuable instructions... 122
C.6 Stack limit checking...123
C.7 UNPREDICTABLE instructions within an IT block.. 123
C.8 Memory access and address space...124
C.9 Load exclusive and Store exclusive accesses.. 125
C.10 Armv8-M MPU programming.. 126
C.11 Miscellaneous UNPREDICTABLE instruction behavior..126

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Contents

Proprietary Notice...128

Product and document information... 130
Product status...130
Revision history.. 130
Conventions...134

Useful resources.. 137

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

1. Introduction
This chapter introduces the Cortex®-M33 processor and its features, configurable options, and
product documentation.

A Cortex®-M33 Debug Access Port (DAP) and a Cortex®-M33 Trace Port Interface
Unit (TPIU), which form part of an example system, are included in the Cortex®-
M33 processor deliverables. As a result, your implementation might include a
Cortex®-M33 DAP and a Cortex®-M33 TPIU.

1.1 About the processor
The Cortex®-M33 processor is a low gate count, highly energy efficient processor that is intended
for microcontroller and deeply embedded applications. The processor is based on the Arm®v8‑M
architecture and is primarily for use in environments where security is an important consideration.

The interfaces that the processor supports include:

• Code AHB (C-AHB) interface.

• System AHB (S-AHB) interface.

• External PPB (EPPB) APB interface.

• Debug AHB (D-AHB) interface.

The processor has optional:

• Arm® TrustZone® technology, using the Arm®v8‑M Security Extension supporting Secure and
Non-secure states.

• Memory Protection Units (MPUs), which you can configure to protect regions of memory.

• Floating-point arithmetic functionality with support for single precision arithmetic.

• Support for ETM and MTB trace.

The processor is highly configurable and is intended for a wide range of high-performance, deeply
embedded applications that require fast interrupt response features.

The following figure shows the processor in a typical system.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Figure 1-1: Example processor system

DMA
Processor

NIC

GPIOSRAM Peripherals

D-AHB

C-AHB

FLASH

Debug
Access Port

S-AHB

1.2 About the processor architecture
The processor implements the Arm®v8‑M architecture with the Main Extension.

The processor has optional support for each of the following extensions:

• The Security Extension.

• The Floating-point Extension.

• The Digital Signal Processing (DSP) Extension.

• The Debug Extension.

• The Custom Datapath Extension (CDE).

The processor includes the following features:

• An in-order issue pipeline.

• Thumb-2 technology. See the Arm®v8‑M Architecture Reference Manual.

• Data accesses performed as either big or little endian.

• A Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor with up to
480 interrupts.

• An optional Floating Point Unit (FPU) supporting single-precision arithmetic.

• Support for exception-continuable instructions, such as LDM, LDMDB, STM, STMDB, PUSH, and POP. If
the processor supports FPU, the VLDM, VSTM, VPUSH, VPOP exception-continuable instructions are
also included.

• A low-cost debug solution with the optional ability to:

◦ Implement breakpoints.

◦ Implement watchpoints, tracing, and system profiling.

◦ Support printf() style debugging through an Instrumentation Trace Macrocell (ITM).

• Support for the instruction trace option:

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

◦ Embedded Trace Macrocell (ETM). See the Arm® CoreSight™ ETM‑M33 Technical Reference
Manual for more information.

• Optional coprocessor interface for external hardware accelerators.

• Support for the Custom Datapath Extension (CDE) which adds classes of Arm Custom Instructions
(ACIs) in the coprocessor instruction space.

• Low-power features including architectural clock gating, sleep mode, and a power aware system
with optional Wake-up Interrupt Controller (WIC).

• A memory system, which can include optional memory protection and security attribution.

1.3 Processor configuration options
The Cortex®-M33 processor has configurable options that you can set during the implementation
and integration stages to match your functional requirements.

The following table shows the processor configurable options available at implementation time.

Feature Options

No floating-point.Floating-point

Single-precision floating-point only.

No Arm®v8‑M DSP Extension.DSP Extension

Arm®v8‑M DSP Extension supported, including the following
instruction classes:

• Pack halfword.

• Saturating.

• Arithmetic.

• Reverse bits/bytes.

• Select bytes.

• Sign-extend.

• Sum of absolute differences.

• SIMD arithmetic.

• Extended signed multiplies with overflow detection.

• Extended signed multiplies with optional rounding.

• SIMD multiplies with overflow detection.

• Extended unsigned multiply.

No Arm®v8‑M Security Extension.Security Extension

Arm®v8‑M Security Extension.

Non-secure protected memory regions 0 region, 4 regions, 8 regions, 12 regions, or 16 regions.

Secure protected memory regions 0 region, 4 regions, 8 regions, 12 regions, or 16 regions when the
Arm®v8‑M Security Extension is included.

Security Attribution Unit (SAU) 0 region, 4 regions, or 8 regions when the Arm®v8‑M Security
Extension is included.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Feature Options
Interrupts 1-480 interrupts. To support non-contiguous mapping, you can

remove individual interrupts.

Number of bits of interrupt priority Between three and eight bits of interrupt priority, between 8 and 256
levels of priority implemented.

Minimal debug. No Halting debug or memory and peripheral access.

Reduced set. Two data watchpoint comparators and four breakpoint
comparators.

Debug watchpoints and breakpoints

Full set. Four data watchpoint comparators and eight breakpoint
comparators.

No ITM or DWT trace.ITM and Data Watchpoint and Trace (DWT) trace functionality

Complete ITM and DWT trace.

No ETM support.Embedded Trace Macrocell (ETM)

ETM instruction execution trace.

No MTB support.Micro Trace Buffer (MTB)

MTB instruction trace.

No CTI.Cross Trigger Interface (CTI)

CTI included.

No WIC controller.Wake-up Interrupt Controller (WIC)

WIC controller included.

No support for coprocessor hardware.External coprocessor interface

Support for coprocessor hardware.

The coprocessor executes instructions and the CDE modules are not
used.

Arm Custom Instructions (ACIs) with Custom Datapath Extension
(CDE) modules on a coprocessor basis

The CDE module executes instructions and the coprocessor is
bypassed.

1.4 Component blocks
The processor has fixed and optional component blocks.

The following figure shows the optional and fixed components of the processor.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Figure 1-2: Functional block diagram

Wakeup
interrupt

Controller
(WIC)

Nested
Vectored
Interrupt

Controller
(NVIC)

Processor

Processor
ROM table

C-AHB
interface

S-AHB
interface External PPB

IRQ and
power control

interface
Embedded Trace
Macrocell (ETM)

Breakpoint
Unit

(BPU)*

Data
Watchpoint
and Trace

(DWT)

Instrumentation
Trace Macrocell

(ITM)

Floating Point
Unit (FPU)

Cross Trigger
Interface (CTI)

PPB bus

ATB
Instruction

ATB
Instrumentation

D-AHB
interface

MTB SRAM
interface

M-AHB
interface

Micro Trace
Buffer (MTB)

External IDAU
interface

Bus Matrix

Memory Protection
Security Attribution

Unit (SAU)

Secure Memory
Protection Unit

(MPU_S)

Non-secure Memory
Protection Unit

(MPU_NS)

Debugger

Cross
Trigger

Interface

Coprocessor
interface

Core

Configurable

Optional

* Flash Patching is not supported in the Cortex-M33 processor.

FPCDE

CDE

• The MPU_NS, WIC, CTI, and FPU are always optional.

• If the processor is configured with minimal debug, the ETM, MTB, and ITM
cannot be included.

• If the processor is configured with reduced set or full set debug, the ETM, MTB,
and ITM are optional.

• If the processor is configured with the reduced set or the full set debug, the
BPU and DWT are always included.

• The MPU_S is optional if the Security Extension is present.

• The SAU is included if the Security Extension is present.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

1.4.1 Processor core

The processor core provides:

• Limited dual-issue of common 16-bit instruction pairs.

• Integer divide unit with support for operand-dependent early termination.

• Support for interrupted continuable load and store multiple operations.

• Load and store operations that both support precise bus errors.

To support Arm Custom Instructions (ACIs), the processor core includes an optional CDE module.
This module is used to execute user-defined instructions that work on general-purpose registers.
See 8. Arm Custom Instructions on page 58 for more information.

1.4.2 Security attribution and memory protection

The Cortex®-M33 processor supports the Arm®v8‑M Protected Memory System Architecture
(PMSA) that provides programmable support for memory protection using a number of software
controllable regions.

Memory regions can be programmed to generate faults when accessed inappropriately by
unprivileged software reducing the scope of incorrectly written application code. The architecture
includes fault status registers to allow an exception handler to determine the source of the fault
and to apply corrective action or notify the system.

The Cortex®-M33 processor also includes optional support for defining memory regions as Secure
or Non-secure, as defined in the Arm®v8‑M Security Extension, and protecting the regions from
accesses with an inappropriate level of security.

Related information
Security Attribution and Memory Protection on page 43

1.4.3 Floating-Point Unit

The FPU provides:

• Instructions for single-precision (C programming language float type) data-processing
operations.

• Instructions for double-precision (C double type) load and store operations.

• Combined multiply-add instructions for increased precision (Fused MAC).

• Hardware support for

◦ Conversion

◦ Addition

◦ Subtraction
Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 13 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

◦ Multiplication with optional accumulate

◦ Division

◦ Square-root

• Hardware support for denormals and all IEEE Standard 754-2008 rounding modes.

• 32 32-bit single-precision registers or 16 64-bit double-precision registers.

• Lazy floating-point context save. Automated stacking of floating-point state is delayed until the
ISR attempts to execute a floating-point instruction. This reduces the latency to enter the ISR
and removes floating-point context save for ISRs that do not use floating-point.

To support Arm Custom Instructions (ACIs), the FPU includes a floating-point CDE module. This
module is used to execute user-defined instructions that work on floating-point registers. If the
optional FPU is not present, then the optional floating-point CDE module is not present either. See
8. Arm Custom Instructions on page 58 for more information.

Related information
Floating-Point Unit on page 50

1.4.4 Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is closely integrated with the core to achieve low-
latency interrupt processing.

Functions of the NVIC include:

• External interrupts, configurable from 1 to 480 using a contiguous or non-contiguous mapping.
This is configured at implementation.

• Configurable levels of interrupt priority from 8 to 256. This is configured at implementation.

• Dynamic reprioritization of interrupts.

• Priority grouping. This enables selection of preempting interrupt levels and non-preempting
interrupt levels.

• Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt
processing without the overhead of state saving and restoration between interrupts.

• Optional support for the Arm®v8‑M Security extension. Secure interrupts can be prioritized
above any Non-secure interrupt.

Related information
Nested Vectored Interrupt Controller on page 47

1.4.5 Cross Trigger Interface Unit

The optional CTI enables the debug logic, MTB, and ETM to interact with each other and with
other CoreSight™ components.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Related information
Cross Trigger Interface on page 79

1.4.6 ETM

The optional ETM provides instruction-only capabilities when configured.

See the Arm® CoreSight™ ETM‑M33 Technical Reference Manual for more information.

Related information
Useful resources on page 137

1.4.7 MTB

The MTB provides a simple low-cost execution trace solution for the Cortex®-M33 processor.

Trace is written to an SRAM interface, and can be extracted using a dedicated AHB slave interface
(M-AHB) on the processor. The MTB can be controlled by memory mapped registers in the PPB
region or by events generated by the DWT or through the CTI.

See the Arm® CoreSight™ MTB-M33 Technical Reference Manual for more information.

1.4.8 Debug and trace

Debug and trace components include a configurable Breakpoint Unit (BPU) for implementing
breakpoints, and configurable Data Watchpoint and Trace (DWT) unit for implementing watchpoints,
data tracing, and system profiling.

Other debug and trace components include:

• Optional ITM for support of printf() style debugging, using instrumentation trace.

• Interfaces suitable for:

◦ Passing on-chip data through a Trace Port Interface Unit (TPIU) to a Trace Port Analyzer (TPA),
including Serial Wire Output (SWO) mode.

◦ A ROM table to allow debuggers to determine which components are implemented in the
Cortex®-M33 processor

◦ Debugger access to all memory and registers in the system, including access to memory-
mapped devices, access to internal core registers when the core is halted, and access to
debug control registers even when reset is asserted.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

1.5 Interfaces
The processor has various external interfaces.

Code and System AHB interfaces
Harvard AHB bus architecture supporting exclusive transactions and security state.

System AHB interface
The System AHB (S-AHB) interface is used for any instruction fetch and data access to the
memory-mapped SRAM, Peripheral, External RAM and External device, or Vendor_SYS
regions of the Arm®v8‑M memory map.

Code AHB interface
The Code AHB (C-AHB) interface is used for any instruction fetch and data access to the
Code region of the Arm®v8‑M memory map.

External Private Peripheral Bus
The External PPB (EPPB) APB interface enables access to CoreSight-compatible debug and trace
components in a system connected to the processor.

Secure attribution interface
The processor has an interface that connects to an external Implementation Defined Attribution Unit
(IDAU), which enables your system to set security attributes based on address.

ATB interfaces
The ATB interfaces output trace data for debugging. The ATB interfaces are compatible with
the CoreSight architecture. See the Arm® CoreSight™ Architecture Specification v3.0 for more
information. The instruction ATB interface is used by the optional ETM, and the instrumentation
ATB interface is used by the optional Instrumentation Trace Macrocell (ITM).

Micro Trace Buffer interfaces
The Micro Trace Buffer (MTB) AHB slave interface and SRAM interface are for the optional
CoreSight Micro Trace Buffer.

Coprocessor interface
The coprocessor interface is designed for closely coupled external accelerator hardware.

Debug AHB interface
The Debug AHB (D-AHB) slave interface allows a debugger access to registers, memory, and
peripherals. The D-AHB interface provides debug access to the processor and the complete
memory map.

Cross Trigger Interface
The processor includes an optional Cross Trigger Interface (CTI) Unit that has an interface that is
suitable for connection to external CoreSight components using a Cross Trigger Matrix (CTM).

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 137

https://developer.arm.com/documentation/ihi0029/latest

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Power control interface
The processor optionally supports a number of internal power domains which can be enabled and
disabled using Q-channel interfaces connected to a Power Management Unit (PMU) in the system.

1.6 Compliance
The processor complies with, or implements, the relevant Arm® architectural standards and
protocols, and relevant external standards.

This book complements architecture reference manuals, architecture specifications, protocol
specifications, and relevant external standards. It does not duplicate information from these
sources.

Arm® architecture
The processor is compliant with the following:

• Arm®v8‑M Main Extension.

• Arm®v8‑M Security Extension.

• Arm®v8‑M Protected Memory System Architecture (PMSA).

• Arm®v8‑M Floating-point Extension.

• Arm®v8‑M Digital Signal Processing (DSP) Extension.

• Arm®v8‑M Debug Extension.

• Arm®v8‑M Flash Patch Breakpoint (FPB) architecture version 2.0.

• Arm®v8‑M Custom Datapath Extension (CDE).

Bus architecture
The processor provides external interfaces that comply with the AMBA 5 AHB5 protocol. The
processor also implements interfaces for CoreSight and other debug components using the APB4
protocol and ATBv1.1 part of the AMBA 4 ATB protocol.

For more information, see the:

• Arm® AMBA® AHB Protocol Specification.

• Arm® AMBA® 4 ATB Protocol Specification ATBv1.0 and ATBv1.1 .

The processor also provides a Q-Channel interface. See the AMBA® Low Power Interface
Specification

Debug
The debug features of the processor implement the Arm® debug interface architecture.

See the Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 137

https://developer.arm.com/documentation/ihi0033/latest
https://developer.arm.com/documentation/ihi0032/b/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0031/latest/

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Embedded Trace Macrocell
The trace features of the processor implement the Arm® Embedded Trace Macrocell (ETM) v4.2
architecture.

See the Arm® CoreSight™ ETM‑M33 Technical Reference Manual for more information.

Floating-Point Unit
The Cortex®-M33 processor with FPU supports single-precision arithmetic as defined by the
FPv5 architecture that is part of the Arm®v8‑M architecture. The FPU provides floating-point
computation functionality that is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard for
Binary Floating-Point Arithmetic.

1.7 Design process
The processor is delivered as synthesizable RTL that must go through implementation, integration,
and programming processes before you can use it in a product.

The following definitions describe each top-level process in the design flow:

Implementation
The implementer configures and synthesizes the RTL.

Integration
The integrator connects the implemented design into a SoC. This includes connecting it to a
memory system and peripherals.

Programming
The system programmer develops the software required to configure and initialize the
processor, and tests the required application software.

Each stage in the process can be performed by a different party. Implementation and integration
choices affect the behavior and features of the processor.

For MCUs, often a single design team integrates the processor before synthesizing the complete
design. Alternatively, the team can synthesize the processor on its own or partially integrated, to
produce a macrocell that is then integrated, possibly by a separate team.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the area, maximum
frequency, and features of the resulting macrocell.

Configuration inputs
The integrator configures some features of the processor by tying inputs to specific values.
These configurations affect the start-up behavior before any software configuration is made.
They can also limit the options available to the software.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

Software configuration
The programmer configures the processor by programming particular values into registers.
This affects the behavior of the processor.

This manual refers to implementation-defined features that are applicable to
build configuration options. Reference to a feature that is included means that
the appropriate build and pin configuration options are selected. Reference to an
enabled feature means one that has also been configured by software.

1.8 Documentation
The Cortex®-M33 processor documentation can help you complete the top-level processes of
implementation, integration, and programming that are required to use the product correctly.

The Cortex®-M33 processor documentation comprises a Technical Reference Manual, an
Integration and Implementation Manual, and User Guide Reference Material.

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the Cortex®-M33 processor. It is required at all stages of the
design flow. Some behavior described in the TRM might not be relevant because of the way
that the Cortex®-M33 processor is implemented and integrated. If you are programming the
Cortex®-M33 processor, then contact the implementer to determine:

• The build configuration of the implementation.

• What integration, if any, was performed before implementing the processor.

Integration and Implementation Manual
The Integration and Implementation Manual (IIM) describes:

• The available build configuration options and related issues in selecting them.

• How to configure the Register Transfer Level (RTL) with the build configuration options.

• How to integrate the processor into a SoC. This includes a description of the integration
kit and describes the pins that the integrator must tie off to configure the macrocell for
the required integration.

• The processes to sign off the integration and implementation of the design.

The Arm® product deliverables include reference scripts and information about using them to
implement your design.

Reference methodology documentation from your EDA tools vendor complements the IIM.

The IIM is a confidential book that is only available to licensees.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

User Guide Reference Material
This document provides reference material that Arm® partners can configure and include in a
User Guide for an Arm® Cortex®-M33 processor. Typically:

• Each chapter in this reference material might correspond to a section in the User Guide.

• Each top-level section in this reference material might correspond to a chapter in the
User Guide.

However, you can organize this material in any way, subject to the conditions of the license
agreement under which Arm® supplied the material.

See the Useful resources section for more information about the books that are associated with the
Cortex®-M33 processor.

Related information
Useful resources on page 137

1.9 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release.
r0p1 This release includes the following changes:

• Updated CPUID reset value, 0x410FD211.

• The Cortex®-M33 processor optionally supports stalls to guarantee the
delivery of trace packets. As a result, the ITM_TCR.STALLENA bit field is
now RW.

• Various engineering errata fixes.

r0p2 This release includes the following changes:

• Updated CPUID reset value, 0x410FD212.

• Various engineering errata fixes.

r0p3 This release includes the following changes:

• Updated CPUID reset value, 0x410FD213.

• Various engineering errata fixes.

r0p4 This release includes the following changes:

• Updated CPUID reset value, 0x410FD214.

• Various engineering errata fixes.

r1p0 This release includes the following changes:

• Updated CPUID reset value, 0x411FD210.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Introduction

• Implementation of the Custom Datapath Extension (CDE) with support for
the Arm Custom Instructions (ACIs).

• Support for Software Test Library (STL) and Software Built-In Self Test (SBIST)
controller.

• Various engineering errata fixes.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

2. Programmers Model
This chapter describes the Cortex®-M33 processor register set, modes of operation, and provides
other information for programming the processor.

2.1 About the programmers model
The Cortex®-M33 programmers model is an implementation of the Arm®v8‑M Main Extension
architecture.

For a complete description of the programmers model, refer to the Arm®v8‑M Architecture
Reference Manual, which also contains the Arm®v8‑M Thumb® instructions. In addition, other
options of the programmers model are described in the System Control, MPU, NVIC, FPU, Debug,
DWT, ITM, and TPIU features topics.

Related information
System Control on page 30
Security Attribution and Memory Protection on page 43
Nested Vectored Interrupt Controller on page 47
Floating-Point Unit on page 50
Debug on page 64
Data Watchpoint and Trace Unit on page 76
Instrumentation Trace Macrocell Unit on page 71

2.2 Modes of operation and execution
The Cortex®-M33 processor supports Secure and Non-secure security states, Thread and
Handler operating modes, and can run in either Thumb or Debug operating states. In addition,
the processor can limit or exclude access to some resources by executing code in privileged or
unprivileged mode.

See the Arm®v8-M Architecture Reference Manual for more information about the modes of
operation and execution.

Security states
When the Arm®v8‑M Security Extension is included in the processor, the programmers
model includes two orthogonal security states, Secure state and Non-secure state. When the
Security Extension is implemented, the processor always resets into Secure state. When the
security state is not implemented, the processor resets into Non-secure state. Each security
state includes a set of independent operating modes and supports both privileged and
unprivileged user access. Registers in the System Control Space are banked across Secure
and Non-secure state, with the Non-secure register view available at an aliased address to
Secure state. When the Arm®v8‑M Security Extension is not included in the processor, the
programmers model includes only the Non-secure state.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

Operating modes
For each security state, the processor can operate in Thread or Handler mode. The
conditions which cause the processor to enter Thread or Handler mode are as follows:

• The processor enters Thread mode on reset, or as a result of an exception return to
Thread mode. Privileged and Unprivileged code can run in Thread mode.

• The processor enters Handler mode as a result of an exception. All code is privileged in
Handler mode.

The processor can change security state on taking an exception, for example when a Secure
exception is taken from Non-secure state, the Thread mode enters the Secure state Handler
mode.

The processor can also call Secure functions from Non-secure state and Non-secure
functions from Secure state. The Security Extension includes requirements for these calls to
prevent secure data from being accessed in Non-secure state.

Operating states
The processor can operate in Thumb® or Debug state:

• Thumb® state is the state of normal execution running 16-bit and 32-bit halfword-
aligned Thumb® instructions.

• Debug state is the state when the processor is in Halting debug.

Privileged access and unprivileged user access
Code can execute as privileged or unprivileged. Unprivileged execution limits or excludes
access to some resources appropriate to the current security state. Privileged execution has
access to all resources available to the security state. Handler mode is always privileged.
Thread mode can be privileged or unprivileged.

2.3 Instruction set summary
The processor implements the following instruction from Arm®v8‑M:

• All base instructions.

• All instructions in the Main Extension.

• Optionally all instructions in the Security Extension.

• Optionally all instructions in the DSP Extension.

• Optionally all single-precision instructions and double precision load and store instructions in
the Floating-point Extension.

For more information about Arm®v8‑M instructions, see the Arm®v8‑M Architecture Reference
Manual.

The processor also implements Custom Datapath Extension (CDE) instructions. The CDE introduces
2×3 classes of instructions in the coprocessor instruction space:

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

• Three classes operate on the general-purpose register file.

• Three classes operate on the floating-point register file.

For specific information on the CDE instructions implemented in the processor, see 8. Arm Custom
Instructions on page 58. For general information on CDE instructions, see the Arm® Custom
Datapath Extension Architecture.

2.4 Memory model
The processor contains a bus matrix that arbitrates instruction fetches and memory accesses from
the processor core between the external memory system and the internal System Control Space
(SCS) and debug components.

Priority is usually given to the processor to ensure that any debug accesses are as non-intrusive as
possible.

The system memory map is Arm®v8‑M Main Extension compliant, and is common both to the
debugger and processor accesses.

The default memory map provides user and privileged access to all regions except for the Private
Peripheral Bus (PPB). The PPB space is privileged access only.

The following table shows the default memory map. This is the memory map that is used by
implementations without the optional MPUs, or when the included MPUs are disabled. The
attributes and permissions of all regions, except that targeting the NVIC and debug components,
can be modified using an implemented MPU.

Table 2-1: Default memory map

Address Range
(inclusive)

Region Interface

0x00000000 -
0x1FFFFFFF

Code Instruction and data accesses performed on C-AHB.

0x20000000 -
0x3FFFFFFF

SRAM

0x40000000 -
0x5FFFFFFF

Peripheral

0x60000000 -
0x9FFFFFFF

External
RAM

0xA0000000 -
0xDFFFFFFF

External
device

Instruction and data accesses performed on S-AHB. Any attempt to execute instructions from the
peripheral and external device region results in a MemManage fault.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

Address Range
(inclusive)

Region Interface

0xE0000000 -
0xE00FFFFF

PPB Reserved for system control and debug.

Cannot be used for exception vector tables. Data accesses are either performed internally or on EPPB.
Accesses in the range:

0xE0000000-0xE0043FFF
Are handled within the processor.

0xE0044000-0xE00FFFFF
Appear as APB transactions on the EPPB interface of the processor.

Any attempt to execute instructions from the region results in a MemManage fault.

0xE0100000 -
0xFFFFFFFF

Vendor_SYS Partly reserved for future processor feature expansion.

Any attempt to execute instructions from the region results in a MemManage fault.

Data accesses are performed on S-AHB

When the Arm®v8‑M Security Extension is included, the security level associated with an address
is determined by either the internal Secure Attribution Unit (SAU) or an external Implementation
Defined Attribution Unit (IDAU) in the system. Some internal peripherals have memory-mapped
registers in the PPB region which are banked between Secure and Non-secure state. When the
processor is in Secure state, software can access both the Secure and Non-secure versions of
these registers. The Non-secure versions are accessed using an aliased address. If the Arm®v8‑M
Security Extension is not included, all memory is treated as Non-secure.

See the Arm®v8-M Architecture Reference Manual for more information about the memory model.

2.4.1 Private Peripheral Bus

The Private Peripheral Bus (PPB) memory region provides access to internal and external processor
resources.

The internal PPB provides access to:

• The System Control Space (SCS), including the Memory Protection Unit (MPU), Secure Attribution
Unit (SAU), if included, and the Nested Vectored Interrupt Controller (NVIC).

• The Data Watchpoint and Trace (DWT) unit, if included.

• The Breakpoint Unit (BPU), if included.

• The Embedded Trace Macrocell (ETM), if included.

• CoreSight Micro Trace Buffer (MTB), if included.

• Cross Trigger Interface (CTI), if included.

• The ROM table.

The external PPB (EPPB) provides access to implementation-specific external areas of the PPB
memory map.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

2.4.2 Unaligned accesses

The Cortex®-M33 processor supports unaligned accesses. They are converted into two or more
aligned AHB transactions on the C-AHB or S-AHB master ports on the processor.

Unaligned support is only available for load/store singles (LDR, LDRH, STR, STRH, TBH) to
addresses in Normal memory. Load/store double and load/store multiple instructions already
support word aligned accesses, but do not permit other unaligned accesses, and generate a fault
if this is attempted. Unaligned accesses in Device memory are not permitted and fault. Unaligned
accesses that cross memory map boundaries are architecturally UNPREDICTABLE.

If CCR.UNALIGN_TRP for the current Security state is set, any unaligned accesses
generate a fault.

2.5 Exclusive monitor
The Cortex®-M33 processor implements a local exclusive monitor. The local monitor within the
processor has been constructed so that it does not hold any physical address, but instead treats
any store-exclusive access as matching the address of the previous load-exclusive. This means that
the implemented exclusives reservation granule is the entire memory address range.

For more information about semaphores and the local exclusive monitor, see the Arm®v8‑M
Architecture Reference Manual.

2.6 Processor core registers summary
The following table shows the processor core register set summary. Each of these registers is 32
bits wide. When the Arm®v8‑M Security Extension is included, some of the registers are banked.
The Secure view of these registers is available when the Cortex®-M33 processor is in Secure state
and the Non-secure view when Cortex®-M33 processor is in Non-secure state.

Table 2-2: Processor core register set summary

Name Description

R0-R12 R0-R12 are general-purpose registers for data operations.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

Name Description

MSP (R13)

PSP (R13)

The Stack Pointer (SP) is register R13. In Thread mode, the CONTROL register indicates the stack pointer to use, Main Stack
Pointer (MSP) or Process Stack Pointer (PSP).

When the Arm®v8‑M Security Extension is included, there are two MSP registers in the Cortex®-M33 processor:

• MSP_NS for the Non-secure state.

• MSP_S for the Secure state.

When the Arm®v8‑M Security Extension is included, there are two PSP registers in the Cortex®-M33 processor:

• PSP_NS for the Non-secure state.

• PSP_S for the Secure state.

MSPLIM

PSPLIM

The stack limit registers limit the extent to which the MSP and PSP registers can descend respectively.
When the Arm®v8‑M Security Extension is included, there are two MSPLIM registers in the Cortex®-M33 processor:

• MSPLIM_NS for the Non-secure state.

• MSPLIM_S for the Secure state.

When the Arm®v8‑M Security Extension is included, there are two PSPLIM registers in the Cortex®-M33 processor:

• PSPLIM_NS for the Non-secure state.

• PSPLIM_S for the Secure state.

LR (R14) The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the current program address.

PSR The Program Status Register (PSR) combines:

• Application Program Status Register (APSR).

• Interrupt Program Status Register (IPSR).

• Execution Program Status Register (EPSR).

These registers provide different views of the PSR.

PRIMASK The PRIMASK register prevents activation of exceptions with configurable priority. For information about the exception
model the processor supports, see 2.7 Exceptions on page 28.

When the Arm®v8‑M Security Extension is included, there are two PRIMASK registers in the Cortex®-M33 processor:

• PRIMASK_NS for the Non-secure state.

• PRIMASK_S for the Secure state.

BASEPRI The BASEPRI register defines the minimum priority for exception processing.

When the Arm®v8‑M Security Extension is included, there are two BASEPRI registers in the Cortex®-M33 processor:

• BASEPRI_NS for the Non-secure state.

• BASEPRI_S for the Secure state.

FAULTMASK The FAULTMASK register prevents activation of all exceptions except for NON-MASKABLE INTERRUPT (NMI) and optionally
Secure HardFault.

When the Arm®v8‑M Security Extension is included, there are two FAULTMASK registers in the Cortex®-M33 processor:

• FAULTMASK_NS for the Non-secure state.

• FAULTMASK_S for the Secure state.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

Name Description

CONTROL The CONTROL register controls the stack used, and optionally the privilege level, when the processor is in Thread mode.

When the Arm®v8‑M Security Extension is included, there are two CONTROL registers in the Cortex®-M33 processor:

• CONTROL_NS for the Non-secure state.

• CONTROL_S for the Secure state.

See the Arm®v8-M Architecture Reference Manual for information about the
processor core registers and their addresses, access types, and reset values.

2.7 Exceptions
Exceptions are handled and prioritized by the processor and the NVIC. In addition to architecturally
defined behavior, the processor implements advanced exception and interrupt handling that
reduces interrupt latency and includes implementation defined behavior.

2.7.1 Exception handling and prioritization

The processor core and the Nested Vectored Interrupt Controller (NVIC) together prioritize and
handle all exceptions.

When handling exceptions:

• All exceptions are handled in Handler mode.

• Processor state is automatically stored to the stack on an exception, and automatically restored
from the stack at the end of the Interrupt Service Routine (ISR).

• The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

The processor supports tail-chaining that enables back-to-back interrupts without the overhead of
state saving and restoration.

You configure the number of interrupts, and bits of interrupt priority, during implementation.
Software can choose only to enable a subset of the configured number of interrupts, and can
choose how many bits of the configured priorities to use.

When the Arm®v8‑M Security Extension is included, exceptions can be specified as either Secure
or Non-secure. When an exception is taken the processor switches to the associated security state.
The priority of Secure and Non-secure exceptions can be programmed independently. It is possible
to deprioritize Non-secure configurable exceptions using the AIRCR.PRIS bit field to enable Secure
interrupts to take priority.

When taking and returning from an exception, the register state is always stored using the stack
pointer associated with the background security state. When taking a Non-secure exception from

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Programmers Model

Secure state, all the register state is stacked and then registers are cleared to prevent Secure data
being available to the Non-secure handler. The vector base address is banked between Secure
and Non-secure state. VTOR_S contains the Secure vector base address, and VTOR_NS contains
the Non-secure vector base address. These registers can be programmed by software, and also
initialized at reset by the system. If the Arm®v8‑M Security Extension is not included all exceptions
are Non-secure and only VTOR_NS is used to determine the vector base address.

Vector table entries are compatible with interworking between Arm® and Thumb®

instructions. This causes bit[0] of the vector value to load into the Execution Program
Status Register (EPSR) T-bit on exception entry. All populated vectors in the vector
table entries must have bit[0] set. Creating a table entry with bit[0] clear generates
an INVSTATE fault on the first instruction of the handler corresponding to this
vector.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

3. System Control
This chapter describes registers that contain IMPLEMENTATION DEFINED information or functionality.

3.1 System control register summary
The system control registers are a combination of fully architectural and IMPLEMENTATION DEFINED
32-bit registers and can be set to control various processor features.

The following table shows a summary of the system control registers.

For more information on the architectural registers that are listed in the following table, see the
Arm®v8-M Architecture Reference Manual.

Table 3-1: System control register summary

Address Name Type Reset value Description

0xE000ED00 CPUID RO 0x411FD210 3.5 CPUID Base
Register on page
41

0xE000ED04 ICSR RW 0x00000000 Interrupt Control
and State Register

0xE000ED08 VTOR RW 0xXXXXXXX0
Note:
Bits [31:7] of VTOR_S are based on INITSVTOR[31:7]. Bits [31:7] of VTOR_NS
are based on INITNSVTOR[31:7].

Bits [6:0] are RES0.

Vector Table Offset
Register

0xE000ED0C AIRCR RW 0xFA05X000
Note:
Bit [15] of this register depends on input signal CFGBIGEND. Bits [14:0] reset
to zero.

Application
Interrupt and Reset
Control Register

0xE000ED10 SCR RW 0x00000000 System Control
Register

0xE000ED14 CCR RW 0x00000201 Configuration and
Control Register

0xE000ED18 SHPR1 RW 0x00000000 System Handler
Priority Register 1

0xE000ED1C SHPR2 RW 0x00000000 System Handler
Priority Register 2

0xE000ED20 SHPR3 RW 0x00000000 System Handler
Priority Register 3

0xE000ED24 SHCSR RW 0x00000000 System Handler
Control and State
Register

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Name Type Reset value Description
CFSR RW 0x00000000 Configurable Fault

Status Register

A 32-bit register
comprising MMFSR,
BFSR, and UFSR

0xE000ED28

MMFSR RW 0x00 MemManage Fault
Status Register

0xE000ED29 BFSR RW 0x00 BusFault Status
Register

0xE000ED2A UFSR RW 0x0000 UsageFault Status
Register

0xE000ED2C HFSR RW 0x00000000 HardFault Status
Register

0xE000ED30 DFSR RW 0x00000000
Cold reset only.

Debug Fault Status
Register

0xE000ED34 MMFAR RW - MemManage Fault
Address Register

0xE000ED38 BFAR RW - BusFault Address
Register

0xE000ED3C AFSR RW 0x00000000 -

0xE000ED40 ID_PFR0 RO 0x00000030
Note:
ID_PFR0[31:28] indicates support for the RAS Extension. ID_PFR0[31:28] is
0b0010 indicating that version 1 is implemented.

-

0xE000ED44 ID_PFR1 RO 0x000002X0
Note:
• ID_PFR1[7:4] indicates support for the Security Extension.

• If the Security Extension is supported, then ID_PFR1[7:4] is 0b0011.

• If the Security Extension is not included, then ID_PFR1[7:4] is 0b0000.

Processor Feature
Register 1

0xE000ED48 ID_DFR0 RO 0x00X00000 Debug Feature
Register 0

0xE000ED4C ID_AFR0 RO The reset value of ID_AFR0 for the Cortex®-M33 processor is dependent on the
configuration of the processor.

ID_AFR0[7:0] reflects the Verilog parameter CDERTLID set at Synthesis
time. ID_AFR0[15:8] is dependent on the processor top-level input signal.
CFGNOCDECP and Verilog parameters CDEMAPPEDONCPn.

ID_AFR0[8+n] = (CDEMAPPEDONCPn != 0) & ~CFGNOCDECP[n];

where 0 <= n < 7.

ID_AFR0[31:16] is 0x0000.

Auxiliary Feature
Register 0

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Name Type Reset value Description
0xE000ED50 ID_MMFR0 RO 0x00101F40

Note:
• ID_MMFR0[23:20] indicates support of Auxiliary Control registers.

ID_MMFR0[19:16] indicates support of TCMs.

• ID_MMFR0[15:12] indicates that two levels of Shareability are
implemented. ID_MMFR0[11:8] indicates that the Outermost Shareability
is implemented as Non-cacheable.

• ID_MMFR0[7:4] indicates PMSAv8 support. All other bits are RES0.

Memory Model
Feature Register 0

0xE000ED54 ID_MMFR1 RO 0x00000000 Memory Model
Feature Register 1

0xE000ED58 ID_MMFR2 RO 0x01000000
Note:
ID_MMFR2[27:24] indicates that WFI can stall. All other bits are RES0.

Memory Model
Feature Register 2

0xE000ED5C ID_MMFR3 RO 0x00000000 Memory Model
Feature Register 3

0xE000ED60 ID_ISAR0 RO 0x011X1110

ID_ISAR0[19:16] depend on whether the external coprocessor interface is
included in the processor.

• If the external coprocessor is not included, there is no coprocessor
instruction support, except the FPU. The value of X is 0x0.

• If the external coprocessor is included, coprocessor instruction support is
included. The value of X is 0x4.

Instruction Set
Attribute Register 0

0xE000ED64 ID_ISAR1 RO 0x0221X000

The value of ID_ISAR1[15:12] depends on the inclusion of the Arm®v8‑M Digital
Signal Processing (DSP) extension which is controlled by the Verilog parameter
DSP at synthesis.

If DSP is 0:

ID_ISAR1[15:12] = 0b0001; ID_ISAR1 = 0x2211000

If DSP != 0:

ID_ISAR1[15:12] = 0b0010; ID_ISAR1 = 0x2212000

Instruction Set
Attribute Register 1

0xE000ED68 ID_ISAR2 RO 0x20232232 Instruction Set
Attribute Register 2

0xE000ED6C ID_ISAR3 RO 0x01111131 Instruction Set
Attribute Register 3

0xE000ED70 ID_ISAR4 RO 0x01310132 Instruction Set
Attribute Register 4

0xE000ED74 ID_ISAR5 RO 0x00000000 Instruction Set
Attribute Register 5

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Name Type Reset value Description
0xE000ED78 CLIDR RO 0xXXX0000X

Note:
CLIDR[31:21] and CLIDR[2:0] depend on the cache configuration of the
processor.

0xE000ED7C CTR RO • If an instruction cache or data cache is included, then the reset value is
0x8303C003.

• If an instruction cache or data cache is not included, then the reset value is
0x00000000.

Cache Type Register

0xE000ED80 CCSIDR RO 0xXXXXXXXX
Note:
CCSIDR depends on the CSSELR setting and L1 cache configuration.

0xE000ED84 CSSELR RW 0x00000000

0xE000ED88 CPACR RW 0x00000000 Coprocessor Access
Control Register

0xE000ED8C NSACR RW 0x00000000 Non-secure Access
Control Register

3.2 Identification register summary
Identification registers allow software to determine the features and functionality available in the
implemented processor.

Each of these registers is 32 bits wide. The following table shows the identification registers.

If the Arm®v8‑M Security Extension is not included, then only the Non-secure
entries are available and the entire alias space is RAZ/WI.

Table 3-2: Identification register summary

Address Register Type Processor
security state

Reset value Description

Secure CPUID Base Register0xE000ED00 CPUID RO

Non-secure CPUID Base Register (NS)

Secure

0x411FD210

CPUID Base Register (NS)0xE002ED00 CPUID_NS RO

Non-secure RAZ/WI

Secure Processor Feature Register 00xE000ED40 ID_PFR0 RO

Non-secure Processor Feature Register 0
(NS)

Secure

0x00000030

Processor Feature Register 0
(NS)

0xE002ED40 ID_PFR0_NS RO

Non-secure RAZ/WI

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Register Type Processor
security state

Reset value Description

Secure Processor Feature Register 10xE000ED44 ID_PFR1 RO

Non-secure Processor Feature Register 1
(NS)

Secure

0x000002x03

Processor Feature Register 1
(NS)

0xE002ED44 ID_PFR1_NS RO

Non-secure RAZ/WI

Secure Debug Feature Register 00xE000ED48 ID_DFR0 RO

Non-secure Debug Feature Register 0 (NS)

Secure

0x00200000

0x2

Debug Feature Register 0 (NS)0xE002ED48 ID_DFR0_NS RO

Non-secure RAZ/WI

Secure Auxiliary Feature Register 00xE000ED4C ID_AFR0 RO

Non-secure Auxiliary Feature Register 0
(NS)

Secure

Depends on the CDEMAPPEDONCP and
CDERTLID parameters.

Auxiliary Feature Register 0
(NS)

0xE002ED4C ID_AFR0_NS RO

Non-secure RAZ/WI

Secure Memory Model Feature
Register 0

0xE000ED50 ID_MMFR0 RO

Non-secure Memory Model Feature
Register 0 (NS)

Secure

0x00101F40

Memory Model Feature
Register 0 (NS)

0xE002ED50 ID_MMFR0_NS RO

Non-secure RAZ/WI

Secure Memory Model Feature
Register 1

0xE000ED54 ID_MMFR1 RO

Non-secure Memory Model Feature
Register 1 (NS)

Secure

0x00000000

Memory Model Feature
Register 1 (NS)

0xE002ED54 ID_MMFR1_NS RO

Non-secure RAZ/WI

Secure Memory Model Feature
Register 2

0xE000ED58 ID_MMFR2 RO

Non-secure Memory Model Feature
Register 2 (NS)

Secure

0x01000000

Memory Model Feature
Register 2 (NS)

0xE002ED58 ID_MMFR2_NS RO

Non-secure RAZ/WI

Secure Memory Model Feature
Register 3

0xE000ED5C ID_MMFR3 RO

Non-secure Memory Model Feature
Register 3 (NS)

Secure

0x00000000

Memory Model Feature
Register 3 (NS)

0xE002ED5C ID_MMFR3_NS RO

Non-secure RAZ/WI

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Register Type Processor
security state

Reset value Description

Secure Instruction Set Attributes
Register 0

0xE000ED60 ID_ISAR0 RO

Non-secure Instruction Set Attributes
Register 0 (NS)

Secure

0x011x11105

Instruction Set Attributes
Register 0 (NS)

0xE002ED60 ID_ISAR0_NS RO

Non-secure RAZ/WI

Secure Instruction Set Attributes
Register 1

0xE000ED64 ID_ISAR1 RO

Non-secure Instruction Set Attributes
Register 1 (NS)

Secure

0x0221x0006

Instruction Set Attributes
Register 1 (NS)

0xE002ED64 ID_ISAR1_NS RO

Non-secure RAZ/WI

Secure Instruction Set Attributes
Register 2

0xE000ED68 ID_ISAR2 RO

Non-secure Instruction Set Attributes
Register 2 (NS)

Secure

0x20xx22326

Instruction Set Attributes
Register 2 (NS)

0xE002ED68 ID_ISAR2_NS RO

Non-secure RAZ/WI

Secure Instruction Set Attributes
Register 3

0xE000ED6C ID_ISAR3 RO

Non-secure Instruction Set Attributes
Register 3 (NS)

Secure

0x011111xx6

Instruction Set Attributes
Register 3 (NS)

0xE002ED6C ID_ISAR3_NS RO

Non-secure RAZ/WI

Secure Instruction Set Attributes
Register 4

0xE000ED70 ID_ISAR4 RO

Non-secure Instruction Set Attributes
Register 4 (NS)

Secure

0x01310132

Instruction Set Attributes
Register 4 (NS)

0xE002ED70 ID_ISAR4_NS RO

Non-secure RAZ/WI

Secure Cache Level ID Register0xE000ED78 CLIDR RO

Non-secure Cache Level ID Register (NS)

Secure

0x00000000

Cache Level ID Register (NS)0xE002ED78 CLIDR _NS RO

Non-secure RAZ/WI

Secure Cache Type Register0xE000ED7C CTR RO

Non-secure Cache Type Register (NS)

Secure

0x8000C000

Cache Type Register (NS)0xE002ED7C CTR_NS RO

Non-secure RAZ/WI

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Register Type Processor
security state

Reset value Description

Secure Media and VFP Feature
Register 0

0xE000EF40 MVFR0 RO

Non-secure Media and VFP Feature
Register 0 (NS)

Secure

0x101100214

Media and VFP Feature
Register 0 (NS)

0xE002EF40 MVFR0_NS RO

Non-secure RAZ/WI

Secure Media and VFP Feature
Register 1

0xE000EF44 MVFR1 RO

Non-secure Media and VFP Feature
Register 1 (NS)

Secure

0x110000114

Media and VFP Feature
Register 1 (NS)

0xE002EF44 MVFR1_NS RO

Non-secure RAZ/WI

Secure Media and VFP Feature
Register 2

0xE000EF48 MVFR2 RO

Non-secure Media and VFP Feature
Register 2 (NS)

Secure

0x000000404

Media and VFP Feature
Register 2 (NS)

0xE002EF48 MVFR2_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 4

0xE000EFD0 PIDR4 RO

Non-secure CoreSight Peripheral ID
Register 4 (NS)

Secure

0x00000004

CoreSight Peripheral ID
Register 4 (NS)

0xE002EFD0 PIDR4_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 5

0xE000EFD4 PIDR5 RO

Non-secure CoreSight Peripheral ID
Register 5 (NS)

Secure

0x00000000

CoreSight Peripheral ID
Register 5 (NS)

0xE002EFD4 PIDR5_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 6

0xE000EFD8 PIDR6 RO

Non-secure CoreSight Peripheral ID
Register 6 (NS)

Secure

0x00000000

CoreSight Peripheral ID
Register 6 (NS)

0xE002EFD8 PIDR6_NS RO

Non-secure RAZ/WI

0xE000EFDC PIDR7 RO Secure 0x00000000 CoreSight Peripheral ID
Register 7

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Register Type Processor
security state

Reset value Description

Non-secure CoreSight Peripheral ID
Register 7 (NS)

Secure CoreSight Peripheral ID
Register 7 (NS)

0xE002EFDC PIDR7_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 0

0xE000EFE0 PIDR0 RO

Non-secure CoreSight Peripheral ID
Register 0 (NS)

Secure

0x00000021

CoreSight Peripheral ID
Register 0 (NS)

0xE002EFE0 PIDR0_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 1

0xE000EFE4 PIDR1 RO

Non-secure CoreSight Peripheral ID
Register 1 (NS)

Secure

0x000000BD

CoreSight Peripheral ID
Register 1 (NS)

0xE002EFE4 PIDR1_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 2

0xE000EFE8 PIDR2 RO

Non-secure CoreSight Peripheral ID
Register 2 (NS)

Secure

0x0000000B

CoreSight Peripheral ID
Register 2 (NS)

0xE002EFE8 PIDR2_NS RO

Non-secure RAZ/WI

Secure CoreSight Peripheral ID
Register 3

0xE000EFEC PIDR3 RO

Non-secure CoreSight Peripheral ID
Register 3 (NS)

Secure

0x000000001

CoreSight Peripheral ID
Register 3 (NS)

0xE002EFEC PIDR3_NS RO

Non-secure RAZ/WI

Secure CoreSight Component ID
Register 0

0xE000EFF0 CIDR0 RO

Non-secure CoreSight Component ID
Register 0 (NS)

Secure

0x0000000D

CoreSight Component ID
Register 0 (NS)

0xE002EFF0 CIDR0_NS RO

Non-secure RAZ/WI

Secure CoreSight Component ID
Register 1

0xE000EFF4 CIDR1 RO

Non-secure

0x00000090

CoreSight Component ID
Register 1 (NS)

1 Dependent on the exact revision of the silicon as documented in Arm® CoreSight™ Architecture Specification v3.0.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 137

https://developer.arm.com/documentation/ihi0029/latest

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Address Register Type Processor
security state

Reset value Description

Secure CoreSight Component ID
Register 1 (NS)

0xE000EFF4 CIDR1_NS RO

Non-secure RAZ/WI

Secure CoreSight Component ID
Register 2

0xE002EFF8 CIDR2 RO

Non-secure CoreSight Component ID
Register 2 (NS)

Secure

0x00000005

CoreSight Component ID
Register 2 (NS)

0xE002EFF8 CIDR2_NS RO

Non-secure RAZ/WI

Secure CoreSight Component ID
Register 3

0xE000EFFC CIDR3 RO

Non-secure CoreSight Component ID
Register 3 (NS)

Secure

0x000000B1

CoreSight Component ID
Register 3 (NS)

0xE002EFFC CIDR3_NS RO

Non-secure RAZ/WI

Secure CoreSight Device Architecture
Register

0xE000EFBC DDEVARCH RO

Non-secure CoreSight Device Architecture
Register (NS)

Secure

0x47702A04

CoreSight Device Architecture
Register (NS)

0xE002EFBC DDEVARCH_NS RO

Non-secure RAZ/WI

3.3 Configuration and Control Register
The Configuration and Control Register permanently enables stack alignment and causes unaligned
accesses to result in a Hard Fault.

The register address, access type, and reset value are:

Address
0xE000ED14

2 When minimal debug support is implemented, this value is 0x00000000.
3 ID_PFR1[7:4] indicates support for the Arm®v8‑M Security Extension. ID_PFR1[7:4] reads as 0b0001 if the

Security Extension is supported otherwise ID_PFR1[7:4] reads as 0b0000.
4 When the FPU is not implemented, this value is 0x00000000.
5 ID_ISAR0[19:16] depend on whether the external coprocessor interface is included in the processor.
6 ID_ISAR1[15:12], ID_ISAR2[31:28], ID_ISAR2[23:16] and ID_ISAR3[7:0] depend on whether theArm®v8‑M DSP

extension is included in the processor.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Access
Read-only

Reset value
0x00000201

Figure 3-1: Configuration and Control Register bit assignments on page 39 shows the bit
assignments of the Configuration and Control Register.

Figure 3-1: Configuration and Control Register bit assignments

31 03 2

Reserved

UNALIGN_TRP

48

Reserved

910

STKOFHFNMIGN

(1)

BFHFNMIGN
DIV_0_TRP

1

USERSETMPEND

(0) (1)

Table 3-3: Configuration and Control Register bit assignments on page 39 lists the bit
assignments of the Configuration and Control Register.

Table 3-3: Configuration and Control Register bit assignments

Bits Field Function

[31:11] - Reserved.

[10] STKOFHFNMIGN Controls the effect of a stack limit violation while executing at a requested priority less than 0 for the Security
state with which the stack limit register is associated.

[9] - Reserved.

[8] BFGFNMIGN Determines the effect of precise Bus Faults arising from data accesses performed by code running at a
requested priority less than 0.

[7:5] - Reserved.

[4] DIV_0_TRP Controls the generation of a divide by Zero Usage fault when attempting to perform integer division by 0.

[3] UNALIGN_TRP Indicates that all unaligned accesses results in a Hard Fault. Trap for unaligned access is fixed at 1.

[2:0] - Reserved.

3.4 Auxiliary Control Register
The ACTLR Register contains a number of fields that allow software to control the processor
features and functionality.

Usage
constraints

Privileged access permitted only. Unprivileged accesses generate a fault.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Configurations This register is always implemented.
Attributes A 32-bit RW register located at 0xE000E008. Non-secure alias is provided

using ACTLR_NS, located at 0xE002E008. This register is banked between
Security domains.

Field Name Description

[31:30] Reserved These bits are reserved for software testing purposes only.

[29] EXTEXCLALL 0= Normal operation; memory requests on C-AHB or S-AHB interfaces associated with LDREX and STREX
instructions or LDAEX and STLEX instructions only assert HEXCL and respond to HEXOKAY if the address is
shareable.

1= All memory requests on C-AHB or S-AHB interfaces associated with LDREX and STREX instructions
or LDAEX and STLEX instructions assert HEXCL and respond to HEXOKAY irrespective of the shareable
attribute associated with the address.

Setting EXTEXCLALL allows external exclusive operations to be used in a configuration with no MPU. This is
because the default memory map does not include any shareable Normal memory.

[28:14] Reserved These bits are reserved for future use and must be treated as UNK/SBZP

[13] SBIST 0= Reset and recommended value.

1= Features enabled internally by Software Test Library (STL). This is restored to the original value when the
STL exists.

See the Arm® Cortex®-M33 STL User Guide for more information about the STL.

[12] DISITMATBFLUSH 0= Normal operation.

1= ITM/DWT ATB flush disabled.

When disabled AFVALID is ignored and AFREADY is held HIGH.

[11] Reserved This bit is reserved for future use and must be treated as UNK/SBZP

[10] FPEXCODIS 0= normal operation

1= FPU exception outputs are disabled

See Floating-point Unit Chapter for more information about the FPU exception outputs.

[9] DISOOFP 0= normal operation

1= disables floating-point instructions completing out of order with respect to non-floating-point
instructions.

[8:3] Reserved These bits are reserved for future use and must be treated as UNK/SBZP.

[2] DISFOLD 0= normal operation.

1= dual-issue functionality is disabled

Note:
Setting this bit decreases performance.

[1] Reserved These bits are reserved for future use and must be treated as UNK/SBZP.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

Field Name Description
[0] DISMCYCINT 0= normal operation.

1= disables interruption of multi-cycle instructions. This increases the interrupt latency of the processor
because load/store and multiply/divide operations complete before interrupt stacking occurs.

3.5 CPUID Base Register
The CPUID Register specifies the ID number, the version number, and implementation details of
the processor core.

Usage Constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only, sub-word transactions are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
Described in the System control registers table.

The following figure shows the CPUID bit assignments.

Figure 3-2: CPUID bit assignments

31 16 15 4 3 0

IMPLEMENTER REVISIONPARTNO

24 23 20 19

VARIANT (Constant)

The following table shows the CPUID bit assignments.

Table 3-5: CPUID bit assignments

Bits NAME Function

[31:24] IMPLEMENTER Indicates implementer: 0x41 = Arm®

[23:20] VARIANT Indicates processor revision: 0x1 = Revision 1

[19:16] (Constant) Reads as 0xF

[15:4] PARTNO Indicates part number: 0xD21 = Cortex®-M33

[3:0] REVISION Indicates patch release: 0x0 = Patch 0

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

System Control

3.6 Auxiliary Feature Register 0
The ID_AFR0 register provides information about the IMPLEMENTATION DEFINED features of the
processor.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
A 32-bit read-only register located at 0xE000ED4C for Secure world. Software can access
the Non-secure version of this register using ID_AFR0_NS located at 0xE002ED4C.
0xE002ED4C is RES0 to software executing in Non-secure state and the debugger. This
register is not banked between security states.

Figure 3-3: ID_AFR0 bit assignments

31 8 7 0

CDERTLIDRES0

1516

CDECP

Table 3-6: ID_AFR0 bit assignments

Field Name Description

[31:16] RES0 Reserved

[15:8] CDECP Indicates for each coprocessor whether it is used by a CDE module and not by the coprocessor interface:

0
Coprocessor used by the coprocessor interface

1
Coprocessor used by a CDE module

[7:0] CDERTLID Software can use this field to read the value of the CDERTLID parameter. This parameter manages the CDE
customization that might be needed in systems with more than one Cortex®-M33 processor.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Security Attribution and Memory Protection

4. Security Attribution and Memory
Protection

This chapter describes the security attribution and memory protection facilities that the Cortex®-
M33 processor provides.

4.1 About security attribution and memory protection
Security attribution and memory protection in the processor is provided by the optional Security
Attribution Unit (SAU) and the optional Memory Protection Units (MPUs).

The SAU is a programmable unit that determines the security of an address. The SAU is only
implemented if the Arm®v8‑M Security Extension is included in the processor. The number of
regions that are included in the SAU can be configured in the Cortex®-M33 implementation to be
0, 4 or 8.

For instructions and data, the SAU returns the security attribute that is associated with the address.

For instructions, the attribute determines the allowable Security state of the processor when the
instruction is executed. It can also identify whether code at a Secure address can be called from
Non-secure state.

For data, the attribute determines whether a memory address can be accessed from Non-secure
state, and also whether the external memory request is marked as Secure or Non-secure.

If a data access is made from Non-secure state to an address marked as Secure, then a SecureFault
exception is taken by the processor. If a data access is made from Secure state to an address
marked as Non-secure, then the associated memory access is marked as Non-secure.

The security level returned by the SAU is a combination of the region type defined in the internal
SAU, if configured, and the type that is returned on the associated Implementation Defined
Attribution Unit (IDAU). If an address maps to regions defined by both internal and external
attribution units, the region of the highest security level is selected.

Table 4-1: Examples of Highest Security Level Region

IDAU SAU Region Final Security

S X S

X S S

NS S-NSC S-NSC

NS NS NS

S-NSC NS S-NSC

The register fields SAU_CTRL.EN and SAU_CTRL.ALLNS control the enable state of the SAU and
the default security level when the SAU is disabled. Both SAU_CTRL.EN and SAU_CTRL.ALLNS

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Security Attribution and Memory Protection

reset to zero disabling the SAU and setting all memory, apart from some specific regions in the
PPB space to Secure level. If the SAU is not enabled, and SAU_CTRL.ALLNS is zero, then the IDAU
cannot set any regions of memory to a security level lower than Secure, for example Secure NSC or
NS. If the SAU is enabled, then SAU_CTRL.ALLNS does not affect the Security level of memory.

The Cortex®-M33 processor supports the Arm®v8‑M Protected Memory System Architecture
(PMSA). The MPU is an optional component and, when implemented, provides full support for:

• Protection regions.

• Access permissions.

• Exporting memory attributes to the system.

MPU mismatches and permission violations invoke the MemManage handler.

See the Arm®v8-M Architecture Reference Manual for more information.

You can use the MPU to:

• Enforce privilege rules.

• Separate processes.

• Manage memory attributes.

The MPU can be configured to support 0, 4, 8, 12 or 16 memory regions.

If the Arm®v8‑M Security Extension is included in the Cortex®-M33 processor, the MPU is banked
between Secure and Non-secure states. The number of regions in the Secure and Non-secure
MPU can be configured independently and each can be programmed to protect memory for the
associated Security state.

4.2 SAU register summary
Each of these registers is 32 bits wide. The following table shows the SAU register summary.

Address Name Type Reset value Processor security state Description

RW 0x00000000 Secure SAU Control register0xE000EDD0 SAU_CTRL

Non-secure RAZ/WI

RO 0000000x7 Secure SAU Type register0xE000EDD4 SAU_TYPE

Non-secure RAZ/WI

RW UNKNOWN Secure SAU Region Number Register0xE000EDD8 SAU_RNR

Non-secure RAZ/WI

RW UNKNOWN Secure SAU Region Base Address RegisterE000EDDC SAU_RBAR

Non-secure RAZ/WI

0xE000EDE0 RW UNKNOWN Secure SAU Region Limit Address RegisterSAU_RLAR

Non-secure RAZ/WI

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Security Attribution and Memory Protection

See the Arm®v8-M Architecture Reference Manual for more information about the SAU registers and
their addresses, access types, and reset values.

4.3 MPU register summary
The Memory Protection Unit (MPU) has various registers associated to its function.

Each of these registers is 32 bits wide. If the MPU is not present in the implementation, then all of
these registers read as zero. The following table shows the MPU register summary.

Table 4-3: MPU register summary

Address Name Type Reset value Processor security
state

Description

RO 0x0000xx008 Secure MPU Type Register (S)0xE000ED90 MPU_TYPE

0x0000xx009 Non-secure MPU Type Register (NS)

0x0000xx009 Secure MPU Type Register (NS)0xE002ED90 MPU_TYPE_NS

Non-secure RAZ/WI

RW 0x00000000 Secure MPU Control Register (S)0xE000ED94 MPU_CTRL

0x00000000 Non-secure MPU Control register (NS)

0x00000000 Secure MPU Control register (NS)0xE002ED94 MPU_CTRL_NS

Non-secure RAZ/WI

RW UNKNOWN Secure MPU Region Number Register (S)0xE000ED98 MPU_RNR

UNKNOWN Non-secure MPU Region Number Register (NS)

RW UNKNOWN Secure MPU Region Number Register (NS)0xE002ED98 MPU_ RNR_NS

Non-secure RAZ/WI

RW UNKNOWN Secure MPU Region Base Address Register
Aliases 0-3 (S)

0xE000ED9C MPU_RBAR_A0-
MPU_RBAR_A3

UNKNOWN Non-secure MPU Region Base Address Register
Aliases 0-3 (NS)

RW UNKNOWN Secure MPU Region Base Address Register
Aliases 0-3 (NS)

0xE002ED9C MPU_RBAR_A_0_NS-
MPU_RBAR_A_3_NS

Non-secure RAZ/WI

RW UNKNOWN Secure MPU Region Limit Address Register
Aliases 0-3 (S)

0xE000EDA0 MPU_RLAR_A0-
MPU_RLAR_A3

UNKNOWN Non-secure MPU Region Limit Address Register
Aliases 0-3 (NS)

RW UNKNOWN Secure MPU Region Limit Address Register
Aliases 0-3 (NS)

0xE002EDA0 MPU_RLAR_A_0_NS-
MPU_RLAR_A_3_NS

Non-secure RAZ/WI

0xE000EDC0 MPU_MAIR0 RW UNKNOWN Secure MPU Memory Attribute Indirection
Register 0 (S)

7 SAU_TYPE[7:0] depends on the number of SAU regions included. This value can be 0, 4, or 8.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Security Attribution and Memory Protection

Address Name Type Reset value Processor security
state

Description

UNKNOWN Non-secure MPU Memory Attribute Indirection
Register 0 (NS)

RW UNKNOWN Secure MPU Memory Attribute Indirection
Register 0 (NS)

0xE002EDC0 MPU_MAIR0_NS

Non-secure RAZ/WI

RW UNKNOWN Secure MPU Memory Attribute Indirection
Register 1 (S)

0xE000EDC4 MPU_MAIR1

UNKNOWN Non-secure MPU Memory Attribute Indirection
Register 1 (NS)

RW UNKNOWN Secure MPU Memory Attribute Indirection
Register 1 (NS)

0xE002EDC4 MPU_MAIR1_NS

Non-secure RAZ/WI

See the Arm®v8-M Architecture Reference Manual for more information about the MPU registers
and their addresses, access types, and reset values.

8 MPU_TYPE[15:8] depends on the number of Secure MPU regions configured. This value can be 0, 4, 8, 12, or 16.
9 MPU_TYPE[15:8] depends on the number of Non-secure MPU regions configured. This value can be 0, 4, 8, 12, or

16.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Nested Vectored Interrupt Controller

5. Nested Vectored Interrupt Controller
This chapter describes the Nested Vectored Interrupt Controller (NVIC).

5.1 NVIC programmers model
This section includes a summary of the NVIC registers whose implementation is specific to the
Cortex®-M33 processor.

5.1.1 NVIC register summary

The following table shows the NVIC registers with address, name, type, reset, and description
information for each register.

• If the Arm®v8‑M Security Extension is not included, only the Non-secure
entries are available and the entire alias space is RAZ/WI.

• The NVIC_ISERn, NVIC_ICERn, NVIC_ISPRn, NVIC_ICPRn, NVIC_IABRn,
and NVIC_IPRn registers are not banked between security states. If an
interrupt is configured as Secure in the NVIC_ITNSn register, any access to
the corresponding NVIC_ISERn, NVIC_ICERn, NVIC_ISPRn, NVIC_ICPRn,
NVIC_IABRn, or NVIC_IPRn registers from Non-secure are treated as RAZ/WI.

Table 5-1: NVIC register summary

Address offset Name Type Processor security
state

Reset value Description

Secure Interrupt Controller Type
Register

0xE000E004 ICTR RO

Non-secure Interrupt Controller Type
Register (NS)

RO Secure

0x0000000x10

Interrupt Controller Type
Register (NS)

0xE002E004 ICTR_NS

Non-secure RAZ/WI

Secure Interrupt Set-Enable Registers0xE000E100-
0xE000E13C

NVIC_ISER0-NVIC_ISER15 RW

Non-secure Interrupt Set-Enable Registers
(NS)

RW Secure

0x00000000

Interrupt Set-Enable Registers
(NS)

0xE002E100-
0xE002E13C

NVIC_ISER0_NS-
NVIC_ISER15_NS

Non-secure RAZ/WI

Secure Interrupt Clear-Enable Registers0xE000E180-
0xE000E1BC

NVIC_ICER0-NVIC_ICER15 RW

Non-secure

0x00000000

Interrupt Clear-Enable Registers
(NS)

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Nested Vectored Interrupt Controller

Address offset Name Type Processor security
state

Reset value Description

RW Secure Interrupt Clear-Enable Registers
(NS)

0xE002E180-
0xE002E1BC

NVIC_ICER0_NS-
NVIC_ICER15_NS

Non-secure RAZ/WI

Secure Interrupt Set-Pending Registers0xE000E200-
0xE000E23C

NVIC_ISPR0-NVIC_ISPR15 RW

Non-secure Interrupt Set-Pending Registers
(NS)

RW Secure

0x00000000

Interrupt Set-Pending Registers
(NS)

0xE002E200-
0xE002E23C

NVIC_ISPR0_NS-
NVIC_ISPR15_NS

Non-secure RAZ/WI

Secure Interrupt Clear-Pending Registers0xE000E280-
0xE000E2BC

NVIC_ICPR0-NVIC_ICPR15 RW

Non-secure Interrupt Clear-Pending Registers
(NS)

RW Secure

0x00000000

Interrupt Clear-Pending Registers
(NS)

0xE002E280-
0xE002E2BC

NVIC_ICPR0_NS-
NVIC_ICPR15_NS

Non-secure RAZ/WI

Secure Interrupt Active Bit Register0xE000E300-
0xE000E33C

NVIC_IABR0-NVIC_IABR15 RO

Non-secure Interrupt Active Bit Register (NS)

RO Secure

0x00000000

Interrupt Active Bit Register (NS)0xE002E300-
0xE002E33C

NVIC_IABR0_NS-
NVIC_IABR15_NS Non-secure RAZ/WI

RW Secure 0x00000000 Interrupt Target Non-secure
Registers

0xE000E380-
0xE000E3BC

NVIC_ITNS0-NVIC_ITNS15

Non-secure RAZ/WI

Secure Interrupt Priority Registers0xE000E400-
0xE000E5DC

NVIC_IPR0-NVIC_IPR119 RW

Non-secure Interrupt Priority Registers (NS)

RW Secure

0x00000000

Interrupt Priority Registers (NS)0xE002E400-
0xE002E5DC

NVIC_IPR0_NS-
NVIC_IPR119_NS Non-secure RAZ/WI

5.1.2 Interrupt Controller Type Register

The ICTR register shows the number of interrupt lines that the NVIC supports.

Usage Constraints
There are no usage constraints.

Configurations
This register is available in all processor configurations.

Attributes
See the register summary information.

The following figure shows the ICTR bit assignments.

10 ICTR[3:0] depends on the number of interrupts included in the processor.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Nested Vectored Interrupt Controller

Figure 5-1: ICTR bit assignments

Reserved

31 4 3 0

INTLINESNUM

The following table shows the ICTR bit assignments.

Table 5-2: ICTR bit assignments

Bits Name Function Notes

[31:4] - Reserved. -

[3:0] INTLINESNUM Total number of interrupt lines in groups of 32:

0b0000 = 1...32

0b0001 = 33...64

0b0010 = 65...96

0b0011 = 97...128

0b0100 = 129...160

0b0101 = 161...192

0b0110 = 193...224

0b0111 = 225...256

0b1000 = 257...288

0b1001 = 289...320

0b1010 = 321...352

0b1011 = 353...384

0b1100 = 385...416

0b1101 = 417...448

0b1110 = 449...480

The processor supports a maximum of 480 external interrupts.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Floating-Point Unit

6. Floating-Point Unit
This chapter describes the Floating-Point Unit (FPU).

6.1 About the FPU
The Cortex®-M33 FPU is an implementation of the single precision variant of the Arm®v8‑M
Floating-point extension, FPv5 architecture. It provides floating-point computation functionality
that is compliant with the ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point
Arithmetic, referred to as the IEEE 754 standard.

The FPU supports all single-precision data-processing instructions and data types described in the
Arm®v8‑M Architecture Reference Manual.

6.2 FPU functional description
The FPU supports single-precision add, subtract, multiply, divide, multiply and accumulate, and
square root operations. It also provides conversions between fixed-point and floating-point data
formats, and floating-point constant instructions.

6.2.1 FPU views of the register bank

The FPU provides an extension register file containing 32 single-precision registers.

The registers can be viewed as:

• Thirty-two 32-bit single-word registers, S0-S31.

• Sixteen 64-bit doubleword registers, D0-D15.

• A combination of registers from these views.

For more information about the FPU, see the Arm®v8‑M Architecture Reference Manual.

The modes of operation are controlled using the Floating-Point Status and Control Register, FPSCR.
For more information about the FPSCR, see the Arm®v8‑M Architecture Reference Manual.

6.2.2 Modes of operation

The FPU provided full-compliance, flush-to-zero, and Default NaN modes of operation.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Floating-Point Unit

6.2.2.1 Full-compliance mode

In full-compliance mode, the FPU processes all operations according to the IEEE 754 standard in
hardware.

6.2.2.2 Flush-to-zero mode

Setting the FPSCR.FZ bit enables Flush-to-Zero (FZ) mode.

In FZ mode, the FPU treats all subnormal input operands of arithmetic operations as zeros in
the operation. Exceptions that result from a zero operand are signaled appropriately. VABS, VNEG,
and VMOV are not considered arithmetic operations and are not affected by FZ mode. A result
that is tiny, as described in the IEEE 754 standard, where the destination precision is smaller in
magnitude than the minimum normal value before rounding, is replaced with a zero. The FPSCR.IDC
bit indicates when an input flush occurs. The FPSCR.UFC bit indicates when a result flush occurs.

6.2.2.3 Default NaN mode

Setting the FPSCR.DN bit enables Default NaN (DN) mode.

In NaN mode, the result of any arithmetic data processing operation that involves an input NaN, or
that generates a NaN result, returns the default NaN. Propagation of the fraction bits is maintained
only by VABS, VNEG, and VMOV operations. All other arithmetic operations ignore any information in
the fraction bits of an input NaN.

6.2.3 Compliance with the IEEE 754 standard

When DN and FZ modes are disabled, FPv5 functionality is compliant with the IEEE 754 standard
in hardware. No Support code is required to achieve this compliance.

See the Arm®v8‑M Architecture Reference Manual for information about FP architecture compliance
with the IEEE 754 standard.

6.2.4 Exceptions

The FPU sets the cumulative exception status flag in the FPSCR register as required for each
instruction, in accordance with the FPv5 architecture. The FPU does not support exception traps.

The processor also has six output pins, each reflect the status of one of the cumulative exception
flags:

FPIXC Masked floating-point inexact exception.
FPUFC Masked floating-point underflow exception.
FPOFC Masked floating-point overflow exception.
FPDZC Masked floating-point divide by zero exception.
FPIDC Masked floating-point input denormal exception.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Floating-Point Unit

FPIOC Invalid operation.

When a floating-point context is active, the stack frame is extended to accommodate the floating-
point registers. To reduce the additional interrupt latency associated with writing the larger stack
frame on exception entry, the processor supports lazy stacking. This means that the processor
reserves space on the stack for the FP state, but does not save that state information to the stack
unless the processor executes an FPU instruction inside the exception handler.

The lazy save of the FP state is interruptible by a higher priority exception. The FP state saving
operation starts over after that exception returns.

See the Arm®v8-M Architecture Reference Manual for more information.

6.3 FPU programmers model
This section shows a floating-point system register summary.

6.3.1 Floating-point system registers

The following table shows a summary of the FP system registers in the Cortex®-M33 processor,
where FPU is included.

All Cortex®-M33 FPU registers are described in the Arm®v8-M Architecture Reference Manual.

Table 6-1: FPU register summary

Address Name Type Reset value Processor
security state

Description

0xC0000004 Secure FP Context Control Register (S)0xE000EF34 FPCCR RW

0xC0000000 Non-secure FP Context Control Register (NS)

0xC0000000 Secure FP Context Control Register (NS)0xE002EF34 FPCCR_NS RW

- Non-secure RAZ/WI

0x00000000 Secure FP Context Address Register (S)0xE000EF38 FPCAR RW

- Non-secure FP Context Address Register (NS)

0x00000000 Secure FP Context Address Register (NS)0xE002EF38 FPCAR_NS RW

- Non-secure RAZ/WI

0x00000000 Secure FP Default Status Control Register (S)0xE000EF3C FPDSCR RW

- Non-secure FP Default Status Control Register (NS)

0x00000000 Secure FP Default Status Control Register (NS)0xE002EF3C FPDSCR_NS RW

- Non-secure RAZ/WI

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Floating-Point Unit

6.3.2 Low-power operation

If the Cortex®-M33 Floating Point Unit (FPU) is in a separate power domain, the way the FPU
domain is powered down depends on whether the FPU domain includes state retention logic.

To power down the FPU:

• If FPU domain includes state retention logic, disable the FPU by clearing the CPACR.CP10 and
CPACR.CP11 bitfields.

• If FPU domain does not include state retention logic, disable the FPU by clearing the
CPACR.CP10 and CPACR.CP11 bitfields and set both the CPPWR.SU10 and CPPWR.SU11
bitfields to 1.

Setting the CPPWR.SU10 and CPPWR.SU11 bitfields indicates that FPU state can
be lost.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

External coprocessors

7. External coprocessors
This chapter describes the external coprocessors.

7.1 About external coprocessors
The Cortex®-M33 processor supports an external coprocessor interface which allows the
integration of tightly coupled accelerator hardware with the processor. The programmers model
allows software to communicate with the hardware using architectural coprocessor instructions.

The external coprocessor interface:

• Supports up to eight separate coprocessors, CP0-CP7, depending on your implementation. The
remaining coprocessor numbers, C8-C15, are reserved. CP10 and CP11 are always reserved
for hardware floating-point. For more information, see the Arm®v8-M Architecture Reference
Manual.

• Supports low-latency data transfer from the processor to and from the accelerator
components.

• Has a sustained bandwidth up to twice of the processor memory interface.

For each coprocessor CP0-CP7, the encoding space can be dedicated to either the external
coprocessor or the Custom Datapath Extension (CDE) modules. See 8. Arm Custom Instructions on
page 58 for information on the CDE implementation in the processor.

7.2 Operation
The following instruction types are supported:

• Register transfer from the Cortex®-M33 processor to the coprocessor MCR, MCRR, MCR2, MCRR2.

• Register transfer from the coprocessor to the Cortex®-M33 processor MRC, MRRC, MRC2, MRRC2.

• Data processing instructions CDP, CDP2.

The regular and extension forms of the coprocessor instructions for example, MCR
and MCRR2, have the same functionality but different encodings.
The MRC and MRC2 instructions support the transfer of APSR.NZVC flags when the
processor register field is set to PC, for example Rt == 0xF.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

External coprocessors

7.3 Usage restrictions
The following restrictions apply when the Cortex®-M33 processor uses coprocessor instructions:

• The LDC(2) or STC(2) instructions are not supported. If these are included in software with the
<coproc> field set to a value between 0-7 and the coprocessor is present and enabled in the
appropriate fields in the CPACR/NSACR registers, the Cortex®-M33 processor always attempts
to take an Undefined instruction (UNDEFINSTR) UsageFault exception.

• The processor register fields for data transfer instructions must not include the stack pointer
(Rt = 0xD), this encoding is UNPREDICTABLE in the Arm®v8‑M architecture and results in an
UNDEFINSTR UsageFault exception in Cortex®-M33 if the coprocessor is present and enabled
in the CPACR/NSACR registers.

• If any coprocessor instruction is executed when the corresponding coprocessor is either
not present or disabled in the CPACR/NSACR register, the Cortex®-M33 processor always
attempts to take a No coprocessor (NOCP) UsageFault exception.

7.4 Data transfer rates
The following table shows the ideal data transfer rates for the coprocessor interface. This means
that the coprocessor responds immediately to an instruction. The ideal data transfer rates are
sustainable if the corresponding coprocessor instructions are executed consecutively.

Table 7-1: Data transfer rates

Instructions Direction Ideal data rate

MCR, MCR2 Processor to coprocessor 32 bits per cycle

MRC, MRC2 Coprocessor to processor 32 bits per cycle

MCRR, MCRR2 Processor to coprocessor 64 bits per cycle

MRRC, MRRC2 Coprocessor to processor 64 bits per cycle

7.5 Configuring which coprocessors are included in Secure
and Non-secure states

If the Cortex®-M33 processor is configured with the Arm®v8‑M Security extension, then it can
support systems where coprocessors are only accessible from Secure state or from both Secure
and Non-secure states.

Software can discover which coprocessors are available by accessing the CPACR and NSACR
registers in the SCS memory region as documented in the Arm®v8-M Architecture Reference Manual.

The following table shows the relationship between the coprocessor security type and the access
control registers.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

External coprocessors

Table 7-2: Coprocessor security type and access control registers

CPACR[2n+1:2n]

Coprocessor n security type From Secure From Non-secure NSACR[n]

Not present RAZ/WI RAZ/WI RAZ/WI

Available in Secure only RW, reset to 0 RAZ/WI RAZ/WI

Available in Secure and Non-secure RW, reset to 0 RW, reset to 0 UNKNOWN

• From coprocessors which can be accessed in Secure and Non-secure state
the Secure software can further restrict access from Non-secure by using the
NSACR register.

• If the Cortex®-M33 processor is not configured with the Arm®v8‑M Security
Extension, CPACR[2n+1:2n] is RAZ/WI. However, in Non-secure mode, the
coprocessor is still available, therefore, NSACR is UNKNOWN.

Using a coprocessor instruction for a coprocessor which is not accessible in the
current security state results in a NOCP UsageFault exception.

7.6 Debug access to coprocessor registers usage
constraints

The Cortex®-M33 processor does not support a mechanism to read and write registers located in
external coprocessors from a debugger.

Arm® recommends you implement a coprocessor with a dedicated AHB or APB slave interface
for the system to access the registers. If the debug view of the coprocessor is located in the PPB
region of the memory map, you can use this interface to connect to the EPPB interface of the
Cortex®-M33 processor.

If Secure debug is disabled, you must ensure the Secure information in the coprocessors is
protected and not accessible when using a Non-secure debugger.

If the debug slave interface to the coprocessor is connected to the processor C-AHB or S-AHB
master interfaces or the EPPB interface, you can use the HNONSEC and PPROT[2] signals on
the AHB and APB interfaces respectively. This is because the security level of the debug requests
routed through the processor from the D-AHB interface are subject to the debug access and
authentication checks. If the coprocessor state is memory-mapped, then software can also access
the information using load and store instructions. If your implementation uses this functionality,
you must ensure the appropriate barrier instructions are included to guarantee ordering between
coprocessor instructions and load/store operations to the same state.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

External coprocessors

7.7 Exceptions and context switch
The Cortex®-M33 processor does not include support for automatic save and restore of
coprocessor registers on entry and exit to exceptions, unlike the internal processor integer and
floating-point registers. Any coprocessor state that must be maintained across a context switch
must be carried out by the software that is aware of the coprocessor requirements.

You must ensure that when the coprocessor contains Secure data it cannot be accessed by
software running in a Non-secure exception handler.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm Custom Instructions

8. Arm Custom Instructions
This chapter describes the support for Arm Custom Instructions (ACIs) and the implementation of
the Custom Datapath Extension (CDE) in the processor.

8.1 Arm Custom Instructions support
The Cortex®-M33 processor supports Arm Custom Instructions (ACIs) and implements the Custom
Datapath Extension (CDE) for Armv8-M.

The ACI support provides the following:

• New architecturally defined instructions.

• An interface that supports the addition of user-defined instructions.

• Compliance tests to check the integration of the user-defined instructions as part of the
execution testbench.

CDE modules
For each coprocessor CP0-CP7, the CDE architecture allows you to choose to either use the
coprocessor or bypass it and use CDE modules instead.

The Cortex®-M33 processor includes two CDE modules.

You are responsible for the content of these modules in your implementation. Arm is responsible
for the interfaces to these modules.

CDE
The core CDE module executes instructions that access the general-purpose registers. This
module is reset and clocked in the same way as the processor core, and it is included in the
Core power domain.

FPCDE
The floating-point CDE module executes instructions that access the floating-point registers.
This module is reset and clocked in the same way as the Floating-Point Unit (FPU), and it is
included in the FPU power domain. If the core CDE module is present and used, and if the
FPU is present, then the floating-point CDE module is also present.

User-defined instructions
The CDE architecture defines instruction classes depending on the number of source or destination
registers. For each class, an accumulation variant exists. You define the function of these
instruction classes in the dedicated CDE module added to the processor core or to the FPU.

The classes are:

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm Custom Instructions

CX1, CX2, CX3
These three classes operate on the general-purpose register file, including the condition code
flags APSR_nzcv.

You can define different functions for a given instruction class depending on the coprocessor
number and the opcode value <imm>.

VCX1, VCX2, VCX3
These three classes operate on the floating-point register file only.

You can define different functions for a given instruction class depending on the coprocessor
number and the opcode value <imm>.

ACI support in multi-Cortex®-M33 systems with different CDE customization
In a system with several Cortex®-M33 processors, it is possible to configure a different CDE
customization for each processor using the CDERTLID parameter. This parameter can be used to
implement different functions for an identical instruction.

Software can read the CDERTLID parameter using the ID_AFR0, Auxiliary Feature Register 0. See 3.6
Auxiliary Feature Register 0 on page 41.

8.2 Operation
The architecture extension defines instruction classes that depend on the number of source or
destination registers. For each class, an accumulation variant exists.

The processor supports the following CDE instruction classes that access the general-purpose
registers and APSR_nzcv flags:

• CX1{A} {cond}, <coproc>, <Rd>, #<imm>.

• CX1D{A} {cond}, <coproc>, <Rd>, <Rd+1>, #<imm>.

• CX2{A} {cond}, <coproc>, <Rd>, <Rn>, #<imm>.

• CX2D{A} {cond}, <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>.

• CX3{A} {cond}, <coproc>, <Rd>, <Rn>, <Rm>, #<imm>.

• CX3D{A} {cond}, <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>.

Where:

• {A} indicates an accumulation variant.

• {cond} indicates an optional condition code.

• <coproc> indicates the name of the coprocessor the instruction is for.

• <Rd> is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"
field.

• <Rn> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm Custom Instructions

• <Rm> is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rm" field.

• <imm> is the immediate value.

The immediate size, #<imm>, differs for each instruction class:

CX1 [12:0]
CX2 [8:0]
CX3 [5:0]

As architecturally defined:

• Double variants imply that Rd is 64 bits and saved into Rd and Rd+1, while Rn and Rm are 32 bits.

• Single variants imply that Rd, Rn, and Rm are 32 bits.

The processor supports the following CDE instruction classes that access the floating-point
registers:

• VCX1{A} <coproc>, <Sd>, #<imm>.

• VCX2{A} <coproc>, <Sd>, <Sm>, #<imm>.

• VCX3{A} <coproc>, <Sd>, <Sn>, <Sm>, #<imm>.

Where:

• <Sd> is the 32-bit name of the floating-point source and destination register S0 - S31.

• <Sm> is the 32-bit name of the floating-point source and destination register S0 - S31.

• <Sn> is the 32-bit name of the floating-point source and destination register S0 - S31.

• <imm> is the immediate value.

The immediate size, #<imm>, differs for each instruction class:

VCX1 [10:0]
VCX2 [5:0]
VCX3 [2:0]

Some restrictions apply when using these instructions, see 7.3 Usage restrictions on page 54 for
information.

8.3 Usage restrictions
Some restrictions apply when the Cortex®-M33 processor uses Custom Datapath Extension (CDE)
instructions.

Depending on your processor implementation at hardware and software level and on your
implementation of the CDE and FPCDE modules, NOCP or UNDEFINSTR exceptions might occur
when Arm Custom Instructions (ACIs) are in use.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm Custom Instructions

When the FPU parameter is set to 0 and the FPU is not included, CDE instructions that work on
floating-point registers cannot be executed and result in a NOCP UsageFault exception.

The following tables show the usage restrictions that are specific to instruction classes.

Table 8-1: Usage restrictions applicable to instructions classes for the CDE module

Instruction class Restriction

CX1{A} {cond}, <coproc>, <Rd>, #<imm> The architectural UNPREDICTABLE case where d==13
results in an UNDEFINED exception. No stack limit
check is performed.

The architectural UNPREDICTABLE case with InITBlock()
for non-accumulation variants results in an UNDEFINED
exception.

CX1D{A} {cond}, <coproc>, <Rd>, <Rd+1>, #<imm> If d is odd, then the instruction is UNDEFINED.

The architectural UNPREDICTABLE case where d==12
results in an UNDEFINED exception. No stack limit
check is performed.

The architectural UNPREDICTABLE case with InITBlock()
for non-accumulation variants results in an UNDEFINED
exception.

CX2{A} {cond}, <coproc>, <Rd>, <Rn>, #<imm> The architectural UNPREDICTABLE case where d==13
or n==13 results in an UNDEFINED exception. No stack
limit check is performed.

The architectural UNPREDICTABLE case with InITBlock()
for non-accumulation variants results in an UNDEFINED
exception.

CX2D{A} {cond}, <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm> If d is odd, then the instruction is UNDEFINED.

The architectural UNPREDICTABLE case where d==12
or n==13 results in an UNDEFINED exception. No stack
limit check is performed.

The architectural UNPREDICTABLE case with InITBlock()
for non-accumulation variants results in an UNDEFINED
exception.

CX3{A} {cond}, <coproc>, <Rd>, <Rn>, <Rm>, #<imm> The architectural UNPREDICTABLE case where d==13
or n==13 or m=13 results in an UNDEFINED exception.
No stack limit check is performed.

The architectural UNPREDICTABLE case with InITBlock()
for non-accumulation variants results in an UNDEFINED
exception.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm Custom Instructions

Instruction class Restriction
CX3D{A} {cond}, <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm> If d is odd, then the instruction is UNDEFINED.

The architectural UNPREDICTABLE case where d==12 or
n==12 or m==12 results in an UNDEFINED exception.
No stack limit check is performed.

The architectural UNPREDICTABLE case with InITBlock()
for non-accumulation variants results in an UNDEFINED
exception.

Table 8-2: Usage restrictions applicable to instructions classes for the FPCDE module

Instruction class Restriction

VCX1{A} <coproc>, <Sd>, #<imm> The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX1{A} <coproc>, <Dd>, #<imm> The processor does not support the M-profile Vector
Extension (MVE). Attempting to execute some double-
register operation results in an UNDEFINED exception.

The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX1{A} <coproc>, <Qd>, #<imm> The processor does not support MVE. Attempting to
execute some quadword-register operation results in
an UNDEFINED exception.

The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX2{A} <coproc>, <Sd>, <Sm>, #<imm> The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX2{A} <coproc>, <Dd>, <Dm>, #<imm> The processor does not support MVE. Attempting to
execute some double-register operation results in an
UNDEFINED exception.

The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX2{A} <coproc>, <Qd>, <Qm>, #<imm> The processor does not support MVE. Attempting to
execute some quadword-register operation results in
an UNDEFINED exception.

The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX3{A} <coproc>, <Sd>, <Sn>, <Sm>, #<imm> The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

VCX3{A} <coproc>, <Dd>, <Dn>, <Dm>, #<imm> The processor does not support MVE. Attempting to
execute some double-register operation results in an
UNDEFINED exception.

The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Arm Custom Instructions

Instruction class Restriction
VCX3{A} <coproc>, <Qd>, <Qn>, <Qm>, #<imm> The processor does not support MVE. Attempting to

execute some quadword-register operation results in
an UNDEFINED exception.

The architectural UNPREDICTABLE case with InITBlock()
results in an UNDEFINED exception.

See the Arm®v8-M Architecture Reference Manual for information on InITBlock().

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

9. Debug
This chapter summarizes the debug system.

9.1 Debug functionality
Cortex®-M33 debug functionality includes processor halt, single-step, processor core register
access, Vector Catch, unlimited software breakpoints, and full system memory access.

The processor also includes support for hardware breakpoints and watchpoints configured during
implementation:

• A breakpoint unit supporting four to eight instruction comparators.

• A watchpoint unit supporting two or four data watchpoint comparators.

The Cortex®-M33 processor supports system level debug authentication to control access from
a debugger to resources and memory. If the Arm®v8‑M Security Extension is included, the
authentication can be used to allow a debugger full access to Non-secure code and data without
exposing any Secure information.

The processor implementation can be partitioned to place the debug components in a separate
power domain from the processor core and NVIC.

All debug registers are accessible by the D-AHB interface.

See the Arm®v8-M Architecture Reference Manual for more information.

9.1.1 CoreSight™ discovery

For processors that implement debug, Arm® recommends that a debugger identifies and connects
to the debug components using the CoreSight™ debug infrastructure.

See the CoreSight™ Components Technical Reference Manual for more information.

Arm® recommends that a debugger follows the flow in the following figure to discover the
components present in the CoreSight™ debug infrastructure. In this case, for each CoreSight™

component in the CoreSight™ system, a debugger reads:

• The peripheral and component ID registers.

• The DEVARCH and DEVTYPE registers.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 137

https://developer.arm.com/documentation/ddi0314/latest

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

Figure 9-1: CoreSight™ discovery

‡ Optional component.

Instrumentation trace control

System Control Space
(SCS)

CoreSight ID

Processor CPUID

Debug control

‡ Instrumentation Trace
Macrocell (ITM)

Breakpoint control

Breakpoint Unit (BPU)

Watchpoint control

Data Watchpoint Unit (DWT)

‡‡Trace

Trace control

‡ Cross Trigger Interface (CTI)

CoreSight ID

CTI control

CoreSight
debug port

CoreSight access port

Base pointer

Processor ROM table

Pointers

CoreSight ID

DEVARCH
DEVTYPE

CoreSight ID
DEVARCH
DEVTYPE

DEVARCH
DEVTYPE

CoreSight ID
DEVARCH
DEVTYPE

CoreSight ID

DEVARCH

DEVTYPE

CoreSight ID
DEVARCH
DEVTYPE

‡‡ Optional component depending on your implementation, one or both of
Embedded Trace Macrocell (ETM) or Micro Trace Buffer (MTB).

`

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

To identify the Cortex®-M33 processor and debug components within the CoreSight™ system,
Arm® recommends that a debugger perform the following actions:

1. Locate and identify the Cortex®-M33 Processor ROM table using its CoreSight™ identification.

2. Follow the pointers in the Cortex®-M33 Processor ROM table to identify the presence of the
following components:

a. Cross Trigger Interface (CTI).

b. Embedded Trace Macrocell (ETM)

c. Micro Trace Buffer (MTB).

d. System Control Space (SCS).

e. Instrumentation Trace Macrocell (ITM).

f. Breakpoint Unit (BPU).

g. Data Watchpoint Unit (DWT).

9.1.2 Debugger actions for identifying the processor

When a debugger identifies the SCS from its CoreSight™ identification, it can identify the processor
and its revision number from the CPUID register in the SCS at address 0xE000ED00.

A debugger cannot rely on the Cortex®-M33 Processor ROM table being the first ROM table
encountered. One or more system ROM tables might be included between the access port and the
processor ROM table if other CoreSight™ components are in the system. If a system ROM table is
present, it can include a unique identifier for the implementation.

9.1.3 Processor ROM table identification and entries

The ROM table identification registers and values that the following table shows allow debuggers
to identify the processor and its debug capabilities.

Table 9-1: Cortex®-M33 Processor ROM table identification values

Address offset Register Value Description

0xE00FFFD0 PIDR4 0x00000004

0xE00FFFD4 PIDR5 0x00000000

0xE00FFFD8 PIDR6 0x00000000

0xE00FFFDC PIDR7 0x00000000

0xE00FFFE0 PIDR0 0x000000C9

0xE00FFFE4 PIDR1 0x000000B4

0xE00FFFE8 PIDR2 0x0000000B

0xE00FFFEC PIDR3 0x000000001

0xE00FFFF0 CIDR0 0x0000000D

0xE00FFFF4 CIDR1 0x00000010

0xE00FFFF8 CIDR2 0x00000005

Component and Peripheral ID register formats in the Arm®v8-M Architecture Reference Manual

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

Address offset Register Value Description

0xE00FFFFC CIDR3 0x000000B1

These values for the Peripheral ID registers identify this as the Cortex®-M33 Processor ROM table.
The Component ID registers identify this as a CoreSight™ ROM table.

The Cortex®-M33 Processor ROM table only supports word-size transactions.

The following table shows the CoreSight™ components that the Cortex®-M33 Processor ROM
table points to.

Table 9-2: Cortex®-M33 Processor ROM table components

Address Component Value Description

0xE00FF000 SCS 0xFFF0F003. See System Control.

0xE00FF004 DWT 0xFFF02003.
Reads as 0xFFF02002 if the DWT is not
implemented.

See DWT

0xE00FF008 BPU 0xFFF03003.
Reads as 0xFFF03002 if the BPU is not
implemented.

See BPU

0xE00FF00C ITM 0xFFF01003.
Reads as 0xFFF01002 if the ITM is not
implemented.

See ITM.

0xE00FF014 ETM 0xFFF42003.
Reads as 0xFFF42002 if the ETM is not
implemented.

See the Arm® CoreSight™ ETM-Cortex®-M33 Technical
Reference Manual

0xE00FF018 CTI 0xFFF43003.
Reads as 0xFFF43002 if the CTI is not
implemented.

See CTI.

0xE00FF01C MTB 0xFFF44003.
Reads as 0xFFF44002 if the MTB is not
implemented.

See MTB.

0xE00FF020 -
0xE00FFFC8

Reserved 0x00000000.

0xE00FFFCC SYSTEM
ACCESS

0x00000001.

See the Arm® CoreSight™ Architecture Specification
(v2.0)

The Cortex®-M33 Processor ROM table entries point to the debug components of the processor.
The offset for each entry is the offset of that component from the ROM table base address,
0xE00FF000.

See the Arm® CoreSight™ Architecture Specification (v2.0) for more information about the ROM table
ID and component registers, and access types.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

9.1.4 System Control Space registers

The processor provides debug through registers in the System Control Space (SCS).

9.1.4.1 SCS CoreSight™ identification

The following table shows the SCS CoreSight™ identification registers and values for debugger
detection. Final debugger identification of the Cortex®-M33 processor is through the CPUID
register in the SCS.

Table 9-3: SCS identification values

Address
offset

Register
name

Reset value Description

0xE000EFD0 DPIDR4 0x00000004

0xE000EFD4 DPIDR5 0x00000000

0xE000EFD8 DPIDR6 0x00000000

0xE000EFDC DPIDR7 0x00000000

0xE000EFE0 DPIDR0 0x00000021

0xE000EFE4 DPIDR1 0x000000BD

0xE000EFE8 DPIDR2 0x0000000B

0xE000EFEC DPIDR3 0x000000001

0xE000EFF0 DCIDR0 0x0000000D

0xE000EFF4 DCIDR1 0x00000090

0xE000EFF8 DCIDR2 0x00000005

0xE000EFFC DCIDR3 0x000000B1

0xE000EFBC DDEVARCH 0x47702A04

Component and Peripheral ID register formats in the Arm®v8‑M Architecture Reference
Manual

9.1.5 Debug register summary

The following table shows the debug registers, with address, name, type, reset, and description
information for each register.

Each register is 32-bits wide and is described in the Arm®v8-M Architecture Reference Manual.

Table 9-4: Debug registers

Address offset Name Type Reset value Processor
security state

Description

Secure0xE000ED30 DFSR RW 0x00000000
Power-on reset
only. Non-secure

Debug Fault Status Register

0x00000000 Secure Debug Fault Status Register (NS)0xE002ED30 DFSR_NS RW

- Non-secure RAZ/WI

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

Address offset Name Type Reset value Processor
security state

Description

Secure0xE000EDF0 DHCSR RW 0x00000000

Non-secure

Debug Halting Control and Status
Register

0x00000000 Secure Debug Halting Control and Status
Register (NS)

0xE002EDF0 DHCSR_NS RW

- Non-secure RAZ/WI

Secure0xE000EDF4 DCRSR WO UNKNOWN

Non-secure

Debug Core Register Selector Register

Secure0xE000EDF8 DCRDR RW UNKNOWN

Non-secure

Debug Core Register Data Register

UNKNOWN Secure Debug Core Register Data Register
(NS)

0xE002EDF8 DCRDR_NS RW

- Non-secure RAZ/WI

Secure0xE000EDFC DEMCR RW 0x00000000

Non-secure

Debug Exception and Monitor Control
Register

0x00000000 Secure Debug Exception and Monitor Control
Register (NS)

0xE000EDFC DEMCR_NS RW

- Non-secure RAZ/WI

Secure0xE000EE04 DAUTHCTRL RW 0x00000000

Non-secure

Debug Authentication Control
Register

0x00000000 Secure Debug Authentication Control
Register (ns)

0xE002EE04 DAUTHCTRL_NS RW

- Non-secure RAZ/WI

Secure0xE000EE08 DSCSR RW 0x00000000

Non-secure

Debug Security Control and Status
Register

Secure0xE000EFB8 DAUTHSTATUS RO UNKNOWN11

Non-secure

Debug Authentication Status Register

UNKNOWN11 Secure Debug Authentication Status Register
(ns)

0xE002EFB8 DAUTHSTATUS_NS RO

Non-secure RAZ/WI

9.2 About the D-AHB interface
The 32-bit Debug AHB (D-AHB) interface implements the AMBA® 5 AHB protocol. It can be
used with a CoreSight™ AHB-AP to provide debugger access to all processor control and debug

11 The value of DAUTHSTATUS at reset is dependent on the debug authentication defined in the system and whether
the Arm®v8‑M Security Extension is included in the processor. Arm®v8-M Architecture Reference Manual for more
information.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug

resources, and a view of memory that is consistent with that observed by load/store instructions
acting on the processor.

Access to all resources from the debugger can be controlled by system level debug authentication
supported by the processor. If the Arm®v8‑M Security Extension is included, the authentication
can prevent a debugger from accessing any Secure data or code while providing full access to Non-
secure information.

The accesses to individual registers and memory might be restricted according to the debug
authorization that your system uses.

D-AHB interface accesses are only in little-endian format.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Instrumentation Trace Macrocell Unit

10. Instrumentation Trace Macrocell Unit
This chapter describes the Instrumentation Trace Macrocell (ITM) unit.

10.1 ITM programmers model
This is a summary of the ITM register table, and characteristics and bit assignments of the ITM
registers.

10.1.1 ITM register summary table

The following table shows the ITM registers whose implementation is specific to this processor.

Other registers are described in the Arm®v8-M Architecture Reference Manual.

Depending on the implementation of your processor, the ITM registers might not be present. Any
register that is configured as not present reads as zero.

• You must enable TRCENA of the Debug Exception and Monitor Control Register
before you program or use the ITM.

• If the ITM stream requires synchronization packets, you must configure the
synchronization packet rate in the DWT.

Table 10-1: ITM register summary

Address Name Type Reset Description

0xE0000000-

0xE000007C

ITM_STIM0- ITM_STIM31 RW - Stimulus Port Registers
0-31

0xE0000E00 ITM_TER RW 0x00000000 Trace Enable Register

0xE0000E40
ITM_TPR RW 0x00000000 ITM Trace Privilege

Register

0xE0000E80 ITM_TCR RW 0x00000000 Trace Control Register

0xE0000EF0 INT_ATREADY RO 0x00000000 Integration Mode: Read
ATB Ready

0xE0000EF8 INT_ATVALID WO 0x00000000 Integration Mode: Write
ATB Valid

0xE0000F00 ITM_ITCTRL RW 0x00000000 Integration Mode Control
Register

0xE0000FCC ITM_DEVTYPE RW 0x00000043 ITM CoreSight Device
Type Register

0xE0000FBC ITM_DEVARCH RO 0x47701A01 ITM CoreSight Device
Architecture Register

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Instrumentation Trace Macrocell Unit

Address Name Type Reset Description

0xE0000FD0 ITM_PIDR4 RO 0x00000004 Peripheral identification
registers

0xE0000FD4 ITM_PIDR5 RO 0x00000000 Peripheral identification
register

0xE0000FD8 ITM_PIDR6 RO 0x00000000 Peripheral identification
register

0xE0000FDC ITM_PIDR7 RO 0x00000000 Peripheral identification
register

0xE0000FE0 ITM_PIDR0 RO 0x00000021 Peripheral identification
register

0xE0000FE4 ITM_PIDR1 RO 0x000000BD Peripheral identification
register

0xE0000FE8 ITM_PIDR2 RO 0x0000000B Peripheral identification
register

0xE0000FEC ITM_PIDR3 RO 0x000000001 Peripheral identification
register

0xE0000FF0 ITM_CIDR0 RO 0x0000000D Component identification
register

0xE0000FF4 ITM_CIDR1 RO 0x00000090 Component identification
register

0xE0000FF8 ITM_CIDR2 RO 0x00000005 Component identification
register

0xE0000FFC ITM_CIDR3 RO 0x000000B1 Component identification
register

ITM registers are fully accessible in privileged mode. In user mode, all registers can
be read, but only the Stimulus registers and Trace Enable registers can be written,
and only when the corresponding Trace Privilege Register bit is set. Invalid user
mode writes to the ITM registers are discarded. When the Arm®v8‑M Security
Extension is included in the Cortex®-M33 processor, writes to the Stimulus registers
from the software running in Secure state are ignored if Secure non-invasive debug
authentication is not enabled.

10.1.2 ITM Trace Privilege Register

The ITM_TPR enables an operating system to control the stimulus ports that are accessible by user
code.

Usage constraints
You can only write to this register in privileged mode.

Configurations
This register is available if the ITM is configured in your implementation.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Instrumentation Trace Macrocell Unit

Attributes
See the ITM register summary table.

The following figure shows the ITM_TPR bit assignments.

Figure 10-1: ITM_TPR bit assignments

Reserved

31 4 3 0

PRIVMASK

The following table shows the ITM_TPR bit assignments.

Table 10-2: ITM_TPR bit assignments

Bits Name Function

[31:4] - Reserved.

[3:0] PRIVMASK Bit mask to enable tracing on ITM stimulus ports:

Bit[0] Stimulus ports [7:0].
Bit[1] Stimulus ports [15:8].
Bit[2] Stimulus ports [23:16].
Bit[3] Stimulus ports [31:24].

10.1.3 ITM Integration Mode Control Register

The ITM_ITCTRL controls whether the trace unit is in integration mode.

Usage
constraints

• Accessible only from the memory-mapped interface or from an external
agent such as a debugger.

• Arm® recommends that you perform a debug reset after using integration
mode.

Configurations Available in all configurations.
Attributes A 32-bit management register. See also the register summary table.

The following figure shows the ITM_ITCTRL bit assignments.

Figure 10-2: ITM_ITCTRL bit assignments

31 0

RES0

IME

1

The following table shows the ITM_ITCTRL bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Instrumentation Trace Macrocell Unit

Table 10-3: ITM_ITCTRL bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] IME Integration mode enable bit. The possible values are:

0 The trace unit is not in integration mode.
1 The trace unit is in integration mode. This mode enables:

• A debug agent to perform topology detection.

• SoC test software to perform integration testing.

The ITM_ITCTRL register can be accessed through the external debug interface, at address
0xE0000F00.

10.1.4 Integration Mode Write ATB Valid Register

The Integration Mode Write ATB Valid Register is used for integration test.

Usage
constraints

There are no usage constraints.

Configurations This register is:

• Only present in integration mode, when ITM_ITCTRL.IME is set to 1.

• Available in all configurations.
Attributes See the register summary table.

The following figure INT_ATVALID shows the bit assignments.

Figure 10-3: INT_ATVALID bit assignments

0

31 2 1 0

0Reserved

AFREADY ATVALID

The following table shows the INT_ATVALID bit assignments.

Table 10-4: INT_ATVALID bit assignments

Bits Name Function

[31:2] Reserved RES0

[1] AFREADY When ITM_ITCTRL.IME is set, the value of this bit determines the value of AFREADYI.

[0] ATVALID When ITM_ITCTRL.IME is set, when this bit is read, it returns the value of ATVALIDI.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Instrumentation Trace Macrocell Unit

10.1.5 Integration Mode Read ATB Ready Register

The Integration Mode Read ATB Ready Register, INT_ATREADY, is used for integration test.

Usage
constraints

There are no usage constraints.

Configurations This register is:

• Only present in integration mode, when ITM_ITCTRL.IME is set to 1.

• Available in all configurations.
Attributes See the register summary table.

The following figure INT_ATREADY shows the bit assignments.

Figure 10-4: INT_ATREADY bit assignments

0

31 2 1 0

0Reserved

AFVALID ATREADY

The following table shows the INT_ATREADY bit assignments.

Table 10-5: INT_ATREADY bit assignments

Bits Name Function

[1] AFVALID When ITM_ITCTRL.IME is set, when this bit is read, it returns the value of AFVALIDI. When ITM_ITCTRL.IME is not set,
this bit returns zero.

[0] ATREADY When ITM_ITCTRL.IME is set, when this bit is read, it returns the value of ATREADYI. When ITM_ITCTRL.IME is not set,
this bit returns zero.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Data Watchpoint and Trace Unit

11. Data Watchpoint and Trace Unit
This chapter describes the Data Watchpoint and Trace (DWT) unit.

11.1 DWT functional description
A Reduced DWT contains two comparators (DWT_COMP0 to DWT_COMP1) and a Full DWT
contains four comparators (DWT_COMP0 to DWT_COMP3). These comparators support the
following features:

• Hardware watchpoint support.

• Hardware trace packet support, only if your implementation includes an ITM.

• CMPMATCH support for ETM/MTB/CTI triggers (only if your implementation includes an ETM,
MTB, or CTI).

• Cycle counter matching support (DWT_COMP0 only).

• Instruction address matching support.

• Data address matching support.

• Data value matching support (DWT_COMP1 only in a reduced DWT, DWT_COMP3 only in a
Full DWT).

• Linked/limit matching support (DWT_COMP1 and DWT_COMP3 only).

The DWT contains counters for:

• Cycles (CYCCNT).

• Folded Instructions (FOLDCNT).

• Additional cycles required to execute all load or store instructions (LSUCNT).

• Processor sleep cycles (SLEEPCNT).

• Additional cycles required to execute multi-cycle instructions and instruction fetch stalls
(CPICNT)

• Cycles spent in exception processing (EXCCNT).

You can configure the DWT to generate PC samples at defined intervals, and to generate interrupt
event information. Before using DWT, the TRCENA bit in the DEMCR register should be set to 1.

The DWT provides periodic requests for protocol synchronization to the ITM and the TPIU, if your
implementation includes the Cortex®-M33 TPIU.

Related information
Trace Port Interface Unit on page 107

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Data Watchpoint and Trace Unit

11.2 DWT programmers model
The following table shows the DWT registers. Depending on the implementation of your processor,
some of these registers might not be present. Any register that is configured as not present reads
as zero.

Table 11-1: DWT register summary

Address offset Name Type Reset value Description

0xE0001000 DWT_CTRL RW Possible reset values are:

0x2800000 Reduced DWT with no ITM trace.
0x2000000 Reduced DWT with ITM trace.
0x4800000 Full DWT with no ITM trace.
0x4000000 Full DWT with ITM trace.

Control Register.

0xE0001004 DWT_CYCCNT RW 0x00000000 Cycle Count Register

0xE0001008 DWT_CPICNT RW - CPI Count Register

0xE000100C DWT_EXCCNT RW - Exception Overhead Count Register

0xE0001010 DWT_SLEEPCNT RW - Sleep Count Register

0xE0001014 DWT_LSUCNT RW - LSU Count Register

0xE0001018 DWT_FOLDCNT RW - Folded-instruction Count Register

0xE000101C DWT_PCSR RO - Program Counter Sample Register

0xE0001020 DWT_COMP0 RW - Comparator Register0

0xE0001028 DWT_FUNCTION0 RW 0x58000000 Function Register0

0xE0001030 DWT_COMP1 RW - Comparator Register1

0xE0001038 DWT_FUNCTION1 RW Possible reset values are:

0xF0000000 Reduced DWT.
0xD0000000 Full DWT.

Function Register1

0xE0001040 DWT_COMP2 RW - Comparator Register2

0xE0001048 DWT_FUNCTION2 RW 0x50000000 Function Register2

0xE0001050 DWT_COMP3 RW - Comparator Register3

0xE0001058 DWT_FUNCTION3 RW Possible reset values are:

0x50000000 Reduced DWT.
0xF0000000 Full DWT.

Function Register3

0xE0001FBC DWT_DEVARCH RO 0x47701A02 Device Type Architecture register

0xE0001FCC DWT_DEVTYPE RO 0x00000000 Device Type Identifier register

0xE0001FD0 DWT_PID4 RO 0x00000004

0xE0001FD4 DWT_PID5 RO 0x00000000

0xE0001FD8 DWT_PID6 RO 0x00000000

0xE0001FDC DWT_PID7 RO 0x00000000

0xE0001FE0 DWT_PIDR0 RO 0x00000021

0xE0001FE4 DWT_PIDR1 RO 0x000000BD

0xE0001FE8 DWT_PIDR2 RO 0x0000000B

Peripheral identification registers

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Data Watchpoint and Trace Unit

Address offset Name Type Reset value Description

0xE0001FEC DWT_PIDR3 RO 0x000000001

0xE0001FF0 DWT_CIDR0 RO 0x0000000D

0xE0001FF4 DWT_CIDR1 RO 0x00000090

0xE0001FF8 DWT_CIDR2 RO 0x00000005

0xE0001FFC DWT_CIDR3 RO 0x000000B1

Component identification registers

DWT registers are described in the Arm®v8-M Architecture Reference Manual. Peripheral
Identification and Component Identification registers are described in the CoreSight™ Components
Technical Reference Manual.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 137

https://developer.arm.com/documentation/ddi0314/latest
https://developer.arm.com/documentation/ddi0314/latest

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Cross Trigger Interface

12. Cross Trigger Interface
This chapter describes the Cross Trigger Interface (CTI).

12.1 About the Cross Trigger Interface
If implemented, the CTI enables the debug logic, MTB, and ETM to interact with each other and
with other CoreSight™ components. This is called cross triggering. For example, you can configure
the CTI to generate an interrupt when the ETM trigger event occurs or to start tracing when a
DWT comparator match is detected.

12.2 CTI functional description
The Cortex®-M33 CTI interacts with several debug system components, and is connected to
various trigger inputs and trigger outputs.

The following figure shows the debug system components and the available trigger inputs and
trigger outputs.

Figure 12-1: Debug system components

Processor

ETM

CTI

ETM event inputs

ETM event outputs

DWT comparator outputs

Processor halted

Interrupt requests

Restart request
Extern restart request

Debug request
Extern debug request

CTI output
channels

CTI input
channels

MTB

MTB Trace stop

MTB Trace start

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Cross Trigger Interface

The following table shows how the CTI trigger inputs are connected to the Cortex®-M33
processor.

Table 12-1: Trigger signals to the CTI

Signal Description Connection Acknowledge, handshake

CTITRIGIN[7] -

CTITRIGIN[6] -

CTITRIGIN[5] ETM Event Output 1

ETM to CTI

CTITRIGIN[4] ETM Event Output 0 or Comparator Output 3 ETM/Processor to CTI

CTITRIGIN[3] DWT Comparator Output 2

CTITRIGIN[2] DWT Comparator Output 1

CTITRIGIN[1] DWT Comparator Output 0

CTITRIGIN[0] Processor Halted

Processor to CTI

Pulsed

The following table shows how the CTI trigger outputs are connected to the processor and ETM.

Table 12-2: Trigger signals from the CTI

Signal Description Connection Acknowledge, handshake

CTITRIGOUT[7] ETM Event Input 3 Pulsed

CTITRIGOUT[6] ETM Event Input 2

CTI to ETM

Pulsed

CTITRIGOUT[5] ETM Event Input 1 or MTB Trace
stop

Pulsed

CTITRIGOUT[4] ETM Event Input 0 or MTB Trace
start

CTI to ETM or
MTB

Pulsed

CTITRIGOUT[3] Interrupt request 1

CTITRIGOUT[2] Interrupt request 0

CTI to system. Acknowledged by writing to the CTIINTACK register in ISR

CTITRIGOUT[1] Processor Restart Processor Restarted

CTITRIGOUT[0] Processor debug request

CTI to Processor

Acknowledged by the debugger writing to the CTIINTACK
register

• After the processor is halted using CTI Trigger Output 0, the Processor Debug
Request signal remains asserted. The debugger must write to CTIINTACK to
clear the halting request before restarting the processor.

• After asserting an interrupt using the CTI Trigger Output 1 or 2, the Interrupt
Service Routine (ISR) must clear the interrupt request by writing to the CTI
Interrupt Acknowledge, CTIINTACK.

• Interrupt requests from the CTI to the system are only asserted when invasive
debug is enabled in the processor.

If the CTI is not included in the processor, the trigger signals are tied off internally and the cross
trigger functionality between the processor, MTB and ETM is not available.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Cross Trigger Interface

12.3 CTI programmers model
The following table shows the CTI programmable registers, with address offset, type, and reset
value for each register.

See the Arm® CoreSight™ SoC-400 Technical Reference Manual for register descriptions.

Table 12-3: CTI register summary

Address offset Name Type Reset value Description

0xE0042000 CTICONTROL RW 0x00000000 CTI Control Register

0xE0042010 CTIINTACK WO UNKNOWN CTI Interrupt Acknowledge Register

0xE0042014 CTIAPPSET RW 0x00000000 CTI Application Trigger Set Register

0xE0042018 CTIAPPCLEAR RW 0x00000000 CTI Application Trigger Clear Register

0xE004201C CTIAPPPULSE WO UNKNOWN CTI Application Pulse Register

0xE0042020-0xE004203C CTIINEN[7:0] RW 0x00000000 CTI Trigger to Channel Enable Registers

0xE00420A0-0xE00420BC CTIOUTEN[7:0] RW 0x00000000 CTI Channel to Trigger Enable Registers

0xE0042130 CTITRIGINSTATUS RO 0x00000000 CTI Trigger In Status Register

0xE0042134 CTITRIGOUTSTATUS RO 0x00000000 CTI Trigger Out Status Register

0xE0042138 CTICHINSTATUS RO 0x00000000 CTI Channel In Status Register

0xE0042140 CTIGATE RW 0x0000000F Enable CTI Channel Gate register

0xE0042144 ASICCTL RO 0x00000000 External Multiplexer Control register

0xE0042EE4 ITCHOUT WO UNKNOWN Integration Test Channel Output register

0xE0042EE8 ITTRIGOUT WO UNKNOWN Integration Test Trigger Output register

0xE0042EF4 ITCHIN RO 0x00000000 Integration Test Channel Input register

0xE0042F00 ITCTRL RW 0x00000000 Integration Mode Control register

0xE0042FC8 DEVID RO 0x00040800 Device Configuration register

0xE0042FBC DEVARCH RO 0x47701A14 Device Architecture register

0xE0042FCC DEVTYPE RO 0x00000014 Device Type Identifier register

0xE0042FD0 PIDR4 RO 0x00000004 Peripheral ID4 Register

0xE0042FD4 PIDR5 RO 0x00000000 Peripheral ID5 Register

0xE0042FD8 PIDR6 RO 0x00000000 Peripheral ID6 Register

0xE0042FDC PIDR7 RO 0x00000000 Peripheral ID7 Register

0xE0042FE0 PIDR0 RO 0x00000021 Peripheral ID0 Register

0xE0042FE4 PIDR1 RO 0x000000BD Peripheral ID1 Register

0xE0042FE8 PIDR2 RO 0x0000000B Peripheral ID2 Register

0xE0042FEC PIDR3 RO 0x000000001 Peripheral ID3 Register

0xE0042FF0 CIDR0 RO 0x0000000D Component ID0 Register

0xE0042FF4 CIDR1 RO 0x00000090 Component ID1 Register

0xE0042FF8 CIDR2 RO 0x00000005 Component ID2 Register

0xE0042FFC CIDR3 RO 0x000000B1 Component ID3 Register

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Breakpoint Unit

13. Breakpoint Unit
This section describes the Breakpoint Unit (BPU).

13.1 About the Breakpoint Unit
The Breakpoint Unit (BPU) with configurable support can implement four or eight hardware
breakpoints and up to eight instruction comparators.

The BPU does not support Flash patching. The FP_REMAP register is not implemented and is RAZ/
WI.

13.2 BPU programmers model
The following table shows the BPU registers, with address, name, type and reset information for
each register.

Depending on the implementation of your processor, some of these registers might not be present.
Any register that is configured as not present reads as zero and ignores writes.

All BPU registers are described in the Arm®v8-M Architecture Reference Manual.

Table 13-1: BPU register summary

Address offset Name Type Reset value Description

0xE0002000 FP_CTRL RW 0x10000040

If four instruction comparators are implemented.

0x10000080

If eight instruction comparators are implemented.

FlashPatch Control Register

0xE0002004 FP_REMAP RAZ/WI - Flash Patch Remap Register not implemented

0xE0002008 FP_COMP012 RW 0x00000000 FlashPatch Comparator Register0

0xE000200C FP_COMP112 RW 0x00000000 Flash Patch Comparator Register 1

0xE0002010 FP_COMP212 RW 0x00000000 Flash Patch Comparator Register 2

0xE0002014 FP_COMP312 RW 0x00000000 Flash Patch Comparator Register 3

0xE0002018 FP_COMP412 RW 0x00000000 Flash Patch Comparator Register 4

0xE000201C FP_COMP512 RW 0x00000000 FlashPatch Comparator Register 5

0xE0002020 FP_COMP612 RW 0x00000000 Flash Patch Comparator Register 6

0xE0002024 FP_COMP712 RW 0x00000000 Flash Patch Comparator Register 7

0xE0002FCC FP_DEVTYPE RO 0x00000000 FPB CoreSight Device Type Register

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Breakpoint Unit

Address offset Name Type Reset value Description

0xE0002FBC FP_DEVARCH RO 0x47701A03 FPB CoreSight Device Architecture Register

0xE0002FD0 FP_PIDR4 RO 0x00000004

0xE0002FD4 FP_PIDR5 RO 0x00000000

0xE0002FD8 FP_PIDR6 RO 0x00000000

0xE0002FDC FP_PIDR7 RO 0x00000000

0xE0002FE0 FP_PIDR0 RO 0x00000021

0xE0002FE4 FP_PIDR1 RO 0x000000BD

0xE0002FE8 FP_PIDR2 RO 0x0000000B

0xE0002FEC FP_PIDR3 RO 0x000000001

Peripheral identification registers

0xE0002FF0 FP_CIDR0 RO 0x0000000D

0xE0002FF4 FP_CIDR1 RO 0x00000090

0xE0002FF8 FP_CIDR2 RO 0x00000005

0xE0002FFC FP_CIDR3 RO 0x000000B1

Component identification registers

13.3 BPU functional description
The BPU contains both a global enable and individual enables for each of the comparators
implemented.

If the BPU supports only four breakpoints, only comparators 0-3 are used, and comparators 4-7 are
implemented as RAZ/WI.

12 FP_COMPn[0] is reset to 0.

FP_COMPn[31:1] is reset to UNKNOWN

If only 4 breakpoints are implemented, FP_COMP4-FP_COMP7 are RAZ/WI.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Appendix A Debug Access Port
This appendix describes the DAP for the Cortex®-M33 processor.

A.1 About the Debug Access Port
The Cortex®-M33 DAP (Verilog module name TEALDAP) is an optional component that provides an
interface to allow off-chip debug tools to access the Cortex®-M33 processor.

It is an implementation of the Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 .

The key features of the Cortex®-M33 DAP are:

• It can be configured as a JTAG Debug Port (JTAG-DP), Serial Wire Debug Port (SW-DP), or
Serial Wire/JTAG Debug Port (SWJ-DP) via an implementation option, see A.1.1 Configuration
options on page 85. For more information on the various debug ports, see the Arm® Debug
Interface Architecture Specification, ADIv5.0 to ADIv5.2 .

• Includes an AHB-AP, intended to be directly connected to the Cortex®-M33 processor D-AHB
slave port.

• Implements the Minimal Debug Port programmers model, see the Arm® Debug Interface
Architecture Specification, ADIv5.0 to ADIv5.2 .

The Cortex®-M33 DAP is a low gate-count DAP implementation. If you require
a full DAP implementation, Arm recommends using the DAP provided in the
CoreSight SoC-400 product. See Arm® CoreSight™ SoC-400 Technical Reference
Manual.

The following figure shows the Cortex®-M33 DAP interface, as specified in the TEALDAP Verilog
module.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 137

https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Figure A-1: Cortex®-M33 DAP interface

Cortex-M33
DAP

Clock
and

resets

DP

Configuration

SWDO
SWDOEN

TDO
nTDOEN

nTRST
TDI

BASEADDR[31:0]
TARGETID[31:0]

SWCLKTCK
DPRESETn

DCLK
APRESETn

SWDETECT

SWDITMS

INSTANCEID[3:0]
ECOREVNUM[7:0]

AP EnableDEVICEEN

HALTED Halted

Power management
CDBGPWRUPREQ
CDBGPWRUPACK

AHB-AP

SLVADDR[31:0]
SLVWDATA[31:0]
SLVTRANS[1:0]
SLVPROT[6:0]
SLVWRITE
SLVSIZE[1:0]

SLVRDATA[31:0]
SLVREADY
SLVRESP

SLVNONSEC

JTAGSEL

SWSEL

A.1.1 Configuration options

The following table shows the configuration options for the Cortex®-M33 DAP that can be set at
implementation time.

Table A-1: Configuration options for the Cortex®-M33 DAP

Parameter Description

DPSEL Debug port select:

0 JTAG-DP.
1 SW-DP.
2 SWJ-DP.

RAR Reset all registers:

0 Only required registers are reset.
> 0 All registers are reset.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

A.2 Functional description
The following figure shows the main functional blocks in the Cortex®-M33

Figure A-2: Cortex®-M33 block diagram

JTAG-DP‡

AHB-AP

SW-DP‡

nTRST
SWCLKTCK

To the
Cortex-M33 D-AHB

Port

SWJ-DP‡

SW-DP/JTAG-
DP

Select‡

TDI
TDO

‡ Optional component.

Cortex-M33 DAP

nTDOEN
SWDITMS

SWDO
SWDOEN

SWDETECT
SWSEL

JTAGSEL

DCLK

DEVICEEN

The Debug Port (DP)s and Access Port (AP) are compliant with ADIv5.2 architecture. An overview of
each is as follows:

JTAG-DP
The JTAG-DP implements the JTAG debug interface and is compliant with DP architecture
version 1.

SW-DP
The SW-DP implements the Serial Wire debug interface and is compliant with DP
architecture version 2 and Serial Wire protocol version 2.

SWJ-DP
The SWJ-DP implements both the JTAG-DP and SW-DP. The SWJ-DP provides a mechanism
to dynamically switch between the debug ports as described in Arm® Debug Interface
Architecture Specification, ADIv5.0 to ADIv5.2 .

AHB-AP
The AHB-AP is an AHB master interface that is intended to be directly connected to the
Cortex®-M33 processor D-AHB port. It is compliant with the MEM-AP definition and
performs 8-bit, 16-bit, and 32-bit accesses.

The Dormant mode, and the switching to and from the Dormant mode, is supported in all
configurations.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 137

https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

A.3 DAP register summary
This section shows the DAP component register summaries.

A.3.1 AHB-AP register summary

The following table shows the AHB-AP register summary.

Table A-2: AHB-AP register summary

Offset Type Reset value Name

0x00 RW 0x03000000 A.4.1.1 AHB-AP Control/Status Word register, CSW, 0x00 on page 88

0x04 RW - A.4.1.2 AHB-AP Transfer Address Register, TAR, 0x04 on page 91

0x08 - - Reserved, RAZ/SBZP

0x0C RW - A.4.1.3 AHB-AP Data Read/Write register, DRW, 0x0C on page 91

0x10 RW -

0x14 RW -

0x18 RW -

0x1C RW -

A.4.1.4 AHB-AP Banked Data registers, BD0-BD03, 0x10-0x1C on page 92

0x20-0xF3 - - Reserved, RAZ/SBZP

0xF4 RO 0x00000000 A.4.1.6 AHB-AP Configuration register, CFG, 0xF4 on page 93

0xF8 RO IMPLEMENTATION DEFINED A.4.1.5 AHB-AP Debug Base Address register, ROM, 0xF8 on page 92

0xFC RO 0x04770051 A.4.1.7 AHB-AP Identification Register, IDR, 0xFC on page 93

A.3.2 Debug port register summary

The following table shows the Cortex®-M33 DP registers, and summarizes which registers are
implemented in the JTAG-DP and which are implemented in the SW-DP.

Table A-3: Debug port register summary

Name JTAG‑DP SW-
DP

Description

ABORT Yes Yes AP Abort register. See A.4.2.1 AP Abort register, ABORT on page 94.

IDCODE Yes No ID Code register. See A.4.2.2 Identification Code register, IDCODE on page 95.

DPIDR Yes Yes Debug Port Identification register. See A.4.2.3 Debug Port Identification Register, DPIDR on page 96.

CTRL/STAT Yes Yes Control/Status register. See A.4.2.4 Control/Status register, CTRL/STAT on page 98.

SELECT Yes Yes AP Select register. See A.4.2.5 AP Select register, SELECT on page 100.

RDBUFF Yes Yes Read Buffer register. See A.4.2.6 Read Buffer register, RDBUFF on page 101.

EVENTSTAT No Yes Event Status register. See A.4.2.7 Event Status register, EVENTSTAT on page 102.

DLCR No Yes Data Link Control Register. See A.4.2.8 Data Link Control Register, DLCR (SW-DP only) on page 103.

TARGETID No Yes Target Identification register. See A.4.2.9 Target Identification register, TARGETID (SW-DP only) on page
104.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Name JTAG‑DP SW-
DP

Description

DLPIDR No Yes Data Link Protocol Identification Register. See A.4.2.10 Data Link Protocol Identification Register, DLPIDR
(SW-DP only) on page 105.

RESEND No Yes Read Resend register. See A.4.2.11 Read Resend register, RESEND (SW-DP only) on page 105.

IR Yes No Instruction Register. See Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 for more
information.

BYPASS Yes No Bypass register. See Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 for more
information.

DPACC Yes No DP Access register. See Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 for more
information.

APACC Yes No AP Access register. See Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 for more
information.

A.4 DAP register descriptions
This section describes the following DAP component registers and their bit assignments.

A.4.1 AHB-AP register descriptions

This section describes the programmable AHB-AP registers. It contains the following registers:

• A.4.1.1 AHB-AP Control/Status Word register, CSW, 0x00 on page 88.

• A.4.1.2 AHB-AP Transfer Address Register, TAR, 0x04 on page 91.

• A.4.1.3 AHB-AP Data Read/Write register, DRW, 0x0C on page 91.

• A.4.1.4 AHB-AP Banked Data registers, BD0-BD03, 0x10-0x1C on page 92.

• A.4.1.5 AHB-AP Debug Base Address register, ROM, 0xF8 on page 92.

• A.4.1.6 AHB-AP Configuration register, CFG, 0xF4 on page 93.

• A.4.1.7 AHB-AP Identification Register, IDR, 0xFC on page 93.

A.4.1.1 AHB-AP Control/Status Word register, CSW, 0x00

AHB-AP Control/Status Word register configures and controls transfers through the AHB interface.

Attributes
See A.3 DAP register summary on page 86.

The following figure shows the AHB-AP CSW register bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 137

https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Figure A-3: AHB-AP CSW register bit assignments

Size

31 30 29 28 24 23 12 11 8 7 6 5 4 3 2 0

Prot Reserved Mode

TrInProg
DbgStatus

AddrInc
Reserved

Reserved

DbgSwEnable SPIDEN

2227

Prot

The following table shows the AHB-AP CSW register bit assignments.

Table A-4: AHB-AP Control/Status Word register bit assignments

Bits Type Name Function

[31] RO DbgSwEnable Not implemented in Cortex®-M33 DAP. Treat
as RAZ/SBZP.

[30] RW Prot Specifies the security of the AHB transfer
output on SLVNONSEC.

0 Secure transfer.
1 Non-secure transfer.

This bit resets to 0.

[29:28] RW - Reserved, SBZ.

[27:25] RW

[24] RO

Prot Specifies the signal encodings to be output on
SLVPROT[6], SLVPROT[4], and SLVPROT[3:0].

SLVPROT[6] CSW.Prot[27]
SLVPROT[4] CSW.Prot[27]
SLVPROT[3:0] CSW.Prot[27:24]

Note:
SLVPROT[5] is tied to 0.

[23] RO SPIDEN Not implemented in Cortex®-M33 DAP. Treat
as RAZ/SBZP.

[22:12] - - Reserved. Treat as RAZ/SBZP.

[11:8] RO Mode Not implemented in Cortex®-M33 DAP. Treat
as RAZ/SBZP.

[7] RO TrInProg Not implemented in Cortex®-M33 DAP. Treat
as RAZ/SBZP.

[6] RO DbgStatus Indicates the status of the DEVICEEN port.
If DbgStatus is LOW, no AHB transfers are
carried out.

0 AHB transfers not permitted.
1 AHB transfers permitted.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Bits Type Name Function

[5:4] RW AddrInc Auto address increment and packing mode
on RW data access. Only increments if the
current transaction completes without an error
response and the transaction is not aborted.

Auto address incrementing and packed
transfers are not performed on access to
Banked Data registers, 0x10-0x1C. The status
of these bits is ignored in these cases.

Incrementing and wrapping is performed
within a 1KB address boundary, for example,
for word incrementing from 0x1400-0x17FC.
If the start is at 0x14A0, then the counter
increments to 0x17FC, wraps to 0x1400,
then continues incrementing to 0x149C.

0b00 Auto increment OFF.
0b01 Increment, single.

Single transfer from corresponding byte lane.

0b10 Reserved, SBZ. No transfer.
0b11 Reserved, SBZ. No transfer.

The Size field, bits[2:0] defines the size of
address increment

The reset value is 0b00.

Note:
Bit[5] is RO and RAZ.

[3] RW - Reserved, SBZ.

The reset value is 0.

[2:0] RW Size Size of the data access to perform:

0b000 8 bits.
0b001 16 bits.
0b010 32 bits.
0b011-0b111 Reserved, SBZ.

The reset value is 0b000.

Note:
Bit[2] is RO and RAZ.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

A.4.1.1.1 Prot field bit descriptions

The following table describes Prot field bits.

Table A-5: Prot field bit descriptions

Bit Description

27 Shareable, Lookup, Modifiable:

0 Non-shareable, no-look up, non-modifiable.
1 Shareable, lookup, modifiable.

26 Bufferable:

0 Non-bufferable.
1 Bufferable.

25 Privileged:

0 Non-privileged.
1 Privileged.

24 Data/Instruction access:

1 Data access. This bit is RO.

A.4.1.2 AHB-AP Transfer Address Register, TAR, 0x04

AHB-AP Transfer Address Register holds the memory address to be accessed.

Attributes
See A.3 DAP register summary on page 86.

The following table shows the AHB-AP Transfer Address Register bit assignments.

Table A-6: AHB-AP Transfer Address Register bit assignments

Bits Type Name Function

[31:0] RW Address Address of the current transfer

Note:
This register is not reset

A.4.1.3 AHB-AP Data Read/Write register, DRW, 0x0C

AHB-AP Data Read/Write register maps an AP access directly to one or more memory accesses.
The AP access does not complete until the memory access, or accesses, complete.

Attributes
See A.3 DAP register summary on page 86.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

The following table shows the AHB-AP Data Read/Write register bit assignments.

Table A-7: AHB-AP Data Read/Write register bit assignments

Bits Type Name Function

[31:0] RW Data Write mode
Data value to write for the current
transfer.

Read mode
Data value that is read from the current
transfer.

A.4.1.4 AHB-AP Banked Data registers, BD0-BD03, 0x10-0x1C

AHB-AP Banked Data registers, BD0-BD03 provide a mechanism for directly mapping through
DAP accesses to AHB transfers without having to rewrite the TAR within a four-location boundary.
BD0 is RW from TA. BD1 is RW from TA+4.

Attributes
See A.3 DAP register summary on page 86.

The following table shows the Banked Data register bit assignments.

Table A-8: Banked Data register bit assignments

Bits Type Name Function

[31:0] RW Data If dapcaddr[7:4] = 0x0001, it is accessing
AHB-AP registers in the range 0x10-0x1C,
and the derived haddr[31:0] is:

Write mode
Data value to write for the current
transfer to external address TAR[31:4]
+ dapcaddr[3:2] + 0b00.

Read mode
Data value that is read from the
current transfer from external address
TAR[31:4] + dapcaddr[3:2] + 0b00.

Auto address incrementing is not performed
on DAP accesses to BD0-BD3.

Banked transfers are only supported for word
transfers. Non-word banked transfers are
reserved and UNPREDICTABLE. Transfer size is
ignored for banked transfers.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

A.4.1.5 AHB-AP Debug Base Address register, ROM, 0xF8

AHB-AP Debug Base Address register provides an index into the connected memory-mapped
resource. This index value points to a ROM table that describes the connected debug components.

Attributes
See A.3 DAP register summary on page 86.

The following table shows the AHB-AP Debug Base Address register bit assignments.

Table A-9: AHB-AP Debug Base Address register bit assignments

Bits Type Name Function

[31:0] RO Debug AHB ROM Address Base address of a ROM table. Bit[1] is always
1, bits[31:12] are set to the tie-off value on
the static input port BASEADDR[31:12].
Bits[11:2] are set to 0x000 and bit[0] is set to
BASEADDR[0].

The ROM provides a lookup table that points
to debug components.

A.4.1.6 AHB-AP Configuration register, CFG, 0xF4

AHB-AP configuration register describes the features that are configured in the AHB-AP
implementation.

Attributes
See A.3 DAP register summary on page 86.

The following table shows the AHB-AP Configuration register bit assignments.

Table A-10: AHB-AP Configuration register bit assignments

Bits Type Name Value Function

[31:3] - Reserved 0x00000000 -

[2] RO LD 0x0 Large data. Data not larger than 32-bits supported.

[1] RO LA 0x0 Long address. Physical addresses of 32 bits, or less supported. Greater than 32 bits is not
supported.

[0] RO BE 0x0 Only little-endian supported.

A.4.1.7 AHB-AP Identification Register, IDR, 0xFC

AHB-AP Identification register specifies the AHB-AP identification values.

The following figure shows the AHB-AP Identification Register bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Figure A-4: AHB-AP Identification Register bit assignments

TypeClassRevision JEDEC
bank JEDEC code Reserved Variant

31 28 27 24 23 17 16 13 8 7 012 4 3

The following table shows the AHB-AP Identification Register bit assignments.

Table A-11: AHB-AP Identification Register bit assignments

Bits Type Name Value Function

[31:28] RO Revision 0x1 r0p1

[27:24] RO JEDEC bank 0x4 Designed by Arm®

[23:17] RO JEDEC code 0x3B Designed by Arm®

[16:13] RO Class 0x8 Is a Mem AP

[12:8] - Reserved 0x00 -

[7:4] RO Variant 0x1 Cortex®-M33

[3:0] RO Type 0x5 AHB5

A.4.2 Debug port registers

This section describes the DP registers.

A.4.2.1 AP Abort register, ABORT

AP Abort register forces an AP transaction abort.

Attributes
The ABORT register is:

• A write-only register.

• Accessible through JTAG-DP and SW-DP.

• Accessed in a DATA LINK DEFINED manner:

◦ JTAG-DP access is through its own scan-chain.

◦ A write to offset 0x0 of the DP register map accesses SW-DP.

• Always accessible, completes all accesses on the first attempt, and returns an OK response if a
valid transaction is received.

The following figure shows the ABORT bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Figure A-5: ABORT bit assignments

31 5 4 3 2 1 0

Reserved, SBZ

ORUNERRCLR
WDERRCLR

STKERRCLR
STKCMPCLR

DAPABORT

The following table shows the ABORT bit assignments.

Table A-12: ABORT bit assignments

Bits Function Description

[31:5] - Reserved, SBZ.

[4] ORUNERRCLR Setting this bit to 1 sets the STICKYORUN overrun error flag14 to 0.

[3] WDERRCLR13 Setting this bit to 1 sets the WDATAERR write data error flag14 to 0.

[2] STKERRCLR Setting this bit to 1 sets the STICKYERR sticky error flag14 to 0.

[1] STKCMPCLR Reserved, SBZ. The DP is a MINDP implementation, therefore this bit is not implemented.

[0] DAPABORT Setting this bit to 1 generates a DAP abort, that aborts the current AP transaction.

Note:
Perform this only if the debugger has received WAIT responses over an extended period.

A.4.2.2 Identification Code register, IDCODE

Identification Code register provides identification information about the JTAG-DP. The IDCODE
register is always accessible.

Attributes
The IDCODE register is:

• A read-only register.

• Accessed through its own scan chain when the IR contains 0b1110.

The following figure shows the Identification Code register bit assignments.

13 Implemented on SW-DP only. On a JTAG-DP, this bit is Reserved, SBZ.
14 In the Control/Status Register, see A.4.2.4 Control/Status register, CTRL/STAT on page 98.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Figure A-6: Identification Code register bit assignments

1Version

31 28 27 12 11 1 0

PARTNO
Part number 0 1 0 0 0 1 1 1 0 1 1JTAG-DP

MANUFACTURER
(Arm)

The following table shows the Identification Code register bit assignments.

Table A-13: Identification Code register bit assignments

Bits Function Description

[31:28] Version JTAG-DP revision code exclusive OR-gated with ECOREVNUM[7:4] signal:

0x0 r0p0.

[27:12] PARTNO Part Number for the JTAG-DP, 0xBA04.

[11:1] MANUFACTURER JEDEC Manufacturer ID, an 11-bit JEDEC code that identifies the designer of the device. See A.4.2.2.1
JEDEC Manufacturer ID on page 96. in this figure shows the Arm value for this field as 0x23B. This value
must not be changed.

[0] - Always 1.

A.4.2.2.1 JEDEC Manufacturer ID

This code is also described as the JEP-106 manufacturer identification code, and can be subdivided
into two fields, as the following table shows. The JEDEC Solid-State Technology Association assign
JEDEC codes.

See the JEDEC Standard Manufacturer’s Identification Code, JEP106.

Table A-14: JEDEC JEP106 manufacturer ID code, with Arm® values

MANUFACTURER field Bits15 Arm® registered value

Continuation code 4 bits, [11:8] 0b0100, 0x4

Identity code 7 bits, [7:1] 0b0111011, 0x3B

15 Field width, in bits, and the corresponding bits in the Identification Code Register.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

A.4.2.3 Debug Port Identification Register, DPIDR

Debug Port Identification register provides identification information about the JTAG-DP and SW-
DP.

Attributes
The DPIDR register is:

• A read-only register.

• Accessed by a read at offset 0x0 of the DP register map.

The following figure shows the Debug Port Identification Register bit assignments.

Figure A-7: Debug Port Identification Register bit assignments

RES0PARTNOREVISION VERSION

Reserved
MIN

1

31 28 27 20 19 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 1 1

(Value shown is the Arm value)
DESIGNER

The following table shows Debug Port Identification Register the bit assignments.

Table A-15: Debug Port Identification Register bit assignments

Bits Function Description

[31:28] REVISION DP revision code exclusive OR-gated with
the ECOREVNUM[7:4] signal:

JTAG-DP
0x0, r0p0.

SW-DP
0x0, r0p0.

[27:20] PARTNO Part Number for this debug port, 0xBE.

[19:17] - Reserved, RAZ.

[16] MIN Reads as 1, indicating that the Minimal Debug
Port (MINDP) architecture is implemented.

Transaction counter, Pushed-verify,
and Pushed-find operations are not
implemented.

[15:12] VERSION JTAG-DP is DP architecture version is 0x1.

SW-DP is DP architecture version is 0x2.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Bits Function Description

[11:1] MANUFACTURER JEDEC Manufacturer ID, an 11-bit JEDEC
code that identifies the designer of the
device. See A.4.2.2.1 JEDEC Manufacturer
ID on page 96. A.4.2.2 Identification
Code register, IDCODE on page 95
shows the Arm value for this field as 0x23B.
This value must not be changed.

[0] - Always 1.

A.4.2.4 Control/Status register, CTRL/STAT

Control/Status register provides control of the DP and its status information.

Attributes
The CTRL/STAT register is:

• A read/write register. Some fields are RO, meaning they ignore writes, see the field
descriptions for more information.

• JTAG-DP. At address 0x4 when the IR contains DPACC, when SELECT.DPBANKSEL is
0x0.

• SW-DP. At address 0x4 when APnDP bit is 0, and SELECT.DPBANKSEL is 0x0.

The following figure shows the Control/Status register bit assignments.

Figure A-8: Control/Status register bit assignments

00
00

31 5 4 3 2 1 0

JTAG-DP

SW-DP

WDATAERR
READOK

STICKYERR

TRNMODE

SW-DP only,
RAZ/SBZP for JTAG-DP

30 29 28 27 26 25 24 23 12 11 8 7 6

TRNCNT

CSYSPWRUPACK
CSYSPWRUPREQ
CDBGPWRUPACK
CDBGPWRUPREQ

CDBGRSTACK
CDBGRSTREQ

RAZ/SBZP

MASKLANE

STICKYCMP

STICKYORUN
ORUNDETECT

The following table shows the Control/Status register bit assignments.

Table A-16: Control/Status register bit assignments

Bits Access Function Description

[31] RO CSYSPWRUPACK System powerup acknowledge.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Bits Access Function Description

[30] RW CSYSPWRUPREQ System powerup request.

The reset value is 0.

[29] RO CDBGPWRUPACK Debug powerup acknowledge.

[28] RW CDBGPWRUPREQ Debug powerup request.

The reset value is 0.

[27] RO CDBGRSTACK Debug reset acknowledge.

[26] RW CDBGRSTREQ Debug reset request.

The reset value is 0.

[25:24] - - Reserved, RAZ/SBZP.

[23:12] RAZ/
SBZP

TRNCNT The Cortex®-M33 is a MINDP implementation, therefore this field is reserved.

[11:8] RAZ/
SBZP

MASKLANE The Cortex®-M33 is a MINDP implementation, therefore this field is reserved.

[7] RO16 WDATAERR17 If a Write Data Error occurs, this bit is set to 1. It is set if:

• There is a parity or framing error on the data phase of a write.

• A write that the debug port accepted is then discarded without being submitted to the access
port.

This bit can only be set to 0 by writing 1 to ABORT.WDERRCLR.

The reset value after a Powerup reset is 0.

[6] RO16 READOK17 If the response to the previous access port read or RDBUFF read was OK, this bit is set to 1. If the
response was not OK, it is set to 0.

This flag always indicates the response to the last access port read access.

The reset value after a Powerup reset is 0.

[5] RO16 STICKYERR If an error is returned by an access port transaction, this bit is set to 1. To set this bit to 0:

JTAG-DP
Either:

• Write 1 to this bit of this register.

• Write 1 to ABORT.STKERRCLR.

SW-DP
Write 1 to ABORT.STKERRCLR.

After a Powerup reset, this bit is LOW.

[4] RAZ STICKYCMP The Cortex®-M33 is a MINDP implementation, therefore this field is reserved.

[3:2] RAZ/
SBZP

TRNMODE The Cortex®-M33 is a MINDP implementation, therefore this field is reserved.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Bits Access Function Description

[1] RO16 STICKYORUN If overrun detection is enabled (see bit[0] of this register), this bit is set to 1 when an overrun
occurs. To set this bit to 0:

JTAG-DP
Either:

• Write 1 to this bit of this register.

• Write 1 to ABORT.ORUNERRCLR.

SW-DP
Write 1 to ABORT.ORUNERRCLR.

After a Powerup reset, the reset value is 0.

[0] RW ORUNDETECT This bit is set to 1 to enable overrun detection.

The reset value is 0.

A.4.2.5 AP Select register, SELECT

The AP Select register selects, an Access Port (AP) and the active register banks within that AP, and
the DP address bank.

Attributes
The SELECT register is:

• A write-only register.

• JTAG-DP. At address 0x8 when the IR contains DPACC, and is a WO register.

• SW-DP. At address 0x8 on write operations, when the APnDP bit is 0.

The following figure shows the AP Select register bit assignments.

Figure A-9: AP Select register bit assignments

APSEL

31 4 3 0

JTAG-DP

SW-DP

APBANKSEL

DPBANKSEL

24 23 8 7

Reserved
RAZ/SBZ

The following table shows the AP Select register bit assignments.

16 RO on SW-DP. On a JTAG-DP, this bit can be read normally. Writing a 1 to this bit sets the bit to 0.
17 Implemented on SW-DP only. On a JTAG-DP, this bit is Reserved,RAZ.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Table A-17: AP Select register bit assignments

Bits Function Description

[31:24] APSEL Selects the current access port:

0x00

Selects the AHB-AP.

0x01-0x1F
AP 0x01-0x1F do not exist, and if selected, AP read transactions return zero and AP writes are
ignored.

The reset value is UNPREDICTABLE.

[23:8] Reserved. SBZ/
RAZ

Reserved. SBZ/RAZ.

[7:4] APBANKSEL Selects the active 4-word register window on the current access port.

The reset value is UNPREDICTABLE.

[3:0] DPBANKSEL Selects the register that appears at DP register 0x4.

JTAG-DP register allocation:

0x0 CTRL/STAT.

SW-DP register allocation in DPv1:

0x0 CTRL/STAT.
0x1 DLCR.

SW-DP register allocation in DPv2:

0x0 CTRL/STAT.
0x1 DLCR.
0x2 TARGETID.
0x3 DLPIDR.
0x4 EVENTSTAT.

A.4.2.6 Read Buffer register, RDBUFF

Read Buffer register captures data from the AP that is presented as the result of a previous read.

Attributes
The RDBUFF register is:

• A 32-bit read-only buffer.

• JTAG-DP. Accessed at address 0xC when the IR contains DPACC.

• SW-DP. Accessed at address 0xC on read operations when the APnDP bit is 0.

• Has DATA LINK DEFINED behavior:

◦ JTAG-DP, see A.4.2.6.1 Read Buffer implementation and use on a JTAG-DP on page
102.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

◦ SW-DP, see A.4.2.6.2 Read Buffer implementation and use on an SW-DP on page
102.

A.4.2.6.1 Read Buffer implementation and use on a JTAG-DP

On a JTAG-DP, the read buffer is RAZ/WI.

The read buffer is architecturally defined to provide a debug port read operation that does not have
any side effects. This means that a debugger can insert a debug port read of the read buffer at the
end of a sequence of operations to return the final AP read result and ACK values.

A.4.2.6.2 Read Buffer implementation and use on an SW-DP

On an SW-DP, performing a read of the read buffer captures data from the access port, presented
as the result of a previous read, without initiating a new access port transaction. This means that
reading the read buffer returns the result of the last access port read access, without generating a
new AP access.

After you read the read buffer, its contents are no longer valid. The result of a second read of the
read buffer is UNPREDICTABLE.

If you require the value from an access port register read, that read must be followed by one of:

• A second access port register read. You can read the CSW if you want to ensure that this
second read has no side effects.

• A read of the DP Read Buffer.

This second access, to the access port or the debug port depending on which option you use, stalls
until the result of the original access port read is available.

A.4.2.7 Event Status register, EVENTSTAT

Event Status register signals to the debugger that the Cortex®-M33 processor is halted.

Attributes
The EVENTSTAT register is:

• A read-only register.

• Accessed by a read at offset 0x4 of the DP register map when SELECT.DPBANKSEL is
set to 0x4.

The following figure shows the Event Status register bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Figure A-10: Event Status register bit assignments

31 0

Reserved

EA

1

The following table shows the Event Status register bit assignments.

Table A-18: Event Status register bit assignments

Bits Function Description

[31:1] - Reserved, RAZ.

[0] EA Event status flag. Indicates that the Cortex®-M33 processor is halted:

0
Processor is halted.

1
Processor is not halted.

A.4.2.8 Data Link Control Register, DLCR (SW-DP only)

Data Link Control register controls the operating mode of the Data Link.

Attributes
The DLCR register is:

• A read/write register.

• Accessed by a read or write at offset 0x4 of the DP address map when
SELECT.DPBANKSEL is set to 0x1.

The following figure shows the Data Link Control Register bit assignments.

Figure A-11: Data Link Control Register bit assignments

SBZ/
RAZ

31 5 3 0

SBZ/RAZ

2678910

TURNROUND

WIREMODE
PRESCALER

Implementation-defined, see text

The following table shows the Data Link Control Register bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Table A-19: Data Link Control Register bit assignments

Bits Function Description

[31:10] - Reserved, SBZ/RAZ.

[9:8] TURNROUND Turnaround tristate period. This field only supports 0b00, other write values are treated as a protocol error.

The reset value is 0b00.

[7:6] WIREMODE This field identifies SW-DP as operating in Synchronous mode only. It is fixed to 0b00.

The reset value is 0b00.

[5:3] - Reserved, SBZ/RAZ.

[2:0] PRESCALER Reserved, SBZ/RAZ.

A.4.2.9 Target Identification register, TARGETID (SW-DP only)

Target Identification register provides information about the target when the host is connected to a
single device.

Attributes
The TARGETID register is:

• A read-only register.

• Accessed by a read at offset 0x4 of the DP register map when SELECT.DPBANKSEL is
set to 0x2.

The following figure shows the Target Identification register bit assignments.

Figure A-12: Target Identification register bit assignments

31 28 27 12 11 1 0

TPARTNO TDESIGNER

TREVISION Reserved, RAO

The following table shows the Target Identification register bit assignments.

Table A-20: Target Identification register bit assignments

Bits Function Description

[31:28] TREVISION Target revision.

[27:12] TPARTNO Configuration dependent.

The designer of the part assigns this value and must be unique to that part.

[11:1] TDESIGNER Arm® designer code (0x23B).

[0] - Reserved, RAO.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

A.4.2.10 Data Link Protocol Identification Register, DLPIDR (SW-DP only)

Data Link Protocol Identification register provides protocol version information.

Attributes
The DLPIDR is:

• A read-only register.

• Accessed by a read at offset 0x4 of the DP register map when SELECT.DPBANKSEL is
set to 0x3.

The following figure shows the Data Link Protocol Identification Register bit assignments.

Figure A-13: Data Link Protocol Identification Register bit assignments

Protocol
Version

Target
Instance

31 28 27 4 3 0

Reserved

The following table shows the Data Link Protocol Identification Register bit assignments.

Table A-21: Data Link Protocol Identification Register bit assignments

Bits Function Description

[31:28] Target
Instance

Configuration dependent.

This field defines a unique instance number for this device within the system. This value must be unique for all devices
that are connected together in a multidrop system with identical values in the TREVISION fields in the TARGETID
register. The value of this field reflects the value of the instanceid[3:0] input.

[27:4] - Reserved.

[3:0] Protocol
Version

Defines the serial wire protocol version. This value is 0x1, that indicates SW protocol version 2.

A.4.2.11 Read Resend register, RESEND (SW-DP only)

Read Resend register enables the read data to be recovered from a corrupted debugger transfer
without repeating the original AP transfer.

Attributes
The RESEND register is:

• A read-only register.

• Accessed by a read at offset 0x8 in the DP register map.

Performing a read to the RESEND register does not capture new data from the AP, it returns the
value that was returned by the last AP read or DP RDBUFF read.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Debug Access Port

Reading the RESEND register enables the read data to be recovered from a corrupted SW-DP
transfer without having to re-issue the original read request, or generate a new access to the
connected debug memory system.

The RESEND register can be accessed multiple times, it always returns the same value until a new
access is made to an AP register or the DP RDBUFF register.

A.4.2.12 DP register descriptions

More information about the DP registers, their features, and how to access them can be found in
the Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 .

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 137

https://developer.arm.com/documentation/ihi0031/latest/

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Appendix B Trace Port Interface Unit
This appendix describes the Cortex®-M33 TPIU that can be used with the Cortex®-M33 processor.

B.1 About the TPIU
The Cortex®-M33 TPIU is an optional component that bridges between the on-chip trace data
from the ETM and the ITM, with separate IDs, to a data stream.

The Cortex®-M33 TPIU encapsulates IDs where required, and an external Trace Port Analyzer (TPA)
captures the data stream.

The Cortex®-M33 TPIU is specially designed for low-cost debug. If your implementation requires
the additional features, like those in the CoreSight SoC-400 TPIU, your implementation can replace
the Cortex®-M33 TPIU with other CoreSight components.

In this chapter, the term TPIU refers to the Cortex®-M33 TPIU. For information about the
CoreSight SoC-400 TPIU, see the Arm® CoreSight™ SoC-400 Technical Reference Manual.

B.2 TPIU functional description
The TPIU supports up to two ATB ports.

The ATB1 and ATB2 parameters provide the following configuration options:

ATB2 = 0 and
ATB1 = 0

Illegal combination

ATB2 = 0 and
ATB1 = 1

ATB port 1 present

ATB2 = 1 and
ATB1 = 0

ATB port 2 present

ATB2 = 1 and
ATB1 = 1

Both ATB port 1 and 2 present

In a system, Arm® recommends that the ITM is connected to ATB port 1 and an ETM is connected
to ATB port 2.

If your implementation requires no trace support, then the TPIU might not be present.

If your system design uses the optional ETM component, the TPIU configuration
supports both ITM and ETM debug trace. See the Arm® CoreSight™ ETM‑M33
Technical Reference Manual.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

The following figure shows the component layout of the TPIU for both configurations.

Figure B-1: TPIU block diagram

ATB
Interface 2

Formatter

APB
Interface

Trace Out
(serializer)

† ATB
Slave
Port 2

APB Slave Port

TRACECLKIN

TRACECLK

TRACEDATA [3:0]

TRACESWO

CLK Domain TRACECLKIN Domain

ATB
Interface 1

† ATB
Slave
Port 1

† Optional component

ATB
Interface

assignments

If only one ATB slave port is present, it is assigned to ATB interface 1 and ATB interface 2 is
removed. If ATB slave ports 1 and 2 are present, they are assigned to ATB interface 1 and 2
respectively.

B.2.1 TPIU Formatter

The formatter inserts source ID signals into the data packet stream so that trace data can be re-
associated with its trace source. The formatter is always active when the Trace Port Mode is active.

The formatting protocol is described in the Arm® CoreSight™ Architecture Specification v3.0. You
must enable synchronization in the DWT or TPIU_PSCR to provide synchronization for the
formatter.

When the formatter is enabled, if there is no data to output after a frame has been started,
half-sync packets can be inserted. Distributed synchronization from the DWT or TPIU_PSCR
causes synchronization which ensures that any partial frame is completed, and at least one full
synchronization packet is generated.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 137

https://developer.arm.com/documentation/ihi0029/latest

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

B.2.2 Serial Wire Output format

The TPIU can output trace data in a Serial Wire Output (SWO) format:

• TPIU_DEVID specifies the formats that are supported. See B.3.10 Device Configuration
Register on page 118.

• TPIU_SPPR specifies the SWO format in use. See the Arm®v8-M Architecture Reference Manual.

When one of the two SWO modes is selected, you can enable the TPIU to bypass the formatter
for trace output. If the formatter is bypassed, only one trace source passes through. When the
formatter is bypassed, only data on the ATB interface 1 is passed through and ATB interface 2 data
is discarded.

When operating in bypass mode, Arm® recommends that in a configuration that
supports and ETM and ITM, the ITM data is passed through by connecting the ITM
to the ATB Slave Port 1.

B.3 TPIU programmers model
The following table shows the TPIU registers. Depending on the implementation of your processor,
the TPIU registers might not be present and the CoreSight TPIU might be present instead. Any
register that is configured as not present reads as zero.

Arm® recommends that the TPIU is only reprogrammed before any data has been
presented on either ATB slave port and either:

• After both ATRESETn and TRESETn have been applied.

• After a flush has been completed using FFCR.FOnMan.

If this is not followed, reprogramming can lead to either momentary or permanent
data corruption that might require ATRESETn and TRESETn to be applied.

Table B-1: TPIU registers

Address Name Type Reset Description

0xE0040000 TPIU_SSPSR RO -18 Supported Parallel Port Size Register

0xE0040004 TPIU_CSPSR RW 0x01 Current Parallel Port Size Register

0xE0040010 TPIU_ACPR RW 0x0000 B.3.1 Asynchronous Clock Prescaler Register on page 110

0xE00400F0 TPIU_SPPR RW 0x01 Selected Pin Protocol Register

0xE0040300 TPIU_FFSR RO 0x08 B.3.2 Formatter and Flush Status Register on page 111

0xE0040304 TPIU_FFCR RW 0x102 B.3.3 Formatter and Flush Control Register on page 112

18 The value at reset is tied to the MAXPORTSIZE configuration tie off.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Address Name Type Reset Description

0xE0040308 TPIU_PSCR RW 0x00 TPIU Periodic Synchronization Control Register19

0xE0040EE8 TRIGGER RO 0x0 B.3.4 TRIGGER Register on page 113

0xE0040EEC ITFTTD0 RO 0x--000000 B.3.5 Integration Test FIFO Test Data 0 Register on page 114

0xE0040EF0 ITATBCTR2 RW 0x0 B.3.6 Integration Test ATB Control Register 2 on page 115

0xE0040EF8 ITATBCTR0 RO 0x0 B.3.8 Integration Test ATB Control 0 Register on page 117

0xE0040EFC ITFTTD1 RO 0x--000000 B.3.7 Integration Test FIFO Test Data 1 Register on page 116

0xE0040F00 ITCTRL RW 0x0 B.3.9 Integration Mode Control on page 117

0xE0040FA0 CLAIMSET RW 0xF Claim tag set

0xE0040FA4 CLAIMCLR RW 0x0 Claim tag clear

0xE0040FC8 DEVID RO 0xCA0/0xCA1 B.3.10 Device Configuration Register on page 118

0xE0040FCC DEVTYPE RO 0x11 B.3.11 Device Type Identifier Register on page 119

0xE0040FD0 PIDR4 RO 0x04

0xE0040FD4 PIDR5 RO 0x00

0xE0040FD8 PIDR6 RO 0x00

0xE0040FDC PIDR7 RO 0x00

0xE0040FE0 PIDR0 RO 0x21

0xE0040FE4 PIDR1 RO 0xBD

0xE0040FE8 PIDR2 RO 0x0B

0xE0040FEC PIDR3 RO -20

Peripheral identification registers

0xE0040FF0 CIDR0 RO 0x0D

0xE0040FF4 CIDR1 RO 0x90

0xE0040FF8 CIDR2 RO 0x05

0xE0040FFC CIDR3 RO 0xB1

Component identification registers

The following sections describe the TPIU registers whose implementation is specific to this
processor. The Formatter, Integration Mode Control, and Claim Tag registers are described in the
CoreSight™ Components Technical Reference Manual. Other registers are described in the Arm®v8-M
Architecture Reference Manual.

B.3.1 Asynchronous Clock Prescaler Register

The Asynchronous Clock Prescaler Register, TPIU_ACPR, scales the baud rate of the asynchronous
output.

Usage constraints
There are no usage constraints.

19 The Synchronization Counter counts up to a maximum of 2^16 bytes, where the TPIU_PSCR.PSCount value
determines the reload value of Synchronization Counter, as 2 to the power of the programmed value.

The TPIU_PSCR.PSCount value has a range between 0b100 and 0b10000, any attempt to program register
outside the range causes the Synchronization Counter to become disabled.

20 The value at reset is ECOREVNUM value.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 137

https://developer.arm.com/documentation/ddi0314/latest

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TPIU_ACPR bit assignments.

Figure B-2: TPIU_ACPR bit assignments

31 13 0

Reserved

12

PRESCALER

The following table shows the TPIU_ACPR bit assignments.

Table B-2: TPIU_ACPR bit assignments

Bits Name Function

[31:13] - Reserved. RAZ/SBZP.

[12:0] PRESCALER Divisor for TRACECLKIN is Prescaler + 1.

B.3.2 Formatter and Flush Status Register

The Formatter and Flush Status Register, TPIU_FFSR, indicates the status of the TPIU formatter.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TPIU_FFSR bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Figure B-3: TPIU_FFSR bit assignments

31 2 0

Reserved

1

FlInProg

3

FtStopped
TCPresent
FtNonStop

4

The following table shows the TPIU_FFSR bit assignments.

Table B-3: TPIU_FFSR bit assignments

Bits Name Function

[31:4] - Reserved

[3] FtNonStop Formatter cannot be stopped

[2] TCPresent This bit always reads zero

[1] FtStopped This bit always reads zero

[0] FlInProg Read only. Flush in progress. Value can be:

0 When all the data received, before the flush is acknowledged, has been output on the trace port
1 When a flush is initiated.

B.3.3 Formatter and Flush Control Register

The Formatter and Flush Control Register, TPIU_FFCR, controls the TPIU formatter.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TPIU_FFCR bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Figure B-4: TPIU_FFCR bit assignments

Reserved

31 9 8 7 2 1 0

Reserved

TrigIn EnFCont
ReservedReserved

FOnMan

6 5

The following table shows the TPIU_FFCR bit assignments.

Table B-4: TPIU_FFCR bit assignments

Bits Name Function

[31:9] - Reserved.

[8] TrigIn This bit Reads-As-One (RAO), specifying that triggers are inserted when a trigger pin is asserted.

[7] - Reserved.

[6] FOnMan Flush on manual. Value can be:

0 When the flush completes. Set to 0 on a reset of the TPIU.
1 Generates a flush.

[5:2] - Reserved.

[1] EnFCont Enable continuous formatting. Value can be:

0 Continuous formatting disabled.
1 Continuous formatting enabled.

[0] - Reserved.

The TPIU can output trace data in a Serial Wire Output (SWO) format. See B.2.2 Serial Wire Output
format on page 108.

If TPIU_SPPR is set to select Trace Port Mode, the formatter is automatically
enabled. If you then select one of the SWO modes, TPIU_FFCR reverts to its
previously programmed value.

B.3.4 TRIGGER Register

The TRIGGER Register controls the integration test TRIGGER input.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TRIGGER bit assignments.

Figure B-5: TRIGGER bit assignments

Reserved

31 1 0

TRIGGER input value

The following table shows the TRIGGER bit assignments.

Table B-5: TRIGGER bit assignments

Bits Name Function

[31:1] - Reserved

[0] TRIGGER input value When read, this bit returns the TRIGGER input

B.3.5 Integration Test FIFO Test Data 0 Register

The Integration Test FIFO Test Data 0 Register, ITFTTD0, controls trace data integration testing.

Usage constraints
You must set bit[1] of TPIU_ITCTRL to use this register. See B.3.9 Integration Mode Control
on page 117.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the Integration Test FIFO Test Data 0 Register data bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Figure B-6: ITFTTD0 bit assignments

ATB Interface 1 data 2 ATB Interface 1 data 1 ATB Interface 1 data 0

31 029 2728 26 2425 23 16 15 8 7

ATB Interface 1 byte count
ATB Interface 1 ATVALID
ATB Interface 2 byte count
ATB Interface 2 ATVALID

30

Reserved

The following table shows the ITFTTD0 bit assignments.

Table B-6: ITFTTD0 bit assignments

Bits Name Function

[31:30] - Reserved.

[29] ATB Interface 2 ATVALID input Returns the value of the ATB Interface 2 ATVALID signal.

[28:27] ATB Interface 2 byte count Number of bytes of ATB Interface 2 trace data since last read of of this register.

[26] ATB Interface 1 ATVALID input Returns the value of the ATB Interface 1 ATVALID signal.

[25:24] ATB Interface 1 byte count Number of bytes of ATB Interface 1 trace data since last read of this register.

[23:16] ATB Interface 1 data 2

[15:8] ATB Interface 1 data 1

[7:0] ATB Interface 1 data 0

ATB Interface 1 trace data. The TPIU discards this data when the register is read.

B.3.6 Integration Test ATB Control Register 2

The Integration Test ATB Control 2 Register, ITATBCTR2, controls integration test.

Usage constraints
You must set bit[0] of TPIU_ITCTRL to use this register. See B.3.9 Integration Mode Control
on page 117.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the ITATBCTR2 bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Figure B-7: ITATBCTR2 bit assignments

31 0

Reserved

1

ATREADY1S
ATREADY2S

AFVALID1S
AFVALID2S

2

The following table shows the ITATBCTR2 bit assignments.

Table B-7: ITATBCTR2 bit assignments

Bits Name Function

[1] AFVALID1S,
AFVALID2S

This bit sets the value of both the ATB Interface 1 and 2 AFVALID outputs, if the TPIU is in integration
test mode.

[0] ATREADY1S,
ATREADY2S

This bit sets the value of both the ATB Interface 1 and 2 ATREADY outputs, if the TPIU is in integration
test mode.

B.3.7 Integration Test FIFO Test Data 1 Register

The Integration Test FIFO Test Data 1 Register, ITFTTD1, controls trace data integration testing.

Usage constraints
You must set bit[1] of TPIU_ITCTRL to use this register. See B.3.9 Integration Mode Control
on page 117.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the ITFTTD1 bit assignments.

Figure B-8: ITFTTD1 bit assignments

31 30 29 28 27 26 25 24 23 16 15 8 7 0

ATB Interface 2 data 2 ATB Interface 2 data 1 ATB Interface 2 data 0

ATB Interface 1 byte count
ATB Interface 1 ATVALID input
ATB Interface 2 byte count
ATB Interface 2 ATVALID input
Reserved

The following table shows the ITFTTD1 bit assignments.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Table B-8: ITFTTD1 bit assignments

Bits Name Function

[31:30] - Reserved.

[29] ATB Interface 2 ATVALID input Returns the value of the ATB Interface 2 ATVALID signal.

[28:27] ATB Interface 2 byte count Number of bytes of ATB Interface 2 trace data since last read of this register.

[26] ATB Interface 1 ATVALID input Returns the value of the ATB Interface 1 ATVALID signal.

[25:24] ATB Interface 1 byte count Number of bytes of ATB Interface 1 trace data since last read of this register.

[23:16] ATB Interface 2 data 2

[15:8] ATB Interface 2 data 1

[7:0] ATB Interface 2 data 0

ATB Interface 2 trace data. The TPIU discards this data when the register is read.

B.3.8 Integration Test ATB Control 0 Register

The Integration Test ATB Control 0 Register, ITATBCTR0, is used for integration test.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the ITATBCTR0 bit assignments.

Figure B-9: ITATBCTR0 bit assignments

31 0

Reserved

1

AFREADY1S
AFREADY2S

ATVALID1S
ATVALID2S

2

The following table shows the ITATBCTR0 bit assignments.

Table B-9: ITATBCTR0 bit assignments

Bits Name Function

[1] AFREADY1S, AFREADY2S A read of this bit returns the value of AFREADY1S OR-gated with AFREADY2S.

[0] ATVALID1S, ATVALID2S A read of this bit returns the value of ATVALID1S OR-gated with ATVALID2S

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

B.3.9 Integration Mode Control

The Integration Mode Control register, TPIU_ITCTRL, specifies normal or integration mode for the
TPIU.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TPIU_ITCTRL bit assignments.

Figure B-10: TPIU_ITCTRL bit assignments

Reserved

31 2 1 0

Mode

The following table shows the TPIU_ITCTRL bit assignments.

Table B-10: TPIU_ITCTRL bit assignments

Bits Name Function

[31:2] - Reserved.

[1:0] Mode Specifies the current mode for the TPIU:

0b00 Normal mode.
0b01 Integration test mode.
0b10 Integration data test mode.
0b11 Reserved.

In integration data test mode, the trace output is disabled, and data can be read directly from each input port using the
integration data registers.

B.3.10 Device Configuration Register

The Device Configuration register, TPIU_DEVID, indicates the functions that are provided by the
TPIU for use in the topology detection.

Usage constraints
There are no usage constraints.

Configurations
Available in all configurations.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TPIU_DEVID bit assignments.

Figure B-11: TPIU_DEVID bit assignments

Reserved

31 12 11 10 9 8 6 5 0

NRZVALID
MANCVALID

PTINVALID
FIFOSZ

Number of trace inputs

The following table shows the TPIU_DEVID bit assignments.

Table B-11: TPIU_DEVID bit assignments

Bits Name Function

[31:12] - Reserved.

[11] NRZVALID Indicates support for SWO using UART/NRZ encoding.

Always RAO. The output is supported.

[10] MANCVALID Indicates support for SWO using Manchester encoding.

Always RAO. The output is supported.

[9] PTINVALID Indicates support for parallel trace port operation.

Always RAZ. Trace data and clock modes are supported.

[8:6] FIFOSZ Indicates the minimum implemented size of the TPIU output FIFO for trace data:

0b010

Four bytes.

[5:0] Number of trace inputs Specifies the number of trace inputs:

0b000000 One input.
0b000001 Two inputs.

B.3.11 Device Type Identifier Register

The Device Type Identification register, TPIU_DEVTYPE, provides a debugger with information
about the component when the Part Number field is not recognized. The debugger can then report
this information.

Usage Constraints
There are no usage constraints.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Trace Port Interface Unit

Configurations
Available in all configurations.

Attributes
See Table B-1: TPIU registers on page 109.

The following figure shows the TPIU_DEVTYPE bit assignments.

Figure B-12: TPIU_DEVTYPE bit assignments

Reserved

31 78 0

Sub type

4

Major type

3

The following table shows the TPIU_DEVTYPE bit assignments.

Table B-12: TPIU_DEVTYPE bit assignments

Bits Name Function

[31:8] - Reserved.

[7:4] Sub type 0x1 Identifies the classification of the
debug component.

[3:0] Major type 0x1 Indicates this device is a trace
sink and specifically a TPIU.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

Appendix C UNPREDICTABLE Behaviors
This appendix summarizes the behavior of the Cortex®-M33 processor in cases where the
Arm®v8‑M architecture is UNPREDICTABLE.

C.1 Use of instructions defined in architecture variants
An instruction that is provided by one or more of the architecture extensions is either
UNPREDICTABLE or UNDEFINED in an implementation that does not include those extensions.

In the Cortex®-M33 processor, all instructions not explicitly supported generate an UNDEFINSTR
UsageFault exception. For example, using instructions from the Arm®v8‑M Digital Signal Processing
(DSP) extension when this is not included in the processor configuration.

C.2 Use of Program Counter - R15 encoding
R15 is UNPREDICTABLE as a source or destination in most data processing operations. R15 is
also UNPREDICTABLE as a transfer register in certain load/store instructions. Examples of such
instructions include LDRT, LDRH, and LDRB.

In the Cortex®-M33 processor, the use of R15 as a named register specifier for any source or
destination register that is indicated as UNPREDICTABLE generates an UNDEFINSTR UsageFault
exception.

C.3 Use of Stack Pointer - as a general purpose register
R13

R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer. R13 is
normally identified as Stack Pointer (SP) in Thumb instructions.

In 32-bit Thumb instructions, if you use SP as a general purpose register beyond the architecturally
defined constraints, the results are UNPREDICTABLE.

In the Cortex®-M33 processor, the use of R13 as a named register specifier for any source or
destination register that is indicated as UNPREDICTABLE generates an UNDEFINSTR UsageFault
exception.

In the architecture where the use of R13 as a general purpose register is defined, bits[1:0] of the
register must be treated as SBZP. Writing a non-zero value to bits [1:0] results in UNPREDICTABLE
behavior. In the Cortex®-M33 processor bits [1:0] of R13 are always RAZ/WI.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

C.4 Register list in load and store multiple instructions
Load and Store Multiple instructions (LDM, STM, PUSH, POP VLDM, and VSTM) transfer multiple registers
to and from consecutive memory locations using an address from a base register, which can be
optionally written back when the operation is complete.

The registers are selected from a list encoded in the instruction. Some of these encodings are
UNPREDICTABLE.

In the Cortex®-M33 processor:

• If the number of registers loaded is zero, then the instruction is a No Operation (NOP).

• If the number of registers loaded is one, the single register is loaded.

• If R13 is specified in the list, an UNDEFINSTR UsageFault exception is generated.

• For a Load Multiple, if PC is specified in the list and the instructions is in an IT block and is not
the final instruction, an unconditional UNDEFINSTR UsageFault exception is generated.

• For a Store Multiple instruction, if PC is specified in the list an UNDEFINSTR UsageFault
exception is generated.

• For a Load Multiple instruction, if base writeback is specified and the register to be written back
is also in the list to be loaded, the instruction performs all the loads in the specified addressing
mode and the register being written back takes the loaded value.

• For a Store Multiple instruction, if base writeback is specified and the register to be written
back is also in the list to be stored, the value stored is the initial base register value. The base
register is written back with the expected updated value.

• For a floating-point Load or Store Multiple instruction, VLDM, VSTM VPUSH, and VPOP if the register
list extends beyond S31 or D15, then the Cortex®-M33 processor generates an UNDEFINSTR
UsageFault exception.

C.5 Exception-continuable instructions
To improve interrupt response and increase processing throughput, the processor can take an
interrupt during the execution of a Load Multiple or Store Multiple instruction, and continue
execution of the instruction after returning from the interrupt. During the interrupt processing, the
EPSR.ICI bits hold the continuation state of the Load Multiple or Store Multiple instruction.

In the Cortex®-M33 processor, any values of ICI bits that were not legally written, because
of an interruption to an exception-continuable instruction, generate an INVSTATE UsageFault
exception on attempt to re-execute the interrupted instruction. This includes the architecturally
UNPREDICTABLE cases of:

• Not a register in the register list of the Load Multiple or Store Multiple instruction.

• The first register in the register list of the Load Multiple or Store Multiple instruction.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

The Cortex®-M33 processor also generates an INVSTATE UsageFault exception if the ICI bits are
set to any nonzero value for the following instructions, as these instructions are not eligible for
continuation:

• An integer Load Multiple instruction with the base register in the register list, and ICI set to a
greater register number than the base register.

• An integer Store Multiple instruction with base write-back and with the base register in the
register list.

The INVSTATE UsageFault exception takes precedence over any other instruction-related fault
type, including NOCP or UNDEFINSTR UsageFault.

C.6 Stack limit checking
The Arm®v8‑M architecture defines the instructions which are subject to stack limit checking when
operating on SP.

It states that it is UNKNOWN whether a stack limit check is performed on any use of the SP that was
UNPREDICTABLE in Armv6-M and Armv7-M. In the Cortex®-M33 processor, these UNPREDICTABLE
cases are when R13 is used as a general purpose register in instructions. In these circumstances,
the processor generates an UNDEFINSTR UsageFault exception.

C.7 UNPREDICTABLE instructions within an IT block
Instructions executed in an IT block which change the PC are architecturally UNPREDICTABLE unless
they are the last instruction in the block.

In the Cortex®-M33 processor:

• Conditional branch instructions (Bcond label) always generate an unconditional UNDEFINSTR
UsageFault exception.

• unconditional branch instructions (B label) which are not the last instructions in the IT block
generate an unconditional UNDEFINSTR UsageFault exception.

• Branch with link instructions (BL label) which are not the last instructions in the IT
block generate an unconditional UNDEFINSTR UsageFault exception. BLX PC is always
UNPREDICTABLE and generates an UNDEFINSTR UsageFault exception.

• Branch and exchange instructions (BX Rm) which are not the last instructions in the IT block
generate an unconditional UNDEFINSTR UsageFault exception.

• Compare and Branch instructions (CBNZ and CBZ) always generate an unconditional
UNDEFINSTR UsageFault exception.

• Table branch instructions (TBB and TBH) which are not the last instructions in the IT block
generate an unconditional UNDEFINSTR Usage Fault exception.

• An IT instruction inside another IT block always generates an unconditional UNDEFINSTR
UsageFault exception.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

• Data processing instructions which have PC as the destination register and are not
architecturally UNPREDICTABLE outside an IT block generate an unconditional UNDEFINSTR
UsageFault exception unless they are the last instruction of the IT block.

• Load instructions (LDR, LDM, and POP) which have PC as the destination register and are not
architecturally UNPREDICTABLE outside an IT block generate an unconditional UNDEFINSTR
UsageFault exception unless they are the last instruction of the IT block.

• If the Arm®v8‑M floating-point extension is included and one of the following instructions is
executed in an IT block, the instruction behaves as a regular conditional instruction according to
the position of the instruction in the IT block:

◦ VCVTA.

◦ VCVTN.

◦ VCVTP.

◦ VCVTM.

◦ VMAXNM.

◦ VMINNM.

◦ VRINTA.

◦ VRINTN.

◦ VRINTP.

◦ VRINTM.

◦ VSEL.

• Change Processor State instructions (CPS) always generate an unconditional UNDEFINSTR
UsageFault exception.

C.8 Memory access and address space
In the Arm®v8‑M architecture, the following conditions apply.

• Any access to memory from a load or store instruction or an instruction fetch which overflows
the 32-bit address space is UNPREDICTABLE. In the Cortex®-M33 processor, these accesses wrap
around to addresses at the start of memory.

• Any unaligned access that is not faulted by the alignment restrictions and accesses Device
memory has UNPREDICTABLE behavior. In the Cortex®-M33 processor, accesses of this type
generate an UNALIGNED UsageFault exception.

• For any access X, the bytes accessed by X must all have the same memory type attribute,
otherwise the behavior of the access is UNPREDICTABLE. That is, an unaligned access that spans
a boundary between different memory types is UNPREDICTABLE. In the Cortex®-M33 processor,
each part of an access to a different 32-byte aligned region is dealt with independently. If an
MPU is included in the processor, each access to a different 32-byte region makes a new MPU
lookup. If an MPU is not included, then the behavior of the associated background region is
taken into account.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

• For any two memory accesses X and Y that are generated by the same instruction, the bytes
accessed by X and Y must all have the same memory type attribute otherwise the results are
UNPREDICTABLE. For example, an LDC, LDM, LDRD, STC, STM, STRD, VSTM, VLDM, VPUSH, VPOP, VLDR,
or VSTR that spans a boundary between Normal and Device memory is UNPREDICTABLE. In the
Cortex®-M33 processor, each part of access to a different 32-byte aligned region is dealt
with independently. If an MPU is included in the processor, each access to a different 32-byte
aligned region makes a new MPU lookup. If an MPU is not included, then the behavior of the
associated background region is taken into account.

• Any instruction fetch must only access Normal memory. If it accesses Device memory, the
result is UNPREDICTABLE. For example, instruction fetches must not be performed to an area
of memory that contains read-sensitive devices because there is no ordering requirement
between instruction fetches and explicit accesses. In the Cortex®-M33 processor, fetches to
Device memory is sent out to the system, indicated on the AHB interface as Device, unless the
memory region is marked with the Execute Never (XN) memory attribute.

• If the Arm®v8‑M Security Extension is implemented, the behavior of sequential instruction
fetches that cross from Non-secure to secure memory and fulfill the secure entry criteria
specified in the architecture, including the presence of a Secure Gateway (SG) instruction at
the boundary of the secure memory area, is CONSTRAINED UNPREDICTABLE. In the Cortex®-M33
processor, this results in the transition to Secure state.

C.9 Load exclusive and Store exclusive accesses
Instructions which can generate an exclusive memory access such as LDREX and STREX have a
number of restrictions and behavior defined as UNPREDICTABLE in the Arm®v8‑M architecture.

In the Cortex®-M33 processor:

• Exclusive accesses to memory regions marked as Device outside of the PPB region behaves
the same as an equivalent access to shared Normal memory. All Device memory is shared in
Arm®v8‑M.

• Exclusive accesses to the PPB memory region (0xE0000000:0xE00FFFFF) do not update the
internal local exclusive monitor. Load exclusive instructions load data into a register and Store
exclusive instructions store data from a register. For STREX and STLEX instructions, the status
register is always updated with the value 0, indicating the store has updated memory.

• The internal exclusive monitor does not tag addresses and the reservation granule is the whole
of the memory. This means exclusive Load and Store instruction pairs that only use the local
monitor are not affected by the address used for the access or the data size or the attributes
associated with the memory regions. The behavior of UNPREDICTABLE exclusive accesses to
external memory depends on the global exclusive monitor in your system.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

C.10 Armv8-M MPU programming
The Arm®v8‑M Protected Memory System Architecture (PMSA) includes a number of UNPREDICTABLE
cases when programming the MPU when it is included in an implementation.

In the Cortex®-M33 processor:

• Setting MPU_CTRL.ENABLE to 0 and MPU_CTRL.HFNMIEA to 1 is UNPREDICTABLE. This results
in all memory accesses using the default memory map including those from Exception Handlers
with a priority less than one.

• If MPU_RNR is written with a region number greater than the number of regions defined in
the MPU, then the value used is masked by one less than the number of regions defined. For
example:

◦ The number of regions defined is given as num_regions. The value written to MPU_RNR is
given as v.

◦ num_regions=8 and v=9.

◦ The effective region used is given as 9 & (8-1); region 1.
The number of regions available can be read from MPU_TYPE.DREGION.

• Setting MPU_RBAR.SH to 1 is UNPREDICTABLE. This encoding is treated as Non-shareable.

• The Attribute fields (MPU_ATTR) of the MPU_MAIR0 and MPU_MAIR1 registers include some
encodings which are UNPREDICTABLE.

◦ If MPU_ATTR[7:4]!=0 and MPU_ATTR[3:0]==0 is UNPREDICTABLE, the attributes are treated
as Normal memory, Outer non-cacheable, Inner non-cacheable.

◦ If MPU_ATTR[7:4]==0 and MPU_ATTR[1:0]!=0 is UNPREDICTABLE, the attributes are treated
as Device-nGnRE.

• The external AMBA AHB5 interface signals cannot distinguish between some of the memory
attribute encodings defined by the Arm®v8‑M PMSA:

◦ Normal transient memory is treated the same as Normal non-transient memory.

◦ Device memory with gathering or Reordering attributes (G, R) are always treated as
non-Gathering and non-Reordering. Early Write Acknowledgment attributes (E, nE) are
supported on the Cortex®-M33 AHB5 interfaces.

C.11 Miscellaneous UNPREDICTABLE instruction
behavior

This section documents the behavior of the Cortex®-M33 processor in a number of miscellaneous
UNPREDICTABLE instruction scenarios:

• Load instructions which specify writeback of the base register are UNPREDICTABLE if the base
register to be written back matches the register to be loaded (Rn==Rt). In the Cortex®-M33
processor, the base register is updated to the loaded value.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

UNPREDICTABLE Behaviors

• Store instructions which specify writeback of the base register are UNPREDICTABLE if the base
register to be written back matches the register to be stored (Rn==Rt). In the Cortex®-M33
processor, the value stored is the initial base register value. The base register is then written
back with the expected updated value.

• Multiply and Multiply accumulate instructions which write a 64-bit result using two registers,
SMULL, SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD, SMLALDX, SMLSLD, SMLSLDX, UMULL, and
UMAAL are UNPREDICTABLE if the two registers are the same (RdHi==RdLo). In the Cortex®-M33
processor, these cases generate an UNDEFINSTR UsageFault exception.

• Floating-point instructions which transfer between two registers and either two single precision
registers or one double precision register, VMOV Rt, Rt2, Dm and VMOV Rt, Rt2, Sm, Sm1 are
UNPREDICTABLE if the two registers are the same (Rt==Rt2). In the Cortex®-M33 processor,
these cases generate an UNDEFINSTR UsageFault exception.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 137

https://www.arm.com/company/policies/trademarks

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in the Arm documents.

Product status
All products and Services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Product revision status
This product is r1p0, which indicates the revision status of the product described in this manual,
where:

r(value) Identifies the major revision of the product, for example, r1.
p(value) Identifies the minor revision or modification status of the product, for

example, p2.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0100-08 1 August 2024 Non-Confidential Third release for r1p0

0100-07 15 January 2023 Non-Confidential Second release for r1p0

0100-03 19 June 2020 Non-Confidential First release for r1p0

0004-00 18 April 2018 Non-Confidential First release for r0p4

0003-00 6 December 2017 Non-Confidential First release for r0p3

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Issue Date Confidentiality Change

0002-00 10 May 2017 Non-Confidential First release for r0p2

0001-00 3 February 2017 Confidential First release for r0p1

0000-00 28 September 2016 Confidential First release for r0p0

The first table is for the first release. Then, each table compares the new issue of the manual
with the last released issue of the manual. Issue numbers match the revision history in Document
release information on page 130.

Table 2: Issue 0000-00

Change Location

First release -

Table 3: Differences between issue 0000-00 and issue 0001-00

Change Location

First Confidential release for r0p1 -

Updated CPUID reset value 3.2 Identification register summary on page 333.5 CPUID Base
Register on page 41

Revised the functional block diagram and associated note 1.4 Component blocks on page 11

Revised the memory model description 2.4 Memory model on page 24

Revised the exception handling and prioritization in Secure and Non-
secure state description

2.7.1 Exception handling and prioritization on page 28

Removed a redundant sentence 'Registers not described here are
described in the Arm®v8-M Architecture Reference Manual'

5.1 NVIC programmers model on page 47

Revised the usage restrictions description 7. External coprocessors on page 54

Removed footnote in the ITM register summary table 10.1.1 ITM register summary table on page 71

Clarified that the functionality of the INT_ATVALID and
INT_ATREADY Registers is only present in integration mode

10.1.5 Integration Mode Read ATB Ready Register on page
7410.1.4 Integration Mode Write ATB Valid Register on page 74

Table 4: Differences between issue 0001-00 and issue 0002-00

Change Location

First Non-Confidential release for r0p2 -

Updated CPUID reset value 3.2 Identification register summary on page 333.5 CPUID Base Register on page 41

Updated AHB-AP Identification value A.4.1.7 AHB-AP Identification Register, IDR, 0xFC on page 93

Table 5: Differences between issue 0002-00 and issue 0003-00

Change Location

First Non-Confidential release for r0p3 -

Updated CPUID reset value.
3.2 Identification register summary on
page 333.5 CPUID Base Register on
page 41

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Change Location

In the third paragraph, changed 'associated external memory access is marked as Non-secure' to
'associated memory access is marked as Non-secure'. Clarified use of the register SAU_CTRL.EN
and SAU_CTRL.ALLNS bit fields.

4.1 About security attribution and
memory protection on page 43/>

Corrected the regions that show in the example of highest security level region Table 4-1: Examples of Highest Security
Level Region on page 43

Corrected the NVIC short description register names 5.1.1 NVIC register summary on page
47

Corrected the FPU exception flags names 6.2.4 Exceptions on page 51

In the note, changed CPACR[2n+1:2n] to CPACR[2n+1:2n] 7.5 Configuring which coprocessors
are included in Secure and Non-secure
states on page 55

Corrected the ROM table value for when the ETM is not implemented. Changed 0xFFF42003
to 0xFFF42002

9.1.3 Processor ROM table
identification and entries on page 66

Table 6: Differences between issue 0003-00 and issue 0004-00

Change Location

First Non-Confidential release for r0p3 -

Updated CPUID reset value Table 3-2: Identification register summary
on page 33

3.5 CPUID Base Register on page 41

Corrected the INVSTATE UsageFault exception statement at the end of the Exception-
continuable instruction description

C.5 Exception-continuable instructions
on page 122

Table 7: Differences between issue 0004-00 and issue 0100-03

Change Location

First Non-Confidential release for r1p0 -

Updated CPUID reset value • Table 3-2: Identification register summary on
page 33

• 3.5 CPUID Base Register on page 41

Added content for new support for the Custom Datapath Extension (CDE) with Arm
Custom Instructions(ACIs)

• 1.2 About the processor architecture on
page 9

• 1.3 Processor configuration options on page
10

• 1.4 Component blocks on page 11

• 1.4.1 Processor core on page 13

• 1.4.3 Floating-Point Unit on page 13

• 1.6 Compliance on page 17

• 1.9 Product revisions on page 20

• 2.3 Instruction set summary on page 23

• 7.1 About external coprocessors on page 54

• 8. Arm Custom Instructions on page 58

Added register description 3.6 Auxiliary Feature Register 0 on page 41

Added SBIST bit description 3.4 Auxiliary Control Register on page 39

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Change Location

Fixed bit description 10.1.4 Integration Mode Write ATB Valid
Register on page 74

Added statement about the number of breakpoints supported 13.1 About the Breakpoint Unit on page 82

Fixed PPB address range 2.4 Memory model on page 24

Fixed typo in architecture version • 2.1 About the programmers model on page
22

• 2.5 Exclusive monitor on page 26

• 6.1 About the FPU on page 50

Unmerged Secure and Non-secure information for Identification registers 3.2 Identification register summary on page 33

Unmerged Secure and Non-secure information for NVIC registers 5.1.1 NVIC register summary on page 47

Fixed register descriptions • 10.1.5 Integration Mode Read ATB Ready
Register on page 74

• 10.1.4 Integration Mode Write ATB Valid
Register on page 74

Table 8: Differences between issue 0100-03 and issue 0100-07

Change Location

Second Non-Confidential release for r1p0 -

Updated the address information for DWT_DEVARCH and DWT_DEVTYPE 11.2 DWT programmers model on page 76

Updated the function description for bit [1] B.3.8 Integration Test ATB Control 0 Register on page 117

Updated the register names for 0xE000EFBC and 0xE002EFBC addresses 3.2 Identification register summary on page 33

Added a new statement on DWT usage 11.1 DWT functional description on page 76

Updated register names 9.1.4.1 SCS CoreSight identification on page 68

Table 9: Differences between issue 0100-07 and issue 0100-08

Change Location

Third Non-Confidential release for r1p0 -

Editorial revisions Throughout document

Updated book structure to move frontmatter content to backmatter Across book

Added section on system control registers 3.1 System control register summary on page 30

Added section on Configuration and Control Register 3.3 Configuration and Control Register on page 38

Updated register type in table 12.3 CTI programmers model on page 80

Updated register bit descriptions A.4.1.1 AHB-AP Control/Status Word register, CSW, 0x00 on page
88

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
of harming yourself.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 137

https://developer.arm.com/glossary

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

This information is important and needs your attention.

This information might help you perform a task in an easier, better, or faster way.

This information reminds you of something important relating to the current
content.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 137

Arm® Cortex®-M33 Processor Technical Reference Manual Document ID: 100230_0100_08_en
Issue 08

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® Cortex®-M33 Processor STL User Guide 101170 Confidential

Arm® Cortex®-M33 Processor Integration and
Implementation Manual

100323 Confidential

Arm architecture and specifications Document ID Confidentiality

Arm®v8-M Architecture Reference Manual DDI 0553 Non-Confidential

Arm® AMBA® AHB Protocol Specification IHI 0033 Non-Confidential

AMBA® APB Protocol Version 2.0 Specification IHI 0024 Non-Confidential

AMBA® ATB Protocol Specification IHI 0032 Non-Confidential

CoreSight™ Components Technical Reference
Manual

DDI 0314 Non-Confidential

AMBA® Low Power Interface Specification IHI 0068 Non-Confidential

Arm® Embedded Trace Macrocell Architecture
Specification ETMv4.0 to ETM4.6

IHI 0064 Non-Confidential

Arm® CoreSight™ Architecture Specification
v3.0

IHI 0029 Non-Confidential

Arm® Debug Interface Architecture
Specification, ADIv5.0 to ADIv5.2

IHI 0031 Non-Confidential

Non-Arm resources Document ID Organization

IEEE Std 1149.1-2001, Test Access Port and
Boundary-Scan Architecture (JTAG)

IEEE Std 1149.1-2001 https://www.ieee.org

IEEE Std 754-2008, IEEE Standard for
Floating-Point Arithmetic

IEEE 754-2008 https://www.ieee.org

Copyright © 2016–2018, 2020, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 137

http://developer.arm.com/documentation
https://developer.arm.com/documentation/ddi0553/
https://developer.arm.com/documentation/ihi0033/
https://developer.arm.com/documentation/ihi0024/
https://developer.arm.com/documentation/ihi0032/latest/
https://developer.arm.com/documentation/ddi0314/latest
https://developer.arm.com/documentation/ddi0314/latest
https://developer.arm.com/documentation/ihi0068/latest/
https://developer.arm.com/documentation/ihi0064/latest
https://developer.arm.com/documentation/ihi0064/latest
https://developer.arm.com/documentation/ihi0029/latest
https://developer.arm.com/documentation/ihi0029/latest
https://developer.arm.com/documentation/ihi0031/latest/
https://developer.arm.com/documentation/ihi0031/latest/
https://www.ieee.org
https://www.ieee.org

	Arm® Cortex®-M33 Processor Technical Reference Manual
	Contents
	1. Introduction
	1.1 About the processor
	1.2 About the processor architecture
	1.3 Processor configuration options
	1.4 Component blocks
	1.4.1 Processor core
	1.4.2 Security attribution and memory protection
	1.4.3 Floating-Point Unit
	1.4.4 Nested Vectored Interrupt Controller
	1.4.5 Cross Trigger Interface Unit
	1.4.6 ETM
	1.4.7 MTB
	1.4.8 Debug and trace

	1.5 Interfaces
	1.6 Compliance
	1.7 Design process
	1.8 Documentation
	1.9 Product revisions

	2. Programmers Model
	2.1 About the programmers model
	2.2 Modes of operation and execution
	2.3 Instruction set summary
	2.4 Memory model
	2.4.1 Private Peripheral Bus
	2.4.2 Unaligned accesses

	2.5 Exclusive monitor
	2.6 Processor core registers summary
	2.7 Exceptions
	2.7.1 Exception handling and prioritization

	3. System Control
	3.1 System control register summary
	3.2 Identification register summary
	3.3 Configuration and Control Register
	3.4 Auxiliary Control Register
	3.5 CPUID Base Register
	3.6 Auxiliary Feature Register 0

	4. Security Attribution and Memory Protection
	4.1 About security attribution and memory protection
	4.2 SAU register summary
	4.3 MPU register summary

	5. Nested Vectored Interrupt Controller
	5.1 NVIC programmers model
	5.1.1 NVIC register summary
	5.1.2 Interrupt Controller Type Register

	6. Floating-Point Unit
	6.1 About the FPU
	6.2 FPU functional description
	6.2.1 FPU views of the register bank
	6.2.2 Modes of operation
	6.2.2.1 Full-compliance mode
	6.2.2.2 Flush-to-zero mode
	6.2.2.3 Default NaN mode

	6.2.3 Compliance with the IEEE 754 standard
	6.2.4 Exceptions

	6.3 FPU programmers model
	6.3.1 Floating-point system registers
	6.3.2 Low-power operation

	7. External coprocessors
	7.1 About external coprocessors
	7.2 Operation
	7.3 Usage restrictions
	7.4 Data transfer rates
	7.5 Configuring which coprocessors are included in Secure and Non-secure states
	7.6 Debug access to coprocessor registers usage constraints
	7.7 Exceptions and context switch

	8. Arm Custom Instructions
	8.1 Arm Custom Instructions support
	8.2 Operation
	8.3 Usage restrictions

	9. Debug
	9.1 Debug functionality
	9.1.1 CoreSight™ discovery
	9.1.2 Debugger actions for identifying the processor
	9.1.3 Processor ROM table identification and entries
	9.1.4 System Control Space registers
	9.1.4.1 SCS CoreSight™ identification

	9.1.5 Debug register summary

	9.2 About the D-AHB interface

	10. Instrumentation Trace Macrocell Unit
	10.1 ITM programmers model
	10.1.1 ITM register summary table
	10.1.2 ITM Trace Privilege Register
	10.1.3 ITM Integration Mode Control Register
	10.1.4 Integration Mode Write ATB Valid Register
	10.1.5 Integration Mode Read ATB Ready Register

	11. Data Watchpoint and Trace Unit
	11.1 DWT functional description
	11.2 DWT programmers model

	12. Cross Trigger Interface
	12.1 About the Cross Trigger Interface
	12.2 CTI functional description
	12.3 CTI programmers model

	13. Breakpoint Unit
	13.1 About the Breakpoint Unit
	13.2 BPU programmers model
	13.3 BPU functional description

	A. Debug Access Port
	A.1 About the Debug Access Port
	A.1.1 Configuration options

	A.2 Functional description
	A.3 DAP register summary
	A.3.1 AHB-AP register summary
	A.3.2 Debug port register summary

	A.4 DAP register descriptions
	A.4.1 AHB-AP register descriptions
	A.4.1.1 AHB-AP Control/Status Word register, CSW, 0x00
	A.4.1.1.1 Prot field bit descriptions

	A.4.1.2 AHB-AP Transfer Address Register, TAR, 0x04
	A.4.1.3 AHB-AP Data Read/Write register, DRW, 0x0C
	A.4.1.4 AHB-AP Banked Data registers, BD0-BD03, 0x10-0x1C
	A.4.1.5 AHB-AP Debug Base Address register, ROM, 0xF8
	A.4.1.6 AHB-AP Configuration register, CFG, 0xF4
	A.4.1.7 AHB-AP Identification Register, IDR, 0xFC

	A.4.2 Debug port registers
	A.4.2.1 AP Abort register, ABORT
	A.4.2.2 Identification Code register, IDCODE
	A.4.2.2.1 JEDEC Manufacturer ID

	A.4.2.3 Debug Port Identification Register, DPIDR
	A.4.2.4 Control/Status register, CTRL/STAT
	A.4.2.5 AP Select register, SELECT
	A.4.2.6 Read Buffer register, RDBUFF
	A.4.2.6.1 Read Buffer implementation and use on a JTAG-DP
	A.4.2.6.2 Read Buffer implementation and use on an SW-DP

	A.4.2.7 Event Status register, EVENTSTAT
	A.4.2.8 Data Link Control Register, DLCR (SW-DP only)
	A.4.2.9 Target Identification register, TARGETID (SW-DP only)
	A.4.2.10 Data Link Protocol Identification Register, DLPIDR (SW-DP only)
	A.4.2.11 Read Resend register, RESEND (SW-DP only)
	A.4.2.12 DP register descriptions

	B. Trace Port Interface Unit
	B.1 About the TPIU
	B.2 TPIU functional description
	B.2.1 TPIU Formatter
	B.2.2 Serial Wire Output format

	B.3 TPIU programmers model
	B.3.1 Asynchronous Clock Prescaler Register
	B.3.2 Formatter and Flush Status Register
	B.3.3 Formatter and Flush Control Register
	B.3.4 TRIGGER Register
	B.3.5 Integration Test FIFO Test Data 0 Register
	B.3.6 Integration Test ATB Control Register 2
	B.3.7 Integration Test FIFO Test Data 1 Register
	B.3.8 Integration Test ATB Control 0 Register
	B.3.9 Integration Mode Control
	B.3.10 Device Configuration Register
	B.3.11 Device Type Identifier Register

	C. UNPREDICTABLE Behaviors
	C.1 Use of instructions defined in architecture variants
	C.2 Use of Program Counter - R15 encoding
	C.3 Use of Stack Pointer - as a general purpose register R13
	C.4 Register list in load and store multiple instructions
	C.5 Exception-continuable instructions
	C.6 Stack limit checking
	C.7 UNPREDICTABLE instructions within an IT block
	C.8 Memory access and address space
	C.9 Load exclusive and Store exclusive accesses
	C.10 Armv8-M MPU programming
	C.11 Miscellaneous UNPREDICTABLE instruction behavior

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

