
Arm®v8-M Architecture
Reference Manual

Document number DDI0553B.y

Document version ID09082024

Document confidentiality Non-confidential

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.

Release information

Date Version Changes

2024/Aug/09 B.y
Non-Confidential
EAC

• Twenty-fifth release of the the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2023/Dec/15 B.x
Non-Confidential
EAC

• Twenty-fourth release of the the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2023/Jul/07 B.w
Non-Confidential
EAC

• Twenty-third release of the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2022/Dec/16 B.v
Non-Confidential
EAC

• Twenty-second release of the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2022/Sep/28 B.u
Non-Confidential
EAC

• Twenty-first release of the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2022/Jun/30 B.t
Non-Confidential
EAC

• Twentieth release of the v8.0-M manual with integrated v8.1-M material, Custom
Datapath Extension material and PACBTI Extension material

2022/Apr/01 B.s
Non-Confidential
EAC

• Nineteenth release of the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2021/Dec/17 B.r
Non-Confidential
EAC

• Eighteenth release of the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2021/Sep/30 B.q
Non-Confidential
EAC

• Seventeenth release of the v8.0-M manual with integrated v8.1-M material,
Custom Datapath Extension material and PACBTI Extension material

2021/Jun/30 B.p
Non-Confidential
EAC

• Sixteenth release of the v8.0-M manual with integrated v8.1-M material, Custom
Datapath Extension material and PACBTI Extension material

2021/Mar/31 B.o
Non-Confidential
EAC

• Fifteenth release of the v8.0-M manual with integrated v8.1-M material, Custom
Datapath Extension material and PACBTI Extension material

2020/Dec/18 B.n
Non-Confidential
EAC

• Fourteenth release of the v8.0-M manual with integrated v8.1-M material and
Custom Datapath Extension material

2020/Oct/02 B.m
Non-Confidential
EAC

• Thirteenth release of the v8.0-M manual with integrated v8.1-M material and
Custom Datapath Extension material

2020/Jun/30 B.l
Non-Confidential
EAC

• Twelfth release of the v8.0-M manual with integrated v8.1-M material and
Custom Datapath Extension material

2020/Mar/31 B.k
Non-Confidential
EAC

• Eleventh release of the v8.0-M manual with integrated v8.1-M material

2019/Dec/17 B.j
Non-Confidential
EAC

• Tenth release of the v8.0-M manual with integrated v8.1-M material

2019/Oct/02 A.m
Non-confidential
EAC

• Eleventh EAC release

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

Date Version Changes

2019/Oct/02 B.i
Non-Confidential
EAC

• Ninth release of the v8.0-M manual with integrated v8.1-M material

2019/Jun/28 A.l
Non-confidential
EAC

• Tenth EAC release

2019/Jun/28 B.h
Non-Confidential
EAC

• Eighth release of the v8.0-M manual with integrated v8.1-M material

2019/Mar/29 A.k
Non-confidential
EAC

• Ninth EAC release

2019/Mar/29 B.g
Non-Confidential
EAC

• Seventh release of the v8.0-M manual with integrated v8.1-M material

2019/Feb/14 B.f
Non-Confidential
EAC

• Sixth release of the v8.0-M manual with integrated v8.1-M material

2018/Dec/14 A.j
Non-confidential
EAC

• Eighth EAC release

2018/Dec/14 B.e
Confidential
EAC

• Fifth release of the v8.0-M manual with integrated v8.1-M material

2018/Jun/29 A.i
Non-confidential
EAC

• Seventh EAC release

2018/Jun/29 B.d
Confidential
Beta

• Fourth release of the v8.0-M manual with integrated v8.1-M material

2018/Mar/31 A.h
Non-confidential
EAC

• Sixth EAC release

2018/Mar/31 B.c
Confidential
Beta

• Third release of the v8.0-M manual with integrated v8.1-M material

2017/Dec/15 A.g
Non-confidential
EAC

• Fifth EAC release

2017/Dec/15 B.b
Confidential
Beta

• Second release of the v8.0-M manual with integrated v8.1-M material

2017/Sep/29 A.f
Non-confidential
EAC

• Fourth EAC release

2017/Sep/29 B.a
Confidential
Beta

• First release of the v8.0-M manual with integrated v8.1-M material

2017/Jun/02 A.e
Non-confidential
EAC

• Third EAC release

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

Date Version Changes

2016/Nov/30 A.d
Non-confidential
EAC

• Second EAC release

2016/Sep/30 A.c
Non-confidential
EAC

• EAC release

2016/Jul/28 A.b
Non-confidential
Beta

• Beta release

2016/Mar/29 A.a
Confidential
Beta

• Beta release, limited circulation

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Armv8-M Architecture Reference Manual

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact that some
draft issues of this document have been released, to a limited circulation.

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm Limited (“Arm”). No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others
to use the information for the purposes of determining whether the subject matter of this document infringes any third party
patents.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions, information,
scope, and data. This document was produced using reasonable efforts based on information available as of the date of issue
of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and
that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible
for any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED “AS IS”. ARM
PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use, duplication, or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference
to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make
changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.
All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Copyright © 2015 - 2024 Arm Limited (or its affiliates). All rights reserved.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-20349 8 March 2024

Confidentiality Status

This document is Non-confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

http://www.arm.com

Contents

Arm®v8-M Architecture Reference Manual

Release information . ii
Armv8-M Architecture Reference Manual . v
Proprietary Notice . v
Confidentiality Status . vi
Product Status . vi
Web Address . vi

Preface
About this manual . xl
Using this manual . xli
Conventions . xliii

Typographical conventions . xliii
Signals . xliii
Numbers . xliv
Pseudocode descriptions . xliv
Assembler syntax descriptions . xliv

Additional reading . xlv
Arm publications . xlv
Other publications . xlv

Feedback . xlvi
Feedback on this manual . xlvi
Inclusive Terminology Commitment . xlvi

Part A Armv8-M Architecture Introduction and Overview

Chapter A1 Introduction
A1.1 Architecture refernce manual layout and terminology 49

A1.1.1 Structure of the architecture reference manual 49
A1.1.2 Scope of the architecture reference manual 50
A1.1.3 Intended audience . 50
A1.1.4 Terminology, phrases . 50
A1.1.5 Terminology, Armv8-M specific terms 51

A1.2 About the Armv8 architecture, and architecture profiles 52
A1.3 The Armv8-M architecture profile . 53

A1.3.1 The Armv8-M instruction set . 53
A1.3.2 Baseline implementation . 53
A1.3.3 Nested Vectored Interrupt Controller . 53

A1.4 Optional Extensions . 55
A1.4.1 CDE - The Custom Datapath Extension 55
A1.4.2 Debug . 55
A1.4.3 DSP - The Digital Signal Processing Extension. 56
A1.4.4 The DSP Debug Extension . 56
A1.4.5 The Floating-point Extension . 56
A1.4.6 The Main Extension . 56
A1.4.7 MPU model . 57
A1.4.8 M-Profile Vector Extension, MVE . 57
A1.4.9 Pointer Authentication and Branch Target Identification Extension . . . 57
A1.4.10 Perfomance Monitors Extension . 57

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

A1.4.11 Reliability, Availability, and Serviceability 58
A1.4.12 Security Extension . 58
A1.4.13 The System Timer Extension . 58

Part B Armv8-M Architecture Rules

Chapter B1 Resets
B1.1 Resets, Cold reset, and Warm reset . 61

Chapter B2 Power Management
B2.1 Power management . 63

B2.1.1 The Wait for Event (WFE) instruction 63
B2.1.2 The Wait for Interrupt (WFI) instruction 64

B2.2 Sleep on exit . 66

Chapter B3 Programmers’ Model
B3.1 PE modes, Thread mode and Handler mode 69
B3.2 Privileged and unprivileged execution . 70
B3.3 Registers . 71
B3.4 Special-purpose CONTROL register . 73
B3.5 XPSR, APSR, IPSR, and EPSR . 74

B3.5.1 Interrupt Program Status Register (IPSR) 74
B3.5.2 Execution Program Status Register (EPSR) 75

B3.6 Security states: Secure state, and Non-secure state 76
B3.7 Security states and register banking between Security states 77
B3.8 Stack pointer . 78
B3.9 Exception numbers and exception priority numbers 80
B3.10 Exception enable, pending, and active bits . 83
B3.11 Security states, exception banking . 85
B3.12 Faults . 88
B3.13 Priority model . 93
B3.14 Secure address protection . 98
B3.15 Security state transitions . 99
B3.16 Function calls from Secure state to Non-secure state 101
B3.17 Function returns from Non-secure state . 102
B3.18 Exception handling . 104
B3.19 Exception entry, context stacking . 106
B3.20 Exception entry, register clearing after context stacking 114
B3.21 Stack limit checks . 115
B3.22 Exception return . 118
B3.23 Integrity signature . 123
B3.24 Exceptions during exception entry . 124
B3.25 Exceptions during exception return . 126
B3.26 Tail-chaining . 127
B3.27 Exceptions, instruction resume, or instruction restart 129

B3.27.1 Basic definitions . 129
B3.27.2 Instruction restart behavior . 129
B3.27.3 Interrupt-continuable instructions . 130
B3.27.4 Behavior of interrupt-continuable instructions 131
B3.27.5 Exceptions during interrupt-continuable instructions 132
B3.27.6 Exception-continuable instruction behavior 133
B3.27.7 Invalid ICI and ECI values . 134

B3.28 Low overhead loops . 135
B3.29 Branch future . 139

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

B3.30 Vector tables . 141
B3.31 Hardware-controlled priority escalation to HardFault 143
B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for con-

figurable priority boosting . 144
B3.33 Lockup . 146

B3.33.1 Lockup behavior . 147
B3.33.2 Exception-related lockup behavior . 147

B3.34 Data independent timing . 151
B3.35 Context Synchronization Event . 153
B3.36 Coprocessor support . 154
B3.37 The Custom Datapath Extension . 155

B3.37.1 Overview of the Custom Datapath Extension 155
B3.37.2 Enabling CDE instructions . 155
B3.37.3 Execution of CDE instructions . 157

Chapter B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPv5 160
B4.2 About the Floating-point Status and Control Registers 162
B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15 164
B4.4 Floating-point standards and terminology . 166
B4.5 Floating-point data representable . 167
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-

precision . 168
B4.7 The IEEE 754 Floating-point exceptions . 170
B4.8 The Flush-to-zero mode . 171

B4.8.1 The Flush to zero mode half-precision calculations 172
B4.9 The Default NaN mode, and NaN handling . 173
B4.10 The Default NaN . 174
B4.11 Combinations of Floating-point exceptions . 175
B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions 176

Chapter B5 Vector Extension
B5.1 Vector Extension operation . 178
B5.2 Vector register file . 180
B5.3 Lanes . 181
B5.4 Beats . 182
B5.5 Predication/conditional execution . 185

B5.5.1 Loop tail predication . 185
B5.5.2 VPT predication . 186
B5.5.3 Effects of predication . 189
B5.5.4 IT block . 190

B5.6 MVE interleaving/de-interleaving loads and stores 191

Chapter B6 Pointer authentication and branch target identification Extension
B6.1 Implementing PAC and BTI . 193

B6.1.1 Pointer authentication . 194
B6.1.2 Branch target identification . 198

Chapter B7 Memory Model
B7.1 Definition of the Armv8 memory model . 203

B7.1.1 Locations . 203
B7.2 Atomicity . 206

B7.2.1 Single-copy atomicity . 206
B7.2.2 Multi-copy atomicity . 207
B7.2.3 Ordering and observability . 207

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

B7.2.4 Ordering and observability at a Location 209
B7.2.5 Ordering constraints . 213
B7.2.6 Completion and endpoint ordering . 214
B7.2.7 External ordering constraints . 216
B7.2.8 Globally-completes-before order . 217
B7.2.9 Memory barriers . 218
B7.2.10 Instruction Synchronization Barrier . 219
B7.2.11 Data Memory Barrier . 219
B7.2.12 Data Synchronization Barrier . 220
B7.2.13 Consumption of Speculative Data Barrier 220
B7.2.14 Physical Speculative Store Bypass Barrier 221
B7.2.15 Speculative Store Bypass Barrier . 222
B7.2.16 Synchronization requirements for System Control Space 222

B7.3 Memory accesses . 223
B7.4 Address space . 224
B7.5 Endianness . 225
B7.6 Alignment behavior . 228
B7.7 Concurrent modification and execution of instructions 229
B7.8 Access rights . 231
B7.9 Normal memory . 232
B7.10 Cacheability attributes . 234
B7.11 Device memory . 235
B7.12 Device memory attributes . 237

B7.12.1 Gathering and non-Gathering Device memory attributes 238
B7.12.2 Reordering and non-Reordering Device memory attributes 238
B7.12.3 Early Write Acknowledgement and no Early Write Acknowledgement

Device memory attributes . 239
B7.13 Shareability attributes . 240
B7.14 Shareability domains . 241
B7.15 Memory access restrictions . 243
B7.16 Mismatched memory attributes . 244
B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory 246
B7.18 Load-Acquire and Store-Release accesses to memory 247
B7.19 Caches . 249
B7.20 Cache identification . 251
B7.21 Cache visibility . 252
B7.22 Cache coherency . 253
B7.23 Cache enabling and disabling . 254
B7.24 Cache behavior at reset . 255
B7.25 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with

caches . 256
B7.26 Branch predictors . 257
B7.27 Cache maintenance operations . 258
B7.28 Ordering of cache maintenance operations . 262
B7.29 Branch predictor maintenance operations . 263

Chapter B8 The System Address Map
B8.1 System address map . 265
B8.2 The System region of the system address map 266
B8.3 The System Control Space (SCS) . 268

Chapter B9 Synchronization and Semaphores
B9.1 Exclusive access instructions . 270
B9.2 The local monitors . 271
B9.3 The global monitor . 273

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

B9.3.1 Load-Exclusive and Store-Exclusive . 274
B9.3.2 Load-Exclusive and Store-Exclusive in Shareable memory 275

B9.4 Exclusive access instructions and the monitors 277
B9.5 Load-Exclusive and Store-Exclusive instruction constraints 278

Chapter B10 The Armv8-M Protected Memory System Architecture
B10.1 Memory Protection Unit . 281
B10.2 Security attribution . 284
B10.3 Security attribution unit (SAU) . 287
B10.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) 288

Chapter B11 The System Timer, SysTick
B11.1 The system timer, SysTick . 290

Chapter B12 Nested Vectored Interrupt Controller
B12.1 NVIC definition . 293
B12.2 NVIC operation . 294

Chapter B13 Debug
B13.1 Debug feature overview . 297

B13.1.1 Debug mechanisms . 300
B13.1.2 Debug resources . 300
B13.1.3 Trace . 301

B13.2 Accessing debug features . 303
B13.2.1 ROM table . 303
B13.2.2 Debug System registers . 306
B13.2.3 CoreSight and identification registers 306

B13.3 Debug authentication interface . 308
B13.3.1 Halting debug authentication . 309
B13.3.2 Non-invasive debug authentication . 312
B13.3.3 DebugMonitor exception authentication 313
B13.3.4 DAP access permissions . 315

B13.4 Debug event behavior . 321
B13.4.1 About debug events . 321
B13.4.2 Debug stepping . 327
B13.4.3 Vector catch . 332
B13.4.4 Breakpoint instructions . 334
B13.4.5 External debug request . 335

B13.5 Debug state . 337
B13.6 Exiting Debug state . 342
B13.7 Multiprocessor support . 343

B13.7.1 Cross-halt event . 343
B13.7.2 External restart request . 343

Chapter B14 Debug and Trace Components
B14.1 Instrumentation Trace Macrocell . 345

B14.1.1 About the ITM . 345
B14.1.2 ITM operation . 346
B14.1.3 Timestamp support . 349
B14.1.4 Synchronization support . 352
B14.1.5 Continuation bits . 353

B14.2 Data Watchpoint and Trace unit . 354
B14.2.1 About the DWT . 354
B14.2.2 DWT unit operation . 355
B14.2.3 Constraints on programming DWT comparators 360
B14.2.4 CMPMATCH trigger events . 365

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

B14.2.5 Matching in detail . 366
B14.2.6 DWT match restrictions and relaxations 369
B14.2.7 DWT trace restrictions and relaxations 370
B14.2.8 CYCCNT cycle counter and related timers 372
B14.2.9 Profiling counter support . 374
B14.2.10 Program Counter sampling support . 375

B14.3 Embedded Trace Macrocell . 378
B14.4 Trace Port Interface Unit . 380
B14.5 Flash Patch and Breakpoint unit . 382

B14.5.1 About the FPB unit . 382
B14.5.2 FPB unit operation . 382
B14.5.3 Cache maintenance . 384

Chapter B15 The Performance Monitors Extension
B15.1 Counters . 386
B15.2 Accuracy of the performance counters . 387
B15.3 Security, access, and modes . 388
B15.4 Attributability . 389
B15.5 Coexistence with the DWT Performance Monitors 390
B15.6 Interrupts and Debug events . 391
B15.7 Performance Monitors and Debug state . 392
B15.8 List of supported architectural and microarchitectural events 393
B15.9 Generic architectural and microarchitectural events 404

B15.9.1 CTI_TRIGOUT (Cross-trigger Interface output trigger , for = 4 to 7) . . . 404
B15.9.2 TRCEXTOUT (PE Trace Unit external output , for = 0 to 3) 404
B15.9.3 DWT_CMPMATCH (DWT comparator match, for = 0 to 7) 404
B15.9.4 LI_CACHE_REFILL (Level instruction cache refill) 404
B15.9.5 LD_CACHE_REFILL (Level data cache refill) 404
B15.9.6 LD_CACHE_MISS_RD (Level data cache miss on read) 405
B15.9.7 LD_CACHE_WB (Level data cache write-back) 405
B15.9.8 LI_CACHE (Level instruction cache access) 406
B15.9.9 LD_CACHE (Level data cache access) 406
B15.9.10 LD_CACHE_RD (Level data cache access, read) 406

B15.10 Common event descriptions . 407
B15.11 Required PMU events . 430
B15.12 IMPLEMENTATION DEFINED event numbers 431

Chapter B16 Reliability, Availability, and Serviceability (RAS) Extension
B16.1 Overview . 433
B16.2 Taxonomy of errors . 434

B16.2.1 Architectural error propagation . 434
B16.2.2 Architecturally infected, contained, and uncontained 434
B16.2.3 Architecturally consumed errors . 435
B16.2.4 Other errors . 435

B16.3 Generating error exceptions . 436
B16.3.1 Error correction and deferment . 438

B16.4 Error Synchronization Barrier (ESB) . 439
B16.4.1 ESB and Unrecoverable errors . 439
B16.4.2 ESB and other containable errors . 439
B16.4.3 ESB and other errors . 440

B16.5 Implicit Error Synchronization (IESB) . 441
B16.6 Fault handling . 443
B16.7 RAS error records . 445
B16.8 Multiple BusFault exceptions . 448
B16.9 Minimal RAS implementation . 449

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

Part C Armv8-M Instruction Set

Chapter C1 Instruction Set Overview
C1.1 Instruction set . 452
C1.2 Format of instruction descriptions . 453

C1.2.1 The title . 453
C1.2.2 A short description . 453
C1.2.3 The instruction encoding or encodings 453
C1.2.4 Any alias conditions, if applicable . 455
C1.2.5 Standard assembler syntax fields . 456
C1.2.6 Pseudocode describing how the instruction operates 458
C1.2.7 Use of labels in UAL instruction syntax 459
C1.2.8 Using syntax information . 460

C1.3 Conditional execution . 461
C1.3.1 Conditional instructions . 462
C1.3.2 Pseudocode details of conditional execution 462
C1.3.3 Conditional execution of undefined instructions 463
C1.3.4 Interaction of undefined instruction behavior with UNPREDICTABLE or

CONSTRAINED_UNPREDICTABLE instruction behavior 463
C1.3.5 ITSTATE . 463
C1.3.6 Pseudocode details of ITSTATE operation 464
C1.3.7 SVC and ITSTATE . 464
C1.3.8 CONSTRAINED_UNPREDICTABLE behavior and IT blocks 465

C1.4 Instruction set encoding information . 467
C1.4.1 UNDEFINED and UNPREDICTABLE instruction set space 467
C1.4.2 Pseudocode descriptions of operations on general-purpose registers

and the PC . 467
C1.4.3 Use of 0b1111 as a register specifier 468
C1.4.4 Use of 0b1101 as a register specifier 469
C1.4.5 16-bit T32 instruction support for SP . 470
C1.4.6 Branching . 470
C1.4.7 Instruction set, interworking and interstating support 471

C1.5 Modified immediate constants . 473
C1.5.1 Operation of modified immediate constants 473
C1.5.2 Modified immediate values for MVE instructions 474
C1.5.3 Modified immediate constants for floating-point instructions 475

C1.6 NOP-compatible hint instructions . 476

Chapter C2 Instruction Specification
C2.1 Top level T32 instruction set encoding . 478
C2.2 16-bit T32 instruction encoding . 479

C2.2.1 Shift (immediate), add, subtract, move, and compare 479
C2.2.2 Data-processing (two low registers) 481
C2.2.3 Special data instructions and branch and exchange 482
C2.2.4 Load/store (register offset) . 483
C2.2.5 Load/store word/byte (immediate offset) 483
C2.2.6 Load/store halfword (immediate offset) 483
C2.2.7 Load/store (SP-relative) . 484
C2.2.8 Add PC/SP (immediate) . 484
C2.2.9 Miscellaneous 16-bit instructions . 485
C2.2.10 Load/store multiple . 487
C2.2.11 Conditional branch, and Supervisor Call 487

C2.3 32-bit T32 instruction encoding . 489
C2.3.1 Coprocessor, floating-point, and vector instructions 489
C2.3.2 Load/store (multiple, dual, exclusive, acquire-release) 504

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

C2.3.3 Data-processing (shifted register) . 508
C2.3.4 Branches and miscellaneous control 510
C2.3.5 Data-processing (modified immediate) 513
C2.3.6 Data-processing (plain binary immediate) 514
C2.3.7 Load/store single . 516
C2.3.8 Data-processing (register) . 522
C2.3.9 Multiply, multiply accumulate, and absolute difference 524
C2.3.10 Long multiply and divide . 525

C2.4 Alphabetical list of instructions . 527
C2.4.1 ADC (immediate) . 528
C2.4.2 ADC (register) . 530
C2.4.3 ADD (SP plus immediate) . 532
C2.4.4 ADD (SP plus register) . 534
C2.4.5 ADD (immediate) . 537
C2.4.6 ADD (immediate, to PC) . 540
C2.4.7 ADD (register) . 542
C2.4.8 ADR . 545
C2.4.9 AND (immediate) . 547
C2.4.10 AND (register) . 549
C2.4.11 ASR (immediate) . 551
C2.4.12 ASR (register) . 553
C2.4.13 ASRL (immediate) . 555
C2.4.14 ASRL (register) . 556
C2.4.15 ASRS (immediate) . 557
C2.4.16 ASRS (register) . 559
C2.4.17 AUT . 561
C2.4.18 AUTG . 563
C2.4.19 B . 565
C2.4.20 BF, BFX, BFL, BFLX, BFCSEL . 567
C2.4.21 BFC . 571
C2.4.22 BFI . 573
C2.4.23 BIC (immediate) . 575
C2.4.24 BIC (register) . 577
C2.4.25 BKPT . 579
C2.4.26 BL . 580
C2.4.27 BLX, BLXNS . 581
C2.4.28 BTI . 583
C2.4.29 BX, BXNS . 584
C2.4.30 BXAUT . 586
C2.4.31 CBNZ, CBZ . 588
C2.4.32 CDP, CDP2 . 589
C2.4.33 CINC . 591
C2.4.34 CINV . 592
C2.4.35 CLREX . 593
C2.4.36 CLRM . 594
C2.4.37 CLZ . 595
C2.4.38 CMN (immediate) . 597
C2.4.39 CMN (register) . 598
C2.4.40 CMP (immediate) . 600
C2.4.41 CMP (register) . 602
C2.4.42 CNEG . 605
C2.4.43 CPS . 606
C2.4.44 CSDB . 608
C2.4.45 CSEL . 609
C2.4.46 CSET . 611

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Contents

C2.4.47 CSETM . 612
C2.4.48 CSINC . 613
C2.4.49 CSINV . 615
C2.4.50 CSNEG . 617
C2.4.51 CX1 . 619
C2.4.52 CX1D . 621
C2.4.53 CX2 . 623
C2.4.54 CX2D . 625
C2.4.55 CX3 . 627
C2.4.56 CX3D . 629
C2.4.57 DBG . 631
C2.4.58 DMB . 632
C2.4.59 DSB . 633
C2.4.60 EOR (immediate) . 634
C2.4.61 EOR (register) . 636
C2.4.62 ESB . 638
C2.4.63 FLDMDBX, FLDMIAX . 639
C2.4.64 FSTMDBX, FSTMIAX . 641
C2.4.65 ISB . 643
C2.4.66 IT . 644
C2.4.67 LCTP . 646
C2.4.68 LDA . 647
C2.4.69 LDAB . 648
C2.4.70 LDAEX . 649
C2.4.71 LDAEXB . 650
C2.4.72 LDAEXH . 651
C2.4.73 LDAH . 652
C2.4.74 LDC, LDC2 (immediate) . 653
C2.4.75 LDC, LDC2 (literal) . 656
C2.4.76 LDM, LDMIA, LDMFD . 659
C2.4.77 LDMDB, LDMEA . 664
C2.4.78 LDR (immediate) . 667
C2.4.79 LDR (literal) . 671
C2.4.80 LDR (register) . 673
C2.4.81 LDRB (immediate) . 675
C2.4.82 LDRB (literal) . 678
C2.4.83 LDRB (register) . 680
C2.4.84 LDRBT . 682
C2.4.85 LDRD (immediate) . 683
C2.4.86 LDRD (literal) . 685
C2.4.87 LDREX . 687
C2.4.88 LDREXB . 688
C2.4.89 LDREXH . 689
C2.4.90 LDRH (immediate) . 690
C2.4.91 LDRH (literal) . 693
C2.4.92 LDRH (register) . 695
C2.4.93 LDRHT . 697
C2.4.94 LDRSB (immediate) . 698
C2.4.95 LDRSB (literal) . 700
C2.4.96 LDRSB (register) . 702
C2.4.97 LDRSBT . 704
C2.4.98 LDRSH (immediate) . 705
C2.4.99 LDRSH (literal) . 707
C2.4.100 LDRSH (register) . 709
C2.4.101 LDRSHT . 711

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Contents

C2.4.102 LDRT . 712
C2.4.103 LE, LETP . 713
C2.4.104 LSL (immediate) . 715
C2.4.105 LSL (register) . 717
C2.4.106 LSLL (immediate) . 719
C2.4.107 LSLL (register) . 720
C2.4.108 LSLS (immediate) . 721
C2.4.109 LSLS (register) . 723
C2.4.110 LSR (immediate) . 725
C2.4.111 LSR (register) . 727
C2.4.112 LSRL (immediate) . 729
C2.4.113 LSRS (immediate) . 730
C2.4.114 LSRS (register) . 732
C2.4.115 MCR, MCR2 . 734
C2.4.116 MCRR, MCRR2 . 736
C2.4.117 MLA . 738
C2.4.118 MLS . 740
C2.4.119 MOV (immediate) . 741
C2.4.120 MOV (register) . 743
C2.4.121 MOV, MOVS (register-shifted register) 747
C2.4.122 MOVT . 750
C2.4.123 MRC, MRC2 . 751
C2.4.124 MRRC, MRRC2 . 753
C2.4.125 MRS . 755
C2.4.126 MSR (register) . 760
C2.4.127 MUL . 765
C2.4.128 MVN (immediate) . 767
C2.4.129 MVN (register) . 768
C2.4.130 NOP . 770
C2.4.131 ORN (immediate) . 771
C2.4.132 ORN (register) . 773
C2.4.133 ORR (immediate) . 775
C2.4.134 ORR (register) . 777
C2.4.135 PAC . 779
C2.4.136 PACBTI . 781
C2.4.137 PACG . 783
C2.4.138 PKHBT, PKHTB . 785
C2.4.139 PLD (literal) . 787
C2.4.140 PLD, PLDW (immediate) . 788
C2.4.141 PLD, PLDW (register) . 790
C2.4.142 PLI (immediate, literal) . 791
C2.4.143 PLI (register) . 793
C2.4.144 POP (multiple registers) . 794
C2.4.145 POP (single register) . 796
C2.4.146 PSSBB . 797
C2.4.147 PUSH (multiple registers) . 798
C2.4.148 PUSH (single register) . 800
C2.4.149 QADD . 801
C2.4.150 QADD16 . 802
C2.4.151 QADD8 . 803
C2.4.152 QASX . 804
C2.4.153 QDADD . 805
C2.4.154 QDSUB . 806
C2.4.155 QSAX . 807
C2.4.156 QSUB . 808

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvi

Contents

C2.4.157 QSUB16 . 809
C2.4.158 QSUB8 . 810
C2.4.159 RBIT . 811
C2.4.160 REV . 812
C2.4.161 REV16 . 814
C2.4.162 REVSH . 816
C2.4.163 ROR (immediate) . 818
C2.4.164 ROR (register) . 820
C2.4.165 RORS (immediate) . 822
C2.4.166 RORS (register) . 824
C2.4.167 RRX . 826
C2.4.168 RRXS . 827
C2.4.169 RSB (immediate) . 828
C2.4.170 RSB (register) . 830
C2.4.171 SADD16 . 832
C2.4.172 SADD8 . 833
C2.4.173 SASX . 834
C2.4.174 SBC (immediate) . 835
C2.4.175 SBC (register) . 837
C2.4.176 SBFX . 839
C2.4.177 SDIV . 841
C2.4.178 SEL . 842
C2.4.179 SEV . 843
C2.4.180 SG . 844
C2.4.181 SHADD16 . 846
C2.4.182 SHADD8 . 847
C2.4.183 SHASX . 848
C2.4.184 SHSAX . 849
C2.4.185 SHSUB16 . 850
C2.4.186 SHSUB8 . 851
C2.4.187 SMLABB, SMLABT, SMLATB, SMLATT 852
C2.4.188 SMLAD, SMLADX . 854
C2.4.189 SMLAL . 856
C2.4.190 SMLALBB, SMLALBT, SMLALTB, SMLALTT 858
C2.4.191 SMLALD, SMLALDX . 860
C2.4.192 SMLAWB, SMLAWT . 862
C2.4.193 SMLSD, SMLSDX . 864
C2.4.194 SMLSLD, SMLSLDX . 866
C2.4.195 SMMLA, SMMLAR . 868
C2.4.196 SMMLS, SMMLSR . 870
C2.4.197 SMMUL, SMMULR . 872
C2.4.198 SMUAD, SMUADX . 873
C2.4.199 SMULBB, SMULBT, SMULTB, SMULTT 875
C2.4.200 SMULL . 877
C2.4.201 SMULWB, SMULWT . 878
C2.4.202 SMUSD, SMUSDX . 879
C2.4.203 SQRSHR (register) . 881
C2.4.204 SQRSHRL (register) . 882
C2.4.205 SQSHL (immediate) . 883
C2.4.206 SQSHLL (immediate) . 884
C2.4.207 SRSHR (immediate) . 885
C2.4.208 SRSHRL (immediate) . 886
C2.4.209 SSAT . 887
C2.4.210 SSAT16 . 888
C2.4.211 SSAX . 889

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvii

Contents

C2.4.212 SSBB . 890
C2.4.213 SSUB16 . 891
C2.4.214 SSUB8 . 892
C2.4.215 STC, STC2 . 893
C2.4.216 STL . 896
C2.4.217 STLB . 897
C2.4.218 STLEX . 898
C2.4.219 STLEXB . 900
C2.4.220 STLEXH . 902
C2.4.221 STLH . 904
C2.4.222 STM, STMIA, STMEA . 905
C2.4.223 STMDB, STMFD . 908
C2.4.224 STR (immediate) . 911
C2.4.225 STR (register) . 914
C2.4.226 STRB (immediate) . 916
C2.4.227 STRB (register) . 919
C2.4.228 STRBT . 921
C2.4.229 STRD (immediate) . 922
C2.4.230 STREX . 924
C2.4.231 STREXB . 926
C2.4.232 STREXH . 928
C2.4.233 STRH (immediate) . 930
C2.4.234 STRH (register) . 933
C2.4.235 STRHT . 935
C2.4.236 STRT . 936
C2.4.237 SUB (SP minus immediate) . 937
C2.4.238 SUB (SP minus register) . 939
C2.4.239 SUB (immediate) . 941
C2.4.240 SUB (immediate, from PC) . 944
C2.4.241 SUB (register) . 945
C2.4.242 SVC . 947
C2.4.243 SXTAB . 948
C2.4.244 SXTAB16 . 949
C2.4.245 SXTAH . 951
C2.4.246 SXTB . 952
C2.4.247 SXTB16 . 954
C2.4.248 SXTH . 955
C2.4.249 TBB, TBH . 957
C2.4.250 TEQ (immediate) . 958
C2.4.251 TEQ (register) . 959
C2.4.252 TST (immediate) . 961
C2.4.253 TST (register) . 962
C2.4.254 TT, TTT, TTA, TTAT . 964
C2.4.255 UADD16 . 966
C2.4.256 UADD8 . 967
C2.4.257 UASX . 968
C2.4.258 UBFX . 969
C2.4.259 UDF . 971
C2.4.260 UDIV . 972
C2.4.261 UHADD16 . 973
C2.4.262 UHADD8 . 974
C2.4.263 UHASX . 975
C2.4.264 UHSAX . 976
C2.4.265 UHSUB16 . 977
C2.4.266 UHSUB8 . 978

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Contents

C2.4.267 UMAAL . 979
C2.4.268 UMLAL . 981
C2.4.269 UMULL . 983
C2.4.270 UQADD16 . 985
C2.4.271 UQADD8 . 986
C2.4.272 UQASX . 987
C2.4.273 UQRSHL (register) . 988
C2.4.274 UQRSHLL (register) . 989
C2.4.275 UQSAX . 990
C2.4.276 UQSHL (immediate) . 991
C2.4.277 UQSHLL (immediate) . 992
C2.4.278 UQSUB16 . 993
C2.4.279 UQSUB8 . 994
C2.4.280 URSHR (immediate) . 995
C2.4.281 URSHRL (immediate) . 996
C2.4.282 USAD8 . 997
C2.4.283 USADA8 . 998
C2.4.284 USAT . 999
C2.4.285 USAT16 .1000
C2.4.286 USAX . 1001
C2.4.287 USUB16 .1002
C2.4.288 USUB8 .1003
C2.4.289 UXTAB . 1004
C2.4.290 UXTAB16 .1005
C2.4.291 UXTAH . 1007
C2.4.292 UXTB .1008
C2.4.293 UXTB16 .1010
C2.4.294 UXTH . 1011
C2.4.295 VABAV .1013
C2.4.296 VABD .1015
C2.4.297 VABD (floating-point) . 1017
C2.4.298 VABS .1019
C2.4.299 VABS (floating-point) . 1021
C2.4.300 VABS (vector) .1023
C2.4.301 VADC .1025
C2.4.302 VADD . 1027
C2.4.303 VADD (floating-point) .1029
C2.4.304 VADD (vector) . 1031
C2.4.305 VADDLV .1033
C2.4.306 VADDV .1035
C2.4.307 VAND . 1037
C2.4.308 VAND (immediate) .1039
C2.4.309 VBIC (immediate) .1040
C2.4.310 VBIC (register) .1042
C2.4.311 VBRSR . 1044
C2.4.312 VCADD .1046
C2.4.313 VCADD (floating-point) .1048
C2.4.314 VCLS .1050
C2.4.315 VCLZ .1052
C2.4.316 VCMLA (floating-point) . 1054
C2.4.317 VCMP . 1057
C2.4.318 VCMP (floating-point) .1060
C2.4.319 VCMP (vector) .1062
C2.4.320 VCMPE . 1067
C2.4.321 VCMUL (floating-point) .1070

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

Contents

C2.4.322 VCTP .1073
C2.4.323 VCVT (between double-precision and single-precision) 1074
C2.4.324 VCVT (between floating-point and fixed-point)1075
C2.4.325 VCVT (between floating-point and fixed-point) (vector)1078
C2.4.326 VCVT (between floating-point and integer)1080
C2.4.327 VCVT (between single and half-precision floating-point)1082
C2.4.328 VCVT (floating-point to integer) . 1084
C2.4.329 VCVT (from floating-point to integer)1086
C2.4.330 VCVT (integer to floating-point) .1088
C2.4.331 VCVTA .1090
C2.4.332 VCVTB .1092
C2.4.333 VCVTM . 1094
C2.4.334 VCVTN .1096
C2.4.335 VCVTP .1098
C2.4.336 VCVTR .1100
C2.4.337 VCVTT .1102
C2.4.338 VCX1 . 1104
C2.4.339 VCX1 (vector) .1106
C2.4.340 VCX2 .1108
C2.4.341 VCX2 (vector) .1110
C2.4.342 VCX3 .1112
C2.4.343 VCX3 (vector) . 1114
C2.4.344 VDDUP, VDWDUP .1116
C2.4.345 VDIV .1119
C2.4.346 VDUP . 1121
C2.4.347 VEOR .1123
C2.4.348 VFMA .1125
C2.4.349 VFMA (vector by scalar plus vector, floating-point) 1127
C2.4.350 VFMA, VFMS (floating-point) .1129
C2.4.351 VFMAS (vector by vector plus scalar, floating-point) 1131
C2.4.352 VFMS .1133
C2.4.353 VFNMA .1135
C2.4.354 VFNMS . 1137
C2.4.355 VHADD .1139
C2.4.356 VHCADD . 1141
C2.4.357 VHSUB .1143
C2.4.358 VIDUP, VIWDUP .1145
C2.4.359 VINS .1148
C2.4.360 VLD2 .1149
C2.4.361 VLD4 . 1151
C2.4.362 VLDM .1153
C2.4.363 VLDR . 1157
C2.4.364 VLDR (System Register) .1160
C2.4.365 VLDRB, VLDRH, VLDRW .1163
C2.4.366 VLDRB, VLDRH, VLDRW, VLDRD (vector)1168
C2.4.367 VLLDM . 1174
C2.4.368 VLSTM . 1177
C2.4.369 VMAX, VMAXA .1180
C2.4.370 VMAXNM .1183
C2.4.371 VMAXNM, VMAXNMA (floating-point)1185
C2.4.372 VMAXNMV, VMAXNMAV (floating-point) 1187
C2.4.373 VMAXV, VMAXAV .1189
C2.4.374 VMIN, VMINA . 1191
C2.4.375 VMINNM . 1194
C2.4.376 VMINNM, VMINNMA (floating-point) .1196

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xx

Contents

C2.4.377 VMINNMV, VMINNMAV (floating-point)1198
C2.4.378 VMINV, VMINAV .1200
C2.4.379 VMLA .1202
C2.4.380 VMLA (vector by scalar plus vector) . 1204
C2.4.381 VMLADAV .1206
C2.4.382 VMLALDAV .1209
C2.4.383 VMLALV . 1211
C2.4.384 VMLAS (vector by vector plus scalar)1212
C2.4.385 VMLAV . 1214
C2.4.386 VMLS .1215
C2.4.387 VMLSDAV . 1217
C2.4.388 VMLSLDAV .1220
C2.4.389 VMOV (between general-purpose register and half-precision register) .1222
C2.4.390 VMOV (between general-purpose register and single-precision register)1223
C2.4.391 VMOV (between two general-purpose registers and a doubleword register)1224
C2.4.392 VMOV (between two general-purpose registers and two single-precision

registers) .1226
C2.4.393 VMOV (general-purpose register to vector lane)1228
C2.4.394 VMOV (half of doubleword register to single general-purpose register) .1230
C2.4.395 VMOV (immediate) . 1231
C2.4.396 VMOV (immediate) (vector) .1233
C2.4.397 VMOV (register) .1235
C2.4.398 VMOV (register) (vector) . 1237
C2.4.399 VMOV (single general-purpose register to half of doubleword register) .1238
C2.4.400 VMOV (two 32-bit vector lanes to two general-purpose registers)1239
C2.4.401 VMOV (two general-purpose registers to two 32-bit vector lanes) 1241
C2.4.402 VMOV (vector lane to general-purpose register)1243
C2.4.403 VMOVL .1245
C2.4.404 VMOVN . 1247
C2.4.405 VMOVX .1249
C2.4.406 VMRS .1250
C2.4.407 VMSR .1253
C2.4.408 VMUL .1256
C2.4.409 VMUL (floating-point) .1258
C2.4.410 VMUL (vector) .1260
C2.4.411 VMULH, VRMULH .1262
C2.4.412 VMULL (integer) . 1264
C2.4.413 VMULL (polynomial) .1266
C2.4.414 VMVN (immediate) .1268
C2.4.415 VMVN (register) .1270
C2.4.416 VNEG . 1271
C2.4.417 VNEG (floating-point) .1273
C2.4.418 VNEG (vector) .1275
C2.4.419 VNMLA . 1277
C2.4.420 VNMLS .1279
C2.4.421 VNMUL . 1281
C2.4.422 VORN .1283
C2.4.423 VORN (immediate) .1285
C2.4.424 VORR .1286
C2.4.425 VORR (immediate) .1288
C2.4.426 VPNOT .1290
C2.4.427 VPOP . 1291
C2.4.428 VPSEL .1293
C2.4.429 VPST .1295
C2.4.430 VPT .1296

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxi

Contents

C2.4.431 VPT (floating-point) .1302
C2.4.432 VPUSH . 1304
C2.4.433 VQABS .1306
C2.4.434 VQADD . 1307
C2.4.435 VQDMLADH, VQRDMLADH .1309
C2.4.436 VQDMLAH, VQRDMLAH (vector by scalar plus vector)1312
C2.4.437 VQDMLASH, VQRDMLASH (vector by vector plus scalar) 1314
C2.4.438 VQDMLSDH, VQRDMLSDH .1316
C2.4.439 VQDMULH, VQRDMULH .1319
C2.4.440 VQDMULL .1323
C2.4.441 VQMOVN .1325
C2.4.442 VQMOVUN . 1327
C2.4.443 VQNEG .1329
C2.4.444 VQRSHL .1330
C2.4.445 VQRSHRN .1332
C2.4.446 VQRSHRUN . 1334
C2.4.447 VQSHL, VQSHLU .1336
C2.4.448 VQSHRN .1340
C2.4.449 VQSHRUN .1342
C2.4.450 VQSUB . 1344
C2.4.451 VREV16 .1346
C2.4.452 VREV32 .1348
C2.4.453 VREV64 .1350
C2.4.454 VRHADD .1352
C2.4.455 VRINT (floating-point) . 1354
C2.4.456 VRINTA .1356
C2.4.457 VRINTM .1358
C2.4.458 VRINTN .1360
C2.4.459 VRINTP .1362
C2.4.460 VRINTR . 1364
C2.4.461 VRINTX .1366
C2.4.462 VRINTZ .1368
C2.4.463 VRMLALDAVH .1370
C2.4.464 VRMLALVH .1372
C2.4.465 VRMLSLDAVH .1373
C2.4.466 VRSHL .1375
C2.4.467 VRSHR . 1377
C2.4.468 VRSHRN .1379
C2.4.469 VSBC . 1381
C2.4.470 VSCCLRM .1383
C2.4.471 VSEL .1385
C2.4.472 VSHL .1388
C2.4.473 VSHLC . 1391
C2.4.474 VSHLL .1393
C2.4.475 VSHR .1396
C2.4.476 VSHRN .1398
C2.4.477 VSLI .1400
C2.4.478 VSQRT .1402
C2.4.479 VSRI .1403
C2.4.480 VST2 .1405
C2.4.481 VST4 . 1407
C2.4.482 VSTM .1409
C2.4.483 VSTR .1413
C2.4.484 VSTR (System Register) .1415
C2.4.485 VSTRB, VSTRH, VSTRW .1418

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxii

Contents

C2.4.486 VSTRB, VSTRH, VSTRW, VSTRD (vector)1423
C2.4.487 VSUB .1429
C2.4.488 VSUB (floating-point) . 1431
C2.4.489 VSUB (vector) .1433
C2.4.490 WFE .1435
C2.4.491 WFI .1436
C2.4.492 WLS, DLS, WLSTP, DLSTP . 1437
C2.4.493 YIELD .1440

Part D Armv8-M Registers and Payload Specification

Chapter D1 Register and Payload Specification
D1.1 Register index .1443

D1.1.1 Special and general-purpose registers1443
D1.1.2 Payloads . 1444
D1.1.3 Instrumentation Macrocell . 1444
D1.1.4 Data Watchpoint and Trace .1445
D1.1.5 Flash Patch and Breakpoint .1445
D1.1.6 Performance Monitoring Unit .1446
D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register1446
D1.1.8 Implementation Control Block . 1447
D1.1.9 SysTick Timer . 1447
D1.1.10 Nested Vectored Interrupt Controller . 1447
D1.1.11 System Control Block . 1447
D1.1.12 Memory Protection Unit .1448
D1.1.13 Security Attribution Unit .1448
D1.1.14 Debug Control Block .1449
D1.1.15 Software Interrupt Generation .1449
D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register1449
D1.1.17 Floating-Point Extension .1449
D1.1.18 Cache Maintenance Operations .1449
D1.1.19 Debug Identification Block .1450
D1.1.20 Implementation Control Block (NS alias)1450
D1.1.21 SysTick Timer (NS alias) .1450
D1.1.22 Nested Vectored Interrupt Controller (NS alias) 1451
D1.1.23 System Control Block (NS alias) . 1451
D1.1.24 Memory Protection Unit (NS alias) .1452
D1.1.25 Debug Control Block (NS alias) .1452
D1.1.26 Software Interrupt Generation (NS alias)1452
D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register

(NS Alias) .1452
D1.1.28 Floating-Point Extension (NS alias) .1452
D1.1.29 Cache Maintenance Operations (NS alias)1453
D1.1.30 Debug Identification Block (NS alias)1453
D1.1.31 Trace Port Interface Unit .1453

D1.2 Alphabetical list of registers .1455
D1.2.1 ACTLR, Auxiliary Control Register .1456
D1.2.2 AFSR, Auxiliary Fault Status Register 1457
D1.2.3 AIRCR, Application Interrupt and Reset Control Register1458
D1.2.4 APSR, Application Program Status Register1463
D1.2.5 BASEPRI, Base Priority Mask Register1465
D1.2.6 BFAR, BusFault Address Register .1466
D1.2.7 BFSR, BusFault Status Register . 1467
D1.2.8 BPIALL, Branch Predictor Invalidate All1470

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxiii

Contents

D1.2.9 CCR, Configuration and Control Register 1471
D1.2.10 CCSIDR, Current Cache Size ID register1475
D1.2.11 CFSR, Configurable Fault Status Register 1477
D1.2.12 CLIDR, Cache Level ID Register .1478
D1.2.13 CONTROL, Control Register .1480
D1.2.14 CPACR, Coprocessor Access Control Register1483
D1.2.15 CPPWR, Coprocessor Power Control Register1485
D1.2.16 CPUID, CPUID Base Register .1488
D1.2.17 CSSELR, Cache Size Selection Register1490
D1.2.18 CTR, Cache Type Register .1492
D1.2.19 Dn, Floating-point Double-precision register, n = 0 - 15 1494
D1.2.20 DAUTHCTRL, Debug Authentication Control Register1495
D1.2.21 DAUTHSTATUS, Debug Authentication Status Register1498
D1.2.22 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC . 1501
D1.2.23 DCCISW, Data Cache line Clean and Invalidate by Set/Way1502
D1.2.24 DCCMVAC, Data Cache line Clean by Address to PoC1503
D1.2.25 DCCMVAU, Data Cache line Clean by address to PoU 1504
D1.2.26 DCCSW, Data Cache Clean line by Set/Way1505
D1.2.27 DCIDR0, SCS Component Identification Register 01506
D1.2.28 DCIDR1, SCS Component Identification Register 1 1507
D1.2.29 DCIDR2, SCS Component Identification Register 21508
D1.2.30 DCIDR3, SCS Component Identification Register 31509
D1.2.31 DCIMVAC, Data Cache line Invalidate by Address to PoC1510
D1.2.32 DCISW, Data Cache line Invalidate by Set/Way 1511
D1.2.33 DCRDR, Debug Core Register Data Register1512
D1.2.34 DCRSR, Debug Core Register Select Register1513
D1.2.35 DDEVARCH, SCS Device Architecture Register1518
D1.2.36 DDEVTYPE, SCS Device Type Register1520
D1.2.37 DEMCR, Debug Exception and Monitor Control Register1522
D1.2.38 DFSR, Debug Fault Status Register .1529
D1.2.39 DHCSR, Debug Halting Control and Status Register 1531
D1.2.40 DLAR, SCS Software Lock Access Register1538
D1.2.41 DLSR, SCS Software Lock Status Register1539
D1.2.42 DPIDR0, SCS Peripheral Identification Register 0 1541
D1.2.43 DPIDR1, SCS Peripheral Identification Register 11542
D1.2.44 DPIDR2, SCS Peripheral Identification Register 21543
D1.2.45 DPIDR3, SCS Peripheral Identification Register 3 1544
D1.2.46 DPIDR4, SCS Peripheral Identification Register 41545
D1.2.47 DPIDR5, SCS Peripheral Identification Register 51546
D1.2.48 DPIDR6, SCS Peripheral Identification Register 6 1547
D1.2.49 DPIDR7, SCS Peripheral Identification Register 71548
D1.2.50 DSCEMCR, Debug Set Clear Exception and Monitor Control Register .1549
D1.2.51 DSCSR, Debug Security Control and Status Register 1551
D1.2.52 DWT_CIDR0, DWT Component Identification Register 01553
D1.2.53 DWT_CIDR1, DWT Component Identification Register 1 1554
D1.2.54 DWT_CIDR2, DWT Component Identification Register 21555
D1.2.55 DWT_CIDR3, DWT Component Identification Register 31556
D1.2.56 DWT_COMPn, DWT Comparator Register, n = 0 - 14 1557
D1.2.57 DWT_CPICNT, DWT CPI Count Register1559
D1.2.58 DWT_CTRL, DWT Control Register . 1561
D1.2.59 DWT_CYCCNT, DWT Cycle Count Register1566
D1.2.60 DWT_DEVARCH, DWT Device Architecture Register 1567
D1.2.61 DWT_DEVTYPE, DWT Device Type Register1569
D1.2.62 DWT_EXCCNT, DWT Exception Overhead Count Register1570
D1.2.63 DWT_FOLDCNT, DWT Folded Instruction Count Register 1571

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxiv

Contents

D1.2.64 DWT_FUNCTIONn, DWT Comparator Function Register, n = 0 - 14 . .1572
D1.2.65 DWT_LAR, DWT Software Lock Access Register 1577
D1.2.66 DWT_LSR, DWT Software Lock Status Register1578
D1.2.67 DWT_LSUCNT, DWT LSU Count Register1580
D1.2.68 DWT_PCSR, DWT Program Counter Sample Register 1581
D1.2.69 DWT_PIDR0, DWT Peripheral Identification Register 01583
D1.2.70 DWT_PIDR1, DWT Peripheral Identification Register 1 1584
D1.2.71 DWT_PIDR2, DWT Peripheral Identification Register 21585
D1.2.72 DWT_PIDR3, DWT Peripheral Identification Register 31586
D1.2.73 DWT_PIDR4, DWT Peripheral Identification Register 4 1587
D1.2.74 DWT_PIDR5, DWT Peripheral Identification Register 51588
D1.2.75 DWT_PIDR6, DWT Peripheral Identification Register 61589
D1.2.76 DWT_PIDR7, DWT Peripheral Identification Register 71590
D1.2.77 DWT_SLEEPCNT, DWT Sleep Count Register 1591
D1.2.78 DWT_VMASKn, DWT Comparator Value Mask Register, n = 0 - 14 . . .1593
D1.2.79 EPSR, Execution Program Status Register1595
D1.2.80 ERRADDRn, Error Record Address Register, n = 0 - 551598
D1.2.81 ERRADDR2n, Error Record Address 2 Register, n = 0 - 551599
D1.2.82 ERRCTRLn, Error Record Control Register, n = 0 - 55 1601
D1.2.83 ERRDEVID, Error Record Device ID Register 1604
D1.2.84 ERRFRn, Error Record Feature Register, n = 0 - 551605
D1.2.85 ERRGSRn, RAS Fault Group Status Register1609
D1.2.86 ERRIIDR, Error Implementer ID Register1610
D1.2.87 ERRMISC0n, Error Record Miscellaneous 0 Register, n = 0 - 55 1611
D1.2.88 ERRMISC1n, Error Record Miscellaneous 1 Register, n = 0 - 55 1614
D1.2.89 ERRMISC2n, Error Record Miscellaneous 2 Register, n = 0 - 551615
D1.2.90 ERRMISC3n, Error Record Miscellaneous 3 Register, n = 0 - 551616
D1.2.91 ERRMISC4n, Error Record Miscellaneous 4 Register, n = 0 - 55 1617
D1.2.92 ERRMISC5n, Error Record Miscellaneous 5 Register, n = 0 - 551618
D1.2.93 ERRMISC6n, Error Record Miscellaneous 6 Register, n = 0 - 551619
D1.2.94 ERRMISC7n, Error Record Miscellaneous 7 Register, n = 0 - 551620
D1.2.95 ERRSTATUSn, Error Record Primary Status Register, n = 0 - 55 1621
D1.2.96 EXC_RETURN, Exception Return Payload1628
D1.2.97 FAULTMASK, Fault Mask Register .1630
D1.2.98 FNC_RETURN, Function Return Payload 1631
D1.2.99 FPCAR, Floating-Point Context Address Register1632
D1.2.100 FPCCR, Floating-Point Context Control Register1633
D1.2.101 FPCXT, Floating-point context payload1639
D1.2.102 FPDSCR, Floating-Point Default Status Control Register 1641
D1.2.103 FPSCR, Floating-point Status and Control Register1643
D1.2.104 FP_CIDR0, FP Component Identification Register 01649
D1.2.105 FP_CIDR1, FP Component Identification Register 11650
D1.2.106 FP_CIDR2, FP Component Identification Register 2 1651
D1.2.107 FP_CIDR3, FP Component Identification Register 31652
D1.2.108 FP_COMPn, Flash Patch Comparator Register, n = 0 - 1251653
D1.2.109 FP_CTRL, Flash Patch Control Register 1654
D1.2.110 FP_DEVARCH, FPB Device Architecture Register1656
D1.2.111 FP_DEVTYPE, FPB Device Type Register1658
D1.2.112 FP_LAR, FPB Software Lock Access Register1659
D1.2.113 FP_LSR, FPB Software Lock Status Register1660
D1.2.114 FP_PIDR0, FP Peripheral Identification Register 01662
D1.2.115 FP_PIDR1, FP Peripheral Identification Register 11663
D1.2.116 FP_PIDR2, FP Peripheral Identification Register 2 1664
D1.2.117 FP_PIDR3, FP Peripheral Identification Register 31665
D1.2.118 FP_PIDR4, FP Peripheral Identification Register 41666

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxv

Contents

D1.2.119 FP_PIDR5, FP Peripheral Identification Register 5 1667
D1.2.120 FP_PIDR6, FP Peripheral Identification Register 61668
D1.2.121 FP_PIDR7, FP Peripheral Identification Register 71669
D1.2.122 FP_REMAP, Flash Patch Remap Register1670
D1.2.123 HFSR, HardFault Status Register . 1671
D1.2.124 ICIALLU, Instruction Cache Invalidate All to PoU1673
D1.2.125 ICIMVAU, Instruction Cache line Invalidate by Address to PoU 1674
D1.2.126 ICSR, Interrupt Control and State Register1675
D1.2.127 ICTR, Interrupt Controller Type Register 1681
D1.2.128 ID_AFR0, Auxiliary Feature Register 01682
D1.2.129 ID_DFR0, Debug Feature Register 01683
D1.2.130 ID_ISAR0, Instruction Set Attribute Register 01685
D1.2.131 ID_ISAR1, Instruction Set Attribute Register 1 1687
D1.2.132 ID_ISAR2, Instruction Set Attribute Register 21689
D1.2.133 ID_ISAR3, Instruction Set Attribute Register 3 1691
D1.2.134 ID_ISAR4, Instruction Set Attribute Register 41693
D1.2.135 ID_ISAR5, Instruction Set Attribute Register 51695
D1.2.136 ID_MMFR0, Memory Model Feature Register 0 1697
D1.2.137 ID_MMFR1, Memory Model Feature Register 11699
D1.2.138 ID_MMFR2, Memory Model Feature Register 21700
D1.2.139 ID_MMFR3, Memory Model Feature Register 3 1701
D1.2.140 ID_PFR0, Processor Feature Register 01703
D1.2.141 ID_PFR1, Processor Feature Register 11705
D1.2.142 IPSR, Interrupt Program Status Register 1707
D1.2.143 ITM_CIDR0, ITM Component Identification Register 01708
D1.2.144 ITM_CIDR1, ITM Component Identification Register 11709
D1.2.145 ITM_CIDR2, ITM Component Identification Register 21710
D1.2.146 ITM_CIDR3, ITM Component Identification Register 3 1711
D1.2.147 ITM_DEVARCH, ITM Device Architecture Register1712
D1.2.148 ITM_DEVTYPE, ITM Device Type Register 1714
D1.2.149 ITM_LAR, ITM Software Lock Access Register1716
D1.2.150 ITM_LSR, ITM Software Lock Status Register 1717
D1.2.151 ITM_PIDR0, ITM Peripheral Identification Register 01719
D1.2.152 ITM_PIDR1, ITM Peripheral Identification Register 11720
D1.2.153 ITM_PIDR2, ITM Peripheral Identification Register 2 1721
D1.2.154 ITM_PIDR3, ITM Peripheral Identification Register 31722
D1.2.155 ITM_PIDR4, ITM Peripheral Identification Register 41723
D1.2.156 ITM_PIDR5, ITM Peripheral Identification Register 5 1724
D1.2.157 ITM_PIDR6, ITM Peripheral Identification Register 61725
D1.2.158 ITM_PIDR7, ITM Peripheral Identification Register 71726
D1.2.159 ITM_STIMn, ITM Stimulus Port Register, n = 0 - 255 1727
D1.2.160 ITM_TCR, ITM Trace Control Register1729
D1.2.161 ITM_TERn, ITM Trace Enable Register, n = 0 - 71733
D1.2.162 ITM_TPR, ITM Trace Privilege Register 1734
D1.2.163 LO_BRANCH_INFO, Loop and branch tracking information1735
D1.2.164 LR, Link Register .1736
D1.2.165 MAIR_ATTR, Memory Attribute Indirection Register Attributes 1737
D1.2.166 MMFAR, MemManage Fault Address Register1739
D1.2.167 MMFSR, MemManage Fault Status Register1740
D1.2.168 MPU_CTRL, MPU Control Register .1743
D1.2.169 MPU_MAIR0, MPU Memory Attribute Indirection Register 01745
D1.2.170 MPU_MAIR1, MPU Memory Attribute Indirection Register 11746
D1.2.171 MPU_RBAR, MPU Region Base Address Register 1747
D1.2.172 MPU_RBAR_An, MPU Region Base Address Register Alias, n = 1 - 3 .1749
D1.2.173 MPU_RLAR, MPU Region Limit Address Register 1751

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxvi

Contents

D1.2.174 MPU_RLAR_An, MPU Region Limit Address Register Alias, n = 1 - 3 .1753
D1.2.175 MPU_RNR, MPU Region Number Register1755
D1.2.176 MPU_TYPE, MPU Type Register .1756
D1.2.177 MSPLIM, Main Stack Pointer Limit Register 1757
D1.2.178 MVFR0, Media and VFP Feature Register 01758
D1.2.179 MVFR1, Media and VFP Feature Register 11760
D1.2.180 MVFR2, Media and VFP Feature Register 21763
D1.2.181 NSACR, Non-secure Access Control Register 1764
D1.2.182 NVIC_IABRn, Interrupt Active Bit Register, n = 0 - 151766
D1.2.183 NVIC_ICERn, Interrupt Clear Enable Register, n = 0 - 15 1767
D1.2.184 NVIC_ICPRn, Interrupt Clear Pending Register, n = 0 - 151768
D1.2.185 NVIC_IPRn, Interrupt Priority Register, n = 0 - 1231769
D1.2.186 NVIC_ISERn, Interrupt Set Enable Register, n = 0 - 151770
D1.2.187 NVIC_ISPRn, Interrupt Set Pending Register, n = 0 - 15 1771
D1.2.188 NVIC_ITNSn, Interrupt Target Non-secure Register, n = 0 - 151773
D1.2.189 PAC_KEY_P_n, Pointer Authentication Key Privileged, n = 0 - 3 1774
D1.2.190 PAC_KEY_U_n, Pointer Authentication Key Unprivileged, n = 0 - 3 . . .1775
D1.2.191 PC, Program Counter .1776
D1.2.192 PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status

Register . 1777
D1.2.193 PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Register1780
D1.2.194 PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register . . 1781
D1.2.195 PMU_CIDR0, Performance Monitoring Unit Component Identification

Register 0 .1782
D1.2.196 PMU_CIDR1, Performance Monitoring Unit Component Identification

Register 1 .1783
D1.2.197 PMU_CIDR2, Performance Monitoring Unit Component Identification

Register 2 . 1784
D1.2.198 PMU_CIDR3, Performance Monitoring Unit Component Identification

Register 3 .1785
D1.2.199 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear

Register .1786
D1.2.200 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Reg-

ister .1788
D1.2.201 PMU_CTRL, Performance Monitoring Unit Control Register1790
D1.2.202 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Reg-

ister .1792
D1.2.203 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register . 1794
D1.2.204 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register 1795
D1.2.205 PMU_EVTYPERn, Performance Monitoring Unit Event Type and Filter

Register .1796
D1.2.206 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear

Register . 1797
D1.2.207 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set

Register .1799
D1.2.208 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear

Register . 1801
D1.2.209 PMU_OVSSET, Performance Monitoring Unit Overflow Flag Status Set

Register .1803
D1.2.210 PMU_PIDR0, Performance Monitoring Unit Peripheral Identification Reg-

ister 0 .1805
D1.2.211 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Reg-

ister 1 .1806
D1.2.212 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Reg-

ister 2 . 1807

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxvii

Contents

D1.2.213 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Reg-
ister 3 .1808

D1.2.214 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Reg-
ister 4 .1809

D1.2.215 PMU_SWINC, Performance Monitoring Unit Software Increment Register1810
D1.2.216 PMU_TYPE, Performance Monitoring Unit Type Register 1811
D1.2.217 PRIMASK, Exception Mask Register1813
D1.2.218 PSPLIM, Process Stack Pointer Limit Register 1814
D1.2.219 Qn, Vector register, n = 0 - 7 .1815
D1.2.220 Rn, General-Purpose Register, n = 0 - 121816
D1.2.221 RETPSR, Combined Exception Return Program Status Registers . . . 1817
D1.2.222 REVIDR, Revision ID Register .1819
D1.2.223 RFSR, RAS Fault Status Register .1820
D1.2.224 Sn, Floating-point Single-precision register, n = 0 - 311822
D1.2.225 SAU_CTRL, SAU Control Register .1823
D1.2.226 SAU_RBAR, SAU Region Base Address Register1825
D1.2.227 SAU_RLAR, SAU Region Limit Address Register1826
D1.2.228 SAU_RNR, SAU Region Number Register1828
D1.2.229 SAU_TYPE, SAU Type Register .1829
D1.2.230 SCR, System Control Register .1830
D1.2.231 SFAR, Secure Fault Address Register1832
D1.2.232 SFSR, Secure Fault Status Register .1833
D1.2.233 SHCSR, System Handler Control and State Register1836
D1.2.234 SHPR1, System Handler Priority Register 1 1844
D1.2.235 SHPR2, System Handler Priority Register 21846
D1.2.236 SHPR3, System Handler Priority Register 3 1847
D1.2.237 SP, Current Stack Pointer Register .1849
D1.2.238 SP_NS, Current Stack Pointer register (Non-secure)1850
D1.2.239 STIR, Software Triggered Interrupt Register 1851
D1.2.240 SYST_CALIB, SysTick Calibration Value Register1852
D1.2.241 SYST_CSR, SysTick Control and Status Register 1854
D1.2.242 SYST_CVR, SysTick Current Value Register 1857
D1.2.243 SYST_RVR, SysTick Reload Value Register1859
D1.2.244 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register1860
D1.2.245 TPIU_CIDR0, TPIU Component Identification Register 0 1861
D1.2.246 TPIU_CIDR1, TPIU Component Identification Register 11862
D1.2.247 TPIU_CIDR2, TPIU Component Identification Register 21863
D1.2.248 TPIU_CIDR3, TPIU Component Identification Register 3 1864
D1.2.249 TPIU_CLAIMCLR, TPIU Claim Tag Clear Register1865
D1.2.250 TPIU_CLAIMSET, TPIU Claim Tag Set Register 1867
D1.2.251 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register1869
D1.2.252 TPIU_DEVID, TPIU Device Identifier Register1870
D1.2.253 TPIU_DEVTYPE, TPIU Device Type Register1872
D1.2.254 TPIU_FFCR, TPIU Formatter and Flush Control Register 1874
D1.2.255 TPIU_FFSR, TPIU Formatter and Flush Status Register1876
D1.2.256 TPIU_LAR, TPIU Software Lock Access Register1878
D1.2.257 TPIU_LSR, TPIU Software Lock Status Register1879
D1.2.258 TPIU_PIDR0, TPIU Peripheral Identification Register 0 1881
D1.2.259 TPIU_PIDR1, TPIU Peripheral Identification Register 11882
D1.2.260 TPIU_PIDR2, TPIU Peripheral Identification Register 21883
D1.2.261 TPIU_PIDR3, TPIU Peripheral Identification Register 3 1884
D1.2.262 TPIU_PIDR4, TPIU Peripheral Identification Register 41885
D1.2.263 TPIU_PIDR5, TPIU Peripheral Identification Register 51886
D1.2.264 TPIU_PIDR6, TPIU Peripheral Identification Register 6 1887
D1.2.265 TPIU_PIDR7, TPIU Peripheral Identification Register 71888

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxviii

Contents

D1.2.266 TPIU_PSCR, TPIU Periodic Synchronization Control Register1889
D1.2.267 TPIU_SPPR, TPIU Selected Pin Protocol Register 1891
D1.2.268 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register1893
D1.2.269 TT_RESP, Test Target Response Payload 1894
D1.2.270 UFSR, UsageFault Status Register . 1897
D1.2.271 VPR, Vector Predication Status and Control Register1900
D1.2.272 VTOR, Vector Table Offset Register .1902
D1.2.273 XPSR, Combined Program Status Registers1903

Part E Armv8-M Pseudocode

Chapter E1 Arm Pseudocode Definition
E1.1 About the Arm pseudocode . 1907

E1.1.1 General limitations of Arm pseudocode 1907
E1.2 Data types .1908

E1.2.1 General data type rules .1908
E1.2.2 Bitstrings .1908
E1.2.3 Integers .1909
E1.2.4 Reals .1909
E1.2.5 Booleans .1910
E1.2.6 Enumerations .1910
E1.2.7 Structures . 1911
E1.2.8 Tuples .1912
E1.2.9 Arrays .1912

E1.3 Operators . 1914
E1.3.1 Relational operators . 1914
E1.3.2 Boolean operators . 1914
E1.3.3 Bitstring operators .1915
E1.3.4 Arithmetic operators .1916
E1.3.5 The assignment operator . 1917
E1.3.6 Precedence rules .1918
E1.3.7 Conditional expressions .1918
E1.3.8 Operator polymorphism .1918

E1.4 Statements and control structures .1920
E1.4.1 Statements and Indentation .1920
E1.4.2 Function and procedure calls .1920
E1.4.3 Conditional control structures . 1921
E1.4.4 Loop control structures .1922
E1.4.5 Special statements .1923
E1.4.6 Comments . 1924

E1.5 Built in functions .1925
E1.6 Arm pseudocode definition index .1926
E1.7 Additional functions .1928

E1.7.1 IsSee() .1928
E1.7.2 IsUndefined() .1928

Chapter E2 Pseudocode Specification
E2.1 Alphabetical Pseudocode List .1930

E2.1.1 _AdvanceVPTState .1930
E2.1.2 _CommitState .1930
E2.1.3 _ITStateChanged .1930
E2.1.4 _Mem .1930
E2.1.5 _NextInstrAddr .1930
E2.1.6 _NextInstrITState .1930

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxix

Contents

E2.1.7 _PCChanged .1930
E2.1.8 _PendingFetchFault .1930
E2.1.9 _PendingReturnOperation . 1931
E2.1.10 _RName . 1931
E2.1.11 _S . 1931
E2.1.12 _SP . 1931
E2.1.13 Abs .1932
E2.1.14 AccessAttributes .1932
E2.1.15 AccType .1932
E2.1.16 ActivateException .1932
E2.1.17 ActiveFPState .1933
E2.1.18 AddressDescriptor .1933
E2.1.19 AddrType .1933
E2.1.20 AddWithCarry .1933
E2.1.21 AdvSIMDExpandImm . 1934
E2.1.22 AlgorithmPAC . 1934
E2.1.23 Align . 1934
E2.1.24 ArchVersion . 1934
E2.1.25 ASR .1935
E2.1.26 ASR_C .1935
E2.1.27 BeatComplete .1935
E2.1.28 BeatSchedule .1936
E2.1.29 BigEndian .1936
E2.1.30 BigEndianReverse .1936
E2.1.31 BitCount . 1937
E2.1.32 BitReverseShiftRight . 1937
E2.1.33 BranchCall . 1937
E2.1.34 BranchReturn . 1937
E2.1.35 BranchTo .1938
E2.1.36 BTIEnabled .1938
E2.1.37 BusFaultBarrier .1939
E2.1.38 CallSupervisor .1939
E2.1.39 CanDebugAccessFP .1939
E2.1.40 CanHaltOnEvent .1939
E2.1.41 CanPendMonitorOnEvent .1940
E2.1.42 CdeImpDefValue .1940
E2.1.43 CheckCDEDecodeFaults .1940
E2.1.44 CheckCPDecodeFaults .1940
E2.1.45 CheckCPEnabled . 1941
E2.1.46 CheckDecodeFaults . 1941
E2.1.47 CheckFPDecodeFaults . 1941
E2.1.48 CheckPermission .1942
E2.1.49 ClearEventRegister .1943
E2.1.50 ClearExclusiveByAddress .1943
E2.1.51 ClearExclusiveLocal .1943
E2.1.52 ClearInFlightInstructions .1943
E2.1.53 ComparePriorities .1943
E2.1.54 ComputePAC .1943
E2.1.55 Cond .1945
E2.1.56 ConditionHolds .1945
E2.1.57 ConditionPassed .1946
E2.1.58 ConstrainUnpredictable .1946
E2.1.59 ConstrainUnpredictableBits .1946
E2.1.60 ConstrainUnpredictableBool .1946
E2.1.61 ConstrainUnpredictableInteger .1946

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxx

Contents

E2.1.62 ConsumeExcStackFrame .1946
E2.1.63 ConsumptionOfSpeculativeDataBarrier 1947
E2.1.64 Coproc_Accepted . 1947
E2.1.65 Coproc_DoneLoading . 1947
E2.1.66 Coproc_DoneStoring . 1947
E2.1.67 Coproc_GetOneWord . 1947
E2.1.68 Coproc_GetTwoWords .1948
E2.1.69 Coproc_GetWordToStore .1948
E2.1.70 Coproc_InternalOperation .1948
E2.1.71 Coproc_SendLoadedWord .1948
E2.1.72 Coproc_SendOneWord .1948
E2.1.73 Coproc_SendTwoWords .1948
E2.1.74 CoprocType .1948
E2.1.75 CountLeadingSignBits .1949
E2.1.76 CountLeadingZeroBits .1949
E2.1.77 CPDef .1949
E2.1.78 CreateException .1949
E2.1.79 CreatePAC .1950
E2.1.80 CurrentCond .1950
E2.1.81 CurrentMode .1950
E2.1.82 CurrentModeIsPrivileged . 1951
E2.1.83 CX_op0 . 1951
E2.1.84 CX_op1 . 1951
E2.1.85 CX_op2 . 1951
E2.1.86 CX_op3 . 1951
E2.1.87 D .1952
E2.1.88 DAPCheck .1952
E2.1.89 DataMemoryBarrier .1953
E2.1.90 DataSynchronizationBarrier .1953
E2.1.91 DeActivate .1953
E2.1.92 Debug_authentication . 1954
E2.1.93 DebugCanMaskInts . 1954
E2.1.94 DebugEventCause . 1954
E2.1.95 DebugRegisterTransfer . 1954
E2.1.96 DecodeExecute .1959
E2.1.97 DecodeImmShift .1959
E2.1.98 DecodeRegShift .1959
E2.1.99 DefaultCond .1959
E2.1.100 DefaultExcInfo .1960
E2.1.101 DefaultMemoryAttributes .1960
E2.1.102 DefaultPermissions . 1961
E2.1.103 DerivedLateArrival .1962
E2.1.104 DeviceType .1963
E2.1.105 DWT_AddressCompare .1963
E2.1.106 DWT_CycCountMatch .1963
E2.1.107 DWT_DataAddressMatch .1963
E2.1.108 DWT_DataMatch . 1964
E2.1.109 DWT_DataValueMatch .1965
E2.1.110 DWT_InstructionAddressMatch .1966
E2.1.111 DWT_InstructionMatch . 1967
E2.1.112 DWT_ValidMatch .1968
E2.1.113 Elem .1968
E2.1.114 EndOfInstruction .1968
E2.1.115 EventRegistered .1969
E2.1.116 ExceptionActiveBitCount .1969

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxi

Contents

E2.1.117 ExceptionDetails .1969
E2.1.118 ExceptionEnabled .1970
E2.1.119 ExceptionEntry . 1971
E2.1.120 ExceptionPriority . 1971
E2.1.121 ExceptionReturn .1972
E2.1.122 ExceptionTaken .1973
E2.1.123 ExceptionTargetsSecure . 1974
E2.1.124 ExcInfo .1975
E2.1.125 ExclusiveMonitorsPass .1976
E2.1.126 ExecBeats .1976
E2.1.127 ExecuteFPCheck . 1977
E2.1.128 ExecutionPriority .1978
E2.1.129 Extend .1979
E2.1.130 ExternalInvasiveDebugEnabled .1979
E2.1.131 ExternalNoninvasiveDebugEnabled .1979
E2.1.132 ExternalSecureInvasiveDebugEnabled1979
E2.1.133 ExternalSecureNoninvasiveDebugEnabled1980
E2.1.134 ExternalSecureSelfHostedDebugEnabled1980
E2.1.135 ExtType .1980
E2.1.136 FaultNumbers .1980
E2.1.137 FetchInstr .1980
E2.1.138 FindMemPriv .1982
E2.1.139 FindPriv .1982
E2.1.140 FixedToFP .1982
E2.1.141 FPAbs .1983
E2.1.142 FPAdd .1983
E2.1.143 FPB_CheckBreakPoint .1983
E2.1.144 FPB_CheckMatchAddress .1983
E2.1.145 FPCompare . 1984
E2.1.146 FPConvertNaN . 1984
E2.1.147 FPConvertNaNBase . 1984
E2.1.148 FPDefaultNaN .1985
E2.1.149 FPDiv .1985
E2.1.150 FPDoubleToHalf .1986
E2.1.151 FPDoubleToSingle .1986
E2.1.152 FPExc .1986
E2.1.153 FPHalfToDouble . 1987
E2.1.154 FPHalfToSingle . 1987
E2.1.155 FPInfinity . 1987
E2.1.156 FPMax .1988
E2.1.157 FPMaxNormal .1988
E2.1.158 FPMaxNum .1988
E2.1.159 FPMin .1989
E2.1.160 FPMinNum .1989
E2.1.161 FPMul .1989
E2.1.162 FPMulAdd .1990
E2.1.163 FPNeg . 1991
E2.1.164 FPProcessException . 1991
E2.1.165 FPProcessNaN . 1991
E2.1.166 FPProcessNaNs .1992
E2.1.167 FPProcessNaNs3 .1992
E2.1.168 FPRound .1993
E2.1.169 FPRoundBase .1993
E2.1.170 FPRoundCV . 1994
E2.1.171 FPRoundInt . 1994

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxii

Contents

E2.1.172 FPSingleToDouble .1995
E2.1.173 FPSingleToHalf .1996
E2.1.174 FPSqrt .1996
E2.1.175 FPSub .1996
E2.1.176 FPToFixed . 1997
E2.1.177 FPToFixedDirected .1998
E2.1.178 FPType .1999
E2.1.179 FPUnpack .1999
E2.1.180 FPUnpackBase .1999
E2.1.181 FPUnpackCV .2000
E2.1.182 FPZero .2000
E2.1.183 FunctionReturn . 2001
E2.1.184 GenerateCoprocessorException .2002
E2.1.185 GenerateDebugEventResponse .2002
E2.1.186 GenerateIntegerZeroDivide .2002
E2.1.187 GetActiveChains .2002
E2.1.188 GetCurInstrBeat .2003
E2.1.189 GetInstrExecState .2003
E2.1.190 GetMveScalarReadRegs . 2004
E2.1.191 GetMveScalarWriteRegs .2008
E2.1.192 Halt .2010
E2.1.193 Halted . 2011
E2.1.194 HaltingDebugAllowed . 2011
E2.1.195 HandleException . 2011
E2.1.196 HandleExceptionTransitions . 2011
E2.1.197 HandleLO .2013
E2.1.198 HasArchVersion . 2014
E2.1.199 HaveAlgorithmPAC . 2014
E2.1.200 HaveDebugMonitor . 2014
E2.1.201 HaveDSPExt . 2014
E2.1.202 HaveDWT . 2014
E2.1.203 HaveFPB . 2014
E2.1.204 HaveFPExt .2015
E2.1.205 HaveHaltingDebug .2015
E2.1.206 HaveITM .2015
E2.1.207 HaveLOBExt .2015
E2.1.208 HaveMainExt .2015
E2.1.209 HaveMve .2015
E2.1.210 HaveMveOrFPExt .2015
E2.1.211 HavePACBTIExt .2015
E2.1.212 HaveSecurityExt .2016
E2.1.213 HaveSysTick .2016
E2.1.214 HaveUDE .2016
E2.1.215 HighestPri .2016
E2.1.216 HighestSetBit .2016
E2.1.217 Hint_Debug .2016
E2.1.218 Hint_PreloadData . 2017
E2.1.219 Hint_PreloadDataForWrite . 2017
E2.1.220 Hint_PreloadInstr . 2017
E2.1.221 Hint_Yield . 2017
E2.1.222 IDAUCheck . 2017
E2.1.223 IgnoreFaultsType . 2017
E2.1.224 InITBlock . 2017
E2.1.225 InstrCanChain .2018
E2.1.226 InstrExecState .2019

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxiii

Contents

E2.1.227 InstrType .2019
E2.1.228 InstructionAdvance .2020
E2.1.229 InstructionExecute .2020
E2.1.230 InstructionsInFlight .2022
E2.1.231 InstructionSynchronizationBarrier .2022
E2.1.232 InstStateCheck .2022
E2.1.233 Int .2023
E2.1.234 IntegerZeroDivideTrappingEnabled .2023
E2.1.235 InvalidateFPRegs .2023
E2.1.236 InVPTBlock .2023
E2.1.237 IsAccessible . 2024
E2.1.238 IsActiveForState . 2024
E2.1.239 IsAligned . 2024
E2.1.240 IsBKPTInstruction . 2024
E2.1.241 IsCdeBeatWiseInstruction .2025
E2.1.242 IsCPEnabled .2025
E2.1.243 IsCPInstruction .2025
E2.1.244 IsCpInstructionSecureOnly .2026
E2.1.245 IsDebugState .2026
E2.1.246 IsDWTConfigUnpredictable .2026
E2.1.247 IsDWTEnabled .2028
E2.1.248 IsExceptionTargetConfigurable .2028
E2.1.249 IsExclusiveGlobal .2029
E2.1.250 IsExclusiveLocal .2029
E2.1.251 IsFirstBeat .2029
E2.1.252 IsIrqValid .2029
E2.1.253 IsLastBeat .2029
E2.1.254 IsLastLowOverheadLoop .2029
E2.1.255 IsLEInstruction .2030
E2.1.256 IsLoadStoreClearMultInstruction .2030
E2.1.257 IsMveAccessFPSCR_C .2030
E2.1.258 IsMveBeatWiseInstruction .2030
E2.1.259 IsMveLoadStoreInstruction .2032
E2.1.260 IsOnes .2032
E2.1.261 IsPPB .2032
E2.1.262 IsReqExcPriNeg .2032
E2.1.263 IsReturn .2033
E2.1.264 IsSCS .2033
E2.1.265 IsSecure .2033
E2.1.266 IsZero .2033
E2.1.267 IsZeroBit . 2034
E2.1.268 ITAdvance . 2034
E2.1.269 ITSTATE . 2034
E2.1.270 ITSTATEType . 2034
E2.1.271 LastInITBlock . 2034
E2.1.272 LoadWritePC . 2034
E2.1.273 LockedUp .2035
E2.1.274 Lockup .2035
E2.1.275 LookUpRName .2035
E2.1.276 LookUpSP .2036
E2.1.277 LookUpSP_with_security_mode .2036
E2.1.278 LookUpSPLim .2036
E2.1.279 LowestSetBit . 2037
E2.1.280 LR . 2037
E2.1.281 LSL . 2037

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxiv

Contents

E2.1.282 LSL_C . 2037
E2.1.283 LSR . 2037
E2.1.284 LSR_C .2038
E2.1.285 LTPSIZE .2038
E2.1.286 MAIRDecode .2038
E2.1.287 MarkExclusiveGlobal .2039
E2.1.288 MarkExclusiveLocal .2039
E2.1.289 Max .2039
E2.1.290 MaxExceptionNum .2040
E2.1.291 MemA .2040
E2.1.292 MemA_MVE .2040
E2.1.293 MemA_with_priv .2040
E2.1.294 MemA_with_priv_security . 2041
E2.1.295 MemD_with_priv_security .2043
E2.1.296 MemI . 2044
E2.1.297 MemO . 2044
E2.1.298 MemoryAttributes . 2044
E2.1.299 MemType .2045
E2.1.300 MemU .2045
E2.1.301 MemU_unpriv .2045
E2.1.302 MemU_with_priv .2045
E2.1.303 MergeExcInfo .2046
E2.1.304 Min . 2047
E2.1.305 MonitorCanPreempt . 2047
E2.1.306 MPUCheck . 2047
E2.1.307 NextInstrAddr .2049
E2.1.308 NextInstrITState .2049
E2.1.309 NoninvasiveDebugAllowed .2049
E2.1.310 Ones .2049
E2.1.311 PACCellInvShuffle .2049
E2.1.312 PACCellShuffle .2050
E2.1.313 PACEnabled .2050
E2.1.314 PACInvSub .2050
E2.1.315 PACKey . 2051
E2.1.316 PACKeys . 2051
E2.1.317 PACMult .2052
E2.1.318 PACSubQ3 .2052
E2.1.319 PACSubQ5 .2052
E2.1.320 PC .2053
E2.1.321 PEMode .2053
E2.1.322 PendingDebugHalt .2053
E2.1.323 PendingDebugMonitor .2053
E2.1.324 PendingExceptionDetails .2053
E2.1.325 PendReturnOperation . 2054
E2.1.326 Permissions . 2054
E2.1.327 PMU_CounterIncrement . 2054
E2.1.328 PMU_HandleOverflow .2055
E2.1.329 PolynomialMult .2055
E2.1.330 PopStack .2056
E2.1.331 PreserveFPState .2058
E2.1.332 Privilege .2060
E2.1.333 ProcessorID .2060
E2.1.334 PushCalleeStack .2060
E2.1.335 PushStack . 2061
E2.1.336 Q .2062

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxv

Contents

E2.1.337 R .2063
E2.1.338 RaiseAsyncBusFault .2063
E2.1.339 RasImpDefValue .2063
E2.1.340 RawExecutionPriority .2063
E2.1.341 Replicate . 2064
E2.1.342 ResetRegs . 2064
E2.1.343 RestrictedNSPri . 2064
E2.1.344 RF . 2064
E2.1.345 RFD .2065
E2.1.346 RName .2065
E2.1.347 RNames .2066
E2.1.348 ROR .2066
E2.1.349 ROR_C .2066
E2.1.350 RotCell .2066
E2.1.351 RoundDown .2066
E2.1.352 RoundTowardsZero . 2067
E2.1.353 RoundUp . 2067
E2.1.354 RRX . 2067
E2.1.355 RRX_C . 2067
E2.1.356 RSPCheck . 2067
E2.1.357 RZ . 2067
E2.1.358 S .2068
E2.1.359 Sat .2068
E2.1.360 SatQ .2068
E2.1.361 SAttributes .2068
E2.1.362 SCS_UpdateStatusRegs .2068
E2.1.363 SecureDebugMonitorAllowed .2068
E2.1.364 SecureHaltingDebugAllowed .2069
E2.1.365 SecureNoninvasiveDebugAllowed .2069
E2.1.366 SecurityCheck .2069
E2.1.367 SecurityState . 2071
E2.1.368 SendEvent . 2071
E2.1.369 SerializeVFP . 2071
E2.1.370 SetActive . 2071
E2.1.371 SetDWTDebugEvent . 2071
E2.1.372 SetEventRegister .2072
E2.1.373 SetExclusiveMonitors .2072
E2.1.374 SetITSTATEAndCommit .2072
E2.1.375 SetPending .2072
E2.1.376 SetThisInstrDetails .2073
E2.1.377 SetVPTMask .2073
E2.1.378 Shift .2073
E2.1.379 Shift_C .2073
E2.1.380 SignedSat . 2074
E2.1.381 SignedSatQ . 2074
E2.1.382 SignExtend . 2074
E2.1.383 Sleeping . 2074
E2.1.384 SleepOnExit . 2074
E2.1.385 SP . 2074
E2.1.386 SP_Main .2075
E2.1.387 SP_Main_NonSecure .2075
E2.1.388 SP_Main_Secure .2075
E2.1.389 SP_Process .2075
E2.1.390 SP_Process_NonSecure .2076
E2.1.391 SP_Process_Secure .2076

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxvi

Contents

E2.1.392 SpeculativeSynchronizationBarrier .2076
E2.1.393 SRType .2076
E2.1.394 Stack .2076
E2.1.395 StandardFPSCRValue . 2077
E2.1.396 SteppingDebug . 2077
E2.1.397 SynchronizeBusFault .2078
E2.1.398 T32ExpandImm .2078
E2.1.399 T32ExpandImm_C .2078
E2.1.400 TailChain .2079
E2.1.401 TakePreserveFPException .2079
E2.1.402 TakeReset .2080
E2.1.403 ThisInstr . 2081
E2.1.404 ThisInstrAddr . 2081
E2.1.405 ThisInstrITState . 2081
E2.1.406 ThisInstrLength .2082
E2.1.407 TopLevel .2082
E2.1.408 TTResp .2083
E2.1.409 TweakCellInvRot . 2084
E2.1.410 TweakCellRot . 2084
E2.1.411 TweakInvShuffle . 2084
E2.1.412 TweakShuffle .2085
E2.1.413 UnprivHaltingDebugAllowed .2085
E2.1.414 UnprivHaltingDebugEnabled .2085
E2.1.415 UnsignedSat .2085
E2.1.416 UnsignedSatQ .2086
E2.1.417 UpdateDebugEnable .2086
E2.1.418 UpdateFPCCR .2086
E2.1.419 ValidateAddress . 2087
E2.1.420 ValidateExceptionReturn .2089
E2.1.421 ValidatePAC .2090
E2.1.422 VCX_op0 .2090
E2.1.423 VCX_op1 .2090
E2.1.424 VCX_op2 .2090
E2.1.425 VCX_op3 . 2091
E2.1.426 Vector . 2091
E2.1.427 VectorCatchDebug . 2091
E2.1.428 VFPExcBarrier .2092
E2.1.429 VFPExpandImm .2092
E2.1.430 VFPNegMul .2092
E2.1.431 VFPSmallRegisterBank .2093
E2.1.432 ViolatesSPLim .2093
E2.1.433 VPTActive .2093
E2.1.434 VPTAdvance .2093
E2.1.435 WaitForEvent . 2094
E2.1.436 WaitForInterrupt . 2094
E2.1.437 ZeroExtend . 2094
E2.1.438 Zeros . 2094

Part F Debug Packet Protocols

Chapter F1 ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packets . 2097

F1.1.1 Uses of ITM and DWT packets . 2097
F1.1.2 ITM and DWT protocol packet headers 2097

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxvii

Contents
Contents

F1.1.3 Packet transmission by the trace sink2098
F1.2 Alphabetical list of DWT and ITM packets .2099

F1.2.1 Data Trace Data Address packet .2099
F1.2.2 Data Trace Data Value packet .2100
F1.2.3 Data Trace Match packet .2102
F1.2.4 Data Trace PC Value packet .2103
F1.2.5 Event Counter packet .2105
F1.2.6 Exception Trace packet .2106
F1.2.7 Extension packet . 2107
F1.2.8 Global Timestamp 1 packet .2109
F1.2.9 Global Timestamp 2 packet . 2111
F1.2.10 Instrumentation packet .2113
F1.2.11 Local Timestamp 1 packet . 2114
F1.2.12 Local Timestamp 2 packet .2116
F1.2.13 Overflow packet . 2117
F1.2.14 Periodic PC Sample packet .2118
F1.2.15 PMU overflow packet .2119
F1.2.16 Synchronization packet .2120

Part G Glossary

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxviii

Preface

This preface introduces the Armv8-M Architecture Reference Manual. It contains the following sections:

About this manual.

Using this manual.

Conventions.

Additional reading.

Feedback.

xxxix

About this manual

This manual documents the microcontroller profile of version 8 of the Arm Architecture, the Armv8-M architecture
profile. For short definitions of all the Armv8 profiles, see A1.2 About the Armv8 architecture, and architecture
profiles.

This manual has the following parts:

Part A Provides an introduction to the Armv8-M architecture.

Part B Describes the architectural rules.

Part C Describes the T32 instruction set.

Part D Describes the registers.

Part E Describes the Armv8-M pseudocode.

Part F Describes the packet protocols.

xl

Using this manual

The information in this manual is organized into parts, as described in this section.

Part A, Armv8-M Architecture Introduction and Overview

Part A gives an overview of the Armv8-M architecture profile, including its relationship to the other Arm PE
architectures. It introduces the terminology that describes the architecture, and gives an overview of the optional
architectural extensions. It contains the following chapter:

Chapter A1 Introduction

Read this for an introduction to the Armv8-M architecture.

Part B, Armv8-M Architecture Rules

Part B describes the architecture rules. It contains the following chapters:

Chapter B1 Resets

Read this for a description of the reset rules.

Chapter B2 Power Management

Read this for a description of the power management rules.

Chapter B3 Programmers’ Model

Read this for a description of the programmers model rules.

Chapter B4 Floating-point Support

Read this for a description of the floating-point support rules.

Chapter B5 Vector Extension

Read this for a description of the Vector Extension support rules.

Chapter B7 Memory Model

Read this for a description of the memory model rules.

Chapter B8 The System Address Map

Read this for a description of the system address map rules.

Chapter B9 Synchronization and Semaphores

Read this for a description of the rules on non-blocking synchronization of shared memory.

Chapter B10 The Armv8-M Protected Memory System Architecture

Read this for a description of the protected memory system architecture rules.

Chapter B11 The System Timer, SysTick

Read this for a description of the system timer rules.

Chapter B12 Nested Vectored Interrupt Controller

Read this for a description of the Nested Vectored Interrupt Controller (NVIC) rules.

Chapter B13 Debug

Read this for a description of the debug rules.

xli

Preface
Using this manual

Chapter B14 Debug and Trace Components

Read this for a description of the debug and trace component rules.

Chapter B15 The Performance Monitors Extension

Read this for a description of the Performance Monitors Extension.

Chapter B16 Reliability, Availability, and Serviceability (RAS) Extension

Read this for a description of the Reliability, Availability, and Serviceability (RAS) Extension.

Part C, Armv8-M Instructions

Part C describes the instructions. It contains the following chapters:

Chapter C1 Instruction Set Overview

Read this for an overview of the instruction set and the instruction set encoding.

Chapter C2 Instruction Specification

Read this for a description of each instruction, arranged by instruction mnemonic.

Part D, Armv8-M Registers

Part D describes the registers. It contains the following chapter:

Chapter D1 Register and Payload Specification

Read this for a description of the registers.

Part E, Armv8-M Pseudocode

Part E describes the pseudocode. It contains the following chapters:

Chapter E1 Arm Pseudocode Definition

Read this for a definition of the pseudocode that Arm documentation uses.

Chapter E2 Pseudocode Specification

Read this for a description of the pseudocode.

Part F, Packet Protocols

Part F describes the packet protocols. It contains the following chapter:

Chapter F1 ITM and DWT Packet Protocol Specification

Read this for a description of the protocol for packets that are used to send the data generated by the
ITM and DWT to an external debugger.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xlii

Conventions

The following sections describe conventions that this manual can use:

Typographical conventions.

Signals.

Numbers.

Pseudocode descriptions.

Assembler syntax descriptions.

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

SMALLCAPS

Used for a few terms that have specific technical meanings, and that are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example https://developer.arm.com/.

• A cross-reference, that includes the page number of the referenced information if it is not on the current
page, for example, Chapter B2 Power Management.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the manual that defines the
colored term, for example tail-chaining.

Signals

In general this manual does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

xliii

https://developer.arm.com/

Preface
Conventions

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

For both binary and hexadecimal numbers, where a bit is represented by the letter x, the value is irrelevant. For
example a value expressed as 0b1x can be either 0b11 or 0b10.

To improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and is described in Chapter E1 Arm Pseudocode Definition.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in C1.2.5 Standard
assembler syntax fields.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xliv

Additional reading

This section lists relevant publications from Arm and third parties.

See https://developer.arm.com, for access to Arm documentation.

Arm publications

• Arm® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2 (ARM IHI 0031).

• Arm® Debug Interface Architecture Specification ADIv6.0 (ARM IHI 0074).

• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (ARM IHI 0064).

• Embedded Trace Macrocell® ETMv3 Architecture Specification (ARM IHI 0014).

• Arm®v6-M Architecture Reference Manual (ARM DDI 0419).

• Arm®v7-M Architecture Reference Manual (ARM DDI 0403).

• Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI 0487).

• Arm® Armv8-M Faults on Instruction Fetch (ARM DDI 0624).

• Arm® Armv8-M Faults on Exception Handling (ARM DDI 0625).

Other publications

The following publications are referred to in this manual, or provide more information:

• ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point
Arithmetic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note

This manual does not adopt the terminology defined in the 2008 issue of the standard.

• JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

xlv

https://developer.arm.com

Feedback

Arm welcomes feedback on its documentation.

Feedback on this manual

If you have any comments or suggestions for additions and improvements, create a ticket at https://support.
developer.arm.com

• The title, Armv8-M Architecture Reference Manual.

• The number, DDI0553B.y

• The section name to which your comments refer.

• The rule identifier(s) to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or
behavior of any manual when viewed with any other PDF reader.

Inclusive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and to create change.

Previous issues of this manual included terms that can be offensive. We have replaced these terms.

If you find offensive terms in this manual, please contact terms@arm.com.

xlvi

https://support.developer.arm.com
https://support.developer.arm.com

Part A
Armv8-M Architecture Introduction and Overview

Chapter A1
Introduction

This chapter introduces the Armv8 architecture, the architecture profiles it defines, and the Armv8-M architecture
profile defined by this manual. It contains the following sections:

A1.1 Architecture refernce manual layout and terminology.

A1.2 About the Armv8 architecture, and architecture profiles.

A1.3 The Armv8-M architecture profile.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter A1. Introduction
A1.1. Architecture refernce manual layout and terminology

A1.1 Architecture refernce manual layout and terminology

This section describes the structure and scope of this architecture reference manual. This section also describes the
terminology that this architecture reference manual uses. It does not constitute part of the architecture reference
manual, and must not be interpreted as implementation guidance.

A1.1.1 Structure of the architecture reference manual

This architecture reference manual describes the behavior of the processing element as a set of individual rules.

Each rule is clearly identified by the letter R, followed by a random group of subscript letters that do not reflect any
intended order or priority, for example RBSHJ. In the following example, RBSHJ is simply a random rule identifier
that has no significance apart from uniquely identifying a rule in this manual.

RBSHJ The following data accesses are single-copy atomic:

All byte accesses.

All halfword accesses to halfword-aligned locations.

All word accesses to word-aligned locations.

Identifier Rule

Applies to an implementation of the architecture from Armv8.0-M onwards

Additional Information

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.

An implementation that conforms to all the rules described in this manual constitutes an Armv8-M compliant
implementation. An implementation whose behavior deviates from these rules is not compliant with the Armv8-M
architecture.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I, followed by a random group of subscript letters, for example IPRTD.

A line below each rule or information statement gives additional information indicating the architecture version, the
extensions that are required for the rule or information statement to apply, and any other notes. Some extensions
depend on the implementation of other extensions, for example FP.

Note

Arm strongly recommends that implementers read all chapters and sections of this architecture reference
manual to ensure that an implementation is compliant.

An implementation that conforms to all the rules described in this architecture reference manual but chooses to
ignore any additional information and guidance is compliant with the Armv8-M architecture.

In the following parts of this architecture reference manual, architectural rules are not identified by a specific prefix
and a random group of subscript letters:

• Parts of Chapter B15 The Performance Monitors Extension.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter A1. Introduction
A1.1. Architecture refernce manual layout and terminology

Applies to an implementation of the architecture Armv8.1-M onward.

• Parts of Part C Armv8-M Instruction Set.

• Part D Armv8-M Register and Payload Specification.

• Part E Armv8-M Pseudocode.

• Part F Armv8-M Debug Packet Protocols.

A1.1.2 Scope of the architecture reference manual

This architecture reference manual contains only rules and information that relate specifically to the Armv8-M
architecture. It does not include any information about other Arm architectures, nor does it describe similarities
between Armv8-M and other architectures.

Readers must not assume that the rules provided in this manual are applicable to an Armv7-M or Armv6-M
implementation, nor must they assume that the rules that are applicable to an Armv7-M or Armv6-M
implementation are equally applicable to an Armv8-M implementation.

A1.1.3 Intended audience

This manual is written for users who want to design, implement, or program an Armv8-M PE in a range of
Arm-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems. It
does not assume familiarity with previous versions of the M-Profile architecture.

The architecture reference manual provides a precise, accurate, and correct set of rules that must be followed in
order for an Armv8-M implementation to be architecturally compliant. It is an explicit reference manual, and not a
general introduction to, or user guide for, the Armv8-M architecture.

A1.1.4 Terminology, phrases

This subsection identifies some standard words and phrases that are used in the Arm architecture documentation.
These words and phrases have an Arm-specific definition, which is described in this section.

Architecturally visible

Something that is visible to the controlling agent. The controlling agent might be software.

Arm recommends

A particular usage that ensures consistency and usability. Following all the rules listed in this manual leads to a
predictable outcome that is compliant with the architecture, but might produce an unexpected output. Adhering to
a recommendation ensures that the output is as expected.

Arm strongly recommends

Something that is essentially mandatory, but that is outside the scope of the architecture described in this manual.
Failing to adhere to a strong recommendation can break the system, although the PE itself remains compliant with
the architecture that is described in this manual.

Finite time

An action will occur at some point in the future. Finite time does not make any statement about the time involved.
However, delaying an action longer than is absolutely necessary might have an adverse impact on performance.

Permitted

Allowed behavior.

Required

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter A1. Introduction
A1.1. Architecture refernce manual layout and terminology

Mandatory behavior.

Support

The implementation has implemented a particular feature.

A1.1.5 Terminology, Armv8-M specific terms

For definitions of Armv8-M specific terms, see the Glossary.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter A1. Introduction
A1.2. About the Armv8 architecture, and architecture profiles

A1.2 About the Armv8 architecture, and architecture profiles

Armv8-M is documented as one of a set of architecture profiles.

Arm defines three architecture profiles:

A Application profile:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management Unit (MMU).
• Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

• Supports the AArch64 or AArch32 Execution states.
• Supports A64, or A32 and T32 instruction sets.
• Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection Unit (MPU).
• Supports a VMSA.

M Microcontroller profile, described in this manual:

• Implements a programmers’ model designed for low-latency interrupt processing, with hardware stacking of
registers and support for writing interrupt handlers in high-level languages.

• Optionally implements a variant of the PMSA based on an MPU.
• Supports a variant of the T32 instruction set.

This Architecture Reference Manual describes only the Armv8-M profile.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter A1. Introduction
A1.3. The Armv8-M architecture profile

A1.3 The Armv8-M architecture profile

The M-Profile architecture includes:

• The opportunity to include simple pipeline designs offering leading edge system performance levels in a
broad range of markets and applications.

• Highly deterministic operation:
– Single or low cycle count execution.
– Minimal interrupt latency, with short pipelines.
– Capable of cacheless operation.

• Excellent targeting of C/C++ code. This aligns with the Arm programming standards in this area:
– Exception handlers are standard C/C++ functions, entered using standard calling conventions.

• Design support for deeply embedded systems:
– Low pincount devices.

• Support for debug and software profiling for event-driven systems.

A line below each rule or information statement indicates the architecture version, the extensions that are required
for the rule or information statement to apply, and any other notes. Some extensions depend on the implementation
of other extensions, for example FP.

A1.3.1 The Armv8-M instruction set

Armv8-M only supports execution of T32 instructions.

For more information about the instructions, see Chapter C1 Instruction Set Overview and Chapter C2, Instruction
Specification.

A1.3.2 Baseline implementation

The simplest Armv8.0-M implementation, without any of the optional extensions, is a Baseline implementation.
The Armv8.0-M Baseline offers improvements over previous M-Profile architectures in the following areas:

• An improved Memory Protection Unit (MPU) model.
• Alignment with Armv8-A and Armv8-R memory types.
• Stack pointer limit checking.
• Improved support for multi-processing.
• Better alignment with C11 and C11++ standards.
• Enhanced debug capabilities.

In this architecture reference manual a Baseline implementation is referred to as an implementation without the
Main Extension.

If an implementation does not include the Main Extension CPUID.Architecture reads as 0b1100.

Applies to an implementation of the architecture Armv8.0-M onward.

A1.3.3 Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) can support up to 496 external interrupts. The NVIC is always
implemented and is used for:

• Integrated interrupts.
• Exception handling.
• Priority management.
• Automatic vectoring.
• Automatic state preservation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter A1. Introduction
A1.3. The Armv8-M architecture profile

For more information see Chapter B12 Nested Vectored Interrupt Controller.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A1. Introduction
A1.4. Optional Extensions

A1.4 Optional Extensions

A1.4.1 CDE - The Custom Datapath Extension

The Custom Datapath Extension is an OPTIONAL feature available from the Armv8-M architecture. An
implementation that includes the Custom Datapath Extension must implement all of the features that are required
by the Main Extension (M), and might implement the following OPTIONAL features:

• The features that are provided by the Floating-point Extension (FP).
• The features that are provided by the Armv8.1 M Vector Extension (MVE).

CDE Instructions that operate on the S or D register file require either FP or MVE. CDE Instructions that operate
on the Q register file require MVE.

For more information see B3.37 The Custom Datapath Extension.

Note

The Custom Datapath Extension can also be referred to as Arm Custom Instructions for Armv8-M.

Applies to an implementation of the architecture Armv8.0-M onward.

A1.4.2 Debug

The Armv8-M architecture introduces:

• Enhanced breakpoint and watchpoint functionality.
• Improvements to the Instrumentation Trace Macrocell (ITM).
• Comprehensive trace and self-hosted debug extensions to make embedded software easier to debug and trace.

Halting debug (HDBG) is an OPTIONAL feature that allows the debugger to halt the PE.

The following OPTIONAL peripherals might be implemented:

• The Data Trace and Watchpoint Unit - a memory-mapped peripheral providing two options:

– Comparators and watchpoints for data, instruction and address matching (DWTD).
– Trace packet generation (DWTT).

• The Embedded Trace Macrocell Unit - a memory-mapped peripheral providing trace information (ETM).

• The Instrumentation Trace Macrocell Unit - a memory-mapped interface for the generation of instrumentation
trace packets (ITM).

• The Flash Patch and Breakpoint Unit - a memory-mapped peripheral providing breakpoints (FPB).

• The Trace Port Interface Unit - a memory-mapped peripheral providing an output path and trace sink for the
DWT, ETM and ITM (TPIU).

The Main Extension is required to generate trace packets.

Support for the Armv8-M debug architecture is indicated in ID_DFR0.MProfDbg.

For more information see B13.1 Debug feature overview.

Applies to an implementation of the architecture Armv8.0-M onward.

In an Armv8.1-M implementation, the optional Unprivileged Debug Extension adds support for unprivileged debug.
UDE requires the Main Extension, (M), to be implemented.

The restrictions on access to a number of registers is relaxed to allow a debugger to write to the register when the
PE is not in Debug state.

Support for the Armv8-M debug architecture is indicated in ID_DFR0.UDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter A1. Introduction
A1.4. Optional Extensions

Applies to an implementation of the architecture Armv8.1-M onward.

For more information about debug, see Chapter B13 Debug and Chapter B14 Debug and Trace Components.

A1.4.3 DSP - The Digital Signal Processing Extension.

The Digital Signal Procession Extension, DSP, is an OPTIONAL feature. The DSP adds support for SIMD
instructions.

A PE that implements the DSP Extension must implement the Main Extension (M).

Support for DSP is indicated in the following registers:

• ID_ISAR1.
• ID_ISAR2.
• ID_ISAR3.

Applies to an implementation of the architecture Armv8.0-M onward.

A1.4.4 The DSP Debug Extension

Armv8.1-M adds OPTIONAL debug support for the DSP.

If the DSP Debug Extension, DSPDE, is implemented, the following features must also be implemented:

• Halting debug, HDBG.
• The Main Extension, M.
• The Digital Signal Processing Extension, DSP.

If MVE and DWTD are implemented then DSPDE must be implemented.

Applies to an implementation of the architecture Armv8.1-M onward.

A1.4.5 The Floating-point Extension

A PE that implements the Floating-point Extension must implement the Main Extension (M).

The Floating-point Extension supports either single-precision floating-point instructions or both single-precision
and double-precision floating-point instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

HP - Half-precision floating-point instructions

The Armv8.1-M architecture extends the Floating-point extension to include half-precision data types. If
single-precision data types are implemented, half-precision data types must also be implemented.

Applies to an implementation of the architecture Armv8.1-M onward.

A1.4.6 The Main Extension

A PE that implements the Main Extension implements the System Timer Extension.

Note

• A PE with the Main Extension is also referred to as a Mainline implementation.
• A PE without the Main Extension is also referred to as a Baseline implementation. A

Baseline implementation has a subset of the instructions, registers, and features, of a Mainline
implementation.

• Armv7-M compatibility requires the Main Extension.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter A1. Introduction
A1.4. Optional Extensions

• Armv6-M compatibility is provided by all Armv8-M implementations.

Support for the Main Extension is indicated in CPUID.Architecture.

Applies to an implementation of the architecture Armv8.0-M onward.

A1.4.7 MPU model

The Armv8-M architecture provides a system address map and permits implementations to include an OPTIONAL
MPU. The optional MPU uses the Protected Memory System Architecture (PMSAv8) and contains improved
flexibility in the MPU region definition.

The Armv8.1-M architecture introduces a further attribute for MPU regions, MPU_RLAR.PXN.

Applies to an implementation of the architecture Armv8.1-M onward.

For further information see Chapter B10 The Armv8-M Protected Memory System Architecture.

A1.4.8 M-Profile Vector Extension, MVE

This extension provides operations on various SIMD data types.

It consists of MVE-I (integer) and MVE-F (floating-point).

A PE that implements MVE-I requires the features that are provided by the Main Extension, (M), and the DSP
Extension (DSP).

A PE that implements MVE-F requires the implementation of the Floating-point Extension (FP), and MVE-I.

For more information see Chapter B5 Vector Extension.

Support for MVE is indicated in ID_MVFR1.MVE.

Note

The Armv8-M MVE can also be referred to as Arm Helium™ for Armv8-M.

Applies to an implementation of the architecture Armv8.1-M onward.

A1.4.9 Pointer Authentication and Branch Target Identification Extension

The OPTIONAL Pointer Authentication and Branch Target Identification Extension (PACBTI) for Armv8.1-M adds
support for the authentication of the contents of a register before that register is used as a load or as the target of an
indirect branch, and for the authentication of the stack pointers.

For more information see Chapter B6 Pointer authentication and branch target identification Extension.

Support for the PACBTI extension is indicated by ID_ISAR5.PACBTI.

Applies to an implementation of the architecture Armv8.1-M onward.

A1.4.10 Perfomance Monitors Extension

In an Armv8.1-M implementation, the optional Performance Monitors Extension adds support for a Performance
Monitor Unit (PMU).

For more information see Chapter B15 The Performance Monitors Extension.

Support for the Performance Monitors Extension is indicated by PMU_TYPE.N.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter A1. Introduction
A1.4. Optional Extensions

A1.4.11 Reliability, Availability, and Serviceability

In an Armv8.1-M implementation, the Reliability, Availability, and Serviceability (RAS) Extension adds additional
debug support. The minimum RAS Extension is mandatory in an Armv8.1-M implementation.

For more information see Chapter B16 Reliability, Availability, and Serviceability (RAS) Extension.

Support for RAS is indicated by ID_PFR0.RAS.

Applies to an implementation of the architecture Armv8.1-M onward.

A1.4.12 Security Extension

The Armv8-M architecture introduces the OPTIONAL Security Extension which provides a mechanism to protect
sensitive data, areas of memory and other resources. This is achieved through the use of instructions and hardware
to create a Secure state that is protected from a Non-secure state.

From Armv8.1-M Thread mode re-entrancy can be disabled on SG instructions.

Applies to an implementation of the architecture Armv8.1-M onward.

In a PE with the Main Extension, support for the Security Extension is indicated in ID_PFR1.Security.

Note

The Armv8-M Security Extension can also be referred to as Arm TrustZone for Armv8-M.

A1.4.13 The System Timer Extension

The System Timer Extension, also known as SysTick, provides a decrementing, wrap-on-zero, clear-on-write
counter.

It is an OPTIONAL feature of a PE without the Main Extension, and it is IMPLEMENTATION DEFINED if none, one
or two counters are implemented. If one timer is implemented it is shared between Security states, if the Security
Extension is implemented. If two timers are implemented each Security state has a dedicated timer.

In an implementation with the Main Extension one timer is implemented per Security state.

For more information see Chapter B11 The System Timer, SysTick.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Part B
Armv8-M Architecture Rules

Chapter B1
Resets

This chapter specifies the Armv8-M reset rules. It contains the following section:

B1.1 Resets, Cold reset, and Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter B1. Resets
B1.1. Resets, Cold reset, and Warm reset

B1.1 Resets, Cold reset, and Warm reset

RBDPL There are two resets:

• Cold reset.
• Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RCTPC It is not possible to have a Cold reset without also having a Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RFNNX On a Cold reset, registers that have a defined reset value contain that value.

Applies to an implementation of the architecture Armv8.0-M onward.

RLQYD Registers and fields which have a defined value for a Cold reset retain their value over a Warm reset, unless a value
is specified for a Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RYMHN On a Warm reset, the PE performs the actions that are described by the TakeReset() pseudocode.

Applies to an implementation of the architecture Armv8.0-M onward.

RWSZN AIRCR.SYSRESETREQ is used to request a Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RHFRS For AIRCR.SYSRESETREQ, the architecture does not guarantee that the reset takes place immediately.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

Chapter B13 Debug.

Chapter B16 Reliability, Availability, and Serviceability (RAS) Extension.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter B2
Power Management

This chapter specifies the Armv8-M power management rules. It contains the following section:

B2.1 Power management.

B2.2 Sleep on exit.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter B2. Power Management
B2.1. Power management

B2.1 Power management

IHCYL The following instructions and pseudocode functions hint to the PE hardware that it can suspend execution and
enter a low-power state:

• WFE.
• WFI.
• WaitForEvent().
• WaitForInterrupt().
• SleepOnExit().

Applies to an implementation of the architecture Armv8.0-M onward.

B2.1.1 The Wait for Event (WFE) instruction

RDCMH When a WFE instruction is executed, if the state of the Event register is clear, the PE can suspend execution and
enter a low-power state.

Applies to an implementation of the architecture Armv8.0-M onward.

IRPZM The Event register is a single-bit register for each PE in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

ILNFV Software cannot read, and cannot write to, the Event register directly.

Applies to an implementation of the architecture Armv8.0-M onward.

RBPBR The Event register for a PE is set by any of the following:

• Any WFE wakeup event.
• Exception entry.
• Exception return.

Applies to an implementation of the architecture Armv8.0-M onward.

IMMZW When the Event register is set, it is an indication that an event has occurred since the register was last cleared, and
that the event might require some action by the PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RHDXV When a WFE instruction is executed, if the state of the Event register is set, the instruction clears the register and
completes immediately. In this case execution is not suspended.

Applies to an implementation of the architecture Armv8.0-M onward.

RNNDK If the PE enters a low-power state on a WFE instruction, it remains in that low-power state until it receives a WFE
wakeup event. When the PE recognizes a WFE wakeup event, the WFE instruction completes. The following are
WFE wakeup events:

• The execution of a SEV instruction by any other PE in the same multiprocessor system.
• When SCR.SEVONPEND bit associated with a security state is one, interrupts transitioning from the inactive

to the pending state that target that security state are wakeup events.
• Any exception at a priority that would preempt the current execution priority, taking into account any active

exceptions and including the effects of any software-controlled priority boosting by AIRCR.PRIS == 1 and
PRIMASK, FAULTMASK, or BASEPRI.

• If debug is enabled, a debug event.
• Any IMPLEMENTATION DEFINED event.
• A Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter B2. Power Management
B2.1. Power management

RCXMT A reset clears the Event register.

Applies to an implementation of the architecture Armv8.0-M onward.

RTRPP When SCR.SLEEPDEEP is 1 and SCR.SEVONPEND is 1, it is IMPLEMENTATION DEFINED whether any
exception entering the pending state will act as a WFE wakeup event and wake up the PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RYRDC The Armv8-M architecture does not define the exact nature of the low-power state that is entered on an instruction,
except that it does not cause a loss of memory coherency.

Applies to an implementation of the architecture Armv8.0-M onward.

ITZJZ Arm recommends that software always uses the WFE instruction in a loop.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.13 Priority model.

WaitForEvent().

SendEvent().

SetEventRegister()

ClearEventRegister()

EventRegistered()

B2.1.2 The Wait for Interrupt (WFI) instruction

RHRMJ When a WFI instruction is executed, the PE can suspend execution and enter a low-power state. If it does, it
remains in that state until it receives a WFI wakeup event. When the PE recognizes a WFI wakeup event, the WFI
instruction completes. The following are WFI wakeup events:

• A Warm reset.
• Any asynchronous exception at a priority that, ignoring the effect of PRIMASK (so that behavior is as if

PRIMASK is 0), would preempt any currently active exceptions.
• An IMPLEMENTATION DEFINED WFI wakeup event.
• If debug is enabled, a debug event.

Applies to an implementation of the architecture Armv8.0-M onward.

IWCBD A debug event will be a wakeup event if either:

• Halting Debug is permitted for the current Security state of the PE and the PE is required to enter Debug
state.

• A DebugMonitor exception is asserted and the exception has sufficient priority to preempt the current priority
of the PE.

Setting DEMCR.MON_PEND to one is not required to cause a wakeup event.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, DebugMonitor
exceptions require M.

IPDKN An unprivileged debug event will be a wakeup event if unprivileged debug is permitted for the current Security
state and privilege mode of the PE. If unprivileged debug is not enabled the event will be pended and taken when
unprivileged debug is permitted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && UDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter B2. Power Management
B2.1. Power management

ICGNL Arm recommends that software always uses the WFI instruction in a loop.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.13 Priority model.

Chapter B13 Debug

WaitForInterrupt()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter B2. Power Management
B2.2. Sleep on exit

B2.2 Sleep on exit

RJXGW It is IMPLEMENTATION DEFINED whether the SleepOnExit() function causes the PE to enter a low-power
state during a return from the only active exception and to Thread mode.

Applies to an implementation of the architecture Armv8.0-M onward.

RBHSL The PE is permitted to enter a low-power state on return from the only active exception when all the following are
true:

• EXC_RETURN.Mode == 1.
• SCR.SLEEPONEXIT == 1.

Applies to an implementation of the architecture Armv8.0-M onward.

RWWDW If the sleep-on-exit function is enabled, it is IMPLEMENTATION DEFINED at which point in the exception return
process the PE enters a low-power state.

Applies to an implementation of the architecture Armv8.0-M onward.

RLLQF The wakeup events for the sleep-on-exit function are identical to the WFI instruction wakeup events.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.13 Priority model.

SleepOnExit()

B3.22 Exception return.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter B3
Programmers’ Model

This chapter specifies the Armv8-M programmers’ model architecture rules. It contains the following sections:

B3.1 PE modes, Thread mode and Handler mode.

B3.2 Privileged and unprivileged execution.

B3.3 Registers.

B3.4 Special-purpose CONTROL register.

B3.5 XPSR, APSR, IPSR, and EPSR.

B3.6 Security states: Secure state, and Non-secure state.

B3.7 Security states and register banking between Security states.

B3.8 Stack pointer.

B3.9 Exception numbers and exception priority numbers.

B3.10 Exception enable, pending, and active bits.

B3.11 Security states, exception banking.

B3.12 Faults.

B3.13 Priority model.

B3.14 Secure address protection.

B3.15 Security state transitions.

B3.16 Function calls from Secure state to Non-secure state.

B3.17 Function returns from Non-secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter B3. Programmers’ Model

B3.18 Exception handling.

B3.19 Exception entry, context stacking.

B3.20 Exception entry, register clearing after context stacking.

B3.21 Stack limit checks.

B3.22 Exception return.

B3.23 Integrity signature.

B3.24 Exceptions during exception entry.

B3.25 Exceptions during exception return.

B3.26 Tail-chaining.

B3.27 Exceptions, instruction resume, or instruction restart.

B3.28 Low overhead loops.

B3.29 Branch future.

Applies to an implementation of the architecture Armv8.1-M onward.

B3.30 Vector tables.

B3.31 Hardware-controlled priority escalation to HardFault.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting.

B3.33 Lockup.

B3.34 Data independent timing.

Applies to an implementation of the architecture Armv8.1-M onward.

B3.35 Context Synchronization Event.

B3.36 Coprocessor support.

B3.37 The Custom Datapath Extension.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter B3. Programmers’ Model
B3.1. PE modes, Thread mode and Handler mode

B3.1 PE modes, Thread mode and Handler mode

RCNMS There are two PE modes:

• Thread mode.
• Handler mode.

Applies to an implementation of the architecture Armv8.0-M onward.

IFDVT A common usage model for the PE modes is:

• Thread mode: Applications.
• Handler mode: OS kernel and associated functions, that manage system resources.

Applies to an implementation of the architecture Armv8.0-M onward.

RRPKP The PE handles all exceptions in Handler mode.

Applies to an implementation of the architecture Armv8.0-M onward.

RCMQP Thread mode is selected on reset.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.2 Privileged and unprivileged execution.

B3.5.1 Interrupt Program Status Register (IPSR).

B3.6 Security states: Secure state, and Non-secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter B3. Programmers’ Model
B3.2. Privileged and unprivileged execution

B3.2 Privileged and unprivileged execution

RWVRK Thread mode

Execution can be privileged or unprivileged.

Handler mode

Execution is always privileged.

Applies to an implementation of the architecture Armv8.0-M onward.

IWCFH CONTROL.nPRIV determines whether execution in Thread mode is unprivileged.

Applies to an implementation of the architecture Armv8.0-M onward.

RSBQF In a PE without the Main Extension, it is IMPLEMENTATION DEFINED whether CONTROL.nPRIV can be set to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

RJSSW Execution privilege can determine whether a resource is accessible.

Applies to an implementation of the architecture Armv8.0-M onward.

IGNSC Privileged execution typically has access to more resources than unprivileged execution.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.1 PE modes, Thread mode and Handler mode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter B3. Programmers’ Model
B3.3. Registers

B3.3 Registers

RKGST There are the following types of registers:

General-purpose registers, all 32-bit:

• R0-R12 (Rn).
• R13. This is the stack pointer (SP).
• R14. This is the Link Register (LR).

Program Counter, 32-bit:

• R15 is the Program Counter (PC).

Special-purpose registers:

• Mask Registers:

– 1-bit exception mask register, PRIMASK.
– 8-bit base priority mask register, BASEPRI.
– 1-bit fault mask register, FAULTMASK.

• A CONTROL register.

• Two 32-bit stack pointer limit registers, MSPLIM and PSPLIM, if the Main Extension is not implemented
the Non-secure versions of these registers are RAZ/WI.

• A combined 32-bit Program Status Register (XPSR), comprising:

– Application Program Status Register (APSR).
– Interrupt Program Status Register (IPSR).
– Execution Program Status Register (EPSR).

• Vector Predication and Control Register (VPR).

• Floating-point Status and Control Register (FPSCR).

Memory-mapped registers:

All other registers.

Applies to an implementation of the architecture Armv8.0-M onward. Note, Armv8.1-M is required for MVE and PACBTI.

ICJWV A 32-bit combined exception return Program Status Register, RETPSR, contains a payload of the saved state
derived from the XPSR.

Applies to an implementation of the architecture Armv8.0-M onward.

IDHVL Extensions might add more registers to the base register set.

Applies to an implementation of the architecture Armv8.0-M onward.

IBLXF SP refers to the active stack pointer, the Main stack pointer or the Process stack pointer.

Applies to an implementation of the architecture Armv8.0-M onward.

RPLRT If the Main Extension is implemented, the LR is set to 0xFFFFFFFF on Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RQHMH If the Main Extension is not implemented, the LR becomes UNKNOWN on a Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

RPLNS The PC is loaded with the reset handler start address on Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter B3. Programmers’ Model
B3.3. Registers

RJPCB The PC contains the instruction address of the instruction currently being executed. If an instruction reads the
value of the PC, the value used is that of PC plus 4.

Applies to an implementation of the architecture Armv8.0-M onward.

RXHHC Except for writes to the CONTROL register, any change to a special-purpose register by a CPS or MSR instruction
is guaranteed:

• Not to affect that CPS or MSR instruction, or any instruction preceding it in program order.
• To be visible to all instructions that appear in program order after the CPS or MSR.

Applies to an implementation of the architecture Armv8.0-M onward.

RMHJK All unallocated or reserved values of fields with allocated values within the registers that are described in this
reference manual behave, unless otherwise stated in the register description, in one of the following ways:

• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED UNPRE-
DICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

• The encoding causes the field to have no functional effect.

Applies to an implementation of the architecture Armv8.0-M onward.

RPDJC Reads of registers described as write-only (WO) behave as RES0.

Applies to an implementation of the architecture Armv8.0-M onward.

RXKXP A write to a register or field described as read-only (RO) does not cause modification of the read-only register or
field.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

Chapter B8 The System Address Map.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting.

B3.4 Special-purpose CONTROL register.

B3.21 Stack limit checks.

B3.5 XPSR, APSR, IPSR, and EPSR.

B1.1 Resets, Cold reset, and Warm reset.

Part D Register and Payload Specification.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter B3. Programmers’ Model
B3.4. Special-purpose CONTROL register

B3.4 Special-purpose CONTROL register

RCSPP MRS and MSR instructions can be used to access the CONTROL register.

Applies to an implementation of the architecture Armv8.0-M onward.

RGKVQ Privileged execution can write to the CONTROL register. The PE ignores unprivileged writes to the CONTROL
register. All reads of the CONTROL register, regardless of privilege, are allowed.

Applies to an implementation of the architecture Armv8.0-M onward.

RSNGJ The architecture requires a Context synchronization event to guarantee that a change to the CONTROL register
will affect the execution of instructions appearing later in the program order.

Applies to an implementation of the architecture Armv8.0-M onward.

RHVGB The PE automatically updates CONTROL.SPSEL on exception entry and exception return.

Applies to an implementation of the architecture Armv8.0-M onward.

INMBL CONTROL.SPSEL selects the stack pointer when the PE is in Thread mode.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.35 Context Synchronization Event.

CONTROL, Control Register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter B3. Programmers’ Model
B3.5. XPSR, APSR, IPSR, and EPSR

B3.5 XPSR, APSR, IPSR, and EPSR

RZFHH The APSR, IPSR, and EPSR combine to form one register, the XPSR:

N Z

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

C V Q GE[3:0]†

0 or
 Exception Number

0 or
 Exception Number0 or Exception Number0 or Exception Number

ICI/IT/
ECI†† T ICI/IT/ECI††

† Reserved if the DSP Extension is not implemented
†† Reserved if the Main Extension is not implemented. ECI requires implementing the MVE Extension.
††† B requires implementing the PACBTI Extension.

EPSR

IPSR

APSR

XPSR

B

21

†††

All unused bits in any of the APSR, IPSR, or EPSR, or any unused bits in the combined XPSR, are reserved.

Applies to an implementation of the architecture Armv8.0-M onward. Note, ECI functionality only available in an Armv8.1-M
implementation.

RXGTP The MRS and MSR instructions recognize the following mnemonics for accessing the APSR, IPSR or EPSR, or a
combination of them:

Mnemonic Registers accessed

APSR APSR

IPSR IPSR

EPSR EPSR

IAPSR IPSR and APSR

EAPSR EPSR and APSR

IEPSR IPSR and EPSR

XPSR APSR, IPSR, and EPSR

Applies to an implementation of the architecture Armv8.0-M onward.

RWLFR Arm deprecates using MSR APSR without a _<bits> qualifier as an alias for MSR APSR_nzcvq.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.3 Registers.

APSR, Application Program Status Register.

B3.5.1 Interrupt Program Status Register (IPSR).

B3.5.2 Execution Program Status Register (EPSR).

B3.5.1 Interrupt Program Status Register (IPSR)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter B3. Programmers’ Model
B3.5. XPSR, APSR, IPSR, and EPSR

RDTBJ When the PE is in Thread mode, the IPSR value is zero.

When the PE is in Handler mode:

• In the case of a taken exception, the IPSR holds the exception number of the exception being handled.
• When there has been a function call from Secure state to Non-secure state, the IPSR has the value of 1.

The PE updates the IPSR on exception entry and return.

Applies to an implementation of the architecture Armv8.0-M onward. Note, Secure state requires S.

RXTCC The PE ignores writes to the IPSR by MSR instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

RRDRX If DCRDR is used to change the value of IPSR, then the value of IPSR becomes UNKNOWN. If DCRDR attempts
to set IPSR to an illegal value, then the UNKNOWN value is set to one of the known legal values.

Applies to an implementation of the architecture Armv8.0-M only. The extension requirements are - HDBG.

RVRPL Writes to IPSR using the DCRDR and DCRSR mechanism are ignored.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR.

B3.16 Function calls from Secure state to Non-secure state.

IPSR, Interrupt Program Status Register

BX, BXNS

B3.5.2 Execution Program Status Register (EPSR)

RKSCH A reset sets EPSR.T to the value of bit[0] of the reset vector.

Applies to an implementation of the architecture Armv8.0-M onward.

RSQLX When EPSR.T is:

0: Any attempt to execute any instruction generates:

• An INVSTATE UsageFault, in a PE with the Main Extension.
• A HardFault, in a PE without the Main Extension.

1: The Instruction set state is T32 state and all instructions are decoded as T32 instructions.

Applies to an implementation of the architecture Armv8.0-M onward. Note, UsageFault requires M.

IXBWX The intent is that the Instruction set state is always T32 state.

Applies to an implementation of the architecture Armv8.0-M onward.

RLBJQ All EPSR fields read as zero using an MRS instruction. The PE ignores writes to the EPSR by an MSR instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR.

B3.5.2 Execution Program Status Register (EPSR).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter B3. Programmers’ Model
B3.6. Security states: Secure state, and Non-secure state

B3.6 Security states: Secure state, and Non-secure state

RHKKL A PE with the Security Extension has two Security states:

• Secure state.
– Secure Thread mode.
– Secure Handler mode.

• Non-secure state.
– Non-secure Thread mode.
– Non-secure Handler mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RPBGT If the Security Extension is implemented, memory areas and other critical resources that are marked as secure can
only be accessed when the PE is executing in Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RHWFV A PE with the Security Extension resets into Secure state on a Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RPLGH A PE without the Security Extension resets into Non-secure state on a Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !S.

See also:

B3.1 PE modes, Thread mode and Handler mode.

B3.2 Privileged and unprivileged execution.

B3.7 Security states and register banking between Security states.

B3.11 Security states, exception banking.

B3.15 Security state transitions.

Chapter B5 Vector Extension.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter B3. Programmers’ Model
B3.7. Security states and register banking between Security states

B3.7 Security states and register banking between Security states

IMGRQ In a PE with the Security Extension, some registers are banked between the Security states. When a register is
banked in this way, there is a distinct instance of the register in Secure state and another distinct instance of the
register in Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RBHDK In a PE with the Security Extension:

• The general-purpose registers that are banked are:

– R13. This is the stack pointer (SP).

• The special-purpose registers that are banked are:

– The Mask registers, PRIMASK, BASEPRI, and FAULTMASK.
– Some bits in the CONTROL register.
– The Main and Process stack pointer Limit registers, MSPLIM and PSPLIM.

• All registers in the System Control Space (SCS) have a Non-secure alias which is only accessible from
Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IGBWT For MRS and MSR (register) instructions, SYSm[7] in the instruction encoding specifies whether the Secure
or the Non-secure instance of a Banked register is accessed:

Access from SYSm[7]

0 1

Secure state Secure instance Non-secure instance

Non-secure state Non-secure instance RAZ/WI

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RZJKL This specification uses the following naming convention to identify a Banked register:

• <register name>_S: The Secure instance of the register.
• <register name>_NS: The Non-secure instance of the register.
• <register name>: The instance that is associated with the current Security state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

B3.3 Registers.

B3.6 Security states: Secure state, and Non-secure state.

B3.8 Stack pointer.

B8.3 The System Control Space (SCS).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter B3. Programmers’ Model
B3.8. Stack pointer

B3.8 Stack pointer

RRDLR In a PE with the Security Extension, four stacks and four stack pointer registers are implemented:

Stack Stack pointer register

Secure Main MSP_S

Process PSP_S

Non-secure Main MSP_NS

Process PSP_NS

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RTGHV In a PE without the Security Extension, two stacks and two stack pointer registers are implemented:

Stack Stack pointer register

Main MSP

Process PSP

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !S.

RLDGJ On exception return the Armv8-M architecture only supports doubleword aligned stack pointers.

Applies to an implementation of the architecture Armv8.0-M onward.

RZJBC If on exception return, the stack pointer used for the unstacking operations is not doubleword aligned the behavior
is CONSTRAINED UNPREDICTABLE. When calculating the address of the unstacking operations either of the
following behaviors are permitted:

• Treating the stack pointer as the actual value.
• Treating the stack pointer as if it were aligned.

Applies to an implementation of the architecture Armv8.0-M onward.

RNPJB If the stack pointer being adjusted on excepion return is not doubleword aligned the behavior is CONSTRAINED
UNPREDICTABLE. Either of the following behaviors are permitted:

• SP = SP + framesize + (sprealign « 2)
• SP = (SP + framesize) OR (sprealign « 2)

Applies to an implementation of the architecture Armv8.0-M onward.

RTXRW In Handler mode, the PE uses the main stack.

Applies to an implementation of the architecture Armv8.0-M onward.

IDMLS In Thread mode, CONTROL.SPSEL determines whether the PE uses the main or process stack.

Applies to an implementation of the architecture Armv8.0-M onward.

RBTVD In a PE without the Security Extension, MSP is selected and initialized on reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !S.

RMDXK In a PE with the Security Extension, the Secure main stack, MSP_S, is selected and initialized on reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

ILVWN On Warm reset, the selected Stack Pointer either the MSP or MSP_S, is set to the value contained in the Vector
table, as described in TakeReset().

Applies to an implementation of the architecture Armv8.0-M onward. Note, S is required for MSP_S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter B3. Programmers’ Model
B3.8. Stack pointer

RXPWM Bits [1:0] of the MSP or PSP, in either Security state, are RES0H, so that all stack pointers are always guaranteed to
be word-aligned.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RMQVJ Where an instruction states that the SP is UNPREDICTABLE and SP is used:

• The value that is read or written from or to the SP is UNKNOWN.
• The instruction is permitted to be treated as UNDEFINED.
• If the SP is being written, it is UNKNOWN whether a stack limit check is applied.

Applies to an implementation of the architecture Armv8.0-M onward.

RJXJM After the successful completion of an exception entry stacking operation, the stack pointer of the stack pushed
because of the exception entry is doubleword-aligned.

Applies to an implementation of the architecture Armv8.0-M onward.

IPWRQ Arm recommends that the Secure stacks be located in Secure memory.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

B3.6 Security states: Secure state, and Non-secure state.

B3.1 PE modes, Thread mode and Handler mode.

B3.19 Exception entry, context stacking.

B3.30 Vector tables.

B3.3 Registers.

B3.21 Stack limit checks.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

B3.9 Exception numbers and exception priority numbers

IDCJS Each exception has an associated exception number and an associated priority number.

Applies to an implementation of the architecture Armv8.0-M onward.

RCMTC In a PE with the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

Exception Exception Number Priority Number

Reset 1 -4 (Highest Priority)

Secure HardFault when AIRCR.BFHFNMINS is 1a 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1

Non-secure HardFault 3 -1

MemManage fault 4 Configurable

BusFault 5 Configurable

UsageFault 6 Configurable

SecureFault 7 Configurable

Reserved 8-10 -

SVCall 11 Configurable

DebugMonitor 12 Configurable

Reserved 13 -

PendSV 14 Configurable

SysTick 15 Configurable

External Interrupt 0 16 Configurable

- - -

- - -

- - -

External interrupt N 16+N Configurable

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M. Note, S is required
for Secure faults.

RMGNV In a PE without the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

Exception Exception Number Priority Number

Reset 1 -4 (Highest Priority)

Secure HardFault when AIRCR.BFHFNMINS is 1 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1

Non-secure HardFault 3 -1

Reserved 4-10 -

SVCall 11 Configurable

Reserved 12-13 -

PendSV 14 Configurable

SysTick 15 Configurable

External Interrupt 0 16 Configurable

- - -

- - -

- - -

External interrupt N 16+N Configurable

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M. Note, ST is required
for SysTick exception.

IFPJD The number of supported external interrupts is configurable, to a maximum of 496.

Applies to an implementation of the architecture Armv8.0-M onward.

RQQTT The architecture permits an implementation to omit external configurable interrupts where no external device is
connected to the corresponding interrupt pin. Where an implementation omits such an interrupt, the corresponding
pending, active, enable, and priority registers are RES0.

Applies to an implementation of the architecture Armv8.0-M onward.

IQWTM In a PE with the Main Extension, the following exceptions with configurable priority numbers can be configured
with SHPR1- SHPR3 in the System Control Block (SCB):

• MemManage Fault.
• BusFault.
• UsageFault.
• SecureFault (if the Security Extension is implemented).
• SVCall.
• DebugMonitor exception.
• PendSV.
• SysTick.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

ISGBC In a PE without the Main Extension the following exceptions with configurable priority numbers can be configured
with SHPR2 and SHPR3 in the System Control Block (SCB):

• SVCall.
• PendSV.
• SysTick.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

IJQPH All other configurable exceptions can be configured using the NVIC_IPRn.PRI_<n> register fields.

Applies to an implementation of the architecture Armv8.0-M onward.

RNFSM Configurable priority numbers start at 0, the highest configurable exception priority number.

Applies to an implementation of the architecture Armv8.0-M onward.

RGGCP In a PE with the Main Extension, the number of configurable priority numbers is an IMPLEMENTATION DEFINED
power of two in the range 8-256:

Number of priority Number of Minimum Priority Maximum Priority

bits of SHPRIn.PRI_n configurable Number Number

implemented Priority numbers (highest prioirty) (lowest priority)

3 8 0 0b11100000 = 224

4 16 0 0b11110000 = 240

5 32 0 0b11111000 = 248

6 64 0 0b11111100 = 252

7 128 0 0b11111110 = 254

8 256 0 0b11111111 = 255

All low-order bits of of SHPRIn.PRI_n that are not implemented as priority bits are RAZ/WI, as shown in the
maximum priority number column.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RCMGH In a PE without the Main Extension, the number of configurable priority numbers is 4:

Number of priority Number of Minimum Priority Maximum Priority

bits of SHPRIn.PRI_n configurable Number Number

implemented Priority numbers (highest prioirty) (lowest priority)

2 4 0 0b11000000 = 192

SHPRn.PRI_n[5:0] are RAZ/WI, as shown in the maximum priority number column.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

See also:

B3.11 Security states, exception banking.

B3.12 Faults.

B3.13 Priority model.

SHPR1, SHPR2, SHPR3.

NVIC_IPRn.

ExecutionPriority()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter B3. Programmers’ Model
B3.10. Exception enable, pending, and active bits

B3.10 Exception enable, pending, and active bits

IYPBJ The SHCSR, ICSR, DEMCR, NVIC_IABRn, NVIC_ISPRn, NVIC_ISERn contain exception enable, pending,
and active fields. STIR can be used to pend exceptions.

Applies to an implementation of the architecture Armv8.0-M onward.

IGHGW The following exceptions are always enabled and therefore do not have an exception enable bit:

• Secure HardFault or Non-secure HardFault if the Security Extension is not implemented.
• NMI.
• SVCall.
• PendSV.

Applies to an implementation of the architecture Armv8.0-M onward. Note, S is required for Secure HardFault.

ISVFP Interrupts can be pended from software by:

• Privileged execution can pend interrupts by writing to the NVIC_ISPRn.
• When CCR.USERSETMPEND is 1, unprivileged execution can pend interrupts by writing to the STIR.
• Non-secure accesses are only permitted to pend interrupts configured to target the Non-secure state and

controlled by NVIC_ITNSn.

Applies to an implementation of the architecture Armv8.0-M onward.

ITRJJ The following table identifies the fault enable, status and active bits:

Fault, Enable Status bit Pending bit Active bit

(SHCSR) and Trap Bits SHCSR, ICSR SHCSR

Secure HardFault HFSR.VECTTBL HARDFAULTPENDED HARDFAULTACT

HFSR.FORCED

HFSR.DEBUGEVT

NMI - PENDNMISET NMIACT

HardFault HFSR.VECTTBL HARDFAULTPENDED HARDFAULTACT

AIRCR.BFHFNMINS HFSR.FORCED

HFSR.DEBUGEVT

MemanageFault MMFSR.IACCVIOL MEMFAULTPENDED MEMFAULTACT

MEMFAULTENA MMFSR.DACCVIOL

MMFSR.MUNSTKERR

MMFSR.MSTKERR

MMFSR.MLSPERR

BusFault BFSR.IBUSERR BUSFAULTPENDED BUSFAULTACT

BUSFAULTENA BFSR.PRECISERR

BFSR.IMPRECISERR

BFSR.UNSTKERR

BFSR.STKERR

BFSR.LSPERR

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter B3. Programmers’ Model
B3.10. Exception enable, pending, and active bits

UsageFault UFSR.UNDEFINSTR USGFAULTPENDED USGFAULTACT

USGFAULTENA UFSR.INVSTATE

UFSR.INVPC

UFSR.NOCP

UFSR.STKOF

CCR.UNALIGN_TRP UFSR.UNALIGNED - -

CCR.DIV_0_TRP UFSR.DIVBYZERO - -

SecureFault SFSR.INVEP SECUREFAULTPENDED SECUREFAULTACT

SECUREFAULTENA SFSR.INVIS

SFSR.INVER

SFSR.AUVIOL

SFSR.INVTRAN

SFSR.LSPERR

SFSR.LSERR

SVCall - SVCALLPENDED SVCALLACT

DebugMonitor - DEMCR.MON_PEND MONITORACT

DEMCR.MON_EN

PendSV - PENDSVSET PENDSVACT

SysTick - PENDSTSET SYSTICKACT

SYST_CSR.ENABLE and

SYST_CSR.TICKINT

External Interrupt - NVIC_ISPRn NVIC_ICPRn NVIC_IABRn

NVIC_ICERn

NVIC_ISERn

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

B3.11 Security states, exception banking

RJQMQ Some exceptions are banked. A banked exception has all the following:

• Banked enabled, pending, and active bits.
• A banked SHPRn.PRI field.

The following table shows which exceptions are banked:

Exception Banked

Reset No

HardFault Yes (conditionally)

NMI No

MemManage fault Yes

BusFault No

UsageFault Yes

SecureFault No

SVCall Yes

DebugMonitor No

PendSV Yes

SysTick Yes

External interrupt 0 No

- -

- -

- -

External interrupt N No

Applies to an implementation of the architecture Armv8.0-M onward. Note, some exceptions require M, S, DebugMonitor
exception or ST.

RDXYK A banked synchronous exception targets the Security state that it is taken from, except for the following cases:

• If a NOCP UsageFault is generated due to the relevant field of NSACR being zero, the UsageFault will target
the Secure state.

• If a NOCP UsageFault is generated due to the relevant CPPWR.SU* field being one, the UsageFault will
target:

• The Secure state if the corresponding CPPWR.SUSm bit is set to one.

• The current Security state if the corresponding CPPWR.SUSm bit is set to zero.

• If an instruction triggers lazy floating-point state preservation, then the banked exception will be raised as if
the current Security state was the same as the state that activated the lazy floating-point state preservation, as
indicated by FPCCR.S.

• Banked faults and exceptions which arise from instruction fetch will target the Security state associated with
the instruction address instead of the current Security state.

• MemManage Faults will target the Security state associated with the bank of the MPU used to check the
access.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

• Where Non-secure HardFault is enabled, because AIRCR.BFHFNMINS is set to 1, the following applies:

– HardFault exceptions generated through escalation will target the Security state of the original exception
before its escalation to HardFault.

– A HardFault generated as a result of a failed vector fetch will target the Security state of the exception
raised during the failed vector fetch and not the current Security state.

• MemManage Faults triggered by stacking the State context registers or the Additional state context registers
on exception entry including tail chaining targets the Security state associated with the background state, as
indicated by EXC_RETURN.S.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, a UsageFault
requires M, Floating-point state requires FP.

RGVPG If AIRCR.BFHFNMINS == 0, then all Non-secure HardFaults are disabled and escalated to Secure HardFaults.

Applies to an implementation of the architecture Armv8.0-M onward.

RWLGH Where an implementation has two SysTick timers, one in each Security state, each timer targets its owning Security
state and not the current Execution state of the PE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && ST.

IDDKC NMI can be configured to target either Security state, by using AIRCR.BFHFNMINS.

Applies to an implementation of the architecture Armv8.0-M onward.

IHGFM BusFault can be configured to target either Security state, by using AIRCR.BFHFNMINS.

Applies to an implementation of the architecture Armv8.0-M onward.

RMQWN SecureFault always targets Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IWSSL The DebugMonitor exception targets Secure state if the status bit DEMCR.SDME is 1. Otherwise, it targets
Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward.

IDQLX Each external interrupt, 0-N, targets the Security state that its NVIC_ITNSn[bit number] dictates.

Applies to an implementation of the architecture Armv8.0-M onward.

RHXRW When <exception> targets Secure state, the Non-secure view of its priority field, any enabled, pending, and active
bits, are RAZ/WI.

<exception> is one of:

• NMI.
• BusFault.
• DebugMonitor.
• External interrupt N.
• In a PE without the Main Extension, and a single instance of the SysTick Timer, SysTick.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, a BusFault
exception requires M, a DebugMonitor exception requires DebugMonitor exception.

RDWXH When an exception is taken to the other Security state, the PE automatically transitions to the target Security state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IQRDM Secure software must ensure that when changing the target Security state of an exception, the exception is not
pending or active. A change to the Security state of an exception when the exception is pending or active might
lead to UNPREDICTABLE behavior.

Applies to an implementation of the architecture Armv8.0-M onward. Note, S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

See also:

B3.9 Exception numbers and exception priority numbers.

B3.30 Vector tables.

SHCSR, System Handler Control and State Register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter B3. Programmers’ Model
B3.12. Faults

B3.12 Faults

INHTB There are the following Fault Status Registers:

• HardFault Status Register HFSR.
• MemManage Fault Status Register MMFSR.
• BusFault Status Register BFSR.
• UsageFault Status Register UFSR.
• SecureFault Status Register SFSR.
• Debug Fault Status Register DFSR.
• Auxiliary Fault Status Register AFSR. The contents of this register are IMPLEMENTATION DEFINED.
• RAS Fault Status Register RFSR.

In a PE with the Main Extension, the BFSR, MMFSR, and UFSR combine to form one register, called the
Configurable Fault Status Register (CFSR).

There are the following Fault Address Registers:

• MemManage Fault Address Register (MMFAR).
• BusFault Address Register (BFAR).
• SecureFault Address Register (SFAR).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M. Note, RFSR requires
RAS.

RXMRH Unless otherwise stated, MMFAR is updated only for a MemManage fault on a data access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RDDJJ Unless otherwise stated, BFAR is updated only for a synchronous BusFault on a data access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RBFFR Unless otherwise stated, SFAR is set due to SAU/IDAU violations in the following cases:

• Data accesses.
• exception stacking and unstacking accesses, including stacking during tail chaining.
• Lazy state preservation accesses.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

RFLDT Each fault address register has an associated valid bit. When the PE updates the fault address register, the PE sets
the valid bit to one.

Fault address register Valid bit

MMFAR MMFSR.MMFARVALID

BFAR BFSR.BFARVALID

SFAR SFSR.SFARVALID

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RTSCP If a fault occurs that would otherwise set a FAR valid bit to one, which has already been set by an earlier fault it is
IMPLEMENTATION DEFINED whether:

• The FAR register is updated with the new syndrome.
• The FAR register retains the syndrome of the original fault.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter B3. Programmers’ Model
B3.12. Faults

RTSCG If the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and
MMFAR are implemented. If one shared fault address register is implemented, then on a fault that would otherwise
update the shared fault address register, if one of the other valid bits is set to one, it is IMPLEMENTATION DEFINED
whether:

• The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
• The shared fault address register is not updated, and the valid bits are not changed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && !S.

RXPWN If the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether separate fault address registers
for each fault are implemented. If one shared fault address register per Security state is implemented, then on a
fault that would otherwise update the shared fault address register, if one of the other FAR valid bits for the same
Security state is set to one, it is IMPLEMENTATION DEFINED whether:

• The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
• The shared fault address register is not updated, and the valid bits are not changed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

RGBKY AIRCR.BFHFNMINS dictates which fault registers can be shared:

• SFAR and MMFAR_S, and when AIRCR.BFHFNMINS is zero, BFAR.
• MMFAR_NS and when AIRCR.BFHFNMINS is one, BFAR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

IDGDG For example in an implementation that contains a shared Fault Address Register, the shared fault register
might be written to with the address of the memory location being accessed that caused a BusFault fault, and
BFSR.BFARVALID is set to one. If the BFSR.BFARVALID is still set when a MemManage fault subsequently
occurs that might update the shared fault address register it is an IMPLEMENTATION DEFINED choice between:

• The shared fault address register being updated with the syndrome that caused the MemManage fault, the
BFSR.BFARVALID being cleared and MMFSR.MMFARVALID for the MemManage fault being set.

• The address of the memory location that caused the BusFault is retained and the fault address information
generated by the MemManage fault is discarded without clearing BFSR.BFARVALID or updating
MMFSR.MMFARVALID for the MemManage fault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && !S.

INSSB If a Secure MemManage fault occurs that targets Secure state, as described by ExceptionTargetsSecure(),
the Secure shared fault register is written to with the address of the memory location that caused the MemManage
fault, and MMFSR_S.MMFARVALID is set to one. If the MMFSR_S.MMFARVALIDis still set when a
SecureFault subsequently occurs it is an IMPLEMENTATION DEFINED choice between:

• The shared fault address register being updated with the address of the memory location that that caused the
SecureFault, MMFSR_S.MMFARVALID being cleared and SFSR.SFARVALID being set.

• The address of the memory location that caused the MemManageFault is retained and the fault address
information generated by the SecureFault is discarded without out clearing MMFSR_S.MMFARVALID or
updating SFSR.SFARVALID.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

ISMVQ Arm strongly recommends that if a separate BFAR is implemented, the associated BFAR and BFSR.BFARVALID
bit is cleared when changing AIRCR.BFHFNMINS so as not to expose the last accessed address to Non-secure
state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

ILRNV When the Security extension is implemented:

• If AIRCR.BFHFNMINS is zero, a read of BFAR_NS will return 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter B3. Programmers’ Model
B3.12. Faults

• If AIRCR.BFHFNMINS is one, a read of BFAR_NS and BFAR_S might return the same value. This behavior
cannot be relied on if there is a change to AIRCR.BFHFNMINS between the reads of BFAR in different
Security states.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

IKJPM In a PE with the Main Extension, the faults are:

Exception Exception Fault Status Bit

Number

3 HardFault HardFault on Vector table entry read error HFSR.VECTTBL

HardFault on fault escalation HFSR.FORCED

HardFault on BKPT escalation HFSR.DEBUGEVT

4 MemManage MemManage fault on an instruction fetch MMFSR.IACCVIOL

Fault MemManage Fault on direct data access MMFSR.DACCVIOL

MemManage Fault on context unstacking MMFSR.MUNSTKERR

by hardware.

MemManage Fault on context stacking MMFSR.MSTKERR

by hardware.

A MemManage fault on MMFSR.MLSPERR

Floating-point lazy state preservation

5 BusFault BusFault on an instruction fetch, BFSR.IBUSERR

precise

BusFault on a data access, precise BFSR.PRECISERR

BusFault on a data access, imprecise BFSR.IMPRECISERR

BusFault on a context unstacking by BFSR.UNSTKERR

hardware

BusFault on context stacking by BFSR.STKERR

hardware

A BusFault on BFSR.LSPERR

Floating-point lazy state preservation

6 UsageFault UsageFault, undefined instruction UFSR.UNDEFINSTR

UsageFault, invalid Instruction UFSR.INVSTATE

set state because EPSR.T

is 0 or because an attempt was

made to execute an instruction

that is not ICI or ECI compatible

when there is a valid EPSR.ICI, ECI value.

UsageFault, failed integrity check UFSR.INVPC

on exception return or function

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter B3. Programmers’ Model
B3.12. Faults

Exception Exception Fault Status Bit

Number

return.

UsageFault, no coprocessor UFSR.NOCP

UsageFault, stack overflow UFSR.STKOF

UsageFault, unaligned access UFSR.UNALIGNED

UsageFault, divide by zero when UFSR.DIVBYZERO

CCR.DIV_0_TRP is 1

7 SecureFault SecureFault, invalid Secure state SFSR.INVEP

entry point

SecureFault, invalid integrity SFSR.INVIS

signature when unstacking

SecureFault, invalid exception return SFSR.INVER

SecureFault, attribution unit SFSR.AUVIOL

violation

SecureFault, invalid transition from SFSR.INVTRAN

Secure state

SecureFault, lazy Floating-point SFSR.LSPERR

state preservation error

SecureFault, lazy Floating-point SFSR.LSERR

state error

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M. Note, Secure Faults
require S, EPSR.ECI requires MVE.

RXVNN Exception vector reads use the system address map.

Applies to an implementation of the architecture Armv8.0-M onward.

RLLRP In an Armv8.1-M implementation when a HardFault is generated as a result of a read of the Vector table
HFSR.FORCED is not set. In an Armv8.0-M implementation it is IMPLEMENTATION DEFINED whether a
HardFault generated as a result of Vector table read sets HFSR.FORCED.

Applies to an implementation of the architecture Armv8.1-M onward.

IXJQC RAS faults can generate BusFaults and these are recorded in RFSR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

INKHG In a PE without the Main Extension, the enable, pending, and active bits in SHCSR are RES0 for those faults that
are only included in a PE with the Main Extension.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RWHBK In a PE without the Main Extension, the faults are:

Exception number Exception

3 HardFault

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter B3. Programmers’ Model
B3.12. Faults

All other faults described in the architecture behave as if they are disabled, and escalate to HardFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

ICCXG For the exact circumstances under which each of the Armv8-M faults is generated, see the appropriate Fault Status
Register description.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

See also:

B3.9 Exception numbers and exception priority numbers.

B3.31 Hardware-controlled priority escalation to HardFault.

Chapter B13 Debug.

Part D Register and Payload Specification.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter B3. Programmers’ Model
B3.13. Priority model

B3.13 Priority model

ICTFJ An exception, other than reset, has the following possible states:

Active:

An exception that either:

– Is being handled.

– Was being handled. The handler was preempted by a handler for a higher priority exception.

Pending:

An exception that has been generated, but that is not active.

Inactive:

The exception has not been generated.

Active and pending:

One instance of the exception is active, and a second instance of the exception is pending. Only asynchronous
exceptions can be active and pending. Synchronous exceptions are either inactive, pending, or active.

Applies to an implementation of the architecture Armv8.0-M onward.

RCJDM Lower priority numbers take precedence over higher priority numbers.

Applies to an implementation of the architecture Armv8.0-M onward.

RRGCH The instruction stream that is executing can be interrupted by an exception with a high enough priority. That is, the
numerical priority of the exception is lower value than the current group execution priority.

Applies to an implementation of the architecture Armv8.0-M onward.

RVJPG The current group execution priority is determined by performing the following steps:

• At each step the highest priority, that is the lowest numerical value, is selected.

• The priority of highest priority active exception is determined as follows:

– If the Main Extension is implemented AIRCR.PRIGROUP is applied to the priority value of each active
exception.

– If the Security Extension is implemented AIRCR.PRIS is applied to Non-secure exceptions.
– If there are no active exceptions the value 256 is used.

• If the Main Extension is implemented the effects of BASEPRI are applied after the BASEPRI value has
been adjusted by AIRCR.PRIGROUP and the Non-secure value is adjusted by AIRCR.PRIS if the Security
Extension is implemented.

• If the Main Extension is implemented the effects of FAULTMASK are applied. If the Security Extension is
implemented AIRCR.PRIS is applied to any priority boosting resulting from FAULTMASK_NS

• PRIMASK is applied. If the Security Extension is implemented AIRCR.PRIS is applied to any priority
boosting resulting from PPRIMASK_NS.

Applies to an implementation of the architecture Armv8.0-M onward.

RRKCQ Execution at a particular priority can only be preempted by an exception with a lower group priority value.

Applies to an implementation of the architecture Armv8.0-M onward.

IDPSP In a PE with the Main Extension, BASEPRI and each SHPRn.PRI_m and NVIC_IPRn.PRI_Nm are 8-bit fields
that AIRCR.PRIGROUP splits into two fields, a group priority field and a subpriority field:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter B3. Programmers’ Model
B3.13. Priority model

BASEPRI, SHPRn.PRI_m[7:0], and NVIC_IPRn.PRI_Nm[7:0]

AIRCR.PRIGROUP value Group priority field Subpriority field

0 [7:1] [0]

1 [7:2] [1:0]

2 [7:3] [2:0]

3 [7:4] [3:0]

4 [7:5] [4:0]

5 [7:6] [5:0]

6 [7] [6:0]

7 - [7:0]

In a PE without the Main Extension, the priority fields are two bits wide, and AIRCR.PRIGROUP is RES0,
therefore each SHPRn.PRI_m and NVIC_IPRn.PRI_Nm field is treated as a group priority.

SHPRn.PRI_m[5:0] and NVIC_IPRn.PRI_Nm[5:0] are RES0 in a PE without the Main Extension.

All low order bits of BASEPRI, SHPRn.PRI, and NVIC_IPRn.PRI_Nm are not implemented as priority bits are
RAZ/WI.

Applies to an implementation of the architecture Armv8.0-M onward.

RWQWK When AIRCR.PRIS is 1, each Non-secure exception NVIC_IPRn.PRI_Nm priority field value [7:0] has the
following sequence applied to it, it:

1. Is divided by two.
2. The constant 0x80 is then added to it.

This is equivalent to the priority field value output_pri = ‘1’:input_pri[7:1] and the priority comparisons are done
on the effective field value after the division by 2 + 0x80 has been performed.

This maps the Non-secure priority field values to the bottom half of the priority range. When this sequence is
applied, any effects of AIRCR.PRIGROUP have already been taken into account.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, Subpriority
requires M.

IXFVH The following diagram shows an example. In this example, all 8 bits of the Non-secure exception priority fields
are implemented as priority bits and AIRCR.PRIGROUP_NS is set to 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter B3. Programmers’ Model
B3.13. Priority model

Non-secure group
priority field

values

0x00

0xFF

0x00

0xFF

0x00

0xFF

0x00

0xFF

0x80
0x7E

Priority range

Increasing
priority

In this example, the mapping is:

Non-secure exception priority Mapped to

0x00 0x80

0x02 0x81

0x04 0x82

0x06 0x83

. .

. .

. .

0xFE 0xFF

In this example, Secure exceptions in the range 0x00-0x7F have priority over all Non-secure exceptions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

RCQRV After applying AIRCR.PRIS:

• If there are multiple pending exceptions, the pending exception with the lowest group priority field value
takes precedence.

• If multiple pending exceptions have the same group priority field value, the pending exception with the
lowest subpriority field value takes precedence.

• If multiple pending exceptions have the same group priority field value and the same subpriority field value,
the pending exception with the lowest exception number takes precedence.

• If a pending Secure exception and a pending Non-secure exception both have the same group priority
field value, the same subpriority field value, and the same exception number, the Secure exception takes
precedence.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a Secure exception requires S.

IWPCP In a PE without the Main Extension but with the Security Extension, when AIRCR.PRIS is set to 1 the Non-secure
exception is mapped to the lower half of the priority range, as shown in the table:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter B3. Programmers’ Model
B3.13. Priority model

Non-secure group priority value Mapped to

0x00 0x80

0x40 0xA0

0x80 0xC0

0xC0 0xE0

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && !M.

RFNND When determining the highest priority pending exception it is IMPLEMENTATION DEFINED whether:

• A single priority comparison tree is used and AIRCR.PRIGROUP is not applied.

• Separate priority comparison trees are used for the Secure and Non-secure exceptions. AIRCR.PRIGROUP is
applied to the outputs of each tree before they are compared to determine the overall highest priority pending
exception.

Applies to an implementation of the architecture Armv8.0-M onward.

IVPKQ Arm strongly recommends a single priority comparison tree is used and AIRCR.PRIGROUP is not applied.

Applies to an implementation of the architecture Armv8.0-M onward.

INCDS The following is an example of exceptions with different priorities:

This example considers the following exceptions, that all have configurable priority numbers:

• A has the highest priority.
• B has medium priority.
• C has lowest priority.

Example sequence of events:

1. No exception is active and no priority boosting is active.
2. B is generated. The PE takes exception B and starts executing the handler for it. Exception B is now active

and the current execution priority is that of B.
3. A is generated. A is higher priority, therefore A preempts B, and the PE starts executing the handler for A.

Exception A is now active and the current execution priority is that of A. Exception B remains active.
4. C is generated. C has the lowest priority, therefore it is pending.
5. After completing A, the PE restarts the handler for B. After completing B, the PE takes exception C and

starts executing the handler for it. C is now active and the current execution priority is that of C.

Applies to an implementation of the architecture Armv8.0-M onward.

RDSZC An implementation is permitted to extend the exception priorities to 9-bits so that the LSB of Non-secure exceptions
is not discarded when applying AIRCR.PRIS.

When AIRCR.PRIS is not applied, the exception priority is extended to 9-bits by appending ‘0’ to the least
significant end of the priority value.

When applying AIRCR.PRIGROUP to determine the group priority, only the most significant 8-bits of the 9-bit
priority are used.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && M.

IRYTJ The LSB of an extended 9-bit exception priority can be thought of as a fractional sub-priority bit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && M.

See also:

B3.9 Exception numbers and exception priority numbers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter B3. Programmers’ Model
B3.13. Priority model

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting.

B3.31 Hardware-controlled priority escalation to HardFault.

ExceptionPriority().

ExecutionPriority().

ComparePriorities().

RawExecutionPriority().

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter B3. Programmers’ Model
B3.14. Secure address protection

B3.14 Secure address protection

RCHJX NS-Req defines the Security state that the PE or DAP requests that a memory access is performed in.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RMSNJ NS-Attr marks a memory access as Secure or Non-secure.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RVHRL For PE data accesses, NS-Req is equal to the current Security state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RXSPQ For PE and DAP accesses, NS-Attr is determined as follows:

NS-Req Security attribute of the location being accessed NS-Attr

Non-secure Non-secure Non-secure

Secure N/a

Secure Non-secure Non-secure

Secure Secure

A memory transaction is terminated with an error if the NS-Req is Non-secure and the Security attribute of the
location being accessed is Secure. For PE generated accesses this error causes a SecureFault with the appropriate
syndrome to be generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RBBBJ If the memory transaction is an exception vector fetch access, NS-Req is set to the Security state of the exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RFLRG If the memory transaction is part of stacking or unstacking an exception stack frame, the NS-Req is determined by
the Security state of the background context, as indicated by EXC_RETURN.S

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RLDDJ If the memory transaction is part of an interstating function return, the NS-Req is always Secure for the unstacking
of the function return stack frame.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RLSTF If the memory transaction is part of lazy Floating-point state preservation, then NS-req is determined by FPCCR.S.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && FP.

See also:

B3.15 Security state transitions.

B3.17 Function returns from Non-secure state.

B3.19 Exception entry, context stacking.

B13.3.4 DAP access permissions.

B10.2 Security attribution.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter B3. Programmers’ Model
B3.15. Security state transitions

B3.15 Security state transitions

RPQHT Transitions between Security states are performed when branching to an address in a different Security state, as
shown in the table below:

Current Security state Security attribute Conditions for a change

of the branch target address in Security state

Secure Non-secure Change to Non-secure state if the branch was an

interstating branch instruction,

BXNS or

BLXNS, with the least

significant bit of its target address set to 0.

Non-secure Secure and is Non-secure callable Change to the Secure state if

the branch target address contains an SG

instruction which is fetched

and successfully executed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IKWMP SG instructions in Secure memory are valid entry points to Secure code. They prevent Non-secure code from being
able to jump to arbitrary addresses in Secure code.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RXWPC Any attempt to execute an instruction in Non-secure memory while the PE is in secure state causes an INVTRAN
SecureFault to be generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IMSCF An insterstating branch with the least significant bit of the target address set to zero causes the PE to transition to
the Non-secure state. A subsequent attempt to execute an instruction from Non-secure memory will therefore not
generate an INVTRAN SecureFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RJKJD On transition from Non-secure to Secure state, if there is no SG instruction or the whole instruction at the branch
target address is not flagged as Non-secure callable, the execution of the next instruction will generate an INVEP
SecureFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RYGTR If sequential instruction execution crosses from Non-secure memory to Secure memory, then if the Secure memory
entry point contains an SG instruction and the whole of the instruction at the Secure memory entry point is flagged
with the Secure attribute and is Non-secure callable, it is CONSTRAINED UNPREDICTABLE whether:

• The PE changes to Secure state.
• An INVEP SecureFault is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, an INVEP
SecureFault requires M.

INGXH Except for an SG instruction, it is not possible to execute Secure code in Non-secure state. It is not possible to
execute Non-secure code in Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter B3. Programmers’ Model
B3.15. Security state transitions

RQVPC When all the following conditions are met, the value at the location indicated by the current Secure stack pointer is
loaded from memory:

• The SG instruction is executed in Non-secure state.
• Either the SAU or IDAU, or both, indicate that the SG instruction was fetched from Secure memory.
• The PE is executing in Thread mode.

The load of the value indicated by the current Secure stack pointer is performed with the privilege level indicated
by CONTROL_S.nPriv and NS-req set to Secure.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - S.

RXCXC An INVEP SecureFault is raised if the all of the following are true:

• CCR_S.TRD is set to 1.

• Either, or both, of the following conditions are met:

– CONTROL_S.SPSEL is 0.
– The top 31 bits of the value at the location indicated by the current Secure stack pointer loaded from

memory matches the top 31 bits of 0xFEFA125A.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - S.

See also:

C1.4.7 Instruction set, interworking and interstating support.

Chapter B10 The Armv8-M Protected Memory System Architecture.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter B3. Programmers’ Model
B3.16. Function calls from Secure state to Non-secure state

B3.16 Function calls from Secure state to Non-secure state

RGVBB If a BLXNS interstating branch generates a change from Secure state to Non-secure state, then before the Security
state change:

• The return address, which is the address of the instruction after the instruction that caused the function call,
the IPSR value and CONTROL.SFPA are stored onto the current stack, as shown in the following figure.
ReturnAddress[0] is set to 1 to indicate a return to the T32 instruction set state. The IPSR is stacked in the
partial RETPSR, and CONTROL.SFPA is stacked in bit [20] of the partial RETPSR.

0x08

0x04

0x00

a

• If the PE is in Handler mode, IPSR has the value of 1.
• The FNC_RETURN value is saved in the LR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, CONTROL.SFPA
requires FP.

RMNQV Behavior is CONSTRAINED UNPREDICTABLE when a function call stack frame is not doubleword-aligned, and
one of the following behaviors must occur:

• The instruction uses the current value of the stack pointer.
• The instruction behaves as though bits [2:0] of the stack pointer are 0b000.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IKWZD Arm recommends that when Secure code calls a Non-secure function, any registers not passing function arguments
are set to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

C1.4.7 Instruction set, interworking and interstating support.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter B3. Programmers’ Model
B3.17. Function returns from Non-secure state

B3.17 Function returns from Non-secure state

RHPFG An interstating function return begins when one of the following instructions loads a FNC_RETURN value into
the PC:

• A POP (multiple registers) or LDM that includes loading the PC.
• An LDR instruction with the PC as a destination.
• A BX instruction with any register.
• A BXNS instruction with any register.

On detecting a FNC_RETURN value in the PC:

• The FNC_RETURN stack frame is unstacked.
• EPSR.IT is set to 0x00.
• The following integrity checks on function return are performed:

– A check that IPSR is zero or 1 before the value of it is restored.
– A check that if the function return is being performed in Thread mode the stacked RETPSR.Exception

value is zero.
– A check that if the function return is being performed in Handler mode the stacked RETPSR.Exception

value is nonzero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IQBJN Behavior is CONSTRAINED UNPREDICTABLE when a function call stack frame is not doubleword-aligned.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RDWTF The FNC_RETURN value is:

1 1 1 1 0 1 S

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

Bits[31:1]

This is what identifies the value as an FNC_RETURN value.

Bit[0], S: The function return was from:

0: Secure state.

1: Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RFRSP Any fault raised on function return is synchronous to the instruction that loaded the FNC_RETURN value into the
PC.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RPBNM Any failed integrity check on function return generates a Secure INVPC UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RFGNB If FNC_RETURN does not fail the integrity checks then the PE behaves as follows:

• ReturnAddress bits [31:1] is written to the PC.
• ReturnAddress bit [0] is written to EPSR.T.
• The partial RETPSR is written to IPSR Exception and CONTROL.SFPA.
• EPSR.IT is cleared to zero.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter B3. Programmers’ Model
B3.17. Function returns from Non-secure state

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, CONTROL.SFPA
requires FP.

RLNFB If the exception indicated by RETPSR.Exception is not supported by the PE IPSR.Exception is set to an UNKNOWN
value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RBGTC If a precise BusFault is raised during FNC_RETURN stack frame unstacking, then it is permitted to raise the fault
regardless of the state of CCR.BFHFNMIGN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

B3.16 Function calls from Secure state to Non-secure state.

B3.31 Hardware-controlled priority escalation to HardFault.

B3.33 Lockup.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter B3. Programmers’ Model
B3.18. Exception handling

B3.18 Exception handling

IGCFQ This section describes the hardware behavior on entry into an exception handler when an exception has been
recognized.

Applies to an implementation of the architecture Armv8.0-M onward.

RKLWH If an Asynchronous exception occurs it is required to be architecturally pended within a finite time. Once an
asynchronous exception has been pended, it is required to be taken within finite time if the asynchronous exception
is enabled and has sufficient priority to preempt the current execution priority.

Applies to an implementation of the architecture Armv8.0-M onward.

RKFRF If an exception was pending but is changed to not pending before it is taken, then the architecture permits the
exception to be taken but does not require that the exception is taken. If the exception is taken it must be taken
before the first Context synchronization event after the exception was changed to not pending.

Applies to an implementation of the architecture Armv8.0-M onward.

RYFHR An exception that does not cause lockup sets both:

• The pending bit of its handler, or the pending bit of the HardFault handler, to 1.
• The associated fault status information.

Applies to an implementation of the architecture Armv8.0-M onward.

RVLDB When a pending exception has a lower group priority value than current execution, including accounting for any
priority adjustment by AIRCR.PRIS, the pending exception preempts current execution.

Applies to an implementation of the architecture Armv8.0-M onward.

RWYWW Preemption of current execution causes the following basic sequence:

1. The return address is determined and stacked along with the State context registers.

2. The Additional state context may be stacked depending on the value of EXC_RETURN.DCRS and the
Security transition being made.

3. The Floating-point context may be stacked, which might be any one of the following:

• No stacking or preservation of the Floating-point context.
• Stacking the basic Floating-point context.
• Stacking the basic Floating-point context and the Additional floating-point context.
• Activation of Lazy Floating-point state preservation.

4. LR is set to EXC_RETURN.

5. The Floating-point registers may be cleared, depending on the Security state transition.

6. The following flags are also cleared:

• IT State is cleared, if the Main Extension is implemented.
• CONTROL.FPCA is cleared, if the Floating-point Extension is implemented.
• CONTROL.SFPA is cleared, if the Floating-point Extension and the Security Extension are implemented.

7. The exception to be taken is chosen, and IPSR.Exception is set accordingly. The setting of IPSR.Exception
to a nonzero value causes the PE to change to Handler mode.

8. CONTROL.SPSEL is set to 0, to indicate the selection of the main stack, dependent on the Security state
being targeted.

9. The pending bit of the exception to be taken is set to 0. The active bit of the exception to be taken is set to 1.

10. The Security state is changed to the Security state of the exception that is being activated.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter B3. Programmers’ Model
B3.18. Exception handling

11. The stacked State context registers is either set to UNKNOWN or cleared to zero based on the Security state
transition being made and the architectural features implemented.

12. The stacked Additional state context registers is either preserved, set to UNKNOWN, or cleared to zero based
on the Security state transition being made and the architectural features implemented.

13. EPSR.T is set to bit[0] of the exception vector for the exception to be taken.

14. The PC is set to the exception vector for the exception to be taken.

Applies to an implementation of the architecture Armv8.0-M onward. Note, some steps might require additional extensions.

RNJVF When, during exception entry, the target Security state of an exception differs from the Security state of the memory
the exception vector targets:

• An INVEP SecureFault is generated if the exception is Non-secure and the exception vector targets Secure
memory.

– The INVEP SecureFault can be avoided if the exception is associated with Non-secure state and is
targeting an SG instruction that is located in memory that is Secure and Non-secure callable.

• An INVTRAN SecureFault is generated if the exception is Secure and the exception vector targets Non-secure
memory.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, an INVEP or
INVTRAN SecureFault requires M.

RQLHB The return address is one of the following:

• For a synchronous exception, other than an SVCall exception and a SVC instruction that escalates to
HardFault, the address of the instruction that caused the exception.

• For an asynchronous exception, the address of the next instruction in the program order.
• For an SVCall exception and a SVC instruction that escalates to HardFault, the address of the next instruction

in the program order.

Applies to an implementation of the architecture Armv8.0-M onward.

RXKDD The least significant bit of the return address from an exception is RES0.

Applies to an implementation of the architecture Armv8.0-M onward.

RHZDC The possible faults, and their ordering, that might be encountered during exception handling are described in Arm®

Armv8-M Faults on Exception Handling (ARM DDI 0625).

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.10 Exception enable, pending, and active bits.

B3.13 Priority model.

B3.19 Exception entry, context stacking.

B3.20 Exception entry, register clearing after context stacking.

B3.30 Vector tables.

B3.21 Stack limit checks.

B3.24 Exceptions during exception entry.

Chapter B5 Vector Extension

Applies to an implementation of the architecture Armv8.1-M onward.

Arm® Armv8-M Faults on Exception Handling (ARM DDI 0625).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

B3.19 Exception entry, context stacking

RQDKQ When stacking the context on exception entry, including tail-chaining, full descending stacks are used.

Applies to an implementation of the architecture Armv8.0-M onward.

RMFPR The following diagram shows the format stack frame generated on exception entry.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16

Additional FP context
16 32-bit words

Original SP

VPR
FPSCR

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

FP context
18 32-bit words

RETPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

State context
8 32-bit words

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

Additional state context
10 32-bit words

New SP

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

RPWWG The exception stack frame is divided into the following four sections:

• State context registers.
• Additional state context registers.
• floating-point context registers.
• Additional floating-point context registers.

The State context registers are always stacked on exception entry, except in tail-chaining. The presecence of the
other sections depends on the type of exception transition being performed and whether or not there is an active
floating-point context. Unless otherwise stated if a section is not stacked, the other sections are shifted upwards to
reduce the amount of stack space required.

Applies to an implementation of the architecture Armv8.0-M onward.

RSHNX On taking an exception, excluding tail-chaining that requires a transition from Secure to Non-secure state, the PE
hardware saves Additional state context registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RBLQS If a Secure exception is taken from a Secure context of execution, it is IMPLEMENTATION DEFINED whether:

• The Additional state context register stacking is not attempted and EXC_RETURN.DCRS is set to 1.
• The Additional state context register stacking is attempted and EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

ITQYR If a higher priority Secure exception, that does not require the stacking of the Additional state context registers
occurs during exception entry after the PE has begun stacking the additional state context, but before any exception
handler has started execution, in preparation to take a Secure exception the PE might:

• Discard the stacking of the Additional state context registers and EXC_RETURN.DCRS is set to 1.
• Complete the stacking of the Additional state context registers and EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RSGKY If CONTROL.FPCA is 1 when the exception is taken, excluding tail-chaining, then in addition to the state context
being saved, the floating-point context is handled in one of the following ways:

• Stack the Floating-point context.
• Reserve space on the stack for saving the Floating-point context in the future. This is called lazy Floating-

point state preservation.

If CONTROL.FPCA is 0, then there is no floating-point context active. No stacking or lazy state preservation of
the floating-point context is performed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RNXDF On taking an exception when CONTROL.FPCA is 1 and FPCCR_S.TS is 1 and the background state is Secure
state, the PE hardware either stacks both the Floating-point context and Additional floating-point context, or when
lazy Floating-point state preservation is enabled, reserves space on the stack for both the Floating-point context
and Additional floating-point context.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.

RVNSK If one or more of the following exceptions is generated during stacking operations on exception entry, including
tail-chaining, the PE is permitted to abandon any remaining stacking operations:

• MemManage fault.
• BusFault.
• AUVIOL SecureFault.
• STKOF UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

RWCHZ An exception taken during exception entry that is not related to stacking the state context and Additional state
context, for example an NOCP UsageFault or LSERR SecureFault, the PE must complete stacking of the state
context and Additional state context.

Applies to an implementation of the architecture Armv8.0-M onward.

RBKVD On an exception, the RETPSR value that is stacked is all the following:

• The APSR, IPSR, and EPSR.
• CONTROL.SFPA, in RETPSR.SFPA if the background state is Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. Note, CONTROL.SFPA requires S && (FP || MVE).

RPBVF On exception entry, excluding tail-chaining, if the stack pointer belonging to the context that is being preempted
is not doubleword aligned, the stack pointer is decremented by four to enforce doubleword alignment.
RETPSR.SPREALIGN is set to one to indicate that the stack pointer has been decremented by four. If the stack
pointer has not been realigned RETPSR.SPREALIGN is set to zero.

Applies to an implementation of the architecture Armv8.0-M onward.

RZWQX In a PE with the Floating-point Extension or MVE, because setting FPCCR.ASPEN to one causes the PE
to automatically set CONTROL.FPCA to 1 on the execution of a floating-point or MVE instruction, setting
FPCCR.ASPEN to one means that for any software that uses floating-point or MVE the PE hardware automatically
either:

• Stack Floating-point context on taking an exception.
• Activate lazy Floating-point state preservation on taking an exception.

If CONTROL.FPCA == 1, it is FPCCR.LSPEN that determines whether the PE hardware performs stacking or
lazy Floating-point state preservation:

0 : The PE hardware automatically stacks the floating-point registers.

1: On taking an exception, the PE hardware activates lazy Floating-point state preservation and sets all of:

• The FPCAR, to point to the reserved S0 stack address.
• FPCCR.LSPACT to one.
• FPCCR.{USER, THREAD, HFREADY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY, SPLIMVIOL},

to record the permissions and fault possibilities to be applied to any subsequent Floating-point context and
Additional floating-point context save.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

IZBMH Executing a VLSTM instruction can activate lazy Floating-point state preservation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RVBHY On activating lazy Floating-point state preservation:

• If the activation of lazy floating-point preservation was triggered by exception entry, and the stacking operation
would violate the stack pointer limit FPCCR.SPLIMVIOL is set to one, otherwise FPCCR.SPLIMVIOL is
set to zero.

• If the current Security state is Secure then FPCCR.S is set to one, otherwise zero.

• If the current privilege level is privileged FPPCR.USER is set to zero. If the current privilege level is
unprivileged FPPCR.USER is set to one.

• If the current mode is Thread FPPCR.THREAD is set to one. If the current mode is Handler FPPCR.THREAD
is set to zero.

• If the lazy Floating-point state preservation was triggered by exception entry the FPCAR, is set to point to
the reserved S0 stack address.

• If the activation of lazy floating-point preservation was triggered by a VLSTM instruction FPCAR is set to the
address specified by that instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

• FPCCR.LSPACT to one.

• Set FPCCR.{USER, THREAD, HFRDY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY} to one or zero,
to record the permissions and fault possibilities to be applied to any subsequent Floating-point context and
Additional floating-point context stacking. The fields will be set to one according to the following conditions:

– If the execution priority value, as defined by ExecutionPriority(), is greater than minus one
then FPCCR.HFRDY is set to one, otherwise this field is set to zero.

– If SHCSR.BUSFAULTENA is set and the execution priority value, as defined by ExecutionPriority(),
is greater than the priority value for a BusFault FPCCR.BFRDY is set to one, otherwise this field is set
to zero.

– If SHCSR.MEMFAULTENA is set and the execution priority value, as defined by ExecutionPriority(),
is greater than the priority value for a MemManage Fault, the FPCCR.MMRDY bit for the current
Security state is set to one, otherwise this field is set to zero.

– If SHCSR_S.USGFAULTENA is set and the execution priority value, as defined by ExecutionPriority(),
is greater than the priority value for a Secure UsageFault FPCCR_S.UFRDY is set to one, otherwise this
field is set to zero.

– If SHCSR_NS.USGFAULTENA is set and the execution priority value, as defined by ExecutionPriority(),
is greater than the priority value for a Non-secure UsageFault FPCCR_NS.UFRDY is set to one,
otherwise this field is set to zero.

– If SHCSR.SECUREFAULTENA is set and the execution priority value, as defined by ExecutionPriority(),
is greater than the priority value for a SecureFault FPCCR.SFRDY is set to one, otherwise this field is
set to zero.

– If CanPendMonitorOnEvent() returns TRUE, FPCCR.MONRDY is set to one, otherwise this
field is set to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RGHDJ Execution of a floating-point or MVE instruction while lazy Floating-point state preservation is active, that is when
the banked FPCCR.LSPACT is one for the Security state indicated by FPCCR.S, triggers the preservation of the
floating-point state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RYTQC If an attempt is made to execute a floating-point or MVE instruction while lazy Floating-point state preservation is
active, the access permissions that CPACR and NSACR define are checked against the context that activated lazy
Floating-point state preservation, in addition to the checks relating to memory access permissions.

• If no permission violation is detected, the PE:

1. If AIRCR.IESB is set to one an implicit Error synchronization barrier is performed.
2. Saves Floating-point context to the reserved area on the stack, as identified by the FPCAR.
3. Saves the Additional floating-point context if FPCCR.TS == 1 for the Security state indicated by

FPCCR.S.
4. Clears the floating-point registers that were saved to the stack if FPCCR_S.TS == 1 and FPCCR.S == 1.

Otherwise, the PE sets the floating-point registers to an UNKNOWN value.
5. Sets FPCCR.LSPACT to 0 to indicate that lazy Floating-point state preservation is no longer active.
6. If AIRCR.IESB is set to one an implicit Error synchronization barrier is performed.
7. Processes the floating-point instruction.

• If a CPACR or NSACR permission violation is detected, the PE generates a NOCP UsageFault and does not
save or clear the Floating-point registers to the reserved area on the stack.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RKWNM Any faults that are caused by saving the floating-point registers during exception entry escalate in the same way as
a fault on stacking the state context.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

RQFWH If a fault is generated during lazy Floating-point state preservation then whether to escalate the fault determined by
using the FPCCR.*RDY fields rather than the current execution priority.

If the exception is enabled, the exception priority value of the fault is compared with the current excecution priority
value. If the exception priority value is not suffient to preempt the execution priority, then the fault is pended. The
fault will be taken after the execution priority reduces to a level to allow the fault to preempt execution.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RBQFC An LSERR SecureFault is raised on exception entry, excluding tail-chaining if all of the the following conditions
are met:

• CONTROL.FPCA was set for the background context from which the exception is being taken.
• The banked version of FPCCR.LSPACT indicated by FPCCR_S.S is set.

If the LSERR SecureFault is raised, all of the following occur:

• The exisiting lazy state activation is not modified.
• The registers associated with the Floating-point context are not modified.
• The registers associated with the Additional Floating-point context are not modified.
• No stacking operations are performed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.

RLGNS When all the following conditions are met on exception entry, the PE generates a Secure NOCP UsageFault, skips
all Floating-point register saving, clearing or lazy Floating-point state preservation activation and does not allocate
space on the stack for floating-point registers:

• CONTROL.FPCA == 1.
• NSACR.CP10 is 0.
• The Background state is Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.

RLRTP It is IMPLEMENTATION DEFINED whether beat-wise instructions that check for lazy Floating-point state
preservation (by directly or indirectly calling PreserveFPState()) do so before the execution of every beat
or once before the first beat to be executed of an instruction. The first beat might not be beat 0 if the instruction is
executed with a nonzero ECI value.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RQYYT When performing lazy Floating-point state preservation that does not cause the execution of the current instruction
to terminate, it is IMPLEMENTATION DEFINED whether only the FPCCR.LSPACT flag associated with the Security
state indicated by FPCCR.S is cleared or the FPCCR.LSPACT flags are cleared for both Security states.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.

ITWPT Arm recommends that when performing lazy Floating-point state preservation both the Secure and Non-secure
FPCCR.LSPACT flags should be cleared.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.

IGGMG For Armv8.0-M implementations Arm recommends that a NOCP UsageFault takes precedence over UNDEFINSTR
faults for all instructions that fall into the range described by the IsCPInstruction() function, except for the
following instructions:

• VLLDM.
• VLSTM.

Applies to an implementation of the architecture Armv8.0-M onward.

RQLGM From Armv8.1-M, a NOCP UsageFault takes precedence over UNDEFINSTR faults for all instructions that fall
into the range described by the IsCPInstruction() function, except for the following instructions:

• VLLDM.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

• VLSTM.
• VSCCLRM.

Applies to an implementation of the architecture Armv8.1-M onward. Note, For further information see the instruction
descriptions.

RDKCR For the following instructions, UNDEFINSTR faults take precedence over NOCP UsageFaults when they are
attempting to access FPCXT payloads from Non-secure state:

• VLDR (System Register).
• VMRS.
• VMSR.
• VSTR (System Register).

Applies to an implementation of the architecture Armv8.1-M onward. Note, For further information see the instruction
descriptions.

IHGGX If CP10 is not implemented or disabled, executing an MVE vector instruction generates a NOCP UsageFault.

Applies to an implementation of the architecture Armv8.1-M onward.

RNPLD The instruction encoding space 0b111x_1111_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx is considered to be
part of CP10 and therefore NOCP UsageFaults are prioritized over UNDEFINSTR UsageFaults in the same way
as for other coprocessor instructions.

Applies to an implementation of the architecture Armv8.1-M onward.

RFVTL The value in CONTROL.SFPA is set automatically by hardware on any of the following events:

• An SG instruction fetched from Secure memory and executed in Non-secure state clears CONTROL.SFPA to
0.

• A BXNS instruction that causes a transition from Secure state to Non-secure state clears CONTROL.SFPA to
0.

• A BLXNS instruction that causes a transition from Secure state to Non-secure state preserves the value in
CONTROL.SFPA in the FNC_RETURN stack frame and then clears CONTROL.SFPA to 0.

• A valid instruction that loads FNC_RETURN into the PC sets CONTROL.SFPA to the value retrieved from
the FNC_RETURN payload.

• CONTROL.SFPA is saved and restored on exception entry or return in the RETPSR value in the stack frame.
• Exception entry, including tail chaining, clears CONTROL.SFPA to 0.
• If the value of FPCCR.ASPEN is one, then any floating-point or MVE instructions excluding VLLDM and
VLSTM or FPCXT_NS access instructions executed in Secure state sets the value of CONTROL.SFPA to
one. If the value of FPCCR.ASPEN is one and the value of CONTROL.SFPA is zero when a floating-point
instruction is executed in the Secure state, the FPSCR value is taken from the values set in FPDSCR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.

IGJGL To ensure future compatibility Arm recommends that the value used to seal the top of the stack is 0xFEF5EDA5.
This value has the following properties:

• It is not a valid FNC_RETURN or EXC_RETURN value.
• It is not the integrity signature used to secure the bottom of the stack frame and cannot be used to inadvertently

mark the stack as containing a valid exception stack frame.
• The value starts with 0xF and is therefore not a valid instruction address and will result in a fault if interpreted

as a FNC_RETURN stack frame.

Applies to an implementation of the architecture Armv8.0-M onward.

IFKBH If a MemManage fault, BusFault, or AUVIOL SecureFault occurs on a stacking memory access during exception
entry, then stacking of Additional state context is optional.

Whether or not the option of stacking the Additional state context is exercised, the clearing of Additional state
context is still required on exception entry as described in ExceptionTaken().

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RHGZQ The order in which registers are saved to the stack during exception entry or during lazy Floating-point state
preservation is not architected.

Applies to an implementation of the architecture Armv8.0-M onward.

RKPYX The possible faults, and their ordering, that might be encountered during Floating-point lazy state preservation are
described in Arm® Armv8-M Faults on Exception Handling (ARM DDI 0625).

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.8 Stack pointer.

B3.20 Exception entry, register clearing after context stacking.

B3.23 Integrity signature.

B3.24 Exceptions during exception entry.

PushStack().

UpdateFPCCR().

MergeExcInfo().

Arm® Armv8-M Faults on Exception Handling (ARM DDI 0625).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter B3. Programmers’ Model
B3.20. Exception entry, register clearing after context stacking

B3.20 Exception entry, register clearing after context stacking

RMRDS On exception entry, including tail-chaining, the PE sets the State Context, APSR and EPSR to:

• Zero if the exception being take does not target the Secure state or Armv8.1-M is implemented.
• UNKNOWN in all other cases.

If stacked the PE sets the Additional state context to:

• Zero if the background state is Secure and the exception targets the Non-secure state.

• UNKNOWN if all the following conditions are met:

– The background state is Secure.
– The exception targets the Secure state.
– EXC_RETURN.DCRS is zero.

• Otherwise the Additional state context values are not changed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RJWBK The following operations are performed on exception entry if the Floating-point context has been stacked:

• If FPCCR_S.TS is 0 when the Floating-point context is pushed to the stack, and the registers are set to an
UNKNOWN value after stacking.

• If FPCCR_S.TS is 1 when the Floating-point context and Additional floating-point context are both pushed
to the stack, and the registers are set to zero after stacking.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP && S.

See also:

B3.19 Exception entry, context stacking.

B3.26 Tail-chaining.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

B3.21 Stack limit checks

RPCRT A PE that does not implement the Main Extension, and does not implement the Security Extension does not
implement stack limit checking.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M && !S.

RNHBX In a PE without the Main Extension but with the Security Extension, there are two stack limit registers in Secure
state for the purposes of stack limit checking.

Security state Stack Stack limit registers

Secure Main MSPLIM_S

Process PSPLIM_S

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && !M.

RJPFX In a PE with the Main Extension but without the Security Extension, there are two stack limit registers:

Stack Stack limit registers

Main MSPLIM

Process PSPLIM

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && !S.

RXQDS In a PE with the Main Extension and the Security Extension, there are four stack limit registers:

Security state Stack Stack limit registers

Secure Main MSPLIM_S

Process PSPLIM_S

Non-secure Main MSPLIM_NS

Process PSPLIM_NS

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

IKDPG A stack can descend to its stack limit value. Any attempt to descend the stack further than its stack limit value is a
violation of the stack limit.

Applies to an implementation of the architecture Armv8.0-M onward.

RTCXN xSPLIM_x[2:0] are treated as RES0, so that all stack pointer limits are always guaranteed to be doubleword-aligned.
Bits [31:3] of the xSPLIM_x registers are writable.

Applies to an implementation of the architecture Armv8.0-M onward.

RDKSR Stack limit checks are performed during the creation of a stack frame for all of the following:

• Exception entry.
• Tail-chaining from a Secure to a Non-secure exception.
• A function call from Secure code to Non-secure code.

Applies to an implementation of the architecture Armv8.0-M onward. Note, Secure exceptions and secure code require S.

RZLZG On a violation of a stack limit during either exception entry or tail-chaining:

• A synchronous STKOF UsageFault is generated.
• The stack pointer is set to the stack limit value.
• Push operations to addresses below the stack limit value are not performed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

• It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit
value are performed.

Applies to an implementation of the architecture Armv8.0-M onward.

RYXCQ If on exception entry or tail-chaining the stack frame being written wraps around the top or bottom of the 32-bit
memory address space, it is IMPLEMENTATION DEFINED whether stack limit checking is applied.

Applies to an implementation of the architecture Armv8.0-M onward.

RCCSC On a violation of a Secure stack limit during the stacking of a FNC_RETURN stack frame:

• A synchronous STKOF UsageFault is generated.
• Push operations to addresses below the stack limit value are not performed.
• It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit

value are performed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RGGRH Unstacking operations are not subject to stack limit checking.

Applies to an implementation of the architecture Armv8.0-M onward.

RBRLT Updates to the stack pointer by the MSR instruction targeting SP_NS are subject to stack limit checking. Updates
to the stack pointer and stack pointer limit by any other MSR instruction are not subject to stack limit checking.

LDR instructions write to two registers, the address register and the destination register. Updates to the stack pointer
by the LDR instructions are only subject to stack limit checking if the stack pointer is the address register. It is
IMPLEMENTATION DEFINED whether stack limit checking is performed if the SP is the destination register for a
load instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RHRDG If a STKOF UsageFault is generated when the Non-secure stack pointer is accessed through a MSR{SP_NS}
instruction in Secure state, the STKOF UsageFault can target either the Secure or Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IJSPJ Arm recommends that a STKOF UsageFault generated by a MSR instruction in Secure state accessing the
Non-secure stack pointer should target the Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IBJHX When an instruction updates the stack pointer, if it results in a violation of the stack limit, it is the modification of
the stack pointer that generates the exception, rather than an access that uses the out-of-range stack pointer.

Applies to an implementation of the architecture Armv8.0-M onward.

IRRDX CCR.STKOFHFNMIGN controls whether stack limit violations are IGNORED while executing at a requested
execution priority that is negative.

Applies to an implementation of the architecture Armv8.0-M onward.

RXCQL It is UNKNOWN whether a stack limit check is performed on any use of the SP marked as UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RQFPF A write to the current stack pointer by an instruction subject to stack limit checking with a value less than the stack
limit will generate a STKOF UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward.

IZKSV Setting the stack limit to a value above the current SP does not directly cause a STKOF UsageFault. However, the
next instruction to modify the SP will cause a STKOF UsageFault if the SP remains below the stack limit after the
update to the SP has been performed.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

IDSJN There is no architectural requirement for stack limit checking to be carried out on exception return as the current
stack pointer will only increment and will not decrement.

Applies to an implementation of the architecture Armv8.0-M onward.

IXRXD There is no architectural requirement for stack limit checking to be carried out on instruction resume
for an interrupt-continuable instruction. Stack limit checking is required on instruction resume for an
exception-continuable instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RQMRP If an instruction attempts to make an access below the stack limit, it is UNKNOWN whether a store performing a
write-back to the current Stack Pointer will generate a STKOF UsageFault where the value written to the current
stack pointer is greater than the stack limit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M || S.

RBRCX When a STKOF UsageFault is generated by an instruction:

• No accesses below the stack limit will be performed.
• It is IMPLEMENTATION DEFINED whether an access by the instruction to locations above the stack limit will

be performed.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.8 Stack pointer.

B3.26 Tail-chaining.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter B3. Programmers’ Model
B3.22. Exception return

B3.22 Exception return

RKPSS The PE begins an exception return when both of the following are true:

• The PE is in Handler mode.

• One of the following instructions loads an EXC_RETURN value, 0xFFXXXXXX, into the PC:

– A POP (multiple registers) or LDM that includes loading the PC.
– An LDR with the PC as a destination.
– A BX with any register.
– A BXNS with any register.

When both of these are true, then on detecting an EXC_RETURN value in the PC, the PE unstacks the exception
stack frame and resumes execution of the unstacked context.

An EXC_RETURN value loaded into the PC will be treated as an address when any of the following conditions
apply:

• The value is loaded by an instruction other than those listed.
• The value is loaded from the vector table by a vector fetch.
• The value is loaded when the PE is in Thread mode.

Applies to an implementation of the architecture Armv8.0-M onward.

RNSRH If a field in the EXC_RETURN with a reserved value is set to a value that conflicts with the reserved value the
behavior is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RNCQN On exception return the following procedures are carried out:

1. In a PE with the Security Extension, the integrity check that is called the EXC_RETURN.ES validation check,
as follows:

• If the PE was in Non-secure state when EXC_RETURN was loaded into the PC and EXC_RETURN.ES
is one, an INVER SecureFault is generated and EXC_RETURN.ES has an Effective value of zero for
the rest of the exception return process.

• If EXC_RETURN.DCRS and EXC_RETURN.ES are both zero, an INVER SecureFault is generated.

2. A check that the exception number being returned from, as held in the IPSR, is shown as active. When
the Security Extension is implemented the exception must be active for the Security state indicated by
EXC_RETURN.ES. If the exception being returned from can be configured to target either Security state,
then it must target the Security state indicated by EXC_RETURN.ES. If this check fails:

• An INVPC UsageFault is generated.
• The UsageFault targets the Security state that the exception return instruction was executed in.

3. A check that if the return is to Thread mode, the value that is restored to the IPSR from the RETPSR is zero,
or that if the return is to Handler mode, the value that is restored to the IPSR from the RETPSR is nonzero. If
this check fails:

• An INVPC UsageFault is generated.
• The UsageFault targets the background Security state as indicated by EXC_RETURN.S.

Applies to an implementation of the architecture Armv8.0-M onward.

RDQLL On returning from Non-secure state, if EXC_RETURN.ES causes an INVER integrity check failure, the subsequent
EXC_RETURN.DCRS bit that is presented in the LR on entry to the resulting derived exception is permitted to be
UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter B3. Programmers’ Model
B3.22. Exception return

ITLXJ Arm recommends that the subsequent EXC_RETURN.DCRS bit that is presented in the LR on entry to the derived
exception is not UNKNOWN, and is set to one.

Applies to an implementation of the architecture Armv8.0-M onward.

RCDCR When returning from an exception, the PE will clear FAULTMASK.FM for the Security state indicated by
EXC_RETURN.ES if the raw execution priority is equal to or greater than zero. If the raw execution priority is
less than zero the following exceptions are cleared:

• If the raw execution priority is -1 and AIRCR.BFHFNMINS is zero indicating Secure HardFault.
• If the raw execution priority is -1 and AIRCR.BFHFNMINS is one indicating Non-secure HardFault.
• If the raw execution priority is -2, indicating NMI.
• If the raw execution priority is -3, indicating Secure HardFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RVJKL If a fault is generated during the exception return process, the PE will tail-chain into that exception. If tail-chaining
is not possible, because after escalation to HardFault the priority is still insufficient to pre-empt the background
code, the PE will enter lockup.

Applies to an implementation of the architecture Armv8.0-M onward.

RRPGL On an exception return that successfully returns to the Background state, with no tail-chaining or failed integrity
checks, the Security state is set to EXC_RETURN.S.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

ICTWL In a PE with the Security Extension, after a successful exception return to the Background state, the PE is in the
correct Security state before the next instruction from the background code is executed. This means that in the case
where the Background state is Secure state, there is no need for an SG instruction at the exception return address.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RQRWD On exception return, and there are no generated exceptions to tail-chain into, the inverse of EXC_RETURN.FType
is written to CONTROL.FPCA.

Applies to an implementation of the architecture Armv8.0-M onward.

ILNPQ Arm recommends that FPCCR.CLRONRET is set to 1, to ensure hardware automatically clears the Floating-point
context registers to zero on exception return.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RHTQX Any faults that are caused by restoring floating-point registers during exception return escalate in the same way as
faults on unstacking state context.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RJMGQ An LSERR SecureFault is generated on exception return if all of the following conditions are met:

• CONTROL.FPCA is 1.
• FPCCR.CLRONRET is 1.
• FPCCR_S.LSPACT is 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && (FP || MVE).

RLMSY The PE generates an LSERR SecureFault on exception return before unstacking the Floating-point context or
Additional floating-point context, when the following conditions are met:

• EXC_RETURN.FType is 0.
• Secure lazy floating-point state preservation is active, that is, FPCCR_S.LSPACT is 1.
• The return is to Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && (FP || MVE).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter B3. Programmers’ Model
B3.22. Exception return

RXLTP A NOCP UsageFault is generated on exception return if all of the following conditions are met:

• CONTROL.FPCA == 1.
• FPCCR.LSPACT == 0.
• FPCCR.CLRONRET == 1.
• Access to CP10 from the Security state of the returning exception, as indicated by EXC_RETURN.ES, is

disabled by NSACR, CPACR, or CPPWR.

The target Security state of the NOCP UsageFault is as follows:

• Secure state, if blocked by NSACR.
• The same Security state as the returning exception as indicated by EXC_RETURN.ES, if blocked by CPACR.
• If the access is blocked by CPPWR, the NOCP UsageFault targets the Secure state if CPPWR.SUS10 == 1.

Otherwise, the NOCP UsageFault targets the same Security state as the returning exception as indicated by
EXC_RETURN.ES.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

RQFCN The PE hardware will clear S0-S15, the FPSCR and VPR to zero, when all of the following conditions apply:

• CONTROL.FPCA is 1.
• FPCCR.CLRONRET is 1.
• CPACR, CPPWR, and NSACR if the Security extension is implemented, grant access to CP10 for the Security

state of the returning exception, as indicated by EXC_RETURN.ES.
• If the Security extension is implemented, FPCCR_S.LSPACT is 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RNLHJ On an exception return that successfully returns to background state, the PE performs the following steps:

• If EXC_RETURN.FType is one no floating-point registers are unstacked.
• If EXC_RETURN.FType is zero and FPCCR.LSPACT is one for the background Security state, as indicated

by EXC_RETURN.S, FPCCR.LSPACT is cleared to zero and no floating-point registers are unstacked.
• Otherwise, the Floating-point context is unstacked, and if FPCCR.TS is one for the background Security

state, as indicated by EXC_RETURN.S, the Additional Floating point context is unstacked.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RRXJC A check of CPACR.CP10, for the Security state indicated by EXC_RETURN.S, and the relevant fields in NSACR
and CPPWR is undertaken, before unstacking the floating-point registers.

If the check fails, a NOCP UsageFault is generated. The target Security state of the NOCP UsageFault is:

• Secure state, if blocked by NSACR.
• If the access is blocked by CPPWR, the NOCP UsageFault targets the Secure state if CPPWR.SUS10 == 1.
• Otherwise, the NOCP UsageFault targets the same Security state as the returning exception as indicated by

EXC_RETURN.S.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RWCSC S0 to S31, FPSCR, and VPR are not modified if the checks prior to unstacking fail.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE. Note, VPR
requires MVE.

RHNNW If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is implemented, the PE clears to zero any floating-point registers, FPSCR, and VPR that would have
been unstacked.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && S.
Note, VPR requires MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter B3. Programmers’ Model
B3.22. Exception return

RLMNG If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is not implemented, then the floating-point registers, FPSCR, and VPR that would have been unstacked
become UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (FP || MVE) && !S.
Note, VPR requires MVE.

RQVKT The PE will enter an IMPLEMENTATION DEFINED sleep mode if all the following are true:

• The return is to Thread Mode.
• SCR.SLEEPONEXIT is one.
• There are no further active exceptions after deactivating the returning exception.

Applies to an implementation of the architecture Armv8.0-M onward.

RWCGV Following completion of the validation requirements of the EXC_RETURN value the PE returns to execution and
the following occurs:

• The registers are restored from the stack frame, in accordance with the EXC_RETURN flags:

– If EXC_RETURN.S is one, either the Secure Main or Process stack is used. If EXC_RETURN.S is
zero, either the Non-secure Main or Process stack is used.

– If EXC_RETURN.ES is 1, EXC_RETURN.SPSEL is written to CONTROL_S.SPSEL.
– If EXC_RETURN.ES is 0, EXC_RETURN.SPSEL is written to CONTROL_NS.SPSEL.
– The Secure or Non-secure bank of CONTROL.SPSEL is read as indicated by EXC_RETURN.S. If the

read CONTROL.SPSEL is one, the Process stack pointer is used, otherwise the Main stack pointer is
used.

• The State context is popped from the stack.

• If EXC_RETURN.S is one, and any of the following conditions are met, the Additional state context is
popped from the stack:

– EXC_RETURN.ES is zero.
– EXC_RETURN.DCRS is zero.

• If EXC_RETURN.Mode is one the PE transitions to Thread mode.

• APSR, EPSR, and IPSR are restored from RETPSR.

• The PC is set to ReturnAddress [31:1]: ‘0’.

• Bit[0] of the ReturnAddress is discarded.

• If EXC_RETURN.S is one then CONTROL.SFPA is set to RETPSR.SFPA.

Applies to an implementation of the architecture Armv8.0-M onward.

IGTDP The order in which registers, including floating-point registers, are restored from the stack is not architected.

Applies to an implementation of the architecture Armv8.0-M onward.

ILTMK If the return unstacks the Additional state context registers, the PE will check the Integrity Signature popped
from the stack. If the Integrity Signature popped from the stack does not match the expected signature, an INVIS
SecureFault is generated.

Applies to an implementation of the architecture Armv8.0-M onward.

IDQWV The unstacking memory operations triggered by an exception return are treated as if the operations are a load
instruction executed in the Security state being returned to, as indicated by EXC_RETURN.S. Any faults generated
by the unstacking memory operations will behave in the same way as a fault on a load instruction, and target the
appropriate Security state.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter B3. Programmers’ Model
B3.22. Exception return

See also:

Chapter B2 Power Management.

B3.18 Exception handling.

B3.23 Integrity signature.

B3.33 Lockup.

Chapter B5 Vector Extension.

Applies to an implementation of the architecture Armv8.1-M onward.

ExceptionReturn()

ValidateExceptionReturn()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter B3. Programmers’ Model
B3.23. Integrity signature

B3.23 Integrity signature

ILHHR In a PE without the Floating-point Extension register file, the integrity signature value is:

1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

In a PE with the Floating-point Extension register file, the integrity signature value is:

1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 SFTC

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

Stack Frame Type Check

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RPJPQ When EXC_RETURN.S is one and the additional state context is unstacked on exception return and the unstacked
integrity signature does not contain a valid value, including if SFTC does not match EXC_RETURN.FType, an
INVIS SecureFault is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IFFTS The integrity signature is an XN address. When performing a function return from Non-secure code, if the integrity
signature value is restored to the PC as the function return address, a MemManage fault is generated when the PE
attempts execution.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

B3.19 Exception entry, context stacking.

B3.22 Exception return.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter B3. Programmers’ Model
B3.24. Exceptions during exception entry

B3.24 Exceptions during exception entry

ILBGQ During exception entry exceptions can occur, for example asynchronous exceptions, or the exception entry sequence
itself might cause an exception, for example a MemManage fault on the push to the stack.

Any exception that occurs during exception entry is a late-arriving exception, and:

• The exception that caused the original entry sequence is the original exception.
• The priority of the code stream running at the time of the original exception is the preempted priority.

When the exception entry sequence itself causes an exception, the latter exception is a derived exception.

The following mechanism is called late-arrival preemption. The PE takes a late-arriving exception during an
exception entry if the late-arriving exception is higher priority, including accounting for any priority adjustment by
AIRCR.PRIS or any required escalation to HardFault.

Late-arriving exceptions are subject to the rules on escalation to HardFault and Lockup.

Applies to an implementation of the architecture Armv8.0-M onward.

RNMTT In late-arrival preemption:

• The late-arriving exception uses the exception entry sequence started by the original exception. The original
exception remains pending.

• The PE takes the original exception after returning from the late-arriving exception.
• The PE ignores non-terminal faults on taking a derived exception on late-arrival preemption.

The pseudocode DerivedlateArrival() describes this.

Applies to an implementation of the architecture Armv8.0-M onward.

RMRTR For Derived exceptions, late-arrival preemption is mandatory.

Applies to an implementation of the architecture Armv8.0-M onward.

RBXTB For late-arriving asynchronous exceptions, it is IMPLEMENTATION DEFINED whether late-arrival preemption is
used. If the PE does not implement late-arrival preemption for late-arriving asynchronous exceptions, late-arriving
asynchronous exceptions become pending.

Applies to an implementation of the architecture Armv8.0-M onward.

IMPNB If a higher priority late-arriving Secure exception occurs during entry to a Non-secure exception when the
Background state is Secure, it is IMPLEMENTATION DEFINED whether:

• The stacking of the additional state context is rolled back.
• The stacking of the additional state context is completed and EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RGDNT If the group priority value of a derived exception is higher than or equal to the preempted priority:

• If the derived exception is a DebugMonitor exception, it is IGNORED.
• Otherwise, the PE escalates the derived exception to HardFault or Lockup if the HardFault cannot be taken

due to the current priority.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a DebugMonitor Exception requires the Debug-
Monitor exception.

INJCW The architecture does not specify the point during exception entry at which the PE recognizes the arrival of an
asynchronous exception.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter B3. Programmers’ Model
B3.24. Exceptions during exception entry

RMQBK The possible faults, and their ordering, that might be encountered during exception entry are described in Arm®

Armv8-M Faults on Exception Handling (ARM DDI 0625).

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.9 Exception numbers and exception priority numbers.

B3.13 Priority model.

B3.18 Exception handling.

B3.26 Tail-chaining.

B3.31 Hardware-controlled priority escalation to HardFault.

B3.33 Lockup.

Arm® Armv8-M Faults on Exception Handling (ARM DDI 0625).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter B3. Programmers’ Model
B3.25. Exceptions during exception return

B3.25 Exceptions during exception return

IKXPV During exception return exceptions can occur, for example asynchronous exceptions, or the exception return might
itself cause an exception.

Any exception that occurs during exception return is a late-arriving exception.

When the exception return sequence itself causes an exception, the latter exception is a derived exception.

Applies to an implementation of the architecture Armv8.0-M onward.

RTRFM When a late-arriving exception during exception return has a lower priority value than the priority being returned
to, the PE takes the late-arriving exception by using tail-chaining.

Applies to an implementation of the architecture Armv8.0-M onward.

IMBNG The architecture does not specify the point during exception return at which the PE recognizes the arrival of an
asynchronous exception. If a PE recognizes an asynchronous exception after an exception return has completed,
there is no opportunity to tail-chain the asynchronous exception.

Applies to an implementation of the architecture Armv8.0-M onward.

RHHSX If the group priority value of a derived exception during exception return is equal to or higher than the execution
priority being returned to:

• If the derived exception is a DebugMonitor exception, the PE ignores the derived exception.
• Otherwise, the PE escalates the derived exception to HardFault and the escalated exception is tail-chained or

the PE enters lockup if the HardFault cannot be taken due to the execution priority being returned to.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a DebugMonitor Exception requires the Debug-
Monitor exception.

RDHFK If the priority value of a derived exception during exception return, after priority escalation if appropriate, is a
lower priority value than the execution priority being returned to, the PE uses tail-chaining to take the derived
exception.

Applies to an implementation of the architecture Armv8.0-M onward.

RZWMN The possible faults, and their ordering, that might be encountered during exception return are described in Arm®

Armv8-M Faults on Exception Handling (ARM DDI 0625).

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.9 Exception numbers and exception priority numbers.

B3.13 Priority model.

B3.22 Exception return.

B3.26 Tail-chaining.

B3.33 Lockup

DebugMonitor exception.

Arm® Armv8-M Faults on Exception Handling (ARM DDI 0625).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

B3.26 Tail-chaining

RFKXX Tail-chaining behavior is as follows:

On detecting an EXC_RETURN value in the PC, if there is a pending exception or a derived exception is raised
that has a lower group priority value than the execution priority being returned to, the PE hardware:

1. Does not unstack the exception stack frame.
2. Takes the pending exception or derived exception.
3. When tail-chaining the PE will not execute any instructions from the background state that has been preempted

by the original exception.

Applies to an implementation of the architecture Armv8.0-M onward.

IFCGM Tail-chaining removes unstacking and restacking operations. In the following example the second exception is a
tail-chained exception:

No exception is active

1st exception 2nd exception

No exception is active

Stacking operation Unstacking operation

Nothing is unstacked

All in Non-secure state:

Applies to an implementation of the architecture Armv8.0-M onward.

ISJSX The tail-chaining of asynchronous exceptions is an IMPLEMENTATION DEFINED optimization.

Applies to an implementation of the architecture Armv8.0-M onward.

IRWDT If tail-chaining avoids a derived exception on exception return, for example a MemManage fault on an unstacking
operation, the derived exception might instead be generated on the return from the last tail-chained exception.

Applies to an implementation of the architecture Armv8.0-M onward.

RPXVB When the Background state is Secure state, as indicated by EXC_RETURN.S, if tail-chaining causes a change of
Security state from Secure to Non-secure, additional context is saved on taking the Non-secure exception if it has
not already been saved as indicated by EXC_RETURN.DCRS:

Secure state

1st exception 2nd exception

Secure state

State context pushed to stack. Unstacking operation

Nothing is unstacked.
Additional state context pushed to stack.

Secure state Non-secure state

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

ITKLM When an exception is tail-chained, and the returning exception is Secure, EXC_RETURN.DCRS keeps track of
whether the additional context is stacked. The following figure is an example:

Secure state

1st exception 2nd exception

Non-secure state

State context and additional state
context pushed to stack.

Unstacking operation

Unstacking all additional context is
skipped.

PE sets EXC_RETURN.DCRS to 0.

Non-secure state Secure state

3rd exception

Secure state

Restacking all additional context is
skipped.

PE sets EXC_RETURN.DCRS to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IXHFS When an exception tail-chains for both Secure and Non-secure state, the tail-chained exception cannot rely on the
state context registers containing the values they had when no exception was active.

Applies to an implementation of the architecture Armv8.0-M onward.

ICGZH When an exception tail-chains, and if the background state was Secure, the tail-chained exception cannot rely on
the additional state context registers containing the values they had when no exception was active.

Applies to an implementation of the architecture Armv8.0-M onward.

RJMHS If the PE recognizes a new asynchronous exception while it is tail-chaining, and the new asynchronous exception
has a higher priority than the next tailed-chained exception, the PE can, instead, take the new asynchronous
exception, using late-arrival preemption.

This rule is true even if the next tail-chained exception is a derived exception. The PE can, instead, take the new
asynchronous exception. If it does, the derived exception becomes pending.

Applies to an implementation of the architecture Armv8.0-M onward.

RPLBN Before entering a tail-chained exception handler during an exception return, the banked FPCCR.LSPACT field
associated with the background Security state, as indicated by the EXC_RETURN.S bit, must be set to one if it
was one before the exception return.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

See also:

B3.19 Exception entry, context stacking.

B3.25 Exceptions during exception return.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

B3.27 Exceptions, instruction resume, or instruction restart

B3.27.1 Basic definitions

IWNNP Load multiple, Store multiple or Clear multiple instructions that support instruction resume are called
interrupt-continuable instructions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RPGRC The PE can take an exception during execution of a interrupt-continuable instruction, effectively halting the
instruction, and resuming execution of the instruction after returning from the exception. This is called instruction
resume.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

IFFGR Instruction resume is an OPTIONAL optimisation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RKRLL The PE can abandon execution of an interrupt-continuable instruction to take an exception, and after returning
from the exception, restart the interrupt-continuable instruction again from the start of the instruction. This is
called instruction restart.

Applies to an implementation of the architecture Armv8.0-M onward.

IVVXG If MVE is implemented the architecture supports the interruption of beat-wise instructions in the middle of multiple
partially executed instructions, these instructions are exception-continuable instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

B3.27.2 Instruction restart behavior

RKCMD To support instruction restart, singleword load and store instructions do not update the destination registers when
the PE takes an exception during execution.

Applies to an implementation of the architecture Armv8.0-M onward.

RVBVG If during the execution of a load or store dual instruction to Normal memory, an exception is taken between the
two memory accesses then the behavior is as follows:

• Any register used by the load instruction, that is not used in the generation of the address used by the load
instruction, can contain an UNKNOWN value.

• Any register used in the generation of the address used by a load instruction is restored to its initial value.
• Any location being stored to by a store instruction can have an UNKNOWN value.

Examples of load and store dual instructions are LDRD (literal) or STRD (immediate).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RWGRG Where a fault is taken during the execution of a VLLDM instruction the PE abandons the stacking of the Secure
floating-point register contents and does not modify the floating-point registers, so that on return from the fault the
instruction can be restarted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && (FP || MVE).

IJJQX If the PE is using instruction restart, Arm recommends that Load Multiple, or Store Multiple instructions are not
used with data in Device memory.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

B3.27.3 Interrupt-continuable instructions

RGPQG The interrupt-continuable instructions are as follows:

• LDM.
• LDMDB.
• STM.
• STMDB.
• POP (multiple registers).
• Push (multiple registers).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RRDHK In a PE with the Floating-point Extension, the floating-point interrupt-continuable instructions are as follows:

• VLDM.
• VSTM.
• VPOP.
• VPUSH.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RFQDX It is IMPLEMENTATION DEFINED whether the CLRM instruction is interrupt-continuable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M.

RQRXG It is IMPLEMENTATION DEFINED whether the VSCCLRM instruction is interrupt-continuable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M.

RSXPP It is IMPLEMENTATION DEFINED whether, if there is an asynchronous exception, instruction execution can
be interrupted after triggering lazy Floating-point state preservation, but before updating the ownership of the
floating-point registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RTLVX If an instruction can trigger the update of CONTROL.FPCA and initialise FPSCR, VPR without raising an
exception, and were that instruction to be abandoned due to an exception, it is IMPLEMENTATION DEFINED if
those registers are preserved.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RYLDS The VLLDM and VLSTM instructions are not interrupt-continuable. It is IMPLEMENTATION DEFINED whether
VLLDM and VLSTM instructions abort or complete when an interrupt occurs.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RXBGJ When executing the VLLDM instruction, and when FPCCR.LSPACT is zero, if the instruction does not raise a
NOCP UsageFault, nor an UNALIGNED UsageFault, and is either interrupted or aborted due to a memory fault,
then any registers that would be loaded by this instruction must be cleared.

If no registers have been updated as a result of the interrupted VLLDM instruction, the registers are permitted to
retain their former values.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RBFBP When the PE is using instruction resume, EPSR.ICI is set to a nonzero value that is the continuation state of the
interrupt-continuable instruction:

• For LDM, LDMDB, STM, STMDB, POP (multiple registers), PUSH (multiple registers)
and CLRM instructions, EPSR.ICI contains the number of the first register in the register list that is to be
loaded, stored or cleared after instruction resume.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

• For the floating-point instructions VLDM, VSTM, VPOP, VPUSH, and VSCCLRM EPSR.ICI contains the
number of the lowest numbered doubleword Floating-point Extension register that was not loaded, stored or
cleared before the PE took the exception.

The EPSR.ICI values shown in the following table are valid EPSR.ICI values:

EPSR[26:25] EPSR[15:12] EPSR[11:10]

ICI[7:6] = 0b00 ICI[5:2] = reg_num ICI[1:0] = 0b00

ICI[7:6] = 0b00 ICI[5:2] = 0b0000 ICI[1:0] = 0b00

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M. Note, some
instructions listed require FP.

RPCZR If EPSR.ICI contains a valid ICI nonzero value and the register number that it contains is either:

• Not in the register list of the interrupt-continuable instructions.
• The first register in the register list of the interrupt-continuable instructions.

Then, when an interrupt-continuable instruction is executed, behavior is a CONSTRAINED UNPREDICTABLE choice
between the following:

• The instruction generates an INVSTATE UsageFault.
• The instruction completes execution.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RSZFC When an instruction that is permitted to be interrupt-continuable completes execution and is outside of an IT block,
the EPSR.ICI field is cleared.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M.

IGZQD The requirment to clear EPSR.ICI applies regardless of whether the PE supports instruction resume, or whether the
PE has implemented an instruction that is optionally interrupt-continuable as interrupt-continuable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M.

B3.27.4 Behavior of interrupt-continuable instructions

RZLVP If the VSCCLRM instruction supports resuming from a nonzero EPSR.ICI value, then the ICI value will correspond
to the Floating-point registers in the register list and not the VPR register. When the last Floating-point register in
the register list is cleared, the VPR register must also be cleared and the instruction must be completed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - S && (MVE || FP).

RKLPL The PE does not generate an INVSTATE UsageFault if the VSCCLRM instruction does not support instruction
resume from a nonzero EPSR.ICI value. If an attempt is made to resume this instruction from a nonzero EPSR.ICI
value, then the nonzero EPSR.ICI value is ignored and the instruction is restarted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - S && (MVE || FP).

RJXKQ If the PE uses instruction resume during a load multiple interrupt-continuable instruction, then after the instruction
is interrupted, the values of all registers in the register list are UNKNOWN, except for the following:

• Registers that are marked by EPSR.ICI as already loaded.
• The base register.
• The PC.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

RGZCT If the PE uses instruction resume during a clear multiple interrupt-continuable instruction, then after the instruction
is interrupted, the values of all registers in the register list are UNKNOWN, except for the registers that are marked
by EPSR.ICI as already cleared.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

B3.27.5 Exceptions during interrupt-continuable instructions

RPQRT When the PE uses instruction resume to resume a Load Multiple instruction with the PC in its register list, the PE
must, if the PC was loaded before generation of the exception, restore the PC before taking the exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RTGGR In a PE that does not implement EPSR.ICI, or when a fault is taken during any Load Multiple or Store Multiple
instruction, including PUSH (multiple registers) and POP (multiple registers), the PE uses
instruction restart and the Base register is restored to the original value. If the instruction is outside of an IT block
EPSR.ICI is cleared to zero.

Applies to an implementation of the architecture Armv8.0-M onward.

RLDZW If the PE implements interrupt-continuable instructions and takes an interrupt during any Load Multiple or Store
Multiple instruction including aliases, for example PUSH (multiple registers) and POP (multiple
registers), and all the following apply:

• Is not in an IT block.
• The instruction is using SP as the Base register.
• The instruction instruction performs write-back of SP.

Then if the SP presented to the exception entry sequence is lower than any element pushed by an STM, or not yet
popped by an LDM, the SP is set to the lowest value in the list and the instruction resumes following the exception
return using the continuation state held in EPSR.ICI.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RFDST If the PE takes an interrupt during any Load Multiple or Store Multiple instruction which is not in an IT block,
then if the instruction is not using SP as the Base register and write-back to the Base register is specified:

• For Decrement Before variants of the instruction, the Base register is set to the initial value this corresponds
to the address in memory of the lowest register in the list.

• For Increment After variants of the instruction, the Base register is set to the final value this corresponds to
the address in memory of the highest register in the list.

• In both cases, the PE uses instruction resume and EPSR.ICI holds the continuation state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RFYMK EPSR.ICI is cleared to zero and the Base register is restored to its original value if write-back is being used if any
of the following occur during the execution of an interrupt-continuable instruction:

• A synchronous exception.
• The PE takes an asynchronous fault.
• The PE takes an interrupt and the interrupt-continuable instruction is in an IT block.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RBRGS If the PE takes an interrupt during a Load Multiple instruction which is not in an IT block, then if the instruction’s
base register in its register list, and the exception was taken after loading the base register:

• The base register is restored to the original value.
• The EPSR.IT/ICI fields can be set to a value that corresponds to an IMPLEMENTATION DEFINED register that

after returning from the exception, load at least the base register and any subsequent locations.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

B3.27.6 Exception-continuable instruction behavior

IQSSP MVE divides vector operations between Beats. The architecture permits Beats from multiple instructions to be
performed at the same time. An exception can be taken after any Beat of a vector operation. On an exception the
value written to EPSR.ECI indicates which Beats of the vector operations in progress have been completed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RGFXK The architecture supports taking exceptions in the middle of multiple partially executed exception-continuable
instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RNTYR For exceptions that occur in the middle of a beat-wise vector exception-continuable instruction that is executing:

• The exception return address points to the oldest incomplete instruction.
• RETPSR.ECI in the exception stack frame stores information about how many beats of the instruction at the

return address, and how many beats of the subsequent instruction, have already been completely executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IZPTT In EPSR, XPSR, and RETPSR, the ECI and ICI fields, and ITSTATE overlap.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IGRFW The architecture tracks the completion of beats within vector instructions. Because the Element size can be smaller
than the beat size, it is possible that an exception might be generated for a beat that has only partially completed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RQDSP If execution of a beat is abandoned, then:

• RETPSR.ECI only indicates that a beat is completed if all the Elements that are associated with the beat have
been completed.

• If a destination vector register is not the same as a source vector register for an instruction that is abandoned
because of an exception, the parts of a vector destination register that are associated with an abandoned
beat, and all subsequent beats of the abandoned instruction, are set to an UNKNOWN value if the parts of the
destination register would have been written to had the abandoned instruction been completed. It must not be
possible for parts of a destination register to become UNKNOWN if they are not affected by the instruction,
and would retain their previous values as if the instruction had not been abandoned.

• Any scalar destination registers, the VPR state, and the FPSCR.QC flag record all the architecture state
updates that are associated with the fully completed beats. Updates that are associated with the abandoned
beat and all subsequent beats of the instruction are not recorded.

Partial stores to locations that might be accessed by the abandoned beat and all subsequent beats might be observed.
Loads to locations of the abandoned beats and all subsequent beats might be observed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RYWJX The return address for the instruction fetch fault, for example a MemManage fault, is always the address of the
instruction that triggered the fault. The fault is taken after all the preceding instructions have completed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RGRGT If an exception return is performed to an UNDEFINED instruction encoding within an otherwise valid MVE
beat-wise instruction, for example a VAND with the D bit set to one, and the ECI value being returned to is invalid,
it is IMPLEMENTATION DEFINED whether an UNDEFINSTR or INVSTATE UsageFault is raised.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RKDNH Architecture state updates that are associated with an Architecture tick are observed as one of the following:

• All updates to the architecture state are observable.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

• Partial updates to the architecture states (both to the registers and to memory) are permitted for instructions
that were terminated by an exception and can be restarted without data corruption. In other words, an
instruction that is capable of instruction resume or restart and there is a valid EPSR.ECI value.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IRQDN If an exception is taken during the execution of overlapping beat-wise executable instructions, this might become
architecturally visible.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IGRDV Vector load or store instructions, that might be abandoned and subsequently restart the execution of a beat, might
cause multiple accesses to the same memory location to be performed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

Chapter B5 Vector Extension.

B3.27.7 Invalid ICI and ECI values

RPCQF If none of the following conditions are met, an attempt to execute an instruction causes the PE to generate an
INVSTATE UsageFault if either EPSR.ICI or EPSR.ECI contain valid nonzero values:

• The instruction is a BKPT instruction or an FPB generated breakpoint.
• EPSR.ICI is a valid nonzero value and the instruction is an interrupt-continuable instruction.
• MVE is implemented, EPSR.ECI is a valid nonzero value, and the instruction is beat-wise executable.
• MVE is implemented, EPSR.ECI is a valid nopnzero value, and the instruction is an LETP loop end

instruction.

The INVSTATE UsageFault targets the current Security state.

The execution of the BKPT instruction, FPB generated breakpoint, or LETP loop end instruction does not advance
any of the register fields that are used for interrupt-continuation or beat-wise execution tracking.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

See also:

Chapter B5 Vector Extension.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

B3.28 Low overhead loops

IJRNR The LOB Extension is a mandatory feature of the Armv8.1-M architecture.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RBJZM If neither MVE nor the Floating-point extension are implemented LTPSIZE is a fixed integer value of four. The
pseudocode function LTPSIZE() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && !MVE &&
!FP.

RBCPH If Floating-point extension is implemented LTPSIZE is a fixed value of four and the value of LTPSIZE is held in
FPSCR.LTPSIZE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && FP &&
!MVE.

RRXNJ If MVE is implemented LTPSIZE is not fixed and the value of LTPSIZE is held in FPSCR.LTPSIZE, which might
not read as four when LOB tail predication is in progress.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

RFTZN The Armv8.1-M architecture supports low overhead loops using:

• WLS - While Loop Start.
• DLS - Do Loop Start.
• LE - Loop End.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RWGGG An implementation that includes MVE has the following additional instructions that can be used in or in the
creation of low overhead loops:

• WLSTP - While Loop Start with Tail Predication.
• DLSTP - Do Loop Start with Tail Predication.
• LCTP - Loop Clear with Tail Predication.
• LETP - Loop End with Tail Predication.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

RFDVJ Instructions within the loop can read and write the loop iteration count, which is in the LR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RBZWN LR is updated when LOB handling causes the PC to return to the start of the loop.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

IGXDN The following is a trivial memcpy example which uses the T1 variant of the LE instruction. The T1 variant uses LR:

1 memcpy:
2 PUSH {R0, LR}
3 WLS LR, R2, loopEnd //R2=size
4 loopStart:
5 LDRSB R3, [R1], #1 // R1 = srcPtr, R3 = temp reg
6 STRB R3, [R0], #1 // R0 = destPtr
7 LE LR, loopStart
8
9 loopEnd:

10 POP {R0, PC}

The WLS and LE instructions cause the loop body to be executed n times, where n is specified by the value of R2.
In this example, the low overhead loop instructions operate as follows:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

• If the iteration count that is passed to the WLS instruction is nonzero, the loop iteration count is copied to LR.
If the iteration count is zero, the WLS instruction jumps to the end of the loop.

• If additional iterations of the loop are required when the LE instruction is executed (as indicated by the value
in LR), the iteration count decrements LR and branches back to the start of the loop. The LE instruction also
caches the loop branch information in LO_BRANCH_INFO. Subsequent iterations might not be required to
re-execute the LE instruction.

• If LR indicates that no further iterations are required, the PE branches over the LE instruction when execution
reaches the last instruction in the body of the loop.

The LE T2 variant of the LE instruction does not include LR as an argument and can be used where the number of
iterations is not known in advance.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

ICRKM The T3 variant of the LE instruction is LETP, which is a tail predicated loop. Tail predicated loops can be used if
the iteration count is not known in advance. A trivial memcpy example of the LETP instruction is shown here:

1 memcpy:
2 PUSH {R0, LR}
3 WLSTP.8 LR, R2, vectLoopEnd //R2 = element / byte count
4
5 vectLoopStart:
6 VLDRB.8 Q0, [R1], #16 // R1 = srcPtr
7 VSTRB.8 Q0, [R0], #16 // R0 = destPtr
8 LETP LR, vectLoopStart
9

10 vectLoopEnd:
11 POP {R0, PC}

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

RFZXN The LE, LETP instruction caches the loop branch information in LO_BRANCH_INFO.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RNMGH When executing a LE instruction, LR decrements by one on each iteration of the loop.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RHSNB An INVSTATE UsageFault is raised if a LE instruction is executed and FPSCR.LTPSIZE does not read as four.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB .

RCCRF Executing an LETP instruction when FPSCR.LTPSIZE is between zero and four inclusive will not generate an
INVSTATE UsageFault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

RVRQV For low overhead loop instructions, LR stores the loop iteration count. For a tail predicated low overhead loop
instruction, LR stores the number of vector elements to be processed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB. Note, MVE
required for tail predication.

RHNLF When executing a LETP instruction, LR decrements by the element width indicated in FPSCR.LTPSIZE. When
FPSCR.LTPSIZE is not set to four tail predication is applied according to the value in LR. The number of elements
is calculated by dividing the vector width, 128, by the element width in FPSCR.LTPSIZE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

RGMVB The following events update the low overhead loop flags, as indicated by LO_BRANCH_INFO.VALID bit.

Event LO_BRANCH_INFO

Reset Cleared

LE, LETP instruction Conditionally set

BF, BFX, BFL, BFLX, BFCSEL instruction Set

Context synchronization event Cleared

BXNS or BLXNS instruction that cause a Security State transition Cleared

SG instuction that causes a transition from Non-secure to Secure state Cleared

Unstacking a FNC_RETURN stack frame Cleared

SVC instruction Cleared

Any instruction that modifies the PC when LO_BRANCH_INFO.BF is set Cleared

IMPLEMENTATION DEFINED events Cleared

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB. Note, some rows
require S.

IGHRX Clearing the LO_BRANCH_INFO.VALID bit on an SVC instruction guarantees that the ReturnAddress is the
instruction directly after the SVC instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

ISWHC If the debugger expects predictable control flow, then Arm recommends that the implicit branches are disabled and
that the associated cache is cleared.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RGHQJ For implementations that include MVE, the architecture permits the architecturally overlapping execution of a
vector instruction at the end of the loop with an instruction at the start of the next iteration of the loop, except
when:

• The vector instructions at the end of the loop write to LR.
• The instruction at the start of the loop reads or writes to LR.
• Data dependencies between vector instructions are violated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

RXZJF When a new Floating-point context is created and FPCCR.ASPEN is set to one the PE automatically initializes
FPSCR.LTPSIZE to four.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && (MVE || FP).

IJLJL When a new Floating-point context is created and FPCCR.ASPEN is set to zero it is the responsibility of software
to correctly initialize FPSCR.LTPSIZE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && (MVE || FP).

IRRPL When a WLSTP or a DLSTP instruction is used to initialize a loop, the loop end instruction must be an LETP
instruction. If an LE instruction is used in this scenario, the predication applied might be incorrect.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && MVE.

ITPKG When a WLS or a DLS instruction is used to initialize a loop, the loop end instruction must be an LE instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

RRKZN The execution of an implicit or explicit LE, LETP instruction is CONSTRAINED UNPREDICTABLE anywhere
within an IT block. When the instruction is committed for execution, one of the following occurs:

• An UNDEFINED exception is taken.
• ITSTATE is cleared to 0.
• The instructions are executed as if they had passed the condition code check and the ITSTATE is advanced.
• The instructions execute as NOPs, as if they had failed the condition code check and the ITSTATE is not

advanced.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

See also:

B5.5.1 Loop tail predication.

WLS, DLS, WLSTP, DLSTP.

LE, LETP.

LTPSIZE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter B3. Programmers’ Model
B3.29. Branch future

B3.29 Branch future

ITBQH The Armv8.1-M architecture supports branch future instructions (BF instructions). The BF instruction and its
variants are requests to the PE to perform a branch in the future. The variants of the branch future instruction are
BF, BFX, BFL, BFLX, and BFCSEL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

IVCGC An example of a BF branch point is as follows:

1 start:
2 BFX b_label, LR // Set up BF at b_label
3 ADD r0, r0, r1
4 ADD r0, r0, r2
5 ADD r0, r0, r3
6 // This is the BF branch point
7 b_label:
8 BX LR // Executed if LO_BRANCH_INFO invalid

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RSVXL If the last instruction immediately before the BF branch point writes to LR, and a BFL or BFLX set up the BF
branch point, then LR is set to the return address, and not to the value that is generated by the instruction at the BF
branch point.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RFZVC BF initializes the LO_BRANCH_INFO register to cause a low overhead branch just before execution reaches the
specified label, that is the branch point.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RJTGY When BF causes a branch, this branch occurs at the branch point. The instruction after the branch point is not
executed if the branch is taken.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RJVJF Inserting the BF branch point in the middle of a T32 instruction results in one of the following CONSTRAINED
UNPREDICTABLE behaviors:

• It executes as a NOP.
• It raises an UNDEFINED instruction fault.
• It executes normally and the branch that is associated with the BF instruction is taken.
• It executes normally and the branch that is associated with the BF instruction is not taken.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RVGJR If the BF branch point is in an IT block, and it does not immediately precede the last instruction in the IT block,
then the following CONSTRAINED UNPREDICTABLE behaviors can result:

• The instruction executes normally and the branch that is associated with the BF instruction is not taken. The
BF instruction can be treated as a NOP.

• The instruction before the BF branch point raises an UNDEFINED instruction fault.
• ITSTATE is cleared to 0.
• Taking the branch that is associated with the BF instruction causes ITSTATE to become UNKNOWN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RHLVZ If a BF branch point is within an IT block, the branch that was created by the BF instruction is not affected by the
IT condition.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter B3. Programmers’ Model
B3.29. Branch future

RJFHP When executing in Handler mode, BF instructions that attempt to cause a branch to EXC_RETURN behave as
NOPs.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RBGSF In an implementation that includes the Security Extension, BF instructions that attempt to cause a branch to
FNC_RETURN behave as NOPs.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && S.

RMCKJ Taking a branch that is created by the BF instruction clears ITSTATE to 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

See also:

Chapter C1 Instruction Set Overview.

B3.28 Low overhead loops.

C1.3.5 ITSTATE.

BF, BFX, BFL, BFLX, and BFCSEL.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter B3. Programmers’ Model
B3.30. Vector tables

B3.30 Vector tables

RNWFF In a PE with the Security Extension, two vector tables are implemented, the Secure Vector table and the Non-secure
Vector table, and it is IMPLEMENTATION DEFINED which of the following is true:

• The PE supports configurability of each vector table base, and two Vector Table Offset Registers, VTOR_S
and VTOR_NS, are provided for this purpose.

• The PE does not support configurability of either vector table base, and VTOR_S and VTOR_NS are WI.

If the PE supports configurability of each vector table base:

• Exceptions that target Secure state use VTOR_S to determine the base address of the Secure vector table.
• Exceptions that target Non-secure state use VTOR_NS to determine the base address of the Non-secure

vector table.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RGTJQ In a PE without the Security Extension, a single vector table is implemented, and it is IMPLEMENTATION DEFINED
which of the following is true:

• The PE supports configurability of the vector table base, and a single Vector Table Offset Register, VTOR, is
provided for this purpose.

• The PE does not support configurability of the vector table base, and VTOR is WI.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !S.

IWFGX Arm recommends that VTOR_S points to memory that is Secure and not Non-secure callable.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RWPRT A vector table contains both:

• The initialization value for the main stack pointer on reset.
• The start address of each exception handler.

The exception number defines the order of entries.

Word offset in vector table Value that is held at offset

0 Initial value for the main stack pointer on reset.

1 Start address for the reset handler.

Exception number Start address for the handler for the exception with that number

. .

. .

. .

Exception number Start address for the handler for the exception with that number

Applies to an implementation of the architecture Armv8.0-M onward.

RLFDL In a PE with a configurable vector table base, the vector table is naturally-aligned to a power of two, with an
alignment value that is:

• A minimum of 128 bytes.
• Greater than or equal to (Number of Exceptions supported x4).

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter B3. Programmers’ Model
B3.30. Vector tables

RVDPD Vector fetches for entries beyond the natural alignment of the associated VTOR occur from an UNKNOWN entry
within the vector table.

Applies to an implementation of the architecture Armv8.0-M onward.

IPLSB Arm recommends that it is ensured that the vector table and VTOR are aligned so that the entry for the highest
taken exception falls within the natural alignment of the table, and at a minimum that the vector table is 128 byte
aligned. A PE might impose further restrictions on the VTOR.

Applies to an implementation of the architecture Armv8.0-M onward.

RZVWS If a vector fetch causes a Security attribution unit violation or an implementation defined attribution unit violation
or a BusFault, a secure VECTTBL HardFault is raised. If the exception priority prevents any secure VECTTBL
HardFault preempting, one of the following occurs:

• The PE enters Lockup at the priority of the original exception.
• The original exception transitions from the pending to the active state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, SAU and IDAU
require M.

RXPPT For all vector table entries other than the entry at offset 0, if bit[0] is not set to 1, the first instruction in the
exception results in an INVSTATE UsageFault or a HardFault.

Applies to an implementation of the architecture Armv8.0-M onward.

IBVSC For all vector table entries other than the entry at offset 0, bit[0] defines EPSR.T on exception entry. Setting bit[0]
to 1 indicates that the exception handler is in the T32 instruction set state.

Applies to an implementation of the architecture Armv8.0-M onward.

RWRJW A vector fetch may be performed using the instruction interface, and avoid DWT matches and watchpoints being
generated.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B10.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU).

B10.3 Security attribution unit (SAU).

B3.9 Exception numbers and exception priority numbers.

B3.5.2 Execution Program Status Register (EPSR).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter B3. Programmers’ Model
B3.31. Hardware-controlled priority escalation to HardFault

B3.31 Hardware-controlled priority escalation to HardFault

RGNVS If a synchronous exception with an equal or lower priority to execution is pending, the PE hardware escalates it
to become a HardFault. This rule applies to all synchronous exceptions and DebugMonitor exceptions that are
caused by the BKPT instruction. This rule does not apply to asynchronous exceptions and all other DebugMonitor
exceptions. If the HardFault cannot be taken the PE enters Lockup.

Applies to an implementation of the architecture Armv8.0-M onward. Note, DebugMonitor exception requires M.

RHPLM FPCCR.*RDY (not the current execution priority) determines the escalation of synchronous exceptions generated
because of lazy floating-point state preservation. This means that an asynchronous exception might be pended.

Applies to an implementation of the architecture Armv8.0-M onward.

RTKCW When the execution priority is less than HardFault and a disabled configurable-priority exception occurs, the PE
escalates the configurable-priority fault to HardFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RDQRR A fault that has been escalated to a HardFault, and not pended, retains the return address behavior of the original
fault and sets HFSR.FORCED to 1.

Applies to an implementation of the architecture Armv8.0-M onward.

INHFZ When AIRCR.IESB is one, a detected asynchronous BusFault will be handled synchronously.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

See also:

B3.9 Exception numbers and exception priority numbers.

DebugMonitor exception.

B3.33 Lockup.

B3.11 Security states, exception banking.

Chapter B16 Reliability, Availability, and Serviceability (RAS) Extension

RaiseAsyncBusFault()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter B3. Programmers’ Model
B3.32. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
configurable priority boosting

IBNJG In a PE with the Main Extension, the PRIMASK, FAULTMASK, and BASEPRI registers can be used as follows.
A PE without the Main Extension implements PRIMASK, but does not implement FAULTMASK and BASEPRI.

PRIMASK

In a PE without the Security Extension:

• Setting this bit to one boosts the current execution priority to 0, masking all exceptions with an equal or
lower priority.

In a PE with the Security Extension:

• Setting PRIMASK_S to one boosts the current execution priority to 0.

• If AIRCR.PRIS is:

0:

Setting PRIMASK_NS to one boosts the current execution priority to 0.

1:

Setting PRIMASK_NS to one boosts the current execution priority to 0x80.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

FAULTMASK

In a PE without the Security Extension:

• Setting this bit to one boosts the current execution priority to -1, masking all exceptions with an equal or
lower priority.

In a PE with the Security Extension, if AIRCR.BFHFNMINS is:

0:

Setting FAULTMASK_S to one boosts the current execution priority to -1.

If AIRCR.PRIS is:

0: Setting FAULTMASK_NS to one boosts the current execution priority to 0.

1: Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.

1:

Setting FAULTMASK_S to one boosts the current execution priority to -3.

Setting FAULTMASK_NS to one boosts the current execution priority to -1.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

BASEPRI

In a PE without the Security Extension:

• This field can be set to a priority number between 1 and the maximum supported priority number. This boosts
the current execution priority to that number, masking all exceptions with an equal or lower priority.

In a PE with the Security Extension:

• BASEPRI_S can be set to a priority number between 1 and the maximum supported priority number.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter B3. Programmers’ Model
B3.32. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

• If AIRCR.PRIS is:

0: BASEPRI_NS can be set to a priority number between 1 and the maximum supported priority number.

1: BASEPRI_NS can be set to a priority number between 1 and the maximum supported priority number.
The value in BASEPRI_NS is then mapped to the bottom half of the priority range, so that the current
execution priority is boosted to the mapped-to value in the bottom half of the priority range, that is from 0x80

to the supported maximum.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

Applies to an implementation of the architecture Armv8.0-M onward. Note, FAULTMASK and BASEPRI require M.

RFHMC The PRIMASK, FAULTMASK, and BASEPRI priority boosting mechanisms only boost the group priority, not the
subpriority.

Applies to an implementation of the architecture Armv8.0-M onward. Note, FAULTMASK and BASEPRI require M.

RSKBJ Without the Security Extension:

• An exception return sets FAULTMASK to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !S && M.

RHRTM With the Security Extension:

• An exception return sets FAULTMASK to 0 if the raw execution priority is greater than or equal to 0.
EXC_RETURN.ES indicates which banked instance of FAULTMASK is set to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && M.

ILSXJ The raw execution priority is:

• The execution priority minus the effects of any configurable PRIMASK, FAULTMASK, or BASEPRI priority
boosting.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

IGBVL The requested execution priority for a Security state is negative when any of the following are true:

• The banked FAULTMASK bit is 1, including when AIRCR.PRIS is also 1.
• A HardFault is active.
• An NMI is active and targets the Security state for which the requested execution priority is being calculated .

Applies to an implementation of the architecture Armv8.0-M onward. Note, FAULTMASK requires M.

RQZWN The PRIMASK and FAULTMASK values can be set by the execution of a CPS instruction. The effects of the
instruction are guaranteed to be visible when either of the following conditions apply:

• If the CPSID variant is executed, the PE serializes the change so that it is visible to instructions appearing in
program order after completion of CPSID instruction.

• If the CPSIE variant is executed, the effects of the instruction are only guaranteed to be visible after a
Context synchronization event.

Applies to an implementation of the architecture Armv8.0-M onward. Note, FAULTMASK requires M.

See also:

B3.13 Priority model.

B3.9 Exception numbers and exception priority numbers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter B3. Programmers’ Model
B3.33. Lockup

B3.33 Lockup

IRKJB Lockup is a PE state where the PE stops executing instructions in response to an error for which escalation to
an appropriate HardFault handler is not possible because of the current execution priority. An example is a
synchronous exception that escalates to a Secure HardFault, but cannot escalate to a Secure HardFault because a
Secure HardFault is already active.

Applies to an implementation of the architecture Armv8.0-M onward.

IFSFR Arm recommends that an implementation provides a LOCKUP signal that, when the PE is in lockup, signals to
the external system that the PE is in lockup.

Applies to an implementation of the architecture Armv8.0-M onward.

RMBTM When the PE is in lockup:

• DHCSR.S_LOCKUP reads as 1.
• The PC reads as 0xEFFFFFFE. This is an XN address.
• The PE stops fetching and executing instructions.
• If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

Applies to an implementation of the architecture Armv8.0-M onward.

RDWKP Asynchronous BusFaults do not cause lockup.

Applies to an implementation of the architecture Armv8.0-M onward.

RKTQM When a BusFault does not cause lockup, the value that is read or written to the location that generated the BusFault
is UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward.

RHTVD ITSTATE does not advance when the PE is in lockup.

Applies to an implementation of the architecture Armv8.0-M onward.

RXQSR Exit from lockup is only by one of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by an NMI exception.

Applies to an implementation of the architecture Armv8.0-M onward. Note, entry to Debug state requites HDBG.

IXKJB Arm recommends that entry into Lockup is treated as fatal and requires the PE to be reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RHJNP Exit from lockup causes both DHCSR.S_LOCKUP and, if implemented, the external LOCKUP signal, to be
deasserted.

Applies to an implementation of the architecture Armv8.0-M onward.

RSPPN On an exit from lockup by entry to Debug state, or by preemption by another exception, the return address is
0xEFFFFFFE.

Applies to an implementation of the architecture Armv8.0-M onward. Note, entry to Debug state requires HDBG.

ICRHJ After exit from lockup by entry to Debug state, or by preemption by another exception, a subsequent return
from Debug state or that exception without modifying the return address attempts to execute from 0xEFFFFFFE.
Execution from this address is guaranteed to generate an IACCVIOL MemManage fault, causing the PE to reenter
lockup if the execution priority has not been modified. Modification of the return address would enable execution
to be resumed, however Arm recommends treating entry to lockup as fatal and requiring the PE to be reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter B3. Programmers’ Model
B3.33. Lockup

Applies to an implementation of the architecture Armv8.0-M onward. Note, entry to Debug state requires HDBG.

See also:

B3.13 Priority model.

Chapter B13 Debug.

B3.33.1 Lockup behavior

Instruction execution

RVGMR A synchronous exception taken during instruction execution, excluding faults caused by lazy floating-point state
preservation, results in lockup when:

• The synchronous exception would otherwise escalate to a Secure HardFault and any of the following is true:

– Secure HardFault is already active.
– NMI is active and AIRCR.BFHFNMINS is 0.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The synchronous exception would otherwise escalate to a Non-secure HardFault and any of the following is
true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, FAULTMASK
requires M.

RRNKB When FPCCR.LSPACT is 1, a NOCP UsageFault, AU violation, MPU violation, or synchronous BusFault during
lazy Floating-point state preservation causes lockup if all the following are true:

• FPCCR.HFRDY is 0.
• The FPCCR.*RDY bit associated with the original exception is 0.
• The current execution priority is high enough to prevent preemption.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP. Note, an MPU
violation requires MPU, an SAU violation requires S.

RXHMT Entry to lockup during instruction execution, including lazy floating-point state presevation, causes:

• Any Fault Status Registers associated with the exception to be updated.
• No update to the pending exception state or to the active exception state.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT is permitted to be become UNKNOWN. Arm recommends that entry to lockup does not modify the

EPSR.IT bits.

In addition, HFSR.FORCED is not changed.

Applies to an implementation of the architecture Armv8.0-M onward.

B3.33.2 Exception-related lockup behavior

Vector or stack pointer error on reset

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter B3. Programmers’ Model
B3.33. Lockup

RBHVG On reset, if reading the vector table to obtain either the vector for the reset handler or the initialization value for the
main stack pointer causes a BusFault, the PE enters lockup in HardFault with the following behavior:

• HFSR.VECTTBL is set to 1.
• In a PE with the Security Extension, Secure HardFault is made active. That is, SHCSR_S.HARDFAULTACT

is set to 1.
• In a PE without the Security Extension, HardFault is made active. That is, SHCSR.HARDFAULTACT is set

to 1.
• An UNKNOWN value is loaded into the main stack pointer.
• The IPSR is set to 0.
• EPSR.T is UNKNOWN.
• EPSR.IT is set to zero.
• The PC is set to 0xEFFFFFFE.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a Secure HardFault requires S.

Errors on preemption and stacking for exception entry

RVKTX An AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or synchronous
BusFault during context stacking causes lockup when:

• The exception would escalate to a Secure HardFault if any of the following is true:

– Secure HardFault is already active.
– NMI is active and AIRCR.BFHFNMINS is 0.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault if any of the following is true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

In these cases, the point of PE lockup is when, after the exception to be taken has been chosen, the handler for that
exception is entered. These cases do not in themselves cause any additional exception to become pending.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, an AU violation
requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S.

RQSSB When an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or
synchronous BusFault occurs during context stacking, it is IMPLEMENTATION DEFINED whether the PE continues
to stack any of the remaining context.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, an AU violation
requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S, LSERR requires FP.

RGJJG At the point of encountering an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR
SecureFault, or synchronous bus error during context stacking, the PE:

• Updates any Fault Status Registers associated with the error.
• Does not change HFSR.FORCED.

At the point of lockup:

• All state, including the LR, IPSR, and active and pending bits, is modified as though the fault on context
stacking had never occurred, other than the following:

– EPSR.T becomes UNKNOWN.
– EPSR.IT is set to zero.
– The PC is set to 0xEFFFFFFE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter B3. Programmers’ Model
B3.33. Lockup

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, an AU violation
requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S, LSERR requires FP.

Vector read error on NMI or HardFault entry

RCTKP On entry to an NMI or HardFault, if reading the vector table to obtain the vector for the NMI or HardFault handler
causes a bus error, the PE enters lockup with the following behavior:

• HFSR.VECTTBL is set to 1.
• The IPSR is updated to hold the exception number of the exception taken.
• The active bit of the exception that is taken is set to 1.
• The pending bit of the exception that is taken is cleared to 0.
• EPSR.T is UNKNOWN.
• EPSR.IT is set to zero.
• The LR is set to the EXC_RETURN value that would have been used had the fault not occurred.
• The PC is set to 0xEFFFFFFE.

Applies to an implementation of the architecture Armv8.0-M onward.

INMRW Because AU violations on vector reads are required to be treated as late-arriving, they cannot cause lockup, and
instead result in a higher priority exception being taken. Vector reads always use the system address map and
cannot generate MPU violations.

Applies to an implementation of the architecture Armv8.0-M onward.

Lockup on exception return

RNZCD A fault that is generated by any failed integrity check on exception return is generated after either the active bit
for the returning exception, or the active bit for NMI or HardFault, has been cleared to 0, and if applicable, after
FAULTMASK has also been cleared to 0.

Context unstacking is performed after any clearing of exception active bits or FAULTMASK, that is required by
the exception return, has been made visible.

A fault that is generated by a failed integrity check on exception return or a synchronous exception during context
unstacking causes lockup when:

• The exception would escalate to a Secure HardFault and any of the following is true:

– Secure HardFault is already active.
– NMI is active and AIRCR.BFHFNMINS is 0.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault and any of the following is true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RTCJR When the PE enters lockup because of a fault on exception return that is generated by a failed integrity check or by
context unstacking, the PE:

• Updates any Fault Status Registers associated with the error.

• Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

• Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter B3. Programmers’ Model
B3.33. Lockup

• Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.

– If the RETPSR load faults, the SP is 64-bit aligned.

• Updates CONTROL.FPCA, based on EXC_RETURN.FType.

• CONTROL.SFPA becomes UNKNOWN.

• Sets the PC to 0xEFFFFFFE.

• The following registers become UNKNOWN:

– APSR.

– EPSR.

– FPSCR.

– R0-R12.

– LR

– S0-S31.

– VPR

Applies to an implementation of the architecture Armv8.0-M onward. Note, CONTROL.FPCA and SFPA, FPSCR and S0-S31
require FP || MVE.

See also:

B3.22 Exception return.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter B3. Programmers’ Model
B3.34. Data independent timing

B3.34 Data independent timing

IJFVR The Armv8.1-M architecture supports Data independent timing operations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT.

RDNPM DIT behavior only applies if the instruction passes its Condition code check. The instruction remains subject to the
rules of the architecture but is permitted to have a different execution time when compared to the same instruction
that had passed the Condition code check.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT.

RNXXV When AIRCR.DIT is set to 1, unless otherwise specified, the time required for Data independent timing operations
is independent of all values that are accessed by operations from the following registers:

• FPCSR.{N, Z, C, V}.
• APSR.
• General-purpose registers.
• Floating-point Extension registers (S0-S31, D0-D15, and Q0-Q7).
• In a limited number of cases, VPR.P0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT. Note, Floating-
point registers require FP or MVE, and VPR requires MVE.

RCWVH When AIRCR.DIT is set to 1, this affects the following features:

• Exception handling. In addition to the standard set of registers, the following operations also exhibit Data
independent timing for accesses to VPR.P0:

– Exception entry.
– Tail-chaining.
– Lazy floating-point state preservation.
– Exception return.

• EPSR.ICI. Whether a PE uses ICI for load/store multiple instructions is not dependent on the data values that
are loaded or saved. This excludes the address that is being targeted.

• Beat wise execution. Whether a Data independent timing vector instruction overlaps with another vector
instruction is not dependent on the data values being processed by the data independent timing vector
instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT. Note, VPR and
vector instructions requires MVE.

IFNSB For more information on instructions that are required to comply with Data independent timing see the individual
instruction descriptions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT.

RKBBC The execution of an instruction must be timing invariant with respect to values in registers which are not accessed
by the instruction directly or indirectly.

For example, the timing of MOV R1, R0 must not be affected by the values held in R8 or R9.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT.

RRWJW For non-architected accesses, all instructions, including instructions that are not listed as Data independent timing
instructions, exhibit Data independent timing with respect to data that is held in specified DIT registers that are not
architecturally accessed by the instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DIT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter B3. Programmers’ Model
B3.34. Data independent timing

See also:

B5.4 Beats.

Chapter C2, Instruction Specification

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter B3. Programmers’ Model
B3.35. Context Synchronization Event

B3.35 Context Synchronization Event

RQXWD The architecture requires a Context synchronization event to guarantee visibility of any change to any
memory-mapped register described in the architecture. Following a Context synchronization event a completed
write to a memory-mapped register is visible to an indirect read by an instruction appearing in program order after
the context synchronization event.

Applies to an implementation of the architecture Armv8.0-M onward.

RDQHW A context synchronization event is one of the following:

• Performing an ISB operation. An ISB operation is performed when an ISB instruction is executed and does
not fail its condition code check.

• Taking an exception, including tail-chaining.
• Returning from an exception.
• Entry into Debug state.
• Exit from Debug state.

Applies to an implementation of the architecture Armv8.0-M onward.

IQNDW Security state transitions through interstating branches and returns are not Context synchronization events.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RFJBW Between any change to special purpose registers which require synchronization or memory-mapped registers and
a subsequent Context synchronization event, it is IMPLEMENTATION DEFINED whether an indirect read of the
register by the PE uses the old or new values, and may vary with each use of the unsynchronized value.

Where multiple changes are made to to special purpose registers which require synchronization or memory-mapped
registers before a Context synchronization event, each value might independently be the old or new value.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter B3. Programmers’ Model
B3.36. Coprocessor support

B3.36 Coprocessor support

RBSLX Coprocessor support is OPTIONAL.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

IJBMG When coprocessors are not supported, the fields in CPACR, NSACR, and CPPWR that are associated with the
unsupported coprocessor are RAZ/WI.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RXSQH The architecture supports 0-16 coprocessors, CP0 to CP15.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RHJDH If not used by CDE, CP0 to CP7 are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RXPRQ It is IMPLEMENTATION DEFINED whether CP0 to CP7 can be used from both Secure and Non-secure states or
whether the coprocessor is enabled for only Secure or Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M. Note, Secure state
requires S.

IQSRC Arm reserves CP8 to CP15.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RLKZM CP10 to CP11 are reserved to support the Floating-point Extension, and CP10 controls the CP11 Floating-point
instructions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RCSQD From version 8.1-M of the architecture, access control for CP10 also controls CP8, CP9, CP14, and CP15.

Applies to an implementation of the architecture Armv8.1-M onward.

RLPMK The state that is associated with Floating-point unit described in CPPWR.SU10 applies to S registers, D registers,
and FPSCR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RVLNJ From version 8.1-M of the architecture, the state that is associated with the Floating-point unit described in
CPPWR.SU10 also applies to the Q registers and VPR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RXXDG Instructions that are issued to unimplemented or disabled coprocessors result in a NOCP UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RRMLV If a coprocessor cannot complete an instruction, an UNDEFINSTR UsageFault is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

See also:

Chapter B4 Floating-point Support.

CPACR, Coprocessor Access Control Register

CPPWR, Coprocessor Power Control Register

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

B3.37 The Custom Datapath Extension

B3.37.1 Overview of the Custom Datapath Extension

IQNBG CDE introduces three classes of two instructions in the co-processor instruction space:

• Three classes operate on the general-purpose register file, including the condition code flags APSR_nzcv.
• Three classes operate on the Floating-point or SIMD register file only.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE. Note, (FP ||
MVE) required for Floating-point register file. MVE is only available in an Armv8.1-M implementation.

IJWBF A Custom Datapath instruction operating on the Floating-point or SIMD register files uses one of:

• 32-bit S registers.
• 64-bit D registers.
• 128-bit Q registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).
Note, Q registers require MVE, MVE is only available in an Armv8.1-M implementation.

IRBLJ The three classes of CDE instructions are defined by the following patterns:

• <operation code> <destination register>.
• <operation code> <destination register>, <source register>.
• <operation code> <destination register>, <source register 1>, <source register 2>.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

IFZRZ The destination register of a Custom Datapath instruction might be optionally read, as well as written.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

IBXBG The operation code can be split between a true operation code in the custom datapath and an immediate value used
in the custom datapath. The architecture does not prescribe any split.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

INFMB Immediate consequences of the above are:

• No operations on the Floating-point or SIMD registers can set condition codes.
• There are no instructions that support the use of all of, or any combination of the following:

– S registers.
– D registers.
– Q registers.
– The general-purpose register file.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE. Note, Q registers
require MVE, MVE is only available in an Armv8.1-M implementation.

ITVRP Operations on the general-purpose register file operate on 32-bit registers, or a dual-register consisting of a 64-bit
value constructed from an even numbered general-purpose register and its immediately following odd numbered
pair.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

B3.37.2 Enabling CDE instructions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

ICXBC Custom Datapath instructions can be found within, and are associated with, the existing coprocessor encoding and
numbering spaces.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RXLTS Custom Datapath instructions fall into encoding spaces associated with a coprocessor number in the range 0 to 7
inclusive.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

IWWNQ Enabling the coprocessor space in which the Custom Datapath Extension is implemented is the same as other
IMPLEMENTATION DEFINED coprocessors. The function IsCPEnabled() describes this.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE. Note, S required
for Secure state.

RVSVW If a coprocessor is associated with the Custom Datapath Extension, that coprocessor cannot execute the following
instructions:

• CDP, CDP2.
• LDC, LDC2 (immediate).
• LDC, LDC2 (literal).
• MCR, MCR2.
• MCRR, MCRR2.
• MRC, MRC2.
• MRRC, MRRC2.
• STC, STC2.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RSKRX Execution of a Custom Datapath instruction that accesses the Floating-point or SIMD register file causes Lazy
Floating-point stacking as specified by the architecture.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).

RLQTN When executing a CDE instruction the PE checks that the coprocessor associated with CDE is enabled. If access to
another coprocessor is required, for example the Floating-point Extension or MVE, a second coprocessor check is
carried out.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).

RGNRV The order in which the PE carries out the ExecuteFPCheck() function and Coproc_Accepted() function
for execution, that is after decoding the instruction, of CDE instructions accessing the S, D or Q register files is
IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).

IZCCK If the execution of a CDE instruction requires access to the Floating-point or MVE register file the Floating-point
Extension or MVE must be enabled using CPACR or NSACR dependent on Security state. Before the execution of
a CDE instruction that requires access to the Floating-point Extension or MVE register file, the following registers
are checked to ensure that CP10 is enabled:

• CPACR.
• NSACR.
• CPPWR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).

IMVXW Armv8-M double-precision Floating-point Extension implements 16 “D” registers, D0 to D15. The instructions
defined by the Custom Datapath Extension are capable of indexing registers D0 to D31.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

ILPPY Armv8.1-M MVE implements eight “Q” registers, Q0 to Q7. The instructions defined by the Custom Datapath
Extension are capable of indexing registers Q0 to Q15.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - CDE && MVE.

RLBNN Execution of a Custom Datapath instruction that attempts to access an unimplemented Floating-point or SIMD
register, is CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE && (FP || MVE).

See also:

B3.36 Coprocessor support

CPACR, Coprocessor Access Control Register

CPPWR, Coprocessor Power Control Register

NSACR, Non-secure Access Control Register

B3.37.3 Execution of CDE instructions

RQGNK The source and destination registers for any Custom Datapath instruction are restricted to those that are specified
by the instruction pseudocode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RGPLC The operation of a Custom Datapath instruction cannot be stateful, and cannot operate directly on memory.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RXFCV It is IMPLEMENTATION DEFINED which Custom Datapath instructions are implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RSVBN An unimplemented Custom Datapath instruction whose associated coprocessor is not disabled is UNDEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RRTQN The execution of an unimplemented immediate value, accumulator, non-accumulator, single or double precision
variant in the encoding of a Custom Datapath instruction is CONSTRAINED UNPREDICTABLE and either of the
following behaviors can occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

RSGPM Which coprocessors adhere to the Custom Datapath Extension or the Arm architecture coprocessor instruction set
is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

ILCVM Arm strongly recommends that CDE instructions must conform with data independent timing.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - CDE && DIT.

IHZCW Arm recommends that the execution of a CDE instruction behaves the same no matter the registers or variants used.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

RRKQV If the Performance Monitors Extension is implemented CDE instructions exhibit the following behavior:

• Events that arise as a result of CDE instructions, including INST_RETIRED, INST_SPEC, OP_RETIRED
and OP_SPEC, are counted as they would be in relation to any other instruction.

• IMPLEMENTATION DEFINED events can be configured to count CDE related operations.

• CDE instructions do not directly access memory. PMU events which are counted as a result of memory
accesses are not counted on the execution of a CDE instruction.

• CDE instructions do not form a class of instructions which are counted by the defined PMU events. For
example CDE instructions will not cause BR_RETIRED, LD_RETIRED, or MVE_INST_RETIRED to be
counted.

• Events which are unrelated to direct operations, for example the L1I_CACHE_REFILL, will count if the
cache is refilled no matter the cause of the cache refill.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - CDE && PMU.

RVPLL When executing a CDE scalar dual instruction the CDE enabled coprocessor must process general-purpose register
pairs according to the PE’s current endianness.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - CDE.

IRRTS All of the rules required for the M-Profile Vector Extension and the Low Overhead Loop and Branch Future
Extension apply to all CDE beat-wise compatible instructions.

This includes the following, but is not limited to:

• Exception-continuable behavior.
• Overlapping of beat-wise instructions.
• VPT predication.
• Tail predicated low overhead loops.

The CDE instructions are as follows:

• VCX1 (vector).
• VCX2 (vector).
• VCX3 (vector).

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - CDE && MVE &&
LOB.

See also:

Chapter C1 Instruction Specification.

Chapter B15 The Performance Monitors Extension.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter B4
Floating-point Support

This chapter specifies the Armv8-M Floating-point support rules. It contains the following sections:

B4.1 The optional Floating-point Extension, FPv5.

B4.2 About the Floating-point Status and Control Registers.

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15.

B4.4 Floating-point standards and terminology.

B4.5 Floating-point data representable.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision.

B4.7 The IEEE 754 Floating-point exceptions.

B4.8 The Flush-to-zero mode.

B4.9 The Default NaN mode, and NaN handling.

B4.10 The Default NaN.

B4.11 Combinations of Floating-point exceptions.

B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter B4. Floating-point Support
B4.1. The optional Floating-point Extension, FPv5

B4.1 The optional Floating-point Extension, FPv5

IVBNH The optional Floating-point Extension defines a Floating Point Unit (FPU). Coprocessors 10 and 11 support the
Extension.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IWPHK The scalar Floating-point Extension can be implemented with or without MVE-F.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP.

IRXQX Floating-point is sometimes abbreviated to FP.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RGQBM The version of Floating-point Extension that is supported is FPv5.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IFGSG FPv5 provides all of the following:

• Single-precision arithmetic operations.
• Optional double-precision arithmetic operations.
• Conversions between integer, double-precision, single-precision, and half-precision formats.
• Registers for Floating-point processing S0-S31, or D0-D15.
• Data transfers, between Arm general-purpose registers and FPv5 Extension registers S0-S31, or D0-D15, of

single-precision and double-precision values.
• A Flush-to-zero mode that software can enable or disable.
• An optional alternative half-precision interpretation of the IEEE 754 half-precision encoding format.

FPv5 adds the following System registers:

• The FPSCR, to the CP10 and CP11 System register space.
• The FPCAR, FPCCR, FPDSCR, MVFR0, MVFR1, and MVFR2, to the System Control Block (SCB).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

ITVZF From Armv8.1-M onwards, FPv5 provides Half-precision arithmetic operations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP.

IPVBQ When the Floating-point Extension is implemented, some software tools might require the following information:

Extension Single-precision arithmetic Single and double-precision

operations only arithmetic operations

FPv5 FPv5-SP-D16-M FPv5-D16-M

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IFTDS When the Floating-point Extension is implemented, software can interrogate MVFR0, MVFR1, and MVFR2 to
discover the Floating-point features that are implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IJDJQ To use the Floating-point Extension, software must enable access to CP10, by writing to CPACR.CP10.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RPDMV The value of CPACR.CP11 is UNKNOWN if it is not programmed to the same value as CPACR.CP10.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter B4. Floating-point Support
B4.1. The optional Floating-point Extension, FPv5

See also:

B8.1 System address map.

B4.2 About the Floating-point Status and Control Registers.

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15.

B4.8 The Flush-to-zero mode.

B4.9 The Default NaN mode, and NaN handling.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter B4. Floating-point Support
B4.2. About the Floating-point Status and Control Registers

B4.2 About the Floating-point Status and Control Registers

IFQTM For implementations of the Armv8.1-M architecture, FPCXT and VPR provide additional controls.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP.

RHCJS The register map of the coprocessor System register space is as follows.

Location Register Information

0b0001 FPSCR.{N, Z, C, V} Access to flags

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RKHDZ The register map of the coprocessor System register space is as follows.

Location Register Information

0b0001 FPSCR.{N, Z, C, V} Access to flags

0b0010 FPSCR.{N, Z, C, V, QC} Access to flags, including MVE saturation flag

0b1100 VPR Privileged access to this register only

0b1101 VPR.P0 Access to P0 field

0b1110 FPCXT_NS Saves and restores the Non-secure FP context

0b1111 FPCXT_S Saves and restores the Secure FP context

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

IGJWP Software can use VMRS and VMSR instructions to access the Floating-point Status and Control registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IDSSS Software can use VMRS, VMSR, VLDR (System Register), and VSTR (System Register)
instructions to access FPCXT, VPR, and the Floating-point Status and Control registers.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

RRRTZ Accesses to the FPCXT will behave as NOPs unless at least one of MVE or the Floating-point Extension is
implemented.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

RWXZV Accesses to the FPCXT are UNDEFINED from the Non-secure state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - (FP || MVE) && S.

RFXBJ Execution of Floating-point instructions that generate Floating-point exceptions update the appropriate status fields
of FPSCR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

B3.36 Coprocessor support.

B4.1 The optional Floating-point Extension, FPv5.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter B4. Floating-point Support
B4.2. About the Floating-point Status and Control Registers

FPSCR, Floating Point Status and Control Register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter B4. Floating-point Support
B4.3. Registers for Floating-point data processing, S0-S31, or D0-D15

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15

RTWCB The registers that FPv5 adds for Floating-point processing are visible as either:

• 32 single-precision registers, S0-S31.
• 16 double-precision registers, D0-D15.

These map as follows:

D0-D15

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

S0-S31

D0

D1

D2

D3

D14

D15

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RXWJQ After a Warm reset, the values of S0-S31 or D0-D15 are UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RWGFL If a VLDM indexes S and D registers outside of the range defined by VFPSmallRegisterBank() the instruction
will behave as a NOP in respect of the unimplemented S or D registers.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

RRDCQ If a VSTM indexes S and D registers outside of the range defined by VFPSmallRegisterBank() the behavior
is as follows:

• For unimplemented S registers the instructions behaves as NOP and no writes to memory occur.
• For unimplemented D registers the instruction behaves either as a NOP or it is permissible for some writes to

the addresses specified by the instruction to occur but the values written will be UNKNOWN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

RDLNJ If a VSCCLRM indexes S and D registers outside of the range defined by VFPSmallRegisterBank() the
instruction will behave as a NOP in respect of the unimplemented S or D registers.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP || MVE.

RNHLX If a VLSTM instruction is executed an LSERR SecureFault is raised if all the following conditions are met:

• CONTROL_S.FPCA is set.
• The banked version of FPCCR.LSPACT indicated by FPCCR_S.S is set.

If the LSERR SecureFault is raised, all of the following occurs:

• The exisiting lazy state activation is not modified.
• The registers associated with the Floating-point context are not modified.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter B4. Floating-point Support
B4.3. Registers for Floating-point data processing, S0-S31, or D0-D15

• The registers associated with the Additional floating-point state context are not modified.
• No stacking operations are performed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && (FP || MVE).

See also:

B4.1 The optional Floating-point Extension, FPv5.

B3.18 Exception handling.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter B4. Floating-point Support
B4.4. Floating-point standards and terminology

B4.4 Floating-point standards and terminology

IXNMN There are two editions of the IEEE 754 standard:

• IEEE 754-1985.
• IEEE 754-2008.

In this manual, references to IEEE 754 that do not include the year apply to either edition.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IMQFS The Floating-point terminology that this manual uses differs from that used in IEEE 754-2008 as follows:

This manual IEEE 754-2008

Normalized Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardNegative

Round towards Plus Infinity (RP) roundTowardPositive

Round towards Zero (RZ) roundTowardZero

Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway

Rounding mode Rounding-direction attribute

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IBGPN The following is called Arm standard Floating-point operation:

• IEEE 754-2008 plus the following configuration:

– Flush-to-zero mode enabled.
– Default NaN mode enabled.
– Round to Nearest mode selected.
– Alternative half-precision interpretation not selected.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.8 The Flush-to-zero mode.

B4.9 The Default NaN mode, and NaN handling.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter B4. Floating-point Support
B4.5. Floating-point data representable

B4.5 Floating-point data representable

RFWXC FPv5 supports the following, as defined by IEEE 754:

• Normalized numbers.
• Denormalized numbers.
• Zeros, +0 and -0.
• Infinities, +∞ and −∞.
• NaNs, signaling NaNs and quiet NaN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

B4.4 Floating-point standards and terminology.

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter B4. Floating-point Support
B4.6. Floating-point encoding formats, half-precision, single-precision, and double-precision

B4.6 Floating-point encoding formats, half-precision, single-precision, and
double-precision

RRHKS The half-precision, single-precision, and double-precision encoding formats are those defined by IEEE 754-2008,
in addition to an alternative half-precision format.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

ILGTJ The half-precision encoding format is:

15 14 10 9 0

S exponent fraction

Sign bit

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

ICWBP The single-precision encoding format is:

fractionS

31 30 23 22 0

exponent

Sign bit

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IFVWV The double-precision encoding format is:

S

63 62 52 51 32 31 0

exponent fraction

Sign bit

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RRWRW The interpretations of the half-precision, single-precision, and double-precision encoding formats are as follows.

Half-precision

There are two interpretations of the half-precision encoding formats:

• The interpretation that is defined by IEEE 754-2008.
• An alternative half-precision interpretation, indicated by FPSCR.AHP.

Single-precision

The interpretation that is defined by IEEE 754-2008.

Double-precision

The interpretation that is defined by IEEE 754-2008. See the following table:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter B4. Floating-point Support
B4.6. Floating-point encoding formats, half-precision, single-precision, and double-precision

E T S T Value

(biased (trailing (sign bit) [51]

exponent) significand)

Zero for all formats. Nonzero - - A denormalized

number.

- Zero 0 - Zero, +0

- - 1 - Zero, -0

Zero < E < 0x1F, if one of - - - A normalized

the half precision formats. number.

Zero < E < 0xFF, if single-precision format. - - - -

Zero < E < 0x7FF, if double-precision format. - - - -

0x1F, if half-precision format, Nonzero - 0 A signaling

IEEE interpretation. NaN

0xFF, if single-precision format. - - 1 A quiet NaN

0x7FF, if double-precision format. Zero 0 - Infinity,+∞

- Zero 1 - Infinity,−∞

0x1F, if half-precision, - - - A normalized

alternative half-precision number.

interpretation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RDPHH The value of a normalized number is equal to:

Half-precision: (−1)S × 2(E−15) × (1.T)

Single-precision: (−1)S × 2(E−127) × (1.T)

Double-precision: (−1)S × 2(E−1023) × (1.T)

The value of a denormalized number is equal to:

Half-precision: (−1)S × 2−14 × (0.T)

Single-precision: (−1)S × 2−126 × (0.T)

Double-precision: (−1)S × 2−1022 × (0.T)

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RPKXD Denormalized numbers can be flushed to zero. FPv5 provides a Flush-to-zero mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.5 Floating-point data representable.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter B4. Floating-point Support
B4.7. The IEEE 754 Floating-point exceptions

B4.7 The IEEE 754 Floating-point exceptions

RBCCL The IEEE 754 Floating-point exceptions are:

Invalid Operation: This exception is as IEEE 754-2008 (7.2) describes.

Division by zero: This exception is as IEEE 754-2008 (7.3) describes, with the following assumption:

• For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be +1.0.

Overflow: This exception is as IEEE 754-2008 (7.4) describes.

Underflow: This exception is as IEEE 754-2008 (7.5) describes, with the additional clarification that:

• Assessing whether a result is tiny and nonzero is done before rounding.

Inexact: This exception is as IEEE 754-2008 (7.6) describes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IJCWS The criteria for the Underflow exception to be generated are different in Flush-to-zero mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

INFHK The corresponding status flags for the IEEE 754 Floating-point exceptions are FPSCR.{IOC, DZC, OFC, UFC,
IXC}.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.8 The Flush-to-zero mode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter B4. Floating-point Support
B4.8. The Flush-to-zero mode

B4.8 The Flush-to-zero mode

IXGFP Software can enable Flush-to-zero mode by setting FPSCR.FZ to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IWMKJ Using Flush-to-zero mode is a deviation from IEEE 754.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RJQHX Half-precision Floating-point numbers are exempt from Flush-to-zero mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RLVCG In an Armv8.1-M implementation Half-precision Floating-point numbers are subject to Flush-to-zero mode.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP.

RVJSF When Flush-to-zero mode is enabled, all single-precision denormalized inputs and double-precision denormalized
inputs to Floating-point operations are treated as though they are zero, that is they are flushed to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RGGQW In an Armv8.1-M implementation when Flush-to-zero mode is enabled, all half-precision denormalized inputs to
Floating-point operations are treated as though they are zero, that is they are flushed to zero.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP.

RKBJJ When an input to a Floating-point operation is flushed to zero, the PE generates an Input Denormal exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RSBCK Input Denormal exceptions are only generated in Flush-to-zero mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RWJDM When Flush-to-zero mode is enabled, the sequence of events for an input to a Floating-point operation is:

1. Flush to Zero processing takes place. If appropriate, the input is flushed to zero and the PE generates an Input
Denormal exception.

2. Tests for the generation of any other Floating-point exceptions are done after Flush to Zero processing.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RPHPT When Flush-to-zero mode is enabled, the result of a Floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs(result) < MinNorm, where:

• MinNorm is 2−126 for single-precision.
• MinNorm is 2−1022 for double-precision.

The result is said to be flushed to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RQPQF When the result of a Floating-point operation is flushed to zero, the PE generates an Underflow exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RTPVD In Flush-to-zero mode, the PE generates Underflow exceptions only when a result is flushed to zero. This uses
different criteria than when Flush-to-zero mode is disabled.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter B4. Floating-point Support
B4.8. The Flush-to-zero mode

RRTPH When a Floating-point number is flushed to zero, the sign is preserved. That is, the sign bit of the zero matches the
sign bit of the number being flushed to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && FP.

RRWRT The PE does not generate an Inexact exception when a Floating-point number is flushed to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

ISQCJ The corresponding status flag for the Input Denormal exception is FPSCR.IDC.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

B4.8.1 The Flush to zero mode half-precision calculations

Applies to an implementation of the architecture Armv8.1-M onward.

IMMKS In an Armv8.1-M implementation Flush-to-zero mode mode is extended to include half-precision calculations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP. Note, !8.0.

INPCG Software can enable Flush-to-zero mode for half-precision calculations by setting FPSCR.FZ16 to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP. Note, !8.0.

RKZFH When Flush-to-zero mode is enabled, the result of a Floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs(result) < MinNorm, where:

• MinNorm is 2−14 for half-precision.
• MinNorm is 2−126 for single-precision.
• MinNorm is 2−1022 for double-precision.

The result is said to be flushed to zero.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP. Note, !8.0.

RHJZZ The Effective value of FPSCR.FZ16 is zero when converting real values and integers from one Floating-point
format to another.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP. Note, !8.0.

RLCDV When Flush-to-zero mode is enabled for half-precision Floating-point and a half-precision Floating-point number
is flushed to zero an Input Denormal Floating-point exception will not be generated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FP. Note, !8.0.

See also:

B4.7 The IEEE 754 Floating-point exceptions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter B4. Floating-point Support
B4.9. The Default NaN mode, and NaN handling

B4.9 The Default NaN mode, and NaN handling

IFGPN Software can enable Default NaN mode by setting FPSCR.DN to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

IDJVH Using Default NaN mode is a deviation from IEEE 754.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RQMQC When Default NaN mode is enabled, the Default NaN is the result of both:

• All Floating-point operations that produce an untrapped Invalid Operation exception.
• All Floating-point operations whose inputs include at least one quiet NaN but no signaling NaNs.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RNPRL IEEE 754 specifies that:

• An operation that produces an untrapped Invalid Operation exception returns a quiet NaN as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

• If the Invalid Operation exception was generated because one of the inputs to the operation was a signaling
NaN, the quiet NaN result is equal to the first signaling NaN input with its most significant bit set to 1.

• The quiet NaN result is the Default NaN otherwise.

The first signaling NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to
the pseudocode function describing the operation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RVCSB IEEE 754 specifies that:

• An operation using a Quiet NaN as an input, but no signaling NaNs as inputs, returns one of its quiet NaN
inputs as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

• The Quiet NaN result is the first Quiet NaN input.

The first quiet NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to the
pseudocode function describing the operation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

ILXLF Depending on the Floating-point operation, the exact value of a Quiet NaN result might differ in both sign and the
number of T bits from its source.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

B4.10 The Default NaN.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter B4. Floating-point Support
B4.10. The Default NaN

B4.10 The Default NaN

RFQFG The Default NaN is:

Field Half-precision, Single-precision Double-precision

IEEE 754-2008 interpretation

S 0 0 0

E 0x1F 0xFF 0x7FF

T bit[9] == 1, bits[8:0] == 0 bit[22] == 1, bits[21:0] == 0 bit[51] == 1, bits[50:0] == 0

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision.

B4.9 The Default NaN mode, and NaN handling.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter B4. Floating-point Support
B4.11. Combinations of Floating-point exceptions

B4.11 Combinations of Floating-point exceptions

IBTTH In compliance with IEEE 754:

• An Inexact Floating-point exception can occur with an Overflow Floating-point exception.
• An Inexact Floating-point exception can occur with an Underflow Floating-point exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

RLFVH An Input Denormal exception can occur with other Floating-point exceptions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

B4.7 The IEEE 754 Floating-point exceptions.

B4.8 The Flush-to-zero mode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter B4. Floating-point Support
B4.12. Priority of Floating-point exceptions relative to other Floating-point exceptions

B4.12 Priority of Floating-point exceptions relative to other Floating-point ex-
ceptions

RPLHJ Some Floating-point instructions specify more than one Floating-point operation. In these cases, an exception on
one operation is higher priority than an exception on another operation when generation of the second exception
depends on the result of the first operation. Otherwise, it is UNPREDICTABLE which exception is higher priority.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

B4.7 The IEEE 754 Floating-point exceptions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter B5
Vector Extension

This chapter specifies the optional Armv8.1-M Vector Extension rules. It contains the following sections:

B5.1 Vector Extension operation.

B5.2 Vector register file.

B5.3 Lanes.

B5.4 Beats.

B5.5 Predication/conditional execution.

B5.6 MVE interleaving/de-interleaving loads and stores.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter B5. Vector Extension
B5.1. Vector Extension operation

B5.1 Vector Extension operation

ILRKM MVE-I operates on 32-bit, 16-bit, and 8-bit data types, including Q7, Q15, Q31 integer values.

MVE-F operates on half-precision and single-precision floating-point values.

Applies to an implementation of the architecture Armv8.1-M onward.

RJYRS Vector instructions operate on a fixed vector width of 128 bits.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IMSHF Integer MVE, MVE-I, instructions can be implemented with or without the scalar Floating-point Extension.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

ISLHH Floating-point MVE, MVE-F, instructions require the Floating-point extension to be implemented.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

ILXMG An implementation that includes MVE also includes the DSP Extension.

Applies to an implementation of the architecture Armv8.1-M onward.

RQRWY Vector operations are divided in two orthogonal ways:

• Lanes.
• Beats.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IFNYX The word Element is used in this specification to refer to the data that is put into a lane.

Applies to an implementation of the architecture Armv8.1-M onward.

RVXBF Multiple lanes can be executed per beat. There are four beats per vector instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RBDHN The pseudocode for each vector instruction is executed four times, one time for each beat. The
GetCurInstrBeat() function returns the current beat number and predication details. These determine which
of the lanes are operated on during the current execution of the code.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RLFDY Multiple Element writes that are generated by the same vector store instruction by the same Observer can be
observed in any order, with the exception that writes to the same location by different Elements are observed in
order of increasing vector element number.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RFBRZ If CCR.BFHFNMIGN is set to one and a multi access load or store instruction generates a BusFault while executing
at a requested negative priority, the BusFault may affect all of the accesses generated by that instruction and not
just the access that generated the BusFault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IKPFV In this case, the values in the destination registers for the load operation are UNKNOWN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

B3.28 Low overhead loops.

B3.18 Exception handling.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter B5. Vector Extension
B5.1. Vector Extension operation

B5.2 Vector register file.

B5.3 Lanes.

B5.4 Beats.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter B5. Vector Extension
B5.2. Vector register file

B5.2 Vector register file

RBBYH MVE defines eight vector registers, Q<n>, that alias onto the Floating-point Extension register file.

1 Q[0][127:96] = S3, Q[0][95:64] = S2, Q[0][63:32] = S1, Q[0][31:0] = S0
2 Q[1][127:96] = S7, Q[1][95:64] = S6, Q[1][63:32] = S5, Q[1][31:0] = S4
3 ...
4 Q[7][127:96] = S31, Q[7][95:64] = S30, Q[7][63:32] = S29, Q[7][31:0] = S28

These registers map as follows:

D0

D1

D2

D3

D14

D15

Q0

Q1

Q7

D0-D15 Q0-Q7

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

S0-S31

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RPPPV If CP10 is enabled, access to vector register 0-7 is permitted, unless otherwise stated in the individual instruction
descriptions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IMFLD To reduce pressure on the vector register file, many vector instructions can use scalar arguments from the
general-purpose register file.

Applies to an implementation of the architecture Armv8.1-M onward.

IWWPZ After a Warm reset, the values of Q0-Q7 are UNKNOWN.

Applies to an implementation of the architecture Armv8.1-M onward.

See also:

C1.4 Instruction set encoding information.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter B5. Vector Extension
B5.3. Lanes

B5.3 Lanes

RDWVD The lane width of the operation to be performed is specified by the instruction that is being executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RQSBC The permitted lane widths, and lane operations per beat, are:

• For a 64-bit lane size, a beat performs half of the lane operation.
• For a 32-bit lane size, a beat performs a one lane operation.
• For a 16-bit lane size, a beat performs a two lane operations.
• For an 8-bit lane size, a beat performs a four lane operations.

127 96 95 64 63 32 031

15 14 13 1112 10 9 8 7 6 5 34 2 1 0

7 6 5 4 3 2 1 0

0123

1 0

Bit
positions

A)

B)

C)

D)

A) 8-bit lane numbers
B) 16-bit lane numbers
C) 32-bit lane numbers
D) 64-bit lane numbers

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

Chapter C2, Instruction specification

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter B5. Vector Extension
B5.4. Beats

B5.4 Beats

IYYZD A vector instruction executes beats sequentially, from beat 0-3.

Bit position 127

0123

96 95 64 63 32 31 0

Beat number

Applies to an implementation of the architecture Armv8.1-M onward.

IPCBB The number of beats for each tick describes how much of the architectural state is updated for each Architecture
tick in the common case. In a trivial implementation, an Architecture tick might be one clock cycle:

• In a single-beat system, one beat might occur for each tick.
• In a dual-beat system, two beats might occur for each tick.
• In a quad-beat system, four beats might complete for each tick.

Applies to an implementation of the architecture Armv8.1-M onward.

RXTZH It is IMPLEMENTATION DEFINED how many beats are executed for each Architecture tick.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IMWSJ The number of beats per tick might change at runtime and is not required to be constant.

Applies to an implementation of the architecture Armv8.1-M onward.

RQJJP Multiple faults might occur within a single Architecture tick. In this case, only one fault is raised. The fault that is
generated is determined using the following priorities:

• The fault from the oldest instruction takes priority.
• If multiple faults are associated with the oldest faulting instruction, the fault that was generated by the lowest

numbered Beat takes priority.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

ILHXJ An exception can be taken on any beat of a vector instruction. RETPSR.ECI in the exception stack frame stores
information about how many beats of the instruction at the return address and how many beats of the subsequent
instruction have been executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RVVVG When the execution of a beat-wise instruction raises a MemManage, BusFault, or SecureFault as a result of SAU
or IDAU permission violations, the Fault Address Register associated with the exception is permitted to report any
address associated with any lane of the instruction, including lanes predicated false, if all of the following are true:

• The lane associated with the address being reported belongs to the same beat as the lane that caused the fault.
• The address being reported is in the same 32-byte naturally-aligned address range as the lane that caused the

fault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RFXDM If multiple lanes of a beat-wise instruction raise a MemManage, BusFault, or SecureFault as a result of SAU or
IDAU permission violations within a single Architecture tick, it is IMPLEMENTATION DEFINED which lane’s fault
is raised.

Regardless of which lane’s fault is raised, a valid ECI value must be generated, and the ECI value must be consistent
with the updates made to other architecture state, for example the Q or R register values.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter B5. Vector Extension
B5.4. Beats

IZBKX A dual-beat overlap system implies that the last two beats of a vector instruction can overlap with the first two
beats of the next vector instruction.

Applies to an implementation of the architecture Armv8.1-M onward.

IGNLS The following is an example of a dual-beat system where two beats are executed per Architecture tick. The figure
labels are:

Tick Architecture tick.

A0-A3 Beats of the VLDRW instruction.

B0-B3 Beats of the VMUL instruction.

C0-C3 Beats of the VSHR instruction.

VLDRW.U32 Q1, [R0],#16

VMUL.I32 Q0, Q1, Q2

VSHR.U32 Q0, Q0, #1

VLDRW.U32 Q1, [R0],#16

VMUL.I32 Q0, Q1, Q2

VSHR.U32 Q0, Q0, #1

Vector instructions not overlapping

Vector instructions overlapping

0 1 2 3 4 5Tick

A0 A1 A2 A3
B0 B1 B2 B3

C0 C1 C2 C3

A0 A1 A2 A3
B0 B1 B2 B3

C0 C1 C2 C3

EPSR.ECI explains how beats are captured in the ECI field.

Applies to an implementation of the architecture Armv8.1-M onward.

RVWBD The PE can resume execution of an exception continuable instruction from any valid ECI value, even if the PE
cannot generate all the ECI values.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RKRNF Instructions that are subject to beat-wise execution can only overlap if they are consecutive in the execution order.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RFKCG The architecturally visible overlap of instructions is only permitted for instructions subject to beat-wise execution
if:

• The overlap does not violate data dependencies between instruction beats.
• The overlap is not between two instructions subject to beat-wise execution that both access memory.
• In a low overhead loop, the overlap does not violate LR hazard.
• The overlap is not between an instruction before a BF branch point and the instruction at the target of the BF.
• An implicit LE, LETP instruction is executed at the end of a loop body when LO_BRANCH_INFO is

valid and the instruction after the implicit LE, LETP instruction in execution order is subject to beat-wise
execution.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

INQKF Vector instructions are permitted to overlap if the data dependency is at beat granularity and not at instruction
granularity.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter B5. Vector Extension
B5.4. Beats

RPRSG After each Architecture tick, the architectural instruction overlap is representable by a valid EPSR.ECI value.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RTBDV The PC is only updated when all beats of an instruction have completed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

B5.5.1 Loop tail predication.

B3.29 Branch future.

B3.27.6 Exception-continuable instruction behavior.

Chapter C2, Instruction specification.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter B5. Vector Extension
B5.5. Predication/conditional execution

B5.5 Predication/conditional execution

RRSLP MVE includes predication that enables the independent masking of each lane within a vector operation. It supports
the following predication mechanisms:

• Loop tail predication. This eliminates the requirement for special vector tail handling code after loops where
the number of Elements to be processed is not a multiple of the number of Elements in the vector.

• VPT predication. This enables data-dependent conditions that are based on data value comparisons to mask
each vector lane separately.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RQGLY Loop tail predication and VPT predication operate separately. The resulting predication flags from each mechanism
are ANDed together so that a lane of a vector operation is only active if both the loop tail predication and the VPT
predication conditions are true.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

B5.5.1 Loop tail predication.

B5.5.2 VPT predication.

B5.5.3 Effects of predication.

B5.5.1 Loop tail predication

RDCZN Low overhead loops can be used with vector instructions, for example with a word-based memory copy instruction.
The number of words to copy might not be a multiple of the vector length, therefore loop tail predication can
eliminate any additional tail handling steps.

MVE includes special loop tail predication instructions, WLSTP, DLSTP, LETP, and LCTP, that operate as follows:

• The source register of the loop start instruction contains the number of vector Elements that are to be
processed, instead of the iteration count.

• The loop start instruction sets FPSCR.LTPSIZE to the requested Element size. This alters the amount by
which the Element count in LR is decremented at the end of each loop iteration.

• On the last iteration of the loop, the values in LR and FPSCR.LTPSIZE determines the number of vector
lanes that are to be masked.

• After the last instruction of the last loop iteration has been executed, tail predication is disabled by setting
FPSCR.LTPSIZE to 0b100.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IRBPP The active floating-point state is defined by ActiveFPState().

Applies to an implementation of the architecture Armv8.1-M onward.

RGQSH To prevent the inadvertent creation of floating-point contexts and the predication of vector operation outside of a
loop, FPSCR.LTPSIZE behaves as follows:

• FPSCR.LTPSIZE reads as 0b100 if there is no active floating-point state.
• FPSCR.LTPSIZE is set to 0b100 if any of the following events occur:

– On the last iteration of a loop by either the execution of an LETP instruction, or by execution reaching
the end of the loop body when LO_BRANCH_INFO is valid and the floating-point context is active,
that is CONTROL.FPCA is one.

– An LCTP instruction is executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter B5. Vector Extension
B5.5. Predication/conditional execution

INRTL Arm recommends that tail predicated loop start instructions are only used with a tail predicated loop end instruction.

Applies to an implementation of the architecture Armv8.1-M onward.

RBDJB FPDSCR.LTPSIZE always reads as 0b100, and therefore the floating-point contexts that are automatically initialized
are created with predication disabled.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RJHLP The behavior of a beat-wise capable instruction that modifies LR and is within a tail predicated low overhead loop
is CONSTRAINED UNPREDICTABLE, the permitted behaviors are either of:

• An UNDEFINSTR UsageFault is generated.
• The instruction, and any adjacent instructions that are permitted to overlap, are subject to UNKNOWN

predication.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

B5.5.2 VPT predication

RZFLV Comparison-based predication is supported by vector predication blocks.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RCVTC A vector predication block is called a VPT block. A VPT block is defined as the n instructions following a VPT or
VPST instruction, where n is the number of instructions that the VPT or VPST instruction defines as being subject
to predication conditions. The predication conditions are stored in the VPR register. n is less than or equal to 4.

Applies to an implementation of the architecture Armv8.1-M onward.

RBVPG The instructions in a VPT block can be subject to either the condition or to the inverse of the condition.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IRVJJ A VCMP (vector) or a VCMP (floating-point) instruction can be placed inside a VPT block. VCMP

instructions update the predication flag on completion, therefore affecting the subsequent instructions in the VPT
block. The subsequent instructions in the VPT block are subject to the predicates of the VPT block and the updates
caused by the VCMP instructions. The execution of successive VCMP instructions permits the creation of complex
predication conditions.

Applies to an implementation of the architecture Armv8.1-M onward.

IPHJP Allowing instructions to be subject to either the condition or the inverse of the condition enables the instructions in
both the THEN (T decorator) and the ELSE (E decorator) parts of an IF statement to be predicated with a single
VPT instruction.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter B5. Vector Extension
B5.5. Predication/conditional execution

RVWGT The following table shows the VPT instruction variants, mask field encodings, and the associated decorators that
are placed on the subsequent instructions.

Instruction name Mask Number of subsequent instructions <v> instruction decorator

value to be predicated First Second Third Fourth

VPT 0b1000 1 T - - -

VPTT 0b0100 2 T T - -

VPTE 0b1100 2 T E - -

VPTTT 0b0010 3 T T T -

VPTTE 0b0110 3 T T E -

VPTEE 0b1010 3 T E E -

VPTET 0b1110 3 T E T -

VPTTTT 0b0001 4 T T T T

VPTTTE 0b0011 4 T T T E

VPTTEE 0b0101 4 T T E E

VPTTET 0b0111 4 T T E T

VPTEEE 0b1001 4 T E E E

VPTEET 0b1011 4 T E E T

VPTETT 0b1101 4 T E T T

VPTETE 0b1111 4 T E T E

The same encoding format is used for VPST.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RLKXQ VPR contains a MASK field for each pair of beats of a vector instruction. This permits beat-wise overlapping of
the VPT or VPST instructions with the surrounding vector instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RKHCV The state of VPR is UNKNOWN when use of a VPT block results in CONSTRAINED UNPREDICTABLE behavior.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RXHQR The following conditions result in CONSTRAINED UNPREDICTABLE behavior when they apply to a VPT block:

• The presence of a non-VPT compatible instruction in a VPT block. This includes:

– All instructions that are not part of MVE, with the exception of BKPT.
– MVE instructions that are marked as not being VPT compatible.

• A BF branch point within a VPT block.

• Branching into a VPT block.

• Exception return or returns from Debug state if VPR.{MASK23, MASK01} is not consistent with the position
returned to in the VPT block.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE. Note, Debug
state requires HDBG.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter B5. Vector Extension
B5.5. Predication/conditional execution

RDZWZ The CONSTRAINED UNPREDICTABLE behavior for a VPT block is one of the following:

• The VPT or VPST instruction generates an UNDEFINED Instruction fault.

• The instruction that causes the CONSTRAINED UNPREDICTABLE behavior does one of the following:

– It raises an UNDEFINED Instruction fault.
– It executes normally.
– It has UNKNOWN predication applied.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RHXSV In a VPT block, the VPR state is only advanced after the completion of a pair of beats within a VPT compatible
instruction that is subject to beat-wise execution.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RXXKG The CONSTRAINED UNPREDICTABLE behavior for a VPT compatible instruction executed outside a VPT block
when the VPR mask is nonzero is one of the following:

• It raises an UNDEFINED Instruction fault.
• It executes normally.
• It has UNKNOWN predication applied.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RLQDR Outside of a VPT block, when VPR.{MASK32, MASK01} is nonzero, the execution of a non-VPT compatible
instruction is not UNPREDICTABLE and does not advance VPT state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RXMHZ In the case of an exception return or a return from Debug state, the instruction that exhibits the CONSTRAINED
UNPREDICTABLE behavior is defined as the instruction that is being returned to.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE. Note, Debug
state requires HDBG.

RMBQX For a BF branch point within a VPT block, the instruction that exhibits the CONSTRAINED UNPREDICTABLE
behavior can be one of the following:

• The instruction before the BF branch point.
• The instruction after the BF branch point.
• The instruction at the BF branch target address.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RSZQK For the purposes of the CONSTRAINED UNPREDICTABLE behavior described in this section, a memory location is
considered to be in VPT block until:

• The VPT or VPST instruction has been removed.
• All the addresses that are covered by the VPT block have been invalidated in the instruction cache (if

implemented).
• A subsequent Context synchronization event has occurred.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IKKNH There are similarities between VPT/VPR and IT/ITSTATE, but there are also some important differences as
follows:

• Unlike IT, the VPT instruction performs the actual comparison in addition to applying the result to the
subsequent instructions. As such, VPT can be considered as the vectorized combination of CMP and IT.

• There are multiple MASK fields in VPR that handle partial instruction execution caused by exceptions during
the overlapping of instructions.

• The MASK fields are similar to ITSTATE[3:0] and encode both the number of instructions outstanding in the
current VPT block, and whether these instructions are subject to the THEN or the ELSE condition.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter B5. Vector Extension
B5.5. Predication/conditional execution

Applies to an implementation of the architecture Armv8.1-M onward.

RHJGT VPR.P0 contains one predication bit per 8-bit lane. The VPR mask bits cause the VPR predication bits to be
inverted if the corresponding mask bit is set to 1. The mask bits that are shifted out toggle the current predication
condition and are not part of the predication condition. The value of VPR.MASK01 affects bits[7:0] of VPR.P0
and the value of VPR.MASK23 affects bits [15:8] of VPR.P0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RPXMY The VPR predication bits are not inverted after executing the last instruction in a VPT block.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

ILRVJ The state in the VPR register can be accessed directly using VMRS, VMSR, VLDR (System Register), and
VSTR (System Register) instructions. Setting VPR using a VMSR or VLDR (System Register)
instruction does not make the instructions that follow VMSR or VLDR (System Register) part of a VPT
block.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RMPTV Execution of a VPT compatible instruction outside of a VPT block with a nonzero value in VPR.{MASK23,
MASK01} results in CONSTRAINED UNPREDICTABLE behavior and does one of the following:

• It raises an UNDEFINED Instruction fault.
• It executes normally.
• It has UNKNOWN predication applied.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RFJLH It is IMPLEMENTATION DEFINED which of the following behaviors occur if a prohibited unprivileged read from
VPR is attempted:

• Returns zeroes.
• Behaves as a NOP.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

Chapter C1 Instruction Set Overview.

B5.5.3 Effects of predication

ITZPD The exact effects of a false predication value are defined in the instruction pseudocode.

Applies to an implementation of the architecture Armv8.1-M onward.

RSYDC Vector predication has no effect on scalar instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RZLSJ For non-load instructions for vector register file writes, predication is always performed at byte level granularity,
regardless of the Element size that is specified by the vector instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RVHSN For non-load instructions, the predicate flags determine if the destination register byte is updated with the new value
or if the previous value is preserved. For load instructions, where lanes are predicated false, the corresponding
parts of the destination register are set to 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter B5. Vector Extension
B5.5. Predication/conditional execution

RLYPK For base pointer write-back, vector predication does not affect address write-back in load and store instructions.
This applies both when the address is in a scalar register, and when it is in a vector register.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RLNDR The predication flag determines whether a lane operation is performed. For Element sizes of more than 8 bits for
the types of instruction listed here, the LSB of the corresponding group of predicate flags determines:

• For vector operations that perform reduction across the vector and produce a scalar result, whether the value
is accumulated or not.

• For vector store instructions, whether the store occurs or not.
• For vector load instructions, whether the value that is loaded or whether zeros are written to that element of

the destination register.
• The setting of the FPSCR.QC saturation flags.

For predication, 64-bit vector memory load/store operations are treated as if they were a pair of 32-bit operations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

ICJRK The relation between lane width and bits in VPR.P0 is as follows:

Lane width Bits in VPR.P0

32 bits [12, 8, 4, 0]

16 bits [14, 12, 10, 8, 6, 4, 2, 0]

8 bits [15:0]

Applies to an implementation of the architecture Armv8.1-M onward.

See also:

B5.5.1 Loop tail predication.

B5.5.2 VPT predication.

B5.5.4 IT block

RPZDX Instructions that are subject to beat-wise execution are not permitted in IT blocks. For the exceptions to this
rule, see the decode pseudocode in the individual instruction descriptions. In these exceptional cases, beat-wise
execution is not performed and the instruction does not overlap with other instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter B5. Vector Extension
B5.6. MVE interleaving/de-interleaving loads and stores

B5.6 MVE interleaving/de-interleaving loads and stores

IVWWN For implementations that include MVE, data streams can be interleaved and de-interleaved with strides of 2 and 4,
using VLD2/VLD4 and VST2/VST4.

Applies to an implementation of the architecture Armv8.1-M onward.

RCMZP The interleaving and de-interleaving instructions always operate on 128 bits of data at a time.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IXGTN When using VLD4, each of the four instructions loads 128 bits of data, and partially updates the four destination
vector registers. The memory offsets and destination register sections that are accessed are arranged so that when
all four instructions have been executed, the de-interleaving operation has been performed.

S15=Mem[60]

S11=Mem[56]

S7=Mem[52]

S3=Mem[48]

S14=Mem[44]

S10=Mem[40]

S6=Mem[36]

S2=Mem[32]

S13=Mem[28]

S9=Mem[24]

S5=Mem[20]

S1=Mem[16]

S12=Mem[12]

S8=Mem[8]

S4=Mem[4]

S0=Mem[0]

Q3

Q2

Q1

Q0

VLD40.32 {Q0-Q3}, [Rn]

VLD41.32 {Q0-Q3}, [Rn]

VLD42.32 {Q0-Q3}, [Rn]

VLD43.32 {Q0-Q3}, [Rn]!

Applies to an implementation of the architecture Armv8.1-M onward.

RNSFK The assembly syntax for VLD2/VLD4 and VST2/VST4 lists the range of vector registers to be accessed. Only the
lowest numbered register is encoded in the opcode. If this register number plus the number of registers to be
accessed is greater than 7 (the highest numbered vector register) behavior is a CONSTRAINED UNPREDICTABLE
choice of the following:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• One or more of the vector registers become UNKNOWN. If the instruction specifies write-back, the base

register becomes UNKNOWN. No other general-purpose registers are affected.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter B6
Pointer authentication and branch target identification Extension

This chapter specifies the optional Armv8.1-M Pointer Authentication Extension and Branch Target Identification
Extension rules. It contains the following sections:

B6.1 Implementing PAC and BTI.

B6.1.1 Pointer authentication.

B6.1.2 Branch target identification.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

B6.1 Implementing PAC and BTI

RQYTS The PACBTI Extension is OPTIONAL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RMKNJ If the PACBTI Extension is implemented ID_ISAR5.PACBTI will read as a nonzero value.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IVRBT The PAC and BTI features can be independently enabled or disabled for every Security state and privilege level.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

B6.1.1 Pointer authentication

RWRRP PAC can be enabled or disabled as follows:

• CONTROL.PAC_EN for privileged mode.
• CONTROL.UPAC_EN for unprivileged mode.

The pseudocode function PACEnabled() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RKRKP In privileged mode CONTROL.PAC_EN and CONTROL.UPAC_EN can be accessed using MSR and MRS
instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RVCCY In unprivileged mode CONTROL.UPAC_EN can be read using the MRS instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RVLRL For pointer authentication, there are four 128-bit keys:

Non-secure state Secure state

Privileged PAC_KEY_P_NS PAC_KEY_P_S

Unprivileged PAC_KEY_U_NS PAC_KEY_U_S

The keys can be accessed by privileged software through the MSR and MRS instructions where:

• The register values PAC_KEY_P_3 : PAC_KEY_P_2 : PAC_KEY_P_1 : PAC_KEY_P_0 are concatenated
to form PAC_KEY_P.

• The register values PAC_KEY_U_3 : PAC_KEY_U_2 : PAC_KEY_U_1 : PAC_KEY_U_0 are concatenated
to form PAC_KEY_U.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RLPQW For the Pointer authentication instructions, it is IMPLEMENTATION DEFINED whether the encrypted value is
generated using:

• The 5-round variant of the QARMA algorithm, known as QARMA5, as described in The QARMA Block
Cipher Family, Roberto Avanzi, Qualcomm Product Security Initiative, when the value of ID_ISAR5.PACBTI
is 0b0001.

• An IMPLEMENTATION DEFINED algorithm when the value of ID_ISAR5.PACBTI is 0b0010.

• The 3-round variant of the QARMA algorithm, known as QARMA3, as described in The QARMA Block
Cipher Family, Roberto Avanzi, Qualcomm Product Security Initiative, when the value of ID_ISAR5.PACBTI
is 0b0100.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RLDRC When an IMPLEMENTATION DEFINED algorithm is used, the following applies:

• The algorithm must use the same input arguments as the ComputePAC() function.
• The algorithm must provide the same result when:

– The same arguments are passed to the algorithm (values in the registers and keys).
– The PE is executing at the same Security and privilege level.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

IKRZP The IMPLEMENTATION DEFINED algorithm is permitted to apply further cryptographic rounds based on the
Security and privilege level of the PE. Using the same input arguments and key values at different Security and
privilege levels might produce different results.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IKRXB The following functions describe the QARMA algorithms supported by the PACBTI Extension:

• ComputePAC()

• PACCellInvShuffle()

• PACCellShuffle()

• PACInvSub()

• PACMult()

• PACSubQ3()

• PACSubQ5()

• RotCell()

• TweakCellInvRot()

• TweakCellRot()

• TweakInvShuffle()

• TweakShuffle()

Arm recommends that the QARMA family of algorithms should be used for pointer authentication.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

INPTP The PAC is generated by PACBTI, PAC, and PACG instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IPRJQ The input arguments of the pseudocode function ComputePAC() are:

• Most significant bits of the 32-bit pointer/address/data are zero extended to 64 bits.
• Most significant bits of the 32-bit modifier are zero extended to 64 bits.
• The 128-bit cryptographic key.

The pseudocode function CreatePAC() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RTRZN If a PAC authentication instruction fails to validate the PAC an INVSTATE UsageFault is generated. The fault
will be generated if any of the input arguments used for generating the PAC are modified before validating the
PAC, any of the three general-purpose registers or the cryptographic key. Instructions AUT, BXAUT, and AUTG
authenticate PAC.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RXZVW When PACEnabled() is FALSE:

• PAC generating instructions do not create the PAC and do not update any registers. Any other functionality
provided by the instructions is unaffected.

• PAC authentication instructions do not validate the PAC and do not generate the INVSTATE UsageFault.
Any other functionality provided by the instructions is unaffected.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

IPLRN The output of the cryptographic algorithm is a 32-bit PAC, so it is possible for different combinations of input
arguments and cryptographic keys to produce an identical PAC. This type of cryptographic collision cannot be
detected by the PAC authentication instructions and an INVSTATE UsageFault will not be generated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IKFDR The PACBTI Extension does not distinguish between privileged Thread mode execution and Handler mode
execution. For example, a pointer authenticated in Handler mode can be validated in privileged Thread mode
without generating an INVSTATE UsageFault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IZGXX There is no architectural restriction on the number of instructions that can be executed between:

• An instruction that generates PAC and an instruction that validates PAC. For example, PAC and AUT.

• An instruction that validates PAC and the return instruction. For example, AUT and BX.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IFRLR Arm recommends that between the authentication of a pointer and any subsequent reference to that pointer, the
unprotected pointer should not be saved and restored from memory.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IBRTY Examples of using PAC are shown below.

1 LDR R4, =func1 // Load function address.
2 BLX R4 // Call function which is protected by PAC-AUT.
3 ret1:
4 MOV R1, #AA // #AA value stored in R1 register.
5 MOV R2, #BB // #BB value stored in R2 register.
6 LDR R4, =func2
7 BLX R4 // Call function which is protected by PAC-AUT.
8 ret2:
9 AUTG R0, R1, R2 // Validate R0, R1, and R2 registers. If any of the

10 // values or the secret key have changed, then an
11 // INVSTATE UsageFault is generated.
12 // Not supported on legacy implementations.
13 ...
14 func1:
15 PAC R12, LR, SP // Computes the cryptographic code using LR, SP, and
16 // a secret key, then stores it in R12.
17 // This instruction works on legacy implementations.
18 PUSH {R4-R6, R12, LR} // Stack LR if it needs to be used before the AUT.
19 ... // Function body.
20 POP {R4-R6, R12, LR} // Restore the value of LR before authenticating.
21 AUT R12, LR, SP // Computes PAC using LR, SP, and a secret key, and
22 // then compares it against the value in R12.
23 // If the two values match then the LR is validated,
24 // otherwise an INVSTATE UsageFault is generated.
25 // This instruction works on legacy implementations.
26 BX LR // Return to 'ret1'.
27 func2:
28 PAC R12, LR, SP // Calculate PAC for LR.
29 ...
30 PACG R0, R1, R2 // Calculate PAC where desired value is in R1 (#AA).
31 // The modifier value is in R2 (#BB).
32 // Computed PAC is stored in R0 register.
33 // Not supported on legacy implementations.
34 ... // Function body.
35 BXAUT R12, LR, SP // Validate LR and branch to LR ('ret2').
36 // Not supported on legacy implementations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

See also:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

B3.4 Special-purpose CONTROL register

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

B6.1.2 Branch target identification

RJKHH BTI can be enabled or disabled as follows:

• CONTROL.BTI_EN for privileged mode.
• CONTROL.UBTI_EN for unprivileged mode.

The pseudocode function BTIEnabled() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RLVTR In privileged mode CONTROL.BTI_EN and CONTROL.UBTI_EN can be accessed using MSR and MRS
instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RPCZX In unprivileged mode CONTROL.UBTI_EN can be read using the MRS instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RFDGT When BTI is enabled for the target Security and privilege state then any instruction that sets EPSR.B or
LO_BRANCH_INFO.BTI to one is referred to as a BTI setting instruction. BTIEnabled() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RKRRX Any instruction that clears EPSR.B to zero is referred to as a BTI clearing instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RHRRL EPSR.B is automatically stacked and cleared to zero on exception entry and restored on exception return.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

ILVMN EPSR.B is not stacked and cleared to zero as a part of the FNC_RETURN stack frame.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RDFGH If BTI is enabled, for the target Security state and privilege level, then EPSR.B is set to one when any of the
following BTI setting instructions are executed:

• BLX.
• BLXNS.
• When the register holding the branch address is not the LR:

– BX.
– BXNS.

• When the address is loaded into the PC:
– LDR (register).
– LDR (literal).

• When the address is loaded into the PC and the base address register is either not the SP or the SP and
write-back of the SP does not occur:

– LDR (immediate).
– LDM, LDMIA, LDMFD.
– LDMDB, LDMEA.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RDDFR The LO_BRANCH_INFO.BTI bit is set to one when any of the following BTI setting instructions are executed:

• BFLX.
• When the register holding the branch address is not the LR:

– BFX.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

RHJGG When the BTI setting Branch Future branch is taken, EPSR.B is set to one when all of the following are true:

• BTIEnabled() is TRUE.
• LO_BRANCH_INFO.BTI is set to one.
• LO_BRANCH_INFO.VALID is set to one.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IPRKZ The pseudocode functions HandleLO(), GetInstrExecState(), and InstructionAdvance() show
how a BTI setting Branch Future instruction sets EPSR.B to one.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RTVHG Any instruction that is not BTI setting and sets the LO_BRANCH_INFO.VALID bit to one must also clear the
LO_BRANCH_INFO.BTI bit to zero. For example, the LE and LETP instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IHLLR The BXAUT instruction is not a BTI setting instruction regardless of which register is used as the branch target.
Equivalent behavior with BTI setting can be achieved through an AUT or AUTG instruction followed by a BX
instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

ILPCT The POP (single register), which is an alias of LDR (immediate), and POP (multiple
registers), which is an alias of LDM, LDMIA, LDMFD, are not BTI setting instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IKDLB For transitions from Non-secure to Secure state, if the SG instruction is targeted by a BTI setting branch then the
CONTROL_NS.BTI_EN and CONTROL_NS.UBTI_EN bits associated with the privilege level of that branch
determine whether the EPSR.B is set.

The SG instruction is BTI clearing, so if EPSR.B is set, it will be cleared even if BTI is not enabled.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && S.

IQNTB For transitions from Secure to Non-secure state, if the transition is caused by a BTI setting branch, for example
BXNS, then the CONTROL_NS.BTI_EN and CONTROL_NS.UBTI_EN bits associated with the privilege level of
the Non-secure state will be checked to determine whether the EPSR.B is set.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && S.

RXZCV The following instructions are BTI clearing:

• BTI.
• SG.
• PACBTI.

If the EPSR.B is set, the BTI clearing instructions will clear it to zero even if BTI is not enabled.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

RYBDN When EPSR.B is set the next executed instruction must be a BTI clearing instruction or a BKPT instruction
otherwise an INVSTATE UsageFault is generated.

If the next instruction is a BTI clearing instruction EPSR.B is cleared. In the case of the BKPT instruction EPSR.B
is not cleared and remains set and an INVSTATE UsageFault is not generated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

IZLLP When PAC functionality is required but creating a landing pad using PACBTI is undesirable then either a PAC or
PACG instruction can be used.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter B6. Pointer authentication and branch target identification Extension
B6.1. Implementing PAC and BTI

IYYZG Examples of using BTI are shown below.

1 // Current Security state is Non-secure
2 LDR R4, =testBti // Load function address.
3 LDR R3, =ret1
4 BLX R4 // BTI is enabled for Non-secure state, set EPSR.B.
5 ret1:
6 BTI // BTI clearing instruction.
7 LDR R4, =funcTestBti
8 BLX R4 // Set EPSR.B.
9 ret2:

10 LDR R4, =nscBti
11 BLX R4 // Target address is in NSC region, set EPSR.B.
12 end:
13 ...
14 // Function in Non-secure state.
15 testBti:
16 BTI // BTI clearing instruction, valid entry point.
17 ... // LR not used for return, so PAC-AUT is not required.
18 ... // But using LR would be recommended in this scenario.
19 BX R3 // Branch to 'ret1'. LR is not used, so the branch
20 // target must be a BTI clearing instruction.
21 // Function in Non-secure state.
22 funcTestBti:
23 PACBTI R12, LR, SP // BTI clearing instruction, valid entry point.
24 ... // Stacking and unstacking R12, LR, and SP is safe
25 ... // as any corruption will be detected by BXAUT.
26 BXAUT R12, LR, SP // Validate LR and return to 'ret2', address in LR.
27 // The combined authenticate and branch instruction
28 // is not backwards compatible with legacy software.
29 // Function in Non-secure state.
30 leafFunc:
31 BTI // Since BTI is enabled, a BTI clearing instruction
32 ... // is required.
33 BX leafRet // Does not set BTI, uses FNC_RETURN.
34 ...
35 // Secure and Non-secure callable region.
36 nscBti:
37 SG // Clear BTI, regardless of the Secure BTI settings.
38 B secure // Call Secure function.
39 ...
40 // Function in Secure state.
41 secure:
42 PAC R12, LR, SP // BTI clearing PAC is not required.
43 ...
44 LDR R6, =leafFunc
45 BLXNS R6 // Call Non-secure function.
46 // Instruction implicitly checks BTI settings for the
47 ... // current privilege state in CONTROL_NS.
48 leafRet:
49 ... // BTI clearing instruction not required.
50 AUT R12, LR, SP // Validate LR.
51 ... // Stacking and unstacking LR and SP is not safe.
52 ... // Corruption of the registers will not be detected.
53 BXNS LR // Branch to 'end'. Does not set BTI.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter B7
Memory Model

This chapter specifies the Armv8-M memory model architecture rules. It contains the following sections:

B7.1 Definition of the Armv8 memory model.

B7.2.1 Single-copy atomicity.

B7.3 Memory accesses.

B7.4 Address space.

B7.5 Endianness.

B7.6 Alignment behavior.

B7.7 Concurrent modification and execution of instructions.

B7.8 Access rights.

B7.9 Normal memory.

B7.10 Cacheability attributes.

B7.11 Device memory.

B7.12 Device memory attributes.

B7.13 Shareability attributes.

B7.14 Shareability domains.

B7.15 Memory access restrictions.

B7.16 Mismatched memory attributes.

B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter B7. Memory Model

B7.18 Load-Acquire and Store-Release accesses to memory.

B7.19 Caches.

B7.20 Cache identification.

B7.21 Cache visibility.

B7.22 Cache coherency.

B7.23 Cache enabling and disabling.

B7.24 Cache behavior at reset.

B7.25 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches.

B7.26 Branch predictors.

B7.27 Cache maintenance operations.

B7.28 Ordering of cache maintenance operations.

B7.29 Branch predictor maintenance operations.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter B7. Memory Model
B7.1. Definition of the Armv8 memory model

B7.1 Definition of the Armv8 memory model

IJRPK This section describes observation and ordering in the Armv8 memory model. It contains the following subsections:

• B7.1.1 Locations.
• B7.2.3 Ordering and observability.
• B7.2.5 Ordering constraints.
• B7.2.7 External ordering constraints.
• B7.2.6 Completion and endpoint ordering.
• B7.2.9 Memory barriers.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.1.1 Locations

ICKCT The Armv8 memory model provides a set of definitions that are used to constrain the permitted sequences of
accesses to memory. The Armv8 memory model defines:

• The ordering of observation of memory accesses between different Observers.
• The ordering of arrival of memory accesses arriving at an endpoint.
• The mechanisms to control the ordering of observation of memory accesses and the arrival of memory

accesses at an endpoint.

Applies to an implementation of the architecture Armv8.0-M onward.

Locations, memory effects, and observers

Location

RGZWZ A Location is a single byte that is associated with an address in the physical address space.

Applies to an implementation of the architecture Armv8.0-M onward.

ILDTD As part of its execution, an instruction might generate memory effects. Observers in the system might observe the
memory effects of that instruction on a Location.

Applies to an implementation of the architecture Armv8.0-M onward.

Effects

RKFVX The Effects of an instruction can be:

• Register effects.
• Memory effects.
• Barrier effects.
• Branching effects.

The effects of an instruction I1 are said to appear in program order before the effects of an instruction I2 if and only
if I1 occurs before I2 in the order specified by the program. Each effect generated by an instruction has a unique
identifier, which characterizes it among the events generated by the same instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter B7. Memory Model
B7.1. Definition of the Armv8 memory model

Register effects

RCLDD The Register effects of an instruction are register reads or register writes of that instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

IPTMD For an instruction that accesses registers, a register read effect is generated for each register read by the instruction
and a register write effect is generated for each register written by the instruction. An instruction may generate
both read and write Register effects.

Applies to an implementation of the architecture Armv8.0-M onward.

Memory effects

RJXFX The memory effects of an instruction are the read, write, or barrier effects of that instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RZRCJ For an instruction that accesses memory:

• A read effect is generated for each Location that is read by the instruction.
• A write effect is generated for each Location that is written by the instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RVJRP An instruction can generate both read and write effects.

Applies to an implementation of the architecture Armv8.0-M onward.

RMTJR The memory effects of an instruction I1 are said to appear in program order before the memory effects of instruction
I2 if and only if I1 occurs before I2 in program order.

Applies to an implementation of the architecture Armv8.0-M onward.

IWDFL For the purposes of describing the Armv8 memory model, all read and write effects access only Normal memory
Locations in a common Shareability domain. Where this section refers to a read, write, or memory barrier without
any qualification, then it is referring to the corresponding memory effect.

Applies to an implementation of the architecture Armv8.0-M onward.

Branching effects

RDHWH The Branching effects of an instruction are effects which correspond to a branching decision being taken.

Applies to an implementation of the architecture Armv8.0-M onward.

RJXQC Conditional and compare-and-swap instructions do not create Branching effects.

Applies to an implementation of the architecture Armv8.0-M onward.

Intrinsic order

RDBQB There is a per-instruction Intrinsic order relation that provides a partial order over the effects of that instruction,
according to the operation of that instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

Observer

RKWHH An Observer refers to either a PE, or some other memory accessing agent that can generate reads from or writes to
memory.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter B7. Memory Model
B7.1. Definition of the Armv8 memory model

Overlapping accesses

RQJCH Two memory effects overlap if and only if they access the same location.

Applies to an implementation of the architecture Armv8.0-M onward.

Common Shareability domain

RRZFF A common Shareability domain for a program is the smallest Shareability domain that contains all of the active
Observers of the memory effects generated by a program.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter B7. Memory Model
B7.2. Atomicity

B7.2 Atomicity

B7.2.1 Single-copy atomicity

RZJRK Single-copy atomic memory access operations generated by different observers have the following properties:

1. For a pair of single-copy atomic write operations W1 and W2 with at least one overlapping location, if any of
the overlapping writes generated by W1 are coherence-after the corresponding writes generated by W2, then
all of the overlapping writes generated by W1 are coherence-after the corresponding writes generated by W2.

2. For a single-copy atomic read operation R1 that has at least one overlapping location with a single-copy
atomic write operation W2, if one of the overlapping reads generated by R1 reads-from one of the overlapping
writes generated by W2, then none of the overlapping writes generated by W2 are coherence-after the
corresponding overlapping reads generated by R1.

Applies to an implementation of the architecture Armv8.0-M onward.

RSGSJ For explicit memory accesses the following rules apply:

• A read that is generated by a load instruction that loads a single general-purpose register and is aligned to the
size of the read in the instruction is single-copy atomic.

• A write that is generated by a store instruction that stores a single general-purpose register and is aligned to
the size of the write in the instruction is single-copy atomic.

• Reads that are generated by a Load Pair instruction that loads two general-purpose registers and is aligned to
the size of the load to each register are treated as two single-copy atomic reads, one for each register being
loaded.

• Writes that are generated by a Store Pair instruction that stores two general-purpose registers and are aligned
to the size of the store of each register are treated as two single-atomic writes, one for each register being
stored.

• Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of two 32-bit
quantities are single-copy atomic.

• Reads to SIMD and floating-point registers of a single 32-bit or smaller quantity that is aligned to the size of
the quantity being read are treated as single-copy atomic.

• Writes from SIMD and floating-point registers of a single 32-bit or smaller quantity that is aligned to the size
of the quantity being stored are treated as single-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward. Note, FP required for Floating-point register file, S0-S31
and D0-D16. SIMD instructions require DSP.

RKDVX If MVE is implemented, the following rules apply for explicit memory accesses:

• Element reads to SIMD and floating-point registers of 32-bit or smaller elements, where each element is
aligned to the size of the quantity being loaded, have each element treated as a single-copy atomic read.

• Element writes from SIMD and floating-point registers of 32-bit or smaller elements, where each element is
aligned to the size of the quantity being stored, have each element treated as a single-copy atomic store.

• Reads to SIMD and floating-point registers of a 64-bit value that is 64-bit aligned in memory are treated as a
pair of single-copy atomic 32-bit reads.

• Writes from SIMD and floating-point registers of a 64-bit value that is 64-bit aligned in memory are treated
as a pair of single-copy atomic 32-bit writes.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter B7. Memory Model
B7.2. Atomicity

RXDKD All accesses to a single byte are single-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward.

RDFJD All other memory accesses are treated as streams of accesses to bytes, and no atomicity between accesses to bytes
is ensured by the architecture.

Applies to an implementation of the architecture Armv8.0-M onward.

RGQXM If, according to these rules, an instruction is executed as a series of accesses exceptions, including interrupts, can be
taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are returned
from using their preferred return address, the instruction that generated the sequence of accesses is re-executed,
and so any access performed before the exception was taken is repeated.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.2 Multi-copy atomicity

IBCHK In a multiprocessing environment, writes to memory are multi-copy atomic if and only if all of the following are
true:

• All writes to the same location are observed in the same order by all Observers, although some of the
Observers might not observe all of the writes.

• A read of a location does not return the value of a write to that location until all Observers have observed that
write.

Applies to an implementation of the architecture Armv8.0-M onward.

RGJGP Writes to Normal memory are not required to multi-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward.

RLBGB Writes to Device memory with the Gathering attribute are not required to be multi-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward.

RWHJR Writes to Device memory with the non-Gathering attribute that is single-copy atomic are also multi-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.11 Device memory.

B7.9 Normal memory.

B7.18 Load-Acquire and Store-Release accesses to memory.

B7.6 Alignment behavior.

B7.2.5 Ordering constraints.

B7.2.3 Ordering and observability

IJLGR The Armv8 memory model permits reordering of memory accesses. This description defines the constraints on the
reordering of memory accesses using:

• Register value dependencies to establish order between instructions on a PE.
• Ordering constraints to establish order between accesses to a Location.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter B7. Memory Model
B7.2. Atomicity

Register value dependencies

IDNJX The Armv8 memory model defines the following dependencies between instructions:

• Dependency through registers.
• Address dependency.
• Data dependency.
• Control dependency.

Applies to an implementation of the architecture Armv8.0-M onward.

Dependency through registers

RLNLD A Dependency through registers from first effect E1 to a second effect E2 exists with a PE if and only if at least on
the of the following applies:

• E1 is a register write, W1, which has been generated by a Store Exclusive, E2 is a register read R2 and R2
reads-from-register W1.

• E1 and E2 have been generated by the same instruction and E1 is before E2 in the Intrisic Order of that
instruction.

• There is a Dependency through registers from E1 to a third effect E3, and there is a Dependency through
registers from E3 to E2.

Applies to an implementation of the architecture Armv8.0-M onward.

Address dependency

RNPWZ An address dependency from a memory read R1 to a Memory effect, RW2, exists if and only if there is a Dependency
through registers from R1 to a Register effect, E3 generated by RW2, and E3 affects the address part of RW2, and
either:

• RW2 is a memory write effect W2.

• RW2 is a memory read effect, R2, and there is no branching effect on D4 such that there is a Dependency
through registers from R1 to D4 and from D4 to R2.

Applies to an implementation of the architecture Armv8.0-M onward.

Data dependency

RFNSF A data dependency from a read R1 to a subsequent write W2 exists if and only if there is a register dependency
from the data value returned by R1 to the data value written by W2.

Applies to an implementation of the architecture Armv8.0-M onward.

Control dependency

RKFXC A Control dependency from a memory read R1 to a Memory effect RW2 exists if and only if either:

• There is a Dependency through registers from R1 to a branching effect B2 and B3 is in program order before
RW2.

• There is a Dependency through registers from R1 to the determination of a synchronous exception on an
instruction generating an effect RW3, and RW2 appears in program order after RW3.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter B7. Memory Model
B7.2. Atomicity

B7.2.4 Ordering and observability at a Location

IXQBW Memory effects on a Location have the following relations:

• Reads-from-register.
• Reads-from.
• Local-read-successor.
• Local write successor.
• Data dependency.
• Coherence order.
• Coherence-after.
• Completion.
• Global completion.
• Overlapping accesses.
• Observed-by.
• DMB

Applies to an implementation of the architecture Armv8.0-M onward.

Reads-from-register

RZQXF The reads-from-register relation couples reads and writes to the same register such that each register read is paired
with exactly one register write in the execution of a program. A read R2 Reads-from-register a write W1 to the
same register if and only if R2 takes its data from W1. By construction W1 must be in program order before R2 and
there must be no intervening write to the same register in program order between W1 and R2.

Applies to an implementation of the architecture Armv8.0-M onward.

Reads-from

RCMSK A reads-from relation that couples reads and writes to the same Location so that each read is paired with a single
write in the program. A read R2 of a Location reads-from a write W1 to the same Location if and only if R2 takes
its data from W1.

Applies to an implementation of the architecture Armv8.0-M onward.

IMHCW The reads-from relation represents a read being satisfied by a write and then returning the written data.

Applies to an implementation of the architecture Armv8.0-M onward.

Local-read-successor

RSZNB A read from R2 of a Location is the Local-read-successor of a write from W1 from the same Observer to the same
Location if and only if W1 appears in program order before R2 and there is not a write from W3 from the same
Observer to the same Location appearing in program order between W1 and R2.

Applies to an implementation of the architecture Armv8.0-M onward.

Local write successor

RFRJQ A write W2 of a Location is the Local write successor of a write W1 from the same Observer to the same Location
if and only if W1 appears in program order before W2.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter B7. Memory Model
B7.2. Atomicity

Data dependency

RHHFZ A Data dependency from a memory read, R1, to a memory write, W2, exists if and only if there is a dependency
through registers from R1 to a register effect, E3, generated by W2 and E3 affects the data part of W2.

Applies to an implementation of the architecture Armv8.0-M onward.

Coherence order

RXLMS A coherence order relation for each Location in the program that provides a total order on all writes from all
coherent Observers to that Location, starting with a notional write of the initial value.

Applies to an implementation of the architecture Armv8.0-M onward.

IHGFQ The coherence order of a Location represents the order in which writes to the Location arrive at memory.

Applies to an implementation of the architecture Armv8.0-M onward.

Coherence-after

RVSMJ A write W2 to a Location is Coherence-after another write W1 to the same Location if and only if W2 is sequenced
after W1 in the coherence order of the Location.

Applies to an implementation of the architecture Armv8.0-M onward.

RWJVX A write W2 to a Location is Coherence-after a read R1 of the same Location if and only if R1 reads-from a write
W3 to the same Location and W2 is Coherence-after W3.

Applies to an implementation of the architecture Armv8.0-M onward.

Completion

RLHTR A read R1 of a Location by an Observer is Complete when a write to the same Location by a different Observer is
Coherence-after R1.

Applies to an implementation of the architecture Armv8.0-M onward.

RRQRH A write W1 to a Location by an Observer is Complete when both:

1. A write to the same Location by a different Observer will be Coherence-after W1.

2. A read to the same Location by a different Observer will be Read-from a write that is Coherence-after W1.

Applies to an implementation of the architecture Armv8.0-M onward.

Global completion

RHNRN A reads-from R1 of a Location by an Observer is Globally complete if it is Complete and the write that it reads-from
is also Complete.

Applies to an implementation of the architecture Armv8.0-M onward.

RSWKN A write W1 to a Location by an Observer is Globally complete if it is Complete.

Applies to an implementation of the architecture Armv8.0-M onward.

Overlapping accesses

RQBJR Two memory effects overlap if and only if they access the same Location. Two instructions overlap if and only if
one or more of their generated memory effects overlap.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter B7. Memory Model
B7.2. Atomicity

Observed-by

RMSFX A read or a write RW1 from an Observer is Observed-by a write W2 from a different Observer if and only if W2 is
coherence-after RW1.

Applies to an implementation of the architecture Armv8.0-M onward.

RDLDS A write W1 from an Observer is observed-by a read R2 from a different Observer if and only if R2 reads-from W1.

Applies to an implementation of the architecture Armv8.0-M onward.

IWHVK The observed-by relation only relates accesses generated by different Observers.

Applies to an implementation of the architecture Armv8.0-M onward.

DMB SY

RJTHS Unless a specific Shareability domain is defined, a DMB SY applies to the Common shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RFNCH All properties that apply to DMB SY also apply to the corresponding DSB.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.4.1 Ordering relations

IWPKC In addition to the ordering relations for a single Location, the Armv8 memory model also provides ordering
relations to describe the ordering of memory effects to multiple Locations.

Applies to an implementation of the architecture Armv8.0-M onward.

Dependency-ordered-before

RZZLM A dependency creates externally-visible order between a read and another memory effect generated by the same
Observer. A read R1 is dependency-ordered-before a read or write RW2 from the same Observer if and only if R1
appears in program order before RW2 and any of the following cases apply:

• There is an address dependency or a data dependency from R1 to RW2.

• RW2 is a write W2 and there is a control dependency from R1 to W2.

• RW2 is a read R2 generated by an instruction appearing in program order after an instruction I3 that generates
a Context synchronization event, and there is a dependency through registers from R1 to I3.

• RW2 is a write W2 appearing in program order after a read or a write RW3 and there is an address dependency
from R1 to RW3.

• RW2 is a local-read-successor R2 of a write, W3, and there is a address dependency or data dependency from
R1 to w3.

Applies to an implementation of the architecture Armv8.0-M onward.

Atomic-ordered-before

RNXVW Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the absence of
dependencies. A read or a write RW1 is atomic-ordered-before a read or a write RW2 from the same Observer if
and only if RW1 appears in program order before RW2 and either of the following cases apply:

• RW1 is a read R1 and RW2 is a write W2 so that R1 and W2 are generated by an atomic instruction or a
successful Load-Exclusive/Store-Exclusive instruction pair to the same Location.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter B7. Memory Model
B7.2. Atomicity

• RW1 is a write W1 generated by an atomic instruction or a successful Store-Exclusive instruction and RW2 is
a read R2 generated by an instruction with Acquire or AcquirePC semantics so that R2 reads-from W1.

Applies to an implementation of the architecture Armv8.0-M onward.

Single-copy-atomic-ordered-before

RDFDV A read R1 is single-copy-atomic-ordered-before another read R2 if and only if all of the following statements are
true:

• R1 and R2 are reads from the same instruction.
• R1 is not a local-read-successor of a write.
• R2 is a local-read-successor of a write.

Applies to an implementation of the architecture Armv8.0-M onward.

Barrier-ordered-before

RPXPQ Barrier instructions order prior memory effects before subsequent memory effects generated by the same Observer.
A read or a write RW1 is barrier-ordered-before a read or a write RW2 from the same Observer if and only if RW1
appears in program order before RW2 and any of the following cases apply:

• RW1 appears in program order before a DMB that appears in program order before RW2.

• RW1 appears in program order before an atomic instruction with both Acquire and Release that semanitcs
that appears in program order before RW2.

• RW1 is a write W1 generated by an instruction with Release semantics and RW2 is a read R2 generated by an
instruction with Acquire semantics.

• RW1 is a read R1 and R1 is generated by an instruction with Acquire semantics.

• RW2 is a write W2 and W2 is generated by an instruction with Release semantics.

Applies to an implementation of the architecture Armv8.0-M onward.

Locally-ordered-before

RZQLS Dependencies, Local write successor, Load/Store-Exclusive, atomic, and barrier instructions can be composed
with an Observer to create externally-visible order. A read or write RW1 is locally-ordered-before a read or write
RW2 from the same Observer if and only if any of the following apply:

• RW1 is a write, W1, and RW2 is a write, W2, that is equal to or generated by the same instruction as a
local-write-successor of RW1.

• RW1 is dependency-ordered-before RW2.

• RW1 is atomic-ordered-before RW2.

• RW1 is barrier-ordered-before RW2.

• RW1 is locally-ordered-before RW2.

Applies to an implementation of the architecture Armv8.0-M onward.

Ordered-before

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter B7. Memory Model
B7.2. Atomicity

RGZXJ An arbitrary pair of memory effects is ordered if it can be linked by a chain of ordered accesses consistent with
external observation. A read or a write RW1 is ordered-before a read or a write RW2 if and only if any of the
following cases apply:

• RW1 is observed-by RW3 which is generated by the same instruction as RW2.
• RW1 is locally-ordered-before RW2.
• RW1 is ordered-before a read or write that is ordered-before RW2.

Applies to an implementation of the architecture Armv8.0-M onward.

IVPCD For a read or write, RW1, from an Observer that is ordered before a read or a write, RW2 from a different
Observer, the External visiblity requirement requires that RW2 is not Observed-by RW1. This means that
architecturally-well-formed execution must not exhibit a cycle in the Ordered-before relation.

Applies to an implementation of the architecture Armv8.0-M onward.

IMFCK Informally, if a memory effect, M1, from an Observer appears in program order before a memory effect, M2, from
the same Observer, then M1 will be seen to occur before M2 by all Observers in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.35 Context Synchronization Event

Chapter B9 Synchronization and Semaphores

B7.2.5 Ordering constraints

Other-multi-copy atomic

RMXHD In an other-multi-copy atomic system, it is required that a write from an Observer, if observed by a different
Observer, is then observed by all other Observers that access the Location coherently. It is, however, permitted for
an Observer to observe its own writes prior to making them visible to other Observers in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

RXCGK The Armv8 memory model is described as being other-multi-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward.

RQPKH The other-multi-copy atomic property of the Armv8 memory model is enforced by placing constraints on the
possible executions of a program. Those executions that meet the constraints given by the ordering model are said
to be architecturally well-formed. An implementation that is executing a program is only permitted to exhibit
behavior consistent with an architecturally well-formed execution.

Applies to an implementation of the architecture Armv8.0-M onward.

Architecturally well-formed

RKNXM An architecturally well-formed execution must satisfy both of the following requirements:

• Internal visibility.
• External visibility.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter B7. Memory Model
B7.2. Atomicity

Internal visibility requirement

RRZDJ For a read or a write RW1 that appears in program order before a read or a write RW2 to the same Location, the
internal visibility requirement requires that exactly one of the following statements is true:

• RW2 is a write W2 that is Coherence-after RW1.

• RW1 is a write W1 and RW2 is a read R2 such that either:

– R2 reads-from W1.
– R2 reads-from another write that is Coherence-after W1.

• RW1 and RW2 are both reads R1 and R2 such that R1 reads-from a write W3 and either:

– R2 reads-from W3.
– R2 reads-from another write that is Coherence-after W3.

Applies to an implementation of the architecture Armv8.0-M onward.

IJJBB If a memory effect M1 from an Observer appears in program order before a memory effect M2 from the same
Observer, then M1 will be seen to occur before M2 by that Observer.

Applies to an implementation of the architecture Armv8.0-M onward.

External visibility requirement

RDVLW For a read or a write RW1 from an Observer that is ordered-before a read or a write RW2 from a different Observer,
the external visibility constraint requires that RW2 is not observed-by RW1. This means that an architecturally
well-formed execution must not exhibit a cycle in the ordered-before relation.

Applies to an implementation of the architecture Armv8.0-M onward.

IXRFJ If a memory effect M1 from an Observer is ordered-before another memory effect M2, from a different Observer,
then M1 will be seen to occur before M2 by all Observers in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.6 Completion and endpoint ordering

IXSQR Interaction between Observers in a system is not restricted to communication through shared variables in coherent
memory. For example, an Observer could configure an interrupt controller to raise an interrupt on another Observer
as a form of message passing. These interactions typically involve an additional agent, which defines the instruction
sequence that is required to establish communication links between different Observers. When these forms of
interaction are used together with shared variables, a DSB instruction can be used to enforce ordering between
them.

Applies to an implementation of the architecture Armv8.0-M onward.

RMNQT A read, R1, to a Location is complete for a Shareability domain when any write to the same Location by an
Observer within the Shareability domain will be Coherence-after R1.

Applies to an implementation of the architecture Armv8.0-M onward.

RDXPG A write W1 to a Location is complete for a Shareability domain when all of the following are true:

• Any write to the same Location by an Observer within the Shareability domain will be Coherence-after W1.
• Any read to the same Location by an Observer within the Shareability domain will either reads-from W1 or

reads-from a write that is Coherence-after W1.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter B7. Memory Model
B7.2. Atomicity

RGTSJ A cache maintenance operation is complete for a Shareability domain when the memory effects of the instruction
are complete for that Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RRHHF The completion of any cache maintenance operation includes its completion on all PEs that are affected by both
the operation and the DSB instruction that is required to guarantee visibility of the maintenance operation.

Applies to an implementation of the architecture Armv8.0-M onward.

IGWDJ These completion rules mean that, for example, a cache maintenance operation that operates to the PoC completes
only after memory at the PoC has been updated.

Applies to an implementation of the architecture Armv8.0-M onward.

RJHGR Additionally, for Device-nGnRnE memory, a read or write of a Location in a memory-mapped peripheral that
exhibits side-effects is complete only when the read or write both:

• Can begin to affect the state of the memory-mapped peripheral.
• Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Applies to an implementation of the architecture Armv8.0-M onward.

ICTMQ This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral
endpoint.

Applies to an implementation of the architecture Armv8.0-M onward.

Peripherals

ILRMH This section defines a memory-mapped peripheral and the total order of reads and writes to a peripheral which is
defined as the peripheral coherence order.

Applies to an implementation of the architecture Armv8.0-M onward.

Memory-mapped peripheral

RFVCC A memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and can be accessed
using load and store instructions. Memory effects to a memory-mapped peripheral can have side-effects, such
as causing the peripheral to perform an action. Values that are read from addresses within a memory-mapped
peripheral might not correspond to the last data value written to those addresses. As such, memory effects to a
memory-mapped peripheral might not appear in the reads-from or Coherence-after relations.

Applies to an implementation of the architecture Armv8.0-M onward.

Peripheral coherence order

RTCDN The peripheral coherence order of a memory-mapped peripheral is a total order on all reads and writes to that
peripheral.

Applies to an implementation of the architecture Armv8.0-M onward.

IQHFW The peripheral coherence order for a memory-mapped peripheral signifies the order in which accesses arrive at the
endpoint.

Applies to an implementation of the architecture Armv8.0-M onward.

RJWMW For a read or a write RW1 and a read or a write RW2 to the same peripheral, then RW1 will appear in the peripheral
coherence order for the peripheral before RW2 if either of the following cases apply:

• RW1 and RW2 are accesses using Non-cacheable or Device attributes and RW1 is ordered-before RW2.
• RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes and RW1 appears in program

order before RW2.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter B7. Memory Model
B7.2. Atomicity

Applies to an implementation of the architecture Armv8.0-M onward.

Out-of-band-ordered-before

RCHWP A read or a write RW1 is out-of-band-ordered-before a read or a write RW2 if and only if either of the following
cases apply:

• RW1 appears in program order before a DSB instruction that begins an IMPLEMENTATION DEFINED
instruction sequence indirectly leading to the generation of RW2.

• RW1 is ordered-before a read or a write RW1 and RW1 is out-of-band-ordered-before RW2.

Applies to an implementation of the architecture Armv8.0-M onward.

RVSNV If a memory effect M1 is out-of-band-ordered-before a read or a write M2, then M1 is seen to occur before M2 by
all Observers.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.7 External ordering constraints

IZCPH The Armv8 memory model provides the following three alternative representations of the external ordering
constraint:

• External visibility requirement.
• External completion requirement.
• External global completion requirement.

Applies to an implementation of the architecture Armv8.0-M onward.

Completes-before order

RQNHS The Completes-before order is a total order that corresponds to the order in which memory effects complete within
the system. The following effects constitute a single entry in the completes-before order:

• Writes from the same instruction.
• Reads from the same instruction which read from external writes.
• Writes from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the completes-before order.

Applies to an implementation of the architecture Armv8.0-M onward.

Completes-before

RJCKC A read or write RW1 completes-before a read or write RW2 if and only if RW1 appears in the completes-before
order before RW2.

Applies to an implementation of the architecture Armv8.0-M onward.

Deriving Reads-from and Coherence order from the Completes-before order

IWPBF The completes-before order can be used to resolve the Reads-from relation for every memory access in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter B7. Memory Model
B7.2. Atomicity

RLQJQ For a read, R1, of a Location by an Observer, then:

• If there is a write W2 to the same Location from the same Observer, R1 will read-from W2 if all of the
following are true:

– W2 appears in program order before R1.
– R1 completes-before W2.
– There are no writes to the same Location appearing in program order between W2 and R1.

• If there is a write W2 to same Location from a different Observer, R1 will read-from W2 if all of the following
are true:

– W2 completes-before R1.
– There are no writes to the Location appearing in program order or in the completes-before order between

W2 and R1.

• If no such write exists R1 reads-from the initial value of the Location.

Applies to an implementation of the architecture Armv8.0-M onward.

RTCLS The Coherence order of writes to a Location is the order in which those writes appear in the completes-before order.
The final value of each Location is determined by the final write to each Location in the completes-before order. If
no such write exists for a given Location, the final value of the Location is the initial value of the Location.

Applies to an implementation of the architecture Armv8.0-M onward.

External completion requirement

RNLVB A read or write, RW1, Globally-completes-before a read or a write, RW2, if and only if any of the following are
true:

• RW1 is locally-ordered-before RW2.
• RW2 is a read, R2, and R1 is single-copy-ordered-before R2

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.8 Globally-completes-before order

RZPSM The globally-completes-before order is a total order that corresponds to the order in which memory effects
globally-complete with the system. The following effects constitute a single entry in the globally-completes-before
order:

• Writes from the same instruction.
• Reads from the same instruction which read from external writes.
• Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the globally-completes-before order.

Applies to an implementation of the architecture Armv8.0-M onward.

Globally-completes-before

RFDKZ A read or write, RW1, globally-completes-before a read or write, RW2, if and only if RW1 appears in the
globally-completes-before order before RW2.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter B7. Memory Model
B7.2. Atomicity

Deriving reads-from and coherence order from the globally-completes-before order

IWKHN The globally-completes-before order can be used to resolve the reads-from and coherence order relation for every
memory access in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

RZJDF A read, R1, of a Location by an Observer reads-from its closest preceding write in the globally-completes-before
order to the same Location. If no such write exists, then R1 reads-from the initial value of the Location.

Applies to an implementation of the architecture Armv8.0-M onward.

RGWVQ The coherence order of writes to a Location is the order in which those writes appear in the globally-completes-before
order. The final value of each Location is determined by the final write to each Location in the
globally-completes-before order. If no such write exists for a Location, the final value is the initial
value of that Location.

Applies to an implementation of the architecture Armv8.0-M onward.

External global completion requirement

RKWDN For a read or write, RW1, that is locally-ordered-before a read or a write, RW2, the external global completion
requirement requires that RW1 globally-completes-before RW2 if and only if any of the following statements are
true:

• RW1 is locally-ordered-before RW2 and either:

– RW1 is a write.

– RW1 is a read, R1, and either:

* R1 does not locally-read-from a write.
* R1 locally-read-from a write that is locally-ordered-before RW2.

• RW1 is a read, R1, and RW2 is a read, R2, and R1 is single-copy-ordered-before R2.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.9 Memory barriers

RWRCT The Arm architecture supports out-of-order completion of instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

RNBQC The Armv8-M architecture supports the following memory barriers:

• Instruction Synchronization Barrier (ISB).
• Data Memory Barrier (DMB).
• Data Synchronization Barrier (DSB).
• Consumption of Speculative Data Barrier (CSDB).
• Physical Speculative Store Bypass Barrier (PSSBB).
• Speculative Store Bypass Barrier (SSBB).

Applies to an implementation of the architecture Armv8.0-M onward.

RLQXF The DMB and DSB memory barriers affect reads and writes to the memory system that are generated by Load/Store
instructions and data or unified cache maintenance operations that are executed by the PE. Instruction fetches are
not explicit accesses.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter B7. Memory Model
B7.2. Atomicity

B7.2.10 Instruction Synchronization Barrier

RSTMG An ISB ensures that all instructions that come after the ISB instruction in program order are fetched from the
cache or memory after the ISB instruction has completed.

Applies to an implementation of the architecture Armv8.0-M onward.

IRZFB Using an ISB ensures that the effects of context-changing operations executed before the ISB are visible to the
instructions fetched after the ISB.

Applies to an implementation of the architecture Armv8.0-M onward.

RVJKH Any context-changing operations appearing in program order after the ISB instruction only take effect after the
ISB has been executed.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

InstructionSynchronizationBarrier().

Context synchronization event

B7.2.11 Data Memory Barrier

RMPSG The required Shareability for a DMB is Full system, and applies to all observers in the Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RGVDL A DMB only affects memory accesses and the operation of data cache and unified cache maintenance operations,
and has no effect on the ordering of any other instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

RHFTX A DMB that ensures the completion of cache maintenance instructions has an access type of both loads and stores.

Applies to an implementation of the architecture Armv8.0-M onward.

ICNSK The principle of the DMB is to introduce order between memory accesses that are specified to be affected by the
DMB supplied as arguments to the DMB instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RRGHH The DMB instruction ensures that all affected memory accesses by the PE executing the DMB instruction that
appear in program order before the DMB instruction and those instructions which originate from a different PE, are
observed-by each PE before any affected memory accesses that are in program order after the DMB are observed-by
that PE.

Applies to an implementation of the architecture Armv8.0-M onward.

ICLHH The use of the DMB instruction between the Memory effects of instructions are barrier-ordered-before.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

DataMemoryBarrier().

B7.14 Shareability domains.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter B7. Memory Model
B7.2. Atomicity

B7.2.12 Data Synchronization Barrier

IBGJS A DSB is a memory barrier that ensures that memory accesses that occur before the DSB instruction have completed
before the completion of the DSB instruction. The DSB acts as a stronger barrier than a DMB instruction and all
ordering that is created by a DMB is also generated by a DSB.

Applies to an implementation of the architecture Armv8.0-M onward.

RNKWJ The required Shareability for a DSB is Full system and applies to all observers in the Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RKMGH A DSB completes when all of the following conditions apply:

• All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required Shareability domain as PEe, are complete for the
set of observers in the required Shareability domain.

• If the required access types of the DSB is reads and writes, then all cache and branch predictor maintenance
instructions that are issued by PEe before the DSB are complete for the required Shareability domain.

• All explicit accesses to the System Control Space that result in a context altering operation issued by PEe
before the DSB are complete.

Applies to an implementation of the architecture Armv8.0-M onward.

RKMBX No instruction that appears in program order after the DSB instruction can execute until the DSB completes.

Applies to an implementation of the architecture Armv8.0-M onward.

RKNDF The order in which a series of implicit and explicit accesses occurs is only guaranteed in one of the following
scenarios or if a DSB instruction is executed between the accesses:

• An implicit read of MPU_RNR triggered by an explicit access to the MPU_RBAR, MPU_RBAR_An,
MPU_RLAR or MPU_RLAR_An must occur after, and observe the updated value of, an explicit write to the
MPU_RNR that occurred before the explicit access to the base or limit registers.

• An implicit read of SAU_RNR triggered by an explicit access to the SAU_RBAR, or SAU_RLAR must
occur after, and observe the updated value of, an explicit write to the SAU_RNR that occurred before the
explicit access to the base or limit registers.

• Explicit accesses to the PPB space in an exception handler must occur after, and observe the values of,
implicit writes during raising and entry to that exception. For example, an LDR instruction executed by a
BusFault handler that accesses the BFSR must observe the updates to the BFSR that occur during raising and
entry to the BusFault exception.

• For a set of PPB registers that directly access common architecture state, for example the Write-one-to-clear
and Write-one-to-set registers NVIC_ICER and NVIC_ISER, an implicit read of the common architecture
state triggered by an explicit read must occur after and observe the value of an explicit write that occurred
before the explicit read to the common architecture state.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

DataSynchronizationBarrier().

B7.14 Shareability domains.

B7.2.13 Consumption of Speculative Data Barrier

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter B7. Memory Model
B7.2. Atomicity

RCTSR The CSDB is a memory barrier that prevents instructions that appear in program order after the barrier completes
from determining any part of the value of data derived from speculatively executed load instructions that appeared
in program order before completion of the CSDB memory barrier.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

ILZDK When a CSDB instruction is executed, but before the CSDB completes and there are three instructions:

1. A load instruction speculatively executed in program order before the barrier that might or might not be
architecturally executed.

2. A Conditional Move instruction that has passed its condition code check and does not have an address
dependency for an input register on the speculatively executed load.

3. A load, store, data, or instruction preload appearing in program order after the barrier, which has an address
dependency on the Conditional Move instruction.

The speculative execution of the load, store, data, or instruction preload does not influence the allocation of cache
entries to determine any part of the value of the speculatively executed load instruction by an evaluation of the
cache entries which have been allocated or evicted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

IDDTH When a CSDB instruction is executed, but before the CSDB completes and there are three instructions:

1. A load instruction speculatively executed in program order before the barrier that might or might not be
architecturally executed.

2. A Conditional Move instruction that has no dependency to pass the condition tests or for an input register on
the speculatively executed load.

3. An indirect branch instruction, appearing in program order after the barrier, that is dependent on the
Conditional Move instruction for the target address of the indirect branch.

The speculative execution of the indirect branch does not influence the allocation of cache entries to determine any
part of the value of the speculatively executed load instruction by an evaluation of the cache entries which have
been allocated or evicted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RJWCV A CSDB instruction cannot be executed speculatively.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

IQZKB A CSDB can be inserted speculatively and completed when it is known not to be speculative.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RWGCX The CSDB instruction is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture Armv8.0-M onward. Note, !M.

IPCSF Arm recommends that a combination of DSB and an ISB is inserted to prevent consumption of speculative data.

Applies to an implementation of the architecture Armv8.0-M onward. Note, !M.

B7.2.14 Physical Speculative Store Bypass Barrier

ICCNK The PSSBB prevents speculative loads from:

• Returning data older than the most recent store to the same physical address appearing in program order
before the load.

• Returning data from stores using the same physical address appearing in program order after the load.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter B7. Memory Model
B7.2. Atomicity

B7.2.15 Speculative Store Bypass Barrier

IHWND The SSBB prevents speculative loads from:

• Returning data older than the most recent store to the same address appearing in program order before the
load.

• Returning data from stores using the same address appearing in program order after the load.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.2.16 Synchronization requirements for System Control Space

RSJQJ A DSB guarantees that all writes to the System Control Space have been completed.

Applies to an implementation of the architecture Armv8.0-M onward.

RNPDJ The execution of a DSB alone does not guarantee that the side effects of writes to the System Control Space are
visible. A Context synchronization event is required for side effects of a write to the System Control Space to be
visible.

Applies to an implementation of the architecture Armv8.0-M onward.

RHMNM A Context synchronization event guarantees that the side effects of any completed writes to the System Control
Space are visible after the Context synchronization event.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B8.3 The System Control Space (SCS).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter B7. Memory Model
B7.3. Memory accesses

B7.3 Memory accesses

IXRDS The memory accesses that are referred to in describing the memory model are instruction fetches from memory
and load or store data accesses.

Applies to an implementation of the architecture Armv8.0-M onward.

RLKQN The instruction operation uses the MemA() or MemU() helper functions. If the Main Extension is not implemented
unaligned accesses using the MemU() helper functions generate an alignment fault.

Applies to an implementation of the architecture Armv8.0-M onward.

RBFNF A memory access is governed by:

• Whether the access is a read or a write.

• The address alignment.

• Data endianness.

• Memory attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

RFLFQ Memory reads that are generated by MVE instructions using MemA_MVE() are allowed to access bytes that are
not explicitly accessed by the instruction if both of the following are true:

• The bytes that are accessed are in a 32-byte window that is aligned to 32 bytes.
• That window contains at least one byte that is explicitly accessed by the instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

ISKLB Arm recommends that software does not use vector load/store instructions with data in Device memory.

Applies to an implementation of the architecture Armv8.1-M onward.

RLMBL If an MVE load or store operation results in an access to the Private Peripheral Bus (PPB) address space, within
the System region of the system address map, the behavior of the accesses is CONSTRAINED UNPREDICTABLE
and one of the following occurs:

• It generates a Bus Fault.
• The specified access to the PPB address space is performed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

B7.1 Definition of the Armv8 memory model.

B7.9 Normal memory.

B7.11 Device memory.

B7.15 Memory access restrictions.

B8.2 The System region of the system address map.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter B7. Memory Model
B7.4. Address space

B7.4 Address space

RFFMK The address space is a single, flat address space of 232 bytes.

Applies to an implementation of the architecture Armv8.0-M onward.

RSNPV In the address space, byte addresses are unsigned numbers in the range 0-(232-1).

Applies to an implementation of the architecture Armv8.0-M onward.

RRGBT If an address calculation overflows or underflows the address space, it wraps around. Address calculations are
modulo 232.

Applies to an implementation of the architecture Armv8.0-M onward.

IJTKM Normal sequential execution cannot overflow the top of the address space, because the top of memory always has
the execute-never (XN) memory attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

RBPMP One or more accesses that target or wrap around the top or bottom bytes of memory, access a sequence of words at
increasing memory addresses, effectively incrementing the address by four for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward. Note, The encodings of some instructions require M, the
encodings of some instructions require FP.

See also:

Chapter B8 The System Address Map.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter B7. Memory Model
B7.5. Endianness

B7.5 Endianness

ICTVV In memory:

The following figures show the relationship between:

• The word at address A.
• The halfwords at addresses A and A+2.
• The bytes at addresses A, A+1, A+2, and A+3.

Data arranged in a big-endian format

Data arranged in a little-endian format

Byte at address A Byte at address A+1 Byte at address A+2 Byte at address A+3

Halfword at address A Halfword at address A+2

Word at address A

Byte at address AByte at address A+1Byte at address A+2Byte at address A+3

Halfword at address AHalfword at address A+2

Word at address A

Most significant byte Least significant byte

Most significant byte Least significant byte

Most significant bit
Least significant bit

Most significant bit
Least significant bit

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

Byte at address A+2Byte at address A+3Byte at address AByte at address A+1

T32 instruction, hw2bT32 instruction, hw1ab

15 8 7 0 15 8 7 0
Instruction alignment and byte ordering

a) Bits[15:0]: this is hw 1 for a T32 instruction with a 16-bit encoding

b) Bits[31:0]: this is hw1 and hw2 for a T32 instruction with a 32-bit encoding

Applies to an implementation of the architecture Armv8.0-M onward.

RJJQL Instruction fetches are always little-endian, which means that the PE assumes a little-endian arrangement of
instructions in memory.

Applies to an implementation of the architecture Armv8.0-M onward.

RMNSB All accesses to the Private Peripheral Bus (PPB) are always little-endian, which means that the PE assumes a
little-endian arrangement of the PPB registers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter B7. Memory Model
B7.5. Endianness

Applies to an implementation of the architecture Armv8.0-M onward.

RTFKG The endianness of data accesses is IMPLEMENTATION DEFINED, as indicated by AIRCR.ENDIANNESS.

Applies to an implementation of the architecture Armv8.0-M onward.

RKPCF AIRCR.ENDIANNESS is either:

• Implemented with a static value.

• Configured by a hardware input on reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RXDJV Instructions that cause a memory access that crosses the PPB boundary are CONSTRAINED UNPREDICTABLE if
AIRCR.ENDIANNESS is set to 1. The permitted behavior is one of the following:

• The instruction behaves as a NOP.
• The instruction raises an UNALIGNED UsageFault.
• If the instruction that crossed the PPB boundary was a load, the value of the destination register becomes

UNKNOWN.
• If the instruction that crossed the PPB boundary was a store, the value of the memory locations accessed

becomes UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a UsageFault requires M.

RQHWC For data accesses, the following table shows the data element size that endianness applies to, for endianness
conversion purposes.

Instruction class Instructions Element size

Load or store byte LDR{S}B{T}, LDAB, LDAEXB, STLB, STLEXB, Byte

STRB{T}, TBB, LDREXB, STREXB

Load or store halfword LDR{S}H{T}, LDAH, LDAEXH, STLH, STLEXH, Halfword

and STRH{T}, TBH, LDREXH, STREXH

Load or store word LDR{T}, LDA, LDAEX, STL, STLEX, Word

and STR{T}, LDREX, STREX, VLDR.F32, VSTR.F32

Load or store two words LDRD (literal), LDRD (immediate), Word

STRD (immediate),

VLDR.64, VSTR.64

Load or store multiple words LDM{IA, DB}, STM{IA, DB}, Word

PUSH (multiple registers),

POP (multiple registers), LDC, STC, VLDM

VSTM, VPUSH, VPOP, BLX, BLXNS, BX, BXNS

VLLDM, VLSTM

Applies to an implementation of the architecture Armv8.0-M onward.

IWSHX Instructions only support 32bit single copy atomicity.

Applies to an implementation of the architecture Armv8.0-M onward.

RXNVS The following instructions change the endianness of data that is loaded or stored:

• REV

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter B7. Memory Model
B7.5. Endianness

Reverse word (four bytes) in a register, for transforming 32-bit representations.

• REVSH

Reverse halfword and sign extend, for transforming signed 16-bit representations.

• REV16

Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter B7. Memory Model
B7.6. Alignment behavior

B7.6 Alignment behavior

RLKGV All instruction fetches are halfword-aligned.

Applies to an implementation of the architecture Armv8.0-M onward.

RCWNS If the following instructions are not aligned, as indicated, any data access will generate an alignment fault:

• Non halfword-aligned LDAH, LDREXH, LDAEXH, STLH, STLEXH, STREXH, VLDR.16, VLDRH, VLDRH
(vector), VLD2.16, VLD4.16, VSTR.16, VSTRH, VSTRH (vector), VST2.16, and VST4.16.

• Non word-aligned LDREX, LDAEX, STLEX, STREX, LDRD (immediate), LDRD (literal),
LDMIA, LDMDB, POP (multiple registers), LDC (immediate), LDC (literal), VLDM,
VLDR (System Register), VPOP, LDA, STL, STRD (immediate), STMIA, STMDB, PUSH
(multiple registers), STC, VLDRW, VLDRW (vector), VLDRD (vector), VLDR.32,
VLDR.64, VLD2.32, VLD4.32, VSTR, VSTR (System Register), VST2.32, VST4.32, VSTM,
VSTRW, VSTRW (vector), VSTRD (vector), VSTR.32, VSTR.64, and VPUSH.

• Non doubleword-aligned VLLDM, and VLSTM.

Applies to an implementation of the architecture Armv8.0-M onward. Note, See the instruction descriptions for the required
extensions.

RMHCM If CCR.UNALIGN_TRP is set to 1, the following are unaligned data accesses that generate an alignment fault:

• Non halfword-aligned LDR{S}H{T}, and STRH{T}.
• Non halfword-aligned TBH.
• Non word-aligned LDR{T}, and STR{T}.

Applies to an implementation of the architecture Armv8.0-M onward.

RJLGS Unaligned accesses are only supported if the Main Extension is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RWCVX Accesses to Device memory are always aligned.

Applies to an implementation of the architecture Armv8.0-M onward.

RPZTT If the Main Extension is not implemented, unaligned accesses generate an alignment HardFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

RRNDS Alignment faults are synchronous and generate an UNALIGNED UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RBNBX The CONSTRAINED UNPREDICTABLE behavior of unaligned loads and stores is one of the following:

• Generate an UNALIGNED UsageFault.
• Perform the specified load or store to the unaligned Location.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RLPVP Unaligned loads and stores perform the specified load and store to the unaligned Location.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.9 Normal memory.

B7.11 Device memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter B7. Memory Model
B7.7. Concurrent modification and execution of instructions

B7.7 Concurrent modification and execution of instructions

ITFGC The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Applies to an implementation of the architecture Armv8.0-M onward.

RXWVK Unless otherwise stated, concurrent modification and execution of instructions results in a CONSTRAINED UNPRE-
DICTABLE choice of any behavior that can be achieved by executing any sequence of instructions from the same
Security state or the same Privilege level.

Applies to an implementation of the architecture Armv8.0-M onward.

RBFPB For instructions that can be concurrently modified, the PE executes either:

• The original instruction.
• The modified instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RNNQK A 16-bit instruction can be concurrently modified, where the 16-bit instruction before modification and the 16-bit
modification is any of the following:

• B.
• BX.
• BLX.
• BKPT.
• NOP.
• SVC.

Applies to an implementation of the architecture Armv8.0-M onward.

RKMZG The hw1 of a 32-bit BL immediate instruction can be concurrently modified to the most significant halfword of
another BL immediate instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RHKGP The hw1 of a 32-bit BL immediate instruction can be concurrently modified to a 16-bit B, BLX, BKPT, or SVC
instruction. This modification also works in reverse.

Applies to an implementation of the architecture Armv8.0-M onward.

RFGBT The hw2 of a 32-bit BL immediate instruction can be concurrently modified to the hw2 of another BL instruction
with a different immediate.

Applies to an implementation of the architecture Armv8.0-M onward.

RNTVD The hw2, of a 32-bit B immediate instruction with a condition field can be concurrently modified to the hw2 of
another 32-bit B immediate instruction with a condition field with a different immediate.

Applies to an implementation of the architecture Armv8.0-M onward.

RCMZX The hw2 of a 32-bit B immediate instruction without a condition field can be concurrently modified to the hw2 of
another 32-bit B immediate instruction without a condition field.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.5 Endianness.

B.

BL.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter B7. Memory Model
B7.7. Concurrent modification and execution of instructions

BLX, BLXNS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter B7. Memory Model
B7.8. Access rights

B7.8 Access rights

RJTGX The possible results of an instruction fetch are described in Arm® Armv8-M Faults on Instruction Fetch (ARM
DDI 0624).

Applies to an implementation of the architecture Armv8.0-M onward.

RJHYT If the EPSR.T is zero it is IMPLEMENTATION DEFINED whether the instruction opcode is treated as a halfword or
word on instruction fetch, with respect to fetch faults.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.9 Exception numbers and exception priority numbers.

Chapter B10 The Armv8-M Protected Memory System Architecture.

Arm® Armv8-M Faults on Instruction Fetch (ARM DDI 0624).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter B7. Memory Model
B7.9. Normal memory

B7.9 Normal memory

INVRF Memory locations that are idempotent have the following properties:

• Read accesses can be repeated with no side effects.
• Repeated read accesses return the last value that is written to the resource being read.
• Read accesses can fetch additional memory locations with no side-effects.
• Write accesses can be repeated with no side-effects, if the contents of the Location that is accessed are

unchanged between the repeated writes or as the result of an exception.
• Unaligned accesses can be supported.
• Accesses can be merged before accessing the target memory system.

Applies to an implementation of the architecture Armv8.0-M onward.

IHKLB As a consequence of the properties speculative reads can occur to a Normal memory location, combined with
the possibility of intermediate buffering and forwarding of data means that mapping of non-idempotent memory
locations as Normal memory can cause memory accesses to such locations to return UNKNOWN values, and there
may be UNPREDICTABLE effects on memory-mapped peripherals mapped in such a way.

Applies to an implementation of the architecture Armv8.0-M onward.

RQGCF The PE is permitted to treat regions of memory assigned the memory type Normal memory as idempotent.

Applies to an implementation of the architecture Armv8.0-M onward.

RCGJX Normal memory can be marked as Cacheable or Non-cacheable. Normal memory is assigned Cacheability
attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

RLCPJ Normal Non-cacheable memory is always treated as shareable.

Applies to an implementation of the architecture Armv8.0-M onward.

RPKXL Speculative data accesses to Normal memory are permitted.

Applies to an implementation of the architecture Armv8.0-M onward.

RWLVR A write to Normal memory completes in finite time.

Applies to an implementation of the architecture Armv8.0-M onward.

RWLCV A write to a Non-cacheable Normal memory Location reaches the endpoint for that Location in the memory system
in finite time.

Applies to an implementation of the architecture Armv8.0-M onward.

RSNTN Writes to a memory location with the Normal memory type that are either Non-cacheable or Write-through
cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory system
in finite time. Two writes to the same location where at least one is using the Normal memory type might be
merged before they reach the endpoint unless there is an ordered-before relationship between the two writes.

Applies to an implementation of the architecture Armv8.0-M onward.

RNHFQ For multi-register Load/Store instructions that access Normal memory, the architecture does not define the order in
which the registers are accessed.

Applies to an implementation of the architecture Armv8.0-M onward.

RCFHV There is no requirement for the memory system beyond the PE to be able to identify the size of the elements
accessed.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter B7. Memory Model
B7.9. Normal memory

RJDSF If non-idempotent memory locations are mapped with the Normal memory type, then:

• Speculative read accesses can cause accesses to the non-idempotent memory locations that would not occur
as part of a simple sequential execution, so corrupting the state of the non-idempotent memory location.

• Writes to a non-idempotent memory locations might be merged or split meaning that the number and size
of writes seem by the memory location might not be the number and size that occur as part of a simple
sequential execution, so corrupting the state of the non-idempotent memory location.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.3 Memory accesses.

B7.14 Shareability domains.

B7.10 Cacheability attributes.

B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory.

MAIR_ATTR, Memory Attributes Indirection Register Attributes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter B7. Memory Model
B7.10. Cacheability attributes

B7.10 Cacheability attributes

RKXJV The architecture provides Cacheability attributes that are defined independently for each of two conceptual levels
of cache:

• The Inner cache.
• The Outer cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RXRWS The Cacheability attributes are:

• Non-cacheable.
• Write-Through Cacheable.
• Write-Back Cacheable.

Applies to an implementation of the architecture Armv8.0-M onward.

RXQXW It is IMPLEMENTATION DEFINED whether Write-Through Cacheable and Write-Back Cacheable can have the
additional attribute Transient or Non-transient.

Applies to an implementation of the architecture Armv8.0-M onward.

ILDXP The Transient attribute is a memory hint that indicates that the benefit of caching is for a short period. The
architecture does not define what is meant by a short period.

Applies to an implementation of the architecture Armv8.0-M onward.

RCFKN Cacheability attributes other than Non-cacheable can be complemented by the following cache allocation hints,
which are independent for read and write accesses:

• Read-Allocate, Transient Read-Allocate, or No Read-Allocate.
• Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Applies to an implementation of the architecture Armv8.0-M onward.

RDRTR The architecture does not require an implementation to make any use of cache allocation hints.

Applies to an implementation of the architecture Armv8.0-M onward.

RFQSS Any cacheable Normal memory region is treated as Read-Allocate, No Write-Allocate unless it is explicitly
assigned other cache allocation hints.

Applies to an implementation of the architecture Armv8.0-M onward.

IFRVF A Cacheable Location with no Read-Allocate and no Write-Allocate hints is not the same as a Non-cacheable
Location. A Non-cacheable Location has coherency guarantees for all Observers within the system that do not
apply to a Location that is Cacheable, no Read-Allocate, no Write-Allocate.

Applies to an implementation of the architecture Armv8.0-M onward.

RFTKW All data accesses to Non-cacheable Normal memory locations are data coherent to all Observers.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.9 Normal memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter B7. Memory Model
B7.11. Device memory

B7.11 Device memory

IBXHS Device memory is a memory type that is assigned to regions of memory where accesses can have side effects.

Applies to an implementation of the architecture Armv8.0-M onward.

RWTZL Device memory is not cacheable.

Applies to an implementation of the architecture Armv8.0-M onward.

RLDDN Device memory is always treated as shareable.

Applies to an implementation of the architecture Armv8.0-M onward.

RPQXS Speculative data accesses cannot be made to Device memory. However, for instructions that access a sequence of
word-aligned words the accesses might occur multiple times.

This includes instructions that cause the stacking or unstacking of, for example, a FNC_RETURN stack frame that
require access to a sequence of word-aligned words.

Applies to an implementation of the architecture Armv8.0-M onward.

RNXFX When MVE is implemented accesses to Device memory by vector load/store instructions are permitted to make
multiple accesses to the same location.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RCSKG Any unaligned access to Device memory generates an UNALIGNED UsageFault exception.

Applies to an implementation of the architecture Armv8.0-M onward.

RYMTK Device memory is assigned a combination of Device memory attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

RLFTG A write to Device memory completes in finite time.

Applies to an implementation of the architecture Armv8.0-M onward.

RFSCD A write to a Device memory location reaches the endpoint for that location in the memory system in finite time.

Applies to an implementation of the architecture Armv8.0-M onward.

RVDMB Two writes of Device memory type, to the same location might be merged before they reach the endpoint unless
either of the following conditions apply:

• Both writes have the non-Reordering attribute.

• There is an ordered-before relationship between the two writes.

Applies to an implementation of the architecture Armv8.0-M onward.

RGTTQ A completed write to a Device memory location is globally observed for the Shareability domain in finite time
without the requirement for cache maintenance instructions or barriers.

Applies to an implementation of the architecture Armv8.0-M onward.

RXMCH If the content of a Device memory location changes without a direct write to the location, the change is observed
for the Shareability domain in finite time.

Applies to an implementation of the architecture Armv8.0-M onward.

RKJHG For an instruction fetch from Device memory, if a branch causes the Program Counter (PC) to point to an area of
memory that is not marked as execute-never, the implementation can either:

• Treat the fetch as if it is to a location in Normal Non-cacheable memory.
• Take an IACCVIOL MemManage fault.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter B7. Memory Model
B7.11. Device memory

Applies to an implementation of the architecture Armv8.0-M onward. Note, a MemManage fault requires M.

RDFJX There is no requirement for the memory system beyond the PE to be able to identify the size of the elements that
are accessed, for instructions that load the following from Device memory:

• More than one general-purpose register.
• One or more registers from the floating-point register file.

Applies to an implementation of the architecture Armv8.0-M onward. Note, FP or, from Armv8.1-M MVE required for
floating-point register file.

RKVHT For an LDM, STM, LDRD, or STRD instruction with a register list that includes the PC, the architecture does not define
the order in which the registers are accessed.

Applies to an implementation of the architecture Armv8.0-M onward.

RSFPK For an LDM, STM, VLDM, VSTM, VPOP or VPUSH instruction with a register list that does not include the PC, all
registers are accessed in the order that they appear in the register list, for Device memory with the non-Reordering
attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.3 Memory accesses.

B7.13 Shareability attributes.

B7.12 Device memory attributes.

B7.14 Shareability domains.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter B7. Memory Model
B7.12. Device memory attributes

B7.12 Device memory attributes

RVNSJ Each Device memory region is assigned a combination of Device memory attributes. The attributes are:

Gathering, G and nG: The Gathering and non-Gathering attributes.

Reordering, R and nR: The Reordering and non-Reordering attributes.

Early Write Acknowledgement, E and nE: The Early Write Acknowledgement and no Early Write Acknowl-
edgement attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

RCFFC Each Device memory region is assigned one of the combinations in the following table:

Memory Ordering Name nG nR nE G R E

Strong Device-nGnRnE Y Y Y - - -

↓ Device-nGnRE Y Y - - - Y

↓ Device-nGRE Y - - - Y Y

Weak Device-GRE - - - Y Y Y

Applies to an implementation of the architecture Armv8.0-M onward.

RLJKD Weaker memory can be accessed according to the rules specified for stronger memory:

• Memory with the:
– G attribute can be accessed according to the rules specified for the nG attribute.
– nG attribute cannot be accessed according to the rules specified for the G attribute.

• Memory with the:
– R attribute can be accessed according to the rules specified for the nR attribute.
– nR attribute cannot be accessed according to the rules specified for the R attribute.

Because the nE attribute is a hint:

• An implementation is permitted to perform an access with the E attribute in a manner consistent with the
requirements specified by the nE attribute.

• An implementation is permitted to perform an access with the nE attribute in a manner consistent with the
relaxations allowed by the E attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

RFJXX For Device-GRE and Device-nGRE memory, the use of barriers is required to order accesses.

Applies to an implementation of the architecture Armv8.0-M onward.

RPVCY Memory accesses that are generated by vector instructions that target any type of Device memory operate as if the
access had targeted a Device-GRE region.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

B7.12.1 Gathering and non-Gathering Device memory attributes.

B7.12.2 Reordering and non-Reordering Device memory attributes.

B7.12.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes.

B7.11 Device memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter B7. Memory Model
B7.12. Device memory attributes

B7.12.1 Gathering and non-Gathering Device memory attributes

G attribute

RDBSX If multiple accesses of the same type, read or write, are to:

• The same location, with the G attribute, they can be merged into a single transaction.
• Different locations, all with the G attribute, they can be merged into a single transaction.

Applies to an implementation of the architecture Armv8.0-M onward.

RKCMX Gathering of accesses that are separated by a memory barrier is not permitted.

Applies to an implementation of the architecture Armv8.0-M onward.

RJSRD Gathering of accesses that are generated by a Load-Acquire/Store-Release is not permitted.

Applies to an implementation of the architecture Armv8.0-M onward.

RMGKJ A read can come from intermediate buffering of a previous write if:

• The accesses are not separated by a DMB or DSB barrier.
• The accesses are not separated by any other ordering construction that requires that the accesses are in order,

for example a combination of Load-Acquire and Store-Release.
• The accesses are not generated by a Store-Release instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

ISRDS The architecture only defines programmer visible behavior. Therefore, if a programmer cannot tell whether
Gathering has occurred, Gathering can be performed.

Applies to an implementation of the architecture Armv8.0-M onward.

nG attribute

RGVTF Multiple accesses to a Location with the nG attribute cannot be merged into a single transaction.

Applies to an implementation of the architecture Armv8.0-M onward.

RBTWD A read of a Location with the nG attribute cannot come from a cache or a buffer, but comes from the endpoint for
that address in the memory system.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.18 Load-Acquire and Store-Release accesses to memory.

B7.12.2 Reordering and non-Reordering Device memory attributes

R attribute

RRPTB This attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter B7. Memory Model
B7.12. Device memory attributes

nR attribute

RDFXL If the access is to a:

• Peripheral, it arrives at the peripheral in program order. If there is a mixture of accesses to Device nGnRE
and Device-nGnRnE in the same peripheral, these accesses occur in program order.

• Non-peripheral, this attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture Armv8.0-M onward.

IBDWB The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee that
is provided by the DMB instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RNDHC The non-Reordering attribute does not require any additional ordering, other than the ordering that applies to
Normal memory, between:

• Accesses with the non-Reordering attribute and accesses with the Reordering attribute.
• Accesses with the non-Reordering attribute and accesses to Normal memory.
• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION

DEFINED size.

Applies to an implementation of the architecture Armv8.0-M onward.

B7.12.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory
attributes

E attribute

RPVSH The E attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture Armv8.0-M onward.

nE attribute

RFWFR Assigning the nE attribute recommends that only the endpoint of the write access returns a write acknowledgment
of the access, and that no earlier point in the memory system returns a write acknowledgment.

Applies to an implementation of the architecture Armv8.0-M onward.

IFQWQ The E attribute is treated as a hint. Arm strongly recommends that this hint is not ignored by a PE, but is made
available for use by the system.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.2.9 Memory barriers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter B7. Memory Model
B7.13. Shareability attributes

B7.13 Shareability attributes

RCJRF Each Normal cacheable memory region is assigned one of the following Shareability attributes:

• Non-shareable.
• Inner-shareable.
• Outer-shareable.

Applies to an implementation of the architecture Armv8.0-M onward.

RPDVV For Non-shareable memory, hardware is not required to make data accesses by different observers, other than the
Debug Access Port, coherent. If a number of observers share the memory, cache maintenance instructions, in
addition to the barrier operations that are required to ensure memory ordering, can ensure that the presence of
caches does not lead to coherency issues.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.3 Memory accesses.

B7.9 Normal memory.

B7.11 Device memory.

B7.14 Shareability domains.

B7.27 Cache maintenance operations.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter B7. Memory Model
B7.14. Shareability domains

B7.14 Shareability domains

RJMHL There are two conceptual Shareability domains:

• The Inner Shareability domain.
• The Outer Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

IXQWM The following diagram shows the Shareability domains:

Observer 8 Observer 9

Observer 4Observer 0

Observer 1

Inner Shareable

Outer Shareable

Observer 2

Observer 3

Inner Shareable

Observer 7

Observer 5

Observer 6

Inner Shareable

Outer Shareable

System

Applies to an implementation of the architecture Armv8.0-M onward.

RMCPS All observers in an Inner Shareability domain are data coherent for data accesses to memory that has the Inner-
shareable Shareability attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

RSVCR All observers in an Outer Shareability domain are data coherent for data accesses to memory that has the Outer-
shareable Shareability attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

RJMFS Each Observer is a member of only a single Inner Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RBNWH Each Observer is a member of only a single Outer Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RFVBG All members of the same Inner Shareability domain are always members of the same Outer Shareability domain.

Applies to an implementation of the architecture Armv8.0-M onward.

RWFMV Accesses to a shareable Location are coherent within the Shareability domain of that Location.

Applies to an implementation of the architecture Armv8.0-M onward.

IDHJF An Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper
subset.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter B7. Memory Model
B7.14. Shareability domains

RXHJL Hardware is required to ensure coherency and ordering within the Shareability domain if all of the following apply:

• Before writing to a Location not using the Write-Back attribute, a Location in the caches that might have
been written with the Write-Back attribute by an agent has been invalidated or cleaned.

• After writing the Location with the Write-Back attribute, the Location has been cleaned from the caches to
make the write visible to external memory.

• Before reading the Location with a cacheable attribute, the cache Location has been invalidated, or cleaned
and invalidated.

• A DMB barrier instruction has been executed, with a scope that applies to the common Shareability of the
accesses, between any accesses to the same Location that use different attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.2.3 Ordering and observability.

B7.13 Shareability attributes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter B7. Memory Model
B7.15. Memory access restrictions

B7.15 Memory access restrictions

RLTWZ For two explicit memory read effects to any two adjacent locations in memory, p and p + 1, generated by the same
instruction, and for two explicit memory write effects to any two adjacent locations in memory, p and p + 1, that
are generated by the same instruction:

• The locations p and p + 1 must have the same memory type and Shareability attributes, otherwise the results
are a CONSTRAINED UNPREDICTABLE choice of the following:

– Each memory access that is generated by the instruction uses the memory type and Shareability attribute
that is associated with its own location.

– The instruction executes as a NOP.
– The instruction generates an UNALIGNED UsageFault.

• Except for possible differences in cache allocation hints, Arm deprecates having different Cacheability
attributes for accesses to any two bytes that are generated by the same instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RBFKS If the accesses of an instruction that cause multiple accesses to any type of Device memory cross the boundary of a
memory region then the behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

• All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses.

• All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses, except that there is no guarantee of ordering between memory accesses.

• The instruction executes as a NOP.
• The instruction generates an UNALIGNED UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward.

RYZWN Speculative instruction fetches can be made to memory, including Device memory, unless the Location is marked
as execute-never.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.3 Memory accesses.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter B7. Memory Model
B7.16. Mismatched memory attributes

B7.16 Mismatched memory attributes

RXHTK Memory locations are accessed with mismatched attributes if all accesses to the Location do not use a common
definition of all the following memory attributes of that Location:

• Memory type - Device or Normal.
• Shareability.
• Cacheability, for the same level of the Inner or Outer cache, but excluding any cache allocation hints.

Applies to an implementation of the architecture Armv8.0-M onward.

RVKHJ When a memory Location is accessed with mismatched attributes, the only permitted effects are one or more of the
following:

• Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:

– A read of the memory Location by one agent might not return the value that was most recently written
to that memory Location by the same agent.

– Multiple writes to the memory Location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory Location.

• There might be a loss of the properties that are derived from the memory type.

• If all Load-Exclusive/Store-Exclusive instructions that are executed across all threads to access a given
memory Location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

• Bytes that are written without the Write-Back cacheable attribute and that are within the same Write-Back
granule as bytes that are written with the Write-Back cacheable attribute might have their values reverted to
the old values as a result of cache Write-Back.

Applies to an implementation of the architecture Armv8.0-M onward.

RNJLB The loss of the properties that are associated with mismatched memory type attributes refers only to the following
properties of Device memory that are additional to the properties of Normal memory:

• Prohibition of speculative read accesses.
• Prohibition on Gathering.
• Prohibition on Reordering.

Applies to an implementation of the architecture Armv8.0-M onward.

RHCCD Any agent that reads a memory Location with mismatched attributes using the same common definition of the
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that common
definition of the memory attributes, only if all the following conditions are met:

• All aliases to the memory Location with write permission both use a common definition of the Shareability
and Cacheability attributes for the memory Location, and have the Inner Cacheability attribute the same as
the Outer Cacheability attribute.

• All aliases to a memory Location use a definition of the Shareability attributes that encompasses all the agents
with permission to access the Location.

Applies to an implementation of the architecture Armv8.0-M onward.

RGBKH The possible permitted effects that are caused by mismatched attributes for a memory Location are defined more
precisely if all the mismatched attributes define the memory Location as one of:

• Any Device memory type.
• Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter B7. Memory Model
B7.16. Mismatched memory attributes

• Possible loss of properties that are derived from the memory type when multiple agents attempt to access the
memory Location.

• Possible reordering of memory transactions to the same memory Location with different memory attributes,
potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or
uniprocessor semantics can be avoided by inserting DMB barrier instructions between accesses to the same
memory Location that might use different attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

RVVBS If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be made
with different Shareability attributes, then ordering and coherency are guaranteed only if:

• Each PE that accesses the Location with a cacheable attribute performs a clean and invalidate of the Location
before and after accessing that Location.

• A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses to
the same memory Location that use different attributes.

Applies to an implementation of the architecture Armv8.0-M onward.

RVCXW If multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location, and the
accesses from the different agents have different memory attributes associated with the Location, the exclusive
monitor state becomes UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward.

RZKKV All cache maintenance instructions and memory transactions must be completed, or ordered by the use of barrier
operations, if they are not naturally ordered by the use of a common address.

Applies to an implementation of the architecture Armv8.0-M onward.

ITPWG Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

Chapter B10 The Armv8-M Protected Memory System Architecture.

B7.14 Shareability domains.

B7.10 Cacheability attributes.

B7.11 Device memory.

B7.9 Normal memory.

B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter B7. Memory Model
B7.17. Load-Exclusive and Store-Exclusive accesses to Normal memory

B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory

RKDWC For Normal memory that is:

• Non-shareable, it is IMPLEMENTATION DEFINED whether Load-Exclusive and Store-Exclusive instructions
take account of the possibility of accesses by more than one Observer.

• Shareable, Load-Exclusive, and Store-Exclusive instructions take account of the possibility of accesses by
more than one Observer.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.9 Normal memory.

B7.3 Memory accesses.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter B7. Memory Model
B7.18. Load-Acquire and Store-Release accesses to memory

B7.18 Load-Acquire and Store-Release accesses to memory

IVXGZ The principle of a Load-Acquire instruction is to introduce order between the memory access generated by the
Load-Acquire instruction and the memory accesses appearing in program order after the Load-Acquire instruction,
ensuring that the memory access generated by the Load-Acquire instruction is all of the following:

• Observed-by each PE.
• Observed before any of the memory accesses appearing in program order after the Load-Acquire instruction

are observed by that PE.
• Observed to the extent that each PE is required to observe the access coherently.

The Load-Acquire instructions create order between the Memory effects of instructions as described in the
definition of barrier-ordered-before.

Applies to an implementation of the architecture Armv8.0-M onward.

IZDWZ The principle of a Store-Release instruction is to introduce order between the memory accesses generated by the
PE, PEe, executing the Store-Release instruction, together with those that originate from a different PE, to the
extent that PEe is required to observe them coherently, Observed-by the PEe before executing the Store-release.

The use of Store-Release instructions create order between the Memory effects of instructions as described in the
definition of barrier-ordered-before.

Applies to an implementation of the architecture Armv8.0-M onward.

IVVTX The following table summarizes the Load-Acquire/Store-Release instructions:

Data type Load-Acquire Store-Release Load-Acquire Exclusive Store-Release Exclusive

32-bit word LDA STL LDAEX STLEX

16-bit halfword LDAH STLH LDAEXH STLEXH

8-bit byte LDAB STLB LDAEXB STELXB

Applies to an implementation of the architecture Armv8.0-M onward.

RXBRM A Store-Release followed by a Load-Acquire is observed in program order by each Observer within the Shareability
domain of the memory address being accessed by the Store-Release and the memory address being accessed by
the Load-Acquire.

Applies to an implementation of the architecture Armv8.0-M onward.

RRRFK For a Load-Acquire, observers in the Shareability domain of the address that is accessed by the Load-Acquire
observe accesses in the following order:

1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire for which
the Shareability of the address that is accessed by the load or store requires that the Observer observes the
access.

There are no other ordering requirements on loads or stores that appear before the Load-Acquire.

Applies to an implementation of the architecture Armv8.0-M onward.

RWLWT For a Store-Release, observers in the Shareability domain of the address that is accessed by the Store-Release
observe accesses in the following order:

1. All of the following for which the Shareability of the address that is accessed requires that the Observer
observes the access:

• Reads and writes caused by loads and stores that appear in program order before the Store-Release.
• Writes that were observed by the PE executing the Store-Release before it executed the Store-Release.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter B7. Memory Model
B7.18. Load-Acquire and Store-Release accesses to memory

2. The write caused by the Store-Release.

There are no other ordering requirements on loads or stores that appear in program order after the Store-Release.

Applies to an implementation of the architecture Armv8.0-M onward.

RHCKC All Store-Release instructions are multi-copy atomic when they are observed with Load-Acquire instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

RDGXR A Load-Acquire to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined
as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed after the Load-Acquire will arrive at
the memory-mapped peripheral after the memory access of the Load-Acquire.

Applies to an implementation of the architecture Armv8.0-M onward.

RCKRC A Store-Release to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined
as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed before the Store-Release will arrive at
the memory-mapped peripheral before the memory access of the Store-Release.

Applies to an implementation of the architecture Armv8.0-M onward.

RGJHK If a Load-Acquire to a memory address in a memory-mapped peripheral of an arbitrary system-defined size
that is defined as any type of Device memory access has observed the value that is stored to that address by a
Store-Release, then any memory access to the memory-mapped peripheral that is architecturally required to be
ordered before the memory access of the Store-Release will arrive at the memory-mapped peripheral before any
memory access to the same peripheral that is architecturally required to be ordered after the memory access of the
Load-Acquire.

Applies to an implementation of the architecture Armv8.0-M onward.

RWRLC Load-Acquire and Store-Release access only a single data element.

Applies to an implementation of the architecture Armv8.0-M onward.

RKCTN Load-Acquire and Store-Release accesses are single-copy atomic.

Applies to an implementation of the architecture Armv8.0-M onward.

RBXRP If a Load-Acquire or Store-Release instruction accesses an address that is not aligned to the size of the data element
being accessed, the access generates an alignment fault.

Applies to an implementation of the architecture Armv8.0-M onward.

RNVRJ A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.14 Shareability domains.

B7.11 Device memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter B7. Memory Model
B7.19. Caches

B7.19 Caches

IJSPB When a memory Location is marked with a Normal Cacheable memory attribute, determining whether a copy of
the memory Location is held in a cache can depend on many aspects of the implementation, such as the following
factors:

• The size, line length, and associativity of the cache.
• The cache allocation algorithm.
• Activity by other elements of the system that can access the memory.
• Speculative instruction fetching algorithms.
• Speculative data fetching algorithms.
• Interrupt behaviors.

Applies to an implementation of the architecture Armv8.0-M onward.

RQGSG An implementation can include multiple levels of cache, up to a maximum of seven levels, in a hierarchical memory
system.

Applies to an implementation of the architecture Armv8.0-M onward.

ISTRV The lower the cache level, the closer the cache is to the PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RPDSR Entries for addresses with a Normal cacheable attribute can be allocated to an enabled cache at any time.

Applies to an implementation of the architecture Armv8.0-M onward.

RJGBL The allocation of a memory address to a cache Location is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward.

RSBGJ A cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to its size.

Applies to an implementation of the architecture Armv8.0-M onward.

RXXBW Where a breakdown in coherency can occur, data coherency of the caches is controlled in an IMPLEMENTATION
DEFINED manner.

Applies to an implementation of the architecture Armv8.0-M onward.

RJVJN The architecture cannot guarantee whether:

• A memory Location that is present in the cache remains in the cache.
• A memory Location that is not present in the cache is brought into the cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RPHWM If the cache is disabled, no new allocation of memory locations into the cache occurs.

Applies to an implementation of the architecture Armv8.0-M onward.

RLJQB The allocation of a memory Location into a cache cannot cause the most recent value of that memory Location to
become invisible to an Observer, if it had previously been visible to that Observer.

Applies to an implementation of the architecture Armv8.0-M onward.

RQRLS If the cache is enabled, it is guaranteed that no memory Location that does not have a cacheable attribute is
allocated into the cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RXXVH If the cache is enabled, it is guaranteed that no memory Location is allocated to the cache if the access permissions
for that Location are so that the Location cannot be accessed by reads and cannot be accessed by writes.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter B7. Memory Model
B7.19. Caches

RSCKQ Any cached memory Location is not guaranteed to remain incoherent with the rest of memory.

Applies to an implementation of the architecture Armv8.0-M onward.

RRQXN If an implementation permits cache hits when the Cacheability control fields force all memory locations to be
treated as Non-cacheable, then the cache initialization routine:

• Provides a mechanism to ensure the correct initialization of the caches.
• Is documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory locations to
be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization routine avoids
any possibility of running from an uninitialized cache. It is acceptable for an initialization routine to require a
fixed instruction sequence to be placed in a restricted range of memory.

Applies to an implementation of the architecture Armv8.0-M onward.

RWDBP It is UNPREDICTABLE whether the Location is returned from cache or from memory when:

• The Location is not marked as cacheable but is contained in the cache. This situation can occur if a Location
is marked as Non-cacheable after it has been allocated into the cache.

• The Location is marked as cacheable and might be contained in the cache, but the cache is disabled.

Applies to an implementation of the architecture Armv8.0-M onward.

RNDNN The architecture allows copies of control values or data values to be cached. The existence of such copies can lead
to CONSTRAINED UNPREDICTABLE behavior, if the cache has not been correctly invalidated following a change
of the control or data values.

Unless otherwise stated, the behavior of the PE is consistent with:

• The old value.
• The new value.
• An amalgamation of the old and new values.

Applies to an implementation of the architecture Armv8.0-M onward.

IBMPQ The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.20 Cache identification.

B7.23 Cache enabling and disabling.

B7.10 Cacheability attributes.

B7.24 Cache behavior at reset.

B7.28 Ordering of cache maintenance operations.

B7.16 Mismatched memory attributes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter B7. Memory Model
B7.20. Cache identification

B7.20 Cache identification

RWBGH A PE controls the implemented caches using:

• A single Cache Type Register, CTR.
• A single Cache Level ID Register, CLIDR.
• A single Cache Size Selection Register, CSSELR.
• For each implemented cache, across all levels of caching, a Cache Size Identification Register, CCSIDR.

Applies to an implementation of the architecture Armv8.0-M onward.

RXJTL The number of levels of cache is IMPLEMENTATION DEFINED and can be determined from the Cache Level ID
Register.

Applies to an implementation of the architecture Armv8.0-M onward.

IPPSB Cache sets and Cache ways are numbered from 0. Usually the set number is an IMPLEMENTATION DEFINED
function of an address.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter B7. Memory Model
B7.21. Cache visibility

B7.21 Cache visibility

RQLVB A completed write to a memory Location that is Non-cacheable or Location Write-Through Cacheable for a level
of cache made by an Observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

Applies to an implementation of the architecture Armv8.0-M onward.

RRCHC A completed write to a memory Location that is Non-cacheable for a level of cache made by an Observer accessing
the memory system outside the level of cache is visible to all observers accessing the memory system inside the
level of cache without the need of explicit cache maintenance.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.10 Cacheability attributes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter B7. Memory Model
B7.22. Cache coherency

B7.22 Cache coherency

RNNDJ Data coherency of caches is ensured:

• When caches are not used.
• As a result of cache maintenance operations.
• By the use of hardware coherency mechanisms to ensure coherency of data accesses to memory for cacheable

locations by observers in different Shareability domains.

Applies to an implementation of the architecture Armv8.0-M onward.

RCPGW Hardware is not required to ensure coherency between instruction caches and memory, even for regions of memory
with the Shareability attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.27 Cache maintenance operations.

B7.2.9 Memory barriers.

B7.13 Shareability attributes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter B7. Memory Model
B7.23. Cache enabling and disabling

B7.23 Cache enabling and disabling

IPPLL The Configuration and Control Register, CCR, enables and disables caches across all levels of cache that are visible
to the PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RHTLD It is IMPLEMENTATION DEFINED whether the CCR.DC and CCR.IC bits affect the memory attributes that are
generated by an enabled MPU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && MPU.

ITNHX An implementation can use control bits in the Auxiliary Control Register, ACTLR, for finer-grained control of
cache enabling.

Applies to an implementation of the architecture Armv8.0-M onward.

RSMDL For instruction fetches and data accesses, NS-Attr determines which banked instance, either Secure or Non-secure,
of CCR.IC or CCR.DC is used.

Applies to an implementation of the architecture Armv8.0-M onward.

RDSTQ If the MPU is disabled, MPU_CTRL.ENABLE == 0, the CCR.DC and CCR.IC bits determine the cache state for
cacheable regions of the system address map.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && MPU.

See also:

B7.20 Cache identification.

B7.19 Caches.

B7.24 Cache behavior at reset.

B3.14 Secure address protection.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter B7. Memory Model
B7.24. Cache behavior at reset

B7.24 Cache behavior at reset

RKCFK All caches are disabled at reset.

Applies to an implementation of the architecture Armv8.0-M onward.

RJMBT An implementation can require the use of a specific cache initialization routine to invalidate its storage array before
it is enabled:

• The exact form of any required cache initialization routine is IMPLEMENTATION DEFINED.
• If a required initialization routine is not performed, the state of an enabled cache is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RTVKQ If an implementation permits cache hits when the cache is disabled, the cache initialization routine provides a
mechanism to ensure the correct initialization of the caches.

Applies to an implementation of the architecture Armv8.0-M onward.

RCJGV If an implementation permits cache hits when the cache is disabled and the cache contents are not invalidated at
reset, the initialization routine avoids any possibility of running from an uninitialized cache.

Applies to an implementation of the architecture Armv8.0-M onward.

IJSQQ An initialization routine can require a fixed instruction sequence to be placed in a restricted range of memory.

Applies to an implementation of the architecture Armv8.0-M onward.

IJCTD Arm recommends that whenever an invalidation routine is required, it is based on the Armv8-M cache maintenance
operations.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.19 Caches.

B7.23 Cache enabling and disabling.

B7.27 Cache maintenance operations.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter B7. Memory Model
B7.25. Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches

B7.25 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instruc-
tions with caches

ICQLR PLD and PLI are memory system hints and their effect is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward.

ITPPK The instructions PLD and PLI do not generate exceptions but the memory system operations might generate an
imprecise fault (asynchronous exception) because of the memory access.

Applies to an implementation of the architecture Armv8.0-M onward.

RQNGJ A PLD instruction does not cause any effect to the caches or memory other than the effects that, for permission or
other reasons, can be caused by the equivalent load from the same location with the same context and at the same
privilege level and Security state.

Applies to an implementation of the architecture Armv8.0-M onward.

RSFNK A PLD instruction does not access Device-nGnRnE or Device-nGnRE memory.

Applies to an implementation of the architecture Armv8.0-M onward.

RHNLN A PLI instruction does not cause any effect to the caches or memory other than the effects that, for permission
or other reasons, can be caused by the fetch resulting from changing the PC to the location specified by the PLI
instruction with the same context and at the same privilege level and Security state.

Applies to an implementation of the architecture Armv8.0-M onward.

RMRFG A PLI instruction cannot access memory that has the Device-nGnRnE or Device-nGnRE attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

PLD, PLDW (immediate).

PLD (literal).

PLD, PLDW (register).

PLI (immediate, literal).

PLI (register).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter B7. Memory Model
B7.26. Branch predictors

B7.26 Branch predictors

IGTPB Branch predictor hardware typically uses a form of cache to hold branch information.

Applies to an implementation of the architecture Armv8.0-M onward.

RMTBD Branch predictors are not architecturally visible.

Applies to an implementation of the architecture Armv8.0-M onward.

ICVCV The BPIALL operation is provided for timing and determinism.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.29 Branch predictor maintenance operations.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter B7. Memory Model
B7.27. Cache maintenance operations

B7.27 Cache maintenance operations

IMRMG Cache maintenance operations act on particular memory Locations.

Applies to an implementation of the architecture Armv8.0-M onward.

RJJLL Following a Clean operation, updates made by an Observer that controls the cache are made visible to other
Observers that can access memory at the point to which the operation is performed.

Applies to an implementation of the architecture Armv8.0-M onward.

RVRBP The cleaning of a cache entry from a cache can overwrite memory that has been written by another Observer only
if the entry contains a Location that has been written to by an Observer in the Shareability domain of that memory
Location.

Applies to an implementation of the architecture Armv8.0-M onward.

RSJFS Following an invalidate operation, updates made visible by observers that access memory at the point to which the
invalidate is defined are made visible to an Observer that controls the cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RPGXK An invalidate operation might result in the loss of updates to the Locations affected by the operation that have been
written by observers that access the cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RTKBD If the address of an entry on which the invalidate operates does not have a Normal cacheable attribute, or if the
cache is disabled, then an invalidate operation ensures that this address is not present in the cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RJTXK If the address of an entry on which the invalidate operates has the Normal cacheable attribute, the cache invalidate
operation cannot ensure that the address is not present in an enabled cache.

Applies to an implementation of the architecture Armv8.0-M onward.

RSDVP A clean and invalidate operation behaves as the execution of a clean operation followed immediately by an
invalidate operation. Both operations are performed to the same Location.

Applies to an implementation of the architecture Armv8.0-M onward.

RVKSN The clean operation cleans from the level of cache that is specified through at least the next level of cache away
from the PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RGFXB The invalidate operation invalidates only at the level specified.

Applies to an implementation of the architecture Armv8.0-M onward.

RKVSM For set/way operations and for All (entire cache) operations, the cache maintenance operation is to the next level
of caching.

Applies to an implementation of the architecture Armv8.0-M onward.

RJTWT For address operations, the cache maintenance operation is to the Point of coherency (PoC) or to the Point of
unification (PoU) depending on the settings in CLIDR.{LoC, LOUU}.

Applies to an implementation of the architecture Armv8.0-M onward.

RXLHX Data cache maintenance operations affect data caches and unified caches.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter B7. Memory Model
B7.27. Cache maintenance operations

RQKMF Instruction cache maintenance operations only affect instruction caches.

Applies to an implementation of the architecture Armv8.0-M onward.

RRSVL Cache maintenance operations are memory mapped, 32-bit write-only operations.

Applies to an implementation of the architecture Armv8.0-M onward.

RNSHH Cache maintenance operations can have one of the following side effects:

• Any Location in the cache might be cleaned.
• Any unlocked Location in the cache might be cleaned and invalidated.

Applies to an implementation of the architecture Armv8.0-M onward.

RDWMR The ICIMVAU, DCIMVAC, DCCMVAU, DCCMVAC, and DCCIMVAC operations require the physical address in the
memory map but it does not have to be cache-line aligned.

Applies to an implementation of the architecture Armv8.0-M onward.

RHCTC For DCISW, DCCSW, and DCCISW, the STR operation identifies the cache line to which it applies by specifying the
following:

• The cache set the line belongs to.
• The way number of the line in the set.
• The cache level.

The format of the register data for a set/way operation is:

0Way

31 32–A
31–A

B
B–1

L
L–1

4 3 2 1 0

SBZ Set SBZ Level

Where:

A = Log2(ASSOCIATIVITY), rounded up to the next integer if necessary.

B = (L + S).

L = Log2(LINELEN).

S = Log2(NSETS), rounded up to the next integer if necessary. ASSOCIATIVITY, LINELEN (line length, in
bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated
on.

The values of A and S are rounded up to the next integer.

Level= ((Cache level to operate on) - 1). For example, this field is 0 for operations on an L1 cache, or 1 for
operations on an L2 cache.

Set = The number of the set to operate on.

Way = The number of the way to operate on.

• If L == 4 then there is no SBZ field between the set and level fields in the register.

• If A == 0 there is no way field in the register, and register bits[31:B] are SBZ.

• If the level, set, or way field in the register is larger than the size implemented in the cache, then the effect of
the operation is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter B7. Memory Model
B7.27. Cache maintenance operations

RRSBX After the completion of an instruction cache maintenance operation, a Context synchronization event guarantees
that the effects of the cache maintenance operation are visible to all instruction fetches that follow the Context
synchronization event.

Applies to an implementation of the architecture Armv8.0-M onward.

IDHJQ Arm recommends that, wherever possible, all caches that require maintenance to ensure coherency are included in
the caches affected by the architecturally-defined cache maintenance operations.

Applies to an implementation of the architecture Armv8.0-M onward.

RLRGS It is IMPLEMENTATION DEFINED whether the DCIMVAC and DCISW operations, when performed from Non-secure
state either:

• Clean any data that might be Secure data before invalidating it.
• Do not invalidate Secure data.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RVKDF ICIALLU, ICIMVAU, DCCMVAU, DCCMVAC, DCCSW, DCCIMVAC, DCCISW, and BPIALL operations on Secure
data might be ignored if the operation was performed from Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IMLLC The following is the sequence of cache cleaning operations for a line of self-modifying code:

1 // Enter this code with <Rx> containing the new 32-bit instruction and <Ry>;
2 // containing the address of the instruction.
3 // Use STRH in the first line instead of STR for a 16-bit instruction.
4 STR <Rx>, [<Ry>] // Write instruction to memory
5 DSB // Ensure write is visible
6 MOV <Rt>, 0xE000E000 // Create pointer to base of System Control Space
7 STR <Ry>, [<Rt>,#0xF64] // Clean data cache by address to point of unification
8 DSB // Ensure visibility of the data cleaned from the cache
9 STR <Ry>, [<Rt>,#0xF58] // Invalidate instruction cache by address to PoU

10 STR <Ry>, [<Rt>,#0xF78] // Invalidate branch predictor
11 DSB // Ensure completion of the invalidations
12 ISB // Synchronize fetched instruction stream

Applies to an implementation of the architecture Armv8.0-M onward.

RHXMM If the Security attribution of memory is changed, it is IMPLEMENTATION DEFINED whether cache maintenance
operations are required to keep the system state valid.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RJFGF In the cache maintenance instructions that operate by Set/Way, if any index argument is larger than the value
supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and one of the following
occurs:

• The instruction generates a BusFault.

• The instruction performs cache maintenance on one of the following:

– No cache lines.
– A single arbitrary cache line.
– Multiple arbitrary cache lines.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

Cache Maintenance Operations.

Cache Maintenance Operations (NS alias).

B7.2.3 Ordering and observability.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter B7. Memory Model
B7.27. Cache maintenance operations

B7.10 Cacheability attributes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter B7. Memory Model
B7.28. Ordering of cache maintenance operations

B7.28 Ordering of cache maintenance operations

RGCNB All cache and branch predictor maintenance operations that do not specify an address execute, relative to each
other, in program order.

Applies to an implementation of the architecture Armv8.0-M onward.

RGXNL All cache maintenance operations that specify an address:

• Execute in program order relative to all cache operations that do not specify an address.
• Execute in program order relative to all cache maintenance operations that specify the same address.
• Can execute in any order relative to cache maintenance operations that specify a different address.

Applies to an implementation of the architecture Armv8.0-M onward.

RRTJG There is no restriction on the ordering of data or unified cache maintenance operation by address relative to any
explicit load or store.

Applies to an implementation of the architecture Armv8.0-M onward.

RMJPP There is no restriction on the ordering of a data or unified cache maintenance operation by set/way relative to any
explicit load or store.

Applies to an implementation of the architecture Armv8.0-M onward.

IVXXZ A DSB instruction can be inserted to enforce ordering as required.

Applies to an implementation of the architecture Armv8.0-M onward.

RSWBG For the ICIALLU operation, the value in the register specified by the STR instruction that performs the operation
is ignored.

Applies to an implementation of the architecture Armv8.0-M onward.

IZQQZ If the Security attribution of cached memory is changed, either by the SAU or IDAU, then the following cache
maintenance sequence should be used:

1. Execute a DSB instruction.
2. Clean the affected lines in data or unified caches using the DCC* operation.
3. Execute a DSB instruction.
4. Change the security attribution of the address range.
5. Execute a DSB instruction.
6. Invalidate the affected lines in all caches using the DCI* and ICI* operations.
7. Execute a Context synchronization event.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

B7.2.12 Data Synchronization Barrier.

B10.2 Security attribution.

B7.27 Cache maintenance operations.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter B7. Memory Model
B7.29. Branch predictor maintenance operations

B7.29 Branch predictor maintenance operations

RHVXX Branch predictor maintenance operations are independent of cache maintenance operations.

Applies to an implementation of the architecture Armv8.0-M onward.

RNSRK A Context synchronization event that follows a branch predictor maintenance operation guarantees that the effects
of the branch predictor maintenance operation are visible to all instructions after the Context synchronization
event.

Applies to an implementation of the architecture Armv8.0-M onward.

RDRQT When performing a BPIALL operation, the value written to the BPIALL register is ignored.

Applies to an implementation of the architecture Armv8.0-M onward.

RLXHX As a side effect of a branch predictor maintenance operation, any entry in the branch predictor might be invalidated.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

Cache Maintenance Operations.

Cache Maintenance Operations (NS alias).

BPIALL, Branch Predictor Invalidate All.

B7.2.9 Memory barriers.

DSB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter B8
The System Address Map

This chapter specifies the Armv8-M system address map rules. It contains the following sections:

B8.1 System address map.

B8.2 The System region of the system address map.

B8.3 The System Control Space (SCS).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter B8. The System Address Map
B8.1. System address map

B8.1 System address map

RFQSD The address space is divided into the following regions:

Address Region Memory type XN? Cache Shareability Example usage

0x00000000 - Code Normal - WT RA Non-shareable Typically ROM or flash memory.

0x1FFFFFFF

0x20000000 - SRAM Normal - WBWA RA Non-shareable SRAM region typically used for on-chip RAM.

0x3FFFFFFF

0x40000000 - Peripheral Device, nGnRE XN - - On-chip peripheral address space.

0x5FFFFFFF

0x60000000 - RAM Normal - WBWA RA Non-shareable Memory with write-back, write allocate

0x7FFFFFFF cache attribute for L2 and L3 cache support.

0x80000000 - RAM Normal - WT RA Non-shareable Memory with Write-Through cache attribute.

0x9FFFFFFF

0xA0000000 - Device Device, nGnRE XN - - Peripherals accessible to all Requesters.

0xBFFFFFFF

0xC0000000 - Device Device, nGnRE XN - - Peripherals accessible only to the PE.

0xDFFFFFFF

0xE0000000 - System PPB Device, nGnRnE XN - - 1 MB region reserved as the PPB.

0xE00FFFFF This supports key resources, including

the System Control Space, and debug features.

0xE0100000 - System Vendor_SYS Device, nGnRE XN - - Vendor System Region.

0xFFFFFFFF

WT - Write-Through.

RA - Read-allocate.

WBWA - Write-back, write-allocate.

XN - Memory with the execute-never memory attribute.

Applies to an implementation of the architecture Armv8.0-M onward.

IXXGQ The term boundary is used to indicate the divide between memory regions stated in the system address map.

Applies to an implementation of the architecture Armv8.0-M onward.

RMBRB An access that crosses a boundary is UNPREDICTABLE. This rule also applies to the 0xFFFFFFFF - 0x00000000
boundary.

Applies to an implementation of the architecture Armv8.0-M onward.

RDNBD An unaligned or multi-word access that crosses a 0.5GB memory region boundary is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B8.2 The System region of the system address map.

B7.4 Address space.

B7.3 Memory accesses.

B7.19 Caches.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter B8. The System Address Map
B8.2. The System region of the system address map

B8.2 The System region of the system address map

RMHGM The system region of the system address map is as follows:

0x00000000

0xE0000000

0xE000E000

0xE000EFFF

0xE0100000

 0xFFFFFFFF

Secure
and

 Non-secure
 SCS††

IMPLEMENTATION DEFINED vendor system region, Vendor_SYS

PPB†††

System region of
the address map

0xE000EC00

0xE000ED8F

† System Control Block (SCB).
†† System Control Space (SCS).
††† Private Peripheral Bus (PPB).

0xE000F000

0xE002DFFF

0xE000DFFF

0xE000EBFF

0xE000ED90

 0xDFFFFFFF

0xE002EBFF

0xE002EFFF

Non-secure
Alias

 SCS††

0xE002EC00

0xE002ED8F

Non-secure
Alias
SCB†

0xE002F000

0xE002E000

0xE002ED90

Secure
and

Non-secure
 SCB†

0xE001E000

0xE001FFFF

0xE003E000

IMPLEMENTATION
DEFINED

Secure and
Non-secure

 Address Space

IMPLEMENTATION
DEFINED

Non-secure Address
Space 0xE003FFFF

Applies to an implementation of the architecture Armv8.0-M onward. Note, The IMPDEF S & NS Address Space and IMPDEF
NS Address space are only available in an Armv8.1-M implementation.

RMXRW In a PE without the Security Extension, the Non-secure SCS is RAZ/WI and any unprivileged access to the
Non-secure SCS results in a BusFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && !S. Note, if !M a
HardFault is generated.

IFWLM Arm recommends that Vendor_SYS is divided as follows:

• 0xE0100000-0xEFFFFFFF is reserved.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter B8. The System Address Map
B8.2. The System region of the system address map

• Vendor resources start at 0xF0000000.

Applies to an implementation of the architecture Armv8.0-M onward.

IMSFV Arm strongly recommends that the IMPLEMENTATION DEFINED Secure and Non-secure Address space, 0

↪→xE001E000 - 0xE001FFFF, and the IMPLEMENTATION DEFINED Non-secure alias Address space, 0xE003E000 -
0xE003FFFF, are implemented symmetrically.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - S.

RRTKK Any access to the PPB that results in a BusFault will be reported synchronously.

Applies to an implementation of the architecture Armv8.0-M onward.

RGLNG Privileged accesses to unimplemented registers are RES0.

Applies to an implementation of the architecture Armv8.0-M onward.

RNDML Unprivileged accesses to unimplemented registers will generate a synchronous BusFault unless otherwise stated.

Applies to an implementation of the architecture Armv8.0-M onward.

RDQQS Unprivileged accesses can be enabled to the Software Trigger Interrupt Register, STIR in the System Control
Space by programming a control bit in the Configuration and Control Register, CCR.USERSETMPEND.

Applies to an implementation of the architecture Armv8.0-M onward.

RNSWG If a write to a PPB register triggers a BusFault the PPB register targeted by the write must not be updated. This
applies regardless of whether the BusFault is subsequently ignored due to CCR.BFHFNMIGN.

Applies to an implementation of the architecture Armv8.0-M onward.

RRJHJ If the exception entry context stacking, exception return context unstacking, lazy floating-point state preservation,
or the stacking or unstacking of a FNC_RETURN stack frame, results in an access to an address within the PPB
space the behavior of the access is CONSTRAINED UNPREDICTABLE and is one of the following:

• Generates a BusFault.
• Perform the specified access to the PPB space.

This does not apply to the VLSTM instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B8.1 System address map.

B8.3 The System Control Space (SCS).

STIR, Software Triggered Interrupt Register.

CCR, Configuration and Control Register.

B13.1.2 Debug resources.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter B8. The System Address Map
B8.3. The System Control Space (SCS)

B8.3 The System Control Space (SCS)

RCQVK The System Control Space (SCS) provides registers for control, configuration, and status reporting.

Applies to an implementation of the architecture Armv8.0-M onward.

RCFPK The Secure view of the NS alias is identical to the Non-secure view of normal addresses unless otherwise stated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RBMLS The side effects of any access to the SCS that performs a context-altering operation take effect when the access
completes. A DSB instruction can be used to guarantee completion of a previous SCS access.

Applies to an implementation of the architecture Armv8.0-M onward.

RWQQB A context synchronization event guarantees that the side effects of a previous SCS access are visible to all
instructions in program order following the context synchronization event.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B8.2 The System region of the system address map.

System Control Block.

System Control Block (NS alias).

Debug Control Block.

Debug Control Block (NS alias).

STIR, Software Triggered Interrupt Register.

SYST_CSR, SysTick Control and Status Register.

Chapter B12 Nested Vectored Interrupt Controller.

Chapter B10 The Armv8-M Protected Memory System Architecture.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter B9
Synchronization and Semaphores

This chapter specifies the Armv8-M architecture rules for exclusive access instructions and non-blocking
synchronization of shared memory. It contains the following sections:

B9.1 Exclusive access instructions.

B9.2 The local monitors.

B9.3 The global monitor.

B9.4 Exclusive access instructions and the monitors.

B9.5 Load-Exclusive and Store-Exclusive instruction constraints.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter B9. Synchronization and Semaphores
B9.1. Exclusive access instructions

B9.1 Exclusive access instructions

RLQDX Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives for accesses to
both Normal and Device memory.

Applies to an implementation of the architecture Armv8.0-M onward.

RRGCP The synchronization primitives and associated instructions are as follows:

Function T32 instruction

Load-Exclusive

Byte LDREXB, LDAEXB

Halfword LDREXH, LDAEXH

Word LDREX, LDAEX

Store-Exclusive

Byte STREXB, STLEXB

Halfword STREXH, STLEXH

Word STREX, STLEX

Clear-Exclusive

CLREX

Applies to an implementation of the architecture Armv8.0-M onward.

RMWFP A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the memory address for exclusive access.
• The local monitor of the executing PE transitions to the Exclusive Access state.

Applies to an implementation of the architecture Armv8.0-M onward.

RJHMH The size of the marked memory block is called the Exclusives reservation granule (ERG), and is an IMPLEMENTA-
TION DEFINED value that is of a power of 2 size, in the range 4 - 512 words.

Applies to an implementation of the architecture Armv8.0-M onward.

RMTTN A marked block of the ERG is created by ignoring the least significant bits of the memory address. A marked
address is any address within this marked block.

Applies to an implementation of the architecture Armv8.0-M onward.

RFMXK In some implementations the CTR identifies the Exclusives reservation granule. Where this is not the case, the
Exclusives reservation granule is treated as having the maximum of 512 words.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B9.2 The local monitors.

B9.3 The global monitor.

B9.4 Exclusive access instructions and the monitors.

B9.5 Load-Exclusive and Store-Exclusive instruction constraints.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter B9. Synchronization and Semaphores
B9.2. The local monitors

B9.2 The local monitors

RQTFP Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed
to clear the marking.

Applies to an implementation of the architecture Armv8.0-M onward.

RNJWC When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a physical address that is not marked as Exclusive Access by its local monitor and that local
monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state
of the local monitor.

• If the write is to a physical address that is marked as Exclusive Access by its local monitor, it is IMPLEMEN-
TATION DEFINED whether the write affects the state of the local monitor.

Applies to an implementation of the architecture Armv8.0-M onward.

RPFFT It is IMPLEMENTATION DEFINED whether a store to a marked physical address causes a mark in the local monitor
to be cleared if that store is by an Observer other than the one that caused the physical address to be marked.

Applies to an implementation of the architecture Armv8.0-M onward.

RKXNM The state machine for the local monitor is shown here.

Open
Access

Exclusive
Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address)*

Store(Marked_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Speculation or other cause

The local monitor only transitions to the Exclusive Access state as the result of the architectural execution of one
of the operations shown in the diagram.

Any transition of the local monitor to the Open Access state that is not caused by the architectural execution of an
operation shown here does not indefinitely delay forward progress of execution.

Applies to an implementation of the architecture Armv8.0-M onward.

RWTHJ The local monitor does not hold any physical address, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RJWQS A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from other
PEs.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter B9. Synchronization and Semaphores
B9.2. The local monitors

RKJQW The architecture does not require a load instruction by another PE that is not a Load-Exclusive instruction to have
any effect on the local monitor.

Applies to an implementation of the architecture Armv8.0-M onward.

RXMML It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs when
the Store or StoreExcl is from another Observer.

Applies to an implementation of the architecture Armv8.0-M onward.

RMRSD The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause.

Applies to an implementation of the architecture Armv8.0-M onward.

RHRHC An exception return clears the local monitor.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B9.4 Exclusive access instructions and the monitors.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter B9. Synchronization and Semaphores
B9.3. The global monitor

B9.3 The global monitor

RFKFB For each PE in the system, the global monitor:

• Can hold at least one marked block.
• Maintains a state machine for each marked block it can hold.

Applies to an implementation of the architecture Armv8.0-M onward.

RVDLP For each PE, the architecture only requires global monitor support for a single marked address. Any situation that
might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RNNDC The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a
secondary monitor at the memory interfaces.

Applies to an implementation of the architecture Armv8.0-M onward.

IXTLH The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and the local monitor can
be combined into a single unit, provided that the unit performs the global monitor and the local monitor functions
defined in this manual.

Applies to an implementation of the architecture Armv8.0-M onward.

IKDWM For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

• Any type of memory in the system implementation that does not support hardware cache coherency.
• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support

hardware cache coherency.

In such a system, it is defined by the system:

• Whether the global monitor is implemented.
• If the global monitor is implemented, which address ranges or memory types it monitors.

Applies to an implementation of the architecture Armv8.0-M onward.

IQJNL The only memory types for which it is architecturally guaranteed that a global exclusive monitor is implemented
are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hint and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hints and not transient.

Applies to an implementation of the architecture Armv8.0-M onward.

RHBKJ The set of memory types that support atomic instructions includes all of the memory types for which a global
monitor is implemented.

Applies to an implementation of the architecture Armv8.0-M onward.

RHLHS If the global monitor is not implemented for an address range or memory type, then performing a
Load-Exclusive/Store-Exclusive instruction to such a location, in the absence of any other fault, has one
or more of the following effects:

• The instruction generates BusFault.
• The instruction generates a DACCVIOL MemManage fault.
• The instruction is treated as a NOP.
• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the

local monitor becomes UNKNOWN.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter B9. Synchronization and Semaphores
B9.3. The global monitor

• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a MemManage Fault requires M && MPU, a
BusFault requires M.

RFQRT For write transactions generated by non-PE observers that do not implement exclusive accesses or other atomic
access mechanisms, the effect that writes have on the global monitor and the local monitor that are used by an Arm
PE is IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

• Some address ranges.
• Some memory types.

Applies to an implementation of the architecture Armv8.0-M onward.

B9.3.1 Load-Exclusive and Store-Exclusive

RRXVB The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RGXLF The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have
any effect on the global monitor.

Applies to an implementation of the architecture Armv8.0-M onward.

RMPKM A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RMFGC A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the physical address accessed is marked as exclusive access for the
requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in
the Exclusive Access state. In this case:

– A status value of 0 is returned to a register to acknowledge the successful store.
– The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.
– If the address accessed is marked for exclusive access in the global monitor state machine for any other

PE then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:

– A status value of 1 is returned to a register to indicate that the store failed.
– The global monitor is not affected and remains in Open Access state for the requesting PE.

• If a different physical address is marked as exclusive access for the requesting PE, it is IMPLEMENTATION
DEFINED whether the store succeeds or not:

– If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.
– If the global monitor state machine for the PE was in the Exclusive Access state before the

Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

Applies to an implementation of the architecture Armv8.0-M onward.

RNNMG In a shared memory system, the global monitor implements a separate state machine for each PE in the system.
The state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses
visible to it.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter B9. Synchronization and Semaphores
B9.3. The global monitor

RWKPJ In a shared memory system, the global monitor implements a separate state machine for each Observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

Applies to an implementation of the architecture Armv8.0-M onward.

RNWWH Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism.

Applies to an implementation of the architecture Armv8.0-M onward.

B9.3.2 Load-Exclusive and Store-Exclusive in Shareable memory

RHKQT A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the physical
address of the access to be marked as exclusive access for the requesting PE. This access can also cause the
exclusive access mark to be removed from any other physical address that has been marked by the requesting PE.

Applies to an implementation of the architecture Armv8.0-M onward.

RGDMD The state machine for PE(n) in a global monitor is as follows.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Open
Access

Exclusive
Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡
Store(Marked_address,!n)
StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)
Store(x,n)

StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*

StoreExcl(Marked_address,!n)‡

StoreExcl(Marked_address,n)*
StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*
CLREX(n)*
StoreExcl(!Marked_address,!n)
Store(!Marked_address,!n)
CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)

Applies to an implementation of the architecture Armv8.0-M onward.

RRGFK Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction, and
whether the local monitor and the global monitor are in the exclusive state.

Applies to an implementation of the architecture Armv8.0-M onward.

RQVWF When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX

instruction causes the global monitor to transition from Exclusive Access to Open Access state.

Applies to an implementation of the architecture Armv8.0-M onward.

RDLMP A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter B9. Synchronization and Semaphores
B9.3. The global monitor

RBSGB It is IMPLEMENTATION DEFINED:

• Whether a modification to a Non-shareable memory location can cause a global monitor to transition from
Exclusive Access to Open Access state.

• Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor to
transition from Open Access to Exclusive Access state.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B9.4 Exclusive access instructions and the monitors.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter B9. Synchronization and Semaphores
B9.4. Exclusive access instructions and the monitors

B9.4 Exclusive access instructions and the monitors

RVXWN The Store-Exclusive instruction defines the register to which the status value of the monitors is returned.

Applies to an implementation of the architecture Armv8.0-M onward.

RDTRN A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

• If the local monitor is in the Exclusive Access state:

– If the address of the Store-Exclusive instruction is the same as the address that has been marked in the
monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is IMPLEMENTA-
TION DEFINED whether the store occurs.

– A status value is returned to a register:

* If the store took place the status value is 0.
* Otherwise, the status value is 1.

– The local monitor of the executing PE transitions to the Open Access state.

• If the local monitor is in the Open Access state:

– No store takes place.
– A status value of 1 is returned to a register.
– The local monitor remains in the Open Access state.

Applies to an implementation of the architecture Armv8.0-M onward.

RDFNB A Store-Exclusive instruction performs a store to Shareable memory that depends on the state of both the local
monitor and the global monitor:

• If both the local monitor and the global monitor are in the Exclusive Access state:

– If the address of the Store-Exclusive instruction is the same as the address that has been marked in the
monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is IMPLEMENTA-
TION DEFINED whether the store occurs.

– A status value is returned to a register:

* If the store took place the status value is 0.
* Otherwise, the status value is 1.

– The local monitor of the executing PE transitions to the Open Access state.

• If either the local monitor or the global monitor is in the Open Access state:

– No store takes place.
– A status value of 1 is returned to a register.
– The local monitor of the executing PE transitions to the Open Access state.
– The global monitor that is associated with the executing PE transitions to the Open Access state.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B9.2 The local monitors.

B9.3 The global monitor.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter B9. Synchronization and Semaphores
B9.5. Load-Exclusive and Store-Exclusive instruction constraints

B9.5 Load-Exclusive and Store-Exclusive instruction constraints

IRTHW The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair.

Applies to an implementation of the architecture Armv8.0-M onward.

RBHPN The architecture does not require an address or size check as part of the IsExclusiveLocal() function.

Applies to an implementation of the architecture Armv8.0-M onward.

RLHLG If two StoreExcl instructions are executed without an intervening LoadExcl instruction the second StoreExcl

instruction returns a status value of 1.

Applies to an implementation of the architecture Armv8.0-M onward.

RDVRQ The architecture does not require every LoadExcl instruction to have a subsequent StoreExcl instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RJXXS If the transaction size of a StoreExcl instruction is different from the preceding LoadExcl instruction in the same
thread of execution, behavior is a CONSTRAINED UNPREDICTABLE choice of:

• The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.
• The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair at

the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward.

RGVWN The hardware only ensures that a LoadExcl/StoreExcl pair succeeds if the LoadExcl and the StoreExcl have the
same transaction size.

Applies to an implementation of the architecture Armv8.0-M onward.

RXLSK Forward progress can only be made using LoadExcl/StoreExcl loops if, for any LoadExcl/StoreExcl loop within
a single thread of execution if both of the following are true:

• There are no explicit memory accesses, pre-loads, direct or indirect register writes, cache maintenance
instructions, SVC instructions, ISB barriers or exception returns between the Load-Exclusive and the
Store-Exclusive.

• The following conditions apply between the Store-Exclusive having returned a fail result and the retry of the
Load-Exclusive:

– There are no stores to any location within the same Exclusives reservation granule that the
Store-Exclusive is accessing.

– There are no direct or indirect register writes, other than changes to the flag fields in APSR or FPSCR,
caused by data processing or comparison instructions.

– There are no direct or indirect cache maintenance instructions, SVC instructions, or exception returns.

The Exclusives monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the Exclusives monitor.

Applies to an implementation of the architecture Armv8.0-M onward.

IRFXR Keeping the LoadExcl and the StoreExcl operations close together in a single thread of execution minimizes
the chance of the exclusive monitor state being cleared between the LoadExcl instruction and the StoreExcl

instruction. Therefore, for best performance, Arm strongly recommends a limit of 128 bytes between LoadExcl

and StoreExcl instructions in a single thread of execution.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter B9. Synchronization and Semaphores
B9.5. Load-Exclusive and Store-Exclusive instruction constraints

RPKQF The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked as
exclusive.

Applies to an implementation of the architecture Armv8.0-M onward.

IPGGN For performance reasons, Arm recommends that objects that are accessed by exclusive accesses are separated by
the size of the exclusive reservations granule.

Applies to an implementation of the architecture Armv8.0-M onward.

RXPDN After taking a BusFault or a MemManage fault, the state of the exclusive monitors is UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RFCRN For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl

instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread of
execution, behavior is CONSTRAINED UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RDMJW The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local exclusive
monitor or a global exclusive monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE,
and the instruction might clear the monitor, or it might leave it in the Exclusive Access state. For address-based
maintenance instructions, this also applies to the monitors of other PEs in the same Shareability domain as the
PE executing the cache maintenance instruction, as determined by the Shareability domain of the address being
maintained.

Applies to an implementation of the architecture Armv8.0-M onward.

IMDHL Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a PE in
the Non-secure state cannot cause a denial of service on a PE in the Secure state.

Applies to an implementation of the architecture Armv8.0-M onward.

RRRTJ In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an
implementation ensures that forward progress is made by at least one PE.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter B10
The Armv8-M Protected Memory System Architecture

This chapter specifies the Armv8-M Protected Memory System Architecture (PMSAv-8) rules, and in particular the
rules for the optional Memory Protection Unit(MPU) and the optional Security Attribution Unit (SAU). It contains
the following sections:

B10.1 Memory Protection Unit.

B10.2 Security attribution.

B10.3 Security attribution unit (SAU).

B10.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.1. Memory Protection Unit

B10.1 Memory Protection Unit

RHPNK In an implementation that includes the Protected Memory System Architecture (PMSA), system address space is
protected by a Memory Protection Unit (MPU).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RTBPJ PMSAv8-M only supports a unified memory model. All enabled regions support instruction and data accesses.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RHBNG Memory attributes are determined from the system address map or by using an MPU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RBXCN MPU support in Armv8-M is optional. If the MPU is implemented at least one MPU region must be provided.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RMCCL The system address map can be configured to provide a background region for privileged accesses.

Applies to an implementation of the architecture Armv8.0-M onward.

RJVJC When the MPU is disabled or not present, accesses use memory attributes from the system address map.

Applies to an implementation of the architecture Armv8.0-M onward.

RKLHL If the MPU is enabled, attributes for memory accesses that hit in a single region are provided by the hit region.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RDBBM The MPU divides the memory into regions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RJVCN An individual MPU region is defined by:

Address >= MPU_RBAR.BASE:'00000' && Address <= MPU_RLAR.LIMIT:'11111'

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RMNDS The number of supported MPU regions is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

IWTCL Because the MPU_TYPE register is banked, an implementation can have a different number of MPU regions,
including no MPU regions, for each Security state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && MPU.

IGLXD All MPU regions are aligned to a multiple of 32 bytes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RBPGB The PE can fetch and execute instructions from each MPU region according to the value of MPU_RBAR.XN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RZLHD Unless otherwise stated, all load, store, and instruction fetch transactions are subject to an MPU check.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RDNXT If MPU_CTRL.ENABLE is zero, MPU checks are carried out against the system address map and not against any
defined MPU regions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.1. Memory Protection Unit

IHSCD The MPU check is one of a number of checks carried out on any load, store or instruction fetch transaction
including alignment, security attribution checks, and a check for any BusFaults.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RHBBJ Exception vector reads from the Vector Address Table always use the system address map.

Applies to an implementation of the architecture Armv8.0-M onward.

RVPJQ For the purposes of MPU checks, any change in the current execution priority resulting from a MSR or CPS requires
a Context synchronization event to guarantee visibility.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RVCTC Any load, store or instruction fetch transactions to the PPB, within the range 0xE0000000-0xE00FFFFF, are checked
against the system address map. Instruction fetches to this region generate an IACCVIOL MemManage fault.

Applies to an implementation of the architecture Armv8.0-M onward.

RLLLP Any MPU check performed for a load, store or instruction fetch transaction will generate a precise MemManage
Fault if any of the following is true:

• The address accessed by the load, store or instruction fetch transaction matches more than one MPU region.
• The load, store or instruction fetch transaction does not match all of the access conditions for the MPU region

being accessed.
• The load, store or instruction fetch transaction only matches the system address map and the system address

map is not enabled.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RKDJG The MPU is restricted in how it can change the memory attributes for addresses in VENDOR_SYS space, that
is, for addresses in the region 0xE0100000-0xFFFFFFFF. Unless otherwise stated, system space is always XN
(Execute Never) and it is always Device-nGnRE. If the MPU maps this to a type other than Device-nGnRE, it is
UNKNOWN whether the region is treated as Device-nGnRE or as Device-nGnRnE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RKMTF Unless otherwise stated for data accesses, the MPU memory attribution and privilege checking uses the
configuration registers that correspond to the current Security state of the PE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU && S .

RRLBR For instruction fetches, the MPU memory attribution and privilege checking uses the configuration registers
associated with the security of the address of the instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RRHSF If the requested execution priority is negative, the MPU_CTRL.HFNIMENA bit controls whether accesses are
checked against the MPU regions or the system address map. The requested execution priority is negative if any of
the following are true:

• The HardFault exception is active for the Security state associated with the MPU.
• The NMI exception is active for the Security state associated with the MPU.
• FAULTMASK.FM is set to one for the Security state associated with the MPU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

RRJJL If the PE is executing in privileged mode, a MemManage fault is generated when it attempts to execute an
instruction from an MPU region with MPU_RLAR.PXN set to one.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MPU.

RMKJC Setting the MPU_RNR.REGION field to a value that does not correspond to an implemented memory region is
CONSTRAINED UNPREDICTABLE as follows:

• Any subsequent read of MPU_RNR.REGION returns an UNKNOWN value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.1. Memory Protection Unit

• Any read of a register that is in an unimplemented region returns an UNKNOWN value.
• Any write to a register indirected by MPU_RNR.REGION causes all state that is indirected by that register

to become UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - MPU.

See also:

B8.1 System address map.

B7.8 Access rights.

B7.12 Device memory attributes.

B7.13 Shareability attributes.

B7.15 Memory access restrictions.

B7.16 Mismatched memory attributes.

B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory.

B7.18 Load-Acquire and Store-Release accesses to memory.

MPU_CTRL, MPU Control Register.

TT_RESP, Test Target Response Payload.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.2. Security attribution

B10.2 Security attribution

ISBSJ The Secure Attribution Unit and the Implementation Defined Attribution Unit are collectively referred to as the
Attribution Unit (AU).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RJGHS The Security Extension defines three levels of memory security attribution. In ascending order of security, these
are:

1. The Non-secure attribute.
2. The Secure attribute and is Non-secure callable.
3. The Secure attribute and is not Non-secure callable.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RRPKG The following units can provide security attribution information:

• A Security attribution unit (SAU) inside the PE.
• An IMPLEMENTATION DEFINED attribution unit (IDAU) external to the PE. The presence of such a unit is

IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RMGXN The attribution information from the SAU is used unless the IDAU specifies attributes with a higher security, in
which case the IDAU attributes override the SAU attributes. This rule does not apply to architecturally defined
ranges exempt from memory attribution.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RNJGR An attribution unit (AU) violation is defined as being a violation raised by either the SAU or the IDAU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RQGVS All boundaries between address ranges with different security attributes are aligned to 32-byte boundaries.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RLDTN The behavior of the following address ranges is fixed, so they are exempt from memory attribution by both the
SAU and IDAU:

Ranges exempt from checking security violation

The following address ranges are marked with the Security state indicated by NS-Req, that is, the
current state of the PE for non-debug accesses. This marking sets the NS-Attr to NS-Req:

0xE0000000 - 0xE0003FFF: ITM, DWT, FPB, PMU.

0xE0005000 - 0xE0005FFF: RAS error record registers.

0xE000E000 - 0xE000EFFF: SCS Secure and Non-secure range.

0xE002E000 - 0xE002EFFF: SCS Non-secure alias range.

0xE0040000 - 0xE0041FFF: TPIU, ETM.

0xE00FF000 - 0xE00FFFFF: ROM table.

0xE0000000 - 0xEFFFFFFF: for instruction fetch only.

Additional address ranges specified by the IDAU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S. Note, some address
ranges require DB, RAS or PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.2. Security attribution

RFGDW The behavior of the following address range is fixed:

0xF0000000 - 0xFFFFFFFF

If the PE implements the Security Extension, this memory range is always marked as Secure and not
Non-secure callable for instruction fetches.

If the Security Extension is not present, this range is marked as Non-secure.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RPHJY Speculative instruction fetches are permitted to a Security attribution exempt address if either of the following hold
true:

• The Secure MPU region check reports the address as not being execute-never.
• The Non-secure MPU region check reports the address as not being execute-never.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S && MPU.

IVPWL The Security attribution and MPU check sequence, for all data accesses which are not instruction fetches and
accesses for instruction fetches are shown in the following diagrams.

NS-Attr = Security
of Address

NS-Req == Non-secure
and NS-Attr == Secure

AUVIOL SecureFault or
LSPERR SecureFault

NS-Req == Secure

Non-secure
MemManage

Fault

Secure
MemManage

Fault

Non-secure MPU
access violation

Do access

Secure MPU
access violation

Yes
No

No Yes

No

Yes Yes

All Memory
accesses other
than Instruction

Fetches

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.2. Security attribution

NS-Attr = Security
of Address

NS-Attr ==
Secure and Not

Non-secure
callable

NS-Attr ==
Non-secure

INVEP
SecureFault

INVTRAN
SecureFault

NS-Attr ==
Secure

Non-secure
MemManage

Fault

Secure
MemManage

Fault

Non-secure MPU
access violation

Do access

Secure MPU
access violation

NoYes Yes

No Yes

Yes

NS-Req ==
Secure

Yes

No Yes

No No

Instruction fetch

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RFTFR If the memory access is caused by the execution of an SG instruction the load from the stack is undertaken with the
NS-Req set to Secure even though the SG instruction was executed from the Non-secure state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - S.

See also:

B10.3 Security attribution unit (SAU).

B10.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.3. Security attribution unit (SAU)

B10.3 Security attribution unit (SAU)

RVFLR The SAU configuration defines an IMPLEMENTATION DEFINED number of memory regions. The number of
regions is indicated by SAU_TYPE.SREGION.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

IPPLK The memory regions defined by the SAU configuration are referred to as SAU_REGIONn, where n is a number
from 0 - (SAU_TYPE.SREGION-1).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RRVFP The SAU region configuration fields can only be accessed indirectly using the window registers, SAU_RNR shown
in the following table.

SAU region configuration field Associated window register field

SAU_REGIONn.ENABLE SAU_RLAR.ENABLE

SAU_REGIONn.NSC SAU_RLAR.NSC

SAU_REGIONn.BADDR SAU_RBAR.BADDR

SAU_REGIONn.LADDR SAU_RLAR.LADDR

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RKRSC When the SAU is enabled, an address is defined as matching a region in the SAU if the following is true:

Address >= SAU_REGIONn.BADDR: '00000' && Address <= SAU_REGIONn.LADDR: '11111'

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RMPJC Memory is marked as Secure by default. However, if the address matches a region with SAU_REGIONn.ENABLE
set to 1 and SAU_REGIONn.NSC set to 0, then memory is marked as Non-secure.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RWGDK An address that matches multiple SAU regions is marked as Secure and not Not-secure callable regardless of the
attributes specified by the regions that matched the address.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RGVFQ When the SAU is not enabled:

• Addresses are not checked against the SAU regions.
• The attribution of the address space is determined by the SAU_CTRL.ALLNS field.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RMBJN To permit lockdown of the SAU configuration, it is IMPLEMENTATION DEFINED whether SAU_RLAR,
SAU_RBAR, SAU_CTRL, and SAU_RNR are writable.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RBBCT Setting the SAU_RNR.REGION field to a value that does not correspond to an implemented memory region is
CONSTRAINED UNPREDICTABLE as follows:

• Any subsequent read of SAU_RNR.REGION returns an UNKNOWN value.
• Any read of a register indirected by SAU_RNR.REGION returns an UNKNOWN value.
• Any write to a register indirected by SAU_RNR.REGION causes all state that is indirected by that register to

become UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter B10. The Armv8-M Protected Memory System Architecture
B10.4. IMPLEMENTATION DEFINED Attribution Unit (IDAU)

B10.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

RMVCM The IDAU can provide the following Security attribution information for an address:

• Security attribution exempt. This specifies that the address is exempt from security attribution. This
information is combined with the address ranges that are architecturally required to be exempt from attribution.

• Non-secure. This specifies if the address is Secure or Non-secure.
• Non-secure callable. This specifies if code at the address can be called from Non-secure state. This attribute

is only valid if the address is marked as Secure.
• Region number. This is the region number that matches the address, and is only used by the TT instruction.
• Region number valid. This specifies that the region number is valid. This field has no effect on the attribution

of the address, and is only used by the TT instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RGPDN The IDAU must ensure that for each region all the following are true:

• Each region must have a unique identification number.
• All the addresses in the region must have the same attributes, including the Non-secure Callable attribute.
• The region must be a contiguous range of addresses.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

TT, TTT, TTA, TTAT.

B10.2 Security attribution.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter B11
The System Timer, SysTick

This chapter specifies the Armv8-M system timer rules. It contains the following section:

B11.1 The system timer, SysTick.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter B11. The System Timer, SysTick
B11.1. The system timer, SysTick

B11.1 The system timer, SysTick

RBQRG In a PE without the Main Extension and without the Security Extensions, either:

• No system timers are implemented.
• One system timer, SysTick, is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M && !S.

RPDDL In a PE without the Main Extension but with the Security Extension, one of the following is true:

• No system timers are implemented.

• One system timer, SysTick, is implemented. ICSR.STTNS determines which Security state owns the SysTick.

• Two system timers are implemented:

– SysTick, Secure instance.
– SysTick, Non-secure instance.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M && S.

RCNTG In a PE with the Main Extension but without the Security Extension, one system timer, SysTick, is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && !S.

RXPCW In a PE with the Main and Security Extensions, two system timers are implemented:

• SysTick, Secure instance.
• SysTick, Non-secure instance.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

IDXSQ There are the following SysTick registers:

• SysTick Control and Status Register (SYST_CSR).
• SysTick Reload Value Register (SYST_RVR).
• SysTick Current Value Register (SYST_CVR).
• SysTick Calibration Value Register (SYST_CALIB).

In a PE with the Security Extension and a SysTick instance dedicated to each Security state, these registers are
banked.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

IVHDT Each implemented SysTick is a 24-bit decrementing, wrap-on-zero, clear-on-write counter:

• When enabled, the counter counts down from the value in SYST_CVR. When it reaches zero, SYST_CVR is
reloaded with the value held in SYST_RVR on the next clock edge.

• Reading SYST_CVR returns the value of the counter at the time of the read access.
• When the counter reaches zero, it sets SYST_CSR.COUNTFLAG to 1. Reading SYST_CSR.COUNTFLAG

clears it to 0.
• A write to SYST_CVR clears both SYST_CVR and SYST_CSR.COUNTFLAG to 0. SYST_CVR is then

reloaded with the value held in SYST_RVR on the next clock edge.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

RTLGK Writing the value zero to SYST_RVR disables the SysTick on the next wrap-on-zero. The value zero is held by the
counter after the wrap. This is true even when SYST_CSR.ENABLE is 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

RTTFT A write to SYST_CVR does not cause a SysTick exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter B11. The System Timer, SysTick
B11.1. The system timer, SysTick

IVDJQ Setting SYST_CSR.TICKINT to 1 causes the SysTick exception to become pending on the SysTick reaching zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

IPPGV Arm recommends that before enabling a SysTick by SYST_CSR.ENABLE, software writes the required counter
value to the SYST_RVR, and then writes to the SYST_CVR to clear the SYST_CVR to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

IMMRQ Software can optionally use SYST_CALIB.TENMS to scale the counter to other clock rates within the dynamic
range of the counter.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

RQSKV When the PE is halted in Debug state, any implemented SysTicks do not decrement.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST && HDBG.

IRWFQ Each implemented SysTick is clocked by a reference clock, either the PE clock or an external system clock. It
is IMPLEMENTATION DEFINED which clock is used as the external reference clock. Arm recommends that if an
external system clock is used, the relationship between the PE clock and the external clock is documented, so that
system timings can be calculated taking into account metastability, clock skew, and jitter.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ST.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter B12
Nested Vectored Interrupt Controller

This chapter specifies the Armv8-M Nested Vectored Interrupt Controller (NVIC) rules. It contains the following
sections:

B12.1 NVIC definition.

B12.2 NVIC operation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter B12. Nested Vectored Interrupt Controller
B12.1. NVIC definition

B12.1 NVIC definition

RXJJQ An Armv8-M PE includes an integral interrupt controller.

Applies to an implementation of the architecture Armv8.0-M onward.

RQHBN The Interrupt Controller Type Register (ICTR) defines the number of external interrupt lines that are supported, as
well as the number of NVIC registers that are implemented. This is specified in the following table:

Maximum number The index, n, of the highest implemented:

ICTR.INTLINESNUM of interrupts NVIC_IPRn all other NVIC registers

0b0000 32 7 0

0b0001 64 15 1

0b0010 96 23 2

0b0011 128 31 3

0b0100 160 39 4

0b0101 192 47 5

0b0110 224 55 6

0b0111 256 63 7

0b1000 288 71 8

0b1001 320 79 9

0b1010 352 87 10

0b1011 384 95 11

0b1100 416 103 12

0b1101 448 111 13

0b1110 480 119 14

0b1111 496 123 15

Applies to an implementation of the architecture Armv8.0-M onward.

IDLTR As an example of the effect of ICTR.INTLINESNUM, if ICTR.INTLINESNUM = 0b0100, then:

• 160 external interrupt lines are supported.
• The registers NVIC_IPR0 to NVIC_IPR39 are implemented, and NVIC_IPR40 to NVIC_IPR123 are not

implemented.
• The registers NVIC_ISER0 to NVIC_ISER4 are implemented, and NVIC_ISER5 to NVIC_IPR15 are not

implemented. The same range of registers is implemented for all other NVIC registers.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

ICTR, Interrupt Controller Type Register.

Nested Vectored Interrupt Controller Block.

Nested Vectored Interrupt Controller Block(NS alias).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter B12. Nested Vectored Interrupt Controller
B12.2. NVIC operation

B12.2 NVIC operation

RSNVK It is IMPLEMENTATION DEFINED which NVIC interrupts are implemented.

Applies to an implementation of the architecture Armv8.0-M onward.

RSGCR When a particular NVIC interrupt line is not implemented, the register fields that are associated with it are reserved.

Applies to an implementation of the architecture Armv8.0-M onward.

RCCVJ Only an interrupt that is both pending and enabled with sufficient priority can preempt PE execution.

Applies to an implementation of the architecture Armv8.0-M onward.

RGYCN The following conditions will cause the pending state associated with that interrupt to be set:

• The input associated with the interrupt is HIGH while the active state associated with the interrupt is clear,
and a simultaneous write to NVIC_ICPRn to clear the pending state is not being performed.

• The input associated with the interrupt transitions from LOW to HIGH while the active state associated with
the interrupt is set.

Applies to an implementation of the architecture Armv8.0-M onward.

IBLWR When an interrupt is disabled interrupt assertion causes the interrupt to become pending, but the interrupt cannot
become active. If an interrupt is active when it is disabled it remains in the active state until cleared by reset or by
an exception return. Clearing the relevant enable bit prevents any new activation of the associated interrupt.

Applies to an implementation of the architecture Armv8.0-M onward.

IWTFS The Armv8-M interrupt behavior provides compatibility with both active-high level-sensitive and pulse-sensitive
interrupt signaling:

• For level-sensitive interrupts, the associated exception handler runs one time for each occurrence as long as
the level is cleared before the exception handler returns. If the level of the input is HIGH after the exception
handler returns, the exception will be pended again.

• For pulse-sensitive interrupts, the associated exception handler runs one time only, regardless of the number
of pulses that the NVIC sees before the exception handler is entered. If a pulse occurs after the exception
handler has been entered, the exception will be pended again.

Applies to an implementation of the architecture Armv8.0-M onward.

IHVQQ For some implementations, pulse-sensitive interrupt signals are held long enough to ensure that the PE can sample
them reliably.

Applies to an implementation of the architecture Armv8.0-M onward.

RQKFW All NVIC interrupts have a programmable priority value and an associated exception number.

Applies to an implementation of the architecture Armv8.0-M onward.

RXNQW NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt
Clear-Enable register bit field.

Applies to an implementation of the architecture Armv8.0-M onward.

RWGDJ An implementation can hard-wire interrupt enable bits to zero if the associated interrupt line does not exist.

Applies to an implementation of the architecture Armv8.0-M onward.

RRSDJ An implementation can hard-wire interrupt enable bits to one if the associated interrupt line cannot be disabled.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter B12. Nested Vectored Interrupt Controller
B12.2. NVIC operation

RNRJV It is IMPLEMENTATION DEFINED for each NVIC interrupt line supported whether an NVIC interrupt supports
either or both setting and clearing of the associated pending state under software control.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.9 Exception numbers and exception priority numbers.

B3.13 Priority model.

Nested Vectored Interrupt Controller Block.

Nested Vectored Interrupt Controller Block(NS alias).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter B13
Debug

This chapter specifies the Armv8-M debug rules. It contains the following sections:

B13.1 Debug feature overview.

B13.2 Accessing debug features.

B13.3 Debug authentication interface.

B13.4 Debug event behavior.

B13.5 Debug state.

B13.6 Exiting Debug state.

B13.7 Multiprocessor support.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter B13. Debug
B13.1. Debug feature overview

B13.1 Debug feature overview

RWXRJ The debug configuration of an implementation is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward.

RVTGP The following table describes the features of the Armv8-M debug architecture.

Feature Main Extension Baseline Implementation

DebugMonitor exception Always implemented Never implemented

Halting debug Optional Optional

EDBGRQ Optional, requires Halting debug Optional, requires Halting debug

External Halt signal

Flash Patch and Breakpoint unit - FPB Optional, requires Halting debug Optional, requires Halting debug

Data Watchpoint and Trace Unit - DWT

Debug functionality - DWTD Optional, requires Halting debug Optional, requires Halting debug

Trace functionality - DWTT Requires ITM and Debug functionality Never implemented

Instrumenation Trace Macrocell - ITM Optional, requires Halting debug Never implemented

Cross Trigger Interface - CTI Requires ETM or Halting Debug Requires ETM or Halting Debug

Trace Port Interface Unit - TPIU Requires ITM or ETM Requires ETM

Embedded Trace Marcocell - ETM Optional, requires Halting debug Optional, requires Halting debug

Performance Monitors Unit - PMU Optional, requires Halting debug Never implemented

Unprivileged Debug Extension - UDE Optional, requires Halting debug Never implemented

DSP Debug Extension - DSPDE Optional, requires Halting debug Never implemented

Applies to an implementation of the architecture Armv8.0-M onward. Note, CTI requires HDBG or ETM.

RFHRN The following optional debug components are not part of the Armv8-M architecture:

• The Cross-Trigger Interface (CTI).
• The CoreSight basic trace router (MTB).
• The Embedded Trace Macrocell (ETM).

Applies to an implementation of the architecture Armv8.0-M onward. Note, CTI requires HDBG or ETM.

IZNHD The recommended Debug implementation levels are:

• Minimum.
• Basic.
• Comprehensive.
• Program trace.

Minimum

In an implementation that includes the Main Extension, the minimum level contains support for the DebugMonitor
exception, including:

• The BKPT instruction.

• DEMCR Monitor debug features.

• Monitor entry from External debug requests.

• DFSR.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter B13. Debug
B13.1. Debug feature overview

DHCSR, DCRSR, DCRDR, and the Halting debug features in DFSR and DEMCR are RES0.

ID_DFR0 is RAZ.

In an implementation that does not include the Main Extension there is no debug support.

DFSR, DHCSR, DCRSR, DCRDR, and DEMCR are RES0.
ID_DFR0 is RAZ.

Basic

In an implementation that includes the Main Extension, the basic level adds support for Halting debug with:

• A Debug Access Port and ROM table.

• DHCSR, DCRSR, DCRDR, and the Halting debug features in DEMCR are implemented.

• FPB with at least two breakpoints.

• DWT with at least:

– One watchpoint that supports instruction, data address, and data value matching.

– DWT_PCSR.

• Optional support for a CTI in a multiprocessor system.

Support for the basic implementation is identified by ID_DFR0.

In an implementation that includes Armv8.1-M, the DSP Debug Extension adds support for DSPDE. Support for
the DSP Debug Extension is part of the basic level of debug.

In an implementation that does not include Armv8.1-M, there is no support for the DSP Debug Extension.

In an implementation that does not include the Main Extension, the basic level adds support for Halting debug
with:

• A Debug Access Port and ROM table.

• SHCSR, DFSR, DHCSR, DCRSR, DCRDR, and DEMCR are implemented. Access for the PE is IMPLE-
MENTATION DEFINED.

• FPB with at least two breakpoints.

• DWT with at least:

– One watchpoint that supports instruction, data address, and data value matching.

– DWT_PCSR.

• Optional support for a CTI in a multiprocessor system.

Support for the basic implementation is identified by ID_DFR0. In an Armv8.0 implementation ID_DFR0 is RAZ,
unless Halting debug is implemented.

Comprehensive

In an implementation that includes the Main Extension, the comprehensive level adds basic trace support with:

• An ITM.

• DWT with:

– Trace support.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter B13. Debug
B13.1. Debug feature overview

– Profiling support.

– Cycle counter.

• TPIU.

In an implementation that does not include the Main Extension, there is no support for the comprehensive level.

Program trace

In an implementation that includes the Main Extension, Program trace adds support for ETMs.

In an implementation that does not include the Main Extension, Program trace adds supports for ETMs and TPIUs.

An Armv8.1-M implementation introduces further optional debug extensions:

Performance Monitoring

In an implementation that includes Armv8.1-M, Performance Monitoring adds support for PMU. Support for the
Performance Monitors extension is part of the comprehensive level of debug.
In an implementation that does not include Armv8.1-M, there is no support for Performance Monitoring.

Unprivileged Debug Extension

In an implementation that does not include Armv8.1-M, there is no support for the Unprivileged Debug Extension.
Support for the Unprivileged Debug Extension is part of the basic level of debug.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

See also:

B13.1.1 Debug mechanisms.

Halting debug.

DebugMonitor exception.

B13.4.4 Breakpoint instructions.

B14.1 Instrumentation Trace Macrocell.

B14.2 Data Watchpoint and Trace unit.

B14.3 Embedded Trace Macrocell.

B14.4 Trace Port Interface Unit.

B14.5 Flash Patch and Breakpoint unit.

DEMCR, Debug Exception and Monitor Control Register.

DFSR, Debug Fault Status Register.

DHCSR, Debug Halting Control and Status Register.

DCRDR, Debug Core Register Data Register.

DCRSR, Debug Core Register Select Register.

ID_DFR0, Debug Feature Register.

DWT_PCSR, DWT Program Control Sample Register .

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter B13. Debug
B13.1. Debug feature overview

B13.1.1 Debug mechanisms

RHWCH Armv8-M supports a range of invasive and non-invasive debug mechanisms. The invasive debug mechanisms are:

• The ability to halt the PE. This provides a run-stop debug model.
• Debugging code using the DebugMonitor exception. This provides less intrusive debug than halting the PE.

The non-invasive debug techniques are:

• Generating application trace by writing to the Instrumentation Trace Macrocell (ITM), causing a low level of
intrusion.

• Non-intrusive program trace and profiling.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, M is required
for the DebugMonitor exception and ITM.

ILBLF When the PE is halted, it is in Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

ISXVR When the PE is not halted, it is in Non-debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IHWPQ Non-invasive debug components do not guarantee that they do not make any changes to the behavior or performance
of the PE. Any changes that do occur must not be severe however, as this will reduce the usefulness of event
counters for performance measurement and profiling. This does not include any change to program behavior
that results from the same program being instrumented to use a Non-invasive debug feature, for example the
Performance Monitors, or from some other performance monitoring process being run concurrently with the
process being profiled. As such, a reasonable variation in performance is permissible.

Applies to an implementation of the architecture Armv8.0-M onward.

IDMQP The Unprivileged Debug Extension, UDE, allows for a finer-grained control of debug access to the PE. UDE allows
conditional debug capabilities when the PE is in an unprivileged mode, including support for the DebugMonitor
exception and the optional Halting debug and non-invasive debug.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE.

See also:

B13.2 Accessing debug features.

B13.1.2 Debug resources

RTZVG In the system address map, debug resources are in the Private Peripheral Bus (PPB) region.

Applies to an implementation of the architecture Armv8.0-M onward.

RFBHD Except for the resources in the SCS, each debug component occupies a fixed 4KB address region.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RWXTK The debug resources in the SCS are:

• The Debug Control Block (DCB).
• Debug controls in the System Control Block (SCB).

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

IKKBT If the Main Extension is implemented, then support for DebugMonitor is implemented. If the Main Extension is
not implemented, then DebugMonitor is not supported.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter B13. Debug
B13.1. Debug feature overview

RVMGD ROM table entries identify which optional debug components are implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RRRLF The addresses of the debug resources are:

Address range Debug Resource

0xE0000000-0xE0000FFF Instrumentation Trace Macrocell (ITM)

0xE0001000-0xE0001FFF Data Watchpoint and Trace Unit (DWT)

0xE0002000-0xE0002FFF Flashpatch and Breakpoint Unit (FPB)

0xE0003000-0xE0003FFF Performace Monitor Unit (PMU)

0xE000E000-0xE000EFFF Secure SCS

0xE000EC00-0xE000ED8F Secure and Non-secure System Control Block (SCB)

0xE000EDF0-0xE000EEFF Secure and Non-secure Debug Control Block (DCB)

0xE002E000-0xE002EFFF Non-secure SCS

0xE002EC00-0xE002ED8F Non-secure System Control Block (SCB)

0xE002EDF0-0xE002EEFF Non-secure Debug Control Block (DCB)

0xE0040000-0xE0040FFF Trace Port Interface Unit (TPIU),

when not implemented as a

shared resource otherwise reserved.

0xE0041000-0xE0041FFF Embedded Trace Macrocell (ETM)

0xE0042000-0xE00FEFFF- IMPLEMENTATION DEFINED

0xE00FF000-0xE00FFFFF ROM table

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

See also:

B14.1 Instrumentation Trace Macrocell.

B14.2 Data Watchpoint and Trace unit.

B14.5 Flash Patch and Breakpoint unit.

Chapter B8 The System Address Map.

B13.2.2 Debug System registers.

B14.4 Trace Port Interface Unit.

B14.3 Embedded Trace Macrocell.

B13.2.1 ROM table.

B13.2 Accessing debug features.

B13.1.3 Trace

RCZKQ Trace can be generated by using the:

• Embedded Trace Macrocell (ETM).
• Instrumentation Trace Macrocell (ITM).
• Data Watchpoint and Trace (DWT) unit.
• Performance Monitoring Unit (PMU).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter B13. Debug
B13.1. Debug feature overview

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && (ETM ||
DWTT || PMU).

RTBHB A debug implementation that generates trace includes a trace sink, such as a TPIU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - (ETM || DWTT ||
PMU) && ITM && TPIU.

IRJKJ A TPIU can be either the Armv8-M TPIU implementation, or an external system resource.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM || ITM || DWTT ||
PMU.

See also:

ITM and DWT Packet Protocol Specification.

The applicable ETM Architecture Specification.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter B13. Debug
B13.2. Accessing debug features

B13.2 Accessing debug features

RWVSZ The mechanism by which an external debugger accesses the PE and system is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

IQPHR A debugger can use a Debug Access Port (DAP) interface, such as the DAP described in the Arm®Debug Interface
v5 Architecture Specification (ADIv5) and Arm®Debug Interface v6 Architecture Specification (ADIv6), to
interrogate a system for Memory Access Ports (MEM-APs). The base register in a Memory Access Port provides
the address of the ROM table, or the first in a series of ROM tables in a ROM table hierarchy. The Memory
Access Port can then fetch the ROM table entries. Arm recommends implementation of at least an ADIv5 DAP for
compatibility with tools.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

ITTLK The DAP interface supports word, halfword and byte accesses.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RKSJT The Debug Access Port is an Observer, and observes all accesses that the PE makes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RJRHS Software configures and controls the debug features through memory-mapped registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RWPGQ A write from a DAP memory access are complete when the DAP reports the write as complete.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RWCQK For SCS registers, a write from a DAP is complete when the write has completed and the SCS register has been
updated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

ISXFW The Arm®Debug Interface v5 Architecture Specification (ADIv5) and Arm®Debug Interface v6 Architecture
Specification (ADIv6) specify a Memory Access Port (MEM-AP), and a memory access completes when it is
capable of being observed by the MEM-AP and other observers in the system.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

See also:

B13.2.1 ROM table.

B13.3.4 DAP access permissions.

B7.2.3 Ordering and observability.

The Arm®Debug Interface v5 Architecture Specification.

The Arm®Debug Interface v6 Architecture Specification.

B13.2.1 ROM table

IXFVN The ROM table is a table of entries providing a mechanism to identify the debug infrastructure that is supported by
the implementation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter B13. Debug
B13.2. Accessing debug features

IFWPG The ROM table indicates the implemented debug components, and the position of those components in the memory
map. See the Arm®Debug Interface v5 Architecture Specification for the format of a ROM table entry.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

IPHJJ For an Armv8-M ROM table, all entry offsets are negative. The ROM table entry points to the top of a 4KB page,
the offset points to the bottom of that page that contains the Peripheral and Component ID registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RGPPX The ROM table is implemented if any other debug component is implemented or a Debug Access Port is
implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RBQSP Bit[0] of the ROM table entries indicates whether the corresponding debug component is implemented and is
accessible through the PPB at the indicated address. If the corresponding debug component is not implemented,
this bit has a value of 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RNDQW If a debug component is implemented, debug registers can provide additional information about the implemented
features of that debug component.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RZZGJ The format of the ROM table is:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter B13. Debug
B13.2. Accessing debug features

Offset Value Name Description

0x000 0xFFF0F003 ROMSCS Points to the SCS at 0xE000E000

0x004 0xFFF02002 or ROMDWT Points to the Data Watchpoint and Trace unit at 0xE0001000

0xFFF02003

0x008 0xFFF03002 or ROMFPB Points to the Flash Patch and Breakpoint unit at 0xE0002000

0xFFF03003

0x00C 0xFFF01002 or ROMITM Points to Instrumentation Trace unit at 0xE0000000.

0xFFF01003

0x010 0xFFF41002 or ROMTPIU Points to the Trace Port Interface Unit.

0xFFF41003

0x014 0xFFF42002 or ROMETM Points to the Embedded Trace Macrocell.

0xFFF42003

0x018 0xFFF04002 or ROMPMU Points to the Performance Monitoring Unit at 0xE0003000.

0xFFF04003

- 0x00000000 End End of table marker. It is IMPDEF whether the table is extended with

pointers to other system debug resources.

The table entries always terminate with a null entry.

0x020 - - Not used Reserved for additional ROM table entries.

0xEFC

0xF00 - - Reserved Reserved, not used for ROM table entries.

0xFC8

0xFCC 0x00000001 MEMTYPE Bit [0] is set to 1 to indicate that resources other

than those listed in the ROM table are

accessible in the same 32-bit address space,

using the DAP.Bits [31:1] of the MEMTYPE entry are RES0.

0xFD0 IMP DEF PIDR4 CIDRx values are fully defined for the ROM table, and are CorseSight compliant.

0xFD4 0 PIDR5 PIDRx values are CoreSight compliant or RAZ.

0xFD8 0 PIDR6

0xFDC 0 PIDR7

0xFE0 IMP DEF PIDR0

0xFE4 IMP DEF PIDR1

0xFE8 IMP DEF PIDR2

0xFEC IMP DEF PIDR3

0xFF0 0x0000000D CIDR0

0xFF4 0x00000010 CIDR1

0xFF8 0x00000005 CIDR2

0xFFC 0x000000B1 CIDR3

Accesses to the ROMITM cannot cause a non-existent memory exception.

It is IMPLEMENTATION DEFINED whether the ETM and TPIU are a shared resource and whether the resource is
managed by the local PE or a different resource.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB and those indicated
in the table. Note, PMU is only available in an Armv8.1-M implementation.

RJDGV

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter B13. Debug
B13.2. Accessing debug features

If a PMU is implemented, the end-of-table marker is 0x1C and has a value of 0x00000000. It is IMPLEMENTATION
DEFINED whether the table is extended with pointers to other System debug resources.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && PMU.

See also:

B13.2.3 CoreSight and identification registers.

B13.2.2 Debug System registers

RRHDW The debug provision in the System Control Block (SCB) comprises:

• Two handler-related flag bits, ICSR.ISRPREEMPT and ICSR.ISRPENDING.
• The DFSR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

See also:

Part D Register and Payload Specification.

Debug Control Block.

B13.2.3 CoreSight and identification registers

ICMLH Arm recommends that CoreSight-compliant ID registers are implemented to allow identification and discovery of
the components to a debugger.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RQCWD The address spaces that are reserved in each of the debug components for IMPLEMENTATION DEFINED ID registers
and CoreSight compliance are:

Debug Component Space reserved for ID Space reserved for CoreSight

registers compliance

ITM 0xE0000FD0-0xE0000FFC 0xE0000FA0-0xE0000FCC

DWT 0xE0001FD0-0xE0001FFC 0xE0001FA0-0xE0001FCC

FPB 0xE0002FD0-0xE0002FFC 0xE0002FA0-0xE0002FCC

PMU 0xE0003FD0-0xE0003FFC 0xE0003FA0-0xE0003FFC

SCS 0xE000EFD0-0xE000EFFC 0xE000EFA0-0xE000EFCC

TPIU 0xE0040FD0-0xE0040FFC 0xE0040FA0-0xE0040FCC

ETM 0xE0041FD0-0xE0041FFC 0xE0041FA0-0xE0041FCC

ROM table 0xE00FFFD0-0xE00FFFFC 0xE00FFFA0-0xE00FFFCC

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, PMU
available only in an Armv8.1-M implementation.

RVWSX For the ROM table, the ID register space is used for a set of CoreSight-compliant ID registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter B13. Debug
B13.2. Accessing debug features

RHXDK For all components other than the ROM table, if the registers in the ID register space are not used for ID registers
they are RAZ.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RVQPM If CoreSight-compliant ID registers are implemented, the Class field in Component ID Register 1 is:

• 0x1 for the ROM table.
• 0x9 for other components.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

IHQSR The Part number in the PIDR registers must be assigned a unique value for each implementation, or Unique
Component Identifier, as with all other CoreSight components.

CoreSight permits that two or more functionally different components are permitted to share the same Part number,
so long as they have different values of the DEVTYPE or DEVARCH registers. Each component has its own
DEVTYPE and DEVARCH registers, for example:

• DDEVTYPE.
• DDEVARCH.
• DWT_DEVTYPE.
• DWT_DEVARCH.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

ICTBF The Part number in the PIDR registers do not need to be unique for different implementation options of the same
part.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter B13. Debug
B13.3. Debug authentication interface

B13.3 Debug authentication interface

RGWTN The following pseudocode functions provide an abstracted description of the authentication interface:

• ExternalInvasiveDebugEnabled().
• ExternalSecureInvasiveDebugEnabled().
• ExternalNoninvasiveDebugEnabled().
• ExternalSecureNoninvasiveDebugEnabled().

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RSWWT For an implementation using the CoreSight signals DBGEN, NIDEN, SPIDEN, and SPNIDEN:

• ExternalInvasiveDebugEnabled() returns TRUE if DBGEN is asserted.

• ExternalSecureInvasiveDebugEnabled() returns TRUE if both DBGEN and SPIDEN are
asserted.

• ExternalNoninvasiveDebugEnabled() returns TRUE if either NIDEN or DBGEN is asserted.

• ExternalSecureNoninvasiveDebugEnabled() returns TRUE if both of the following conditions
apply:

– Either NIDEN or DBGEN is asserted.
– Either SPNIDEN or SPIDEN is asserted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

IFCPK The unprivileged debug capabilities enabled by DAUTHCTRL.UIDEN being set to 1 are available regardless of
the state of the following:

• DAUTHCTRL.INTSPNIDEN.
• DAUTHCTRL.SPNIDENSEL.
• DAUTHCTRL.INTSPIDEN.
• DAUTHCTRL.SPIDENSEL.
• DBGEN.
• SPIDEN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE. Note,
S is required for Secure Behavior.

RHVGN For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is FALSE,
then ExternalSecureInvasiveDebugEnabled() is FALSE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RJWCS For any implementation of the authentication interface, if ExternalNoninvasiveDebugEnabled() is
FALSE, then ExternalSecureNoninvasiveDebugEnabled() is FALSE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RXCMD For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is TRUE,
then ExternalNoninvasiveDebugEnabled() is TRUE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RLCHH For any implementation of the authentication interface, if ExternalSecureInvasiveDebugEnabled()
is TRUE, then ExternalSecureNoninvasiveDebugEnabled() is TRUE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter B13. Debug
B13.3. Debug authentication interface

IMSRG Secure self-hosted debug is controlled by the authentication interface. The pseudocode function
ExternalSecureSelfHostedDebugEnabled() provides an abstracted description of this authentication
interface.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RGLWM Between a change to the debug authentication interface and a following Context synchronization event, it is
UNPREDICTABLE whether the PE uses the old or the new values.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

See also:

B13.3.1 Halting debug authentication.

B13.3.3 DebugMonitor exception authentication.

B13.3.2 Non-invasive debug authentication.

B13.3.4 DAP access permissions.

B13.3.1 Halting debug authentication

IDMFG Halting debug authentication is controlled by the IMPLEMENTATION DEFINED authentication interface function
ExternalInvasiveDebugEnabled(), and if the Security Extension is implemented, the IMPLEMENTA-
TION DEFINED authentication interface function ExternalSecureInvasiveDebugEnabled().

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG. Note, External
Secure invasive debug requires S.

RPHWV Halting is prohibited in privileged mode in all states if the function ExternalInvasiveDebugEnabled()
returns FALSE. If UDE is not implemented this rule applies to all privilege modes.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG.

RJXTX When the PE is halted, the PE behaves as if ExternalInvasiveDebugEnabled() is TRUE. The
pseudocode function HaltingDebugAllowed() describes this.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IBCZM If the Security Extension is not implemented, there are two Halting debug authentication modes:

ExternalInvasiveDebugEnabled() DHCSR.S_HALT Halting debug

authentication mode

FALSE 0 Halting is prohibited.

FALSE 1 Halting is allowed.

TRUE X Halting is allowed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && !S &&
!UDE.

RBMRJ Halting is prohibited in privileged modes in Secure state if any of the following conditions are TRUE:

• The IMPLEMENTATION DEFINED ExternalInvasiveDebugEnabled() returns FALSE.
• DAUTHCTRL.SPIDENSEL is set to 1 and DAUTHCTRL_S.INTSPIDEN is set to 0.
• DAUTHCTRL.SPIDENSEL is set to 0 and ExternalSecureInvasiveDebugEnabled() returns

FALSE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter B13. Debug
B13.3. Debug authentication interface

The pseudocode function SecureHaltingDebugAllowed describes this.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && S.

IXKFR If the Security Extension is not implemented and the Unprivileged Debug Extension is implemented, Halting
debug has the following authentication modes:

HaltingDebugAllowed() DAUTHCTRL.UIDEN Halting debug authentication mode

FALSE 0 Halting is prohibited in all modes.

FALSE 1 Halting is allowed in unprivileged mode.

Halting is prohibited in privileged mode.

TRUE X Halting is allowed in all modes.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && !S &&
UDE.

RHXPS Halting in unprivileged modes is prohibited in Secure state if all of the following are true:

• SecureHaltingDebugAllowed() returns FALSE.
• DAUTHCTRL_S.UIDEN is set to 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && HDBG &&
S.

RXFKR Halting in unprivileged modes is prohibited in Non-secure state if all of the following are true:

• HaltingDebugAllowed() returns FALSE.
• DAUTHCTRL_S.UIDEN is set to 0.
• DAUTHCTRL_NS.UIDEN is set to 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && HDBG &&
S.

IVKHZ DAUTHCTRL_NS.UIDEN controls whether debug request can be raised from unprivileged mode in Non-secure
state. DAUTHCTRL_S.UIDEN controls whether debug requests can be raised from Secure or Non-secure state.
When DAUTHCTRL_S.UIDEN is set to 1 DAUTHCTRL_NS.UIDEN has an Effective value of 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE. Note,
S is required for Secure behavior.

RVQJZ The value of DHCSR.S_SDE, DHCSR.S_SUIDE and DHCSR.S_NSUIDE are updated when the PE is not halted
as described by the function UpdateDebugEnable().

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG. Note, S is
required for Secure behavior. UDE is required for Unprivileged Debug.

RKBKM If the PE is in Non-debug state the following condition is true:

• DHCSR.S_SDE reads as one if the following is true, and reads as zero otherwise:

– SecureHaltingDebugAllowed() returns TRUE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && !UDE.
Note, S is required for Secure behavior.

RCVKR If the PE is in Non-debug state the following conditions are true:

• DHCSR.S_SDE reads as one if any one of the following are true, and reads as zero otherwise:

– SecureHaltingDebugAllowed() returns TRUE.
– UnprivHaltingDebugAllowed(TRUE) returns TRUE.

• DHCSR.S_SUIDE reads as one if all of the following are true and reads as zero otherwise:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter B13. Debug
B13.3. Debug authentication interface

– SecureHaltingDebugAllowed() returns FALSE.
– UnprivHaltingDebugAllowed(TRUE) returns TRUE.

• DHCSR.S_NSUIDE reads as one if both of the following are true and reads as zero otherwise:

– HaltingDebugAllowed() returns FALSE.
– UnprivHaltingDebugAllowed(FALSE) returns TRUE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE. Note,
S is required for Secure behavior.

RKMXG If the PE is in Debug state:

• DHCSR.S_SDE reads as one if either of the following is true, and reads as zero otherwise:

– The PE entered Debug state from Secure state.
– The PE entered Debug state from Non-secure state when SecureHaltingDebugAllowed()

returned TRUE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && !UDE.
Note, S is required for Secure behavior.

RTNMM If the PE is in Debug state:

• DHCSR.S_SDE reads as one if any one of the following is true, and reads as zero otherwise:

– The PE entered Debug state from Secure state.
– The PE entered Debug state from Non-secure state when SecureHaltingDebugAllowed()

returned TRUE.
– The PE entered Debug state from Non-secure state when UnprivHaltingDebugAllowed(TRUE)

returned TRUE.

• DHCSR.S_SUIDE reads as one if when the PE entered Debug state both of the following were true, and
reads as zero otherwise:

– SecureHaltingDebugAllowed() returned FALSE.
– UnprivHaltingDebugAllowed(TRUE) returned TRUE.

• DHCSR.S_NSUIDE reads as one if when the PE entered Debug state both the following were true, and reads
as zero otherwise:

– HaltingDebugAllowed() returned FALSE.
– UnprivHaltingDebugAllowed(FALSE) returned TRUE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG. Note, S is
required for Secure behavior.

ILDTR If the Security Extension is implemented, there are three Halting debug authentication modes:

HaltingDebugAllowed() DHCSR.S_SDE Halting debug

authentication mode

FALSE X Halting is prohibited.

TRUE 0 Halting is allowed in Non-secure state.

Halting is prohibited in Secure state.

1 Halting is allowed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && S &&
!UDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter B13. Debug
B13.3. Debug authentication interface

ILQVH In an Armv8.1-M PE, unprivileged debug is authentication is as follows:

Halting SecureHalting DAUTHCTRL_S. DAUTHCTRL_NS. Halting debug

DebugAllowed() DebugAllowed() UIDEN UIDEN authentication mode

FALSE FALSE 0 0 Halting is prohibited.

FALSE FALSE 0 1 Halting is allowed in

Non-secure unprivileged mode.

Halting is prohibited in

Secure unprivileged mode.

Halting is prohibited in

Non-secure privileged mode.

Halting is prohibited in

Secure privileged mode.

FALSE FALSE 1 X Halting is allowed in Secure

and Non-secure unprivileged mode.

Halting is prohibited in Secure and

Non-secure privileged mode.

TRUE FALSE 0 X Halting is allowed in Non-secure state and

in all privilege modes.

TRUE FALSE 1 X Halting is allowed in Non-secure state

and in Secure unprivileged mode.

TRUE TRUE X X Halting is allowed in all Security

states and privilege modes.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE. Note,
S required for Secure state.

RFXCB When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which Halting is prohibited, the PE does not enter
Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG. Note, S is
required for Secure behavior.

See also:

CanHaltOnEvent().

B13.3.2 Non-invasive debug authentication

RGFTG Non-invasive authentication is controlled by the IMPLEMENTATION DEFINED function:

ExternalNoninvasiveDebugEnabled().

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && !S.

RHXQD Secure Non-invasive authentication is controlled by the IMPLEMENTATION DEFINED functions:

• ExternalSecureNoninvasiveDebugEnabled().
• ExternalNoninvasiveDebugEnabled().

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter B13. Debug
B13.3. Debug authentication interface

RCFNB When HaltingDebugAllowed() is TRUE, the PE behaves as if ExternalNoninvasiveDebugEnabled()
returns TRUE.
The pseudocode function NoninvasiveDebugAllowed() describes this.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && !UDE.

RLNCF Non-invasive debug of an operation is prohibited unless any of the following return TRUE:

• ExternalNoninvasiveDebugEnabled().
• HaltingDebugAllowed().
• UnprivHaltingDebugEnabled() and the PE is in unprivileged mode.

The pseudocode function NoninvasiveDebugAllowed() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && UDE.

RQMRF Non-invasive debug is prohibited if the functions SecureNoninvasiveDebugAllowed() and
NoninvasiveDebugAllowed() both return FALSE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RGZZX Non-invasive debug of an operation in Secure state is prohibited unless any of the following are true:

• DHCSR.S_SDE is set to one and UDE is not implemented or is not permitted in Secure state.
• The PE is in unprivileged mode and UnprivHaltingDebugEnabled(TRUE) returns TRUE.
• DAUTHCTRL.SPNIDENSEL is set to 1 and DAUTHCTRL_S.INTSPIDEN is set to 1.
• ExternalSecureNoninvasiveDebugEnabled() returns TRUE.

The pseudocode function SecureNoninvasiveDebugAllowed() describes this.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S && UDE.

RLXRK The PE does not generate any trace or profiling data when non-invasive debug of that operation is prohibited.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RVYGT If non-invasive debug of Secure operations is prohibited, the PE does not generate any trace or profiling data that
contains secure information or is attributable to secure operations.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RPSSV If non-invasive debug of privileged operations is prohibited, the PE does not generate any trace or profiling data
that contains privileged information or is attributable to privileged operations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && UDE.

RTWDH If non-invasive debug is prohibited in the current Security state, an ETM behaves as described in the relevant ETM
architecture.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S && ETM.

See also:

NoninvasiveDebugAllowed().

SecureNoninvasiveDebugAllowed().

B14.2.2 DWT unit operation.

B13.3.3 DebugMonitor exception authentication

RMXTM DebugMonitor exception authentication is only available if the Main Extension is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter B13. Debug
B13.3. Debug authentication interface

RLQCN DebugMonitor exception authentication is controlled by the IMPLEMENTATION DEFINED authentication interface
function ExternalSecureSelfHostedDebugEnabled().

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

RGTSQ Unless otherwise stated DebugMonitor exceptions are never generated for Secure privileged operations if all of the
following conditions are true:

• DAUTHCTRL.FSDMA is set to 0.

• Any of the following conditions are true:

– DAUTHCTRL.SPIDENSEL is set to 1 and DAUTHCTRL.INTSPIDEN is set to 0.
– DAUTHCTRL.SPIDENSEL is set to 0 and ExternalSecureSelfHostedDebugEnabled()

returns FALSE.

The pseudocode function SecureDebugMonitorAllowed() describes this.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S. Note,
DAUTHCTRL.FSDMA is only available in an Armv8.1-M implementation.

IPWJZ If UDE is implemented DAUTHCTRL.FSDMA allows the Secure DebugMonitor exception to be enabled
independently of Halting debug and ExternalSecureSelfHostedDebugEnabled(). This field does
not control the DebugMonitor exception permissions directly, instead DAUTHCTRL.FSDMA is used as an input
into DEMCR.SDME, as described by UpdateDebugEnable() and SecureDebugMonitorAllowed().

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && S && UDE.

RWXMG When a DebugMonitor exception is not pending and is not active:

• DEMCR.SDME is set to 1 if SecureDebugMonitorAllowed() is TRUE.
• DEMCR.SDME is zero otherwise.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RCPPN If SecureDebugMonitorAllowed() returned TRUE when a DebugMonitor exception is pending or active:

• DEMCR.SDME is set to 1 when the DebugMonitor exception became pending or active.
• DEMCR.SDME is zero otherwise.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RYFPK If DEMCR.SDME == 1, SHPR3.PRI_12 behaves as RAZ/WI when accessed from Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M && S.

IHNGD When set to 1, DEMCR.MON_PEND remains set to 1 until one of the following occurs:

• The DebugMonitor exception is taken
• A write to DEMCR sets the DEMCR.MON_PEND to 0.
• The PE is reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RSCZH DebugMonitor exceptions are never generated for unprivileged operations if all of the following conditions are
true:

• DEMCR.MON_EN is 0.
• DEMCR.UMON_EN is 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && M.

RCKPB DebugMonitor exceptions are never generated for Secure unprivileged operations when all of the following are
true:

• SecureDebugMonitorAllowed() returns FALSE.
• DEMCR.UMON_EN is 0 and DEMCR.MON_EN is 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter B13. Debug
B13.3. Debug authentication interface

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && S && UDE.

See also

DEMCR, Debug Exception Monitor Control Register.

ExternalSecureSelfHostedDebugEnabled().

SecureDebugMonitorAllowed().

CanPendMonitorOnEvent().

UpdateDebugEnable().

B13.3.4 DAP access permissions

RBFSB When HaltingDebugAllowed() is TRUE the external debugger can issue requests to the entire physical
address space through the DAP. When the DAP accesses a System register the response to the DAP is defined by
the access permissions of the register being accessed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RFFPN The external debugger is capable of requesting Secure and Non-secure accesses through the DAP.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RVDPK The external debugger is capable of requesting Privileged and Unprivileged accesses through the DAP.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && UDE.

IXNTP DAUTHCTRL.UIDAPEN indicates software intent to allow the external debugger unprivileged access through the
DAP to selected PPB registers.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB. Note, DAUTHC-
TRL.UIDAPEN requires UDE.

RTRLZ When either DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set, and no other debug authorization
is active, the PE permits the external debugger to request unprivileged access through the DAP to the System PPB
space. If the external debugger makes a privileged request, when DAUTHCTRL.UIDAPEN is set in either Security
state the PE demotes the request to an unprivileged request. An unprivileged access will return an error to the DAP
unless otherwise specified by the register description.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB. Note, DAUTHC-
TRL.UIDAPEN requires UDE.

RTXZB If HaltingDebugAllowed() is FALSE, then:

• Unless otherwise stated, external debugger accesses through the DAP to addresses in the range 0x00000000

to 0xDFFFFFFF return an error to the DAP.
• If either bank of DAUTHCTRL.UIDAPEN is one, external debugger accesses through the DAP to addresses

outside the range 0xE0000000 to 0xE00FFFFF return an error to the DAP.
• If neither bank of DAUTHCTRL.UIDAPEN is one, external debugger accesses are permitted as detailed in

the table below:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter B13. Debug
B13.3. Debug authentication interface

Address Range Component or description NoninvasiveDebugAllowed()

FALSE TRUE

0x00000000 - 0xDFFFFFFF Rest of Memory DAP error DAP error

0xE0000000 - 0xE00FFFFF PPB

0xE00xxFB0 - 0xE00xxFB7 CoreSight Software Lock registers DAP error RW

0xE00xxFD0 - 0xE00xxFFF CoreSight peripheral and component ID registers RO RO

0xE0000000 - 0xE0000FCF ITM DAP error RW

0xE0001000 - 0xE0001FCF DWT DAP error RW

0xE0003000 - 0xE0003FCF PMU DAP error RW

0xE0040000 - 0xE0040FFF TPIU RW RW

0xE0041000 - 0xE0041FFF ETM RW RW

0xE0042000 - 0xE00FEFFF IMPDEF IMPDEF IMPDEF

0xE00FF000 - 0xE00FFFFF ROM table RO RO

All other PPB regions DAP error DAP error

0xE0100000 - 0xFFFFFFFF Vendor_SYS DAP error RW

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, DAUTHC-
TRL.UIDAPEN requires UDE. UDE and PMU are only available in an Armv8.1-M implementation.

ILGXS Where this rule does not prevent an external debugger access to a register through the DAP, the access permissions
are defined by the register. The access permissions are set out in the Usage Constraints section of each register
description.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RKBQZ A DAP memory access calls MemD_with_priv_security() and DAPCheck().

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB. Note, Secure
accesses require S and unprivileged accesses require UDE.

IDKCB The architecture does not describe how a DAP requests Secure or Non-secure memory accesses. In the
recommended ADIv5 Memory Access Port (MEM-AP), Arm recommends that, when CSW.DEVICEEN is
set to one:

• CSW[30], CSW.Prot[6], selects a Secure or Non-secure access:

– 0: Request a Secure access.

– 1: Request a Non-secure access.

• CSW[23], CSW.SPIDEN, must be one. This is because the DAP can always request a Secure access.

When CSW.DEVICEEN is zero the MEM-AP is incapable of requesting any accesses. In ADIv6 CSW[23] is
SDeviceEN, but the behavior remains the same.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

IRVWM The architecture does not describe how a DAP requests Privileged or Unprivileged memory accesses. In the
recommended ADIv5 or higher Memory Access Port (MEM-AP), Arm recommends that the IMPLEMENTATION
DEFINED field CSW[27:24], PROT, flags are used to define Privileged or Unprivileged accesses.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && UDE.

IMRMX In a CoreSight DAP, the SPIDEN input to the Armv8-M MEM-AP is independent of the SPIDEN input of the PE,
and must be tied HIGH when CSW.DEVICEEN is one. When CSW.DEVICEEN is zero the MEM-AP is disabled
and is incapable of making any requests for memory accesses.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter B13. Debug
B13.3. Debug authentication interface

RJHBC If DHCSR.S_SDE == 1, and the DAP requests a Secure access, NS-Req is set to Secure.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RLVBG If either DHCSR.S_SDE == 0 or the DAP requests a Non-secure access, NS-Req set to Non-secure.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RWMRR DAP accesses are checked by the IDAU and the SAU, if applicable. That is, if NS-Req on a DAP access specifies
Non-secure access, and the IDAU or SAU prohibits Non-secure access to the address, an error response is returned
to the DAP.

Secure address?

DHCSR.S_SDE == 1

NS-Req =
Non-secure

NS-Req =
Secure

YesNo

Return error to
DAP

Yes

Do Access

DAP requests Secure
access? Yes

No

No

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RVTTN Unless otherwise stated DAP accesses are not checked by the MPU.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && MPU.

RTYBC The DAP NS-Req signal is ignored for accesses to the SCS registers. Instead, NS-Req is derived from the
DSCSR.SBRSELEN and DSCSR.SBRSEL. The derived NS-Req is used for all permissions checks, including the
privilege checks and demotions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RWBNK DAP accesses to SCS registers in the range 0xE000E000-0xE000EFFF are affected by the values of
DSCSR.SBRSELEN, and DSCSR.SBRSEL, as well as by the current Security state of the PE. The
following table shows the effect of these factors on the register being viewed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter B13. Debug
B13.3. Debug authentication interface

DSCSR.SBRSELEN DSCSR.SBRSEL Current Security state View of register

of the PE accessed

1 0 X Non-secure.

1 1 X Secure.

0 X Non-secure. Non-secure.

0 X Secure. Secure.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

IKLPQ When DHCSR.S_SDE == 0, then DSCSR.SBRSELEN reads as 1 and DSCSR.SBRSEL reads as 0, which selects
the Non-secure bank of registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && S.

RPMNV Permitted DAP accesses to the region 0xE002E000-0xE002EFFF are RAZ/WI if the access is privileged or
unprivileged. Privileged accesses never return a DAP error, and it is IMPLEMENTATION DEFINED whether
an unprivileged access returns a DAP error.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, This rule
also applies to unprivileged accesses via Armv8.1-M UDE.

IHBGQ An Armv8.1-M PE with UDE extends the existing DAP access regime for the Main Extension.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && UDE.

RRXKV When DAUTHCTRL.UIDAPEN is set, unprivileged debugger accesses to reserved locations within the PPB are
treated as RES0 and do not return a DAP error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE.

RMRPC A privileged DAP request through the Unprivileged Debug Extension mechanism is demoted to an unprivileged
access and is subject to MPU checks. Both privileged and unprivileged requests are subject to MPU checks.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && MPU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter B13. Debug
B13.3. Debug authentication interface

RWSQR The DAP access process is extended when the Unprivileged Debug Extension is implemented, and
HaltingDebugAllowed() returns FALSE, as shown in the following diagram.

If DAP requests a secure access AND DHCSR.S_SDE == 1 then NS-Req = Secure otherwise NS-Req = Non-secure

NS-Req = Secure?

Address
secure

If DHCSR.S_NSUIDE
==1, Request =

Unprivileged

If DHCSR.S_SUIDE
==1, Request =

Unprivileged

DAP access explicitly permitted
or

 if DAUTHCTRL.UIDAPEN ==1, and the
access targets the PPB

DAP access explicitly permitted
or

 if DAUTHCTRL.UIDAPEN ==1, and the
access targets the PPB

HaltingDebugAllowed()

DHCSR.S_NSUIDE DHCSR.S_SUIDE

Non-secure MPU
access violation?

Secure MPU access
violation?

Do Access (when DAUTHCTRL.UIDAPEN ==1, reserved areas of the PPB are RES0, and
accesses through this mechanism are demoted to unprivileged accesses)

DAP error

No

No

No

0

1

No

1

0 0

No No

Yes

Yes Yes

Yes

Yes

HaltingDebugAllowed()

1

0

1

Yes

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && MPU.

ILBGV When HaltingDebugAllowed() returns TRUE, DAP accesses follow the behavior specified by RWMRR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && MPU.

See also:

B3.14 Secure address protection.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter B13. Debug
B13.3. Debug authentication interface

Chapter B10 The Armv8-M Protected Memory System Architecture.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter B13. Debug
B13.4. Debug event behavior

B13.4 Debug event behavior

B13.4.1 About debug events

ICBWT An event that is triggered for debug reasons is known as a debug event.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RPQKW A debug event that is not ignored causes one of the following to occur:

• If Halting debug is implemented and enabled, entry to Debug state.
• A HardFault exception.
• Lockup.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, entry to
Debug state requires HDBG.

RQLTQ A debug event that is not ignored, can cause a DebugMonitor exception to occur.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RMNKP The HardFault exceptions or Lockup that are caused by debug events are generated by:

• A BKPT instruction that is executed when the PE can neither halt nor generate a DebugMonitor exception.
• In some circumstances, the FPB.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M. Note, an FPB
requires FPB.

RWCPW The debug events are as follows.

Debug event Actions

Step Halt or DebugMonitor exception.

Halt Request Halt

Breakpoint Halt, DebugMonitor exception, or Hardfault.

Watchpoint Halt or DebugMonitor exception.

Vector catch Halt only

PMU Overflow Halt or DebugMonitor exception

External Halt or DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. Note, a DebugMonitor exception requires M. Halt
requires HDBG. PMU is only available in an Armv8.1-M implementation.

RLDRZ The DFSR contains status bits for each debug event. These bits are set to 1 when a debug event causes the PE to
halt or generate a DebugMonitor exception, and are then write-one-to-clear.

The following table shows which bit is set for each debug event.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter B13. Debug
B13.4. Debug event behavior

Event cause DFSR bit

Step HALTED

Halt request HALTED

Breakpoint BKPT

Watchpoint DWTTRAP

Vector catch VCATCH

PMU Overflow PMU

External EXTERNAL

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M || HDBG. Note,
PMU is only available in an Armv8.1-M implementation.

RHNRV It is IMPLEMENTATION DEFINED whether the DFSR debug event bits are updated when an event is ignored or the
debug event is escalated to a HardFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

IKLLX In an implementation of the Armv8.1-M architecture Arm recommends that the DFSR debug event bits are updated
when an event is ignored. For example, when a DebugMonitor event is not taken or is escalated to a HardFault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB.

IMCZX Arm recommends that any BKPT executed should set DFSR.BKPT irregardless of any authentication for halting,
DebugMonitor or HardFault or Lockup behavior.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RDVCR If a BKPT instruction cannot halt and cannot generate a DebugMonitor exception then escalation to HardFault
occurs.

The effect of DEMCR.SDME on the target Security state of an escalated Hardfault is an IMPLEMENTATION
DEFINED choice, so that the target Security state of any escalated HardFault will be either:

• Non-secure state when the current Security state is Non-secure and AIRCR.BFHFNMINS is 1 and
DEMCR.SDME is ignored.

• Secure state when any of the following are true:

– The current Security state is Secure.
– AIRCR.BFHFNMINS is 0.
– DEMCR.SDME is 1 and is not ignored.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB && M. Note, S
required for Secure state.

RTBWL If a BKPT instruction that cannot halt and cannot generate a DebugMonitor exception then escalation to HardFault
occurs. The target Security state of the generated Hardfault is the Secure state if any of the following are true:

• DEMCR.SDME is set to one.
• AIRCR.BFHFNMINS is zero.
• The current Security state is Secure.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB && S. Note, M is
always implemented in an Armv8.1 implementation.

IZFKK When escalating a DebugMonitor exception to HardFault DEMCR.SDME should be checked regardless of the
value of DEMCR.MON_EN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DB. Note, S required
for Secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter B13. Debug
B13.4. Debug event behavior

INSMV Debug events are either synchronous or asynchronous.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RVSVN The synchronous debug events are:

• Breakpoint debug events, caused by execution of a BKPT instruction or by a match in the FPB.
• Vector catch debug events, caused when one or more DEMCR.VC_* bits are set to 1, and the PE takes the

corresponding exception.
• Step debug events, caused by DHCSR.C_STEP or DEMCR.MON_STEP.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RPVGM A single instruction can generate several synchronous debug events.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RWJFB Synchronous debug events are associated with the instruction that generated them and are taken instead of executing
the instruction. The PE does not generate any other synchronous exception or debug event that might have occurred
as a result of executing the instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RRNRD The Step debug event is taken on the instruction following the instruction being stepped. This means that
prioritization of the event applies relative to any other exception or debug event for the following instruction, not
for the instruction being stepped.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RJSPS If multiple debug events and exceptions are generated on the same instruction, they are prioritized as follows:

1. Halt request (halting only), including where DHCSR.C_HALT is set by DHCSR.C_STEP of the previous
instruction.

2. Highest-priority pending exception that is eligible to be taken. If the Main Extension is implemented,
this might be a DebugMonitor exception, if DEMCR.MON_PEND == 1. This includes where
DEMCR.MON_PEND is set by DEMCR.MON_STEP of the previous instruction.

3. Vector catch.
4. Fault from an instruction fetch, including synchronous BusFault error.
5. Breakpoint that is signaled by an FPB unit.
6. BKPT instruction or other exception that results from decoding the instructions. This includes the cases

where exceptions from the instruction are UNDEFINED, an unimplemented or disabled coprocessor is targeted,
or the EPSR.T bit has a value of 0.

7. Other synchronous exception that is generated by executing the instruction, including an exception that is
generated by a memory access that is generated by the instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, not all of the
debug features listed might be implemented in a particular implementation.

RBQVF The highest-priority synchronous debug event is reported in the DFSR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RFWQQ It is UNPREDICTABLE whether synchronous debug events that occur on the same instruction as a debug event with
a higher priority are reported in the DFSR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RTKRS The asynchronous debug events are:

• Watchpoint debug events caused by a match in the DWT, including instruction address match watchpoints.
• Halt request debug events, where either:

– A debugger write that has set DHCSR.C_HALT to 1 and DHCSR.C_DEBUGEN set to 1.
– A software write that sets DHCSR.C_HALT to 1 when DHCSR.C_DEBUGEN was set to 1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter B13. Debug
B13.4. Debug event behavior

• External debug request debug events caused by assertion of an IMPLEMENTATION DEFINED external debug
request.

• PMU Overflow caused by an overflow of a PMU counter that is configured to generate an interrupt.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB. Note, PMU is only
available in an Armv8.1-M implementation.

RMRMC When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, DHCSR.C_HALT and
DHCSR.C_STEP are ignored, and these bits have an Effective value of 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

See also:

B3.13 Priority model.

Halting debug.

DebugMonitor exception.

B13.4.3 Vector catch.

B15.6 Interrupts and Debug events.

Applies to an implementation of the architecture Armv8.1-M onward.

GenerateDebugEventResponse().

Halting debug

RWLCF Setting the DHCSR.C_DEBUGEN bit to 1 enables Halting debug.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RJXMW Setting the DAUTHCTRL.UIDEN bit to 1, enables halting debug in unprivileged state. Setting the Secure instance
of this bit enables unprivileged debug in both Secure and Non-secure state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE.

RRZTG A debug event sets DHCSR.C_HALT to 1 if all of the following conditions apply:

• The debug event supports generating entry to Debug state.
• DHCSR.C_DEBUGEN == 1.
• Unless otherwise stated, halting is allowed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RTHLS If DHCSR.C_HALT has a value of 1 and halting is allowed, the PE halts and enters Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RFKWB A debug event that sets DHCSR.C_HALT to 1 pends entry to Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IVBXN A debug event might set DHCSR.C_HALT and remain pending through execution in a mode or state where Halting
debug is prohibited, which might not be a finite time.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RHQTX When SecureHaltingDebugAllowed() returns FALSE and HaltingDebugAllowed() returns TRUE,
a Debug event that sets DHCSR.C_HALT to 1 will cause all of the following:

• The PE to halt on transition from Secure state to Non-secure state for any of the following reasons:

– Exception entry.
– Exception return.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter B13. Debug
B13.4. Debug event behavior

– Non-secure function call.
– Function return.

• The PE will halt and enter Debug state before completing the first instruction in Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RVDMZ When UnprivHaltingDebugAllowed(FALSE) returns TRUE a debug event that sets DHCSR.C_HALT to
1 will cause the PE to halt and enter Debug state on transition from a privileged mode to an unprilvileged mode
before completing the first instruction in unprivileged mode.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - UDE && HDBG.

RXSRJ If DHCSR.C_HALT has a value of 1 or EDBGRQ is asserted before a Context synchronization event, and halting
is allowed after the Context synchronization event, then the PE halts and enters Debug state before the first
instruction following the Context synchronization event completes its execution.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG || EDBGRQ.

RJXQF DFSR is updated at the same time as the PE sets DHCSR.C_HALT to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RTXWB If an instruction that is being stepped or an instruction that generates a debug event reads DFSR or DHCSR, the
value that is read for the relevant DFSR bit or for DHCSR.C_HALT is UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RFRJC For asynchronous debug events, if halting is allowed, the PE enters Debug state in finite time.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RVJKX Entering Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IJNGH DHCSR.C_SNAPSTALL might allow imprecise entry into the Debug state, for example by forcing any stalled
load or store instructions to be abandoned.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RBTBJ If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, DHCSR.C_SNAPSTALL is ignored
and has an Effective value of 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RHLNF If DHCSR.S_SDE == 0, DHCSR.C_SNAPSTALL ignores writes from the debugger.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && S.

RCBLC If UDE is implemented and DHCSR.S_SUIDE == 1, debugger writes to DHCSR.C_SNAPSTALL are ignored.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE &&
S.

RRKBK When the PE is in a state in which halting is prohibited, if DHCSR.C_HALT == 1 and DHCSR.C_DEBUGEN ==
1, then DHCSR.C_HALT remains set unless it is cleared by a direct write to DHCSR. If the PE enters a state in
which halting is allowed while DHCSR.C_HALT is set to 1, then the PE enters Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

See also:

DHCSR, Debug Halting Control and Status Register.

B13.4.2 Debug stepping.

B13.5 Debug state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter B13. Debug
B13.4. Debug event behavior

DebugMonitor exception

IDPCC The DebugMonitor exception is only available if the Main Extension is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RVMDP Unless otherwise stated, a debug event sets DEMCR.MON_PEND to 1 if all of the following conditions apply:

• The debug event supports generating DebugMonitor exceptions and does not generate an entry into debug
state.

• One of the following conditions apply:

– DEMCR.MON_EN is set to 1.
– DEMCR.UMON_EN is set to 1 and the debug event was generated by an unprivileged operation.

• One of the following conditions apply:

– The Security Extension is not implemented.
– DEMCR.SDME is set to 1.
– The debug event was generated by a Non-secure operation.

• The DebugMonitor exception group priority is not sufficient to preempt current execution priority.

The pseudocode function CanPendMonitorOnEvent() describes this.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && UDE.

RVJJH If a Debug event that does not generate an entry to Debug state, and the architecture does not require that the debug
event set DEMCR.MON_PEND to 1, then:

• The PE escalates a DebugMonitor synchronous exception that is generated by executing a BKPT instruction
to a HardFault.

• The PE might set DEMCR.MON_PEND to 1 for a watchpoint debug event.
• The PE ignores the other debug event.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && UDE.

RCHXQ A debug event that sets DEMCR.MON_PEND to 1 pends a DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RVSPX DEMCR.MON_PEND is cleared to 0 when the PE takes a DebugMonitor exception. This means that a value of 1
for DEMCR.MON_PEND might never be observed for a synchronous DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RBRXT DFSR is updated at the same time as the PE sets DEMCR.MON_PEND to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RBKHP If an instruction that is being stepped or that generates a debug event reads DFSR or DEMCR, the value that is
read for the relevant DFSR bit or for DEMCR.MON_PEND is UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RVFLQ For asynchronous debug events, if taken as a DebugMonitor exception, and if the current priority is lower than the
DebugMonitor exception group priority, a DebugMonitor exception is taken in finite time.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RJVSC A direct write to DEMCR can set DEMCR.MON_PEND to 1 at any time to make the DebugMonitor exception
pending or can set DEMCR.MON_PEND to 0 to remove a pending DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter B13. Debug
B13.4. Debug event behavior

RXPBN When DEMCR.MON_PEND == 1, the PE takes the DebugMonitor exception according to the exception
prioritization rules, regardless of the value of DEMCR.SDME and DEMCR.MON_EN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RNVQT From Armv8.1 when DEMCR.MON_PEND == 1, the PE takes the DebugMonitor exception according
to the exception prioritization rules, regardless of the value of DEMCR.SDME, DEMCR.MON_EN and
DEMCR.UMON_EN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && UDE.

RQZHW Unless otherwise stated, synchronous and asynchronous DebugMonitor exceptions can only cause preemption at
instruction boundaries.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RTMNT For beat-wise executable instructions, synchronous and asynchronous DebugMonitor exceptions can cause
preemption at either beat or instruction boundaries.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

IPJJD DebugMonitor exceptions on their own cannot cause instruction resume or instruction restart. However, if
another exception preempts an execution-continuable instruction, then the PE might take that exception along with
DebugMonitor exception as a tail-chained or late-arriving exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

See also:

B14.2.2 DWT unit operation.

B14.5.2 FPB unit operation.

B3.27 Exceptions, instruction resume, or instruction restart.

B13.4.2 Debug stepping

RHMCN The Armv8-M architecture supports debug stepping in both Halting debug and for the DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG || M. Note,
might require the DebugMonitor exception.

RTHTG It is IMPLEMENTATION DEFINED whether stepping a WFE or WFI instruction causes the WFE or WFI instruction
to:

• Retire and take the debug event.
• Go into a sleep state and take the debug event only when another wake up event occurs.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG || M.

RLLVC If a debug event wakes a WFE or WFI instruction, then on taking the debug event, the instruction has retired.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG || M.

IZLPK If the PE exits from a sleep state due to an asynchronous debug event the PE will perform all of the following
before halting the PE:

• Complete the exception return, including the consumption of the Stack frame.
• Clear the exclusive monitor state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG || M.

ICMYW The debug architecture includes support for stepping over vector instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter B13. Debug
B13.4. Debug event behavior

RXQYC The debug architecture does not support Halting debug stepping or DebugMonitor stepping over Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG || M.

See also:

Halting debug stepping.

Debug monitor stepping.

Halting debug stepping

IQMXC A debugger can use Halting debug stepping to exit from Debug state, execute a single instruction, and then reenter
Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RSWKC Halting debug stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 1, Halting debug is enabled, and halting is allowed.
• DHCSR.C_STEP is set to 1, halting stepping is enabled.
• The PE is in Non-debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RZVKS When the PE exits Debug state and Halting debug stepping becomes active, the PE performs a Halting debug step
as follows:

1. Performs one of the following:

• Completes the next instruction without generating any exception.

• Takes any pending exception entry of sufficient priority, without completing the next instruction. The
PE performs an exception entry sequence that stacks the next instruction context. This context might
include instruction continuation bits if the next instruction was partly executed and supports instruction
resume. The exception might be a pending exception, or an exception generated by the execution of the
next instruction. Taking a pending exception might include entry to Lockup.

• Completes the execution of the next instruction, and then takes any pending exception of sufficient
priority. The PE performs an exception entry sequence that stacks the following instruction context.
Taking an exception might include entry to Lockup.

• If the next instruction is an exception return instruction, completes the next instruction, tail-chaining to
enter a new exception handler. In each case where the PE performs an exception entry sequence it does
so according to the exception priority and late-arrival rules, meaning derived and late-arriving exceptions
might preempt the exception entry sequence. If the PE enters Lockup as a consequence of step one the
PE will resolve the Lockup signal before halting the PE. The exception behavior is not recursive. Only a
single PushStack() update can occur in a step sequence.

2. Sets DFSR.HALTED and DHCSR.C_HALT to 1. A read of the DFSR.HALTED or the DHCSR.C_HALT
bit performed by the stepped instruction returns an UNKNOWN value.

3. After the Halting debug step, before executing the following instruction, because DHCSR.C_HALT is set
the PE will halt and enter Debug state if halting is still allowed. However, if halting is prohibited after the
Halting debug step then the PE does not enter Debug state and DHCSR.C_HALT remains set.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RLJJB If the implementation includes the Armv8.1-M profile Vector Extension, a Halting debug step has the following
additional possible actions when stepping over vector instructions. The PE:

• Attempts to complete the execution of all in-flight vector instructions, does not execute any new instructions,
and generates a synchronous exception that is taken.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter B13. Debug
B13.4. Debug event behavior

• Completes the execution of all in-flight vector instructions, does not start the execution of new instructions,
and does not generate an exception.

• Completely executes the next vector instruction, without overlapping execution, and does not generate an
exception.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && MVE.

ILTRX The debugger can optionally set DHCSR.C_MASKINTS to 1 to prevent PENDSV, SysTick, and external interrupts
from being taken. If a permitted exception becomes active, the PE steps into the exception handler and halts before
executing the first instruction of the associated exception handler.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RNSMR DHCSR.C_MASKINTS is ignored and has an Effective value of 0 if any of the following are true:

• HaltingDebugAllowed() returns FALSE.
• DHCSR.C_DEBUGEN is 0.
• The exception is Secure and DHCSR.S_SDE is 0.
• UDE is implemented, the exception is Secure and DHCSR.S_SUIDE is 1.
• UDE is implemented and DHCSR.S_NSUIDE is 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG. Note, S is
required for Secure state, and UDE is only available in an Armv8.1-M implementation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter B13. Debug
B13.4. Debug event behavior

RMBCB DHCSR.{C_HALT, C_STEP, C_MASKINTS} can be written in a single write to DHCSR, as follows:

DHCSR write

assumes that DHCSR.C_DEBUGEN and DHCSR.S_HALT are both set to 1 when the write occurs and the PE is halted.

C_HALT C_STEP C_MASKINTS Effect

0 0 0 Exit Debug state and start instruction execution.

Exceptions can become active and

prioritized according to the priority rules

and the configuration of exceptions.

0 0 1 Exit Debug state and start instruction execution.

PendSV, SysTick and, external interrupts are

disabled, otherwise exceptions can become active and

proritized according to the priority rules.

0 1 0 Exit Debug state, step an instruction and halt.

Exceptions can become active and

prioritized according to the priority rules.

0 1 1 Exit Debug state, step an instruction and halt.

PendSV, SysTick and, external interrupts are

disabled, otherwise exceptions can become active and

proritized according to the priority rules.

1 X X Remain in Debug state.

The write to DHCSR assumes that the PE is halted when the write occurs and the write is not UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

Debug monitor stepping

IDXCT A debugger can use debug monitor stepping to return from the DebugMonitor exception handler, execute a single
instruction, and then reenter the DebugMonitor exception handler.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DebugMonitor
exception.

RMLRM Debug monitor stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 0 or the PE is in a state in which halting is prohibited.
• DEMCR.MON_EN is set to 1, that is Monitor debug is enabled.
• DEMCR.MON_STEP is set to 1, that is monitor stepping is enabled.
• DEMCR.SDME == 1 or the PE is in Non-secure state.
• Execution priority is below the priority of the DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RMJCF From Armv8.1-M Debug monitor stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 0 or the PE is in a state in which halting is prohibited.
• DEMCR.MON_EN is set to 1, or DEMCR.UMON_EN is set to 1 and the instruction is executed in

unprivileged mode, that is Monitor debug is enabled.
• DEMCR.MON_STEP is set to 1, that is monitor stepping is enabled.
• DEMCR.SDME == 1 or the PE is in Non-secure state.
• Execution priority is below the priority of the DebugMonitor exception.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter B13. Debug
B13.4. Debug event behavior

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && UDE.

RMWFT When DebugMonitor stepping becomes active, the PE performs a DebugMonitor step as follows:

1. It performs one of the following:

• It completes the next instruction without generating any exception.
• It takes any pending exception of sufficient priority. The PE performs an exception entry sequence

that stacks the next instruction context. The exception might be a pending exception, or it might be an
exception generated by the execution of the next instruction. Taking a pending exception might include
entry to Lockup.

• If the next instruction is an exception return instruction, the PE completes the next instruction,
tail-chaining to enter a new exception handler according to the normal exception priority and late-arrival
rules.

If the PE performs an exception entry sequence as part of step 1, the PE stacks the next instruction context.
This context might include instruction continuation bits if the next instruction was partly executed and
supports instruction resume.

If the PE enters Lockup as a consequence of step one the PE will resolve the Lockup signal before entering
the DebugMonitor exception if the DebugMonitor exception has sufficient priority to pre-empt execution
after Lockup has been resolved.

2. If the execution priority is below the priority of the DebugMonitor exception after step 1, the PE sets
DEMCR.MON_PEND and DFSR.HALTED to 1. A read of DEMCR.MON_PEND or DFSR.HALTED by
the stepped instruction returns an UNKNOWN value.

3. Before executing the following instruction, the PE takes any pending exception with sufficient priority.

If step 2 set DEMCR.MON_PEND to 1, then the DebugMonitor exception is pending. However, it is
UNPREDICTABLE whether the PE uses the new value or the old value of DEMCR.MON_PEND in determining
the highest priority exception. This means that:

• Another exception might preempt execution before the DebugMonitor exception is taken, and the
exception might be lower priority than the DebugMonitor exception. However, this is a Context
synchronization event and the PE uses the new value of DEMCR.MON_PEND to determine the highest
priority exception before executing the next instruction. This includes entry into Lockup.

• If no other exceptions are pending, the PE takes the DebugMonitor exception.

Derived and late-arriving exceptions might preempt the exception entry sequence.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RJKJM If the implementation includes the Armv8.1-M profile Vector Extension, a Debug monitor step has the following
additional possible actions when stepping over vector instructions. The PE:

• Attempts to complete the execution of all in-flight vector instructions, does not execute any new instructions,
and generates a synchronous exception that is taken.

• Completes the execution of all in-flight vector instructions, does not start the execution of new instructions,
and does not generate an exception.

• Completely executes the next vector instruction, without overlapping execution, and does not generate an
exception.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && MVE.

IGPSX In all other cases, the DebugMonitor exception preempting execution returns control to the DebugMonitor exception
handler. Unless that handler clears DEMCR.MON_STEP to 0, returning from the handler performs the next debug
monitor step.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter B13. Debug
B13.4. Debug event behavior

IKPKX If, after the debug monitor stepping process, the taking of an exception means that the execution priority is no
longer below that of the DebugMonitor exception, the values of DEMCR.MON_STEP and DEMCR.MON_PEND
mean that debug monitor stepping process continues when execution priority falls back below the priority of the
DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

See also:

DHCSR.

B13.4.3 Vector catch

ITVRX Vector catch is the mechanism for generating a debug event and entering Debug state on entry to a particular
exception handler or reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RJCXR Vector catching is only supported by Halting debug.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RPBVX The conditions for a vector catch, other than reset vector catch, are:

• DHCSR.C_DEBUGEN == 1 and halting is allowed for the Security state the exception is targeting.
• The associated exception enable bit is set.
• The associated active bit is set.
• The associated vector catch enable bit.
• An exception is taken to the relevant exception handler. The associated fault status register status bit is set to

1.

When these conditions are met, the PE sets DHCSR.C_HALT to 1 and enters Debug state before executing the first
instruction of the exception handler.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IXDGP Late arrival and derived exceptions might occur, preempting the exception targeted by the vector catch and
postponing when the PE halts.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RXKMH The following table defines the exception, Fault status bit, and Vector catch bit.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter B13. Debug
B13.4. Debug event behavior

Exception Fault status bit Vector catch bit

DEMCR

HardFault HFSR.VECTTBL VC_INTERR

HFSR.FORCED VC_HARDERR

HFSR.DEBUGEVT VC_HARDERR

BusFault BFSR.IBUSERR VC_BUSERR

BFSR.PRECISERR VC_BUSERR

BFSR.IMPRECISERR VC_BUSERR

BFSR.UNSTKERR VC_INTERR

BFSR.STKERR VC_INTERR

BFSR.LSPERR VC_INTERR

DebugMonitor HFSR.DEBUGEVT -

MemManage fault MMFSR.IACCVIOL VC_MMERR

MMFSR.DACCVIOL VC_MMERR

MMFSR.MUNSTKERR VC_INTERR

MMFSR.MSTKERR VC_INTERR

MMFSR.MLSPERR VC_INTERR

NMI - -

PENDSV - -

UsageFault UFSR.UNDEFINSTR VC_STATERR

UFSR.INVSTATE VC_STATERR

UFSR.INVPC VC_STATERR

UFSR.NOCP VC_NOCPERR

UFSR.STKOF VC_INTERR

UFSR.UNALIGNED VC_CHKERR

UFSR.DIVBYZERO VC_CHKERR

SecureFault SFSR.INVEP VC_SFERR

SFSR.INVIS VC_SFERR

SFSR.INVER VC_SFERR

SFSR.AUVIOL VC_SFERR

SFSR.INVTRAN VC_SFERR

SFSR.LSPERR VC_SFERR

SFSR.LSERR VC_SFERR

SVCall - -

SysTick - -

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter B13. Debug
B13.4. Debug event behavior

RLKNL When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, all DEMCR.VC_ bits,
other than DEMCR.VC_CORERESET, are ignored.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && S.

RVZDB If the PE resets into Secure state when both of:

• DHCSR.C_DEBUGEN == 1
• DEMCR.VC_CORERESET == 1

The PE will pend a Halt request and will halt and enter into Debug state when halting is permitted, setting
DFSR.VCATCH to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && S.

RWRMQ The PE pends a Vector catch event when all of the following is true:

• The PE has reset into Secure state.
• DHCSR.C_DEBUGEN == 1.
• DEMCR.VC_CORERESET == 1.
• Halting debug is not allowed in Secure state.

The PE does not halt until either it enters Non-secure state or debug is allowed in Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG && S.

RMSWM If UDE is implemented and all of the following are true:

• DHCSR.C_DEBUGEN == 1,
• DEMCR.VC_CORERESET == 1,
• UnprivHaltingDebugAllowed(FALSE) returns TRUE,
• The PE resets into Secure state,

The PE will pend a Vector Catch debug event, if debug is prohibited in Secure state, and does not halt until either
the PE enters Non-secure state or debug is permitted in Secure state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE.

See also:

B1.1 Resets, Cold reset, and Warm reset.

B3.10 Exception enable, pending, and active bits.

B3.13 Priority model.

B3.12 Faults.

B3.9 Exception numbers and exception priority numbers.

B3.24 Exceptions during exception entry.

B3.25 Exceptions during exception return.

Chapter B1 Resets.

B13.4.4 Breakpoint instructions

RCRJG When DHCSR.C_DEBUGEN == 0 or when the PE is in a state in which halting is prohibited, the BKPT instruction
does not generate an entry to Debug state. If no DebugMonitor exception is generated, the BKPT instruction
generates a HardFault exception or enters Lockup state.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter B13. Debug
B13.4. Debug event behavior

RNXTW A BKPT instruction halts the PE if either of the following cases are true:

1. HaltingDebugAllowed() returns TRUE and the following are true:

• DHCSR.C_DEBUGEN is set to 1.

• The PE is not halted.

• If the Security extension is implemented and the PE is executing in Secure state all of the following are true:

– DHCSR.S_SDE is set to 1.
– UDE is not implemented or DHCSR.S_SUIDE is set to 0.

2. HaltingDebugAllowed() returns FALSE and all of the following are true:

• UDE is implemented and the PE is executing Non-secure state and unprivileged mode and
DHCSR.S_NSUIDE is set to 1.

• UDE is implemented and the PE is executing in Secure state and unprivileged mode and DHCSR.S_SUIDE
is set to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE.

RZJLD A BKPT instruction generates a DebugMonitor exception if it does not halt the PE and all of the following
conditions apply:

• The DebugMonitor exception priority is greater than the current execution priority.

• The Security Extension is not implemented, the instruction is executed in Non-secure state, or DEMCR.SDME
== 1.

• One of the following conditions apply:

– DEMCR.MON_EN == 1
– The Unprivileged Debug Extension is implemented, DEMCR.UMON_EN == 1, and the instruction is

executed in unprivileged mode.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && UDE.

B13.4.5 External debug request

RXZCP When the PE is in Non-debug state, an external agent can signal an external debug request.

Applies to an implementation of the architecture Armv8.0-M onward.

RGTGX An external debug request can cause a debug event, that causes either:

• Entry to Debug state.
• If the Main Extension is implemented, a DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M || HDBG.

RFGCV The PE ignores external debug requests when it is in Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RBXRD When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, an External debug request
does not generate an entry to Debug state and is ignored if no DebugMonitor exception is generated.

Applies to an implementation of the architecture Armv8.0-M onward.

RBNBR An External debug request that does not halt the PE will set DEMCR.MON_PEND to 1 if all of the following are
true:

• The DebugMonitor exception is enabled. That is if either or the following are true:

– DEMCR.MON_EN is set to 1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter B13. Debug
B13.4. Debug event behavior

– DEMCR.UMON_EN is set to 1 and the PE is executing in unprivileged mode.

• The priority of the DebugMonitor exception is sufficient to preempt the current execution priority.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M && UDE.

IFSTF RBNBR describes the conditions in which DEMCR.MON_PEND will be set on the assertion of an External debug
request. RKQTP and RRVXG set the bounds of the timing for when DEMCR.MON_PEND will be set, so that
privileged software can update DEMCR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - M.

RKQTP In the absence of a Context synchronization event an External debug request that does not cause the PE to halt will
set DEMCR.MON_PEND to 1 in finite time.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

RRVXG A Context synchronization event is sufficient to ensure that an External debug request has set DEMCR.MON_PEND
for the context being switched away from.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

See also:

B13.4 Debug event behavior.

DFSR.EXTERNAL.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter B13. Debug
B13.5. Debug state

B13.5 Debug state

RRMKS In Halting debug, debug events allow an external debugger to halt the PE. The PE then enters Debug state. When
the PE is in Debug state:

• The PE stops executing instructions from the location indicated by the PC, and is instead controlled by the
external debug interface.

• The PE cannot service any interrupts.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RQDCP In Debug state, the PE clears the DHCSR.S_REGRDY bit to 0 when the debugger writes to DCRSR and the
PE then sets the bit to 1 when the transfer between the DCRDR and R0-R12 (Rn), Special-purpose register,
Floating-point Extension register, or DebugReturnAddress completes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG. Note, Floating-
point registers are RES0 if FP is not implemented.

IFKSM To transfer a word to a general-purpose register, to a Special-purpose register, to a Floating-point Extension register,
or to DebugReturnAddress, a debugger:

1. Writes the required word to DCRDR.
2. Writes to the DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit set to 1

to indicate a write access. This clears the DHCSR.S_REGRDY bit to 0.
3. If required, polls DHCSR until DHCSR.S_REGRDY reads-as-one. This shows that the PE has transferred

the DCRDR value to the selected register.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

ICMBB To transfer a word from a general-purpose register, from a Special-purpose register, from a Floating-point Extension
register, or from DebugReturnAddress, a debugger:

1. Writes to DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit as 0 to
indicate a read access. This clears the DHCSR.S_REGRDY bit to 0.

2. Polls DHCSR until DHCSR.S_REGRDY reads-as-one. This shows that the PE has transferred the value of
the selected register to DCRDR.

3. Reads the required value from DCRDR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RVLVD In Debug state, following a write to DCRSR that clears the DHCSR.S_REGRDY bit to 0, the behavior is
UNPREDICTABLE if any of the following occur before the PE sets DHCSR.S_REGRDY to 1:

• The PE exits Debug state, other than because of a Warm reset.
• The debugger writes to DCRDR or DCRSR.

If the DCRSR.REGWnR bit was set to 0 and the debugger reads from DCRDR before the PE sets
DHCSR.S_REGRDY to 1, then the read returns an UNKNOWN value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RJKBB When using the DCRDR, DCRSR and DHCSR.S_REGRDY mechanism to write to XPSR, all bits of the XPSR
are fully accessible. The effect of writing an illegal value is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IRXQB The DCRDR, DCRSR and DHCSR.S_REGRDY mechanism differs from the behavior of MSR or MRS instruction
accesses to the XPSR, where some bits are ignored on writes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter B13. Debug
B13.5. Debug state

RQLRN When the PE is halted the Debugger can write to:

• The DebugReturnAddress.
• EPSR.IT/ICI bits.

On exiting Debug state the PE starts from DebugReturnAddress. The Debugger must ensure that the EPSR.IT and
EPSR.ICI bits are consistent with DebugReturnAddress, otherwise instruction execution will be UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RXZJN The debugger can write to the EPSR.IT/ICI/ECI bits. If the debugger does this, it writes a value consistent with the
instruction to be executed on exiting Debug state, otherwise instruction execution will be UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && MVE.

IRRFN The debugger can always set FAULTMASK to 1, but doing so might cause unexpected behavior on exit from
Debug state. An MSR instruction cannot set FAULTMASK to 1 when the execution priority is -1 or higher.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RXRRQ The debugger can write to the EPSR.IT/ICI bits, and on exiting Debug state any interrupted LDM or STM instruction
will use these new values. Clearing the ICI bits to 0 will cause the interrupted LDM or STM instruction to restart or
continue.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RQLTB The debugger can write to the EPSR.ECI bits, and on exiting Debug state any interrupted vector instructions will
use these new values. Clearing the ECI bits to 0 will cause the interrupted vector instruction to restart.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && MVE.

RBMHD When the PE is in Debug state, an indirect write to a Special-purpose register caused by an access by the debugger
to a register within the System Control Block (SCB) is guaranteed to be visible after the access to the register
within the SCB completed to a subsequent:

• Access to the Special-purpose register through DCRDR.
• Indirect read of the Special-purpose register made for an access of any register through DCRDR or any

register within the System Control Block.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RMDJX When the PE is in Debug state, a write to a Special-purpose register made by the debugger through the DCRDR is
guaranteed to be visible after the write is observed to be completed in DHCSR.S_REGRDY to a subsequent:

• Access of any register through DCRDR or any register within the System Control Block.
• Indirect read of the Special-purpose register made for an access to any register through DCRDR or any

register within the System Control Block.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IDMTG A read or write of a register through DCRDR starts with a write to DCRSR. Where the architecture guarantees that
a previous access is visible to a subsequent access through DCRDR, this means the write to DCRSR is made after
the point where the previous access is visible.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IWFHL Armv8.1-M introduces restrictions on the DCRDR and DCRSR mechanism for unprivileged debug access to the
floating-point registers when lazy Floating-point state preservation is active or CPACR.CP10 associated with the
Security state of the floating-point context and additional floating-point context restricts access.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter B13. Debug
B13.5. Debug state

RHTXM An access using the DCRDR and DCRSR mechanism to the FPSCR, VPR or the floating-point register file will
return RAZ/WI if CanDebugAccessFP() returns FALSE. When CanDebugAccessFP() returns TRUE,
DHCSR.S_FPD is set to 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE. Note,
Floating-point registers are RES0 if FP is not implemented.

RFMRB An access to the following registers using the DCRDR and DCRSR mechanism when DHCSR.S_SUIDE or
DHCSR.S_NSUIDE are set to 1 will return zeros to the DCRDR:

• Secure Main Stack Pointer

• MSPLIM

• CONTROL

• FAULTMASK

• PRIMASK

• BASEPRI

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE.

RJFLV An access to XPSR using the DCRDR and DCRSR mechanism when DHCSR.S_SUIDE or DHCSR.S_NSUIDE
are set to 1 will return the EAPSR values to the DCRDR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - HDBG && UDE.

IYRGH The debugger can access the PAC keys using the DCRDR and DCRSR mechanism. The DCRDR and DCRSR
mechanism is described by DebugRegisterTransfer().

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && HDBG.

RLRXR The PAC_KEY_Pn and PAC_KEY_Un registers can be accessed using the DCRDR and DCRSR mechanism.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && HDBG.
Note, The Security extension is required for access to Secure register variants.

RPCSN Permission for an unprivileged debugger to access the above registers using the DCRDR and DCRSR mechanism
is dependant on the Current Security state, as well as the values of DHCSR.S_SDE, DHCSR.S_SUIDE and
DHCSR.S_NSUIDE. These access permissions are detailed in the following table:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter B13. Debug
B13.5. Debug state

Current PE DHCSR Access PAC_KEY

Security S_SDE S_SUIDE S_NSUIDE Current Secure Non-secure

NS 0 0 0 Y N Y

NS 0 0 1 N N N

NS 0 1 0 Not applicable

NS 0 1 1 Not applicable

NS 1 0 0 Y Y Y

NS 1 0 1 Not applicable

NS 1 1 0 Y N Y

NS 1 1 1 N N N

S 0 0 0 Not applicable

S 0 0 1 Not applicable

S 0 1 0 Not applicable

S 0 1 1 Not applicable

S 1 0 0 Y Y Y

S 1 0 1 Not applicable

S 1 1 0 N N Y

S 1 1 1 N N N

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && HDBG
&& UDE && S.

RKLQR A debugger can access the CONTROL.UPAC_EN, PAC_EN, UBTI_EN, BTI_EN using the DCRDR and DCRSR
mechanism.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && HDBG
&& UDE. Note, The Security extension is required for access to Secure register variants.

RBHTP Permission for an unprivileged debugger to access the above registers using the DCRDR and DCRSR mechanism
is dependant on the Current Security state, as well as the values of DHCSR.S_SDE, DHCSR.S_SUIDE and
DHCSR.S_NSUIDE. These access permissions are detailed in the following table:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter B13. Debug
B13.5. Debug state

Current PE DHCSR Access CONTROL Access CONTROL_S Access CONTROL_NS

Security S_SDE S_SUIDE S_NSUIDE PAC_EN/ UPAC_EN/ PAC_EN/ UPAC_EN/ PAC_EN/ UPAC_EN/

BTI_EN UBTI_EN BTI_EN UBTI_EN BTI_EN UBTI_EN

NS 0 0 0 Y Y N N Y Y

NS 0 0 1 N Y N N N Y

NS 0 1 0 Not applicable

NS 0 1 1 Not applicable

NS 1 0 0 Y Y Y Y Y Y

NS 1 0 1 Not applicable

NS 1 1 0 Y Y N Y Y Y

NS 1 1 1 N Y N Y N Y

S 0 0 0 Not applicable

S 0 0 1 Not applicable

S 0 1 0 Not applicable

S 0 1 1 Not applicable

S 1 0 0 Y Y Y Y Y Y

S 1 0 1 Not applicable

S 1 1 0 N Y N Y Y Y

S 1 1 1 N Y N Y N Y

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PACBTI && HDBG
&& UDE && S.

See also:

DCRDR, Debug Core Register Data Register.

DCRSR, Debug Core Data Select Register.

DebugRegisterTransfer()

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter B13. Debug
B13.6. Exiting Debug state

B13.6 Exiting Debug state

RBFGT The PE exits Debug state:

• When the debugger writes 0 to DHCSR.C_HALT.
• On receipt of an external restart request.
• On Warm reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RGGMJ For synchronous debug events DebugReturnAddress is:

Synchronous debug event DebugReturnAddress

Breakpoint debug events (BKPT or FPB Match) Address of the breakpointed instruction.

Vector Catch debug events Address of the first instruction of the exception handler.

Step debug events Address of the next instruction to be executed in simple

sequential execution order following the instruction that

was stepped. If an exception was taken during stepping,

this is the first instruction of the exception handler.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RXCCB Bit[0] of a DebugReturnAddress value is RAZ/SBZ. When writing a DebugReturnAddress, writing bit [0] of the
address does not affect the EPSR.T bit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RHNKB Exiting Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RWKSD If software clears DHCSR.C_HALT to 0 when the PE is in Debug state, a subsequent read of the DHCSR that
returns 1 for both DHCSR.C_HALT and DHCSR.S_HALT indicates that the PE has reentered Debug state because
it has detected a new debug event.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RFKXH Before leaving Debug state caused by an imprecise entry into Debug state the system is reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

See also:

B13.5 Debug state

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter B13. Debug
B13.7. Multiprocessor support

B13.7 Multiprocessor support

RQXLS Systems that support debug of more than one PE, either within a single device or as heterogeneous PEs in a more
complex system, require each PE to support all of the following to enable cross-triggering of debug events between
PEs:

• An external debug request.
• A cross-halt event.
• An external restart request.

Support for these features is OPTIONAL in other systems.

Applies to an implementation of the architecture Armv8.0-M onward.

B13.7.1 Cross-halt event

RDLCV When the PE enters Debug state, it signals to an external agent that it is entering Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

B13.7.2 External restart request

RZKVW When the PE is in Debug state, an external agent can signal an external restart request that causes the PE to exit
Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

RWJST An external restart request is not ordered with respect to accesses to memory-mapped registers. It is UNPRE-
DICTABLE whether an access to a memory-mapped register from a DAP completes before an external restart
request.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - HDBG.

IVNDK A debugger ensures that any read or write of a memory-mapped register by the DAP completes before issuing an
external restart request.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DB.

RNJQN The PE ignores external restart requests when it is in Non-debug state.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B13.6 Exiting Debug state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter B14
Debug and Trace Components

This chapter specifies the Armv8-M debug and trace component rules. It contains the following sections:

B14.1 Instrumentation Trace Macrocell.

B14.2 Data Watchpoint and Trace unit.

B14.3 Embedded Trace Macrocell.

B14.4 Trace Port Interface Unit.

B14.5 Flash Patch and Breakpoint unit.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

B14.1 Instrumentation Trace Macrocell

B14.1.1 About the ITM

RGDNG The Instrumentation Trace Macrocell (ITM) provides a memory-mapped register interface that applications can
use to generate Instrumentation packets.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

IBXWJ The ITM is only available if the Main Extension is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RLMXS The ITM generates Instrumentation packets, Synchronization packets, and the following protocol packets:

• Overflow packets.
• Local timestamp packets.
• Global timestamp packets.
• Extension packets.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXQRX The ITM combines the following packets into a single trace stream:

• Instrumentation packets.
• Synchronization packets.
• Protocol packets.
• Hardware source packets that are generated by the DWT.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RMXMN If the implementation includes the PMU, the PMU Hardware source packets are included in the single trace stream.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - ITM && PMU.

IFQLR The following figure shows how the ITM relates to other debug components.

ETM

DWT

Local timestamps

ITM

Synchronization
Global timestamps

TPIU ‡

Global
timestamp clock

Global timestamps
Synchronous parallel

Serial Wire

Trace
output

‡ Or alternative trace sink

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RBWJJ When multiple sources are generating data at the same time, the ITM arbitrates using the following priorities:

Synchronization, when required: Priority level -1, highest.

Instrumentation: Priority level 0.

Hardware source: Priority level 1.

Local timestamps: Priority level 2.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

Global timestamp 1: Priority level 3.

Global timestamp 2: Priority level 4.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

See also:

Global timestamping.

B14.2 Data Watchpoint and Trace unit.

ITM and DWT Packet Protocol Specification.

B14.1.2 ITM operation

RNKSC The ITM consists of:

• Up to 256 stimulus port registers, ITM_STIMn.
• Up to eight enable registers, ITM_TERn.
• An access control register, ITM_TPR.
• A general control register, ITM_TCR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RMFDV The number of ITM_STIMn registers is an IMPLEMENTATION DEFINED multiple of eight. Software can discover
the number of supported stimulus ports by writing all ones to the ITM_TPR, and then reading how many bits are
set to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RCGVD If the ITM is disabled or not implemented, any Secure or Non-secure write to ITM_STIMn is ignored.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && S.

RNJTR Unprivileged and privileged software can always read all ITM registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RFFXF If the ITM is not implemented, the ITM registers are RAZ/WI.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RCSFV The ITM_TPR defines whether each group of eight ITM_STIMn registers, and their corresponding ITM_TERn
bits, can be written by an unprivileged access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RPTXV ITM_STIMn registers are 32-bit registers that support the following word-aligned accesses:

• Byte accesses, to access register bits[7:0].
• Halfword accesses, to access register bits[15:0].
• Word accesses, to access register bits[31:0].

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RLNMW Non-word-aligned accesses are UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RNQVK ITM_TCR.ITMENA is a global enable bit for the ITM. A Cold reset clears this bit to 0, disabling the ITM.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RVRGP The ITM_TERn registers provide an enable bit for each stimulus port.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RNTCR When software writes to an enabled ITM_STIMn register, the ITM combines the identity of the port, the size of
the write access, and the data that is written, into an Instrumentation packet that it writes to a stimulus port output
buffer. The ITM transmits packets from the output buffer to a trace sink.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXPRK If an ITM implementation supports more than 32 stimulus ports, paging is used to indicate the stimulus port
number. The stimulus port number is defined by the A field of the Instrumentation packet, byte 0 bits [7:3].

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RQBCH An Extension packet is issued to define the page number, 0 to 7, with each subsequent Instrumentation packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RHWBQ Whenever a debugger receives an Instrumentation packet, it uses the the page number from the last Extension
packet received, or a page number of 0 if the debugger has not received an Extension packet since the debugger
last received a Synchronization packet.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - ITM.

RMKFV The ITM does not generate trace if DEMCR.TRCENA == 0 or either of the following are true:

• NoninvasiveDebugAllowed() == FALSE and the PE is in Non-secure state.
• SecureNoninvasiveDebugAllowed() == FALSE and the PE is in Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM. Note, S required
for Secure state.

RPXSX The ITM does not generate trace if the PE is in unprivileged mode when UnprivHaltingDebugAllowed()
== FALSE for the current Security state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - ITM && UDE.

RZKDG It is IMPLEMENTATION DEFINED whether no other ITM packets are generated when ITM trace is not generated.
Arm strongly recommends that no ITM packet is generated when ITM trace is not generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RGRNM The size of the stimulus port output buffer is IMPLEMENTATION DEFINED, but has at least one entry. The stimulus
port output buffer is shared by all ITM_STIMn registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RSXNK When the stimulus port output buffer is full, if software writes to any ITM_STIMn register, the ITM discards the
write data, and generates an Overflow packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RSRPP Reading the ITM_STIMn register of any enabled stimulus port returns a value indicating the output buffer status
and that the port is enabled.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXVVB Reading an ITM_STIMn register when the ITM is disabled, or when the individual stimulus port is disabled in the
corresponding ITM_TERn register, returns the value indicating that the output buffer cannot accept data because
the port is disabled.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RFXSL Hardware source packets that are generated by any source use a separate output buffer. The output buffer status
that is obtained by reading an ITM_STIMn register is not affected by trace that is generated by any other source.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RRGCV Stalling is supported through an optional control, ITM_TCR.STALLENA. When implemented and set to 1, the
ITM can stall the PE to guarantee delivery of the following Hardware source packets:

• Data Trace Data Address.
• Data Trace Data Value.
• Data Trace Match.
• Data Trace PC Value.
• Exception Trace.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RNFJN Stalling does not affect the DWT counters.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && DWTT.

RNWVT Stalling does not affect the PMU counters.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - ITM && PMU.

RTNDP The ITM might generate an Overflow packet while the PE is stalled, if the DWT generates:

• A Hardware source packet other than a Data trace packet or Exception packet.
• A Data Trace PC value packet or Data Trace Match packet from a Cycle Counter comparator.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RCRKK The ITM does not stall the PE in Secure state if SecureHaltingDebugAllowed() == FALSE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && S.

RGRHW The ITM does not stall the PE if HaltingDebugAllowed() == FALSE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RBGCP The ITM does not stall the PE in such a way as to deadlock the system.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RFRJG The ITM does not stall the PE if the trace output is disabled.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXRVL The ITM does not stall for writes to the ITM_STIMn registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RHDLH Instrumentation trace packets appear in the trace output in the order in which writes arrive at the ITM_STIMn
registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXNHX It is IMPLEMENTATION DEFINED whether an ITM requires flushing of trace data to guarantee that data is output.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RTSXR If periodic flushing is required, the ITM flushes trace data:

• When a Synchronization packet is generated.
• When trace is disabled, meaning that either DEMCR.TRCENA is cleared to 0 or one or more of

ITM_TCR.{TXENA, SYNCENA, TSENA, SYNCENA} is cleared to 0, and the buffered trace includes at
least one corresponding packet type.

• In response to other IMPLEMENTATION DEFINED flush requests from the system.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RMKFS If a system supports multiple trace streams, the debugger writes a unique nonzero trace ID value to the
ITM_TCR.TraceBusID field. The system uses this value to identify the individual trace streams. To avoid trace
stream corruption, before modifying the ITM_TCR.TraceBusID a debugger does the following:

• It clears the ITM_TCR.ITMENA bit to 0, to disable the ITM.
• It polls the ITM_TCR.BUSY bit until it returns to 0, indicating that the ITM is inactive.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

B14.1.3 Timestamp support

RRVLT Timestamps provide information on the timing of event generation regarding their visibility at a trace output port.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RTFDG An Armv8-M PE can implement either or both of the following types of timestamp:

• Local timestamps.
• Global timestamps.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

Local timestamping

RRMXM Local timestamps provide delta timestamp values, meaning each local timestamp indicates the elapsed time since
generating the previous local timestamp.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RWGBG The ITM generates the local timestamps from the timestamp counter in the ITM unit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXLBH The timestamp counter size is an IMPLEMENTATION DEFINED value that is less than or equal to 28 bits.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RGPXT It is IMPLEMENTATION DEFINED whether the ITM supports synchronous clocking of the timestamp counter mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RSRJH It is IMPLEMENTATION DEFINED whether the ITM and TPIU support asynchronous clocking of the timestamp
counter mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RGHPS ITM_TCR.TSENA enables Local timestamp packet generation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RFSWG When local timestamping is enabled and the DWT or ITM transfers a Hardware source or instrumentation trace
packet to the appropriate output FIFO, and the timestamp counter is nonzero, the ITM:

• Generates a Local timestamp packet.
• Resets the timestamp counter to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RBRRL If the timestamp counter overflows, it continues counting from zero and the ITM generates an Overflow packet and
transmits an associated Local timestamp packet at the earliest opportunity. If higher priority trace packets delay
transmission of this Local timestamp packet, the timestamp packet has the appropriate nonzero local timestamp
value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RXFRH The ITM can generate a Local timestamp packet relating to a single event packet, or to a stream of back-to-back
packets if multiple events generate a packet stream without any idle time.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RQJJB Local timestamp packets include status information that indicates any delay in one or both of:

• Transmission of the timestamp packet relative to the corresponding event packet.
• Transmission of the corresponding event packet relative to the event itself.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RNDCK If the ITM cannot generate a Local timestamp packet synchronously with the corresponding event packet, the
timestamp count continues to increment until the ITM can generate a Local timestamp packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RTBMX The ITM compresses the count value in the timestamp packet by removing leading zeros, and transmits the smallest
packet that can hold the required count value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

ISQLG To prevent overflow, Arm recommends that the ITM emits a Local timestamp packet before the timestamp counter
overflows.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

Local timestamp clocking options

RDSTG If the implementation supports both synchronous and asynchronous clocking of the local timestamp counter,
ITM_TCR.SWOENA selects the clocking mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RBDWS When software selects synchronous clocking, when local timestamping is enabled, the PE clock drives the
timestamp counter, and the counter increments on each PE clock cycle.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

IJQJD When software selects synchronous clocking, whether local timestamps are generated in Debug state is IMPLE-
MENTATION DEFINED. Arm recommends that entering Debug state disables local timestamping, regardless of the
value of the ITM_TCR.TSENA bit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RJDRD When software selects asynchronous clocking, and enables local timestamping, the TPIU output interface clock
drives the timestamp counter, through a configurable prescaler. The rate of asynchronous clocking depends on the
output encoding scheme. This clock might be asynchronous to the PE clock.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RNGDW When asynchronous clocking is implemented, whether the incoming clock signal can be divided before driving the
local timestamping counter is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RRMTN If the implementation supports division of the incoming asynchronous clock signal, ITM_TCR.TSPrescale sets the
prescaler divide value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RSKCP Software only selects asynchronous clocking when the TPIU is configured to use an output mode that supports
asynchronous clocking.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && TPIU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RJGCF When software selects asynchronous clocking and the TPIU asynchronous interface is idle, the ITM holds the
timestamp counter at zero. This means that the ITM does not generate a local timestamp on the first packet after an
idle on the asynchronous interface.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM && TPIU.

See also:

B14.4 Trace Port Interface Unit.

Global timestamping

IDKSD Global timestamps provide absolute timestamp values, which are based on a system global timestamp clock. They
provide synchronization between different trace sources in the system.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RHBWD If an implementation includes Global timestamping, the ITM generates Global timestamp (GTS) packets, which
are based on a global timestamp clock.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RKWQJ The size of the global timestamp is either 48 bits or 64 bits. The choice between these two options is IMPLEMEN-
TATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RSRDF To transfer the global timestamp, two formats of Global timestamp packets are defined:

• The first packet format, Global timestamp 1 packet, holds the value of the least significant timestamp
bits[25:0], and wrap and clock change indicators.

• The second packet format, Global timestamp 2 packet, holds the value of the high-order timestamp bits:

– Bits[47:26], if a 48-bit global timestamp is supported.
– Bits[63:26], if a 64-bit global timestamp is supported.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RVGBT The ITM generates a full Global timestamp packet, consisting of Global timestamp 1 packet Global timestamp 2
packet, in the following circumstances:

• When software first enables global timestamps, by changing the value of the ITM_TCR.GTSFREQ field
from zero to a nonzero value.

• When the system asserts the clock ratio change signal in the external ITM timestamp interface.
• In response to a Synchronization packet request, even if ITM_TCR.SYNCENA == 0.
• When the ITM has to generate a global timestamp, and the ITM detects that the value of the high-order bits

of the global timestamp have changed since the Global timestamp 2 packet was last generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXQWL If the global timestamp generated by the ITM does not have to be a full global timestamp, the ITM generates only
a single Global timestamp 1 packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RDJLN When the ITM generates a global timestamp, it does so after a non-delayed Instrumentation or Hardware
Source packet. The Global Timestamp 1 packet is always associated with the most recently output non-delayed
Instrumentation or Hardware Source packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RWDCX When the ITM generates a full global timestamp:

1. The ITM first generates the Global timestamp 1 packet with timestamp bits[25:0], with the applicable bit of
the Wrap and ClockCh bits in that packet set to 1 to indicate that the high-order bits of the timestamp will
also be output. This is the packet that the ITM outputs immediately after a non-delayed trace packet.

2. Because of packet prioritization, the ITM might have to transmit other trace packets before it can output the
Global timestamp 2 packet that contains the high-order bits of the timestamp. It might also have to transmit
another Global timestamp packet. If so, it outputs the Global timestamp 1 packet with timestamp bits[25:0]
and the Wrap bit set to 1.

3. The ITM later generates the Global timestamp 2 packet with the high-order timestamp bits for the most
recently transmitted Global timestamp 1 packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

See also:

B14.1.4 Synchronization support.

B14.1.5 Continuation bits.

ITM and DWT Packet Protocol Specification.

B14.1.4 Synchronization support

ILRJT An external debugger uses Synchronization Packets to recover bit-to-byte alignment information in a serial data
stream.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

ILVGD Synchronization packets are independent of timestamp packets.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RQRFL If the ITM connects to a parallel trace port interface, it must generate periodic Synchronization packets. An ITM
connected to an asynchronous serial trace port interface can generate Synchronization packets

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

IJNJV Arm recommends that software disables Synchronization packets when using an asynchronous serial trace port, to
reduce the data stream bandwidth.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RRMND If ITM_TCR.SYNCENA == 1, the ITM outputs a Synchronization packet:

• When it is first enabled.

• If DWT_CYCCNT is implemented and DWT_CTRL.SYNCTAP is nonzero, in response to a Synchronization
packet request from the DWT unit.

• If TPIU_PSCR is implemented, in response to a Synchronization packet request from the TPIU:

– If DWT_CYCCNT is not implemented, TPIU_PSCR is implemented.
– If DWT_CYCCNT is implemented, it is IMPLEMENTATION DEFINED whether TPIU_PSCR is

implemented.

• In response to other IMPLEMENTATION DEFINED Synchronization packet requests from the system.

• On exit from Debug state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM. Note, might
require additional extensions as described in the rule.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter B14. Debug and Trace Components
B14.1. Instrumentation Trace Macrocell

RNXLD When the ITM issues a Synchronization packet the ITM clears the value of the Page register to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM. Note, When the
ITM supports more than 32 Stimulus ports.

See also:

DWT_CTRL.SYNCTAP.

B14.1.5 Continuation bits

IBFMX A Synchronization packet consists of a bit stream of at least 47 zero bits followed by a one bit. The final bit is the
byte alignment marker, and therefore bit[7] of the last byte of a Synchronization packet is always one.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RJNVH The longest Extension packet is always 5 bytes. In an Extension packet, bit[7] of each byte, including the header
byte, but not including the last byte of a 5-byte packet, is a continuation bit, C. Bit[7] of the last byte of a 5-byte
Extension packet is part of the extension field. Bit[7] of the last byte of a fewer-than-5-byte Extension packet is
always zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RXFTL For all other protocol packets, bit[7] of each byte, including the header byte, but not including the last byte of a
7-byte packet, is a continuation bit, C. Bit[7] of the last byte of a packet is always zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RBBSF Each packet type defines its maximum packet length. Except for Global timestamp 2 and Synchronization packets,
the longest defined packet is 5 bytes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

RDPJG The continuation bit, C, is defined as:

0: This is the last byte of the packet.

1: This is not the last byte of the packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ITM.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

B14.2 Data Watchpoint and Trace unit

B14.2.1 About the DWT

RQQLQ The Data Watchpoint and Trace (DWT) unit provides the following features:

• Comparators that support:

– Use as a single comparator for instruction address matching or data address matching.
– Use in linked pairs for instruction address range matching or data address range matching.

• Generation, on a comparator match, of:

– A debug event that causes the PE either to enter Debug state or, if the Main Extension is implemented,
to take a DebugMonitor exception.

– Signaling a match to an ETM, if implemented.
– Signaling a match to another external resource.

• External instruction address sampling using an instruction address sample register.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && (Debug-
Monitor exception || HDBG). Note, some comparator matches require ETM.

RKBMX If the Main Extension is implemented, the DWT provides the following features:

• An optional cycle counter.

• Comparators that support:

– Use as a single comparator for cycle counter matching, if the cycle counter is implemented.
– Use as a single comparator for data value matching.
– Use in linked pairs for data value matching at a specific data address.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M.

RDVJV If the Main Extension and the ITM are implemented, the DWT provides the following trace generation features:

• Generating one or more trace packets on a comparator match.
• Generating periodic trace packets for software profiling.
• Exception trace.
• Performance event counters that generate trace.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M &&
ITM.

RCPXJ If DWT_CTRL.NOTRCPKT is 1, there is no DWT trace support.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RFKFP If DWT_CTRL.NOCYCCNT is 1, there is no cycle counter support.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RBKGF If DWT_CTRL.NOPRFCNT is 1, there is no event counter support.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RHFTT The DWT_CTRL.NUMCOMP field indicates the number of implemented DWT comparators, which is in the
range 0-15.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RVMSD It is optional whether the DWT supports Data value masking. If Data value masking is supported,
DWT_DEVARCH.REVISION == 0b0001.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

RWQLX If the Main Extension is not implemented, Cycle counter, Data value, Linked data value, and Data address with
value comparators and all trace features are not supported.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M && DWTT.

RSSWT Data trace packets are only generated for comparators 0-3.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RCRHX When a DWT implementation includes one or more comparators, which comparator features are supported, and by
which comparators, is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

B14.2.2 DWT unit operation

IWTSS For each implemented comparator, a set of registers defines the comparator operation. For comparator n:

• DWT_COMPn holds a value for the comparison.
• DWT_FUNCTIONn defines the operation of the comparator.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IKGNZ DWT_FUNCTION.ID can be interpreted in the following way:

• Bit 0, if set, indicates matches on the Cycle counter.
• Bit 1, if set, indicates matches on Instruction Addresses.
• Bit 2, if set, indicates matches on a Data Value.
• Bit 3 indicates matches on a Data Address, and when one of the first four comparators indicates a match on

Data Address with Value. This bit is always set.
• Bit 4, if set, indicates linked matches. That is a Data Address Limit, an Instruction Address Limit if bit 1 is

set, and Linked Data Value if bit 2 is set.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IFSSY Arm recommends that odd numbered comparators support linking.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

ILZMQ DWT_VMASKn is an additional register that defines the comparator operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

RDWTC The DWT checks for a cycle counter match on each increment of the Cycle Counter.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RXBRD A Secure match is a match that is generated by one of the following:

• Vector fetches where NS-Req has a value of Secure for the operation.

• The hardware stacking or unstacking of registers, where NS-Req has a value of Secure for the operation, on
any of:

– Exception entry.
– Exception exit.
– Function call entry.
– Function return.
– Lazy state preservation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

• A privileged or unprivileged operation that is generated by an instruction that is executed in Secure state,
including:

– An Instruction address match for an instruction that is executed in Secure state.
– A Data address or Data value match for a load or store that is generated by an instruction that is executed

in Secure state.

• A Secure match can be generated by a cycle counter match in Secure state if DWT_CTRL.CYCDISS == 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

IDWTB If the Cycle Counter increments on entry or exit from Secure state no Secure match is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

RBSKH An unprivileged match is a match that is generated by one of the following:

• The hardware stacking or unstacking of registers, where the operation is unprivileged on any of:

– Exception entry.
– Stacking of additional context on tail-chaining.
– Exception exit.
– Function call entry.
– Function return.
– Lazy state preservation.

• An operation that is generated by an instruction that is executed in an unprivileged mode, including:

– An instruction address match for an instruction that is executed in unprivileged mode.
– A Data address or Data value match for a load or store that is generalized by an instruction that is

executed in an unprivileged mode.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && S &&
UDE.

RNDFF Privileged matches are prohibited if one or more of the following conditions apply:

• DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed(TRUE) == FALSE. If UDE is not
implemented all matches will be prohibited.

• DWT_FUNCTION.ACTION specifies a debug event and all the following conditions apply:

– HaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN == 0.
– The Main Extension is not implemented or DEMCR.MON_EN == 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RFRGS Unprivileged matches are prohibited if one or more of the following conditions apply:

• DEMCR.TRCENA == 0. or NoninvasiveDebugAllowed(FALSE) == FALSE.

• DWT_FUNCTION.ACTION specifies a debug event and all of the following are true:

– HaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN == 0.
– UDE is not implemented or UnprivHaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN

== 0.
– The Main extension is not implemented or DEMCR.MON_EN == 0.
– UDE is not implemented or DEMCR.UMON_EN == 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IJWHK If UDE is not implemented, the NoninvasiveDebugAllowed() function ignores the privilege mode of the
match and a match will be generated if the function returns TRUE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RMJBG Secure matches are prohibited if one or more of the following conditions applies:

• DWT_FUNCTION.ACTION specifies a trace or trigger event and the following condition applies:

– SecureNoninvasiveDebugAllowed(TRUE) == FALSE.

• DWT_FUNCTION.ACTION specifies a debug event and all of the following conditions apply:

– DHCSR.S_SDE == 0.
– The Main Extension is not implemented or DEMCR.SDME == 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && S. Note, M
required if DEMCR.SDME == 1.

RHCFP For address and value comparisons, the control register values and the current execution priority and Security state
relate to the state of the PE when it generated the transaction that is being matched against.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

RFFKV Between a change to the debug authentication interface, DHCSR or DEMCR, that disables debug and a following
context synchronization event, it is UNPREDICTABLE whether the DWT uses the old values or the new values.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RVTNJ Where the DWT operation rules prohibit a match being generated, a match is not generated, even if the programmers’
model defines it as being UNPREDICTABLE whether a comparator generates a match as the result of the way in
which the DWT is programmed.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RLFXC DWT_CTRL.FOLDEVTENA, LSUEVTENA, SLEEPEVTENA, EXCEVTENA, and CPIEVTENA are ignored
and these fields have an Effective value of 0 if any of the following are true:

• DEMCR.TRCENA == 0.

• NoninvasiveDebugAllowed(FALSE) == FALSE.

• NoninvasiveDebugAllowed(TRUE)

returns FALSE, and the PE is executing in a privileged mode.

• The Security Extension is implemented and SecureNoninvasiveDebugAllowed(FALSE) returns
FALSE, and the PE is executing in Secure state.

• The Security Extension and UDE are implemented, SecureNoninvasiveDebugAllowed(TRUE)
returns FALSE, and the PE is executing in Secure state and privileged mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && UDE. Note,
UDE only available in an Armv8.1-M implementation.

RBDPD The DWT does not generate any trace packets for an operation if any of the following are true:

• DEMCR.TRCENA == 0.
• NoninvasiveDebugAllowed(FALSE) returns FALSE.
• NoninvasiveDebugAllowed(TRUE) returns FALSE, and the operation is executed in a privileged

mode.
• The Security Extension is implemented, SecureNoninvasiveDebugAllowed(FALSE) returns

FALSE, and the operation is executed in Secure state.
• The Security Extension and UDE are implemented, SecureNoninvasiveDebugAllowed(TRUE)

returns FALSE, and the operation is executed in Secure state and privileged mode.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && UDE. Note,
UDE only available in an Armv8.1-M implementation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RFHWV If SecureNoninvasiveDebugAllowed(TRUE) == FALSE, DWT_CTRL.FOLDEVTENA, LSUEVTENA,
SLEEPEVTENA, EXCEVTENA, and CPIEVTENA are ignored and these fields have an Effective value of 0 in
Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

RWSRR If SecureNoninvasiveDebugAllowed() == FALSE, Exception trace packets are not generated if the
exception number in the packet represents a Secure exception:

• Exception entry packets are not generated for exceptions that are taken to Secure state.
• Exception exit packets are not generated for exits from Secure state.
• Exception return packets are not generated for returns to Secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

RDFWR Exception trace packets appear in the same order as for a simple sequential execution of the exception handling.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RBRSR When the DWT generates a match, DWT_FUNCTION.MATCHED is set to 1, unless the comparator is a Data
address limit or Instruction address limit comparator, in which case DWT_FUNCTION.MATCHED is UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RGSSG When the DWT generates a match, then if DWT_FUNCTION.ACTION specifies a debug event, then
DHCSR.C_HALT is set to 1 if all of the following conditions are true:

• Either of the following conditions apply:

– HaltingDebugAllowed() returns TRUE.
– UnprivHaltingDebugAllowed(TRUE) returns TRUE and the operation is unprivileged.

• DHCSR.C_DEBUGEN == 1.

• DHCSR.S_HALT == 0.

• One of the following conditions apply:

– SecureHaltingDebugAllowed() returns TRUE.
– SecureUnprivHaltingDebugAllowed() returns TRUE and the operation is unprivileged.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && UDE.

RCJLL When the DWT generates a match, then if DWT_FUNCTION.ACTION specifies a debug event,
DEMCR.MON_PEND is set to 1 if all of the following conditions apply:

• The PE does not set DHCSR.C_HALT to 1 as a result of the match.

• DEMCR.MON_EN is set to 1, or all of the following apply:

– The Unprivileged Debug Extension is implemented.
– The match is an unprivileged match.
– DEMCR.UMON_EN is set to 1.

• Either:

– The watchpoint was not generated by a lazy Floating-point state preservation access and the
DebugMonitor exception priority was sufficient to preempt the current execution priority.

– The watchpoint was generated by lazy Floating-point state preservation and FPCCR.MONRDY is set to
1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && M &&
UDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RFTBG When the DWT generates a match, then a Data trace match packet is generated, if all of the following conditions
apply:

• SecureNoninvasiveDebugAllowed() == FALSE.
• DWT_FUNCTION.ACTION specifies generating a Data trace PC value packet.
• The instruction address that would be included in the packet refers to an instruction that was executed in

Secure state.

Unless otherwise stated, the type of trace packet that is specified by DWT_FUNCTION.ACTION is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M && S.

RRGWF When the DWT generates a match and DWT_FUNCTION.ACTION specifies generating a Data trace PC value
packet, then the type of trace packet that is specified by DWT_FUNCTION.ACTION is ignored and a Data trace
match packet is generated in its place, if one or more of the following conditions apply for the instruction, that is
the subject of the match, referred to by the instruction address that would otherwise be included in the Data trace
PC value packet:

• The Unprivileged Debug Extension is implemented, NoninvasiveDebugAllowed(TRUE) returns
FALSE, and the instruction was executed in a privileged mode.

• The Security Extension and the Unprivilged Debug Extension are implemented, the instruction was executed
in a Secure privileged mode, and SecureNoninvasiveDebugAllowed(TRUE) returns FALSE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && M && S
&& UDE.

RFNDW An access that results in a MemManage fault or SecureFault exception because of the alignment, SAU, IDAU, or
MPU checks, is not observed by the DWT, and cannot generate a match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && (S || M &&
MPU).

RPGJB The DWT treats hardware accesses to the stack as data accesses:

• For registers pushed to the stack by hardware as part of an exception entry or lazy Floating-point state
preservation.

• For registers popped from the stack by hardware as part of an exception return.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNQNR The DWT treats hardware accesses to the stack as data accesses:

• For registers pushed to the stack by hardware as part of a Non-secure function call.
• For registers popped from the stack by hardware as part of a Non-secure function return.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

RSFSC Where a hardware access to the stack generates a Data trace PC value packet, the PC value in the packet will be as
follows:

• On exception entry or a function call, the PC value will be the return address for the exception or function
call.

• On lazy Floating-point state preservation the PC value is the address of the instruction that triggered the lazy
Floating-point state preservation.

• On exception return or Non-secure function return the PC value is either:

– The address of the instruction that caused the exception return or the Non-secure function return.
– The EXC_RETURN or FNC_RETURN payload value used in the exception return or the Non-secure

function return.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RYZLM Watchpoints that occur as a result of DWT Unit events will be taken when all in-flight instructions have completed.
However, under rare circumstances, the architecturally-visible overlap of instructions might be observable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && MVE.

IBPHG If a higher priority exception preempts the generated watchpoint, then the in-flight instruction might be visible
when the PE enters Debug state or a DebugMonitor exception is subsequently taken. The debugger and software
can observe the stacked value of EPSR.ECI to determine the overlap status.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && MVE &&
HDBG || DebugMonitor exception.

RHKDY Watchpoints can be triggered from a number of comparators based on configurable events. If triggered from
an instruction address comparator, the watchpoint is triggered whenever the instruction attempts to execute.
Predication has no effect on the watchpoint address comparator.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && MVE.

RSJCQ Predication affects data address and value comparators, and a watchpoint is triggered if the memory access is not
predicated. It is not triggered if the access is not performed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DWTT && MVE.

RZHVG If Data value matching is supported, then the DWT implements the DWT_VMASK<n> registers for each
implemented comparator n that supports Data value matching.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

RKCYJ Armv8.1-M introduces implicit branching for BF instructions, and this behavior might induce implicit changes in
the program flow. In the case where a breakpoint or watchpoint is set in program order after the branch point and
the implicit branch is taken, the breakpoint or watchpoint will have no effect.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB.

RFBRP It is UNKNOWN whether a Watchpoint or a Breakpoint that is targeted at an LE or LETP instruction will have any
effect.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - LOB && (DWTD ||
FPB).

B14.2.3 Constraints on programming DWT comparators

RMSPS If a DWT comparator, <n>, or pair of comparators, <n> and <n+1>, is programmed with a reserved combination
of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION, then it is UNPREDICTABLE whether any
comparator:

• Behaves as if disabled.

• Generates a match, setting the DWT_FUNCTION.MATCHED bit to an UNKNOWN value, and one or more
of the following:

– Asserts CMPMATCH.
– Generates a debug event.
– Generates one or more trace packets in any order.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RGPLQ Combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION that are not specified as valid
combinations are reserved.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RJHZK It is IMPLEMENTATION DEFINED which values of DWT_FUNCTION.MATCH are valid for counter <n>.
DWT_FUNCTION.ID defines which values are valid. Values that are not valid are reserved.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RCNHN The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a single comparator,
and the events and Data trace packets that the comparator can generate from matching a single access, are identified
in the following table.

In the table:

-: means that the packet or event is not generated.

Yes: means that the packet or event is generated on a comparator match.

Data Trace

Comparator MATCH ACTION Debug Match PC Value Data Data

Type Event Packet Match Address Value

Packet Packet Packet

Disabled 0b0000 0bxx - - - - -

Cycle Counter 0b0001 0b00 - - - - -

0b01 Yes - - - -

0b10 - Yes - - -

0b11 - - Yes - -

Instruction Address 0b0010 0b00 - - - - -

0b01 Yes - - - -

0b10 - Yes - - -

Data address 0b01xx 0b00 - - - - -

(not 0b01 Yes - - - -

0b0111) 0b10 - Yes - - -

0b11 - - Yes - -

Data value 0b10xx 0b00 - - - - -

(not 0b01 Yes - - - -

0b1011) 0b10 - Yes - - -

Data address 0b11xx (not 0b10 - - - - Yes

with value 0b1111) 0b11 - - Yes - Yes

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT. Note, Cycle
counter, Data value and Data address with value are only available if M is implemented.

Instruction address range

RDKHG To match an instruction that is in an instruction address range, the following conditions are met:

• The first comparator, <n-1>, is programmed for Instruction address.
• The second comparator, <n>, is programmed for Instruction address limit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RLNQD The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for an instruction
address range, and the events and data trace packets that matching a single access can generate, are specified in the
following table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace

<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet

0b0000 0b0011 0bxx 0bxx - - - - -

0b0010 0b0011 0b00 0b00 - - - - -

0b00 0b11 - - Second - -

0b01 0b00 First - - - -

0b10 0b00 - First - - -

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M.

RVDRJ If the Main Extension is not implemented the valid combinations of DWT_FUNCTION.MATCH and
DWT_FUNCTION.ACTION for an instruction address range, and the events and data trace packets that matching
a single access can generate, are specified in the following table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace

<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet

0b0000 0b0011 0bxx 0bxx - - - - -

0b0010 0b0011 0b00 0b00 - - - - -

0b01 0b00 First - - - -

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && !M.

Data address range

RLDGR To match a data access in a data address range, the following conditions are met:

• The first comparator, <n-1>, is programmed for either Data address or Data address with value.
• The second comparator, <n>, is programmed for Data address limit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RPSBJ The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a data address range,
and the events and data trace packets that matching a single access can generate, are specified in the following
table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace

<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet

0b0000 0b0111 0bxx 0bxx - - - - -

0b01xx 0b0111 0b00 0b00 - - - - -

(not 0b00 0b11 - - - Second -

0b0111) 0b01 0b00 First - - - -

0b10 0b00 - First - - -

0b11 0b00 - - First - -

0b11 0b11 - - First Second -

0b11xx 0b0111 0b10 0b00 - - - - First

(not 0b10 0b11 - - - Second First

0b1111) 0b11 0b00 - - First - First

0b11 0b11 - - First Second First

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RHDMX If the Main Extension is not implemented the valid combinations of and for a data address range, and the events
and data trace packets that matching a single access can generate, are specified in the following table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace

<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet

0b0000 0b0111 0bxx 0bxx - - - - -

0b01xx 0b0111 0b00 0b00 - - - - -

(not 0b00 0b11 - - - Second -

0b0111) 0b01 0b00 First - - - -

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && !M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

Data value at specific address

RKFHV Matching data values at specific data addresses is possible only if the Main Extension is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNNXD To match a data value at a specific data address, the following conditions are met:

• The first comparator, <n-1>, is programmed for either Data address or Data address with value.
• The second comparator, <n>, is programmed for Linked data value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RJKGJ The first comparator matches any access that matches the address. The second matches only accesses that match
the address and the data value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNTSD The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a linked data value,
and the events and data trace packets that matching a single access can generate, are specified in the following
table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

Both: means that a first packet is generated by a first comparator match, even if the Linked data value comparator
does not match, and a second packet is generated by the second comparator match, if both comparators match.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

MATCH ACTION Data Trace

<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet

0b0000 0b1011 0bxx 0bxx - - - - -

0b01xx 0b1011 0b00 0b00 - - - - -

(not 0b00 0b01 Second - - - -

0b0111) 0b00 0b10 - Second - - -

0b01 0b00 First - - - -

0b01 0b10 First Second - - -

0b10 0b00 - First - - -

0b10 0b01 Second First - - -

0b11 0b00 - - First - -

0b11 0b01 Second - First - -

0b11 0b10 - Second First - -

0b11xx 0b1011 0b10 0b00 - - - - First

(not 0b10 0b01 Second - - - First

0b1111) 0b10 0b10 - Second - - First

0b11 0b00 - - First - First

0b11 0b01 Second - First - First

0b11 0b10 - Second First - First

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IXTTW Software should be aware of the order in which it enables or disables pairs of comparators that are linked so as to
avoid UNPREDICTABLE, or unexpected, behaviors.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

B14.2.4 CMPMATCH trigger events

IVNCC The CMPMATCH events signal watchpoint matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RPRJG The implementation of CMPMATCH is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RFTWC If an ETM is implemented, CMPMATCH events are output to the ETM.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && ETM.

RTMZX If an ETM is not implemented, the effect of CMPMATCH is IMPLEMENTATION DEFINED, including whether the
trigger event has any observable effect or whether observable effects are visible to other components in the system.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RXXKM For all enabled watchpoints, if DWT_FUNCTIONn is not programmed as an Instruction address limit comparator
and is not programmed as a Data address limit comparator, CMPMATCH[n] is triggered on a comparator match.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RGVHS For all enabled watchpoints, if DWT_FUNCTIONn is programmed as an Instruction address limit or Data address
limit comparator, it is UNPREDICTABLE whether CMPMATCH[n] is triggered on a comparator match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

B14.2.5 Matching in detail

Instruction address matching in detail

RGNVB The DWT checks all instructions that are executed by a simple sequential execution of the program and do not
generate any exception for an instruction address match, including conditional instructions that fail their condition
code check.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNQGR An instruction might be checked by the DWT for an instruction address match if it either:

• Is executed by a simple sequential execution of the program and generates a synchronous exception.
• Would be executed by the sequential execution of the program but is abandoned because of an asynchronous

exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKJJC Speculative instruction prefetches, other than those that would be executed by the sequential execution of the
program but that are abandoned because of asynchronous exceptions, do not generate matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RDSDT For all instruction address matches, if bit[0] of the comparator address has a value of 1, it is UNPREDICTABLE
whether a match is generated when the other address bits match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKLXM For single instruction address matches, an instruction matches if the address of the first byte of the instruction
matches the comparator address.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RFXFM For single address matches, if the instruction at address A is a 4-byte T32 instruction, and the address A+2 matches
but the address A does not match, it is UNPREDICTABLE whether a match is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RDNKD For instruction address range matches, an instruction at address A matches if the address A lies between the lower
comparator address, which is specified by comparator <n-1>, and the limit comparator address, which is specified
by comparator <n>. Both addresses are inclusive to the range.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RJNXZ For instruction address range matches, if the instruction at address A is a 4-byte T32 instruction, and the address
A+2 lies in the range but the address A does not lie in the range, it is UNPREDICTABLE whether a match is
generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RMLMQ For instruction address range matches, if so configured, a Data trace PC value packet or Data trace match packet is
generated for the first instruction that is executed in the range.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

IVHHW For instruction address range matches, if so configured, a branch or sequential execution that stays within the range
does not necessarily generate a new packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RHMNX For instruction address range matches, if so configured, CMPMATCH[n-1] is triggered for each instruction that
is executed inside the range, where n-1 is the lower of the two comparators that configure the range.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

Data address matching in detail

RBPWC For all Data Address matches, all bits of the comparator address are considered.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RGSLX Speculative reads might generate data address matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RWWBH Speculative writes do not generate data address matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RVJFB Prefetches into a cache do not generate data address matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RCMRP For single data address matches, an access matches if any accessed byte lies between the comparator address and a
limit that is defined by DWT_FUNCTION.DATAVSIZE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKHRF For single data address matches, the comparator address is naturally-aligned to DWT_FUNCTION.DATAVSIZE
otherwise generation of watchpoint events is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKKRJ For data address range matches, an access matches if any accessed byte lies between the lower comparator address,
which is specified by comparator <n-1>, and the limit comparator address, which is specified by comparator <n>.
Both addresses are inclusive to the range.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RCFMR For data address range matches, DWT_FUNCTION.DATAVSIZE is set to 0b00 for both the lower comparator
address and the limit comparator address otherwise it is UNPREDICTABLE whether or not a match is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

Data value matching in detail

RBMSM Data value matching is only possible if the Main Extension is implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RFVFQ Speculative reads might generate data value matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RVGJF Speculative writes do not generate data value matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RMLFK Prefetches into a cache do not generate data value matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RRMDB For data value matches, if the access size is smaller than DWT_FUNCTION.DATAVSIZE, there is no match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RZDPM For unlinked data value matches, an access matches if all bytes of any naturally-aligned subset, the size of which is
specified by DWT_FUNCTION.DATAVSIZE, of the access match the data value in DWT_COMPn.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RZHXP The data value in DWT_COMPn is in little-endian order with respect to memory.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IHMMS If the access is unaligned then this might generate a higher priority alignment fault, depending on the instruction
type, profile, and configuration. In these cases no match is generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RSQKS For unlinked data value matches, if an access is unaligned, it is IMPLEMENTATION DEFINED whether it either
treated as:

• A sequence of byte accesses.
• A sequence of naturally-aligned accesses covering the accessed bytes. For a read, this access might access

more bytes than the original access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQRPW For linked data value matching, if an access is larger than DWT_FUNCTION.DATAVSIZE, then only the
naturally-aligned subset of the access of size DWT_FUNCTION.DATAVSIZE at the matching address is compared
for a match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQVRK For linked data value matching, the data address comparator address is naturally-aligned to

DWT_FUNCTION.DATAVSIZE, and the DWT_FUNCTION.DATAVSIZE values for both comparators are the
same.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKRCV A Data value comparator that is linked to a Data address comparator does not change the behavior of the address
comparator.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKQJB For each comparator n that is configured to Data Value or Linked Data Value matching it is UNPREDICTABLE
whether comparator n generates a match when for bit m=31-0, if any of the following are true:

• DWT_FUNCTION<n>.DATAVSIZE specifies halfword or byte comparison and DWT_COMPn[31:16] is
not equal to DWT_COMPn[15:0].

• DWT_FUNCTION<n>.DATAVSIZE specifies byte comparsion and DWT_COMPn[15:8] is not equal to
DWT_COMPn[7:0].

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RZKRZ For each comparator n that is configured to Data Value or Linked Data Value matching the value matches if, for
each bit[m] any of the following are true:

• Bit[m] of the value is equal to DWT_COMPn[m].
• DWT_VMASKn is implemented, DWT_COMPn[m] is set to 0, and DWT_VMASKn[m] is set to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

RBVLK For each comparator n that is configured for Data Value or Linked Value matching, if DWT_VMASKn is
implemented, then it is UNPREDICTABLE whether comparator n generates a match when, for bit m = 0-31, all of
the following are true:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

• DWT_VMASKn[m] is set to 1.
• DWT_COMPn[m] is not set to 0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

RHRTJ For each comparator n that is configured for Data Value or Linked Value matching, if DWT_VMASKn is
implemented, then it is UNPREDICTABLE whether comparator n generates a match if any of the following are true:

• DWT_FUNCTION<n>.DATAVSIZE specifies halfword or byte comparison and DWT_VMASKn[31:16] is
not equal to DWT_VMASKn[15:0].

• DWT_FUNCTION<n>.DATAVSIZE specifies byte comparison and DWT_VMASKn[15:8] is not equal to
DWT_VMASKn[7:0].

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

RSMHR For each comparator n that is configured for neither Data Value nor Linked Data Value matching, DWT_VMASKn
is ignored if it is implemented.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - DSPDE.

See also:

DWT_AddressCompare().

DWT_ValidMatch().

DWT_InstructionAddressMatch().

DWT_DataAddressMatch().

DWT_DataValueMatch().

B14.2.6 DWT match restrictions and relaxations

RFRWG It is IMPLEMENTATION DEFINED whether the DWT treats a fetch from the exception vector table as part of an
exception entry or reset as a data access or ignores these accesses, for the purposes of DWT comparator matches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RDTHW A fetch by the DWT from the exception vector table as part of an exception entry is never treated as an instruction
fetch.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RJQHW If a return is tail-chained, it is IMPLEMENTATION DEFINED whether hardware accesses the stack and therefore
IMPLEMENTATION DEFINED whether the DWT can generate events or trace.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RVJTK The DWT does not match accesses from the DAP.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RMNBX Any executed NOP or IT that matches an appropriately configured instruction address watchpoint causes a match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RSLPX It is IMPLEMENTATION DEFINED whether a failed STREX instruction can generate a data access match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNHLN If an instruction or operation makes multiple or unaligned data accesses, then it is UNPREDICTABLE whether any
nonmatching access generated by an instruction that generated a matching access is treated as a matching access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RCSSQ If an instruction or operation makes multiple or unaligned data accesses, then CMPMATCH is triggered for each
matching access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RVFXT If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, only a data value
match of at least a part of the value that is guaranteed to be single-copy atomic can generate a match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RWJNR If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching data
access that generates a debug event, if permitted, DHCSR.C_HALT or DEMCR.MON_PEND, as applicable, is set
to 1.

A pending DebugMonitor exception does not interrupt the multiple accesses, but another interrupt might, which
means that the debug event might be taken before the multiple operations complete.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQCJL It is UNKNOWN if the DWT will match on the addresses of accesses that generate a BusFault.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQVHL It is IMPLEMENTATION DEFINED whether a stored value for an access that generates a BusFault:

• Can generate a data value match.
• Can be traced.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKLFC For a load access that returns a BusFault, any data that is returned by the memory system is invalid, and the DWT
does not:

• Generate a data value match.
• Generate a Data trace data value packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RTQCF A data access that generates any fault other than a BusFault does not generate a data address or data value match at
the DWT and is not traced.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RFRHP DWT matches are generated asynchronously.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RTHHR A DSB barrier guarantees that the effect of a DWT match is visible to a subsequent read of DWT_FUNCTION.-MATCHED,
DHCSR, or DEMCR. In the absence of a DSB barrier, the effect is only guaranteed to be visible in finite time.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RHPGH The effects of a DWT match never affect instructions appearing in program order before the operation that generates
the match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

See also:

B3.26 Tail-chaining.

B14.2.7 DWT trace restrictions and relaxations

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RPGCS If a single instruction makes multiple single-copy atomic accesses, such as the multiple-byte accesses from an
unaligned access or a predicated vector load/store operation, the DWT might gather a sequence of consecutive
bytes from the multiple accesses, and trace it as a single access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RHDKK Where a single instruction or operation, or multiple instructions, generate multiple accesses that each generate one
or more trace packets, then if the architecture guarantees the order in which a pair of these accesses is observed by
the PE, the first trace packets that are generated for each of those accesses appear in the trace output in the same
order.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RWSKK Where a single instruction or operation, or multiple instructions, generate multiple accesses that each generate one
or more trace packets, then if the architecture does not guarantee the order of the accesses, the order of the trace
packets in the trace output is not defined.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RXCNB If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, only the
first access is guaranteed to generate a Data trace PC value packet, Data trace data address packet, or Data trace
match packet. If the architecture does not guarantee the order of the accesses, the first access might be any of the
accesses.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RXVBT If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, a Data trace
data value packet is generated for each matching access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQSCF If a single instruction or operation makes unaligned data accesses, it is UNPREDICTABLE how many Data trace
data value packets are generated for each unaligned matching access. An implementation might overread, meaning
that more data outside the access might be traced.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKXBL If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching
data access that generates a Data trace data value packet, at least that part of the value that is guaranteed to be
single-copy atomic is traced.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQWQS Duplicate Data trace PC value packets, Data trace data address packets, and Data trace data value packets from a
single access are not generated for a single access.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RBSRR Where a comparator or linked pair of comparators generates multiple packet types for a single access, the packets
appear in the trace output in the following order:

1. Data trace PC value packet.
2. Data trace match packet, generated by a Data address, Data address with value, or Data address limit

comparator match.
3. Data trace data address packet.
4. Data trace match packet, generated by a Data value comparator match or a Linked Data Value match.
5. Data trace data value packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RQXBC Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets
are not interleaved with packets that are generated by other accesses by the same comparator or linked pair of
comparators.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RRHNF Where a comparator or linked pair of comparators generates a trace packet for a single access, if a comparator
other than this comparator or this linked pair of comparators generates a trace packet of the same type for the same
access, then only one of these packets is output. It is IMPLEMENTATION DEFINED which comparator is chosen.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IMJXG Arm recommends that the packet from the lowest-numbered comparator is output.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RDKMV Where a comparator or linked pair of comparators generates multiple packet types for a single access, if any of the
packets cannot be output and an Overflow packet is generated, then the remaining packets for that access are not
generated.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RLNBW Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets
might be interleaved with packets that are generated for the same access by comparators other than this comparator
or this linked pair of comparators.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

B14.2.8 CYCCNT cycle counter and related timers

RSVPW CYCCNT is an optional free-running 32-bit cycle counter. If the DWT unit implements CYCCNT then
DWT_CTRL.NOCYCCNT is RAZ.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RXDVS The cycle counter, DWT_CYCCNT, and the POSTCNT counter are disabled when DEMCR.TRCENA == 0, but
are not otherwise affected by debug authentication.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RRTJR The cycle counter does not count in Secure state when DWT_CTRL.CYCDISS is set to 1. This is independent of
Secure debug authentication.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && S.

RKRFP When implemented and enabled, CYCCNT increments on each cycle of the PE clock, using the same definition of
cycle as the Event counters when counting cycles in power-saving modes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNFJW When the counter overflows it transparently wraps to zero.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RGXJK DWT_CTRL.CYCCNTENA enables the CYCCNT counter.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RBKCG POSTCNT is a 4-bit countdown counter derived from CYCCNT, that acts as a timer for the periodic generation of
Periodic PC sample packets or Event counter packets, when these packets are enabled.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IMGGL Periodic PC sample packets are not the same as the Data trace PC value packets that are generated by the DWT
comparators.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RDKGR The DWT does not support the generation of Periodic PC sample packets or Event packets if it does not implement
the CYCCNT timer and DWT_CTRL.NOTRCPKT is RAO.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RRNTV The DWT_CTRL.CYCTAP bit selects the CYCCNT tap bit for POSTCNT.

CYCTAP bit CYCCNT tap at POSTCNT clock rate

0 Bit[6] (PE clock)/64

1 Bit[10] (PE clock)/1024

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RSXKK A write to DWT_CTRL will initialize POSTCNT to the previous value of DWT_CTRL.POSTINIT if all of the
following are true:

• DWT_CTRL.PCSAMPLENA was set to 0 prior to the write.
• DWT_CTRL.CYCEVTENA was set to 0 prior to the write.
• The write sets either DWT_CTRL.PCSAMPLENA or DWT_CTRL.CYCEVTENA to 1.

It is UNPREDICTABLE whether any other write to DWT_CTRL that alters the value of DWT_CTRL.PCSAMPLENA
and DWT_CTRL.CYCEVTENA sets POSTCNT to DWT_CTRL.POSTINIT or leaves POSTCNT unchanged.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RXFRM When either DWT_CTRL.PCSAMPLENA or DWT_CTRL.CYCEVTENA is set to 1, and the CYCCNT tap bit
transitions, either from 0 to 1 or from 1 to 0:

• If POSTCNT is nonzero, POSTCNT decrements by 1.

• If POSTCNT is 0, the DWT:

– Reloads POSTCNT from DWT_CTRL.POSTPRESET.
– Generates a Periodic PC Sample packets if DWT_CTRL.PCSAMPLENA is set to 1.
– Generates an Event Counter packet with the Cyc bit set to 1 if DWT_CTRL.CYCEVTENA is set to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IPNNS The enable bit for the POSTCNT counter underflow event is DWT_CTRL.CYCEVTENA. There is no overflow
event for the CYCCNT counter. When CYCCNT overflows it wraps to zero transparently. Software cannot access
the POSTCNT value directly, or change this value.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IJRVV This means that, to initialize POSTCNT, software:

1. Ensures that DWT_CTRL.CYCEVTENA and DWT_CTRL.PCSAMPLENA are set to 0. This can be
achieved with a single write to DWT_CTRL. This is also the reset value of these bits.

2. Writes the required initial value of POSTCNT to the DWT_CTRL.POSTINIT field, leaving
DWT_CTRL.CYCEVTENA and DWT_CTRL.PCSAMPLENA set to 0.

3. Sets either DWT_CTRL.CYCEVTENA or DWT_CTRL.PCSAMPLENA to 1 to enable the POSTCNT
counter.

Each of these are separate writes to DWT_CTRL.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RKNHF Disabling CYCCNT stops POSTCNT.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RTMHN Writes to DWT_CTRL.POSTINIT are ignored if either DWT_CTRL.CYCEVTENA was set to 1 or
DWT_CTRL.PCSAMPLENA was set to 1 prior to the write.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

B14.2.9 Profiling counter support

IHXPV If the Main Extension is implemented event counter support is an optional Non-invasive debug feature.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M.

RWHWR If event counter support is implemented the DWT provides five 8-bit Event counters for software profiling:

• DWT_FOLDCNT.
• DWT_LSUNCT.
• DWT_EXCCNT.
• DWT_SLEEPCNT.
• DWT_CPICNT.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RGLMJ DWT event counters do not increment when the PE is halted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RBRGW The Event counters provide broadly accurate and statistically useful count information. However, the architecture
allows for a reasonable degree of inaccuracy in the counts.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RWMNV The Event counters and CYCCNT use the same definition of cycle in particular when counting cycles in
power-saving modes.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && M.

IGNWQ To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable.
Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• Under normal operating conditions, the Event counters present an accurate value count.
• Entry to or exit from Debug state can be a source of inaccuracy.
• Under very unusual, non-repeating pathological cases, the counts can be inaccurate.

An implementation does not introduce inaccuracies that can be triggered systematically by the execution of normal
pieces of software. As the Event counters include counters for measuring exception overhead, this includes the
operation of exceptions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

ICHKR Arm strongly recommends that an implementation document any particular scenarios where significant inaccuracies
in the Event counters are expected.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IMWGQ At entry and exit from an exception or sleep state, the exact attribution of cycles to the exception and cycles to the
sleep overhead counters is IMPLEMENTATION DEFINED. Arm recommends that the overhead cycles are attributed
to the overhead counters.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IMPQN The architecture does not define the point in a pipeline where the particular instruction increments an Event counter,
relative to the point where the incremented counter can be read.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RLMPK An Event counter overflows on every 256th event that is counted and then wraps to 0. If the appropriate counter
overflow event is enabled in DWT_CTRL the DWT outputs an Event counter packet with the appropriate counter
flag set to 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RLHMB Setting one of the enable bits to 1 clears the corresponding counter to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IQRPG The following equation holds:

ICNT = CNTCY CLES + CNTFOLD − (CNTLSU + CNTEXC + CNTSLEEP + CNTCPI)

Where:

ICNT : is the total number of instructions Architecturally executed.

CNTCY CLES : is the number of cycles counted by DWT_CYCCNT.

CNTFOLD: is the number of instructions counted by DWT_FOLDCNT.

CNTLSU : is the number of cycles counted by DWT_LSUNCT.

CNTEXC : is the number of cycles counted by DWT_EXCCNT.

CNTSLEEP : is the number of cycles counted by DWT_SLEEPCNT.

CNTCPI : is the number of cycles counted by DWT_CPICNT.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

See also:

B14.4 Trace Port Interface Unit.

Generating Overflow packets from Event counters

RKWDH If an Event counter wraps to zero and the previous Event counter packet has been delayed and has not yet been
output, and the counter flag in the previous Event counter packet is set to 0, then it is IMPLEMENTATION DEFINED
whether:

• The DWT attempts to generate a second Event counter packet.
• The DWT updates the delayed Event counter packet to include the new wrap event.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RHKTL If an Event counter wraps to zero and the previous Event counter packet has been delayed and has not yet been
output, and the counter flag in the previous Event counter packet is set to 1, the DWT attempts to generate a second
Event counter packet.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RVPXK If the DWT unit attempts to generate a packet when its output buffer is full, an Overflow packet is output.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RSFFL The size of the DWT output buffer is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

B14.2.10 Program Counter sampling support

RFXWL Program Counter sampling is an optional component provided through DWT_PCSR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

ILNJL Program Counter sampling is independent of PC sampling provided by:

• Periodic PC sample packets.
• Data trace PC value packets generated as a result of a DWT comparator match.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IKVFB The architecture does not define the delay between an instruction being executed by the PE and its address being
written to DWT_PCSR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RNGNT When DWT_PCSR returns a value other than 0xFFFFFFFF, the returned value is an instruction that has been
committed for execution. It is IMPLEMENTATION DEFINED whether an instruction that failed its condition code
check is considered as committed for execution. A read of DWT_PCSR does not return the address of an instruction
that has been fetched but not committed for execution.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

ITNVH The following diagram describes when instructions are committed for execution:

Begin
Speculative

uArch
unfinished

Nonspeculative
uArch

unfinished

Speculative
uArch finished

Completed

Canceled

Nonspeculative
uArch finished

Committed
for

execution

Committed
for

execution

Operations performed

Cancel

Cancel

Applies to an implementation of the architecture Armv8.0-M onward.

IKCBH Arm recommends that instructions that fail the condition code check are considered as committed instructions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RWPMF DWT_PCSR is able to sample references to branch targets. It is IMPLEMENTATION DEFINED whether it can
sample references to other instructions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

ISJVK Arm recommends that DWT_PCSR can sample a reference to any instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RLMDG The branch target for a conditional branch that fails its Condition code check is the instruction that immediately
follows the conditional branch instruction. The branch target for an exception is the exception vector address.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter B14. Debug and Trace Components
B14.2. Data Watchpoint and Trace unit

RNWKP Periodic sampling of DWT_PCSR provides broadly accurate and statistically useful profile information. However,
the architecture allows for a reasonable degree of inaccuracy in the sampled data.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

ITJTS To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable.
Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable
for the sample to represent an instruction that was not committed for execution.

• Under unusual non-repeating pathological cases, the sample can represent an instruction that was not
committed for execution. These cases are likely to occur as a result of asynchronous exceptions, such as
interrupts, where the chance of a systematic error in sampling is very unlikely.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

IKVJM Arm strongly recommends that an implementation document any particular scenarios where significant inaccuracies
in the sampled data are expected.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT.

RYPHZ A read of DWT_PCSR will return 0xFFFFFFFF if any of the following are true:

• The PE is in Debug state.
• The address of a recently executed instruction is not available.
• NoninvasiveDebugAllowed(FALSE) returns FALSE.
• The Unprivilged Debug Extension is implemented, NoninvasiveDebugAllowed(TRUE) returns

FALSE, and the instruction was executed in a privileged mode.
• The Security Extension is implemented and SecureNoninvasiveDebugAllowed(FALSE) returns

FALSE, and the instruction was executed in Secure state.
• The Security Extension and the Unprivileged Debug Extension are implemented,
SecureNoninvasiveDebugAllowed(TRUE)
returns FALSE, and the instruction was executed in Secure state and privileged mode.

• DEMCR.TRCENA is set to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - DWTT && UDE &&
S. Note, UDE Is only available in an Armv8.1-M implementation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter B14. Debug and Trace Components
B14.3. Embedded Trace Macrocell

B14.3 Embedded Trace Macrocell

ILCCX An Embedded Trace Macrocell (ETM) is an optional non-invasive debug feature of an Armv8-M implementation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

RNGTT An ETM implementation complies with one of the following versions of the ETM architecture:

Data trace Security Extension

Implemented Not implemented

Implemented ETMv3 not permitted ETMv3 not permitted

ETMv4, version 4.2 or later ETMv4, version 4.0 or later

Not Implemented ETMv3, version 3.5 or later ETMv3, version 3.5

ETMv4, version 4.2 or later ETMv4, version 4.0 or later

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

RQWRD If Armv8.1-M is implemented and an ETM is implemented, at least ETMv4 version 4.5 is required. Data trace is
not supported in ETMv4 version 4.5 and is not supported in Armv8.1-M.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - ETM.

RLPJM If an ETM is implemented a trace sink is also implemented. If the trace sink that is implemented is the
TPIU it is CoreSight compliant, and complies with the TPIU architecture for compatibility with Arm and other
CoreSight-compatible debug solutions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

RNLNS When an Armv8-M implementation includes an ETM, the CMPMATCH[N] signals from the DWT unit are
available as control inputs to the ETM unit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

RNJDK If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether the ETM is accessible only
to the debugger and is RES0 to software.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM && !M.

RWPBN If the ETMv3 is implemented the debugger programs the ETMTRACEIDR with a unique nonzero Trace ID for the
ETM trace stream.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

RTJSF If the ETMv4 is implemented the debugger programs the TRCTRACEIDR with a unique nonzero Trace ID for the
ETM trace stream.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

IMNBN The ETM is not directly affected by DEMCR.TRCENA being set to 0.

A system might employ significant power saving techniques when tracing is not active, such as gating of clocks
directly or indirectly based on trace enable signals, however these techniques must not affect the ability to
program the ETM. Depending on the PE implementation, responsibility for ensuring this might fall on the system
architecture into which the PE is inserted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - ETM.

See also:

Arm® CoreSightTM Architecture Specification.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter B14. Debug and Trace Components
B14.3. Embedded Trace Macrocell

B14.2.4 CMPMATCH trigger events.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter B14. Debug and Trace Components
B14.4. Trace Port Interface Unit

B14.4 Trace Port Interface Unit

IPWXP The Trace Port Interface Unit (TPIU) support for Armv8-M provides an output path for trace data from the DWT,
ITM, and ETM. The TPIU is a trace sink.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RCRTQ It is IMPLEMENTATION DEFINED whether the TPIU supports a parallel trace port output.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RGTRP It is IMPLEMENTATION DEFINED whether the TPIU supports low-speed asynchronous serial port output using
NRZ encoding. This operates as a traditional UART.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RLKQT It is IMPLEMENTATION DEFINED whether the TPIU supports medium-speed asynchronous serial port output using
Manchester encoding.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

ISDDK Arm recommends that the TPIU provides both parallel and asynchronous serial ports, for maximum flexibility
with external capture devices.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RHJXK Whether the trace port clock is synchronous to the PE clock is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RPKKS It is IMPLEMENTATION DEFINED whether the TPIU is reset by a Cold reset or has an independent Cold reset.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RJBKJ Software ensures that all trace is output and flushed to the trace sink before setting the DEMCR.TRCENA bit to 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

IMNBK The TPIU is not directly affected by DEMCR.TRCENA being set to 0 or NoninvasiveDebugAllowed()
being FALSE.

A system might employ significant power saving techniques when tracing is not active, such as gating of clocks
directly or indirectly based on trace enable signals, however these techniques must not affect the ability to
program the TPIU. Depending on the PE implementation, responsibility for ensuring this might fall on the system
architecture into which the PE is inserted.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RJLCQ The output formatting modes that are supported by the TPIU are IMPLEMENTATION DEFINED. They are:

• Bypass.
• Continuous.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RDMFP Bypass mode is only supported if a serial port output is supported.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RRRJP Continuous mode is supported if the parallel trace port is implemented. Continuous mode is selected when the
parallel trace port is used.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

RFCFT Continuous mode is supported if the ETM is implemented. Continuous mode is selected when the ETM is used.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter B14. Debug and Trace Components
B14.4. Trace Port Interface Unit

RBRSK When ITM_TCR.SWOENA is set to 1 and TPIU_SPPR.TXMODE is either 0b01 or 0b10 a trace port clock signal
from the TPIU drives the timestamp counter, through the configurable prescaler TPIU_ACPR.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - TPIU && ITM.

See also:

TPIU_FFCR, Formatter and Flush Control Register.

B14.1 Instrumentation Trace Macrocell.

B14.3 Embedded Trace Macrocell.

Chapter B1 Resets.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter B14. Debug and Trace Components
B14.5. Flash Patch and Breakpoint unit

B14.5 Flash Patch and Breakpoint unit

B14.5.1 About the FPB unit

RFTWL The Flash Patch and Breakpoint (FPB) unit supports setting breakpoints on instruction fetches.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

IBPFS The name Flash Patch and Breakpoint unit is historical and the architecture does not support remapping
functionality.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RGDWW The number of implemented instruction address comparators is IMPLEMENTATION DEFINED. Software can
discover the number of implemented instruction address comparators from FP_CTRL.NUM_CODE.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

See also:

Chapter B8 The System Address Map.

B14.2.7 DWT trace restrictions and relaxations.

Part D Register and Payload Specification.

B14.5.2 FPB unit operation

RRKFD The FPB contains the following register types:

• A general control register, FP_CTRL.
• Comparator registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RBKKW Each implemented instruction address comparator supports breakpoint generation.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RFNQF The FP_CTRL register provides a global enable bit for the FPB, and ID fields that indicate the numbers of
instruction address comparison and literal comparison registers implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RCKBL When configured for breakpoint generation, instruction address comparators can be configured to match any
halfword-aligned addresses in the whole system address map.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RXPXS Instruction address comparators match only on instruction fetches. The FPB treats hardware accesses to the stack
as data accesses for registers that are:

• Pushed to the stack by hardware as part of an exception entry or lazy Floating-point state preservation.
• Popped from the stack by hardware as part of an exception return.
• Pushed to the stack by hardware as part of a Non-secure function return.
• Popped from the stack by hardware as part of a Non-secure function call.

It is IMPLEMENTATION DEFINED whether the FPB treats a fetch from the exception vector table as part of an
exception entry as a data access, or ignores these accesses, for the purposes of FPB address comparator matches.
The fetch is never be treated as an instruction fetch.

The FPB does not match accesses from the DAP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter B14. Debug and Trace Components
B14.5. Flash Patch and Breakpoint unit

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

ICNBW Bit[0] of each instruction fetch address is always 0.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RCJKK When an Instruction address matching comparator is configured for breakpoint generation, a match on the address
of a 32-bit instruction is configured to match the first halfword or both halfwords of the instruction.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RWSXN If a Breakpoint debug event is generated by the FPB on the second halfword of a 32-bit T32 instruction, it is
UNPREDICTABLE whether the breakpoint generates a debug event.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RKPYP An FPB match specifying a Breakpoint debug event generates a Breakpoint debug event that halts the PE if all of
the following conditions are true:

• HaltingDebugAllowed() returns TRUE.
• DHCSR.C_DEBUGEN == 1.
• DHCSR.S_HALT == 0.
• The matching instruction is executed in Non-secure state, or DHCSR.S_SDE == 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RJNVD If the UDE is implemented an FPB match specifying a Breakpoint debug event generates a Breakpoint debug event
that halts the PE in unprivileged mode if either of the following conditions are true:

• HaltingDebugAllowed() returns TRUE
• UnprivHaltingDebugAllowed() returns TRUE.

and the all of the following conditions are true:

• DHCSR.S_HALT == 0.
• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or
UnprivHaltingDebugAllowed(TRUE) returns TRUE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FPB && UDE.

RHXMP An FPB match specifying a Breakpoint debug event generates a DebugMonitor exception if it does not halt the PE
and all of the following conditions are true:

• DEMCR.MON_EN == 1.
• DHCSR.S_HALT == 0.
• The DebugMonitor exception group priority is greater than the current execution priority.
• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or

DEMCR.SDME == 1.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RLTML An FPB match specifying a Breakpoint debug event generates a DebugMonitor exception if it does not halt the PE
and either of the following conditions are true:

• DEMCR.MON_EN == 1.
• The Unprivileged Debug Extension is implemented, DEMCR.UMON_EN == 1 and the PE is executing in

unprivileged mode.

and all of the following conditions apply:

• DHCSR.S_HALT == 0.
• The DebugMonitor exception group priority is greater than the current execution priority.
• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or

DEMCR.SDME == 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FPB && UDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter B14. Debug and Trace Components
B14.5. Flash Patch and Breakpoint unit

RBFPK An FPB match that specifies a Breakpoint debug event might be ignored if it does not meet the conditions for
generating either:

• A Breakpoint debug event that halts the PE.
• A DebugMonitor exception.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RLQDT Between a change to the debug authentication interface, DHCSR, DEMCR or DAUTHCTRL, and a following
Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether breakpoints generated by the FPB:

• Generate a Breakpoint debug event based on the old values and either:

– If the Main Extension is implemented, generate a DebugMonitor exception.
– Halts the PE.

• Are escalated to HardFault or Lockup.

• Are ignored.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

RDZWB Breakpoints that occur as a result of FPB Unit events behave in the same way as a scalar BKPT instruction. All
in-flight instructions are completed before halting.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FPB && MVE.

IYVFX Entry to debug state and debug monitor is delayed until all in-flight instructions have completed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - FPB && MVE.

See also:

Halting debug.

B13.4.1 About debug events.

GenerateDebugEventResponse()

InstructionExecute()

Applies to an implementation of the architecture Armv8.1-M onward.

B14.5.3 Cache maintenance

RBWSW Instruction caches are not permitted to cache breakpoints that are generated by a Flash Patch and Breakpoint unit.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FPB.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter B15
The Performance Monitors Extension

This chapter specifies the optional Armv8.1-M Performance Monitors Extension. It contains the following sections:

B15.1 Counters.

B15.2 Accuracy of the performance counters.

B15.3 Security, access, and modes.

B15.4 Attributability.

B15.5 Coexistence with the DWT Performance Monitors.

B15.6 Interrupts and Debug events.

B15.7 Performance Monitors and Debug state

B15.8 List of supported architectural and microarchitectural events.

B15.9 Generic architectural and microarchitectural events.

B15.10 Common event descriptions.

B15.11 Required PMU events.

B15.12 IMPLEMENTATION DEFINED event numbers.

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter B15. The Performance Monitors Extension
B15.1. Counters

B15.1 Counters

IWBLR The Performance Monitors Extension describes an optional non-invasive debug component that allows performance
events to be identified and counted. An implementation of the Performance Monitors Extension is known as the
Performance Monitoring Unit (PMU).

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RXVBC There is space for a maximum of 31 IMPLEMENTATION DEFINED event counters in the PMU.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RKXXN Each performance event counter is a 16-bit general-purpose counter.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

INNBX By chaining counters in pairs, the counter range can be increased by halving the number of counters.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RVVVF If the PMU is implemented, a minimum of two 16-bit performance event counters are required, and one 32-bit
cycle counter.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

IJFVV Each performance event counter can be configured to count any of the performance events that might be supported
by an implementation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RSLDG It is IMPLEMENTATION DEFINED whether PMU_EVCNTRn supports generating an interrupt. If the interrupt is
not supported PMU_INTENSET.Pn is RAZ/WI.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RMGPL Each performance event counter can be configured to increment on each occurrence of a specified performance
event.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RVXPJ The dedicated 32-bit cycle counter is hard-wired to count cycles.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RYVZG In case of a counter chain event, the architecture guarantees that, if PMU_CTRL.FZO is zero, the unsigned
overflow of the lower half of the counter and subsequent increment of the upper half of the counter are counted
within the same cycle.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RCLBS In case of a counter chain event, it is UNPREDICTABLE whether, if PMU_CTRL.FZO is one, the upper half of the
counter increments after an unsigned overflow of the lower half of the counter.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RRVJT If a counter is configured to a performance event that is not supported on a specific implementation, the counter
value is UNKNOWN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter B15. The Performance Monitors Extension
B15.2. Accuracy of the performance counters

B15.2 Accuracy of the performance counters

IRYDQ The Performance Monitors provide broadly accurate and statistically useful count information. To keep the
implementation and validation costs low, a reasonable degree of inaccuracy in the counts is acceptable.

Arm does not define a reasonable degree of inaccuracy, but recommends the following guidelines:

• Under normal operating conditions, the counters present an accurate value of the count.
• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable

for the count to be inaccurate.
• Under very unusual, non-repeating, pathological cases, the counts can be inaccurate. These cases are likely

to occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in
the count is very unlikely.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RXCDG A reasonable degree of inaccuracy in the PMU is permitted, if this does not create systematic inaccuracies in
normal operating conditions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

IJZGS In normal operating conditions:

• Top level counters for a category of PMU events will reflect the orthogonal items in their sub-categories,
when the sub-categories provide complete coverage. For example, a MEM_ACCESS event will be the sum
of events which count cache accesses.

• Where the sub-categories do not provide comprehensive coverage, the top level counters will count greater
than or equal to the sum of the sub-categories.

• Architectural events will be consistently applied but allowance should be made for edge conditions when
enabling or disabling counters.

• Arm recommends that barrier instructions are used when enabling or disabling the PMU or individual
counters.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

See also:

B7.2.9 Memory barriers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter B15. The Performance Monitors Extension
B15.3. Security, access, and modes

B15.3 Security, access, and modes

INPZL The access to the PMU using the DAP mirrors that of the DWT.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RDVWK The counters do not increment when:

• The PE is in Secure state and privileged mode and SecureNoninvasiveDebugAllowed(TRUE) ==
FALSE.

• The PE is in Secure state and unprivileged mode and SecureNoninvasiveDebugAllowed(FALSE)
== FALSE.

• The PE is in Non-secure state and privileged mode and NoninvasiveDebugAllowed(TRUE) ==
FALSE.

• The PE is in Non-secure state and unprivileged mode and NoninvasiveDebugAllowed(FALSE) ==
FALSE.

• The PE is in Debug state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU. Note, Secure
state requires S.

RKVPL It is IMPLEMENTATION DEFINED whether PMU event counters increment, or retain their previous values in
low-power state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RNNSQ In lockup, it is UNKNOWN whether the counters increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RZHBY If PMU_CTRL.DP is zero, the PMU cycle counter increments regardless of the Security state of the PE. Otherwise,
the PMU cycle counter incrementation is disabled when the PE is in Secure state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && S.

See also:

B14.2 Data Watchpoint and Trace unit.

B13.5 Debug state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter B15. The Performance Monitors Extension
B15.4. Attributability

B15.4 Attributability

RGBQN An event that is caused by the PE that is counting the event is Attributable. If an agent other than the PE that is
counting the events causes an event, these events are Unattributable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RXXLL All architecturally defined events are Attributable, unless otherwise stated in the PMU event list.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RXGRG Events caused by the execution of an instruction are Attributable to the Security state and privilege mode the
instruction was executed in.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && S.

RLDGQ Events are not counted if any of the following are true:

• The event is Attributable to Secure state and privileged mode
and SecureNoninvasiveDebugAllowed(TRUE) == FALSE.

• The event is Attributable to Secure state and unprivileged mode
and SecureNoninvasiveDebugAllowed(FALSE) == FALSE.

• The event is Attributable to Non-secure state and privileged mode
and NoninvasiveDebugAllowed(TRUE) == FALSE.

• The event is Attributable to Non-secure state and unprivileged mode
and NoninvasiveDebugAllowed(FALSE) == FALSE.

The event is Attributable to Secure state are not counted if SecureNoninvasiveDebugAllowed() ==
FALSE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RWJDJ Attributable Events caused by the following are Attributable to the NS-Req and privilege for the access:

• Vector fetches.

• The hardware stacking or unstacking of registers on any of:

– Exception entry.
– Exception exit.
– Function call entry.
– Function return.
– Lazy state preservation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU. Note, Secure
state requires S.

RVHLM For each Unattributable event it is IMPLEMENTATION DEFINED whether the Unattributable event is counted when
counting Attributable events is prohibited.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

See also:

B15.10 Common event descriptions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter B15. The Performance Monitors Extension
B15.5. Coexistence with the DWT Performance Monitors

B15.5 Coexistence with the DWT Performance Monitors

RNKCB The PMU cycle counter PMU_CCNTR is an alias of the DWT_CYCCNT register. All derived PMU functions
are available whenever the PMU enables the cycle counter. If both the PMU and the DWT are implemented,
DWT_CTRL.NOCYCCNT is RAZ.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTD.

RZBWD When PMU_CTRL.E == 1:

• A read of DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, and DWT_SLEEPCNT
return an UNKNOWN value.

• DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, and DWT_SLEEPCNT might
increment at random.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTT.

RKDKT When any of DWT_CTRL.FOLDEVTENA, LSUEVTENA, SLEEPEVTENA, EXCEVTENA, CPIEVTENA ==
1:

• A read of any PMU_EVCNTRn counters returns an UNKNOWN value.
• A read of the PMU overflow flags in PMU_OVSSET and PMU_OVSCLR return UNKNOWN values.
• The PMU_EVCNTRn counters might increment at random.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTT.

RNDFK When PMU_CTRL.E == 1 and any of DWT_CTRL.CYCEVTENA, FOLDEVTENA, LSUEVTENA,
SLEEPEVTENA, EXCEVTENA, CPIEVTENA == 1:

• The generation of Event Counter packets by the DWT is UNPREDICTABLE.
• If any of the PMU_INTENSET.Pn flags are set to 1, the generation of interrupts is UNPREDICTABLE.
• If PMU_CTRL.TRO == 1 the generation of Event Counter packets by the PMU is UNPREDICTABLE.
• The PMU and DWT counters might increment at random.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTT.

RKBZG It is permissible for an implementation to allow the PMU or DWT to overwrite any packets held in the trace buffer
on enabling the PMU and disabling the DWT or enabling the DWT and disabling the PMU without requiring
software to flush output to the trace sink or TPIU.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTT.

RRGQN At any time:

• A write to any of DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, or
DWT_SLEEPCNT, including the indirect write of 0 when writing 1 to any of DWT_CTRL.CYCEVTENA,
FOLDEVTENA, LSUEVTENA, SLEEPEVTENA, EXCEVTENA, CPIEVTENA, sets the PMU_EVCNTRn
to UNKNOWN values.

• A write of PMU_EVCNTRn, including the indirect write of 0 when writing 1 to PMU_CTRL.P to 1,
sets DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, and DWT_SLEEPCNT to
UNKNOWN values.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTT.

IKLGJ It is permissible for PMU and DWT event counters to be aliased. Cycle counters PMU_CCNTR and
DWT_CYCCNT are always aliased.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DWTT.

See also:

B14.4 Trace Port Interface Unit

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter B15. The Performance Monitors Extension
B15.6. Interrupts and Debug events

B15.6 Interrupts and Debug events

IRJNK Counters can be configured to generate interrupts or debug events on overflow.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RZDMH If a counter is configured to generate an interrupt when it overflows, DEMCR.MON_PEND is set to 1 to pend a
DebugMonitor exception with DFSR.PMU set to 1 if one of the following applies:

• The counter is configured to count events attributable to unprivileged mode and DEMCR.UMON_EN is set
to 1.

• The counter is configured to count events attributable to privileged mode and DEMCR.MON_EN is set to 1.

The associated field in PMU_OVSSET or PMU_OVSCLR indicates which counter triggered the exception.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RWGGD For each implemented event counter m, and the cycle counter, unsigned overflow of the counter halts the PE if all
of the following conditions apply:

• PMU_INTENSETm is set to 1 for the event counter, or PMU_INTENSET.C is set to 1 for the cycle counter.
• DHCSR.C_PMOV is set to 1.
• CanHaltOnEvent() returns TRUE for the Security state and privilege mode of the event being counted.

As a result of the above:

• DHCSR.C_HALT is set to 1.
• DFSR.PMU is set to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE &&
UDE. Note, UDE is required for unprivileged events.

RYKXR For each implemented event counter m, and the cycle counter, unsigned overflow of the counter pends a
DebugMonitor exception if it does not halt the PE and all of the following conditions apply:

• PMU_INTENSETm is set to 1 for the event counter, or PMU_INTENSET.C is set to 1 for the cycle counter.
• DEMCR.MON_EN is set to 1 for privileged events. or DEMCR.UMON_EN is set to 1 for unprivileged

events.
• The PE is in Non-secure state or DEMCR.SDME is set to 1.
• The group priority of the DebugMonitor exception is not sufficient to preempt the current execution

priority. If the priority of the DebugMonitor exception is not sufficient to preempt execution the PE
will set DEMCR.MON_PEND to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

IHSYK The CTI uses the PMU as an event source.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

See also:

PMU_HandleOverflow().

Chapter B13 Debug

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter B15. The Performance Monitors Extension
B15.7. Performance Monitors and Debug state

B15.7 Performance Monitors and Debug state

RJSTB Events that count cycles are not counted in Debug state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RWTSQ Events Attributable to the operations issued by the debugger through the external debug interface are not counted
in Debug state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RHFRP For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when the PE is in Debug
state.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

B15.8 List of supported architectural and microarchitectural events

ICFXV Arm recommends the use of implementation-specific events based on performance behaviors of the underlying
microarchitecture.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RGNJH Events 0x0000-0xBFFF are either defined or reserved for future common events. Implementations can implement
any of these events.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

RTPLX Implementations can define additional events that are specific to the implementation outside the specified reserved
space.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

IFHHC The list of common events for the PMU is as follows. The Event types are:

Arch

Architectural event. These events are the same across all implementations.

uArch

Microarchitectural event. These events might vary across different implementations.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

IPTHP In this section:

Architecturally executed Instruction architecturally executed is a class of event that counts for each instruction
of the specified type. Architecturally executed means that the program flow is of the type that the counted
instruction would be executed in a Simple sequential execution of the program. Therefore an instruction that
has been executed and retired is defined to be architecturally executed even if the PE discards the results of
the speculative execution.

If an instruction that would be executed in a Simple sequential execution of the program that generates
a synchronous exception, it is IMPLEMENTATION DEFINED whether the instruction is counted. Each
architecturally executed instruction is counted once, even if the implementation splits the instruction
into multiple operations. Instructions that have no visible effect on the architectural state of the PE are
architecturally executed if they form part of the architecturally executed program flow. The point where such
instructions are retired is IMPLEMENTATION DEFINED.

Examples of instructions that have no visible effects are:

• A NOP.
• A conditional instruction that fails its Condition code check.
• A Compare and Branch on Zero, CBZ, instruction that does not branch.
• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

The point at which an event causes an event counter to be updated is not defined.

Instruction architecturally executed, Condition code check pass Instruction architecturally executed,
Condition code check pass is a class of events that explicitly do not occur for:

• A conditional instruction that fails its Condition code check.
• A Compare and Branch on Zero, CBZ, instruction that does not branch.
• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.
• A Store-Exclusive instruction that does not write to memory.

Otherwise the definition of architecturally executed is the same as Instruction architecturally executed.

A branch that is architecturally executed, with condition code check pass is also described as a branch taken.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Instruction memory access A PE acquires instructions for execution through instruction fetches. Instruction
fetches might be due to:

• Fetching instructions that are architecturally executed.
• The result of the execution of a PLI instruction.
• Speculation that a particular instruction might be executed in the future.

The relationship between the fetch of an individual instruction and an instruction memory access is IM-
PLEMENTATION DEFINED. For example, an implementation might fetch many instructions including a
non-integer number of instructions in a single instruction memory access.

Memory-read operations A PE accesses memory through memory-read operations and memory-write operations.
A memory-read operation might be due to:

• The result of an architecturally executed memory-reading instruction.
• The result of a Speculatively executed memory-reading instruction.

For levels of cache hierarchy beyond the Level 1 caches, memory-read operations also include accesses
made as part of a refill of another cache closer to the PE. Such refills might be due to any of the items in the
following, non-exhaustive, list:

• Memory-read operations or Memory-write operations that miss in the cache.
• The execution of a preload data instruction.
• The execution of an instruction preload instruction on a unified cache.
• The execution of a cache maintenance operation. A preload instruction or cache maintenance operation

is not, in itself, an access to that cache. However, as preload instruction or cache maintenance operation
might generate cache refills which are then treated as memory-read operations beyond that cache.

• Speculation that a future instruction might access that memory location.
• Instruction memory accesses.

The relationship between memory-read instructions and memory-read operations is IMPLEMENTATION
DEFINED.

Memory-write operations Memory-write operations might be due to:

• The result of an architecturally executed memory-writing instruction.
• The result of a Speculatively executed memory-writing instruction.

Speculatively executed memory-writing instructions that do not become architecturally executed must not
alter the architecturally defined view of memory. They can, however, generate a memory-write operation that
is later undone in some implementation-specific way.

For levels of cache hierarchy beyond the Level 1 caches, memory-write operations also include accesses
made as part of a write-back from another cache closer to the PE. A write-back of this type might be due to
any of the following non-exhaustive list:

• Evicting a dirty line from the cache, to allocate a cache line for a cache refill.
• The execution of a cache maintenance operation. A cache maintenance operation is not in itself an

access to that cache. However, a cache maintenance operation might generate write-backs which are
then treated as memory-write operations beyond that cache.

• The result of a coherency request from another PE.

The relationship between memory-writing instructions and memory-write operations is IMPLEMENTATION
DEFINED.

The data written back from a cache that is shared with other PEs might not be the data that was written by the
PE that performs the operation that leads to the write-back. Nevertheless, the event is counted as a write-back
event for that PE.

Microarchitectural operation It is permissible for an implementation of a PE to break down instructions into
separate, smaller, operations. The use of Microarchitectural operations (micro-ops) is IMPLEMENTATION
DEFINED. An instruction might create one or more micro-ops at any point in the execution pipeline. For the

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

purpose of event counting, the micro-ops are counted. The definition of a micro-op is implementation-specific.
An architecture instruction might create more than one micro-op for each instruction. Micro-ops might also
be removed or merged in the execution stream, so an architecture instruction might create no micro-ops for an
instruction. Any arbitrary translation of instructions to an equivalent sequence of micro-ops is permitted. The
PE must strictly follow the architecturally visible behavior no matter the underlying division of an instruction
into micro-ops.

The counting of operations can indicate the workload on the PE. However, there is no requirement for
operations to represent similar amounts of work, and direct comparisons between different microarchitectures
are not meaningful.

For example, an implementation might split an LDM instruction of six registers into six micro-ops, one for
each load, and a seventh address-generation operation to determine the base address or write-back address.
Therefore an instruction might be split into multiple countable events.

Operations speculatively executed There is no architecturally guaranteed relationship between a Speculatively
executed micro-op and an architecturally executed instruction. The results of such an operation can also be
discarded, if it transpires that the operation was not required, following a mispredicted branch. Therefore,
Armv8-M defines these events as operations speculatively executed, where appropriate.

Slot An implementation of a PE might be able to execute multiple micro-ops in a single processor cycle. The
maximum number of micro-ops that can be executed might vary at different points in the execution pipeline.

To allow profiling of the utilization of the resource of the PE, an implementation-specific point in the execution
pipeline is chosen where the maximum number of micro-ops that can be executed is an IMPLEMENTATION
DEFINED fixed value.

Software change of the PC Some events relate to instructions that cause a software change of the PC. This
includes all:

• Branch instructions.
• Memory-reading instructions that explicitly write to the PC.
• Data-processing instructions that explicitly write to the PC.
• Exception return instructions.

It is IMPLEMENTATION DEFINED whether any or all of the following are treated as software changes to the
PC:

• A BKPT.
• An UNDEFINSTR Fault.
• Context synchronization barrier ISB instructions.

Speculatively executed Many events relate to speculatively executed operations. Here, speculatively executed
means the PE did some work associated with one or more instructions but the instructions were not necessarily
architecturally executed.

The definition of speculatively executed does not mean only those operations that are executed speculatively
and later abandoned, for example due to a branch misprediction or fault. That is, speculatively executed
operations must count operations on both false and correct execution paths.

Different groups of events can have different IMPLEMENTATION DEFINED definitions of speculatively
executed. Such groups share a common base type, which the event name denotes. Each of the events in the
previous example is of the base type, operation speculatively executed. For groups of events with a common
base type, speculatively executed operations are all counted on the same basis, which normally means at the
same point in the pipeline. It is possible to compare the counts and make meaningful observations about the
program being profiled.

Within these groups, events are commonly defined with reference to a particular architecture instruction or
group of instructions. In the case of speculatively executed operations this means operations with semantics
that map to that type of instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event Event Event Description

number type mnemonic

0x0000 Arch SW_INCR Instruction Architecturally executed,

condition code check pass, software

increment

0x0001 uArch L1I_CACHE_REFILL Attributable Level 1 instruction cache

refill

0x0003 uArch L1D_CACHE_REFILL Attributable Level 1 data cache refill

0x0004 uArch L1D_CACHE Attributable Level 1 data cache access

0x0006 Arch LD_RETIRED Instruction Architecturally executed,

condition code check pass, load

0x0007 Arch ST_RETIRED Instruction Architecturally executed,

condition code check pass, store

0x0008 Arch INST_RETIRED Instruction Architecturally executed

0x0009 Arch EXC_TAKEN Exception taken

0x000A Arch EXC_RETURN Instruction Architecturally executed,

condition code check pass, exception

return

0x000C Arch PC_WRITE_RETIRED Instruction Architecturally executed,

condition code check pass, software

change of the PC

0x000D Arch BR_IMMED_RETIRED Instruction Architecturally executed,

immediate branch

0x000E Arch BR_RETURN_RETIRED Instruction Architecturally executed,

condition code check pass, procedure

return

0x000F Arch UNALIGNED_LDST_RETIRED Instruction Architecturally executed,

condition code check pass, unaligned

load or store

0x0010 uArch BR_MIS_PRED Mispredicted or not predicted branch

speculatively executed

0x0011 uArch CPU_CYCLES Cycle

0x0012 uArch BR_PRED Predictable branch speculatively

executed

0x0013 uArch MEM_ACCESS Data memory access

0x0014 uArch L1I_CACHE Attributable Level 1 instruction cache

access

0x0015 uArch L1D_CACHE_WB Attributable Level 1 data cache write-

back

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

0x0016 uArch L2D_CACHE Attributable Level 2 data cache access

0x0017 uArch L2D_CACHE_REFILL Attributable Level 2 data cache refill

0x0018 uArch L2D_CACHE_WB Attributable Level 2 data cache write-

back

0x0019 uArch BUS_ACCESS Attributable Bus access

0x001A uArch MEMORY_ERROR Local memory error

0x001B uArch INST_SPEC Operation speculatively executed

0x001D uArch BUS_CYCLES Bus cycle

0x001E Arch CHAIN For an odd-numbered counter,

increments when an overflow occurs on

the preceding even-numbered counter on

the same PE

0x001F uArch L1D_CACHE_ALLOCATE Attributable Level 1 data cache

allocation without refill

0x0020 uArch L2D_CACHE_ALLOCATE Attributable Level 2 data cache

allocation without refill

0x0021 Arch BR_RETIRED Instruction Architecturally executed,

branch

0x0022 uArch BR_MIS_PRED_RETIRED Instruction Architecturally executed,

mispredicted branch

0x0023 uArch STALL_FRONTEND No operation issued due to the

frontend

0x0024 uArch STALL_BACKEND No operation issued due to the backend

0x0027 uArch L2I_CACHE Attributable Level 2 instruction cache

access

0x0028 uArch L2I_CACHE_REFILL Attributable Level 2 instruction cache

refill

0x0029 uArch L3D_CACHE_ALLOCATE Attributable Level 3 data cache

allocation without refill

0x002A uArch L3D_CACHE_REFILL Attributable Level 3 data cache refill

0x002B uArch L3D_CACHE Attributable Level 3 data cache access

0x002C uArch L3D_CACHE_WB Attributable Level 3 data cache write-

back

0x0036 uArch LL_CACHE_RD Last level data cache read

0x0037 uArch LL_CACHE_MISS_RD Last level data cache read miss

0x0039 uArch L1D_CACHE_LMISS_RD Level 1 data cache long-latency read

miss

0x003A uArch OP_RETIRED Micro-operation architecturally

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

executed

0x003B uArch OP_SPEC Micro-operation speculatively executed

0x003C uArch STALL No operation sent for execution

0x003D uArch STALL_SLOT_BACKEND No operation sent for execution on a

slot due to the backend

0x003E uArch STALL_SLOT_FRONTEND No operation sent for execution on a

slot due to the frontend

0x003F uArch STALL_SLOT No operation sent for execution on a

slot

0x0040 uArch L1D_CACHE_RD Level 1 data cache read

0x0100 uArch LE_RETIRED Loop end instruction architecturally

executed, entry registered in the

LO_BRANCH_INFO cache

0x0101 uArch LE_SPEC Loop end instruction speculatively

executed, entry registered in the

LO_BRANCH_INFO cache

0x0104 uArch BF_RETIRED Branch future instruction

Architecturally executed, condition

code check pass, and registers an

entry in the LO_BRANCH_INFO

cache

0x0105 uArch BF_SPEC Branch future instruction

speculatively executed, condition code

check pass, and registers an entry in

the LO_BRANCH_INFO cache

0x0108 uArch LE_CANCEL LO_BRANCH_INFO cache containing

a valid loop entry cleared while not

in the last iteration of the loop

0x0109 uArch BF_CANCEL LO_BRANCH_INFO cache containing

a valid BF entry cleared and

associated branch not taken

0x0114 Arch SE_CALL_S Call to secure function, resulting in

security state change

0x0115 Arch SE_CALL_NS Call to non-secure function, resulting

in security state change

0x0118 Arch DWT_CMPMATCH0 DWT comparator 0 match

0x0119 Arch DWT_CMPMATCH1 DWT comparator 1 match

0x011A Arch DWT_CMPMATCH2 DWT comparator 2 match

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

0x011B Arch DWT_CMPMATCH3 DWT comparator 3 match

0x011C Arch DWT_CMPMATCH4 DWT comparator 4 match

0x011D Arch DWT_CMPMATCH5 DWT comparator 5 match

0x011E Arch DWT_CMPMATCH6 DWT comparator 6 match

0x011F Arch DWT_CMPMATCH7 DWT comparator 7 match

0x0130 uArch PAC_RETIRED PAC instruction architecturally

executed

0x0131 uArch PAC_SPEC PAC instruction speculatively executed

0x0134 uArch AUT_RETIRED AUT instruction architecturally

executed

0x0135 uArch AUT_SPEC AUT instruction speculatively executed

0x013C uArch STALL_BACKEND_PAC Stall cycles caused by PAC operations

0x0200 Arch MVE_INST_RETIRED MVE instruction architecturally

executed

0x0201 uArch MVE_INST_SPEC MVE instruction speculatively executed

0x0204 Arch MVE_FP_RETIRED MVE floating-point instruction

Architecturally executed

0x0205 uArch MVE_FP_SPEC MVE floating-point instruction

speculatively executed

0x0208 Arch MVE_FP_HP_RETIRED MVE half-precision floating-point

instruction Architecturally executed

0x0209 uArch MVE_FP_HP_SPEC MVE half-precision floating-point

instruction speculatively executed

0x020C Arch MVE_FP_SP_RETIRED MVE single-precision floating-point

instruction Architecturally executed

0x020D uArch MVE_FP_SP_SPEC MVE single-precision floating-point

instruction speculatively executed

0x0214 Arch MVE_FP_MAC_RETIRED MVE floating-point multiply or

multiply-accumulate instruction

Architecturally executed

0x0215 uArch MVE_FP_MAC_SPEC MVE floating-point multiply or

multiply-accumulate instruction

speculatively executed

0x0224 Arch MVE_INT_RETIRED MVE integer instruction

Architecturally executed

0x0225 uArch MVE_INT_SPEC MVE integer instruction speculatively

executed

0x0228 Arch MVE_INT_MAC_RETIRED MVE integer multiply or multiply-

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

accumulate instruction architecturally

executed

0x0229 uArch MVE_INT_MAC_SPEC MVE integer multiply or multiply-

accumulate instruction speculatively

executed

0x0238 Arch MVE_LDST_RETIRED MVE load or store instruction

Architecturally executed

0x0239 uArch MVE_LDST_SPEC MVE load or store instruction

speculatively executed

0x023C Arch MVE_LD_RETIRED MVE load instruction architecturally

executed

0x023D uArch MVE_LD_SPEC MVE load instruction speculatively

executed

0x0240 Arch MVE_ST_RETIRED MVE store instruction architecturally

executed

0x0241 uArch MVE_ST_SPEC MVE store instruction speculatively

executed

0x0244 uArch MVE_LDST_CONTIG_RETIRED MVE contiguous load or store

instruction Architecturally executed

0x0245 uArch MVE_LDST_CONTIG_SPEC MVE contiguous load or store

instruction speculatively executed

0x0248 uArch MVE_LD_CONTIG_RETIRED MVE contiguous load instruction

Architecturally executed

0x0249 uArch MVE_LD_CONTIG_SPEC MVE contiguous load instruction

speculatively executed

0x024C uArch MVE_ST_CONTIG_RETIRED MVE contiguous store instruction

Architecturally executed

0x024D uArch MVE_ST_CONTIG_SPEC MVE contiguous store instruction

speculatively executed

0x0250 uArch MVE_LDST_NONCONTIG_RETIRED MVE non-contiguous load or store

instruction Architecturally executed

0x0251 uArch MVE_LDST_NONCONTIG_SPEC MVE non-contiguous load or store

instruction speculatively executed

0x0254 uArch MVE_LD_NONCONTIG_RETIRED MVE non-contiguous load instruction

Architecturally executed

0x0255 uArch MVE_LD_NONCONTIG_SPEC MVE non-contiguous load instruction

speculatively executed

0x0258 uArch MVE_ST_NONCONTIG_RETIRED MVE non-contiguous store instruction

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

Architecturally executed

0x0259 uArch MVE_ST_NONCONTIG_SPEC MVE non-contiguous store instruction

speculatively executed

0x025C Arch MVE_LDST_MULTI_RETIRED MVE memory instruction targeting

multiple registers architecturally

executed

0x025D uArch MVE_LDST_MULTI_SPEC MVE memory instruction targeting

multiple registers speculatively

executed

0x0260 Arch MVE_LD_MULTI_RETIRED MVE memory load instruction targeting

multiple registers architecturally

executed

0x0261 uArch MVE_LD_MULTI_SPEC MVE memory load instruction targeting

multiple registers speculatively

executed

0x0264 Arch MVE_ST_MULTI_RETIRED MVE memory store instruction targeting

multiple registers architecturally

executed

0x0265 uArch MVE_ST_MULTI_SPEC MVE memory store instruction targeting

multiple registers speculatively

executed

0x028C uArch MVE_LDST_UNALIGNED_RETIRED MVE unaligned memory load or store

instruction Architecturally executed

0x028D uArch MVE_LDST_UNALIGNED_SPEC MVE unaligned memory load or store

instruction speculatively executed

0x0290 uArch MVE_LD_UNALIGNED_RETIRED MVE unaligned load instruction

Architecturally executed

0x0291 uArch MVE_LD_UNALIGNED_SPEC MVE unaligned load instruction

speculatively executed

0x0294 uArch MVE_ST_UNALIGNED_RETIRED MVE unaligned store instruction

Architecturally executed

0x0295 uArch MVE_ST_UNALIGNED_SPEC MVE unaligned store instruction

speculatively executed

0x0298 uArch MVE_LDST_UNALIGNED_NONCONTIG_RETIRED

MVE unaligned non-contiguous load or

store instruction architecturally

executed

0x0299 uArch MVE_LDST_UNALIGNED_NONCONTIG_SPEC

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

MVE unaligned non-contiguous load or

store instruction speculatively

executed

0x02A0 Arch MVE_VREDUCE_RETIRED MVE vector reduction instruction

Architecturally executed

0x02A1 uArch MVE_VREDUCE_SPEC MVE vector reduction instruction

speculatively executed

0x02A4 Arch MVE_VREDUCE_FP_RETIRED MVE floating-point vector reduction

instruction Architecturally executed

0x02A5 uArch MVE_VREDUCE_FP_SPEC MVE floating-point vector reduction

instruction speculatively executed

0x02A8 Arch MVE_VREDUCE_INT_RETIRED MVE integer vector reduction

instruction Architecturally executed

0x02A9 uArch MVE_VREDUCE_INT_SPEC MVE integer vector reduction

instruction speculatively executed

0x02B8 uArch MVE_PRED Cycles where one or more predicated

beats Architecturally executed

0x02CC uArch MVE_STALL Stall cycles caused by an MVE

instruction

0x02CD uArch MVE_STALL_RESOURCE Stall cycles caused by an MVE

instruction due to resource conflicts

0x02CE uArch MVE_STALL_RESOURCE_MEM Stall cycles caused by an MVE

instruction due to memory resource

conflicts

0x02CF uArch MVE_STALL_RESOURCE_FP Stall cycles caused by an MVE

instruction due to floating-point

resource conflicts

0x02D0 uArch MVE_STALL_RESOURCE_INT Stall cycles caused by an MVE

instruction due to integer resource

conflicts

0x02D3 uArch MVE_STALL_BREAK Stall cycles caused by an MVE chain

break

0x02D4 uArch MVE_STALL_DEPENDENCY Stall cycles caused by MVE register

dependency

0x4007 uArch ITCM_ACCESS Instruction TCM access

0x4008 uArch DTCM_ACCESS Data TCM access

0x4010 uArch TRCEXTOUT0 ETM external output 0

0x4011 uArch TRCEXTOUT1 ETM external output 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

Chapter B15. The Performance Monitors Extension
B15.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description

0x4012 uArch TRCEXTOUT2 ETM external output 2

0x4013 uArch TRCEXTOUT3 ETM external output 3

0x4018 uArch CTI_TRIGOUT4 Cross-trigger Interface output trigger

4

0x4019 uArch CTI_TRIGOUT5 Cross-trigger Interface output trigger

5

0x401A uArch CTI_TRIGOUT6 Cross-trigger Interface output trigger

6

0x401B uArch CTI_TRIGOUT7 Cross-trigger Interface output trigger

7

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter B15. The Performance Monitors Extension
B15.9. Generic architectural and microarchitectural events

B15.9 Generic architectural and microarchitectural events

This section provides descriptions that apply to multiple events.

B15.9.1 CTI_TRIGOUT (Cross-trigger Interface output trigger , for = 4 to 7)

The counter counts for each event from CTI output trigger . Note: CTI output triggers are input events to the PMU
and PE Trace Unit.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

B15.9.2 TRCEXTOUT (PE Trace Unit external output , for = 0 to 3)

The counter counts for each event signaled by the ETM external event .

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

B15.9.3 DWT_CMPMATCH (DWT comparator match, for = 0 to 7)

The counter increments for each successful comparator match indicated by DWT comparator . The comparator
does not increment if the comparator is not implemented or is disabled

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

B15.9.4 LI_CACHE_REFILL (Level instruction cache refill)

The counter counts each access that is counted by L<n>I_CACHE that returns instructions from beyond the Level
instruction cache. Beyond in this context means a Level cache, where m>n, or memory.

The event indicates to software that the access missed in the Level instruction cache and might have a significant
performance impact because of the additional latency, compared to an access that hits in the Level instruction
cache.

The definition of Level cache is IMPLEMENTATION DEFINED, and does not necessarily correspond to the cache
levels that are defined by the CLIDR mechanism. Instead, increasing values of correspond to increasing average
additional latency.

The counter does not count:

• Accesses where the miss does not have a significant impact on performance.
• A miss that does not cause a new cache refill but is satisfied from a previous miss.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

B15.9.5 LD_CACHE_REFILL (Level data cache refill)

The counter counts each access that is counted by L<n>D_CACHE that returns data from beyond the Level data
cache. Beyond in this context means a Level cache, where m>n, or memory.

Each access to a cache line that causes a new linefill is counted, including those from instructions that generate
multiple accesses, such as load or store multiples, and PUSH and POP instructions. In particular, the counter counts
accesses to the Level cache that cause a refill. A refill includes any access that causes data to be fetched from
outside the Level 1 to the Level cache, even if the data is ultimately not allocated into the Level cache.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter B15. The Performance Monitors Extension
B15.9. Generic architectural and microarchitectural events

The definition of Level cache is IMPLEMENTATION DEFINED, and does not necessarily correspond to the cache
levels that are defined by the CLIDR mechanism. Instead, increasing values of correspond to increasing average
additional latency.

The counter does not count:

• Accesses that do not cause a new Level cache refill but are satisfied by refilling data from a previous miss.
• Accesses to a cache line that generate a memory access but not a new linefill, such as Write-Through writes

that hit in the cache.
• Cache maintenance instructions.
• A write that writes an entire line to the cache and does not fetch any data from outside the Level cache.
• A write that misses in the cache, and writes through the cache without allocating a line.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

B15.9.6 LD_CACHE_MISS_RD (Level data cache miss on read)

The counter counts each access that is counted by L<n>D_CACHE_RD that returns data from beyond the Level
data or unified cache. Beyond in this context means a Level cache, where m>n, or memory.

The event indicates to software that the access missed in the Level data or unified cache and might have a significant
performance impact because of the additional latency, compared to an access that hits in the Level data or unified
cache.

The definition of Level cache is IMPLEMENTATION DEFINED, and does not necessarily correspond to the cache
levels that are defined by the CLIDR mechanism. Instead, increasing values of correspond to increasing average
additional latency.

The counter does not count:

• Accesses where the miss does not have a significant impact

on performance.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

B15.9.7 LD_CACHE_WB (Level data cache write-back)

The counter counts every write-back of data from the Level data or unified cache.

The counter counts each write-back that causes data to be written from the Level cache to outside of the Level
cache. For example, the counter counts the following cases:

• A write-back that causes data to be written to a Level<n+1> cache or memory.
• A write-back of a recently fetched cache line that has not been allocated to the Level cache.
• Transfers of data from the Level cache to outside of this cache that are made as a result of a coherency request.

The conditions that determine which of these are counted for transfers to other Level caches within the same
multiprocessor cluster are IMPLEMENTATION DEFINED.

Each write-back is counted one time, even if multiple accesses are required to complete the write-back.

Whether write-backs that are made as a result of cache maintenance instructions are counted is IMPLEMENTATION
DEFINED. The counter does not count:

• The invalidation of a cache line without any write-back to a Level<n+1> cache or memory.
• Writes from the PE that write through the Level cache to outside of the Level cache.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter B15. The Performance Monitors Extension
B15.9. Generic architectural and microarchitectural events

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency request that results
in write-back. If the cache is shared, then an Unattributable write-back event is not counted. If the cache is not
shared, then the event is counted. It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is
not the result of the eviction of a line from a cache, is counted.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

B15.9.8 LI_CACHE (Level instruction cache access)

The counter counts each Attributable access to at least the Level instruction cache. Each access to other Level
instruction memory structures, such as refill buffers, is also counted.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

B15.9.9 LD_CACHE (Level data cache access)

The counter counts each Attributable memory-read or Attributable memory-write access to at least the Level data
or unified cache. Each access to a cache line is counted, including the multiple accesses of instructions, such as
LDM or STM. Each access to other Level data or unified cache memory structures is also counted.

The counter does not count cache maintenance instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

B15.9.10 LD_CACHE_RD (Level data cache access, read)

The counter operates the same way as L<n>D_CACHE, with the one exception that the counter counts only
memory-read accesses.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

B15.10 Common event descriptions

The common events that can be supported by the PMU counters are defined in this section. For the common
features, the counters normally increment only one time for each event. The individual event descriptions include
any exceptions to this. In the definitions, the term Architecturally executed means that the instruction flow is one
where the counted instruction would have been executed in a simple sequential execution model.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

SW_INCR (0x0000, Architectural)

The counter increments on writes to the PMU_SWINC register. If the PE performs two Architecturally executed
writes to the PMU_SWINC register without an intervening Context synchronization event, then the counter is
incremented twice.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1I_CACHE_REFILL (0x0001, Microarchitectural)

See L<n>I_CACHE_REFILL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1D_CACHE_REFILL (0x0003, Microarchitectural)

See L<n>D_CACHE_REFILL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1D_CACHE (0x0004, Microarchitectural)

See L<n>D_CACHE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

LD_RETIRED (0x0006, Architectural)

The counter increments for every executed memory-reading instruction.

LD_RETIRED does not count the return status value of a Store-Exclusive instruction. It is IMPLEMENTATION
DEFINED whether the following preload instructions count as memory-reading instructions:

• PLD (literal).
• PLD, PLDW (immediate).
• PLI (immediate, literal).
• PLI (register).

Arm recommends that if these instruction are not implemented as NOPs, then they are counted as memory-reading
instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

ST_RETIRED (0x0007, Architectural)

The counter increments for every executed memory-writing instruction. The counter does not increment for a
Store-Exclusive instruction that fails.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

INST_RETIRED (0x0008, Architectural)

The counter increments for every Architecturally executed instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

EXC_TAKEN (0x0009, Architectural)

The counter increments on each exception entry. The counter does not further increment in the case of
a late or derived exception, but it is incremented when tail-chaining. This corresponds to calls to the
ActivateException() pseudocode function.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

EXC_RETURN (0x000A, Architectural)

The counter increments on each exception return. This occurs when the PE is in Handler mode, and one of the
following is executed and loads an EXC_RETURN value into the PC:

• A POP or LDM that includes loading the PC.
• An LDR with the PC as a destination.
• A BX with any register.

This counter also increments on tail-chaining.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

PC_WRITE_RETIRED (0x000C, Architectural)

The counter increments for every software change of the PC. This includes all of the following:

• Branch instructions.
• Loop start instructions.
• Loop end instructions.
• Memory-reading instructions that explicitly write to the PC.
• Data-processing instructions that explicitly write to the PC.

If the PACBTI Extension is implemented, the counter counts Architecturally executed BXAUT instructions that
pass their PAC checks. It is IMPLEMENTATION DEFINED whether the counter increments for any or all of:

• BKPT instructions.
• An exception generated because an instruction is UNDEFINED.
• The exception-generating instructions, SVC, and UDF.

It is IMPLEMENTATION DEFINED whether an ISB is counted as a software change of the PC. The counter does not
increment for exceptions other than those explicitly identified in these lists.

Conditional branches are only counted if the branch is taken.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

BR_IMMED_RETIRED (0x000D, Architectural)

The counter counts all immediate branch instructions that are Architecturally executed, which includes the
immediate variants of any B branch instruction or CBNZ instruction. Conditional branches are always counted,
regardless of whether the branch is taken. If an ISB is counted as a software change of the PC instruction, then it
is IMPLEMENTATION DEFINED whether an ISB is counted as an immediate branch instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BR_RETURN_RETIRED (0x000E, Architectural)

The counter counts function return instructions.

For example the following, non-exhaustive, list shows instructions that are counted:

• BX LR.
• MOV PC, LR.
• POP ..., PC.
• LDR PC, [SP], #offset.
• A BXNS with any register.
• Any indirect branch with FNC_RETURN as the target address.

If the PACBTI Extension is implemented, the counter counts Architecturally executed BXAUT instructions that
pass their PAC checks. The following is a non-exhaustive list of instructions that are not counted:

• BX with any register that is not LR.
• Any MOV PC where the register being written to is not the LR.
• LDM SP, ..., PC because write-back is not specified.
• LDR PC, [SP, #offset] because this specifies the wrong addressing mode.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

UNALIGNED_LDST_RETIRED (0x000F, Architectural)

The counter counts each memory-reading instruction or memory-writing instruction access that would generate an
UNALIGNED UsageFault when CCR.UNALIGN_TRP is 1. It is IMPLEMENTATION DEFINED whether this event
counts accesses that generate a fault, including accesses that do generate an UNALIGNED UsageFault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BR_MIS_PRED (0x0010, Microarchitectural)

The counter counts each correction to the predicted program flow that occurs because of a misprediction from,
or no prediction from, the branch prediction resources, and that relates to instructions that the branch prediction
resources are capable of predicting. If no program-flow prediction resources are implemented, Arm recommends
that the counter counts all branches that are not taken.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

CPU_CYCLES (0x0011, Microarchitectural)

The counter increments on every cycle.

All counters are subject to changes in clock frequency, including when a WFI or WFE instruction stops the clock.
This means that it is CONSTRAINED UNPREDICTABLE whether or not CPU_CYCLES continues to increment
when the clocks are stopped by WFI and WFE instructions.

Unlike PMU_CCNTR, this count is not affected by PMU_CTRL.DP, or by PMU_CTRL.C:

• The counter is not incremented in prohibited regions, and is not affected by PMU_CTRL.DP.
• The counter is reset when event counters are reset by PMU_CTRL.P, never by PMU_CTRL.C.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BR_PRED (0x0012, Microarchitectural)

The counter counts every branch or other change in the program flow that the branch prediction resources are
capable of predicting. If all branches are subject to prediction, then all branches are predictable branches. If
branches are decoded before the branch predictor, so that the branch prediction logic dynamically predicts only
some branches, for example conditional and indirect branches, then it is IMPLEMENTATION DEFINED whether
other branches are counted as predictable branches. Arm recommends that all branches are counted.

An implementation might include other structures that predict branches, such as a loop buffer that predicts short
backwards direct branches as taken. Each execution of such a branch is a predictable branch. Terminating the loop
might generate a misprediction event that is counted by BR_MIS_PRED. If no program-flow prediction resources
are implemented, this event is optional, but Arm recommends that BR_PRED counts all branches.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MEM_ACCESS (0x0013, Microarchitectural)

The counter counts memory-read or memory-write operations that the PE made. The counter increments whether
the access results in an access to a Level 1 data or unified cache, a Level 2 data or unified cache, or neither of these.
The counter does not increment as a result of:

• Instruction memory accesses.
• Cache maintenance instructions.
• Write-back from any cache.
• Refilling of any cache.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1I_CACHE (0x0014, Microarchitectural)

See L<n>I_CACHE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1D_CACHE_WB (0x0015, Microarchitectural)

See L<n>D_CACHE_WB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

L2D_CACHE (0x0016, Microarchitectural)

See L<n>D_CACHE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L2D_CACHE_REFILL (0x0017, Microarchitectural)

See L<n>D_CACHE_REFILL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L2D_CACHE_WB (0x0018, Microarchitectural)

See L<n>D_CACHE_WB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BUS_ACCESS (0x0019, Microarchitectural)

The counter counts memory-read or memory-write operations that access outside of the boundary of the PE and its
closely-coupled caches. This counter does not include accesses to or from a TCM. Where this boundary lies with
respect to any implemented caches is IMPLEMENTATION DEFINED.

The definition of a bus access is IMPLEMENTATION DEFINED but physically it is a single request rather than a
burst, (that is, for each bus cycle for which the bus is active). Bus accesses include refills of, and write-backs from,
data, instruction, and unified caches. Whether bus accesses include operations that do use the bus but that do not
explicitly transfer data is IMPLEMENTATION DEFINED. An Unattributable bus access occurs when a requestor
outside the PE makes a request that results in a bus access, for example, a coherency request.

If the bus is shared, then only Attributable bus accesses are counted. If the bus is not shared, then all bus accesses
are counted.

Where an implementation has multiple buses at this boundary, this event counts the sum of accesses across all
buses. If a bus supports multiple accesses per cycle, for example through multiple channels, the counter increments
one time for each channel that is active on a cycle, and so it might increment by more than one in any given cycle.
The maximum increment in any given cycle is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MEMORY_ERROR (0x001A, Microarchitectural)

The counter counts every occurrence of a memory error that is signaled by memory closely coupled to this PE. The
definition of local memories is IMPLEMENTATION DEFINED but includes caches and tightly-coupled memories.
Memory error refers to a physical error that is detected by the hardware, such as a parity or ECC error. It includes
errors that are correctable and those that are not. It does not include errors that are defined in the architecture, such
as MPU or SAU faults.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

INST_SPEC (0x001B, Microarchitectural)

The counter counts instructions that are speculatively executed by the PE. This includes instructions that are
subsequently not architecturally executed. As a result, this event counts a larger number of instructions than the
number of instructions Architecturally executed. The definition of speculatively executed is IMPLEMENTATION
DEFINED.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BUS_CYCLES (0x001D, Microarchitectural)

The counter increments on every cycle of the external memory interface of the PE.

If the implementation clocks the external memory interface at the same rate as the processor hardware, the counter
counts every cycle.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

CHAIN (0x001E, Architectural)

Even-numbered counters never increment as a result of this event. This means the CHAIN event links the
odd-numbered counter with the preceding even-numbered counter to provide a 32-bit counter.

The CHAIN event means a system can provide N 16-bit counters, N/2 32-bit counters, or a mixture of 16-bit
counters and 32-bit counters. The increment of both counters is atomic with respect to software or external counter
access.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1D_CACHE_ALLOCATE (0x001F, Microarchitectural)

The counter increments on every Attributable write that writes an entire line into the Level 1 cache without fetching
from outside the Level 1 cache, for example a write from a coalescing buffer of a full cache line.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L2D_CACHE_ALLOCATE (0x0020, Microarchitectural)

The counter increments on every Attributable write that writes an entire line into the Level 2 cache without fetching
from outside the Level 1 or Level 2 caches, for example:

• A write-back from a Level 1 to a Level 2 cache.
• A write from a coalescing buffer of a full cache line.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

BR_RETIRED (0x0021, Architectural)

The counter counts all branches on the Architecturally executed path that would incur a cost if mispredicted.

It is IMPLEMENTATION DEFINED whether this includes each of:

• Unconditional direct branch instructions.
• Exception-generating instructions.
• Exception return instructions.
• Context synchronization instructions.

Conditional branches are always counted, regardless of whether the branch is taken.

Arm recommends that BR_RETIRED counts Unconditional direct branch instructions.

If PC_WRITE_RETIRED and BR_RETIRED are both implemented, the PE must treat the following types of
instruction in the same way for both events:

• BKPT instructions.

• UNDEFINED instructions.

• SVC instructions.

• Context synchronization barrier instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BR_MIS_PRED_RETIRED (0x0022, Microarchitectural)

The counter counts all instructions counted by BR_RETIRED that were not correctly predicted. If no program-flow
prediction resources are implemented, this event counts all retired not-taken branches.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

STALL_FRONTEND (0x0023, Microarchitectural)

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued because
there are no operations available to issue for this PE from the frontend. The division between frontend and backend
is IMPLEMENTATION DEFINED. Frontend and backend events count at the same point in the pipeline.

For a simplified pipeline model of Fetch > Decode > Issue > Execute > Retire, Arm recommends that the events
are counted when instructions are dispatched from Decode to Issue.

On a given cycle, both events might be counted if the backend is unable to accept any operations and there are no
operations available to issue from the frontend.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

STALL_BACKEND (0x0024, Microarchitectural)

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued because
either:

• The backend is unable to accept any of the operations available for issue for this PE.
• The backend is unable to accept any operations.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

For example, the back end might be unable to accept operations because of a resource conflict or non-availability.
The division between frontend and backend is IMPLEMENTATION DEFINED. Frontend and backend events count at
the same point in the pipeline.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L2I_CACHE (0x0027, Microarchitectural)

See L<n>I_CACHE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L2I_CACHE_REFILL (0x0028, Microarchitectural)

See L<n>I_CACHE_REFILL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L3D_CACHE_ALLOCATE (0x0029, Microarchitectural)

The counter increments on every Attributable write that writes an entire line into the Level 3 cache without fetching
from outside the Level 1, Level 2, or Level 3 cache, for example:

• A write-back from a Level 2 to Level 3 cache.
• A write from a coalescing buffer of a full cache line.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L3D_CACHE_REFILL (0x002A, Microarchitectural)

See L<n>D_CACHE_REFILL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L3D_CACHE (0x002B, Microarchitectural)

See L<n>D_CACHE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L3D_CACHE_WB (0x002C, Microarchitectural)

See L<n>D_CACHE_WB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

LL_CACHE_RD (0x0036, Microarchitectural)

See L<n>D_CACHE_RD.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

LL_CACHE_MISS_RD (0x0037, Microarchitectural)

See L<n>D_CACHE_MISS_RD.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1D_CACHE_LMISS_RD (0x0039, Microarchitectural)

See L<n>D_CACHE_MISS_RD.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

OP_RETIRED (0x003A, Microarchitectural)

The counter counts each operation counted by OP_SPEC that is later committed to the architectural state of this
PE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

OP_SPEC (0x003B, Microarchitectural)

The counter counts the number of Attributable instructions or operations that are sent for execution by this PE,
including those that are not committed to the architectural state of this PE.

This event might be an alias for INST_SPEC.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

STALL (0x003C, Microarchitectural)

The counter counts every Attributable cycle on which no Attributable instruction operation was sent for execution
for this PE.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL, STALL_FRONTEND and
STALL_BACKEND events count at the same point in the pipeline.

For a simplified pipeline model of Fetch, Decode, Issue, Execute, Retire, Arm recommends that the events are
counted when instructions are dispatched from Decode to Issue.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

STALL_SLOT_BACKEND (0x003D, Microarchitectural)

Counts each slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution
because either:

• The backend was unable to accept the instruction operation available for this PE on the slot.
• The backend is unable to accept any operations on the slot.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL_SLOT, STALL_SLOT_FRONTEND
and STALL_SLOT_BACKEND events count at the same point in the pipeline.

On a given cycle, both the STALL_SLOT_FRONTEND and the STALL_SLOT_BACKEND event might be counted
if the backend is unable to accept any operations and there are no operations available to issue from the frontend.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

STALL_SLOT_FRONTEND (0x003E, Microarchitectural)

Counts each slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution
because there was no Attributable instruction or operation available to issue for this PE from the frontend for the
slot.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL_SLOT, STALL_SLOT_FRONTEND
and STALL_SLOT_BACKEND events count at the same point in the pipeline.

On a given cycle, both the STALL_SLOT_FRONTEND and the STALL_SLOT_BACKEND event might be counted
if the backend is unable to accept any operations and there are no operations available to issue from the frontend.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

STALL_SLOT (0x003F, Microarchitectural)

The counter counts on each Attributable cycle the number of instruction or operation slots that were not occupied
by an instruction or operation Attributable to this PE.

The definition of a slot is IMPLEMENTATION DEFINED, but there is a fixed number of slots, WIDTH, that are
available on each cycle, so that the formula STALL_SLOT / (CPU_CYCLES x WIDTH) gives the utilization
of the slots of the processor by Attributable instruction or operations of this PE. Each slot can hold at most one
instruction or operation each cycle.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

L1D_CACHE_RD (0x0040, Microarchitectural)

See L<n>D_CACHE_RD.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

LE_RETIRED (0x0100, Microarchitectural)

The counter increments for every Architecturally executed loop end (LE) instruction, when that instruction registers
an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

LE_SPEC (0x0101, Microarchitectural)

The counter increments for every speculatively executed loop end (LE) instruction, when that instruction registers
an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BF_RETIRED (0x0104, Microarchitectural)

The counter increments for every Architecturally executed branch future instruction, when that instruction registers
an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

BF_SPEC (0x0105, Microarchitectural)

The counter increments for every speculatively executed branch future instruction, when that instruction registers
an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

LE_CANCEL (0x0108, Microarchitectural)

The LO_BRANCH_INFO cache was cleared while it contained a valid loop entry as set up by a loop end instruction,
and that did not coincide with the last iteration of the loop.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

BF_CANCEL (0x0109, Microarchitectural)

The LO_BRANCH_INFO cache was cleared while it contained a valid branch entry as set up by a branch future
instruction, and that did not coincide with a taken implicit branch.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

SE_CALL_S (0x0114, Architectural)

The counter increments for every Architecturally executed SG instruction that results in a Security state transition
from Non-secure state to Secure state.

Arm recommends that this counter increments regardless of the Security state filters that are applied to the PMU.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

SE_CALL_NS (0x0115, Architectural)

The counter increments for every Architecturally executed BLXNS instruction that results in a Security state
transition from Secure state to Non-secure state.

Arm recommends that this counter increments regardless of the Security state filters that are applied to the PMU.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DWT_CMPMATCH0 (0x0118, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DWT_CMPMATCH1 (0x0119, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

DWT_CMPMATCH2 (0x011A, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DWT_CMPMATCH3 (0x011B, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DWT_CMPMATCH4 (0x011C, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DWT_CMPMATCH5 (0x011D, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DWT_CMPMATCH6 (0x011E, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DWT_CMPMATCH7 (0x011F, Architectural)

See DWT_CMPMATCH<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

PAC_RETIRED (0x0130, Microarchitectural)

The counter counts each operation counted by INST_RETIRED where the Architecturally executed instruction is
PAC, PACBTI, or PACG.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

PAC_SPEC (0x0131, Microarchitectural)

The counter counts each operation counted by INST_SPEC where the speculatively executed instruction is PAC,
PACBTI, or PACG.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

AUT_RETIRED (0x0134, Microarchitectural)

The counter counts each operation counted by INST_RETIRED where the Architecturally executed instruction is
AUT or AUTG.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

AUT_SPEC (0x0135, Microarchitectural)

The counter counts each operation counted by INST_SPEC where the speculatively executed instruction is AUT
or AUTG.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

STALL_BACKEND_PAC (0x013C, Microarchitectural)

The counter countseach operation counted by STALL_BACKEND where no operation can be issued due to a
PAC operation being in progress. This includes PAC stalls as a result of PAC, PACBTI, PACG, AUT, and AUTG
instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_INST_RETIRED (0x0200, Architectural)

The counter increments for each Architecturally executed MVE instruction that is subject to beat-wise execution.
This includes instructions that are partially or fully predicated, and instructions that resume execution after returning
from an exception.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_INST_SPEC (0x0201, Microarchitectural)

The counter increments for each speculatively executed MVE instruction that is subject to beat-wise execution. This
includes instructions that are subsequently not Architecturally executed. As a result, this event might count a larger
number of instructions than the number of instructions Architecturally executed. The definition of speculatively
executed is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_FP_RETIRED (0x0204, Architectural)

The counter increments for each Architecturally executed MVE instruction, as counted by MVE_INST_RETIRED,
that operates on floating-point data. This includes MVE conversion instructions that convert to or from
floating-point representation, as well as floating-point vector compare and vector predicate instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_FP_SPEC (0x0205, Microarchitectural)

The counter increments for each speculatively executed MVE instruction, as counted by MVE_INST_SPEC, that
operates on floating-point data. This includes MVE conversion instructions that convert to or from floating-point
representation, as well as floating-point vector compare and vector predicate instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_FP_HP_RETIRED (0x0208, Architectural)

The counter increments for each Architecturally executed MVE floating-point instruction that operates on
floating-point data, as counted by MVE_FP_RETIRED, and which additionally operates on half-precision data.
This includes MVE conversion instructions that convert to or from half-precision floating-point representation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_FP_HP_SPEC (0x0209, Microarchitectural)

The counter increments for each speculatively executed MVE floating-point instruction that operates on
floating-point data, as counted by MVE_FP_SPEC, and which additionally operates on half-precision data. This
includes MVE conversion instructions that convert to or from half-precision floating-point representation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_FP_SP_RETIRED (0x020C, Architectural)

The counter increments for each Architecturally executed MVE floating-point instruction that operates on
floating-point data, as counted by MVE_FP_RETIRED, and which additionally operates on single-precision data.
This includes MVE conversion instructions that convert to or from single-precision floating-point representation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_FP_SP_SPEC (0x020D, Microarchitectural)

The counter increments for each speculatively executed MVE floating-point instruction that operates on
floating-point data, as counted by MVE_FP_SPEC, and which additionally operates on single-precision data.
This does not include MVE conversion instructions that convert to or from single-precision floating-point
representation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_FP_MAC_RETIRED (0x0214, Architectural)

The counter increments for each Architecturally executed MVE floating-point instruction that performs a multiply
or multiply-accumulate operation. This includes instructions that perform fused multiply-accumulation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_FP_MAC_SPEC (0x0215, Microarchitectural)

The counter increments for each speculatively executed MVE floating-point instruction that performs a multiply or
multiply-accumulate operation. This includes instructions that perform fused multiply-accumulation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_INT_RETIRED (0x0224, Architectural)

The counter increments for each Architecturally executed MVE beat-wise integer or fixed-point instruction. This
does not include any floating-point conversion instructions. This does include integer vector compare and vector
predicate instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_INT_SPEC (0x0225, Microarchitectural)

The counter increments for each speculatively executed MVE beat-wise integer or fixed-point instruction. This
does not include any floating-point conversion instructions. This does include integer vector compare and vector
predicate instructions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_INT_MAC_RETIRED (0x0228, Architectural)

The counter increments for each Architecturally executed MVE integer or fixed-point instruction, as counted by
MVE_INT_RETIRED, which additionally performs a multiply or multiply-accumulate operation. This includes
reducing variants.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_INT_MAC_SPEC (0x0229, Microarchitectural)

The counter increments for each speculatively executed MVE integer or fixed-point instruction, as counted
by MVE_INT_SPEC which additionally performs a multiply or multiply-accumulate operation. This includes
reducing variants.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_RETIRED (0x0238, Architectural)

The counter increments for each Architecturally executed MVE load instruction that writes data to a Q register or
store instruction that sources data from a Q register.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_SPEC (0x0239, Microarchitectural)

The counter increments for each speculatively executed MVE load instruction that writes data to a Q register or
store instruction that sources data from a Q register.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_LD_RETIRED (0x023C, Architectural)

The counter increments each time MVE_LDST_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_SPEC (0x023D, Microarchitectural)

The counter increments each time MVE_LDST_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_RETIRED (0x0240, Architectural)

The counter increments each time MVE_LDST_RETIRED increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_SPEC (0x0241, Microarchitectural)

The counter increments each time MVE_LDST_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_CONTIG_RETIRED (0x0244, Microarchitectural)

The counter increments each time a contiguous memory load or store instruction is Architecturally executed, and
results in an optimal number of memory accesses. The counter increments for scatter-gather instructions that are
promoted to contiguous accesses. The counter increments regardless of alignment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_CONTIG_SPEC (0x0245, Microarchitectural)

The counter increments each time a contiguous memory load or store instruction is speculatively executed, and
results in an optimal number of memory accesses. The counter increments for scatter-gather instructions that are
promoted to contiguous accesses. The counter increments regardless of alignment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_CONTIG_RETIRED (0x0248, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_CONTIG_SPEC (0x0249, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_ST_CONTIG_RETIRED (0x024C, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_RETIRED increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_CONTIG_SPEC (0x024D, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_NONCONTIG_RETIRED (0x0250, Microarchitectural)

The counter increments each time a non-contiguous memory load or store instruction is Architecturally executed,
and results in an increased number of accesses compared to a contiguous operation. The counter is incremented
one time, regardless of the additional number of memory requests that are required to complete the execution of
that instruction. The counter does not increment if a scatter-gather instruction is promoted to contiguous memory
accesses.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_NONCONTIG_SPEC (0x0251, Microarchitectural)

The counter increments each time a non-contiguous memory load or store instruction is speculatively executed,
and results in an increased number of accesses compared to a contiguous operation. The counter is incremented
one time, regardless of the additional number of memory requests that are required to complete the execution of
that instruction. The counter does not increment if a scatter-gather instruction is promoted to contiguous memory
accesses.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_NONCONTIG_RETIRED (0x0254, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_NONCONTIG_SPEC (0x0255, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_NONCONTIG_RETIRED (0x0258, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_RETIRED increments as a result of a store
operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_ST_NONCONTIG_SPEC (0x0259, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_MULTI_RETIRED (0x025C, Architectural)

The counter increments whenever a VLD2x, VST2x, VLD4x, or VST4x instruction is Architecturally executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_MULTI_SPEC (0x025D, Microarchitectural)

The counter increments whenever a VLD2x, VST2x, VLD4x, or VST4x instruction is speculatively executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_MULTI_RETIRED (0x0260, Architectural)

The counter increments whenever a VLD2x, or VLD4x instruction is Architecturally executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_MULTI_SPEC (0x0261, Microarchitectural)

The counter increments whenever a VLD2x, or VLD4x instruction is speculatively executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_MULTI_RETIRED (0x0264, Architectural)

The counter increments whenever a VST2x, or VST4x instruction is Architecturally executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_MULTI_SPEC (0x0265, Microarchitectural)

The counter increments whenever a VST2x, or VST4x instruction is speculatively executed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_RETIRED (0x028C, Microarchitectural)

The counter increments when MVE_LDST_RETIRED increments as a result of an instruction that requires one or
more additional memory accesses because of misalignment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_LDST_UNALIGNED_SPEC (0x028D, Microarchitectural)

The counter increments when MVE_LDST_SPEC increments as a result of an instruction that requires one or more
additional memory accesses because of misalignment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_UNALIGNED_RETIRED (0x0290, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LD_UNALIGNED_SPEC (0x0291, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_UNALIGNED_RETIRED (0x0294, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_RETIRED increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_ST_UNALIGNED_SPEC (0x0295, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_NONCONTIG_RETIRED (0x0298, Microarchitectural)

This counter increments whenever both MVE_LDST_UNALIGNED_RETIRED and MVE_LDST_NONCONTIG_RETIRED
increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_NONCONTIG_SPEC (0x0299, Microarchitectural)

This counter increments whenever both MVE_LDST_UNALIGNED_SPEC and MVE_LDST_NONCONTIG_SPEC
increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_VREDUCE_RETIRED (0x02A0, Architectural)

The counter increments whenever an MVE instruction that operates on a vector to produce a scalar result that is
stored in a general-purpose register is Architecturally executed. This includes only instructions that have the ‘V’
suffix.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_VREDUCE_SPEC (0x02A1, Microarchitectural)

The counter increments whenever an MVE instruction that operates on a vector to produce a scalar result that is
stored in a general-purpose register is speculatively executed. This includes only instructions that have the ‘V’
suffix.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_VREDUCE_FP_RETIRED (0x02A4, Architectural)

The counter increments whenever both MVE_VREDUCE_RETIRED and MVE_FP_RETIRED increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_VREDUCE_FP_SPEC (0x02A5, Microarchitectural)

The counter increments whenever both MVE_VREDUCE_SPEC and MVE_FP_SPEC increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_VREDUCE_INT_RETIRED (0x02A8, Architectural)

The counter increments whenever both MVE_VREDUCE_RETIRED and MVE_INT_RETIRED increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_VREDUCE_INT_SPEC (0x02A9, Microarchitectural)

The counter increments whenever both MVE_VREDUCE_SPEC and MVE_INT_SPEC increment.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_PRED (0x02B8, Microarchitectural)

The counter increments on each Architecture tick where one or more beats of an MVE beat-wise instruction
architecturally completes, and where one or more of these beats is partially or fully predicated false by VPR or
loop-tail predication.

If a beat is interrupted by an exception and does not architecturally complete, or if the beat is masked by EPSR.ECI
when resuming execution following an exception, Arm recommends that the counter does not increment.

The ratio (MVE_PRED * BEATS_PER_TICK) / (4 * MVE_INST_RETIRED) then offers an approximate insight
into the proportion of MVE instructions affected by predication, where BEATS_PER_TICK is an IMPLEMENTA-
TION DEFINED average number of beats, including from distinct overlapping instructions, executed per Architecture
tick.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

426

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_STALL (0x02CC, Microarchitectural)

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued as a direct
result of an MVE instruction that is either currently executing or attempting to execute.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_STALL_RESOURCE (0x02CD, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available resources in the PE capable of executing that instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_STALL_RESOURCE_MEM (0x02CE, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available memory resources in the PE capable of executing that
instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_STALL_RESOURCE_FP (0x02CF, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available floating-point resources in the PE capable of executing
that instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_STALL_RESOURCE_INT (0x02D0, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available integer resources in the PE capable of executing that
instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

MVE_STALL_BREAK (0x02D3, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to waiting for the
completion of an in-flight MVE instruction. A possible example is when an MVE chainable instruction completes
before executing a scalar instruction. Arm recommends that the counter increments only if no other specific
attributable cause can be identified.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

MVE_STALL_DEPENDENCY (0x02D4, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to the subsequent
instruction being delayed to resolve a register RAW conflict.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

ITCM_ACCESS (0x4007, Microarchitectural)

The counter counts memory read or memory write operations that the PE made to an instruction TCM.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DTCM_ACCESS (0x4008, Microarchitectural)

The counter counts memory read or memory write operations that the PE made to a data or unified TCM.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

TRCEXTOUT0 (0x4010, Microarchitectural)

See TRCEXTOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

TRCEXTOUT1 (0x4011, Microarchitectural)

See TRCEXTOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

TRCEXTOUT2 (0x4012, Microarchitectural)

See TRCEXTOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

TRCEXTOUT3 (0x4013, Microarchitectural)

See TRCEXTOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

CTI_TRIGOUT4 (0x4018, Microarchitectural)

See CTI_TRIGOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter B15. The Performance Monitors Extension
B15.10. Common event descriptions

CTI_TRIGOUT5 (0x4019, Microarchitectural)

See CTI_TRIGOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

CTI_TRIGOUT6 (0x401A, Microarchitectural)

See CTI_TRIGOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

CTI_TRIGOUT7 (0x401B, Microarchitectural)

See CTI_TRIGOUT<n>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU && DSPDE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter B15. The Performance Monitors Extension
B15.11. Required PMU events

B15.11 Required PMU events

RFXXR The architecture requires that the PMU supports at least the following common events:

• 0x0000 SW_INCR: Instruction Architecturally executed, condition code check pass, software increment.

• 0x0003 L1D_CACHE_REFILL: Attributable Level 1 data cache refill.

– This event is only required if the implementation includes a Level 1 data or unified cache.

• 0x0004 L1D_CACHE: Attributable Level 1 data cache access.

– This event is only required if the implementation includes a Level 1 data or unified cache.

• 0x0008 INST_RETIRED: Instruction Architecturally executed.

• 0x0011 CPU_CYCLES: Cycle.

• 0x0021 BR_RETIRED: Instruction Architecturally executed, branch.

– This event is only required if the implementation includes program flow prediction.

• 0x0022 BR_MIS_PRED_RETIRED: Instruction Architecturally executed, mispredicted branch.

– This event is only required if the implementation includes program flow prediction.

• 0x0023 STALL_FRONTEND: No operation issued due to the frontend.

• 0x0024 STALL_BACKEND: No operation issued due to the backend.

• 0x0200 MVE_INST_RETIRED: MVE instruction Architecturally executed.

– This event is only required if the implementation includes MVE.

• 0x0238 MVE_LDST_RETIRED: MVE load or store instruction Architecturally executed.

– This event is only required if the implementation includes MVE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter B15. The Performance Monitors Extension
B15.12. IMPLEMENTATION DEFINED event numbers

B15.12 IMPLEMENTATION DEFINED event numbers

RZJSZ For IMPLEMENTATION DEFINED event numbers, each counter is independently defined to either:

• Increment only one time for each event.
• Count the duration for which an event occurs.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

ILCNR Arm recommends that implementers establish a standardized numbering scheme for their IMPLEMENTATION
DEFINED events, with common definitions and common count numbers applied to all of their implementations.
In general, Arm recommends standardization across implementations with common features. However, Arm
recognizes that attempting to standardize the encoding of microarchitectural features across too wide a range of
implementations is not productive.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

IRKHN Arm strongly recommends that the IMPLEMENTATION DEFINED events allow the user to measure the utilization
of any microarchitectural features that the implementation considers important for system performance, and any
significant deviations from optimal performance.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - PMU.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter B16
Reliability, Availability, and Serviceability (RAS) Extension

This chapter specifies the Armv8.1-M Reliability, Availability, and Serviceability (RAS) Extension. A minimal
implementation of this is mandatory for any implementation of the Armv8.1-M architecture, but any additional
RAS features are optional.

This chapter contains the following sections:

B16.1 Overview.

B16.2 Taxonomy of errors.

B16.3 Generating error exceptions.

B16.4 Error Synchronization Barrier (ESB).

B16.5 Implicit Error Synchronization (IESB).

B16.6 Fault handling.

B16.7 RAS error records.

B16.8 Multiple BusFault exceptions.

B16.9 Minimal RAS implementation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.1. Overview

B16.1 Overview

IZTMS For a detailed description of possible RAS errors, see the Arm® Reliability, Availability, and Serviceability (RAS)
Specification, Armv8, for the Armv8-A architecture profile.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RTXGN A minimum implementation of the RAS Extension is required for an implementation of the v8.1-M architecture.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RRSMP ID_PFR0.RAS is nonzero when the RAS Extension is implemented.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ICTQJ An error is a deviation from correct service. For the purpose of describing the RAS Extension, deviation from
correct service is defined using the following terms:

• A failure is the event of deviation from correct service. This includes data corruption, data loss, and service
loss.

• An error is the deviation.
• A fault is the cause of the error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RFCTN When a PE accesses memory or other state, an error might be detected in that memory or state, and corrected,
deferred, or signaled to the PE as a Detected error. It is IMPLEMENTATION DEFINED whether an error that is
detected by a consumer of a write from a PE is signaled to the PE and becomes a Detected error that is consumed
by the PE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ILTTV The nodes that are included as part of a PE, including an Armv8-M PE, are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RTLFS A single error might generate multiple exceptions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

INJVH Software must be aware that errors might be double-reported.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

See also:

B16.9 Minimal RAS implementation.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.2. Taxonomy of errors

B16.2 Taxonomy of errors

IGNNQ The architecture does not specify techniques for:

• Fault prevention.
• Fault removal.
• Fault injection.
• Testing.

These are IMPLEMENTATION DEFINED and are outside the scope of this architecture.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.2.1 Architectural error propagation

RMVFK For a PE, Error propagation applies to the propagation of detected errors between the general-purpose registers or
the Floating-point Extension register file, and any program-visible architectural state of the PE, including:

• Other general-purpose registers and the Floating-point Extension register file.
• Memory-mapped registers.
• Special-purpose registers.
• Memory.

That is, the error is propagated by:

• A store of a corrupt value.

• A write of a corrupt value to a System register or a special-purpose register. Infecting a System register state
might mean that the PE generates transactions that would not otherwise be permitted.

• Any operation that would not have been permitted to occur had the error not been activated, including:

– A load or instruction fetch that would not have been permitted, including those from hardware speculation
or prefetching.

– A store to an incorrect address or a store that would not have been made or not permitted.
– A direct or indirect write to a special-purpose or System register that would not have been made or not

permitted.
– Assertion of any signal, such as an interrupt, that would not have been asserted.

• Any operation not occurring that would have occurred had the error not been activated.

• Taking an asynchronous exception.

• The PE discarding data that it holds in a modified state.

• Any other loss of uniprocessor semantics, ordering or coherency.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RRGPS The propagated error is silently propagated if it is not signaled to a consumer as a Detected error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RJKVQ The features that a PE includes to contain an error are IMPLEMENTATION DEFINED, and it is IMPLEMENTATION
DEFINED whether an error can be signaled to the consumer as a Detected error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.2.2 Architecturally infected, contained, and uncontained

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.2. Taxonomy of errors

RVKZT Infected, Poisoned, Containable and Uncontainable apply to all program-visible architectural state of the PE,
including general-purpose registers, the Floating-point Extension register file, special purpose registers, System
registers, and memory.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RZPCB An error is Uncontainable by the PE if the error is silently propagated, unless it is contained because all of the
following are true:

• The corrupt value is in the general-purpose register or in the Floating-point Extension register file.

• The error has only been silently propagated by an instruction that occurs in program order after one of the
following:

– Taking a BusFault that is generated by the error.
– An Error Synchronization Barrier operation that synchronizes the error.

• The error is not silently propagated in any other way.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.2.3 Architecturally consumed errors

RRNNF For a PE, an error is architecturally consumed if any of the following are true:

• An instruction commits the corruption into the visible state of the PE.
• The error is on an instruction fetch and the instruction is committed for execution.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RMKBF The PE takes action for a detected, architecturally consumed error either by:

• Generating an error exception.
• Entering a failure mode.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.2.4 Other errors

ITCZS Errors from software faults are outside the scope of the RAS Extension error recovery architecture.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IKDJP From within the PE itself, other errors might be detected. These are not errors that are detected by the architectural
model of the PE and so are treated like errors that are detected by another component. Other components might
report errors to a PE using error recovery interrupts. An example of this is when the cache, not the PE, detects a
RAM error. Other components might report errors to a PE using error recovery interrupts.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.3. Generating error exceptions

B16.3 Generating error exceptions

IWZHQ The following diagram shows the taxonomy of consumed errors.

Uncorrected

Silenty
propagated? Error corrected?

no

Uncontained

maybe

Corrected
yes

Component can
continue?

no

Component state
corrupted?

yes

Unrecoverable

no

Recoverable

yes

Restartable

no

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RPVJQ An error exception is generated for all detected RAS errors that are neither Corrected nor Deferred errors. These
error exceptions are signaled to, and consumed by, a PE and are not silently propagated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RRPFG A Corrected error is detected and corrected by the PE, and is not silently propagated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

INDMC In normal circumstances a Corrected error no longer infects the node. In IMPLEMENTATION DEFINED
circumstances, the Corrected error might remain latent in the node.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IPSKL For an Uncontainable error, if the error cannot be isolated to an application, the system must be shut down by
software to avoid Catastrophic failure.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ILFCG For an Unrecoverable error, the application cannot continue and must be isolated by software methods.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IPTXC For a Recoverable error, if software cannot locate and repair the error, the application must be isolated by software
methods.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IRSJP For a Restartable error, software might take action to locate and repair the error before it is consumed. The PE can
be restarted by software without software taking any action to locate and repair the error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.3. Generating error exceptions

RSJKL On each error exception, it is IMPLEMENTATION DEFINED whether the error has been contained or whether it is
Uncontainable. If the error has been contained, it is further IMPLEMENTATION DEFINED whether the state of the
PE on taking the error exception is Unrecoverable, Recoverable, or Restartable:

Uncontainable error (UC): The error is Uncontainable if it has been, or might have been, silently propagated.
This is also referred to as an Uncontained error.

Unrecoverable error (UEU): The state of the PE is Unrecoverable if all of the following are true:

• The error has not been silently propagated.
• The PE cannot recover execution from the return address of the exception. This might be because of one of

the following:
– The error has been architecturally consumed by the PE and infected the state of the PE general-purpose

registers, the Floating-point Extension register file, and System registers.
– The exception is asynchronous.

Recoverable error (UER): The state of the PE is Recoverable if all of the following are true:

• The error has not been silently propagated.
• The error has not been architecturally consumed by the PE (the architectural state of the PE is not infected).
• The exception is synchronous and the PE can recover execution from the return address of the exception.

The PE cannot make correct progress without either consuming the error or otherwise making the error
Unrecoverable. The error remains latent in the system.

Restartable error (UEO): The state of the PE is Restartable if all of the following are true:

• The error has not been silently propagated.
• The error has not been architecturally consumed by the PE (the architectural state of the PE is not infected).
• The exception is synchronous and the PE can recover execution from the return address of the exception.

The PE can make progress. However, the error might remain latent in the system.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RKZPT The set of error types that can be reported by an implementation is IMPLEMENTATION DEFINED. An implementation
can report:

• Any Restartable error as any of Recoverable, Unrecoverable, or Uncontainable.
• Any Recoverable error as either Unrecoverable or Uncontainable.
• Any Unrecoverable error as Uncontainable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IXCSK If the state of the PE is reported as Recoverable, this does not mean that the error can be recovered from. For
example, because the error in memory might be one which does not allow software to recover the operation. Rather,
software might be able to recover if it can repair the error and continue.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RSGHS A bus error might be raised in response to:

• An architectural memory read, or reads from instruction fetches.
• An architectural write to memory, or cache maintenance operation.
• A read from memory because of hardware speculation, prefetching, or other non-architectural mechanisms.

The events that trigger bus errors are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RQLCQ It is IMPLEMENTATION DEFINED whether a RAS error that is detected by the consumer of a write from a PE:

• Is deferred to the consumer.
• Is returned to the PE as a bus error.
• Generates an error recovery interrupt.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.3. Generating error exceptions

The behavior might vary by physical address or memory type.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RTFLL The method by which the error is deferred depends on the component and is implementation-specific.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IRDQV A common mechanism to defer the error is to create Poisoned state, which subsequently generates an error when
that state is accessed.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RCXSW The size of the Protection granule for any implemented error detection mechanism is IMPLEMENTATION DEFINED,
and a system might implement multiple error detection mechanisms with different Protection granule sizes.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RGBDR The mechanisms for clearing an error or poison from a Protection granule is IMPLEMENTATION DEFINED, and it is
IMPLEMENTATION DEFINED whether any such mechanism exists.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RPXMR BFSR is populated for every BusFault that is generated by a RAS error. RFSR is populated for every RAS BusFault
exception, and it is IMPLEMENTATION DEFINED whether it is also updated for other asynchronous BusFault
exceptions. If RFSR is updated, RFSR.V is set.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RFZKC The severity of the error and the state of the PE are reported when the error exception is pended.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IZKNJ If an error exception occurs while the BusFault exception handler is handling a previous error exception, the
existing exception nesting behaviors apply. This might cause the exception to escalate to a HardFault or Lockup.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RVWPS A DAP request that causes a synchronous RAS error returns an error to the debugger, but does not update RFSR,
BFSR, and BFAR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RDCKC A DAP access that causes an asynchronous RAS error does not return an error to the debugger, but for a read
access UNKNOWN data is returned. A BusFault might be generated and update RFSR, BFSR, and BFAR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.3.1 Error correction and deferment

RWXZD Hardware corrects or defers an error if it can do so. The error is logged, and a fault handling interrupt is generated
for fault handling purposes if the node is configured to do so.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.4. Error Synchronization Barrier (ESB)

B16.4 Error Synchronization Barrier (ESB)

IJLPC The RAS Extension introduces a new instruction, the Error Synchronization Barrier (ESB).

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RDNTZ ESB acts as a NOP when the system cannot synchronize RAS errors.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IDLKL ESB does not itself update any registers, but any ensuing RAS BusFault exception will update at least BFSR and
RFSR.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ILNRD ESB might update syndrome bits, for example if IESBs are disabled.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RZLCQ An ESB acts as a Data Synchronization Barrier when either:

• There is a pending BusFault exception, which might have been forced to be recognized as a direct result of
the call to SynchronizeBusFault().

• There is a pending HardFault exception, which might have been caused by an asynchronous BusFault which
escalated due to the BusFault exception being disabled.

This behavior guarantees that a subsequent load of the memory mapped syndrome registers and pending bits in
BFSR, RFSR and SHCSR return the correct values.

If a BusFault exception is recognized or escalated as a result of the ESB instruction affects the current Security state,
then the values in the syndrome registers must be congruent with the current Security state. When determining
whether the ESB instruction also acts as an implicit Data Synchronization Barrier, only the corresponding exception
bits associated with the current Security state must be checked.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

See also:

B16.5 Implicit Error Synchronization (IESB).

B16.4.1 ESB and Unrecoverable errors

RVDCF An ESB acts as a barrier to all unrecoverable (RAS-related and non-RAS related) bus errors and causes any Latent
faults to be recognized synchronously with the instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IMSMM Depending on the current state of the PE, recognizing any latent bus errors might simply result in a BusFault being
pended, or the BusFault might be taken or escalated.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IGCBZ The Error Synchronization Barrier operation contains the error for the current software context.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.4.2 ESB and other containable errors

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.4. Error Synchronization Barrier (ESB)

IPHSB For other types of Containable error:

• A Recoverable error has not yet been consumed by the PE.
• Restartable and Corrected errors, and BusFault exceptions from reads by hardware speculation that do not

corrupt the state of the PE, have not been consumed by the PE.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RWKMP An unconsumed RAS error might be taken at the ESB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

B16.4.3 ESB and other errors

RPHJW Synchronous BusFault exceptions are not synchronized by an Error Synchronization Barrier.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RTXBQ Interrupts are not synchronized by an ESB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RVSDB An ESB instruction will synchronize asynchronous BusFaults.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RWRJG An ESB always synchronizes Containable errors, but it is IMPLEMENTATION DEFINED whether IMPLEMENTATION
DEFINED and uncategorized BusFault exceptions are Uncontainable, and whether they can be synchronized by an
Error Synchronization Barrier.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ITZTR Uncontainable errors might not have been contained, and Uncontainable BusFault exceptions might be
asynchronous. An Uncontainable error might be taken at the ESB but this is not architecturally required.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RTSGR It is IMPLEMENTATION DEFINED whether IMPLEMENTATION DEFINED and uncategorized interrupts are
Containable or Uncontainable.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IHGSQ An Uncontainable error might be taken at an Error Synchronization Barrier or recorded in RFSR.IS by an ESB
instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RSBFD When an ESB instruction is executed the return address from any taken BusFault exception is the ESB instruction.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.5. Implicit Error Synchronization (IESB)

B16.5 Implicit Error Synchronization (IESB)

ISSXC To ensure that faults arise in the appropriate PE state, an implicit error synchronization event (IESB) can optionally
be inserted on every exception entry, exception return, and on lazy state stacking operations.

Neither entry to, nor exit from, Debug state insert an IESB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RZGNM IESB only updates at least one of BFSR or RFSR if there was a latent asynchronous bus error that was synchronized.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RVTKM An IESB acts as a barrier to all Unrecoverable (RAS-related and non-RAS related) bus errors.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RGRKC Enabling IESBs causes all asynchronous BusFaults to escalate as if they were synchronous BusFaults, regardless
of whether they were asynchronously recognized, or forced to be recognized by an ESB or IESB.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RNGQC Asynchronous BusFaults that escalate synchronously because IESBs are enabled are still reported as asynchronous
faults. This means that the exception return address does not point to the instruction that caused the fault.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RWRDB AIRCR.IESB determines whether an exception entry or an exception return behaves as an implicit error
synchronization event and requires any outstanding RAS exceptions to be acknowledged:

• On exception entry, only errors relating to the background code and register stacking are affected by
AIRCR.IESB. Any resulting BusFault from exception entry will be subject to the rules on derived exceptions.

• On exception return, only errors relating to the handler code are affected by AIRCR.IESB. Register unstacking
relates to the background code and is not affected by the implicit error synchronization barrier and are handled
on return to Thread mode subject to the rules on exception priority. Any BusFault that occurs during exception
return, before the transition to Thread mode, when AIRCR.IESB is one will be treated as a synchronous
exception to the Handler.

This ensures that the fault is associated with the context that triggered it.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IPDXH Arm recommends that implementations support the implicit error synchronization behavior when asynchronous
exceptions and associated timings create the possibility of errors being associated with a context that is different to
the one that caused the error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IWJNK Writes by software to AIRCR.IESB can be ignored by the PE if it does not support configurable implicit ESB
insertion. The value that is read back determines whether the feature is supported.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.5. Implicit Error Synchronization (IESB)

RLZWF When IESBs are enabled:

• An IESB occurs prior to stacking of the lazy floating point state, and any RAS errors are associated with
foreground code.

• An IESB occurs after the stacking of the lazy floating point state, and any RAS errors are associated with the
register stacking.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS && (FP || MVE).

RJMXC RAS faults set the first applicable syndrome information from the following list:

• BFSR.LSPERR if the error is attributable to lazy state preservation stacking.
• BFSR.STKERR if the error is attributable to exception register stacking.
• BFSR.UNSTKERR if the error is attributable to exception register unstacking.
• BFSR.IBUSERR if the error is caused by an instruction fetch or prefetch.
• BFSR.PRECISERR if the error occurred synchronously and is attributable to instruction execution.
• BFSR.IMPRECISERR otherwise.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

442

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.6. Fault handling

B16.6 Fault handling

RQRVP There are four forms of RAS error reporting:

• A bus error in response to an action from the PE.
• An error recovery interrupt.
• A Fault handling interrupt.
• A critical error interrupt.

Depending on the system configuration, the interrupts can be routed through a system interrupt controller or the
NVIC.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IWPNL An error recovery interrupt can notify software of RAS faults that are detected in the system.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ILVWP A fault handling interrupt can notify software of RAS events that are detected in the system.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RJLPR When an error is detected by a node that supports fault reporting, the node records the error in Error record registers
and generates a RAS fault handling interrupt, if configured to do so.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IXKVL The RAS fault handling interrupt might be routed at the system level to a PE that is not directly affected by the
fault. Conversely, the PE might receive fault handling interrupts relating to other devices in the system.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RJTXP RAS fault handling interrupts might be sent to a dedicated fault handling PE by IMPLEMENTATION DEFINED
means.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RSMXP The error recovery interrupts, fault handling interrupts, and critical error interrupts, are level sensitive or pulse
sensitive in the same way as other interrupts. It is IMPLEMENTATION DEFINED whether a node employs level
sensitive or pulse sensitive interrupts.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RGTMF The error recovery interrupts, fault handling interrupts, and critical error interrupts are pended in finite times after
changes to the error conditions or to the fault being observed or corrected.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RNHGH Support for critical error conditions and critical error interrupts at a node is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IKLPK An example of a critical error is one where the node has entered a failure mode, which means that the primary
error recovery mechanisms cannot be used. For example, if a memory controller enters a failure mode and stops
handling memory requests from application processors, and application processors host the primary error recovery
software, then the error is signaled to a secondary error controller that has its own private resources to log the error.
The RAS Extension allows for a dedicated interrupt, called the critical error interrupt, to be generated by a node
when such an error occurs.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RFWDD For a given node, the critical error interrupt is implemented if ERRFRn.CI !=0b00.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

443

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.6. Fault handling

RHJHC For a given node, if the critical error interrupt is implemented, then the error recovery interrupt is also implemented.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RTCPP The critical error interrupt is enabled when ERRCTRLn.CI is set to 1.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RLLPF If the critical error interrupt is implemented, then when a critical error condition is recorded, the node sets
ERRSTATUSn.CI to 1, regardless of whether the critical error interrupt is enabled or disabled.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RWDPT If the critical error interrupt is implemented and disabled, then when a critical error condition is detected, the node
records the critical error as an Uncontainable error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IXPHJ Classifying the critical error condition as an Uncontainable error if the critical error interrupt is not enabled has the
effect of causing the node to generate an error recovery interrupt. The node also sets ERRSTATUSn.CI to 1. If the
critical error interrupt is enabled, it is IMPLEMENTATION DEFINED how the error is classified at the node. The
critical error flag is set to 1 in addition to the other syndrome information for the error, which is handled in the
normal way.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

See also:

Chapter B12 Nested Vectored Interrupt Controller.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

444

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.7. RAS error records

B16.7 RAS error records

IZFWK On encountering an error, a node writes to the RAS Error records. These records can then be analyzed by software
to determine whether there are any systematic problems to be dealt with.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RQDZN Each node provides at least one Error record to control error reporting and expose status.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RFDFQ A node can provide multiple Error records if it offers multiple, logically distinct functions.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RSTJR If a node provides multiple Error records, these are serially indexed. Each record, other than the first record, has an
ERRFRn register that is RAZ/WI and the ERRTCTRLn register is RES0.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ISDBZ An example of a group containing four error records owned by three nodes is shown below:

Node: <0> <1> <2>

Record: <0> <1> <2> <3>

In the diagram:

• Node<0> owns one error record: <0>.
• Node<1> owns two error records: <1> and <2>.
• Node<2> owns one error record: <3>.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RJSWF The standard Error records contain:

• Controls for common features, and an identification mechanism for these controls. For each node it is
IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to both reads and
writes, or whether they can be individually controlled for reads and writes.

• A status register for common status fields, such as the type and coarse characterization of the error.
• An address register, if applicable.
• IMPLEMENTATION DEFINED controls and identification registers.
• IMPLEMENTATION DEFINED status registers.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

445

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.7. RAS error records

IWSCV Arm recommends that the IMPLEMENTATION DEFINED status registers in the standard Error record are used for:

• Identifying a Field Replaceable Unit (FRU).
• Locating the error within the FRU.
• Optional Corrected Error counters for software to poll the rate of Corrected errors.

The architecture provides optional formats for the counters.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IQDFJ The content and format of the Error records is flexible to allow implementations to select an appropriate amount of
reporting.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RGVGT A group of Error records can be sparsely populated, which means that not all registers in the group might contain
valid information. Error record registers that are not implemented have an associated ERRFRn register field that
reads as zero.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RPJGD The number of Error records that can be accessed through the memory-mapped registers is IMPLEMENTATION
DEFINED, and might be zero. ERRDEVID.NUM indicates the highest numbered index of the Error records that
can be accessed, plus one.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RJVDC The content of the Error record registers is preserved over Warm reset.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

ISVLS Arm recommends that all Error records are remotely accessible for access by all PEs in a system, or by a Baseboard
Management Controller (BMC) or System Control Processor (SCP) or debugger. The remote access mechanism
is IMPLEMENTATION DEFINED but might use CoreSight-like interfaces. Arm recommends that remote access is
possible when the rest of the system is in a fail state, for example when the system has locked up.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RPRWQ When a new error is detected, the node:

• Sets or modifies ERRSTATUSn.{CE, DE, CI, UE, UET} to indicate the type of the new Detected error.

• The node either:

– Overwrites the Error record with the syndrome for the new error, if it has a higher priority than the
previous highest priority recorded error.

– Keeps the syndrome for the previous error, if the new error has a lower or the same priority as the
previous highest priority recorded error.

• Counts the error if it is a Corrected error and a counter is implemented.

• Sets ERRSTATUSn.V to 1.

• Generates an interrupt as required.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RXPXH A counter for Corrected errors is OPTIONAL.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

446

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.7. RAS error records

RLJTP The overwriting of errors depends on the type of the previous highest priority error and the type of the newly
recorded error. This is shown in the table below. The table uses the following abbreviations:

• CE: Corrected error.

• CO: Count and overflow. Keep the previous error syndrome and count the error. If counting the error causes
an unsigned overflow of the counter set ERRSTATUSn.OF to 1.

• CW: Count and overwrite. Count CE if a counter is implemented and overwrite. If a counter is implemented
and overflows, ERRSTATUSn.OF is set to an UNKNOWN value. Otherwise, it is IMPLEMENTATION DEFINED
whether ERRSTATUSn.OF is set to 0 or unchanged.

• CWO: Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the
value of ERRFRn.CEO:

0: Count CE if a counter is implemented and keep the previous error syndrome.

1: Count CE. If ERRSTATUSn.OF == 1 before the CE is counted, keep the previous syndrome. Otherwise
record the new error syndrome.

If the counter overflows or if no counter is implemented ERRSTATUSn.OF is set to 1.

• DE: Detected error.

• O: Overflow. Keep the previous error syndrome and set ERRSTATUSn.OF to 1.

• UEO: Restartable error.

• UER: Recoverable error.

• UEU: Unrecoverable error.

• UC: Uncontainable error.

• WO: Overwrite and overflow. ERRSTATUSn.OF is set to 1.

If no counter is implemented, CW behaves the same as W, and CWO and CO behave the same as O.

Previous error type New detected error type

CE DE UEO UER UEU UC

CW W W W W W

CE CWO WO WO WO WO WO

DE CO O WO WO WO WO

UEO CO O O WO WO WO

UER CO O O O WO WO

UEU CO O O O O WO

UC CO O O O O O

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RGPFK When a node generates an interrupt or exception, it ensures that any subsequent reads to the Error records return
the updated values.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RZCKJ ERRGSRn contains a read-only copy of ERRSTATUSn.V.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

447

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.8. Multiple BusFault exceptions

B16.8 Multiple BusFault exceptions

IRDHF Asynchronous BusFaults can be generated by multiple exception conditions. The architecture does not define
relative priorities.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RSCCP It is IMPLEMENTATION DEFINED whether bus errors that were generated by multiple exception conditions are
taken as a single BusFault exception.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RSWRS On taking a BusFault exception, whether for one or more BusFault exception conditions, the effects of the BusFault
exception or exceptions on the state of the PE is reported in RFSR.UET as any one of the following:

• Uncontained error.
• Unrecoverable error.
• Restartable error.
• Recoverable error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

RJJCW An Error Synchronization Barrier operation requires that all Unrecoverable errors are synchronized. If there are
multiple requests outstanding, they are all synchronized by a single Error Synchronization Barrier operation.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

448

Chapter B16. Reliability, Availability, and Serviceability (RAS) Extension
B16.9. Minimal RAS implementation

B16.9 Minimal RAS implementation

IQJVW The minimal RAS Extension is mandatory in an Armv8.1-M implementation. All additional RAS features are
optional.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

INPMM The RAS Extension is designed to provide a low implementation cost for devices that have limited RAS support.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IDHMH The minimal implementation of the RAS Extension is:

• The ESB instruction. This might be implemented as a NOP for implementations that do not offer RAS-induced
BusFaults.

• RFSR. This might be implemented as RAZ/WI.
• ERRDEVID. This might be implemented as RAZ/WI.
• AIRCR.IESB This might be implemented as RAZ/WI.
• ID_PFR0.RAS reads as a 0b0010.

This provides the necessary architectural support while offering no actual RAS reporting functionality.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

IGRQK Error record registers that are not implemented are RES0. In a minimal implementation, there might be no Error
records.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - RAS.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

449

Part C
Armv8-M Instruction Set

Chapter C1
Instruction Set Overview

This chapter provides a definition of the instruction descriptions contained in Chapter C2 Instruction Specification.
It contains the following sections:

C1.1 Instruction set.

C1.2 Format of instruction descriptions.

C1.3 Conditional execution.

C1.4 Instruction set encoding information.

C1.5 Modified immediate constants.

C1.6 NOP-compatible hint instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

451

Chapter C1. Instruction Set Overview
C1.1. Instruction set

C1.1 Instruction set

RNPFK There is one instruction set, called T32.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

C1.4 Instruction set encoding information.

Chapter C2 Instruction Specification.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

452

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

C1.2 Format of instruction descriptions

IXQQV Each instruction description in Chapter C2 Instruction Specification has the following content:

1. A title.
2. A short description.
3. The instruction encoding or encodings.
4. Any alias conditions, if applicable.
5. A list of the assembler symbols for the instruction.
6. Pseudocode describing how the instruction operates.
7. Notes, if applicable.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.2.1 The title

IRFFL The title of an instruction description includes the base mnemonic or mnemonics for the instruction. This is part of
the assembler syntax, for example SUB.

Applies to an implementation of the architecture Armv8.0-M onward.

IBSWN If different forms of an instruction use the same base mnemonic, each form has its own description. In this case,
the title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often
used when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C2 Instruction Specification the Armv8-M Instruction Set there are the following titles for
different forms of the ADD instruction:

• ADD (SP plus immediate)

• ADD (SP plus register)

• ADD (immediate)

• ADD (immediate to PC)

• ADD (register)

Applies to an implementation of the architecture Armv8.0-M onward.

IRKXC Where an instruction has more than one variant, the descriptions might be combined, for example for CDP and
CDP2.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.2.2 A short description

IQNXW This briefly describes the function of the instruction. The short description is not a complete description of the
instruction and must be read in conjunction with the instruction encoding, mnemonic, alias conditions, assembler
symbols, pseudocode and any applicable notes.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.2.3 The instruction encoding or encodings

RLTJB Instruction descriptions in this manual contain:

• An encoding section, containing one or more encoding diagrams, each followed by some decode pseudocode
that:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

453

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

1. Picks out any encoding-specific special cases.
2. Translates the fields of the encoding into inputs for the common pseudocode of the instruction

• An operation section, containing common pseudocode that applies to all of the encodings being described.
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function which
triggers the decode pseudocode, either at its start or only after a Condition code check performed by if

ConditionPassed() then.

Applies to an implementation of the architecture Armv8.0-M onward.

RBDDV An encoding diagram specifies each bit of the instruction encoding as one of the following:

• A mandatory 0 or 1, represented in the diagram as 0 or 1. If the PE attempts to decode and execute the
instruction and a bit does not have a mandatory value, the encoding corresponds to a different instruction.

• A should be 0 or should be 1, represented in the diagram as (0) or (1). If the PE attempts to decode
and execute the instruction and a bit does not have the should be value, the instruction is CONSTRAINED
UNPREDICTABLE.

• A named single bit or a bit in a named multi-bit field.

Applies to an implementation of the architecture Armv8.0-M onward.

RWHJJ If the instruction bit pattern of an instruction is executed with these fields not having the should-be values, one or
more of the following must occur:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction operates as if the bit had the should-be value.
• Any destination registers of the instruction become UNKNOWN.
• For an MVE instruction that includes a 3-bit field representing the MSBs of a 4-bit general-purpose source

register specifier, that is immediately followed by a SBZ or SBO field, the register reads as an UNKNOWN
value.

• For an MVE instruction that includes a 3-bit field representing the MSBs of a 4-bit general-purpose destination
register specifier, that is immediately followed by a SBZ or SBO field, it is UNKNOWN whether the LSB
selects the even or odd general-purpose destination register corresponding to the top 3-bit MSBs.

• For an instruction that is part of the PACBTI extension, any hard-coded operand register reads as an
UNKNOWN value.

The exceptions to this rule are:

• The following instructions treat the should-be value hw2 bit 13 differently than the above:

– LDM, LDMIA, LDMFD.
– LDMDB, LDMEA.
– POP (multiple registers).
– PUSH (multiple registers).
– STM, STMIA, STMEA.
– STMDB, STMFD.

The behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

– The instruction is UNDEFINED.
– The instruction executes as NOP.
– The instruction performs all the loads or stores using the specified addressing mode, but SP is UNKNOWN.

• In the SDIV and UDIV instructions, the should-be value is treated as a register field. If the should-be value is
not 0b1111 then the behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

– The instruction is UNDEFINED.
– The instruction executes as a NOP.
– The instruction operates as if the field had the should-be value.
– The instruction performs the divide operation but the register specified by the should-be value becomes

UNKNOWN.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

454

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

Applies to an implementation of the architecture Armv8.0-M onward.

IRTFM In certain versions of the architecture some instruction encodings contain SBO or SBZ fields or bits. If these
encoding fields or bits are changed to hard bits, 1 or 0, the field or bit in the diagram will be enclosed in square
brackets. The architecture version being implemented will dictate whether or not the implementation follows hard
encodings or SBZ or SBO rules.
For example in MOV (register) bit 15 of the second halfword of the T3 encoding has changed from SBZ in
Armv8.0-M to 0 in Armv8.1-M, and is represented as [0].

Applies to an implementation of the architecture Armv8.0-M onward.

RBBZT An encoding diagram matches an instruction if all mandatory bits are identical in the encoding diagram and the
instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

IDKWV Between each encoding diagram and its T <n> heading, there is an italicized statement that describes which
Armv8-M variant the encoding is present in. For example, Armv8-M Main Extension only.

Applies to an implementation of the architecture Armv8.0-M onward.

IJSBT The instruction description shows the instruction encoding diagram, or, if the instruction has multiple encodings,
shows all of the encoding diagrams. The heading for each encoding is the letter T followed by an arbitrary number,
usually between 1 and 5.

Applies to an implementation of the architecture Armv8.0-M onward.

IFQDP Below each encoding diagram is the assembler syntax prototype for that encoding, written in typewriter font. The
assembler syntax prototype describes the syntax that can be used in the assembler to select this encoding, and also
the syntax that is used when disassembling this encoding.

Applies to an implementation of the architecture Armv8.0-M onward.

IBLJR In some cases an encoding has multiple variants of assembler syntax prototype, when the prototype differs
depending on the value in one or more of the encoding fields. In these cases, the correct variant to use can be
identified by either:

• Its subheading.
• An annotation to the syntax.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B7.5 Endianness.

C1.2.6 Pseudocode describing how the instruction operates.

C1.2.4 Any alias conditions, if applicable

IBMHC Alias conditions are an optional part of an instruction description. If included, it describes the set of conditions for
which an alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

Applies to an implementation of the architecture Armv8.0-M onward.

IRBCM Arm recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

Applies to an implementation of the architecture Armv8.0-M onward.

IZJKQ Arm recommends that where possible, the alias is used.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

455

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

C1.2.5 Standard assembler syntax fields

IRHCC This manual uses the Arm Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all T32 instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

ILBNB UAL describes the syntax for the mnemonic and the operands of each instruction. Operands can also be referred to
as Assembler symbols. In addition, UAL assumes that instructions and data items can be given labels. It does not
specify the syntax to be used for labels, see the assembler documentation for these details.

Applies to an implementation of the architecture Armv8.0-M onward.

IDPLM The Assembler symbols subsection of an instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use.

The following conventions are used:

< >: Angle brackets. Any symbol enclosed by these is mandatory. For each symbol, there is a description of what
the symbol represents. The description usually also specifies which encoding field or fields encodes the symbol.

{ }: Brace brackets. Any symbol enclosed by these is optional. For each optional symbol, there is a description
of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they surround a register
list. When the use of brace brackets is mandatory, they are separated from other syntax items by one or more
spaces.

: Usually precedes a numeric constant. All uses of # are optional in assembler source code. Arm recommends
that disassemblers output the # where the assembler syntax prototype includes it.

+/-: Indicates an optional + or - sign. If neither is coded, + is assumed.

! : Indicates that the result address is written back to the base register.

Applies to an implementation of the architecture Armv8.0-M onward.

RMBQS Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Applies to an implementation of the architecture Armv8.0-M onward.

RSXWN Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, these characters are used as part of a meta-language to define the architectural assembler
syntax prototype for an instruction encoding, but have no architecturally defined significance in the input to an
assembler or in the output from a disassembler.

Applies to an implementation of the architecture Armv8.0-M onward.

RQZDB UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. The following assembler syntax prototype fields are standard across all or
most instructions:

<c>: Specifies the condition under which the instruction is executed. If <c> is omitted, it defaults to always (AL).

<q>: Specifies one of the following optional assembler qualifiers on the instruction:

.N

Meaning narrow. The assembler must select a 16-bit encoding for the instruction. If this is not possible,
an assembler error is produced.

.W

Meaning wide. The assembler must select a 32-bit encoding for the instruction. If this is not possible,
an assembler error is produced.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

456

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

If neither .W nor .N is specified, the assembler can select either a 16-bit or 32-bit encoding. If both encoding
lengths are available, it must select a 16-bit encoding. In the few cases where more than one encoding of the same
length is available for an instruction, the rules for selecting between them are instruction-specific and are part of
the instruction description.

Applies to an implementation of the architecture Armv8.0-M onward.

RHGFS The following assembler syntax prototype field is standard across MVE instructions subject to VPT predictation:

<v>: Specifies a VPT predication block. This field is only available in implementations that include MVE, and it is
only available inside a VPT block. Inside a VPT block, <v> can have one of the following values:

T

Indicates that the instruction is in the THEN section of a VPT block.

E

Indicates that the instruction is in the ELSE section of a VPT block.

<v> does not affect the encoding of the instruction, and only highlights to the programmer that some of the vector
lanes might be masked because of VPT predication. The use of T or E outside a VPT block produces an assembler
error.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

RBGFV The <dt> field normally contains one data type specifier. Unless the assembler syntax description for the instruction
indicates otherwise, <dt> indicates the data type contained in:

• The second operand, if any.
• The operand, if there is no second operand.
• The result, if there are no operand registers.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RNKRJ The <dt> field is usually specified as a single field. However, it can and might be specified as a concantenation of
two or more fields.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

RJSCH There is some flexibility in the data type specifier syntax:

• Three data types can be specified, the results and both operands data types.

VMULL.P16.P8.P8, Q0, Q1, Q3 instead of VMULL.P8, Q0, Q1, Q3.

• Two data types can be specified, the data types of the two operands. In this case the result data type of the
result is implied by the shape of the instruction.

VMULL.P8.P8, Q0, Q1, Q3 instead of VMULL.P8, Q0, Q1, Q3.

• Two data types can be specified, the data types of the single operand and the destination.

VMOVN.I16.I32 Q0, Q1 instead of VMOVN.I32 Q0, Q1

• Where an instruction does not specify a data type a data type can be specified for the instruction.

• A more specific data type can be used than the one specified by the instruction.

• The F32 data type can be abbreviated to F.

• The F64 data type can be abbreviated to D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

457

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

Specified data type Permitted more specific data types

None Any

.I<size> - .S<size> .U<size> - -

.8 .I8 .S8 .U8 .P8 -

.16 .I16 .S16 .U16 .P16 .F16

.32 .I32 .S32 .U32 - .F32 or .F

.64 .I64 .S64 .U64 - .F64 or .D

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP || MVE.

IBWNR Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original
code, and in some other situations.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B5.5.2 VPT predication.

Applies to an implementation of the architecture Armv8.1-M onward.

C1.2.6 Pseudocode describing how the instruction operates

IRTDZ Each instruction description includes pseudocode that provides a precise description of what the instruction does.

Applies to an implementation of the architecture Armv8.0-M onward.

ILRFZ In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for
the instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RNLPM Where the pseudocode describes UNPREDICTABLE behavior the constraints on that behavior are described in the
Operation section.

Applies to an implementation of the architecture Armv8.0-M onward.

IBNVW Pseudocode does not describe the ordering requirements when an instruction generates multiple memory accesses.

Applies to an implementation of the architecture Armv8.0-M onward.

RCRWM Pseudocode describes the exact rules when an UNDEFINED instruction fails its Condition code check.

In such cases, the UNDEFINED pseudocode statement lies inside the if ConditionPassed() then ... structure,
either directly or in the EncodingSpecificOperations() function call, and so the pseudocode indicates that the
instruction executes as a NOP.

Applies to an implementation of the architecture Armv8.0-M onward.

IMZKZ Pseudocode does not describe the exact ordering requirements when a single floating-point instruction generates
more than one floating-point exception and one or more of those floating-point exceptions is trapped.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

458

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

IJMFG An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result of
the execution of a pseudocode function, or implicitly, for example if an interrupt is taken during execution of an
LDM instruction. If this happens, the pseudocode does not describe the extent to which the normal behavior of the
instruction occurs.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

Chapter E1 Arm Pseudocode Definition.

B7.2.3 Ordering and observability.

E1.1.1 General limitations of Arm pseudocode.

C1.3.3 Conditional execution of undefined instructions.

B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions.

B3.18 Exception handling.

B3.22 Exception return.

C1.2.7 Use of labels in UAL instruction syntax

IBFJV The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed
offset from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address plus 4
for a T32 instruction. The Align(PC,4) value of an instruction is its PC value ANDed with 0xFFFFFFFC to
force it to be word-aligned.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labeled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC,4) value and
adds the calculated offset to form the required address.

Applies to an implementation of the architecture Armv8.0-M onward.

ITCVF For instructions that encode a subtraction operation, if the instruction cannot encode the calculated offset, but can
encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the calculated offset.

Applies to an implementation of the architecture Armv8.0-M onward.

RWDSH The following special handling of the <label> encoding applies for the instruction types listed below:

For Load instructions, and their aliases, that use the PC as a base register:

• When the assembler calculates an offset of zero for the normal syntax of these instructions, it must assemble
an encoding that adds zero to the Align(PC,4) value of the instruction. Encodings that subtract zero from
the Align(PC,4) value cannot be specified by the normal syntax.

• There is an alternative syntax for these instructions that specifies the addition or subtraction and the immediate
offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

– +/-: If + or omitted is used to specify that the immediate offset is to be added to the Align(PC,4) value,
or - if the immediate offset is to be subtracted from the Align(PC,4) value.

– <imm>: Is the immediate offset.

• This alternative syntax makes it possible to assemble the encodings that subtract zero from the Align(PC,4)

value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

459

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

– When the assembler calculates an offset of zero for the normal syntax of this instruction, it must assemble
the encoding that adds zero to the Align(PC,4) value of the instruction. The encoding that subtracts
from the Align(PC,4) value cannot be specified by the normal syntax.

– There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>, PC,#<imm> or subtractions SUB

↪→<Rd>,PC,#<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts
zero from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.2.8 Using syntax information

IBJGX For a particular encoding:

• There is usually more than one assembler syntax prototype variant that assembles to it.
• The exact set of prototype variants that assemble to it usually depends on the operands to the instruction,

for example the register numbers or immediate constants. As an example, for the AND (register)
instruction, the syntax AND R0, R0, R8 selects a 32-bit encoding, but AND R0, R0, R1 selects a 16-bit
encoding.

Applies to an implementation of the architecture Armv8.0-M onward.

IHQSS For each instruction encoding that belongs to a target instruction set, an assembler can use the information in the
encoding to determine whether it can use that particular encoding to encode the instruction requested by the UAL
source. If multiple encodings can encode the instruction, then:

• If both a 16-bit encoding and a 32-bit encoding can encode the instruction, the architecturally preferred
encoding is the 16-bit encoding. This means that the assembler must use the 16-bit encoding instead of the
32-bit encoding.

• If multiple encodings of the same width can encode the instruction, the assembler syntax indicates the
preferred encoding, and how software can select other encodings if required. Each encoding also documents
UAL syntax that selects it in preference to any other encoding. If no encodings of the target instruction set
can encode the instruction requested by the UAL source, the assembler normally generates an error that
indicates that the instruction is not available in that instruction set.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

460

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

C1.3 Conditional execution

IXDMQ Conditionally executed means that the instruction only has its normal effect on the programmers’ model operation,
memory and coprocessors if the N, Z, C, and V flags in the APSR satisfy a condition specified in the instruction.
If the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution advances to the next
instruction as normal, including any relevant checks for exceptions being taken, but has no other effect.

Applies to an implementation of the architecture Armv8.0-M onward.

ISPPQ Most T32 instructions are unconditional. Conditional execution in T32 code can be achieved using any of the
following instructions:

• A 16-bit conditional branch instruction, with a branch range of -256 to +254 bytes. See B for details.
• A 32-bit conditional branch instruction, with a branch range of approximately ± 1MB. See B for details.
• 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch range

of +4 to +130 bytes. See CBNZ, CBZ for details.
• A 16-bit If-Then instruction that makes up to four following instructions conditional. See IT for details. The

instructions that are made conditional by an IT instruction are called its IT block. Instructions in an IT block
must either all have the same condition, or some can have one condition, and others can have the inverse
condition.

Applies to an implementation of the architecture Armv8.0-M onward.

RFNBQ In T32 instructions, the condition (if it is not AL) is encoded in a preceding IT instruction, other than B, CBNZ and
CBZ. Some conditional branch instructions do not require a preceding IT instruction, and include a condition code
in their encoding.

Applies to an implementation of the architecture Armv8.0-M onward.

IBDMC The following table shows the conditions that are available for conditionally executed instructions.

cond Mnemonic Meaning, integer Meaning, Floating-point APSR condition

extension artihmetic arithmetic flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal, or unordered Z == 0

0010 CS Carry set Greater than, equal or unordered C == 1

0011 CC Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Not unordered V == 0

1000 HI Unsigned higher Greater than or unordered C == 1 and Z == 0

1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than or unordered N != V

1100 GT Signed greater than Greater than Z == 0 and N == V

1101 LE Signed less than or equal Less than, equal or unordered Z == 1 or N != V

1110 None (AL) Always (unconditional) Always (unconditional) Any

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

461

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

Unordered means at least one NaN operand.

HS (unsigned higher or same) is a synonym for CS.

LO (unsigned lower) is a synonym for CC.

AL is an optional mnemonic extension for always, except in IT instructions. See IT for details.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.3.1 Conditional instructions

RWRJS The instructions that are made conditional by an IT instruction must be written with a condition after the mnemonic.
These conditions must match the conditions imposed by the IT instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

IWVXC An example of RWRJS is:

1 ITTEE EQ
2 ADDEQ R0, R1
3 SUBEQ R2, R3
4 ADDNE R4, R5
5 SUBNE R6, R7

Applies to an implementation of the architecture Armv8.0-M onward.

RTHGJ Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they
are the last instruction in the IT block, but not otherwise, see the individual instruction descriptions for details.

Applies to an implementation of the architecture Armv8.0-M onward.

RTGXF If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction, it is
assembled using a branch instruction encoding that does not include a condition field.

Applies to an implementation of the architecture Armv8.0-M onward.

See also

• IT instruction

C1.3.2 Pseudocode details of conditional execution

RNMVJ The CurrentCond() pseudocode function prototype returns a 4-bit condition specifier as follows:

• For the T1 and T3 encodings of the Branch instruction, it returns the 4-bit cond field of the encoding.

• For all other T32 instructions:

– If ITSTATE.IT[3:0] != '0000' it returns ITSTATE.IT[7:4]
– If ITSTATE.IT[7:0] == '00000000' it returns '1110'
– Otherwise, execution of the instruction is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RLTPQ The ConditionPassed() function calls the ConditionHolds() function to determine whether the
instruction must be executed.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

462

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

See also

C1.3.5 ITSTATE.

B.

C1.3.3 Conditional execution of undefined instructions

RNPNF The conditional execution applies to all instructions. This includes undefined instructions and other instructions
that would cause entry to the UsageFault or the UNDEFINSTR UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward.

RPCJZ If such an instruction fails its condition code check the instruction behaves as a NOP and does not cause an
UsageFault.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.3.4 Interaction of undefined instruction behavior with UNPREDICTABLE or CON-
STRAINED_UNPREDICTABLE instruction behavior

RNZWQ If this manual describes an instruction as both:

• UNPREDICTABLE and UNDEFINED, then the instruction is UNPREDICTABLE.
• CONSTRAINED UNPREDICTABLE and UNDEFINED, then the instruction is CONSTRAINED UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.3.5 ITSTATE

IRGFT ITSTATE is held in EPSR.IT.

This register holds the If-Then Execution state bits for the T32 IT instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RQKPG EPSR.IT and ITSTATE divide into two subfields:

IT[7:5]

Holds the base condition for the current IT block. The base condition is the top 3 bits of the condition
specified by the IT instruction.

This subfield is 0b000 when no IT block is active.

IT[4:0]

Encodes:

* The size of the IT block. This is the number of instructions that are to be conditionally executed. The
size of the block is indicated by the position of the least significant 1 in this field which is bit [4-size of
the block].

* The value of the least significant bit, bit[0], of the condition code for each instruction in the block.

* Changing the value of the least significant bit of a condition code from 0 to 1 inverts the condition
code. For example cond 0000 is EQ, and cond 0001 is NE.

This subfield is 0b00000 when no IT block is active.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

463

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

RFPNH When an IT instruction is executed, IT bits[7:0] are set according to the condition in the instruction, and the Then
and Else (Tand E) parameters in the instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RXKGZ An instruction in an IT block is conditional. The condition used is the current value of IT[7:4]. When an instruction
in an IT block completes its execution normally, ITSTATE is advanced by shifting IT bits[4:0] left by 1 bit.

Applies to an implementation of the architecture Armv8.0-M onward.

IVQJM For example:

IT[7:5] IT[4:0]

ITTEE EQ 000 00111

ADDEQ R0, R1 000 01110

SUBEQ R2, R3 000 11100

ADDNE R4, R5 000 11000

SUBNE R6, R7 000 00000

Applies to an implementation of the architecture Armv8.0-M onward.

IKQBQ Instructions that can complete their normal execution by branching are only permitted in an IT block as its last
instruction, and so always result in ITSTATE advancing to normal execution.

Applies to an implementation of the architecture Armv8.0-M onward.

IFJLN In the following table, P represents the base condition or the inverse of the base condition.

IT Bits

[7:5] [4] [3] [2] [1] [0]

cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block

cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block

cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block

cond_base P1 1 0 0 0 Entry point for 1-instruction IT block

000 0 0 0 0 0 Normal execution, not in an IT block

Combinations of the IT bits not shown in this table are reserved.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.3.6 Pseudocode details of ITSTATE operation

IJLKP ITAdvance() describes how ITSTATE advances after normal execution.

Applies to an implementation of the architecture Armv8.0-M onward.

IZGZL InITBlock() and LastInITBlock() test whether the current instruction is in an IT block, and whether it is
the last instruction of an IT block.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.3.7 SVC and ITSTATE

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

464

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

RZRFL The ReturnAddress for an SVC instruction must point to the instruction directly after the SVC instruction, that
is the address of the SVC instruction plus two. The execution of an SVC causes ITSTATE to advance.

Applies to an implementation of the architecture Armv8.0-M onward.

IQWZW When an SVC instruction is escalated to HardFault resulting in lockup the ReturnAddress is 0xEFFFFFFE.

Applies to an implementation of the architecture Armv8.0-M onward.

See also:

B3.33 Lockup.

C1.3.8 CONSTRAINED_UNPREDICTABLE behavior and IT blocks

RWWVX Branching into an IT block, other than by way of exception return or exit from Debug state, leads to CONSTRAINED
UNPREDICTABLE behavior. Execution starts from the address that is determined by the branch, but each instruction
in the IT block is:

• Executed as if the instruction is not in an IT block, meaning that the instruction is executed unconditionally.
• Executed as if the instruction had passed its Condition code check within an IT block.
• Executed as a NOP. That is, the instruction behaves as if it had failed the Condition code check.

Applies to an implementation of the architecture Armv8.0-M onward.

RCPDC For exception returns or Debug state exits that cause EPSR.IT to be set to a reserved value with a nonzero value in
EPSR.IT, the EPSR.IT bits are forced to 0b00000000.

Applies to an implementation of the architecture Armv8.0-M onward. Note, Debug state requires HDBG.

RHVNS Exception returns or Debug state exits that set EPSR.IT to a non-reserved value can occur when the flow of
execution returns to a point:

• Outside an IT block, but with the EPSR.IT bits set to a value other than 0b00000000.
• Inside an IT block, but with a different value of the EPSR.IT bits than if the IT block had been executed

without an exception return or Debug state exit.

In this case the instructions at the target of the exception return or Debug state exit does one of the following:

• Execute as if they passed the Condition code check for the remaining iterations of the EPSR.IT state machine.
• Execute as NOPs. That is, they behave as if they failed the Condition code check for the remaining iterations

of the EPSR.IT state machine.

Applies to an implementation of the architecture Armv8.0-M onward. Note, Debug state requires HDBG.

RLLDK A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

• Anywhere within an IT block.
• As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this reference manual, when these instructions are committed for execution, one of the
following occurs:

• An UNDEFINED exception is taken.
• The instructions are executed as if they had passed the condition code check.
• The instructions execute as NOPs, as if they had failed the condition code check.

Applies to an implementation of the architecture Armv8.0-M onward.

INJKF The behavior might in some implementations vary from instruction to instruction, or between different instances of
the same instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

465

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

RBWMN Branch instructions or other non-sequential instructions that change the PC are CONSTRAINED UNPREDICTABLE
in an IT block. Where these instructions are not treated as UNDEFINED within an IT block, the remaining iterations
of the EPSR.IT state machine is treated in one of the following ways:

• EPSR.IT is cleared to 0.
• EPSR.IT advances for either a sequential or a nonsequential change of the PC in the same way as it does for

instructions that are not CONSTRAINED UNPREDICTABLE that cause a sequential change of the PC.

Applies to an implementation of the architecture Armv8.0-M onward.

IXHBL This behavior does not apply to an instruction that is the last instruction in an IT block.

Applies to an implementation of the architecture Armv8.0-M onward.

RTMWN The instructions that are addressed by the updated PC does one of the following:

• Execute as if they had passed the condition code check for the remaining iterations of the EPSR.IT state
machine.

• Execute as NOPs. That is, they behave as if they had failed the condition code check for the remaining
iterations of the EPSR.IT state machine.

Applies to an implementation of the architecture Armv8.0-M onward.

RKVXD The remaining iterations of the EPSR.IT state machine behave in one of the following ways:

• The EPSR.IT state machine advances as if it were in an IT block.
• The EPSR.IT bits are ignored.
• The EPSR.IT bits are forced to 0b00000000.

Applies to an implementation of the architecture Armv8.0-M onward.

RGZBX Execution of an instruction inside an IT block with ITSTATE set to zero, an ICI value, or a value that is inconsistent
with the IT block is UNPREDICTABLE.

Applies to an implementation of the architecture Armv8.0-M onward.

RVBCG In the VIWDUP and VDWDUP instructions the following conditions result in CONSTRAINED UNPREDICTABLE
behavior:

• Rn is not a multiple of imm.
• Rm is not a multiple of imm.
• Rn >= Rm.

The CONSTRAINED UNPREDICTABLE behavior is that the resulting values of Rn and Qd become UNKNOWN.

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR.

B3.5.2 Execution Program Status Register (EPSR).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

466

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

C1.4 Instruction set encoding information

C1.4.1 UNDEFINED and UNPREDICTABLE instruction set space

IFLRZ An attempt to execute an unallocated instruction results in either:

• UNPREDICTABLE behavior. The instruction is described as UNPREDICTABLE.
• An UNDEFINSTR UsageFault. The instruction is described as UNDEFINED.
• Unallocated instructions in the NOP hint space behave as NOPs.

Applies to an implementation of the architecture Armv8.0-M onward.

RKDXB An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description.

Applies to an implementation of the architecture Armv8.0-M onward.

RJMVZ An instruction is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE if:

• A bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1, respectively, and the pseudocode
for that encoding does not indicate that a different special case applies.

• It is declared as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in an instruction description.

Details of the constraints on the behavior of an instruction, if it is defined as CONSTRAINED UNPREDICTABLE, are
contained in the relevant instruction descriptions.

Applies to an implementation of the architecture Armv8.0-M onward.

RTRHK Unless otherwise specified, a T32 instruction that is provided by one or more of the architecture extensions is
either UNPREDICTABLE or UNDEFINED in an implementation that does not include those extensions. See the
individual instruction descriptions for details.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.4.2 Pseudocode descriptions of operations on general-purpose registers and the PC

RHRGP In pseudocode, the uses of the R[] function are:

• Reading or writing R0-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.
• Reading the PC, using n = 15.

Applies to an implementation of the architecture Armv8.0-M onward.

RCHTM The use of RSPCheck() returns the value of the current SP

Applies to an implementation of the architecture Armv8.0-M onward.

RGXHR The function RZ returns zeros if the PC is called.

Applies to an implementation of the architecture Armv8.1-M onward.

See also:

R[]. RSPCheck()

RZ

Applies to an implementation of the architecture Armv8.1-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

467

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

C1.4.3 Use of 0b1111 as a register specifier

RWMVJ All use of the PC as a named register specifier for a source register that is described as CONSTRAINED UNPRE-
DICTABLE in the pseudocode or in other places in this reference manual does one of the following:

• Cause the instruction to be treated as UNDEFINED.
• Cause the instruction to be executed as a NOP.
• Read an UNKNOWN value for the source register that is specified as the PC.

Applies to an implementation of the architecture Armv8.0-M onward.

RBGJG All use of the PC as a named register specifier for a destination register that is described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this reference manual does one of the following:

• Cause the instruction to be treated as UNDEFINED.
• Cause the instruction to be executed as a NOP.
• Ignore the write.
• Branch to an UNKNOWN location.

Applies to an implementation of the architecture Armv8.0-M onward.

IQVWL The choice between the behavior of the PC as a source or destination register might vary in some implementations
from instruction to instruction, or between different instances of the same instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RLXPR For instructions that specify two destination registers and if one is specified as the PC, then the other destination
register of the pair is UNKNOWN. The CONSTRAINED UNPREDICTABLE behavior for the write to the PC is either
to ignore the write or to branch to an UNKNOWN location.

Applies to an implementation of the architecture Armv8.0-M onward.

RDRSS An instruction that specifies the PC as a Base register and specifies a base register write-back is CONSTRAINED
UNPREDICTABLE and behaves as if the PC is both the source and destination register.

Applies to an implementation of the architecture Armv8.0-M onward.

RXLVX For instructions that affect any or all of APSR.{N, Z, C, V} or APSR.GE when the register specifier is not the PC,
any flags that are affected by an instruction that is CONSTRAINED UNPREDICTABLE become UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward.

RJFGT For MRC instructions that use the PC as the destination register descriptor (and therefore target APSR.{N, Z, C,
V}) and where these instructions are described as being CONSTRAINED UNPREDICTABLE the status of the flags
becomes UNKNOWN.

Applies to an implementation of the architecture Armv8.0-M onward.

RXPBT Multi-access instructions that load the PC from Device memory are CONSTRAINED UNPREDICTABLE and one of
the following behaviors occurs:

• The instruction loads the PC from the memory location as if the memory location had the Normal
Non-cacheable attribute

• The instruction generates a IACCVIOL MemManage fault.

Applies to an implementation of the architecture Armv8.0-M onward.

IQXNP When a value of 0b1111 is permitted as a register specifier, as indicated in the individual instruction descriptions, a
variety of meanings is possible. For register reads, these meanings are:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory immediately
after the instruction. (Some instructions read the PC value implicitly, without the use of a register specifier,
for example the conditional branch instruction B<cond>.)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

468

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0] forced
to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no write-back), LDRH, LDRSB, and LDRSH

↪→ instructions can be the word-aligned PC. This enables PC-relative data addressing. In addition, some
encodings of the ADD and SUB instructions permit their source registers to be 0b1111 for the same purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page. An example
of this is the descriptions of MOV (register) and ORR (register).

Applies to an implementation of the architecture Armv8.0-M onward.

IKVHQ When a value of 0b1111 is permitted as a register specifier, as indicated in the individual instruction descriptions, a
variety of meanings is possible. For register writes, these meanings are:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address.
bit[0] of the loaded value selects the Execution state after the branch and must have the value 1.

• Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page. An example of this is the descriptions of TST (register) and AND (register).

• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is
a memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits[31:28] of the value transferred from
the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits[27:0] are discarded.

Applies to an implementation of the architecture Armv8.0-M onward.

RPLFG Some instructions permit the use of a zero register (ZR) as a scalar source operand, as indicated in the individual
instruction descriptions. ZR is encoded as the value 0b1111 when a 4-bit register specifier is used. ZR is RAZ/WI.

Applies to an implementation of the architecture Armv8.1-M onward.

C1.4.4 Use of 0b1101 as a register specifier

SP[1:0] definition

RDSDB Bits [1:0] of SP must be treated as SBZP (Should Be Zero or Preserved). Writing a nonzero value to bits [1:0]
results in UNPREDICTABLE behavior. Reading bits [1:0] returns zero.

Applies to an implementation of the architecture Armv8.0-M onward.

32-bit T32 instruction support for SP

RSKNR Use of the SP in T32 instructions and 16-bit data processing instructions is restricted to the following cases:

• SP as the source or destination register of a MOV instruction. Only register to register transfers without shifts
are supported, with no flag setting:

1 MOV SP,Rm
2 MOV Rn,SP

• Adjusting SP up or down by a multiple of its alignment:

1 ADD{W} SP,SP,#N ; For N a multiple of 4
2 SUB{W} SP,SP,#N ; For N a multiple of 4
3 ADD SP,SP,Rm,LSL #shft ; For shft=0,1,2,3
4 SUB SP,SP,Rm,LSL #shft ; For shft=0,1,2,3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

469

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

• SP as a base register, Rn, of any load or store instruction. This supports SP-based addressing for load, store,
or memory hint instructions, with positive or negative offsets, with and without write-back.

• SP as the first operand, Rn, in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract instructions
support SP-based address generation, with the address going into a general-purpose register. CMN and CMP can
check the stack pointer.

• SP as the transferred register, Rt, in any LDR or STR instruction.
• SP as the address in a POP or PUSH instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RMRNT Where an instruction states that the SP is UNPREDICTABLE and SP is used:

• The value that is read or written from or to the SP is UNKNOWN.
• The instruction is permitted to be treated as UNDEFINED.
• If the SP is being written, it is UNKNOWN whether a stack limit check is applied.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.4.5 16-bit T32 instruction support for SP

RSTHZ Arm deprecates any other use of the SP in 16-bit T32 instructions. This affects the high register forms of CMP and
ADD, where Arm deprecates the use of SP as Rm.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.4.6 Branching

IPVGL Writing an address to the PC causes either a simple branch to that address or an interworking branch.

Applies to an implementation of the architecture Armv8.0-M onward.

RRHYZ A simple branch is performed by BranchTo().

Applies to an implementation of the architecture Armv8.0-M onward.

RDNWW An interworking branch is performed by BranchReturn().

Applies to an implementation of the architecture Armv8.0-M onward.

RCWSL Branching can occur in cases where 0b1111 is not a register specifier. In these cases, instructions write the PC
either:

• Implicitly, for example, b<cond>.
• By using a register mask rather than a register specifier, for example LDM.

Applies to an implementation of the architecture Armv8.0-M onward.

IFLZZ The address to branch to can be:

• A loaded value, for example LDM.
• A register value, for example BX.
• The result of a calculation, for example TBB or TBH.

Applies to an implementation of the architecture Armv8.0-M onward.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

470

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

RWQBX The following table summarizes the branch instructions in the T32 instruction set.

Instruction See Range, T32

Branch to target address B ±16MB

Compare and Branch on Nonzero, CBNZ, CBZ 0-126 bytes

Compare and Branch on Zero

Call a subroutine BL ±16MB

Call a subroutine, optionally change Security state BLX, BLXNS Any

Branch to target address, change to Non-secure state BX, BXNS Any

Table Branch (byte offsets) TBB, TBH 0-510 bytes

Table Branch (halfword offsets) 0-31070 bytes

Applies to an implementation of the architecture Armv8.0-M onward.

RGJML Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions.

Applies to an implementation of the architecture Armv8.0-M onward.

RTPTF A load instruction that targets the PC behaves as a branch instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.4.7 Instruction set, interworking and interstating support

RLBQC The following instructions are Interworking branches:

• BX and BLX.

• POP (multiple registers)

and all forms of LDM, when the register list includes the PC.

• LDR (immediate), LDR (literal), and LDR (register), with <Rt> equal to the PC.

Applies to an implementation of the architecture Armv8.0-M onward.

RWRZR The value of bit[0] of an interworking branch instruction is not stored in the PC. Bit[0] of an interworking branch
instruction sets EPSR.T. If EPSR.T is cleared to 0 an INVSTATE UsageFault is generated on the next instruction
the PE attempts to execute.

Applies to an implementation of the architecture Armv8.0-M onward.

RGLPL The following instructions are interstating branches:

• BXNS and BLXNS.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

RGJMJ When an interstating branch is executed in Secure state, bit[0] of the target address indicates the target Security
state:

0: The target Security state is Non-secure state.

1: The target Security state is Secure state.

The value of bit[0] of an interstating branch instruction is not stored in the PC.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

471

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

RWNSX Interstating branches are UNDEFINED when executing in Non-secure state.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - S.

See also:

C1.1 Instruction set.

B3.15 Security state transitions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

472

Chapter C1. Instruction Set Overview
C1.5. Modified immediate constants

C1.5 Modified immediate constants

RJVCL The encoding of modified immediate constants in T32 instructions is:

i imm3 a b c d e f g h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Applies to an implementation of the architecture Armv8.0-M onward.

RTCLZ The table shows the range of modified immediate constants available in T32 data processing instructions, and how
they are encoded in the a, b, c, d, e, f, g, h, i, and imm3 fields in the instruction.

i:imm3:a <const> Carry flag set

0000x 00000000 00000000 00000000 abcdefgh No

0001x 00000000 abcdefgh 00000000 abcdefgh No

0010x abcdefgh 00000000 abcdefgh 00000000 No

0011x abcdefgh abcdefgh abcdefgh abcdefgh No

01000 1bcdefgh 00000000 00000000 00000000 Yes, to 1

01001 01bcdefg h0000000 00000000 00000000 Yes, to 0

01010 001bcdef gh000000 00000000 00000000 Yes, to 0

01011 0001bcde fgh00000 00000000 00000000 Yes, to 0

- Yes, to 0

- 8-bit values shifted to other positions

-

11101 00000000 00000000 000001bc defgh000 Yes, to 0

11110 00000000 00000000 0000001b cdefgh00 Yes, to 0

11111 00000000 00000000 00000001 bcdefgh0 Yes, to 0

This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram. In
assembly syntax, the immediate value is specified as a decimal integer by default.

The setting of the Carry flag will only apply if a logical oeperation with a modified immediate constant can set the
flags.

Where i:imm3:a is 0001x, 0010x or 0011x the instruction will be UNPREDICTABLE if abcdefgh == 0b00000000.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.5.1 Operation of modified immediate constants

RTLFG T32ExpandImm() and T32ExpandImm_C() describe the operation of modified immediate constants.

Applies to an implementation of the architecture Armv8.0-M onward.

RPHBG The operation of modified immediate constants are UNPREDICTABLE where both:

• hw2[7:0] == 0b0000000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

473

Chapter C1. Instruction Set Overview
C1.5. Modified immediate constants

• hw1[10] == 0 and either:

– hw2 [14:12] == 0b001.
– hw2 [14:12] == 0b010.
– hw2 [14:12] == 0b011.

Applies to an implementation of the architecture Armv8.0-M onward.

C1.5.2 Modified immediate values for MVE instructions

RTBDZ The modified immediate values for MVE instructions are as follows:

op cmode Constanta <dt >b Notes

- 000x 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh I32 c

- 001x 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 I32 c

- 010x 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 I32 c

- 011x abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 I32 c

- 100x 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh I16 c

- 101x abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 I16 c

- 1100 00000000 00000000 abcdefgh 11111111 00000000 00000000 abcdefgh 11111111 I32 d

- 1101 00000000 abcdefgh 11111111 11111111 00000000 abcdefgh 11111111 11111111 I32 d

0 1110 abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh I8 e

0 1111 aBbbbbbc defgh000 00000000 00000000 aBbbbbbc defgh000 00000000 00000000 F32 e, f

1 1110 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh I64 e

1 1111 UNDEFINED - -

a. In this table, the immediate value is shown in binary form, to relate abcdefgh to the encoding diagram. In
assembler syntax, the constant is specified by a data type and a value of that type. That value is specified in
the normal way (a decimal number by default) and is replicated enough times to fill the 64-bit immediate.
For example, a data type of I32 and a value of 10 specify the 64-bit constant 0x0000000A0000000A

b. This specifies the data type used when the instruction is disassembled. Where possible, on assembly the data
type must be matched in the table. Other data types are permitted as pseudo-instructions when a program is
assembled, provided the 64-bit constant specified by the data type and value is available for the instruction.
If a constant is available in more than one way, the first entry in this table that can produce it is used. For
example, VMOV.I64 Q0, #0x8000000080000000 does not specify a 64-bit constant that is available from the
I64 line of the table, but does specify one that is available from the fourth I32 line or the F32 line. It is
assembled to the first of these, and therefore is disassembled as VMOV.I32 Q0, #0x80000000.

c. This constant is available for the VBIC (immediate), VMOV (immediate) (vector), VMVN
(immediate), and VORR (immediate) instructions.

d. This constant is available for the VMOV (immediate) (vector), and VMVN (immediate)
instructions only.

e. This constant is available for the VMOV instruction only.

f. In this entry, B = NOT(b). The bit pattern represents the floating-point number:

(−1)S .2exp.mantissa

where:

• S = UInt(a)
• exp = UInt(NOT(b):c:d)-3
• mantissa = (16+(UInt(e:f:g:h))/16)

Applies to an implementation of the architecture Armv8.1-M onward. The extension requirements are - MVE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

474

Chapter C1. Instruction Set Overview
C1.5. Modified immediate constants

C1.5.3 Modified immediate constants for floating-point instructions

RMZKF The modified immediates for floating-point instructions are:

size Constant <D:Vd or Vd:D >

01 aBbbcdef gh00000 - - - - - - F16

10 aBbbbbbc defgh000 00000000 00000000 - - - - F32

11 aBbbbbbc bbcdefgh 00000000 00000000 0000000 00000000 00000000 00000000 F64

In this table, B = NOT(b). The bit pattern represents the floating-point number:

(−1)S .2exp.mantissa

where:

• S = UInt(a)
• exp = UInt(NOT(b):c:d)-3
• mantissa = (16+(UInt(e:f:g:h))/16)

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - FP.

See also:

T32ExpandImm()

T32ExpandImm_C()

AdvSIMDExpandImm()

VFPExpandImm()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

475

Chapter C1. Instruction Set Overview
C1.6. NOP-compatible hint instructions

C1.6 NOP-compatible hint instructions

IBJRT A hint instruction only provides an indication to the PE. It is not required that the PE perform an operation on a
hint instruction.

Applies to an implementation of the architecture Armv8.0-M onward.

RVXQV A NOP-compatible hint instruction either:

• Acts as a NOP (No Operation) instruction.
• Performs some IMPLEMENTATION DEFINED behavior.

Applies to an implementation of the architecture Armv8.0-M onward.

RDBNQ A PE without the Main Extension only supports the 16-bit encodings of the Armv8-M NOP-compatible hint
instructions. The 32-bit NOP-compatible instructions are UNDEFINED if the Main extension is not implemented.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - !M.

RDJQL A PE with the Main Extension supports both the 16-bit and the 32-bit encodings of the Armv8-M NOP-compatible
hint instructions.

Applies to an implementation of the architecture Armv8.0-M onward. The extension requirements are - M.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

476

Chapter C2
Instruction Specification

This chapter specifies the Armv8-M instruction set. It contains the following sections:

Top level T32 instruction set encoding

32-bit T32 instruction encoding

16-bit T32 instruction encoding

Alphabetical list of instructions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

477

Chapter C2. Instruction Specification
C2.1. Top level T32 instruction set encoding

C2.1 Top level T32 instruction set encoding

The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single
16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:

• 0b11101.

• 0b11110.

• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
!= 111 - 16-bit T32 instruction encoding

111 != 00 32-bit T32 instruction encoding

This table shows the decode field values and the associated instructions:

op0 op1 Instruction
111 00 B T2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

478

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2 16-bit T32 instruction encoding

This section describes the encoding of the 16-bit T32 instruction encoding. This section is decoded from Top level
T32 instruction set encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
00xxxx Shift (immediate), add, subtract, move, and compare
010000 Data-processing (two low registers)
010001 Special data instructions and branch and exchange
0101xx Load/store (register offset)
011xxx Load/store word/byte (immediate offset)
1000xx Load/store halfword (immediate offset)
1001xx Load/store (SP-relative)
1010xx Add PC/SP (immediate)
1011xx Miscellaneous 16-bit instructions
1100xx Load/store multiple
1101xx Conditional branch, and Supervisor Call

This table shows the decode field values and the associated instructions:

op0 Instruction
01001x LDR (literal) T1

C2.2.1 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare. This section is
decoded from 16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
0 11 0 Add, subtract (three low registers)
0 11 1 Add, subtract (two low registers and immediate)
1 - - Add, subtract, compare, move (one low register and immediate)

This table shows the decode field values and the associated instructions:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

479

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

op0 op1 op2 Instruction
Alias ASRS (immediate) T2
Alias ASR (immediate) T2
Alias LSLS (immediate) T2
Alias LSL (immediate) T2
Alias LSRS (immediate) T2
Alias LSR (immediate) T2

0 != 11 - MOV (register) T2

C2.2.1.1 Add, subtract (three low registers)

This section describes the encoding of the Add, subtract (three low registers). This section is decoded from Shift
(immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 0 S Rm Rn Rd

This table shows the decode field values and the associated instructions:

S Instruction
0 ADD (register) T1
1 SUB (register) T1

C2.2.1.2 Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate). This section is decoded
from Shift (immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 S imm3 Rn Rd

This table shows the decode field values and the associated instructions:

S Instruction
0 ADD (immediate) T1
1 SUB (immediate) T1

C2.2.1.3 Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate). This
section is decoded from Shift (immediate), add, subtract, move, and compare.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

480

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 op reg imm8

This table shows the decode field values and the associated instructions:

op Instruction
00 MOV (immediate) T1
01 CMP (immediate) T1
10 ADD (immediate) T2
11 SUB (immediate) T2

C2.2.2 Data-processing (two low registers)

This section describes the encoding of the Data-processing (two low registers). This section is decoded from 16-bit
T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 op Rs reg

This table shows the decode field values and the associated instructions:

op Instruction
0000 AND (register) T1
0001 EOR (register) T1
Alias LSL (register) T1
Alias LSLS (register) T1
Alias LSR (register) T1
Alias LSRS (register) T1
Alias ASR (register) T1
Alias ASRS (register) T1
0101 ADC (register) T1
0110 SBC (register) T1
Alias ROR (register) T1
Alias RORS (register) T1
1000 TST (register) T1
1001 RSB (immediate) T1
1010 CMP (register) T1
1011 CMN (register) T1
1100 ORR (register) T1
1101 MUL T1
1110 BIC (register) T1
1111 MVN (register) T1
0010 MOV, MOVS (register-shifted register) T1
0011
0100
0111

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

481

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange. This section is
decoded from 16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
11 Branch and exchange

!= 11 Add, subtract, compare, move (two high registers)

C2.2.3.1 Branch and exchange

This section describes the encoding of the Branch and exchange. This section is decoded from Special data
instructions and branch and exchange.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 1 1 L Rm NS (0)(0)

This table shows the decode field values and the associated instructions:

L Instruction
0 BX, BXNS T1
1 BLX, BLXNS T1

C2.2.3.2 Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers). This section is
decoded from Special data instructions and branch and exchange.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 op D Rs Rd

This table shows the decode field values and the associated instructions:

D:Rd Rs op Instruction
!= 1101 != 1101 00 ADD (register) T2

- 1101 00 ADD (SP plus register) T1
1101 != 1101 00 ADD (SP plus register) T2

- - 01 CMP (register) T2
- - 10 MOV (register) T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

482

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.4 Load/store (register offset)

This section describes the encoding of the Load/store (register offset). This section is decoded from 16-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 L B H Rm Rn Rt

This table shows the decode field values and the associated instructions:

B H L Instruction
0 0 0 STR (register) T1
0 1 0 STRH (register) T1
1 0 0 STRB (register) T1
1 1 0 LDRSB (register) T1
0 0 1 LDR (register) T1
0 1 1 LDRH (register) T1
1 0 1 LDRB (register) T1
1 1 1 LDRSH (register) T1

C2.2.5 Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset). This section is decoded from
16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 B L imm5 Rn Rt

This table shows the decode field values and the associated instructions:

B L Instruction
0 0 STR (immediate) T1
0 1 LDR (immediate) T1
1 0 STRB (immediate) T1
1 1 LDRB (immediate) T1

C2.2.6 Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset). This section is decoded from
16-bit T32 instruction encoding.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

483

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 L imm5 Rn Rt

This table shows the decode field values and the associated instructions:

L Instruction
0 STRH (immediate) T1
1 LDRH (immediate) T1

C2.2.7 Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative). This section is decoded from 16-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 L Rt imm8

This table shows the decode field values and the associated instructions:

L Instruction
0 STR (immediate) T2
1 LDR (immediate) T2

C2.2.8 Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate). This section is decoded from 16-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 op Rd imm8

This table shows the decode field values and the associated instructions:

op Instruction
Alias ADD (immediate, to PC) T1

0 ADR T1
1 ADD (SP plus immediate) T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

484

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.9 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions. This section is decoded from 16-bit
T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 op0 op1 op2 op3

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 Subgroup
0000 - - - Adjust SP (immediate)
0010 - - - Extend
1010 != 10 - - Reverse bytes
1111 - - 0000 Hints
x10x - - - Push and Pop

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 Instruction
0110 01 1 - CPS T1
1110 - - - BKPT T1
1111 - - != 0000 IT T1
x0x1 - - - CBNZ, CBZ T1

C2.2.9.1 Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate). This section is decoded from Miscellaneous
16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 0 S imm7

This table shows the decode field values and the associated instructions:

S Instruction
0 ADD (SP plus immediate) T2
1 SUB (SP minus immediate) T1

C2.2.9.2 Extend

This section describes the encoding of the Extend. This section is decoded from Miscellaneous 16-bit instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

485

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 1 0 U B Rm Rd

This table shows the decode field values and the associated instructions:

B U Instruction
0 0 SXTH T1
1 0 SXTB T1
0 1 UXTH T1
1 1 UXTB T1

C2.2.9.3 Reverse bytes

This section describes the encoding of the Reverse bytes. This section is decoded from Miscellaneous 16-bit
instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 0 op Rm Rd

This table shows the decode field values and the associated instructions:

op Instruction
00 REV T1
01 REV16 T1
11 REVSH T1

C2.2.9.4 Hints

This section describes the encoding of the Hints. This section is decoded from Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 1 1 hint 0 0 0 0

This table shows the decode field values and the associated instructions:

hint Instruction
0000 NOP T1
0001 YIELD T1
0010 WFE T1
0011 WFI T1
0100 SEV T1
0101 Reserved hint, it behaves as NOP
011x Reserved hint, it behaves as NOP
1xxx Reserved hint, it behaves as NOP

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

486

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.9.5 Push and Pop

This section describes the encoding of the Push and Pop. This section is decoded from Miscellaneous 16-bit
instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 L 1 0 P register_list

This table shows the decode field values and the associated instructions:

L Instruction
1 LDM, LDMIA, LDMFD T3

Alias POP (multiple registers) T3
Alias PUSH (multiple registers) T2

0 STMDB, STMFD T2

C2.2.10 Load/store multiple

This section describes the encoding of the Load/store multiple. This section is decoded from 16-bit T32 instruction
encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 L Rn register_list

This table shows the decode field values and the associated instructions:

L Instruction
1 LDM, LDMIA, LDMFD T1
0 STM, STMIA, STMEA T1

C2.2.11 Conditional branch, and Supervisor Call

This section describes the encoding of the Conditional branch, and Supervisor Call. This section is decoded from
16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

487

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

111x Exception generation

This table shows the decode field values and the associated instructions:

op0 Instruction
!= 111x B T1

C2.2.11.1 Exception generation

This section describes the encoding of the Exception generation. This section is decoded from Conditional branch,
and Supervisor Call.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 1 1 S imm8

This table shows the decode field values and the associated instructions:

S imm8 Instruction
0 - UDF T1
1 - SVC T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

488

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3 32-bit T32 instruction encoding

This section describes the encoding of the 32-bit T32 instruction encoding. This section is decoded from Top level
T32 instruction set encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 op1 op2 op3 op4

This table shows the decode field values and the associated subgroups:

op0 op1 op1:op2 op2 op3 op4 Subgroup
x11x - - - - - Coprocessor, floating-point, and vector instructions
0100 - - - - - Load/store (multiple, dual, exclusive, acquire-release)
0101 - - - - - Data-processing (shifted register)
10xx - - - 1xxx - Branches and miscellaneous control
10x0 - - - 0xxx - Data-processing (modified immediate)
10x1 - - 0 0xxx - Data-processing (plain binary immediate)
1100 - != 1x0 - - - Load/store single
1101 0x - - 1111 - Data-processing (register)
1101 10 - - - 00 Multiply, multiply accumulate, and absolute difference
1101 11 - - - - Long multiply and divide

C2.3.1 Coprocessor, floating-point, and vector instructions

This section describes the encoding of the Coprocessor, floating-point, and vector instructions. This section is
decoded from 32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
10 - - Floating-point and vector miscellaneous instructions
0x - - Floating-point and vector load/store, move, and coprocessor instructions
11 0 1 Miscellaneous vector arithmetic instructions

C2.3.1.1 Floating-point and vector miscellaneous instructions

This section describes the encoding of the Floating-point and vector miscellaneous instructions. This section is
decoded from Coprocessor, floating-point, and vector instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

489

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 0 op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0xx - Coprocessor data-processing instructions
100 1 Vector move instructions
10x 0 Floating-point data-processing, minNum/maxNum, and convert
101 1 Floating-point and vector move (register)
110 - Architected coprocessor data-processing instructions
111 0 Vector immediate and register, and coprocessor data-processing instructions

C2.3.1.1.1 Coprocessor data-processing instructions

This section describes the encoding of the Coprocessor data-processing instructions. This section is decoded from
Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 0 0 coproc

This table shows the decode field values and the associated subgroups:

CoprocType(UInt(coproc)) Subgroup
CP_GCP Architected coprocessor data-processing instructions

CP_CDEv1 Custom general-purpose register instructions

Architected coprocessor data-processing instructions

This section describes the encoding of the Architected coprocessor data-processing instructions. This section is
decoded from Coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 opc1 op1 CRn reg coproc opc2 op2 CRm

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
0 - 0 CDP, CDP2 T1
1 - 0 CDP, CDP2 T2
0 0 1 MCR, MCR2 T1
1 0 1 MCR, MCR2 T2
0 1 1 MRC, MRC2 T1
1 1 1 MRC, MRC2 T2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

490

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

Custom general-purpose register instructions

This section describes the encoding of the Custom general-purpose register instructions. This section is decoded
from Coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 A 1 1 1 0 op0 op1 0 op2

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
0 0 0 CX1 T1
0 0 1 CX1D T1
0 1 0 CX2 T1
0 1 1 CX2D T1
1 - 0 CX3 T1
1 - 1 CX3D T1

C2.3.1.1.2 Vector move instructions

This section describes the encoding of the Vector move instructions. This section is decoded from Floating-point
and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 op1 op Vn Rt op2

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
0 000 1 VMOV (between general-purpose register and half-precision register) T1

C2.3.1.1.3 Floating-point data-processing, minNum/maxNum, and convert

This section describes the encoding of the Floating-point data-processing, minNum/maxNum, and convert. This
section is decoded from Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 op1 D op2 op3 Vd 1 0 op4 op5 op6 M 0 Vm

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 op4 op5 op6 Instruction

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

491

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

1 1 00x - - - 1 VMINNM T2
1 1 111 110 - - 1 VCVTP T1
0 1 00x - - - 0 VDIV T1
0 0 11x - - - 0 VADD T2
0 0 01x - - - 0 VNMLS T1
1 1 111 010 - 0 1 VRINTP T1
0 1 110 000 1x 0 1 VMOV (register) T2
0 1 111 000 - - 1 VCVT (integer to floating-point) T1
0 1 10x - - - 1 VFMS T2
0 1 01x - - - 0 VFNMS T1
0 1 110 100 - 1 1 VCMPE T1
0 1 110 101 - 1 1 VCMPE T2
0 1 110 01x 1x 1 1 VCVTT T1
1 1 111 011 - 0 1 VRINTM T1
1 1 111 000 - 0 1 VRINTA T1
0 1 110 001 - 0 1 VNEG T2
0 1 110 111 - 0 1 VRINTX T1
1 1 111 111 - - 1 VCVTM T1
0 1 110 01x 1x 0 1 VCVTB T1
1 1 00x - - - 0 VMAXNM T2
0 0 00x - - - 0 VMLA T2
0 0 00x - - - 1 VMLS T2
0 1 111 10x - 1 1 VCVT (floating-point to integer) T1
0 1 01x - - - 1 VFNMA T1
0 1 10x - - - 0 VFMA T2
0 1 110 000 - 1 1 VABS T2
0 1 110 110 - 0 1 VRINTR T1
0 1 11x - - - 0 VMOV (immediate) T2
0 1 110 100 - 0 1 VCMP T1
1 1 110 000 10 0 1 VMOVX T1
0 1 110 101 - 0 1 VCMP T2
0 1 110 111 1x 1 1 VCVT (between double-precision and single-precision) T1
0 1 111 x1x - - 1 VCVT (between floating-point and fixed-point) T1
1 1 110 000 10 1 1 VINS T1
1 1 111 001 - 0 1 VRINTN T1
1 0 - - - - 0 VSEL T1
0 0 01x - - - 1 VNMLA T1
0 1 110 110 - 1 1 VRINTZ T1
1 1 111 101 - - 1 VCVTN T1
0 0 10x - - - 0 VMUL T2
1 1 111 100 - - 1 VCVTA T1
0 1 110 001 - 1 1 VSQRT T1
0 1 111 10x - 0 1 VCVTR T1
0 0 10x - - - 1 VNMUL T2
0 0 11x - - - 1 VSUB T2

C2.3.1.1.4 Floating-point and vector move (register)

This section describes the encoding of the Floating-point and vector move (register). This section is decoded from
Floating-point and vector miscellaneous instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

492

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 Rt op1 1 (0)(0)(0)(0)

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 1 Move between Floating-point and vector registers
0 0 Move between general-purpose Register and Floating-point Special register

Move between Floating-point and vector registers

This section describes the encoding of the Move between Floating-point and vector registers. This section is
decoded from Floating-point and vector move (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 1 1 0 op0 op1 1 0 1 1 op2 1 (0)(0)(0)(0)

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
1x10 0 0 VDUP T1
0xx0 - - VMOV (general-purpose register to vector lane) T1
xxx1 - - VMOV (vector lane to general-purpose register) T1

Alias VMOV (single general-purpose register to half of doubleword register) T1
Alias VMOV (half of doubleword register to single general-purpose register) T1

Move between general-purpose Register and Floating-point Special register

This section describes the encoding of the Move between general-purpose Register and Floating-point Special
register. This section is decoded from Floating-point and vector move (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 1 1 0 op0 reg Rt 1 0 1 0 N (0)(0) 1 (0)(0)(0)(0)

This table shows the decode field values and the associated instructions:

op0 Instruction
000x VMOV (between general-purpose register and single-precision register) T1
1111 VMRS T1
1110 VMSR T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

493

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.1.1.5 Architected coprocessor data-processing instructions

This section describes the encoding of the Architected coprocessor data-processing instructions. This section is
decoded from Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 opc1 op1 CRn reg coproc opc2 op2 CRm

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
0 - 0 CDP, CDP2 T1
1 - 0 CDP, CDP2 T2
0 0 1 MCR, MCR2 T1
1 0 1 MCR, MCR2 T2
0 1 1 MRC, MRC2 T1
1 1 1 MRC, MRC2 T2

C2.3.1.1.6 Vector immediate and register, and coprocessor data-processing instructions

This section describes the encoding of the Vector immediate and register, and coprocessor data-processing
instructions. This section is decoded from Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 0 op0 1 1 1 op1 0

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 0 Miscellaneous vector register instructions
1 0 Miscellaneous vector register and immediate instructions
0 1 Vector register, immediate, and predication instructions
1 1 Vector arithmetic, minimum, maximum, and shift instructions

Miscellaneous vector register instructions

This section describes the encoding of the Miscellaneous vector register instructions. This section is decoded from
Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 0 D op1 op2 op3 Qd op4 1 1 1 0 op5 0 op6

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 op4 op5 op6 Instruction

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

494

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 11 != 11 01 - 10x 1 VQMOVUN T1
- != 11 - x1 1 x10 - VMLAS (vector by vector plus scalar) T1
- 11 != 11 11 1 10x 1 VMIN, VMINA T2
1 != 11 - x0 - x0x 0 VQDMLSDH, VQRDMLSDH T1
- 11 != 11 01 1 111 - VQSHL, VQSHLU T1
- 11 11 11 1 10x 1 VMINNM, VMINNMA (floating-point) T2
- 11 != 11 11 0 10x 1 VMAX, VMAXA T2
- 11 - x1 - x0x 0 VMULL (polynomial) T1
1 11 != 11 01 - 10x 1 VMOVN T1
- != 11 - x1 0 x0x 1 VMULH, VRMULH T1
- != 11 - x1 1 x0x 1 VMULH, VRMULH T2
0 != 11 - x1 1 x11 - VMUL (vector) T2
- != 11 - x0 0 x11 - VQDMLAH, VQRDMLAH (vector by scalar plus vector) T1
- != 11 - x0 0 x10 - VQDMLAH, VQRDMLAH (vector by scalar plus vector) T2
- 11 - x1 0 x10 - VFMA (vector by scalar plus vector, floating-point) T1
0 != 11 - x0 - x0x 1 VQDMLADH, VQRDMLADH T2
- 11 - x1 0 x11 - VMUL (floating-point) T2
- 11 - x1 1 x10 - VFMAS (vector by vector plus scalar, floating-point) T1
0 != 11 - x1 0 x11 - VQDMULH, VQRDMULH T3
- 11 - x0 - x0x - VCMUL (floating-point) T1
0 != 11 - x0 - x0x 0 VQDMLADH, VQRDMLADH T1
1 != 11 - x1 0 x11 - VQDMULH, VQRDMULH T4
1 != 11 - x0 - x0x 1 VQDMLSDH, VQRDMLSDH T2
- != 11 - x0 1 x11 - VQDMLASH, VQRDMLASH (vector by vector plus scalar) T1
- != 11 - x0 1 x10 - VQDMLASH, VQRDMLASH (vector by vector plus scalar) T2
- 11 != 11 01 - 00x 1 VSHLL T2
- 11 != 11 11 1 011 - VRSHL T2
- 11 != 11 01 1 011 - VSHL T2
- 11 11 11 - 00x 1 VCVT (between single and half-precision floating-point) T1
- 11 != 11 11 - 00x 1 VQMOVN T1
- != 11 - x1 - x0x 0 VMULL (integer) T1
1 != 11 - x1 1 x11 - VBRSR T1
- 11 11 11 0 10x 1 VMAXNM, VMAXNMA (floating-point) T2
- 11 != 11 11 1 111 - VQRSHL T2
- != 11 - x1 0 x10 - VMLA (vector by scalar plus vector) T1

Miscellaneous vector register and immediate instructions

This section describes the encoding of the Miscellaneous vector register and immediate instructions. This section
is decoded from Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 1 op1 Qn op2 Rda X 1 1 1 0 N op3 A 0 Qm op4

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 op4 Instruction
- 111 - 0 0 VMLADAV T1

Alias VMLAV T1
Alias VMLALV T1

- != 111 - 0 0 VMLALDAV T1
0 != 111 - 0 1 VMLSLDAV T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

495

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 111 - 0 1 VMLSDAV T1
1 111 0 0 1 VMLSDAV T2
1 != 111 0 0 1 VRMLSLDAVH T1

Vector register, immediate, and predication instructions

This section describes the encoding of the Vector register, immediate, and predication instructions. This section is
decoded from Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 0 op1 op2 reg op3 op4 op5 1 1 1 1 T op6 0 op7 op8

This table shows the decode field values and the associated instructions:

op0 op1:op4 op2 op3:op4:op5 op5:op8 op6 op7 op7:op8 op8 Instruction
0 - != 11 1xxx0 - 11 111 - - VIDUP, VIWDUP T2
0 - != 11 1xxx0 - 11 != 111 - - VIDUP, VIWDUP T1
- - 11 0xxxx - 0x - - 1 VQDMULL T1
- - != 11 0xxx0 - 11 - - - VQADD T2
- - 11 0xxx0 - 10 - - - VADD (floating-point) T2
0 - != 11 1xxx1 - 10 - - - VSUB (vector) T2
0 - != 11 1xxx0 - 10 - - - VADD (vector) T2
0 - != 11 0xxxx - 0x - - 0 VHCADD T1
0 - != 11 1xxx1 - 11 111 - - VDDUP, VDWDUP T2
0 - != 11 1xxx1 - 11 != 111 - - VDDUP, VDWDUP T1
1 - != 11 0xxxx - 0x - - 0 VCADD T1
- - != 11 0xxx0 - 10 - - - VHADD T2
- - 11 0xxx1 - 10 - - - VSUB (floating-point) T2
- - != 11 0xxx1 - 10 - - - VHSUB T2
1 - 11 1xxx0 01 0x - - - VPSEL T1
1 0000 11 1xxxx - 1x - 1101 - VPNOT T1
1 0000 != 11 10000 - 0x - - 0 VCMP (vector) T1
1 0000 != 11 10000 - 0x - - 1 VCMP (vector) T2
1 0000 != 11 10001 - 0x - - - VCMP (vector) T3
1 0000 != 11 10000 - 10 - - - VCMP (vector) T4
1 0000 != 11 10000 - 11 - - - VCMP (vector) T5
1 0000 != 11 10001 - 1x - - - VCMP (vector) T6
- 0000 11 1000x - 1x - != 1101 - VCMP (floating-point) T2
- 0000 11 1000x != 01 0x - - - VCMP (floating-point) T1
1 != 0000 11 1xxxx - 1x - 1101 - VPST T1
1 != 0000 != 11 1xxx0 - 0x - - 0 VPT T1
1 != 0000 != 11 1xxx0 - 0x - - 1 VPT T2
1 != 0000 != 11 1xxx1 - 0x - - - VPT T3
1 != 0000 != 11 1xxx0 - 10 - - - VPT T4
1 != 0000 != 11 1xxx0 - 11 - - - VPT T5
1 != 0000 != 11 1xxx1 - 1x - - - VPT T6
- != 0000 11 1xxxx - 1x - != 1101 - VPT (floating-point) T2
- != 0000 11 1xxxx != 01 0x - - - VPT (floating-point) T1
0 - 11 0xxxx - 0x - - 0 VADC T1
- - != 11 0xxx1 - 11 - - - VQSUB T2
- - 11 0xxxx - 11 - - - VQDMULL T2
1 - 11 0xxxx - 0x - - 0 VSBC T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

496

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

Vector arithmetic, minimum, maximum, and shift instructions

This section describes the encoding of the Vector arithmetic, minimum, maximum, and shift instructions. This
section is decoded from Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 0 1 op1 op2 op3 op4 op5 reg op6 1 1 1 1 op7 0 Qm op8

This table shows the decode field values and the associated instructions:

op0 op1:op2 op2:op3:op4:op5 op3:op4 op5 op6 op7 op8 Instruction
- 110 - != 11 00 - 10x 0 VMINV, VMINAV T2
0 x0x - - - - 11x 1 VSHRN T1
- 110 - != 11 10 - 10x 0 VMINV, VMINAV T1
1 x0x - - - - 11x 0 VQRSHRUN T1
- 110 - 11 10 - 10x 0 VMINNMV, VMINNMAV (floating-point) T1
- 111 - - x0 - x0x 0 VMLADAV T2
- != 111 - - 01 - 00x 0 VADDLV T1
- 111 - != 11 01 - 00x 0 VADDV T1
- 110 - 11 00 - 10x 0 VMINNMV, VMINNMAV (floating-point) T2
0 x1x - - - 0 110 - VSHLC T1
0 x0x - - - - 11x 0 VQSHRUN T1
- x0x - - - - 01x 0 VQSHRN T1
1 x0x - - - - 11x 1 VRSHRN T1
- 110 - 11 10 - 00x 0 VMAXNMV, VMAXNMAV (floating-point) T1
- 110 - != 11 00 - 00x 0 VMAXV, VMAXAV T2
- 110 - != 11 10 - 00x 0 VMAXV, VMAXAV T1
- 110 - 11 00 - 00x 0 VMAXNMV, VMAXNMAV (floating-point) T2
- != 11x - - x0 - x0x 0 VRMLALDAVH T1

Alias VRMLALVH T1
- x0x - - - - 01x 1 VQRSHRN T1
- 00x - - x0 - x0x 1 VABAV T1

010
- x1x 00000 - - - 01x 0 VSHLL T1

11000
xx001
xx01x
xx1xx

- x1x 01000 - - - 01x 0 VMOVL T1
10000

C2.3.1.2 Floating-point and vector load/store, move, and coprocessor instructions

This section describes the encoding of the Floating-point and vector load/store, move, and coprocessor instructions.
This section is decoded from Coprocessor, floating-point, and vector instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

497

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 op1 op0

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0xx - Coprocessor load, store, and move instructions
100 - Floating-point and vector load/store and, complex arithmetic instructions
101 - Coprocessor and Floating-point load/store, move, and security
110 - Architected coprocessor load, store, and move instructions
111 1 Vector load instructions
111 0 Vector store instructions

C2.3.1.2.1 Coprocessor load, store, and move instructions

This section describes the encoding of the Coprocessor load, store, and move instructions. This section is decoded
from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 coproc

This table shows the decode field values and the associated subgroups:

CoprocType(UInt(coproc)) Subgroup
CP_GCP Architected coprocessor load, store, and move instructions

CP_CDEv1 Custom Floating-point and vector instructions

Architected coprocessor load, store, and move instructions

This section describes the encoding of the Architected coprocessor load, store, and move instructions. This section
is decoded from Coprocessor load, store, and move instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 0 op1 op2 op3

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 Instruction
0 != 0010 1 != 1111 LDC, LDC2 (immediate) T1
1 != 0010 1 != 1111 LDC, LDC2 (immediate) T2
0 != 0010 1 1111 LDC, LDC2 (literal) T1
1 != 0010 1 1111 LDC, LDC2 (literal) T2
0 != 0010 0 - STC, STC2 T1
1 != 0010 0 - STC, STC2 T2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

498

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 0010 1 - MRRC, MRRC2 T1
1 0010 1 - MRRC, MRRC2 T2
0 0010 0 - MCRR, MCRR2 T1
1 0010 0 - MCRR, MCRR2 T2

Custom Floating-point and vector instructions

This section describes the encoding of the Custom Floating-point and vector instructions. This section is decoded
from Coprocessor load, store, and move instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 A 1 1 0 op0 D op1 Vd 0 coproc op2

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
0 10 1 VCX1 (vector) T1
0 10 0 VCX1 T1
0 11 1 VCX2 (vector) T1
0 11 0 VCX2 T1
1 - 1 VCX3 (vector) T1
1 - 0 VCX3 T1

C2.3.1.2.2 Floating-point and vector load/store and, complex arithmetic instructions

This section describes the encoding of the Floating-point and vector load/store and, complex arithmetic instructions.
This section is decoded from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1

This table shows the decode field values and the associated subgroups:

op0 Subgroup
1 Floating-point and vector complex arithmetic instructions
0 Floating-point and vector load/store instructions

Floating-point and vector complex arithmetic instructions

This section describes the encoding of the Floating-point and vector complex arithmetic instructions. This section
is decoded from Floating-point and vector load/store and, complex arithmetic instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

499

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 0 op0 op1 Qn op2 Qd op3 1 0 0 op4 op5 op6 Qm op7

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 op4 op5 op6 op7 Instruction
1 0 0 0 0 1 0 0 VCADD (floating-point) T1
- 1 0 0 0 1 0 0 VCMLA (floating-point) T1

Floating-point and vector load/store instructions

This section describes the encoding of the Floating-point and vector load/store instructions. This section is decoded
from Floating-point and vector load/store and, complex arithmetic instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 1 0 op0 U D op1 Rn Vd 1 0 0 op2 imm8

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
1 01 1 VLDR T3
1 00 1 VSTR T3

C2.3.1.2.3 Coprocessor and Floating-point load/store, move, and security

This section describes the encoding of the Coprocessor and Floating-point load/store, move, and security. This
section is decoded from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 0 op1 op2 op3 op4 op5 op6

This table shows the decode field values and the associated instructions:

op0 op1 op1:op3 op2 op3 op4 op5 op6 Instruction
0 00x1 != 01x01111 1 - 1xx - 1 FLDMDBX, FLDMIAX T1

01xx
1xx1

0 00x1 != 01x01111 1 - 1xx - 0 VLDM T1
01xx
1xx1

0 01xx != 01x01111 1 - 0xx - - VLDM T2
1xx1

0 1xx0 - 1 - 1xx - - VLDR T1
0 1xx0 - 1 - 0xx - - VLDR T2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

500

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 00x1 - 1 - 00x - - VLLDM T1
0 00x1 - 1 - 01x - - VLLDM T2

Alias VPOP T1
Alias VPOP T2

0 00x1 - 0 - 1xx - 1 FSTMDBX, FSTMIAX T1
01xx
1xx1

0 00x1 - 0 - 1xx - 0 VSTM T1
01xx
1xx1

0 01xx - 0 - 0xx - - VSTM T2
1xx1

0 1xx0 - 0 - 1xx - - VSTR T1
0 1xx0 - 0 - 0xx - - VSTR T2
0 00x1 - 0 - 00x - - VLSTM T1
0 00x1 - 0 - 01x - - VLSTM T2

Alias VPUSH T1
Alias VPUSH T2

0 0010 - - - 100 1 - VMOV (two GP registers and a doubleword register) T1
0 0010 - - - 000 1 - VMOV (two GP registers and two SP registers) T1
0 01x0 - 1 1111 1xx - 0 VSCCLRM T1
0 01x0 - 1 1111 0xx - - VSCCLRM T2

C2.3.1.2.4 Architected coprocessor load, store, and move instructions

This section describes the encoding of the Architected coprocessor load, store, and move instructions. This section
is decoded from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 0 op1 op2 op3

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 Instruction
0 != 0010 1 != 1111 LDC, LDC2 (immediate) T1
1 != 0010 1 != 1111 LDC, LDC2 (immediate) T2
0 != 0010 1 1111 LDC, LDC2 (literal) T1
1 != 0010 1 1111 LDC, LDC2 (literal) T2
0 != 0010 0 - STC, STC2 T1
1 != 0010 0 - STC, STC2 T2
0 0010 1 - MRRC, MRRC2 T1
1 0010 1 - MRRC, MRRC2 T2
0 0010 0 - MCRR, MCRR2 T1
1 0010 0 - MCRR, MCRR2 T2

C2.3.1.2.5 Vector load instructions

This section describes the encoding of the Vector load instructions. This section is decoded from Floating-point
and vector load/store, move, and coprocessor instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

501

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 0 op1 1 op2 Rn0 reg op3 1 1 1 op4 op5 op6 op7

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 op4 op5 op6 op7 Instruction
1 01xx - 1 != 11 - - 0 VLD2 T1
1 01xx - 1 != 11 - - 1 VLD4 T1
0 1xxx - 1 00 - - - VLDRB, VLDRH, VLDRW T5

0xx1
0 1xxx - 1 01 - - - VLDRB, VLDRH, VLDRW T6

0xx1
0 1xxx - 1 10 - - - VLDRB, VLDRH, VLDRW T7

0xx1
1 1xxx - 1 0x - - - VLDRB, VLDRH, VLDRW, VLDRD (vector) T5
1 1xxx - 1 1x - - - VLDRB, VLDRH, VLDRW, VLDRD (vector) T6
- 1x0x 0 0 != 11 - - - VLDRB, VLDRH, VLDRW T1

0x01
- 1x0x 1 0 != 11 - - - VLDRB, VLDRH, VLDRW T2

0x01
- 1xxx - 0 11 - - - VLDR (System Register) T1

0xx1
- 01x0 - 0 - 0 0 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T1
- 01x0 - 0 - 0 1 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T2
- 01x0 - 0 - 1 0 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T3
- 01x0 - 0 - 1 1 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T4
0 00x0 - 0 1x - - - VMOV (two general-purpose registers to two 32-bit vector lanes) T1

C2.3.1.2.6 Vector store instructions

This section describes the encoding of the Vector store instructions. This section is decoded from Floating-point
and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 0 op1 0 op2 Rn0 reg op3 1 1 1 op4 op5 op6 op7

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 op4 op5 op6 op7 Instruction
1 01xx - 1 != 11 - - 0 VST2 T1
1 01xx - 1 != 11 - - 1 VST4 T1
0 1xxx - 1 00 - - - VSTRB, VSTRH, VSTRW T5

0xx1
0 1xxx - 1 01 - - - VSTRB, VSTRH, VSTRW T6

0xx1
0 1xxx - 1 10 - - - VSTRB, VSTRH, VSTRW T7

0xx1
1 1xxx - 1 0x - - - VSTRB, VSTRH, VSTRW, VSTRD (vector) T5
1 1xxx - 1 1x - - - VSTRB, VSTRH, VSTRW, VSTRD (vector) T6

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

502

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

- 1x0x 0 0 != 11 - - - VSTRB, VSTRH, VSTRW T1
0x01

- 1x0x 1 0 != 11 - - - VSTRB, VSTRH, VSTRW T2
0x01

- 1xxx - 0 11 - - - VSTR (System Register) T1
0xx1

- 01x0 - 0 - 0 0 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T1
- 01x0 - 0 - 0 1 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T2
- 01x0 - 0 - 1 0 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T3
- 01x0 - 0 - 1 1 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T4
0 00x0 - 0 1x - - - VMOV (two 32-bit vector lanes to two general-purpose registers) T1

C2.3.1.3 Miscellaneous vector arithmetic instructions

This section describes the encoding of the Miscellaneous vector arithmetic instructions. This section is decoded
from Coprocessor, floating-point, and vector instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 op0 1 1 1 1 op1 D op2 op3 op4 Qd 0 op5 op6 1 op7 op8 op9

This table shows the decode field values and the associated instructions:

op0 op1 op2 op2:op3 op4 op5 op6 op7:op5 op7:op8 op9 Instruction
1 1 11 - x00 0100 0 - x0 0 VCLS T1
0 0 00 - xx0 0001 - - x1 0 VAND T1
- 1 - 000 - - 0 1111x x1 - VMOV (immediate) (vector) T1

0xxx0
011x1

- 0 - - xx0 0000 - - x1 0 VQADD T1
Alias VORN (immediate) T1

- 0 != 11 - xx0 0100 - - x0 0 VSHL T3
- 1 - 000 - 0xx1 0 - 11 - VBIC (immediate) T1

10x1
- 0 != 11 - xx0 0110 - - x1 0 VMIN, VMINA T1
0 0 0x - xx0 1101 - - x0 0 VADD (floating-point) T1
1 0 1x - xx0 1111 - - x1 0 VMINNM, VMINNMA (floating-point) T1
- 1 - != 000 - 0111 0 - x1 0 VQSHL, VQSHLU T2
- 0 != 11 - xx0 0110 - - x0 0 VMAX, VMAXA T1
0 0 - - xx0 1000 - - x0 0 VADD (vector) T1
- 1 - != 000 - 0010 0 - x1 0 VRSHR T1
- 0 - - xx0 0111 - - x0 0 VABD T1
- 1 - != 000 - 0000 0 - x1 0 VSHR T1
- 1 - 000 - 0xx1 0 - 01 - VORR (immediate) T1

10x1
Alias VMOV (register) (vector) T1

1 0 - - xx0 1000 - - x0 0 VSUB (vector) T1
0 0 1x - xx0 1100 - - x1 0 VFMA, VFMS (floating-point) T2
0 0 0x - xx0 1100 - - x1 0 VFMA, VFMS (floating-point) T1
- 1 - != 000 - 11xx 0 - x1 0 VCVT (between floating-point and fixed-point) (vector) T1
1 1 11 - x00 0000 0 - x0 0 VREV64 T1
0 0 - - xx0 1001 - - x1 0 VMUL (vector) T1
0 0 1x - xx0 1101 - - x0 0 VSUB (floating-point) T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

503

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

- 0 - - xx0 0000 - - x0 0 VHADD T1
1 0 0x - xx0 1101 - - x1 0 VMUL (floating-point) T1
1 1 11 - x01 0111 0 - x0 0 VABS (floating-point) T1
1 1 11 - x00 0111 1 - x0 0 VQNEG T1
- 0 - - xx0 0010 - - x0 0 VHSUB T1
1 1 - 110 000 0101 1 - x0 0 VMVN (register) T1
- 0 != 11 - xx0 0101 - - x0 0 VRSHL T1
1 0 - - xx0 1011 - - x0 0 VQDMULH, VQRDMULH T2

Alias VAND (immediate) T1
1 1 11 - x00 0111 0 - x0 0 VQABS T1
1 1 11 - x01 0011 0 - x0 0 VABS (vector) T1
1 1 11 - x10 01xx - - x0 0 VRINT (floating-point) T1
1 0 1x - xx0 1101 - - x0 0 VABD (floating-point) T1
1 1 11 - x11 011x - - x0 0 VCVT (between floating-point and integer) T1
0 1 - != 000 - 0101 0 - x1 0 VSHL T1
- 0 - - xx0 0001 - - x0 0 VRHADD T1
0 0 11 - xx0 0001 - - x1 0 VORN T1
1 1 - != 000 - 0101 0 - x1 0 VSLI T1
1 1 - != 000 - 0100 0 - x1 0 VSRI T1
0 0 10 - xx0 0001 - - x1 0 VORR T1
1 0 00 - xx0 0001 - - x1 0 VEOR T1
0 0 - - xx0 1011 - - x0 0 VQDMULH, VQRDMULH T1
1 1 11 - x11 00xx - - x0 0 VCVT (from floating-point to integer) T1
1 1 11 - x01 0011 1 - x0 0 VNEG (vector) T1
- 1 - 000 - 0xx0 0 - 11 - VMVN (immediate) T1

10x0
110x

- 0 != 11 - xx0 0100 - - x1 0 VQSHL, VQSHLU T4
1 1 11 - x01 0111 1 - x0 0 VNEG (floating-point) T1
1 1 11 - x00 0001 0 - x0 0 VREV16 T1
1 0 0x - xx0 1111 - - x1 0 VMAXNM, VMAXNMA (floating-point) T1
0 0 01 - xx0 0001 - - x1 0 VBIC (register) T1
1 1 - != 000 - 0110 0 - x1 0 VQSHL, VQSHLU T3
1 1 11 - x00 0000 1 - x0 0 VREV32 T1
- 0 - - xx0 0010 - - x1 0 VQSUB T1
1 1 11 - x00 0100 1 - x0 0 VCLZ T1
- 0 != 11 - xx0 0101 - - x1 0 VQRSHL T1

C2.3.2 Load/store (multiple, dual, exclusive, acquire-release)

This section describes the encoding of the Load/store (multiple, dual, exclusive, acquire-release). This section is
decoded from 32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
- 0x Load/store multiple
0 10 Load/store exclusive, load-acquire/store-release

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

504

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 11 Load/store dual (post-indexed)
1 10 Load/store dual (literal and immediate)
1 11 Load/store dual (pre-indexed), secure gateway

C2.3.2.1 Load/store multiple

This section describes the encoding of the Load/store multiple. This section is decoded from Load/store (multiple,
dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 opc 0 W L Rn P M (0) register_list

This table shows the decode field values and the associated instructions:

L Rn opc Instruction
0 - 01 STM, STMIA, STMEA T2
1 != 1111 01 LDM, LDMIA, LDMFD T2
1 1111 01 CLRM T1
0 - 10 STMDB, STMFD T1
1 - 10 LDMDB, LDMEA T1

Alias PUSH (multiple registers) T1
Alias POP (multiple registers) T2

C2.3.2.2 Load/store exclusive, load-acquire/store-release

This section describes the encoding of the Load/store exclusive, load-acquire/store-release. This section is decoded
from Load/store (multiple, dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 0 op0 1 0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
0 != 0xxxx1111 - Load/store exclusive
1 - 01x Load/store exclusive byte/half/dual
1 - 1xx Load-acquire / Store-release

This table shows the decode field values and the associated instructions:

op0 op1 op2 Instruction
0 0xxxx1111 - TT, TTT, TTA, TTAT T1
1 1xxxxxxxx 000 TBB, TBH T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

505

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.2.2.1 Load/store exclusive

This section describes the encoding of the Load/store exclusive. This section is decoded from Load/store exclusive,
load-acquire/store-release.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 0 0 1 0 L Rn Rt (1)(1)(1)(1) imm8

This table shows the decode field values and the associated instructions:

L Instruction
0 STREX T1
1 LDREX T1

C2.3.2.2.2 Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual. This section is decoded from
Load/store exclusive, load-acquire/store-release.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 0 1 1 0 L Rn Rt (1)(1)(1)(1) 0 1 sz Rd

This table shows the decode field values and the associated instructions:

L sz Instruction
0 00 STREXB T1
0 01 STREXH T1
1 00 LDREXB T1
1 01 LDREXH T1

C2.3.2.2.3 Load-acquire / Store-release

This section describes the encoding of the Load-acquire / Store-release. This section is decoded from Load/store
exclusive, load-acquire/store-release.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 0 1 1 0 L Rn Rt (1)(1)(1)(1) 1 op sz Rd

This table shows the decode field values and the associated instructions:

L op sz Instruction
0 0 00 STLB T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

506

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 0 01 STLH T1
0 0 10 STL T1
0 1 00 STLEXB T1
0 1 01 STLEXH T1
0 1 10 STLEX T1
1 0 00 LDAB T1
1 0 01 LDAH T1
1 0 10 LDA T1
1 1 00 LDAEXB T1
1 1 01 LDAEXH T1
1 1 10 LDAEX T1

C2.3.2.3 Load/store dual (post-indexed)

This section describes the encoding of the Load/store dual (post-indexed). This section is decoded from Load/store
(multiple, dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 P U 1 W L Rn Rt Rt2 imm8

This table shows the decode field values and the associated instructions:

L Rn Instruction
0 != 1111 STRD (immediate) T1
1 != 1111 LDRD (immediate) T1
- 1111 UNPREDICTABLE

C2.3.2.4 Load/store dual (literal and immediate)

This section describes the encoding of the Load/store dual (literal and immediate). This section is decoded from
Load/store (multiple, dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 P U 1 W L Rn Rt Rt2 imm8

This table shows the decode field values and the associated instructions:

L Rn Instruction
1 1111 LDRD (literal) T1
0 != 1111 STRD (immediate) T1
1 != 1111 LDRD (immediate) T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

507

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.2.5 Load/store dual (pre-indexed), secure gateway

This section describes the encoding of the Load/store dual (pre-indexed), secure gateway. This section is decoded
from Load/store (multiple, dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 1 op0 1 1 op1 op2 op3

This table shows the decode field values and the associated instructions:

op0 op1 op2 op3 Instruction
0 0 1111 - UNPREDICTABLE
0 1 1111 != 1110100101111111 UNPREDICTABLE
0 1 1111 1110100101111111 SG T1
- 0 != 1111 - STRD (immediate) T1
1 - 1111 - UNPREDICTABLE
- 1 != 1111 - LDRD (immediate) T1

C2.3.3 Data-processing (shifted register)

This section describes the encoding of the Data-processing (shifted register). This section is decoded from 32-bit
T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 op0 S Rn L imm3 Rd op1 Rm

This table shows the decode field values and the associated subgroups:

op0 Subgroup
0010 Wide shift, shift, and conditional instructions

!= 0010 Shifted register instructions

C2.3.3.1 Wide shift, shift, and conditional instructions

This section describes the encoding of the Wide shift, shift, and conditional instructions. This section is decoded
from Data-processing (shifted register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 0 0 1 0 S Rn op0 op1 op2 op3 op4

This table shows the decode field values and the associated instructions:

Rn S op0 op1 op2 op3 op4 Instruction
xxx0 1 0 - != 111 10 1111 ASRL (immediate) T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

508

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

xxx0 1 0 - != 111 00 1111 LSLL (immediate) T1
xxx0 1 0 - != 111 01 1111 LSRL (immediate) T1

- 1 0 - != 111 11 1111 SQSHLL (immediate) T1
xxx1 1 0 - != 111 10 1111 SRSHRL (immediate) T1
xxx1 1 0 - != 111 00 1111 UQSHLL (immediate) T1
xxx1 1 0 - != 111 01 1111 URSHRL (immediate) T1

- 1 0 - 111 11 1111 SQSHL (immediate) T1
- 1 0 - 111 10 1111 SRSHR (immediate) T1
- 1 0 - 111 00 1111 UQSHL (immediate) T1
- 1 0 - 111 01 1111 URSHR (immediate) T1

xxx0 1 - - != 111 10 1101 ASRL (register) T1
xxx0 1 - - != 111 00 1101 LSLL (register) T1

- 1 - - 111 10 1101 SQRSHR (register) T1
xxx1 1 - - != 111 10 1101 SQRSHRL (register) T1

- 1 - - 111 00 1101 UQRSHL (register) T1
xxx1 1 - - != 111 00 1101 UQRSHLL (register) T1

!= 1111 0 0 - - - - ORR (register) T2
!= 1111 1 0 - - - != 11x1 ORRS (register) T2

1111 0 0 - - - - MOV (register) T3
1111 1 0 - - - != 11x1 MOVS (register) T3

Alias ASR (immediate) T3
Alias ASRS (immediate) T3
Alias LSL (immediate) T3
Alias LSLS (immediate) T3
Alias LSR (immediate) T3
Alias LSRS (immediate) T3
Alias ROR (immediate) T3
Alias RORS (immediate) T3
Alias RRX T3
Alias RRXS T3

- 1 1 00 - - != 1101 CSEL T1
- 1 1 01 - - != 1101 CSINC T1
- 1 1 10 - - != 1101 CSINV T1
- 1 1 11 - - != 1101 CSNEG T1

Alias CINC T1
Alias CINV T1
Alias CNEG T1
Alias CSET T1
Alias CSETM T1

C2.3.3.2 Shifted register instructions

This section describes the encoding of the Shifted register instructions. This section is decoded from
Data-processing (shifted register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 op0 S Rn (0) imm3 Rd imm2 sr_type Rm

This table shows the decode field values and the associated instructions:

Rd Rn S imm3:imm2:sr_type op0 Instruction
- - 0 != 0000011 0000 AND (register) T2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

509

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

- - 0 0000011 0000 AND extend (register) T2
!= 1111 - 1 != 0000011 0000 ANDS (register) T2
!= 1111 - 1 0000011 0000 ANDS extend (register) T2

1111 - 1 != 0000011 0000 TST (register) T2
1111 - 1 0000011 0000 TST extend (register) T2

- - - - 0001 BIC (register) T2
- != 1111 0 - 0011 ORN (register) T1
- != 1111 1 - 0011 ORNS (register) T1
- 1111 0 - 0011 MVN (register) T2
- 1111 1 - 0011 MVNS (register) T2
- - 0 != 0000011 0100 EOR (register) T2
- - 0 0000011 0100 EOR extend (register) T2

!= 1111 - 1 != 0000011 0100 EORS (register) T2
!= 1111 - 1 0000011 0100 EORS extend (register) T2

1111 - 1 != 0000011 0100 TEQ (register) T1
1111 - 1 0000011 0100 TEQ extend (register) T1

- - 0 xxxxxx0 0110 PKHBT, PKHTB T1
- != 1101 0 - 1000 ADD (register) T3

!= 1111 != 1101 1 - 1000 ADDS (register) T3
- 1101 0 - 1000 ADD (SP plus register) T3

!= 1111 1101 1 - 1000 ADDS (SP plus register) T3
1111 - 1 - 1000 CMN (register) T2

- - - - 1010 ADC (register) T2
- - - - 1011 SBC (register) T2
- != 1101 0 - 1101 SUB (register) T2

!= 1111 != 1101 1 - 1101 SUBS (register) T2
- 1101 0 - 1101 SUB (SP minus register) T1

!= 1111 1101 1 - 1101 SUBS (SP minus register) T1
1111 - 1 - 1101 CMP (register) T3

- - - - 1110 RSB (register) T1

C2.3.4 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control. This section is decoded from
32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 op0 op1 op2 1 op3 op4 op5 op6

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 op4 op5 op6 Subgroup
0 1110 10 0 0 000 - Hints
0 1110 11 0 0 - - Miscellaneous system
1 1111 1x 0 0 - - Exception generation
- - - 1 0 - 1 Loop and branch instructions

This table shows the decode field values and the associated instructions:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

510

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

op0 op1 op2 op3 op4 op5 op6 Instruction
0 1110 0x 0 0 - - MSR (register) T1
0 1111 1x 0 0 - - MRS T1
- != 111x - 0 0 - - B T3
- - - 0 1 - - B T4
- - - 1 1 - - BL T1

C2.3.4.1 Hints

This section describes the encoding of the Hints. This section is decoded from Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 1 1 1 0 1 0 (1)(1)(1)(1) 1 0 (0) 0 (0) 0 0 0 hint option

This table shows the decode field values and the associated instructions:

hint option Instruction
0000 0000 NOP T2
0000 0001 YIELD T2
0000 0010 WFE T2
0000 0011 WFI T2
0000 0100 SEV T2
0000 0101 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0000 011x Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0000 10xx Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0000 11x0 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0000 1101 PACBTI T1
0000 1111 BTI T1
0001 0000 ESB T1
0001 001x Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0001 0100 CSDB T1
0001 0x01 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0001 011x Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0001 10xx Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0001 11x0 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0001 1101 PAC T1
0001 1111 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0010 0xxx Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0010 10xx Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0010 11x0 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0010 1101 AUT T1
0010 1111 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
0011 - Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
01xx - Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
10xx - Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
110x - Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
1110 - Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED
1111 - DBG T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

511

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.4.2 Miscellaneous system

This section describes the encoding of the Miscellaneous system. This section is decoded from Branches and
miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 1 1 1 0 1 1 (1)(1)(1)(1) 1 0 (0) 0 (1)(1)(1)(1) opc option

This table shows the decode field values and the associated instructions:

opc option Instruction
0010 - CLREX T1
0100 != 0x00 DSB T1
0100 0000 SSBB T1
0100 0100 PSSBB T1
0101 - DMB T1
0110 - ISB T1

C2.3.4.3 Exception generation

This section describes the encoding of the Exception generation. This section is decoded from Branches and
miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 1 1 1 1 1 o1 imm4 1 0 o2 0 imm12

This table shows the decode field values and the associated instructions:

o1 o2 Instruction
1 1 UDF T2

C2.3.4.4 Loop and branch instructions

This section describes the encoding of the Loop and branch instructions. This section is decoded from Branches
and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 op0 1 1 0 1

This table shows the decode field values and the associated subgroups:

op0 Subgroup
!= 0000 Branch future instructions

0000 Loop instructions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

512

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.4.4.1 Branch future instructions

This section describes the encoding of the Branch future instructions. This section is decoded from Loop and
branch instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 boff op0 1 1 op1 0 immC immB 1

This table shows the decode field values and the associated instructions:

op0 op1 Instruction
- 0 BF, BFX, BFL, BFLX, BFCSEL T4

0xx 1 BF, BFX, BFL, BFLX, BFCSEL T2
10x 1 BF, BFX, BFL, BFLX, BFCSEL T1
110 1 BF, BFX, BFL, BFLX, BFCSEL T3
111 1 BF, BFX, BFL, BFLX, BFCSEL T5

C2.3.4.4.2 Loop instructions

This section describes the encoding of the Loop instructions. This section is decoded from Loop and branch
instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 i op0 op1 1 1 op2 0 imml immh 1

This table shows the decode field values and the associated instructions:

imml op0 op1 op2 Instruction
- 0xx 1111 1 LCTP T1
- 000 1111 0 LE, LETP T1
- 01x 1111 0 LE, LETP T2
- 001 1111 0 LE, LETP T3
- 1xx - 0 WLS, DLS, WLSTP, DLSTP T1
- 1xx - 1 WLS, DLS, WLSTP, DLSTP T2
- 0xx != 1111 0 WLS, DLS, WLSTP, DLSTP T3
0 0xx != 1111 1 WLS, DLS, WLSTP, DLSTP T4
1 0xx != 1111 1 VCTP T1

C2.3.5 Data-processing (modified immediate)

This section describes the encoding of the Data-processing (modified immediate). This section is decoded from
32-bit T32 instruction encoding.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

513

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 i 0 op1 S Rn 0 imm3 Rd imm8

This table shows the decode field values and the associated instructions:

Rd Rn S op1 Instruction
- - 0 0000 AND (immediate) T1

!= 1111 - 1 0000 ANDS (immediate) T1
1111 - 1 0000 TST (immediate) T1

- - - 0001 BIC (immediate) T1
- != 1111 - 0010 ORR (immediate) T1
- 1111 - 0010 MOV (immediate) T2
- != 1111 - 0011 ORN (immediate) T1
- 1111 - 0011 MVN (immediate) T1
- - 0 0100 EOR (immediate) T1

!= 1111 - 1 0100 EORS (immediate) T1
1111 - 1 0100 TEQ (immediate) T1

- != 1101 0 1000 ADD (immediate) T3
!= 1111 != 1101 1 1000 ADDS (immediate) T3

- 1101 0 1000 ADD (SP plus immediate) T3
!= 1111 1101 1 1000 ADDS (SP plus immediate) T3

1111 - 1 1000 CMN (immediate) T1
- - - 1010 ADC (immediate) T1
- - - 1011 SBC (immediate) T1
- != 1101 0 1101 SUB (immediate) T3

!= 1111 != 1101 1 1101 SUBS (immediate) T3
- 1101 0 1101 SUB (SP minus immediate) T2

!= 1111 1101 1 1101 SUBS (SP minus immediate) T2
1111 - 1 1101 CMP (immediate) T2

- - - 1110 RSB (immediate) T2

C2.3.6 Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate). This section is decoded from
32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 op0 op1 0

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 0x Data-processing (simple immediate)
0 10 Move Wide (16-bit immediate)
1 - Saturate, bitfield

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

514

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.6.1 Data-processing (simple immediate)

This section describes the encoding of the Data-processing (simple immediate). This section is decoded from
Data-processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 i 1 0 o1 0 o2 0 Rn 0 imm3 Rd imm8

This table shows the decode field values and the associated instructions:

Rn o1 o2 Instruction
Alias ADD (immediate, to PC) T3

!= 11x1 0 0 ADD (immediate) T4
1101 0 0 ADD (SP plus immediate) T4
1111 0 0 ADR T3

!= 11x1 1 1 SUB (immediate) T4
1101 1 1 SUB (SP minus immediate) T3
1111 1 1 ADR T2

Alias SUB (immediate, from PC) T2

C2.3.6.2 Move Wide (16-bit immediate)

This section describes the encoding of the Move Wide (16-bit immediate). This section is decoded from
Data-processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 i 1 0 o1 1 0 0 imm4 0 imm3 Rd imm8

This table shows the decode field values and the associated instructions:

o1 Instruction
0 MOV (immediate) T3
1 MOVT T1

C2.3.6.3 Saturate, bitfield

This section describes the encoding of the Saturate, bitfield. This section is decoded from Data-processing (plain
binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 (0) 1 1 op1 0 Rn 0 imm3 Rd imm2 (0) imm5

This table shows the decode field values and the associated instructions:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

515

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

Rn imm3:imm2 op1 Instruction
- - 000 SSAT LSL T1
- != 00000 001 SSAT ASR T1
- 00000 001 SSAT16 T1
- - 010 SBFX T1

!= 1111 - 011 BFI T1
1111 - 011 BFC T1

- - 100 USAT LSL T1
- != 00000 101 USAT ASR T1
- 00000 101 USAT16 T1
- - 110 UBFX T1

C2.3.7 Load/store single

This section describes the encoding of the Load/store single. This section is decoded from 32-bit T32 instruction
encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 op0 op1 op2 op3

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 Subgroup
00 - != 1111 000000 Load/store, unsigned (register offset)
00 - != 1111 10xxxx Load/store, unsigned (immediate, post-indexed)
00 - != 1111 1100xx Load/store, unsigned (negative immediate)
00 - != 1111 1110xx Load/store, unsigned (unprivileged)
00 - != 1111 11x1xx Load/store, unsigned (immediate, pre-indexed)
01 - != 1111 - Load/store, unsigned (positive immediate)
0x - 1111 - Load, unsigned (literal)
10 1 != 1111 000000 Load/store, signed (register offset)
10 1 != 1111 10xxxx Load/store, signed (immediate, post-indexed)
10 1 != 1111 1100xx Load/store, signed (negative immediate)
10 1 != 1111 1110xx Load/store, signed (unprivileged)
10 1 != 1111 11x1xx Load/store, signed (immediate, pre-indexed)
11 1 != 1111 - Load/store, signed (positive immediate)
1x 1 1111 - Load, signed (literal)

C2.3.7.1 Load/store, unsigned (register offset)

This section describes the encoding of the Load/store, unsigned (register offset). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 size L Rn Rt 0 0 0 0 0 0 imm2 Rm

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

516

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instructions:

L Rt size Instruction
0 - 00 STRB (register) T2
1 != 1111 00 LDRB (register) T2
1 1111 0x PLD, PLDW (register) T1
0 - 01 STRH (register) T2
1 != 1111 01 LDRH (register) T2
0 - 10 STR (register) T2
1 - 10 LDR (register) T2

C2.3.7.2 Load/store, unsigned (immediate, post-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, post-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 size L Rn Rt 1 P U W imm8

This table shows the decode field values and the associated instructions:

L size Instruction
0 00 STRB (immediate) T3
1 00 LDRB (immediate) T3
0 01 STRH (immediate) T3
1 01 LDRH (immediate) T3
0 10 STR (immediate) T4
Alias PUSH (single register) T4

1 10 LDR (immediate) T4
Alias POP (single register) T4

C2.3.7.3 Load/store, unsigned (negative immediate)

This section describes the encoding of the Load/store, unsigned (negative immediate). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 size L Rn Rt 1 1 0 0 imm8

This table shows the decode field values and the associated instructions:

L Rt size Instruction
0 - 00 STRB (immediate) T3
1 != 1111 00 LDRB (immediate) T3
1 1111 0x PLD, PLDW (immediate) T2
0 - 01 STRH (immediate) T3
1 != 1111 01 LDRH (immediate) T3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

517

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 - 10 STR (immediate) T4
Alias PUSH (single register) T4

1 - 10 LDR (immediate) T4
Alias POP (single register) T4

C2.3.7.4 Load/store, unsigned (unprivileged)

This section describes the encoding of the Load/store, unsigned (unprivileged). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 size L Rn Rt 1 1 1 0 imm8

This table shows the decode field values and the associated instructions:

L size Instruction
0 00 STRBT T1
1 00 LDRBT T1
0 01 STRHT T1
1 01 LDRHT T1
0 10 STRT T1
1 10 LDRT T1

C2.3.7.5 Load/store, unsigned (immediate, pre-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, pre-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 size L Rn Rt 1 P U W imm8

This table shows the decode field values and the associated instructions:

L size Instruction
0 00 STRB (immediate) T3
1 00 LDRB (immediate) T3
0 01 STRH (immediate) T3
1 01 LDRH (immediate) T3
0 10 STR (immediate) T4
Alias PUSH (single register) T4

1 10 LDR (immediate) T4
Alias POP (single register) T4

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

518

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.7.6 Load/store, unsigned (positive immediate)

This section describes the encoding of the Load/store, unsigned (positive immediate). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 1 size L Rn Rt imm12

This table shows the decode field values and the associated instructions:

L Rt size Instruction
0 - 00 STRB (immediate) T2
1 != 1111 00 LDRB (immediate) T2
1 1111 0x PLD, PLDW (immediate) T1
0 - 01 STRH (immediate) T2
1 != 1111 01 LDRH (immediate) T2
0 - 10 STR (immediate) T3
1 - 10 LDR (immediate) T3

C2.3.7.7 Load, unsigned (literal)

This section describes the encoding of the Load, unsigned (literal). This section is decoded from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 U size L 1 1 1 1 Rt imm12

This table shows the decode field values and the associated instructions:

L Rt size Instruction
1 != 1111 00 LDRB (literal) T1
1 1111 0x PLD (literal) T1
1 != 1111 01 LDRH (literal) T1
1 - 10 LDR (literal) T2

C2.3.7.8 Load/store, signed (register offset)

This section describes the encoding of the Load/store, signed (register offset). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 0 size 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

This table shows the decode field values and the associated instructions:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

519

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

Rt size Instruction
!= 1111 00 LDRSB (register) T2

1111 00 PLI (register) T1
!= 1111 01 LDRSH (register) T2

1111 01 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED

C2.3.7.9 Load/store, signed (immediate, post-indexed)

This section describes the encoding of the Load/store, signed (immediate, post-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 0 size 1 Rn Rt 1 P U W imm8

This table shows the decode field values and the associated instructions:

size Instruction
00 LDRSB (immediate) T2
01 LDRSH (immediate) T2

C2.3.7.10 Load/store, signed (negative immediate)

This section describes the encoding of the Load/store, signed (negative immediate). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 0 size 1 Rn Rt imm12

This table shows the decode field values and the associated instructions:

Rt size Instruction
!= 1111 00 LDRSB (immediate) T2

1111 00 PLI (immediate, literal) T2
!= 1111 01 LDRSH (immediate) T2

1111 01 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED

C2.3.7.11 Load/store, signed (unprivileged)

This section describes the encoding of the Load/store, signed (unprivileged). This section is decoded from
Load/store single.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

520

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 0 size 1 Rn Rt 1 1 1 0 imm8

This table shows the decode field values and the associated instructions:

size Instruction
00 LDRSBT T1
01 LDRSHT T1

C2.3.7.12 Load/store, signed (immediate, pre-indexed)

This section describes the encoding of the Load/store, signed (immediate, pre-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 0 size 1 Rn Rt 1 P U W imm8

This table shows the decode field values and the associated instructions:

size Instruction
00 LDRSB (immediate) T2
01 LDRSH (immediate) T2

C2.3.7.13 Load/store, signed (positive immediate)

This section describes the encoding of the Load/store, signed (positive immediate). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 1 size 1 Rn Rt imm12

This table shows the decode field values and the associated instructions:

Rt size Instruction
!= 1111 00 LDRSB (immediate) T1

1111 00 PLI (immediate, literal) T1
!= 1111 01 LDRSH (immediate) T1

1111 01 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

521

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.7.14 Load, signed (literal)

This section describes the encoding of the Load, signed (literal). This section is decoded from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 U size 1 1 1 1 1 Rt imm12

This table shows the decode field values and the associated instructions:

Rt size Instruction
!= 1111 00 LDRSB (literal) T1

1111 00 PLI (immediate, literal) T3
!= 1111 01 LDRSH (literal) T1

1111 01 Reserved hint, if the Main extension is implemented it behaves as NOP, else UNDEFINED

C2.3.8 Data-processing (register)

This section describes the encoding of the Data-processing (register). This section is decoded from 32-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 0 op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 1xxx Register extends
1 0xxx Parallel add-subtract
1 10xx Data-processing (two source registers)

This table shows the decode field values and the associated instructions:

op0 op1 Instruction
Alias ASRS (register) T2
Alias ASR (register) T2
Alias LSLS (register) T2
Alias LSL (register) T2
Alias LSRS (register) T2
Alias LSR (register) T2

0 0000 MOV, MOVS (register-shifted register) T2
Alias RORS (register) T2
Alias ROR (register) T2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

522

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.8.1 Register extends

This section describes the encoding of the Register extends. This section is decoded from Data-processing
(register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 0 0 op1 U Rn 1 1 1 1 Rd 1 (0) rot Rm

This table shows the decode field values and the associated instructions:

Rn U op1 Instruction
!= 1111 0 00 SXTAH T1

1111 0 00 SXTH T2
!= 1111 1 00 UXTAH T1

1111 1 00 UXTH T2
!= 1111 0 01 SXTAB16 T1

1111 0 01 SXTB16 T1
!= 1111 1 01 UXTAB16 T1

1111 1 01 UXTB16 T1
!= 1111 0 10 SXTAB T1

1111 0 10 SXTB T2
!= 1111 1 10 UXTAB T1

1111 1 10 UXTB T2

C2.3.8.2 Parallel add-subtract

This section describes the encoding of the Parallel add-subtract. This section is decoded from Data-processing
(register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 0 U H S Rm

This table shows the decode field values and the associated instructions:

H S U op1 Instruction
0 0 0 000 SADD8 T1
0 1 0 000 QADD8 T1
1 0 0 000 SHADD8 T1
0 0 1 000 UADD8 T1
0 1 1 000 UQADD8 T1
1 0 1 000 UHADD8 T1
0 0 0 001 SADD16 T1
0 1 0 001 QADD16 T1
1 0 0 001 SHADD16 T1
0 0 1 001 UADD16 T1
0 1 1 001 UQADD16 T1
1 0 1 001 UHADD16 T1
0 0 0 010 SASX T1
0 1 0 010 QASX T1
1 0 0 010 SHASX T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

523

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 0 1 010 UASX T1
0 1 1 010 UQASX T1
1 0 1 010 UHASX T1
0 0 0 100 SSUB8 T1
0 1 0 100 QSUB8 T1
1 0 0 100 SHSUB8 T1
0 0 1 100 USUB8 T1
0 1 1 100 UQSUB8 T1
1 0 1 100 UHSUB8 T1
0 0 0 101 SSUB16 T1
0 1 0 101 QSUB16 T1
1 0 0 101 SHSUB16 T1
0 0 1 101 USUB16 T1
0 1 1 101 UQSUB16 T1
1 0 1 101 UHSUB16 T1
0 0 0 110 SSAX T1
0 1 0 110 QSAX T1
1 0 0 110 SHSAX T1
0 0 1 110 USAX T1
0 1 1 110 UQSAX T1
1 0 1 110 UHSAX T1

C2.3.8.3 Data-processing (two source registers)

This section describes the encoding of the Data-processing (two source registers). This section is decoded from
Data-processing (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 0 1 op0 Rn 1 1 1 1 Rd 1 0 op1 Rm

This table shows the decode field values and the associated instructions:

op0 op1 Instruction
000 00 QADD T1
000 01 QDADD T1
000 10 QSUB T1
000 11 QDSUB T1
001 00 REV T2
001 01 REV16 T2
001 10 RBIT T1
001 11 REVSH T2
010 00 SEL T1
011 00 CLZ T1

C2.3.9 Multiply, multiply accumulate, and absolute difference

This section describes the encoding of the Multiply, multiply accumulate, and absolute difference. This section is
decoded from 32-bit T32 instruction encoding.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

524

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 1 0 op1 Rn Ra Rd 0 0 op2 Rm

This table shows the decode field values and the associated instructions:

Ra Rd op1 op2 Instruction
!= 1111 - 000 00 MLA T1

- - 000 01 MLS T1
1111 - 000 00 MUL T2

!= 1111 - 001 - SMLABB, SMLABT, SMLATB, SMLATT T1
1111 - 001 - SMULBB, SMULBT, SMULTB, SMULTT T1

!= 1111 - 010 0x SMLAD, SMLADX T1
1111 - 010 0x SMUAD, SMUADX T1

!= 1111 - 011 0x SMLAWB, SMLAWT T1
1111 - 011 0x SMULWB, SMULWT T1

!= 1111 - 100 0x SMLSD, SMLSDX T1
1111 - 100 0x SMUSD, SMUSDX T1

!= 1111 != 1111 101 0x SMMLA, SMMLAR T1
!= 1111 1111 101 00 AUTG T1
!= 1111 1111 101 01 BXAUT T1

1111 - 101 0x SMMUL, SMMULR T1
!= 1111 - 110 0x SMMLS, SMMLSR T1

1111 - 110 00 PACG T1
!= 1111 - 111 00 USADA8 T1

1111 - 111 00 USAD8 T1

C2.3.10 Long multiply and divide

This section describes the encoding of the Long multiply and divide. This section is decoded from 32-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 1 1 op1 Rn RdLo RdHi op2 Rm

This table shows the decode field values and the associated instructions:

op1 op2 Instruction
000 0000 SMULL T1
001 1111 SDIV T1
010 0000 UMULL T1
011 1111 UDIV T1
100 0000 SMLAL T1
100 10xx SMLALBB, SMLALBT, SMLALTB, SMLALTT T1
100 110x SMLALD, SMLALDX T1
101 110x SMLSLD, SMLSLDX T1
110 0000 UMLAL T1
110 0110 UMAAL T1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

525

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

526

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4 Alphabetical list of instructions

Every Armv8-M instruction is listed in this section. See Instruction Set Overview for the format of the instruction
descriptions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

527

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.1 ADC (immediate)

Add with Carry (immediate). Add with Carry (immediate) adds an immediate value and the carry flag value to a
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

528

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

529

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.2 ADC (register)

Add with Carry (register). Add with Carry (register) adds a register value, the carry flag value, and an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 1 Rm Rdn

T1 variant

ADC<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

ADCS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

ADC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ADC<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

530

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADCS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

531

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.3 ADD (SP plus immediate)

Add to SP (immediate). ADD (SP plus immediate) adds an immediate value to the SP value, and writes the result
to the destination register.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 Rd imm8

T1 variant

ADD{<c>}{<q>} <Rd>, SP, #<imm8>

Decode for this encoding
1 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 imm7

T2 variant

ADD{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding
1 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8

ADD variant

Applies when S == 0.

ADD{<c>}.W {<Rd>,} SP, #<const>
// <Rd>, <const> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

532

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
4 if d == 15 && S == '0' then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8

T4 variant

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
3 if d == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field

as <imm7>/4.
<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field.
If omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field
as <imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
4 RSPCheck[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

533

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.4 ADD (SP plus register)

Add to SP (register). ADD (SP plus register) adds an optionally-shifted register value to the SP value, and writes
the result to the destination register.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DM 1 1 0 1 Rdm

T1 variant

ADD{<c>}{<q>} {<Rdm>,} SP, <Rdm>

Decode for this encoding
1 d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
2 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 Rm 1 0 1

T2 variant

ADD{<c>}{<q>} {SP,} SP, <Rm>

Decode for this encoding
1 if Rm == '1101' then SEE "encoding T1";
2 d = 13; m = UInt(Rm); setflags = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 (0) imm3 Rd imm2

sr_type

Rm

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

534

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADD{<c>}.W {<Rd>,} SP, <Rm>
// <Rd>, <Rm> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMN (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
6 if (d == 15 && S == '0') || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If

omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if
the PC is used, the instruction is a simple branch to the address calculated by the operation.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register
is the SP.

<Rm> For encoding T2: is the second general-purpose source register, encoded in the "Rm" field.
The PC can be used, but this is deprecated.
For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It
can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(SP, shifted, '0');
5 if d == 15 then
6 BranchTo(result); // setflags is always FALSE here
7 else
8 RSPCheck[d] = result;
9 if setflags then

10 APSR.N = result[31];
11 APSR.Z = IsZeroBit(result);
12 APSR.C = carry;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

535

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 APSR.V = overflow;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

536

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.5 ADD (immediate)

Add (immediate). Add (immediate) adds an immediate value to a register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Rn Rd

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, #<imm3>
// Inside IT block

ADDS{<q>} <Rd>, <Rn>, #<imm3>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8

T2 variant

ADD<c>{<q>} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> can be represented in T1

ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> cannot be represented in T1

ADDS{<q>} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> can be represented in T1

ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S Rn 0 imm3 Rd imm8

ADD variant

Applies when S == 0.

ADD<c>.W {<Rd>,} <Rn>, #<const>
// Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

537

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, #<const>
// Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
2 if Rn == '1101' then SEE "ADD (SP plus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
5 if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 Rn 0 imm3 Rd imm8

T4 variant

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

ADDW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if Rn == '1111' then SEE ADR;
2 if Rn == '1101' then SEE "ADD (SP plus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
5 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.3 ADD (SP plus immediate).
For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.3 ADD (SP plus immediate). If the PC is used, see C2.4.8 ADR.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

538

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

539

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.6 ADD (immediate, to PC)

Add to PC. Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes
the result to the destination register. Arm recommends that, where possible, software avoids using this alias.

This instruction is a pseudo-instruction of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of ADR gives the operational pseudocode for this instruction.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

T1 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm8>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

T3 variant

ADDW{<c>}{<q>} <Rd>, PC, #<imm12>
// <Rd>, <imm12> can be represented in T1

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

540

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC,
4) value of the ADR instruction to this label. Permitted values of the size of the offset are
multiples of 4 in the range 0 to 1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is
to be loaded into <Rd>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the ADR instruction to this label. If the offset is zero or positive,
encoding T3 is used, with imm32 equal to the offset. If the offset is negative, encoding T2 is
used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that
the required offset is minus the value of imm32. Permitted values of the size of the offset are
0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field
as <imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

Operation for all encodings
The description of ADR gives the operational pseudocode for this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

541

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.7 ADD (register)

Add (register). ADD (register) adds a register value and an optionally-shifted register value, and writes the result
to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 Rm Rn Rd

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, <Rm>
// Inside IT block

ADDS{<q>} {<Rd>,} <Rn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DN Rm Rdn

T2 variant

ADD<c>{<q>} <Rdn>, <Rm>
// Preferred syntax, Inside IT block

ADD{<c>}{<q>} {<Rdn>,} <Rdn>, <Rm>

Decode for this encoding
1 if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
2 d = UInt(DN:Rdn); n = UInt(DN:Rdn); m = UInt(Rm); setflags = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);
4 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
5 if d == 15 && m == 15 then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

542

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

ADDS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMN (register)";
2 if Rn == '1101' then SEE "ADD (SP plus register)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
5 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
6 if d == 13 || (d == 15 && S == '0') || n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the

PC is used, the instruction is a branch to the address calculated by the operation. This is a
simple branch. The assembler language allows <Rdn> to be specified once or twice in the
assembler syntax. When used inside an IT block, and <Rdn> and <Rm> are in the range R0
to R7, <Rdn> must be specified once so that encoding T2 is preferred to encoding T1. In all
other cases there is no difference in behavior when <Rdn> is specified once or twice.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. When
used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is
optional, and:

- If omitted, this register is the same as <Rn>.
- If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the
SP is used, see C2.4.4 ADD (SP plus register).

<Rm> For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm"
field.
For encoding T2: is the second general-purpose source register, encoded in the "Rm" field.
The PC can be used.

<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It
can have the following values:
LSL when sr_type = 00

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

543

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
5 if d == 15 then
6 BranchTo(result); // setflags is always FALSE here
7 else
8 R[d] = result;
9 if setflags then

10 APSR.N = result[31];
11 APSR.Z = IsZeroBit(result);
12 APSR.C = carry;
13 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

544

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.8 ADR

Form PC-relative address. Address to Register adds an immediate value to the PC value, and writes the result to
the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

T1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding
1 d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

T2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
3 if d IN {13,15} then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

T3 variant

ADR{<c>}.W <Rd>, <label>
// <Rd>, <label> can be presented in T1

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
3 if d IN {13,15} then UNPREDICTABLE;

Alias conditions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

545

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Alias or pseudo-instruction preferred when
ADD (immediate, to PC) Never
SUB (immediate, from PC) i:imm3:imm8 == ‘000000000000‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded

into <Rd>. The assembler calculates the required value of the offset from the Align(PC,
4) value of the ADR instruction to this label. Permitted values of the size of the offset are
multiples of 4 in the range 0 to 1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is
to be loaded into <Rd>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the ADR instruction to this label. If the offset is zero or positive,
encoding T3 is used, with imm32 equal to the offset. If the offset is negative, encoding T2 is
used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that
the required offset is minus the value of imm32. Permitted values of the size of the offset are
0-4095.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
4 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

546

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.9 AND (immediate)

Bitwise AND (immediate). AND (immediate) performs a bitwise AND of a register value and an immediate value,
and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS variant

Applies when S == 1 && Rd != 1111.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TST (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] AND imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

547

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

548

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.10 AND (register)

Bitwise AND (register). AND (register) performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 Rm Rdn

T1 variant

AND<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

ANDS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

AND, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

AND<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

549

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ANDS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TST (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] AND shifted;
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

550

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.11 ASR (immediate)

Arithmetic Shift Right (immediate). Arithmetic Shift Right (immediate) shifts a register value right by an immediate
number of bits, shifting in copies of its sign bit, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 10 imm5 Rm Rd

T2 variant

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1 [0] imm3 Rd imm2

sr_type = 10

Rm != 11x1

MOV, shift or rotate by value variant

ASR<c>.W {<Rd>,} <Rm>, #<imm>
// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

MOV, shift or rotate by value variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

551

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

552

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.12 ASR (register)

Arithmetic Shift Right (register). Arithmetic Shift Right (register) shifts a register value right by a variable number
of bits, shifting in copies of its sign bit, and writes the result to the destination registers. The variable number of
bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0100 Rs Rdm

Arithmetic shift right variant

ASR<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 10
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

ASR<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Non flag setting variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

553

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

554

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.13 ASRL (immediate)

Arithmetic Shift Right Long. Arithmetic shift right by 1 to 32 bits of a 64-bit value stored in two general-purpose
registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 0 immh RdaHi (1) imml 1 0 1 1 1 1

T1: ASRL variant

ASRL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "SRSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[dah]:R[dal]);
5 result = (op1 >> amount)[63:0];
6 R[dah] = result[63:32];
7 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

555

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.14 ASRL (register)

Arithmetic Shift Right Long. Arithmetic shift right by 0 to 64 bits of a 64-bit value stored in two general-purpose
registers. The shift amount is read in as the bottom byte of Rm. If the shift amount is negative, the shift direction is
reversed.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 Rm RdaHi (1) (0) (0) 1 0 1 1 0 1

T1: ASRL variant

ASRL<c><q> RdaLo, RdaHi, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "SQRSHR (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;
9 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = SInt(R[dah]:R[dal]);
6 result = (op1 >> amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

556

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.15 ASRS (immediate)

Arithmetic Shift Right, Setting flags (immediate). Arithmetic Shift Right, Setting flags (immediate) shifts a register
value right by an immediate number of bits, shifting in copies of its sign bit, writes the result to the destination
register, and updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 10 imm5 Rm Rd

T2 variant

ASRS{<q>} {<Rd>,} <Rm>, #<imm>
// Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1 [0] imm3 Rd imm2

sr_type = 10

Rm

MOVS, shift or rotate by value variant

ASRS.W {<Rd>,} <Rm>, #<imm>
// Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

MOVS, shift or rotate by value variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

557

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

558

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.16 ASRS (register)

Arithmetic Shift Right, Setting flags (register). Arithmetic Shift Right, Setting flags (register) shifts a register value
right by a variable number of bits, shifting in copies of its sign bit, writes the result to the destination register, and
updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a
register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0100 Rs Rdm

Arithmetic shift right variant

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 10
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

ASRS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Flag setting variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

559

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

560

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.17 AUT

Authenticate link register, using key. This instruction computes a pointer authentication code using LR as the
address, SP as the modifier and, a key. The computed PAC is compared against the PAC in R12. If the values do
not match an INVSTATE UsageFault is generated.

This instruction is not permitted in an IT block.

This is a NOP-compatible hint.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 1 0 1 1 0 1

T1 variant

AUT R12, LR, SP

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

LR LR register, this instruction must always use this register. This register holds the address.
SP SP register, this instruction must always use this register. This register holds the modifier to

apply during the PAC code generation.
R12 R12 register, this instruction must always use this register. This register holds PAC for

comparison.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 if PACEnabled() then
4 if !ValidatePAC(LR, SP, R[12]) then
5 UFSR.INVSTATE = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

The timing of this instruction is insensitive to the value of the data being loaded or stored regardless of the value of
AIRCR.DIT when accessing any of the following:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

561

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

The point at which an asynchronous exception is taken does not vary based on any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

562

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.18 AUTG

Authenticate general value, using key. This instruction computes a pointer authentication code using two input
registers and a key. The computed PAC is compared against the PAC in the specified register. If the values do not
match an INVSTATE UsageFault is generated.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn Ra 1 1 1 1 0 0 0 0 Rm

T1 variant

AUTG{<c>} <Ra>, <Rn>, <Rm>

Decode for this encoding
1 if !HavePACBTIExt() then
2 if HaveDSPExt() then UNPREDICTABLE; else UNDEFINED;
3 if Ra == '1111' then SEE SMMUL;
4 a = UInt(Ra); n = UInt(Rn); m = UInt(Rm);
5 if n == 15 || m == 15 || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose source register containing the value to be encrypted, encoded in the

"Rn" field.
<Rm> Is the general-purpose source register containing the modifier to be used in the encryption

operation, encoded in the "Rm" field.
<Ra> Is the general-purpose register containing the encrypted value, encoded in the "Ra" field. The

value in this register will be compared against the value produced by the encryption operation.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if PACEnabled() then
4 if !ValidatePAC(R[n], R[m], R[a]) then
5 UFSR.INVSTATE = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

The timing of this instruction is insensitive to the value of the data being loaded or stored regardless of the value of
AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

563

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

The point at which an asynchronous exception is taken does not vary based on any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

564

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.19 B

Branch. Branch causes a branch to a target address.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 cond imm8

T1 variant

B<c>{<q>} <label>
// Not permitted in IT block

Decode for this encoding
1 if cond == '1110' then SEE UDF;
2 if cond == '1111' then SEE SVC;
3 imm32 = SignExtend(imm8:'0', 32);
4 if InITBlock() then UNPREDICTABLE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 imm11

T2 variant

B{<c>}{<q>} <label>
// Outside or last in IT block

Decode for this encoding
1 imm32 = SignExtend(imm11:'0', 32);
2 cond = CurrentCond();
3 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S cond imm6 1 0 J1 0 J2 imm11

T3 variant

B<c>.W <label>
// Not permitted in IT block, and <label> can be represented in T1

B<c>{<q>} <label>
// Not permitted in IT block

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

565

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if cond[3:1] == '111' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
4 if InITBlock() then UNPREDICTABLE;

T4
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11

T4 variant

B{<c>}.W <label>
// <label> can be represented in T2

B{<c>}{<q>} <label>

Decode for this encoding
1 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
2 cond = CurrentCond();
3 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> For encoding T1: see C1.2.5 Standard assembler syntax fields. Must not be AL or omitted.
For encoding T2 and T4: see C1.2.5 Standard assembler syntax fields.
For encoding T3: see C1.2.5 Standard assembler syntax fields. <c> must not be AL or omitted.

<q> See C1.2.5 Standard assembler syntax fields.
<label> For encoding T1: the label of the instruction that is to be branched to. The assembler calculates

the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-256 to 254.
For encoding T2: the label of the instruction that is to be branched to. The assembler calculates
the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-2048 to 2046.
For encoding T3: the label of the instruction that is to be branched to. The assembler calculates
the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-1048576 to 1048574.
For encoding T4: the label of the instruction that is to be branched to. The assembler calculates
the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-16777216 to 16777214.

Operation for all encodings
1 if ConditionPassed(cond) then
2 EncodingSpecificOperations();
3 BranchTo(PC + imm32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

566

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.20 BF, BFX, BFL, BFLX, BFCSEL

Branch Future, Branch Future and Exchange, Branch Future with Link, Branch Future with Link and Exchange,
Branch Future Conditional Select. These instructions notify the PE about an upcoming branch to <label>, so
that the branch will be taken instead of fetching and executing the instruction at <b_label>. This allows the PE
to reduce or eliminate any associated performance penalty that might have been caused by a branch that the PE was
not notified about. It is IMPLEMENTATION DEFINED whether this instruction is treated as a NOP. To ensure correct
program flow behavior in these cases, fallback code should be present at the point specified by <b_label>.

For the Branch Future with Link variant, the link register is updated when the branch is performed. The value
written is offset from the branch point by 4 bytes, which corresponds to the length of the BL (immediate) instruction
that would usually follow the branch point as part of the fallback code.

For the Branch Future with Link and Exchange variant, the link register is updated when the branch is performed.
The value written is offset from the branch point by 2 bytes, which corresponds to the length of the BLX (register)
instruction that would usually follow the branch point as part of the fallback code. If the PACBTI Extension is
implemented this instruction will set LO_BRANCH_INFO.BTI to one (this bit will not be set if LR register is
used as an argument in BFX). When the branch is taken and BTI is enabled then the EPSR.B is set to one.

The Branch Future Conditional Select variant creates a future branch to <label> if the condition code passes. If
the explicit condition code fails, this variant does not behave as a NOP. Instead it creates a future branch to the
instruction specified by <ba_label>, if there is no other active BF entry in the loop and branch cache.

T1
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 1 0 immA 1 1 1 0

immC

immB 1

T1: BF variant

BF<c><q> <b_label>, <label>

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = SignExtend(immA:immB:immC:'1', 32);
6 bOffset = bits(32) UNKNOWN;
7 n = integer UNKNOWN;
8 regAddr = FALSE;
9 link = FALSE;

10 setBti = FALSE;
11 bcond = CondAL;

T2
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 0 bcond T

immA

1 1 1 0

immC

immB 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

567

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2: BFCSEL variant

BFCSEL <b_label>, <label>, <ba_label>, <bcond>

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = SignExtend(immA:immB:immC:'1', 32);
6 bOffset = (if T == '1' then 5 else 3)[31:0];
7 n = integer UNKNOWN;
8 regAddr = FALSE;
9 link = FALSE;

10 setBti = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if bcond == '111x' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 1 1 0 Rn 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T3: BFX variant

BFX<c><q> <b_label>, Rn

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = Zeros(32);
6 bOffset = bits(32) UNKNOWN;
7 n = UInt(Rn);
8 regAddr = TRUE;
9 link = FALSE;

10 setBti = if n != 14 then TRUE else FALSE;
11 bcond = CondAL;
12 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff immA 1 1 0 0

immC

immB 1

T4: BFL variant

BFL<c><q> <b_label>, <label>

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

568

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = SignExtend(immA:immB:immC:'1', 32);
6 bOffset = bits(32) UNKNOWN;
7 n = integer UNKNOWN;
8 regAddr = FALSE;
9 link = TRUE;

10 setBti = FALSE;
11 bcond = CondAL;

T5
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 1 1 1 Rn 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T5: BFLX variant

BFLX<c><q> <b_label>, Rn

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = Zeros(32);
6 bOffset = bits(32) UNKNOWN;
7 n = UInt(Rn);
8 regAddr = TRUE;
9 link = TRUE;

10 setBti = TRUE;
11 bcond = CondAL;
12 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<b_label> The PC relative offset of the first instruction in the fallback code, that will not be executed if

the future branch is taken.
<Rn> The address to branch to.
<ba_label> The PC relative offset of the address to branch to in case the associated BFCSEL condition

code check fails and no other branch future is pending. The range of this address allows
branching over a 2-byte or 4-byte instruction located at <b_label>.

<T> Selects whether the instruction at <b_label> is a 2-byte (T = 0) or 4-byte (T = 1) instruction to
be branched around, as specified by <ba_label>.

<bcond> The comparison condition to use. The evaluation of this comparison is performed when this
instruction is executed and not at the point the branch is performed.
This parameter must be one of the following values:
EQ Encoded as bcond = 0000
NE Encoded as bcond = 0001
CS Encoded as bcond = 0010
CC Encoded as bcond = 0011
MI Encoded as bcond = 0100
PL Encoded as bcond = 0101
VS Encoded as bcond = 0110
VC Encoded as bcond = 0111
HI Encoded as bcond = 1000

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

569

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LS Encoded as bcond = 1001
GE Encoded as bcond = 1010
LT Encoded as bcond = 1011
GT Encoded as bcond = 1100
LE Encoded as bcond = 1101

<label> The PC relative offset of the address to branch to.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 // BF can be implemented as a NOP
5 allow_bf = boolean IMPLEMENTATION_DEFINED "BF allowed";
6
7 if ConditionPassed(bcond) then
8 jump_addr = if regAddr then R[n] else PC + offset;
9 else

10 jump_addr = PC + endOffset + bOffset;
11 // If the condition fails, capture a BF entry only if it does not override
12 // an existing BF entry.
13 if LO_BRANCH_INFO.VALID == '1' && LO_BRANCH_INFO.BF == '1' then
14 allow_bf = FALSE;
15 // A branch that results in a transition to a different instruction set
16 // causes the BF instruction to be treated as a NOP.
17 allow_bf = allow_bf && (jump_addr[0] == '1');
18 // Branches that would cause a FNC_RETURN or EXC_RETURN aren't supported,
19 // and also cause BF to be treated as a NOP.
20 allow_bf = allow_bf && (!regAddr || IsReturn(jump_addr) == AddrType_NORMAL);
21 // Check if the branch cache info is enabled.
22 allow_bf = allow_bf && CCR.LOB == '1';
23 // Set up the branch info cache if allowed
24 if allow_bf then
25 LO_BRANCH_INFO.VALID = '1';
26 LO_BRANCH_INFO.BF = '1';
27 LO_BRANCH_INFO.LF = if link then '1' else '0';
28 LO_BRANCH_INFO.T16IND = if regAddr then '1' else '0';
29 LO_BRANCH_INFO.BTI = if setBti then '1' else '0';
30 LO_BRANCH_INFO.END_ADDR = (PC + endOffset)[31:1];
31 LO_BRANCH_INFO.JUMP_ADDR = jump_addr[31:1];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

570

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.21 BFC

Bit Field Clear. Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting
the other bits in the register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb

T1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
3 if msbit < lsbit then UNPREDICTABLE;
4 if d IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<lsb> Is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the "imm3:imm2"

field.
<width> Is the number of bits to be cleared, in the range 1 to 32-<lsb>, encoded in the "msb" field as

<lsb>+<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit >= lsbit then
4 R[d][msbit:lsbit] = Replicate('0', msbit-lsbit+1);
5 // Other bits of R[d] are unchanged
6 else
7 R[d] = bits(32) UNKNOWN;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

571

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

572

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.22 BFI

Bit Field Insert. Bit Field Insert copies any number of low order bits from a register into the same number of
adjacent bits at any position in the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 Rn 0 imm3 Rd imm2 (0) msb

T1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding
1 if Rn == '1111' then SEE BFC;
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
4 if msbit < lsbit then UNPREDICTABLE;
5 if d IN {13,15} || n == 13 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<lsb> Is the least significant destination bit, in the range 0 to 31, encoded in the "imm3:imm2" field.
<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as

<lsb>+<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit >= lsbit then
4 R[d][msbit:lsbit] = R[n][(msbit-lsbit):0];
5 // Other bits of R[d] are unchanged
6 else
7 R[d] = bits(32) UNKNOWN;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

573

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

574

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.23 BIC (immediate)

Bit Clear (immediate). Bit Clear (immediate) performs a bitwise AND of a register value and the complement of
an immediate value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] AND NOT(imm32);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

575

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

576

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.24 BIC (register)

Bit Clear (register). Bit Clear (register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 0 Rm Rdn

T1 variant

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

BICS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2

sr_type

Rm

BIC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

BIC<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

577

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

BICS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] AND NOT(shifted);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

578

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.25 BKPT

Breakpoint. Breakpoint causes a DebugMonitor exception or a debug halt to occur depending on the configuration
of the debug support.

BKPT is an unconditional instruction and executes as such both inside and outside an IT instruction block.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 imm8

T1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm8, 32);
2 // imm32 is for assembly/disassembly only and is ignored by hardware.

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields. A BKPT instruction must be unconditional.
<imm> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. The

PE ignores this value, but a debugger might use it to store additional information about the
breakpoint.

Operation for all encodings
1 EncodingSpecificOperations();
2 GenerateDebugEventResponse(DebugEventCause_BKPT);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

579

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.26 BL

Branch with Link (immediate). Branch with Link (immediate) calls a subroutine at a PC-relative address.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11

T1 variant

BL{<c>}{<q>} <label>

Decode for this encoding
1 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
2 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<label> The label of the instruction that is to be branched to. The assembler calculates the required

value of the offset from the PC value of the BL instruction to this label, then selects an encoding
with imm32 set to that offset. Permitted offsets are even numbers in the range -16777216 to
16777214.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 LR = (ThisInstrAddr()[31:1] : '1') + ThisInstrLength();
4 BranchTo(PC + imm32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

580

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.27 BLX, BLXNS

Branch with Link and Exchange (Non-secure). Branch with Link and Exchange calls a subroutine at an address,
with the address and instruction set specified by a register. Bit[0] complies with the Arm architecture interworking
rules for switching between the A32 and T32 instruction sets. However, Armv8-M only supports the T32 instruction
set, so bit[0] must be 1. If bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the
target address.

Branch with Link and Exchange Non-secure calls a subroutine at an address specified by a register, and if bit[0] of
the target address is 0 then the instruction causes a transition from Secure to Non-secure state. This variant of the
instruction must only be used when the additional steps required to make such a transition safe have been taken.

BLXNS is UNDEFINED if executed in Non-secure state, or if the Security Extension is not implemented.

If the PACBTI Extension is implemented and BTI is enabled for the destination Security state and privilege mode
then this instruction is a BTI setting instruction. When this instruction is executed it will set EPSR.B to one.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1 Rm NS (0) (0)

BLX variant

Applies when NS == 0.

BLX{<c>}{<q>} <Rm>

BLXNS variant

Applies when NS == 1.

BLXNS{<c>}{<q>} <Rm>

Decode for this encoding
1 m = UInt(Rm); allowNonSecure = NS == '1';
2 if !IsSecure() && allowNonSecure then UNDEFINED;
3 if m IN {13,15} then UNPREDICTABLE;
4 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 target = R[m];
5 nextInstrAddr = (ThisInstrAddr()[31:1] : '1') + ThisInstrLength();
6
7 if allowNonSecure && (target[0] == '0') then
8 targetIsSecure = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

581

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 if !IsAligned(SP, 8) then UNPREDICTABLE;
10 address = SP - 8;
11 RETPSR_Type savedPSR = Zeros();
12 // EPSR.B is not preserved on the stack
13 savedPSR.Exception = IPSR.Exception;
14 savedPSR.SFPA = CONTROL_S.SFPA;
15 // Only the stack locations, not the store order, are architected
16 spName = LookUpSP();
17 mode = CurrentMode();
18 exc = Stack(address, 0, spName, mode, nextInstrAddr);
19 if exc.fault == NoFault then exc = Stack(address, 4, spName, mode, savedPSR);
20 HandleException(exc);
21 // Stack pointer update will raise a fault if limit violated
22 SP = address;
23 LR = 0xFEFFFFFF[31:0];
24 // If in handler mode, IPSR must be nonzero. To prevent revealing which
25 // Secure handler is calling Non-secure code, IPSR is set to an invalid but
26 // nonzero value(ie the reset exception number).
27 if mode == PEMode_Handler then
28 IPSR = 0x1[31:0];
29 else
30 targetIsSecure = IsSecure();
31 LR = nextInstrAddr;
32
33 setBti = BTIEnabled(targetIsSecure);
34 BranchCall(target, allowNonSecure, setBti);

CONSTRAINED UNPREDICTABLE behavior
If !IsAligned(SP, 8), then one of the following behaviors must occur:

• The instruction uses the current value of the stack pointer.

• The instruction behaves as though bits[2:0] of the stack pointer are 0b000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

582

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.28 BTI

Branch target identification. When the PACBTI Extension is enabled this instruction is treated as a valid landing
pad for jumps and calls and resets EPSR.B to zero.

This instruction is not permitted in an IT block.

This is a NOP-compatible hint.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 1 1 1 1

T1 variant

BTI

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

<none>

Operation for all encodings
1 EncodingSpecificOperations();
2
3 // This instruction is an explicit BTI landing pad instruction.
4 // The EPSR.B bit is reset to zero.
5 EPSR.B = '0';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

583

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.29 BX, BXNS

Branch and Exchange (Non-secure). Branch and Exchange causes a branch to an address, with the address and
instruction set specified by a register. Bit[0] complies with the Arm architecture interworking rules for switching
between the A32 and T32 instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0]
must be 1. If bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the target address.

Branch and Exchange Non-secure causes a branch to an address specified by a register. If bit[0] of the target address
is 0, and the target address is not FNC_RETURN or EXC_RETURN, then the instruction causes a transition from
Secure to Non-secure state. This variant of the instruction must only be used when the additional steps required to
make such a transition safe have been taken.

BX can also be used for an exception return.

BXNS is UNDEFINED if executed in Non-secure state, or if the Security Extension is not implemented.

If the PACBTI Extension is implemented, BTI is enabled for the destination security and privilege state, the
operation is not a FNC_RETURN or an EXC_RETURN, and <Rm> is not LR, then this instruction is a BTI setting
instruction, and when this instruction is executed it will set EPSR.B to one.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 Rm NS (0) (0)

BX variant

Applies when NS == 0.

BX{<c>}{<q>} <Rm>

BXNS variant

Applies when NS == 1.

BXNS{<c>}{<q>} <Rm>

Decode for this encoding
1 m = UInt(Rm); allowNonSecure = NS == '1';
2 if !IsSecure() && allowNonSecure then UNDEFINED;
3 if m IN {13,15} then UNPREDICTABLE;
4 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 // If BTI is enabled, this branch sets the EPSR.B flag to ensure that the target
4 // instruction is BTI clearing. If register LR is used, then a BTI clearing
5 // instruction is not required at the branch target.
6 target = R[m];
7 targetIsSecure = IsSecure() && !(allowNonSecure && target[0] == '0');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

584

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 setBti = BTIEnabled(targetIsSecure) && m != 14;
9 exc = BranchReturn(target, allowNonSecure, setBti);

10 HandleException(exc);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

585

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.30 BXAUT

Branch Exchange after Authenticating the address, using key. This instruction computes a pointer authentication
code using the address, a modifier and, a key. The computed PAC is compared against the PAC in the specified
register. If the values do not match an INVSTATE UsageFault is generated. Once the address has been authenticated
the PE branches to that address.

Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32 instruction
sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE takes an
INVSTATE UsageFault exception on the instruction at the target address.

BXAUT can be used for an exception return.

The instruction must be either outside any IT block, or the last instruction in an IT block.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn Ra 1 1 1 1 0 0 0 1 Rm

T1 variant

BXAUT{<c>} <Ra>, <Rn>, <Rm>

Decode for this encoding
1 if !HavePACBTIExt() then
2 if HaveDSPExt() then UNPREDICTABLE; else UNDEFINED;
3 if Ra == '1111' then SEE SMMUL;
4 a = UInt(Ra); n = UInt(Rn); m = UInt(Rm);
5 if n IN {13,15} || m == 15 || a == 13 then UNPREDICTABLE;
6 if InITBlock() && !LastInITBlock() then CONSTRAINED_UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock() && !LastInITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose source register containing the address to be encrypted, encoded in the

"Rn" field.
<Rm> Is the general-purpose source register containing the modifier to be used in the encryption

operation, encoded in the "Rm" field.
<Ra> Is the general-purpose register containing the encrypted value, encoded in the "Ra" field. The

value in this register will be compared against the value produced by the encryption operation.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if PACEnabled() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

586

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 if !ValidatePAC(R[n], R[m], R[a]) then
5 UFSR.INVSTATE = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);
8 exc = BranchReturn(R[n], FALSE);
9 HandleException(exc);

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

The timing of this instruction is insensitive to the value of the data being loaded or stored regardless of the value of
AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

The point at which an asynchronous exception is taken does not vary based on any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

587

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.31 CBNZ, CBZ

Compare and Branch on Nonzero or Zero. Compare and Branch on Nonzero and Compare and Branch on Zero
compare the value in a register with zero, and conditionally branch forward a constant value. They do not affect
the condition flags.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 op 0 i 1 imm5 Rn

CBNZ variant

Applies when op == 1.

CBNZ{<q>} <Rn>, <label>

CBZ variant

Applies when op == 0.

CBZ{<q>} <Rn>, <label>

Decode for this encoding
1 n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
2 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.
<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 in

the range 0 to 126, is encoded as "i:imm5" times 4.

Operation for all encodings
1 EncodingSpecificOperations();
2 if nonzero != IsZero(R[n]) then
3 BranchTo(PC + imm32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

588

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.32 CDP, CDP2

Coprocessor Data Processing. Coprocessor Data Processing tells a coprocessor to perform an operation.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

T1 variant

CDP{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

T2 variant

CDP2{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode, in the range 0 to 15, encoded in the "opc1" field.
<CRd> Is the destination coprocessor register, encoded in the "CRd" field.
<CRn> Is the coprocessor register that contains the first operand, encoded in the "CRn" field.
<CRm> Is the coprocessor register that contains the second operand, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

589

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_InternalOperation(cp, ThisInstr());

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

590

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.33 CINC

Conditional Increment. Returns, in the destination register, the value of the source register incremented by 1, if the
condition is TRUE. Otherwise returns the value of the source register.

This is an alias of CSINC with the following condition satisfied: Rn == Rm && Rn != 15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 0 1 Rd fcond Rn

CINC variant

CINC<q> Rd, Rn, <fcond>

is equivalent to

CSINC<q> Rd, Rn, Rn, invert (<cond>)

and is the preferred disassembly when Rn == Rm && Rn != 15

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

591

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.34 CINV

Conditional Invert. Returns, in the destination register, the bitwise inversion of the value of the source register, if
the condition is TRUE. Otherwise returns the value of the source register.

This is an alias of CSINV with the following condition satisfied: Rn == Rm && Rn != 15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 0 Rd fcond Rn

T1: CINV variant

CINV<q> Rd, Rn, <fcond>

is equivalent to

CSINV<q> Rd, Rn, Rn, invert (<cond>)

and is the preferred disassembly when Rn == Rm && Rn != 15

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

592

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.35 CLREX

Clear Exclusive. Clear Exclusive clears the local record of the executing PE that an address has had a request for
an exclusive access.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)

T1 variant

CLREX{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ClearExclusiveLocal(ProcessorID());

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

593

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.36 CLRM

Clear multiple. Zeros the specified general-purpose registers. It is IMPLEMENTATION DEFINED whether this
instruction is interrupt-continuable. See EPSR.ICI. If an exception returns to this instruction with nonzero
EPSR.ICI bits, and the PE does not support interrupt-continuable behavior, the instruction restarts from the
beginning.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 (0) 1 1 1 1 1 A M (0) register_list

T1: CLRM variant

CLRM<c><q> <registers>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3
4 registers = A:M:'0':register_list;
5 if BitCount(registers) < 1 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<registers> A list of the registers to clear, separated by commas and surrounded by { and }. The valid

registers are APSR, LR/R14, and R12-R0, and are encoded as a bitmask in the A, M and
register_list fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 for i = 0 to 14
5 if registers[i] == '1' then
6 R[i] = Zeros(32);
7
8 if registers[15] == '1' then
9 APSR = Zeros(32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

594

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.37 CLZ

Count Leading Zeros. Count Leading Zeros returns the number of binary zero bits before the first binary one bit in
a value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm2

T1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm); m2 = UInt(Rm2);
4 if d IN {13,15} || m IN {13,15} || m2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded

twice.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = CountLeadingZeroBits(R[m]);
4 R[d] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

595

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

596

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.38 CMN (immediate)

Compare Negative (immediate). Compare Negative (immediate) adds a register value and an immediate value. It
updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
3 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

597

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.39 CMN (register)

Compare Negative (register). Compare Negative (register) adds a register value and an optionally-shifted register
value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 Rm Rn

T1 variant

CMN{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding
1 n = UInt(Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

CMN{<c>}.W <Rn>, <Rm>
// <Rn>, <Rm> can be represented in T1

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

598

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

599

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.40 CMP (immediate)

Compare (immediate). Compare (immediate) subtracts an immediate value from a register value. It updates the
condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rn imm8

T1 variant

CMP{<c>}{<q>} <Rn>, #<imm8>

Decode for this encoding
1 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8

T2 variant

CMP{<c>}.W <Rn>, #<const>
// <Rn>, <const> can be represented in T1

CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
3 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 APSR.V = overflow;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

600

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

601

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.41 CMP (register)

Compare (register). Compare (register) subtracts an optionally-shifted register value from a register value. It
updates the condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

T1 variant

CMP{<c>}{<q>} <Rn>, <Rm>
// <Rn> and <Rm> both from R0-R7

Decode for this encoding
1 n = UInt(Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 N Rm Rn

T2 variant

CMP{<c>}{<q>} <Rn>, <Rm>
// <Rn> and <Rm> not both from R0-R7

Decode for this encoding
1 n = UInt(N:Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);
3 if n < 8 && m < 8 then UNPREDICTABLE;
4 if n == 15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If n < 8 && m < 8, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The condition flags become UNKNOWN.

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

602

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

CMP{<c>}.W <Rn>, <Rm>
// <Rn>, <Rm> can be represented in T1 or T2

CMP{<c>}{<q>} <Rn>, <Rm>, <shift> #<amount>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

603

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

604

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.42 CNEG

Conditional Negate. Returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This is an alias of CSNEG with the following condition satisfied: Rn == Rm.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 1 Rd fcond Rn

CNEG variant

CNEG<q> Rd, Rn, <fcond>

is equivalent to

CSNEG<q> Rd, Rn, Rn, invert (<cond>)

and is the preferred disassembly when Rn == Rm

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

605

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.43 CPS

Change PE State. Change PE State. The instruction modifies the PRIMASK and FAULTMASK special-purpose
register values.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 im (0) (0) I F

CPSID variant

Applies when im == 1.

CPSID{<q>} <iflags>

CPSIE variant

Applies when im == 0.

CPSIE{<q>} <iflags>

Decode for this encoding
1 enable = (im == '0'); disable = (im == '1');
2 if InITBlock() then UNPREDICTABLE;
3 if (I == '0' && F =='0') then UNPREDICTABLE;
4 affectPRI = (I == '1'); affectFAULT = (F == '1');
5 if !HaveMainExt() then
6 if (I == '0') then UNPREDICTABLE;
7 if (F == '1') then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If I == ’0’ && F == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !HaveMainExt() && (I == ’0’ || F == ’1’), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are

affected:
f FAULTMASK. When set to 1, raises the execution priority to -1, the same priority as

HardFault. This is a 1-bit register, that can be updated only by privileged software. The
register clears to 0 on return from any exception other than NMI.
i PRIMASK. When set to 1, raises the execution priority to 0. This is a 1-bit register, that

can be updated only by privileged software.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

606

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 if CurrentModeIsPrivileged() then
3 if enable then
4 if affectPRI then
5 PRIMASK.PM = '0';
6 if affectFAULT then
7 FAULTMASK.FM = '0';
8 if disable then
9 if affectPRI then

10 PRIMASK.PM = '1';
11 if affectFAULT && ExecutionPriority() > -1 then
12 FAULTMASK.FM = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

607

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.44 CSDB

Consumption of Speculative Data Barrier. Consumption of Speculative Data Barrier is a memory barrier that
controls speculative execution and data value prediction.

No instruction other than branch instructions and instructions that write to the PC appearing in program order after
the CSDB can be speculatively executed using the results of any:

• Data value predictions of any instructions.

• APSR.N, Z, C, V predictions of any instructions other than conditional branch instructions and conditional
instructions that write to the PC appearing in program order before the CSDB that have not been architecturally
resolved.

APSR.N, Z, C, V is not considered a data value. This instruction permits:

• Control flow speculation before and after the CSDB.

• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results
of data value or APSR.N, Z, C, V predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

This is a NOP-compatible hint.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 0 0

T1 variant

CSDB{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 EncodingSpecificOperations();
2 ConsumptionOfSpeculativeDataBarrier();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

608

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.45 CSEL

Conditional Select. Returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the value of the second source register.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 0 0 Rd fcond Rm

T1: CSEL variant

CSEL<q> Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;
4 if ConditionHolds(fcond) then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

609

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 result = RZ[n];
6 else
7 result = RZ[m];
8 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

610

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.46 CSET

Conditional Set. Sets the destination register to 1 if the condition is TRUE, and otherwise set it to 0.

This is an alias of CSINC with the following condition satisfied: Rn==15 && Rm==15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 (0) 0 1 Rd fcond 1 1 1 1

CSET variant

CSET<q> Rd, <fcond>

is equivalent to

CSINC<q> Rd, Zr, Zr, invert (<cond>)

and is the preferred disassembly when Rn == 15 && Rm == 15

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

611

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.47 CSETM

Conditional Set Mask. Sets all bits of the destination register to 1 if the condition is TRUE. Otherwise sets all bits
to 0.

This is an alias of CSINV with the following condition satisfied: Rn==15 && Rm==15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 (0) 1 0 Rd fcond 1 1 1 1

T1: CSETM variant

CSETM<q> Rd, <fcond>

is equivalent to

CSINV<q> Rd, Zr, Zr, invert (<cond>)

and is the preferred disassembly when Rn == 15 && Rm == 15

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

612

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.48 CSINC

Conditional Select Increment. Returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 0 1 Rd fcond Rm

T1: CSINC variant

CSINC<q> Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;
4 if ConditionHolds(fcond) then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

613

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 result = RZ[n];
6 else
7 result = RZ[m] + 1;
8 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

614

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.49 CSINV

Conditional Select Invert. Returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register, bitwise inverted.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 0 Rd fcond Rm

T1: CSINV variant

CSINV<q> Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;
4 if ConditionHolds(fcond) then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

615

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 result = RZ[n];
6 else
7 result = NOT(RZ[m]);
8 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

616

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.50 CSNEG

Conditional Select Negation. Returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the value of the second source register negated.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 1 Rd fcond Rm

T1: CSNEG variant

CSNEG<q> Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;
4 if ConditionHolds(fcond) then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

617

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 result = RZ[n];
6 else
7 result = NOT(RZ[m]);
8 result = result + 1;
9 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

618

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.51 CX1

Custom Instruction Class 1. Custom instruction class 1 computes a value based on an immediate, and optionally
the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 0 op1 Rd 0 coproc op2 0 op3

Accumulator variant

Applies when A == 1

CX1A<c>, <coproc>, <Rd>, #<imm>

Non-accumulator variant

Applies when A == 0

CX1 <coproc>, <Rd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 imm = op1:op2:op3;
6 acc = (A == '1');
7 CheckCPDecodeFaults(cp);
8 if d == 13 then UNPREDICTABLE;
9 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP and it is UNKNOWN whether a stack limit check is
performed.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

619

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op1(ThisInstr(), RF[d], 32);
7 else
8 RF[d] = CX_op0(ThisInstr(), 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

620

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.52 CX1D

Custom Instruction Class 1. Custom instruction class 1 dual computes a value based on an immediate, and
optionally the destination register pair value, and writes the result to a destination register pair.

The destination registers are a consecutive pair of general-purpose registers.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 0 op1 Rd 0 coproc op2 1 op3

Accumulator variant

Applies when A == 1

CX1DA<c>, <coproc>, <Rd>, <Rd+1>, #<imm>

Non-accumulator variant

Applies when A == 0

CX1D <coproc>, <Rd>, <Rd+1>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 d2 = d + 1;
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 CheckCPDecodeFaults(cp);
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if d > 10 then UNPREDICTABLE;
11 if Rd[0] == '1' then UNPREDICTABLE;
12 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in R12 and SP.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

621

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op1(ThisInstr(), RFD[d], 64);
7 else
8 RFD[d] = CX_op0(ThisInstr(), 64);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

622

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.53 CX2

Custom Instruction Class 2. Custom instruction class 2 computes a value based on a source register, an immediate,
and optionally the destination value, and writes the result to the destination register. The source and destination
registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 1 op1 Rn Rd 0 coproc op2 0 op3

Accumulator variant

Applies when A == 1

CX2A<c>, <coproc>, <Rd>, <Rn>, #<imm>

Non-accumulator variant

Applies when A == 0

CX2 <coproc>, <Rd>, <Rn>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 CheckCPDecodeFaults(cp);
9 if d == 13 || n == 13 then UNPREDICTABLE;

10 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP and it is UNKNOWN whether a stack limit check is
performed.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13, then one of the following behaviors must occur:

• The instruction executes as NOP.

• The instruction returns an UNKNOWN value.

• The instruction is UNDEFINED.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

623

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.
APSR_nzcv is encoded by the "Rn" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op2(ThisInstr(), RF[d], RF[n], 32);
7 else
8 RF[d] = CX_op1(ThisInstr(), RF[n], 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

624

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.54 CX2D

Custom Instruction Class 2. Custom instruction class 2 dual computes a value based on a source register, an
immediate, and optionally the destination register pair value, and writes the result to the destination register pair.

The destination registers are a consecutive pair of general-purpose registers.

The source registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 1 op1 Rn Rd 0 coproc op2 1 op3

Accumulator variant

Applies when A == 1

CX2DA<c>, <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Non-accumulator variant

Applies when A == 0

CX2D <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 CheckCPDecodeFaults(cp);
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if d > 10 then UNPREDICTABLE;
11 if n == 13 then UNPREDICTABLE;
12 if Rd[0] == '1' then UNPREDICTABLE;
13 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in R12 and SP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

625

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The value in the destination register is UNKNOWN.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

APSR_nzcv is encoded by the "Rn" field value 0b1111.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op2(ThisInstr(), RFD[d], RF[n], 64);
7 else
8 RFD[d] = CX_op1(ThisInstr(), RF[n], 64);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

626

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.55 CX3

Custom Instruction Class 3. Custom instruction class 3 computes a value based two source registers, an immediate
and optionally the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 1 op1 Rn Rm 0 coproc op2 0 op3 Rd

Accumulator variant

Applies when A == 1

CX3A<c>, <coproc>, <Rd>, <Rn>, <Rm>, #<imm>

Non-accumulator variant

Applies when A == 0

CX3 <coproc>, <Rd>, <Rn>, <Rm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 m = UInt(Rm);
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 CheckCPDecodeFaults(cp);

10 if d == 13 || n == 13 || m == 13 then UNPREDICTABLE;
11 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP and it is UNKNOWN whether a stack limit check is
performed.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13 or m == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in SP.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

627

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<Rn> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rn"
field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

<Rm> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rm"
field. APSR_nzcv is encoded by the "Rm" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op3(ThisInstr(), RF[d], RF[n], RF[m], 32);
7 else
8 RF[d] = CX_op2(ThisInstr(), RF[n], RF[m], 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

628

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.56 CX3D

Custom Instruction Class 3. Custom instruction class 3 dual computes a value based on two source registers, an
immediate, and optionally the destination register pair value, and writes the result to the destination register pair.

The source registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

The destination registers are a consecutive pair of general-purpose registers.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 1 op1 Rn Rm 0 coproc op2 1 op3 Rd

Accumulator variant

Applies when A == 1

CX3DA<c>, <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>

Non-accumulator variant

Applies when A == 0

CX3D <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 m = UInt(Rm);
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 CheckCPDecodeFaults(cp);

10 // Register pairs containing SP or PC are UNPREDICTABLE.
11 if d > 10 then UNPREDICTABLE;
12 if n == 13 || m == 13 then UNPREDICTABLE;
13 if Rd[0] == '1' then UNPREDICTABLE;
14 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in SP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

629

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13 || m == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The value in the destination register is UNKNOWN.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

APSR_nzcv is encoded by the "Rn" field value 0b1111.
<Rm> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rm" field.

APSR_nzcv is encoded by the "Rm" field value 0b1111.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op3(ThisInstr(), RFD[d], RF[n], RF[m], 64);
7 else
8 RFD[d] = CX_op2(ThisInstr(), RF[n], RF[m], 64);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

630

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.57 DBG

Debug hint. Debug Hint provides a hint to debug trace support and related debug systems. See debug architecture
documentation for what use (if any) is made of this instruction.

DBG is a NOP-compatible hint.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // Any decoding of 'option' is specified by the debug system

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 Hint_Debug(option);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

631

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.58 DMB

Data Memory Barrier. Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses
that appear in program order before the DMB instruction are observed before any explicit memory accesses
that appear in program order after the DMB instruction. It does not affect the ordering of any other instructions
executing on the PE.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.
All other encodings of option are reserved. The corresponding instructions execute as full
system barrier operations, but must not be relied upon by software.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 DataMemoryBarrier(option);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

632

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.59 DSB

Data Synchronization Barrier. Data Synchronization Barrier acts as a special kind of memory barrier. No instruction
in program order after this instruction can execute until this instruction completes. This instruction completes only
when both:

• Any explicit memory access made before this instruction is complete.

• The side effects of any SCS access that performs a context-altering operation are visible.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 option

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding
1 if option == '0000' then SEE "SSBB";
2 if option == '0100' then SEE "PSSBB";

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:

option Encoded as 0b1111 in bits[3:0] of the instruction encoding.
SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

When option = 0b0000, this instruction encoding corresponds to SSBB. When option =
0b0100, this instruction encoding corresponds to PSSBB. All other encodings of option are
reserved and execute as full system barrier operations, but must not be relied upon by software.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 // SY encoded as option == '1111'
4 DataSynchronizationBarrier('1111');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

633

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.60 EOR (immediate)

Exclusive OR (immediate). Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS variant

Applies when S == 1 && Rd != 1111.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] EOR imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

634

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

635

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.61 EOR (register)

Exclusive OR (register). Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 1 Rm Rdn

T1 variant

EOR<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

EORS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

EOR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

EOR<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

636

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

EORS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TEQ (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] EOR shifted;
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

637

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.62 ESB

Error Synchronization Barrier. Error Synchronization Barrier is used to synchronize any asynchronous RAS
exceptions. That is, RAS errors notified to the PE will not silently propagate past this instruction. This is a
NOP-compatible hint.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 0 0

T1: ESB variant

ESB<c><q>

Decode for this encoding
1
2 if !HaveMainExt() then UNDEFINED;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 supported = boolean IMPLEMENTATION_DEFINED "Detection of Unrecoverable errors supported";
5 if HasArchVersion(Armv8p1) && supported then
6 exc = SynchronizeBusFault();
7 // When an ESB is executed, the return address for any resulting exception is the
8 // ESB instruction. This is accomplished by indicating that any exception that will
9 // preempt should terminate the execution of the ESB.

10 if exc.fault != NoFault then
11 if ExceptionPriority(exc.fault, exc.isSecure, TRUE) < ExecutionPriority() then
12 exc.termInst = TRUE;
13 HandleException(exc);
14 // An ESB acts as a Data Synchronization Barrier when either:
15 // - There is a pending BusFault (which might have been forced to be recognised as
16 // a direct result of the call to SynchronizeBusFault() above).
17 // - There is a pending HardFault (which might have been caused by an asynchronous
18 // BusFault which escalated due to the BusFault exception being disabled).
19 //
20 // This behavior guarantees that a subsequent load of the memory mapped syndrome
21 // registers and pending bits (BFSR, RFSR, and SHCSR) return the correct values.
22 //
23 // If a BusFault exception is recognized or escalated as a result of the ESB
24 // instruction affects the current Security state, then the values in the syndrome
25 // registers must be congruent with the current Security state.
26 // When determining whether the ESB instruction also acts as an implicit DSB, only
27 // the corresponding exception bits associated with the current Security state must
28 // be checked.
29 if SHCSR.BUSFAULTPENDED == '1' || SHCSR.HARDFAULTPENDED == '1' then
30 DataSynchronizationBarrier('1111');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

638

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.63 FLDMDBX, FLDMIAX

FLDMX (Decrement Before, Increment After). FLDMX (Decrement Before, Increment After) loads multiple
extension registers from consecutive memory locations using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

This instruction is subject to stack limit checking.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm7

imm1 = 1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>{!}, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '0' && U == '1' && W == '0' && Rn == '1111' then SEE "VSCCLRM";
3 if P == '1' && W == '0' then SEE VLDR;
4 CheckDecodeFaults(ExtType_MveOrFp);
5 if P == U && W == '1' then UNDEFINED;
6 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
7 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
8 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 regs = UInt(imm8) DIV 2;

10 if n == 15 then UNPREDICTABLE;
11 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
12 if !HasArchVersion(Armv8p1) then
13 if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a FLDMX with the same addressing mode but loads no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

639

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• One or more of the floating-point registers are UNKNOWN. If the instruction specifies write-back, the base
register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register write-back. Encoded in the "W" field as 1 if present, otherwise 0.
<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first

register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list plus one. The list must contain at least one register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit must be checked
8 if n == 13 && wback then
9 // If memory operation is not performed as a result of a stack limit violation,

10 // and the write-back of the SP itself does not raise a stack limit violation, it
11 // is "IMPLEMENTATION_DEFINED" whether a SPLIM exception is raised.
12 // Arm recommends that any instruction which discards a memory access as
13 // a result of a stack limit violation, and where the write-back of the SP itself
14 // does not raise a stack limit violation, generates an SPLIM exception.
15 if boolean IMPLEMENTATION_DEFINED "SPLIM exception on invalid memory access" then
16 if ViolatesSPLim(LookUpSP(), address) then
17 if HaveMainExt() then
18 UFSR.STKOF = '1';
19 // If the Main Extension is not implemented the fault always escalates to
20 // a HardFault
21 excInfo = CreateException(UsageFault);
22 HandleException(excInfo);
23 applylimit = TRUE;
24 else
25 applylimit = FALSE;
26
27 // Memory operation only performed if limit not violated
28 if !(applylimit && ViolatesSPLim(LookUpSP(), regval)) then
29 for r = 0 to regs-1
30 if single_regs then
31 if (d+r) < 32 || !VFPSmallRegisterBank() then
32 S[d+r] = MemA[address, 4];
33 address = address+4;
34 else
35 if (d+r) < 16 || !VFPSmallRegisterBank() then
36 word1 = MemA[address, 4]; word2 = MemA[address+4, 4];
37 // Combine the word-aligned words in the correct order for
38 // current endianness.
39 D[d+r] = if BigEndian(address, 8) then word1:word2 else word2:word1;
40 elsif boolean UNKNOWN then
41 - = MemA[address, 4]; - = MemA[address+4, 4];
42 address = address+8;
43
44 // If the stack pointer is being updated a fault will be raised if
45 // the limit is violated
46 if wback then RSPCheck[n] = regval;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

640

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.64 FSTMDBX, FSTMIAX

FSTMX (Decrement Before, Increment After). FSTMX (Decrement Before, Increment After) stores multiple
extension registers to consecutive memory locations using an address from a general-purpose register.

Arm deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of
disassembled code.

This instruction is subject to stack limit checking.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm7

imm1 = 1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>{!}, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '1' && W == '0' then SEE VSTR;
3 CheckDecodeFaults(ExtType_MveOrFp);
4 if P == U && W == '1' then UNDEFINED;
5 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
6 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
7 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
8 regs = UInt(imm8) DIV 2;
9 if n == 15 then UNPREDICTABLE;

10 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
11 if !HasArchVersion(Armv8p1) then
12 if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a FSTMX with the same addressing mode but stores no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

641

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The memory locations specified by the instruction and the number of registers specified by the instruction if
the register list had not gone out of range, become UNKNOWN. If the instruction specifies write-back, then
that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register write-back. Encoded in the "W" field as 1 if present, otherwise 0.
<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first

register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list plus one. The list must contain at least one register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit should be checked
8 if n == 13 && wback then
9 violatesLimit = ViolatesSPLim(LookUpSP(), regval);

10 else
11 violatesLimit = FALSE;
12
13 // Memory operation only performed if limit not violated
14 if !violatesLimit then
15 for r = 0 to regs-1
16 if single_regs then
17 if (d+r) < 32 || !VFPSmallRegisterBank() then
18 MemA[address, 4] = S[d+r];
19 address = address+4;
20 else
21 // Store as two word-aligned words in the correct order for current
22 // endianness.
23 if (d+r) < 16 || !VFPSmallRegisterBank() then
24 bigEndian = BigEndian(address, 8);
25 MemA[address, 4] = if bigEndian then D[d+r][63:32] else D[d+r][31:0];
26 MemA[address+4, 4] = if bigEndian then D[d+r][31:0] else D[d+r][63:32];
27 elsif boolean UNKNOWN then
28 MemA[address, 4] = bits(32) UNKNOWN;
29 MemA[address+4, 4] = bits(32) UNKNOWN;
30 address = address+8;
31
32 // If the stack pointer is being updated a fault will be raised if
33 // the limit is violated
34 if wback then RSPCheck[n] = regval;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

642

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.65 ISB

Instruction Synchronization Barrier. Instruction Synchronization Barrier flushes the pipeline in the PE and is a
context synchronization event.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option

T1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.
All other encodings of option are reserved. The corresponding instructions execute as full
system barrier operations, but must not be relied upon by software.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 InstructionSynchronizationBarrier(option);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

643

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.66 IT

If-Then. If Then makes up to four following instructions (the IT block) conditional. The conditions for the
instructions in the IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted, apart
from those performed by exception returns.

16-bit instructions in the IT block, other than CMP (register), CMN (register), and TST (register), do not set the
condition code flags. The AL condition can be specified to get this changed behavior without conditional execution.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 firstcond mask

T1 variant

IT{<x>{<y>{<z>}}}{<q>} <cond>

Decode for this encoding
1 if mask == '0000' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
4 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If firstcond == ’1111’ || (firstcond == ’1110’ && BitCount(mask) != 1), then one
of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The ’1111’ condition is treated as being the same as the ’1110’ condition, meaning always, and the ITSTATE
state machine is progressed in the same way as for any other cond_base value.

Assembler symbols for all encodings

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to
0b1000. If present it is encoded in the "mask[3]" field:
E NOT firstcond[0]
T firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the
"mask[2:0]" field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:
E NOT firstcond[0]
T firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the
"mask[1:0]" field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is
encoded in the "mask[1]" field:
E NOT firstcond[0]
T firstcond[0]

<q> See C1.2.5 Standard assembler syntax fields.
<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See

C1.3 Conditional execution for the range of conditions available, and the encodings.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

644

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ITSTATE[7:0] = firstcond:mask;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

645

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.67 LCTP

Loop Clear with Tail Predication. Exits loop mode by invalidating LO_BRANCH_INFO and clears any tail
predication being applied.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 (0) (0) 1 1 1 1 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T1: LCTP variant

LCTP<c><q>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 if !HaveMve() then UNDEFINED;
3 HandleException(CheckCPEnabled(10));

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 ExecuteFPCheck();
5 FPSCR.LTPSIZE = 4[2:0]; // Disable loop predication
6 if LO_BRANCH_INFO.BF == '0' then
7 LO_BRANCH_INFO.VALID = '0';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

646

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.68 LDA

Load-Acquire Word. Load-Acquire Word loads a word from memory and writes it to a register. The instruction
also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

T1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 R[t] = MemO[address, 4];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

647

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.69 LDAB

Load-Acquire Byte. Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and
writes it to a register. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

T1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 R[t] = ZeroExtend(MemO[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

648

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.70 LDAEX

Load-Acquire Exclusive Word. Load-Acquire Exclusive Word loads a word from memory, writes it to a register,
and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 1 0 (1) (1) (1) (1)

T1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address, 4);
5 R[t] = MemO[address, 4];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

649

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.71 LDAEXB

Load-Acquire Exclusive Byte. Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a
32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 0 (1) (1) (1) (1)

T1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address, 1);
5 R[t] = ZeroExtend(MemO[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

650

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.72 LDAEXH

Load-Acquire Exclusive Halfword. Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends
it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 1 (1) (1) (1) (1)

T1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address, 2);
5 R[t] = ZeroExtend(MemO[address, 2], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

651

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.73 LDAH

Load-Acquire Halfword. Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit
word and writes it to a register. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

T1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 R[t] = ZeroExtend(MemO[address, 2], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

652

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.74 LDC, LDC2 (immediate)

Load Coprocessor (immediate). Load Coprocessor loads memory data from a sequence of consecutive memory
addresses to a coprocessor. If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture and
are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and in the
Unindexed addressing mode only, the imm8 field.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if Rn == '1111' then SEE "LDC (literal)";
2 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
3 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
4 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
5 cp = UInt(coproc);
6 CheckCPDecodeFaults(cp);
7 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
8 if !HaveMainExt() then UNDEFINED;
9 n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);

10 index = (P == '1'); add = (U == '1'); wback = (W == '1');

T2
Armv8-M Main Extension only

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

653

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if Rn == '1111' then SEE "LDC (literal)";
2 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
3 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
4 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
5 cp = UInt(coproc);
6 CheckCPDecodeFaults(cp);
7 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
8 if !HaveMainExt() then UNDEFINED;
9 n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);

10 index = (P == '1'); add = (U == '1'); wback = (W == '1');

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see C2.4.75

LDC, LDC2 (literal).
<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

654

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 thisInstr = ThisInstr();
5 if !Coproc_Accepted(cp, thisInstr) then
6 GenerateCoprocessorException();
7 else
8 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
9 address = if index then offset_addr else R[n];

10
11 // Determine if the stack pointer limit check should be performed
12 if wback && n == 13 then
13 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
14 else
15 violatesLimit = FALSE;
16
17 // Memory operation only performed if limit not violated
18 if !violatesLimit then
19 repeat
20 Coproc_SendLoadedWord(MemA[address, 4], cp, thisInstr);
21 address = address + 4;
22 until Coproc_DoneLoading(cp, thisInstr);
23
24 // If the stack pointer is being updated a fault will be raised
25 // if the limit is violated
26 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

655

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.75 LDC, LDC2 (literal)

Load Coprocessor (literal). Load Coprocessor loads memory data from a sequence of consecutive memory
addresses to a coprocessor. If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

T1 variant

LDC{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
4 cp = UInt(coproc);
5 CheckCPDecodeFaults(cp);
6 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
7 if !HaveMainExt() then UNDEFINED;
8 index = (P == '1'); // Always TRUE in the T32 instruction set
9 add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);

10 if W == '1' || P == '0' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’ || P == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without write-back of the base address.

• The instruction executes as LDC with write-back to the PC.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

T2 variant

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

656

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
4 cp = UInt(coproc);
5 CheckCPDecodeFaults(cp);
6 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
7 if !HaveMainExt() then UNDEFINED;
8 index = (P == '1'); // Always TRUE in the T32 instruction set
9 add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);

10 if W == '1' || P == '0' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’ || P == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without write-back of the base address.

• The instruction executes as LDC with write-back to the PC.

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020. If the offset is
zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1). If the
offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as
U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 thisInstr = ThisInstr();
5 if !Coproc_Accepted(cp, thisInstr) then
6 GenerateCoprocessorException();
7 else
8 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
9 address = if index then offset_addr else Align(PC,4);

10 repeat
11 Coproc_SendLoadedWord(MemA[address, 4], cp, thisInstr); address = address + 4;
12 until Coproc_DoneLoading(cp, thisInstr);

Restricted behavior
Data Independent Timing behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

657

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

658

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.76 LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending). Load Multiple loads multiple registers from consecutive
memory locations using an address from a base register. The sequential memory locations start at this address, and
the address just above the last of those locations can optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address,
a function return value, or an exception return value. Bit[0] of the address in the PC complies with the Arm
architecture interworking rules for switching between the A32 and T32 instruction sets. However, Armv8-M only
supports the T32 instruction set, so bit[0] must be 1. If bit[0] of the target address is 0, and the target address is not
FNC_RETURN or EXC_RETURN, the PE takes an INVSTATE UsageFault exception on the instruction at the
target address.

This instruction is used by the alias POP (multiple registers).

This instruction is a BTI setting instruction when all of the following are true:

• The PACBTI Extension is implemented.

• BTI is enabled for the destination security and privilege state.

• The operation is not a FNC_RETURN or an EXC_RETURN.

• PC is used.

• The base register is either:

– Not SP.

– The SP and a write-back does not occur.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 Rn register_list

T1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

LDMFD{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Full Descending stack

Decode for this encoding
1 n = UInt(Rn); registers = '00000000':register_list; wback = (registers[n] == '0');
2 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

659

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers loaded.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M (0) register_list

T2 variant

LDM{IA}{<c>}.W <Rn>{!}, <registers>
// Preferred syntax
// if <Rn>, '!' and <registers> can be represented in T1

LDMFD{<c>}.W <Rn>{!}, <registers>
// Alternate syntax
// Full Descending stack, if <Rn>, '!' and
// <registers> can be represented in T1

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

LDMFD{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Full Descending stack

Decode for this encoding
1 if Rn == '1111' && HasArchVersion(Armv8p1) then SEE "CLRM";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
4 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
5 if registers[15] == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
6 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers loaded.

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

660

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

CONSTRAINED UNPREDICTABLE behavior
If P == ’1’ && M == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

T3
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

T3 variant

LDM{<c>}{<q>} SP!, <registers>

Decode for this encoding
1 n = 13; wback = TRUE;
2 registers = P:'0000000':register_list;
3 if BitCount(registers) < 1 then UNPREDICTABLE;
4 if registers[15] == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers loaded.

Assembler symbols for all encodings

IA Is an optional suffix for the Increment After form.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! For encoding T1: the address adjusted by the size of the data loaded is written back to the base

register. It is omitted if <Rn> is included in <registers>, otherwise it must be present.
For encoding T2: the address adjusted by the size of the data loaded is written back to the base
register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

661

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<registers> For encoding T1: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field. For encoding T2: is a list of one or more registers to be loaded, separated
by commas and surrounded by { and }. The registers in the list must be in the range R0-R12,
encoded in the "register_list" field, and can optionally contain one of the LR or the PC. If the
LR is in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the
"P" field is set to 1, otherwise it defaults to 0. If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the PC. If the PC is in the list, the "P" field is
set to 1, otherwise this field defaults to 0. If the PC is in the list, the instruction must be either
outside any IT block, or the last instruction in an IT block.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if n == 13 && wback then
5 // If memory operation is not performed as a result of a stack limit violation,
6 // and the write-back of the SP itself does not raise a stack limit violation, it
7 // is "IMPLEMENTATION_DEFINED" whether a SPLIM exception is raised.
8 // Arm recommends that any instruction which discards a memory access as
9 // a result of a stack limit violation, and where the write-back of the SP itself

10 // does not raise a stack limit violation, generates an SPLIM exception.
11 if boolean IMPLEMENTATION_DEFINED "SPLIM exception on invalid memory access" then
12 if ViolatesSPLim(LookUpSP(), address) then
13 if HaveMainExt() then
14 UFSR.STKOF = '1';
15 // If the Main Extension is not implemented the fault always escalates to
16 // a HardFault
17 excInfo = CreateException(UsageFault);
18 HandleException(excInfo);
19 applylimit = TRUE;
20 else
21 applylimit = FALSE;
22
23 for i = 0 to 14
24 // If R[n] is the SP, memory operation only performed if limit not violated
25 if registers[i] == '1' && !(applylimit && ViolatesSPLim(LookUpSP(), address)) then
26 if i != n then
27 R[i] = MemA[address, 4];
28 else
29 newBaseVal = MemA[address, 4];
30 address = address + 4;
31 setPC = registers[15] == '1' && !(applylimit && ViolatesSPLim(LookUpSP(), address));
32 if setPC then
33 newPCVal = MemA[address, 4];
34
35 // If the register list contains the register that holds the base address it
36 // must be updated after all memory reads have been performed. This prevents
37 // the base address being overwritten if one of the memory reads generates a
38 // fault.
39 if registers[n] == '1' then
40 wback = TRUE;
41 else
42 newBaseVal = R[n] + 4*BitCount(registers);
43 // If the PC is in the register list update that now, which might raise a fault
44 // Likewise if R[n] is the SP writing back might raise a fault due to SP limit violation
45 if setPC then
46 // If BTI is enabled, this branch sets the EPSR.B flag to ensure that the target
47 // instruction is BTI clearing.
48 setBti = BTIEnabled() && (n != 13 || (n == 13 && !wback));
49 LoadWritePC(newPCVal, n, newBaseVal, wback, FALSE, setBti);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

662

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

50 elsif wback then
51 RSPCheck[n] = newBaseVal;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to values being loaded into R15, but does apply to all values being loaded
into any other specified register even if R15 is being used.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

663

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.77 LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending). Load Multiple Decrement Before (Load Multiple Empty
Ascending) loads multiple registers from sequential memory locations using an address from a base register.
The sequential memory locations end just below this address, and the address of the first of those locations can
optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address or an
exception return value. Bit[0] complies with the Arm architecture interworking rules for switching between the
A32 and T32 instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If
bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is a BTI setting instruction when all of the following are true:

• The PACBTI Extension is implemented.

• BTI is enabled for the destination security and privilege state.

• The operation is not a FNC_RETURN or an EXC_RETURN.

• PC is used.

• The base register is either:

– Not SP.

– The SP and a write-back does not occur.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M (0) register_list

T1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

LDMEA{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Empty Ascending stack

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
3 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
4 if registers[15] == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
5 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

664

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers loaded.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

CONSTRAINED UNPREDICTABLE behavior
If P == ’1’ && M == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! The address adjusted by the size of the data loaded is written back to the base register. If

specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and
can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults
to 0. If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] - 4*BitCount(registers);
4
5 // Determine if the stack pointer limit should be checked
6 if n == 13 && wback && registers[n] == '0' then
7 violatesLimit = ViolatesSPLim(LookUpSP(), address);
8 else

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

665

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 violatesLimit = FALSE;
10
11 for i = 0 to 15
12 // Memory operation only performed if limit not violated
13 if registers[i] == '1' && !violatesLimit then
14 data = MemA[address, 4];
15 address = address + 4;
16 if i == 15 then
17 newPCVal = data;
18 setPC = TRUE;
19 elsif i == n then
20 newBaseVal = data;
21 else
22 R[i] = data;
23
24 // If the register list contains the register that holds the base address it
25 // must be updated after all memory reads have been performed. This prevents
26 // the base address being overwritten if one of the memory reads generates a
27 // fault.
28 if registers[n] == '1' then
29 wback = TRUE;
30 else
31 newBaseVal = R[n] - 4*BitCount(registers);
32 // If the PC is in the register list update that now, which may raise a fault
33 if setPC then
34 // If BTI is enabled, this branch sets the EPSR.B flag to ensure that the target
35 // instruction is BTI clearing.
36 setBti = BTIEnabled() && (n != 13 || (n == 13 && !wback));
37 LoadWritePC(newPCVal, n, newBaseVal, wback, TRUE, setBti);
38 elsif wback then
39 RSPCheck[n] = newBaseVal;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to values being loaded into R15, but does apply to all values being loaded
into any other specified register even if R15 is being used.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

666

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.78 LDR (immediate)

Load Register (immediate). Load Register (immediate) calculates an address from a base register value and
an immediate offset, loads a word from memory, and writes it to a register. It can use offset, post-indexed, or
pre-indexed addressing.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is used by the alias POP (single register).

This instruction is a BTI setting instruction when all of the following are true:

• The PACBTI Extension is implemented.

• BTI is enabled for the destination security and privilege state.

• The operation is not a FNC_RETURN or an EXC_RETURN.

• PC is used.

• The base register is either:

– Not SP.

– The SP and a write-back does not occur.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 imm5 Rn Rt

T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rt imm8

T2 variant

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

667

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 1 Rn Rt imm12

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1 or T2

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); index = TRUE; add = TRUE;
4 wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if P == '1' && U == '1' && W == '0' then SEE LDRT;
3 if P == '0' && W == '0' then UNDEFINED;
4 if !HaveMainExt() then UNDEFINED;
5 t = UInt(Rt); n = UInt(Rn);
6 imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
7 if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

668

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Alias conditions
Alias preferred when
POP (single register) Rn == ‘1101‘ &&

P == ‘0‘ &&
U == ‘1‘ &&
W == ‘1‘ &&
imm8 == ‘00000100‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt"

field.
For encoding T3: is the general-purpose register to be transferred, encoded in the "Rt" field.
The SP can be used. The PC can be used, provided the instruction is either outside an IT block
or the last instruction of an IT block. If the PC is used, the instruction branches to the address
(data) loaded to the PC.
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, provided the instruction is either outside an IT block or the last instruction
of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the
PC.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
For encoding T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For
PC use see C2.4.79 LDR (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in
the range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in
the range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

669

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 data = MemU[address, 4];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if t == 15 then
18 if address[1:0] == '00' then
19 // If BTI is enabled, this branch sets the EPSR.B flag to ensure that the target
20 // instruction is BTI clearing.
21 setBti = BTIEnabled() && (n != 13 || (n == 13 && !wback));
22 LoadWritePC(data, n, offset_addr, wback, TRUE, setBti);
23 else
24 UNPREDICTABLE;
25 else
26 if wback then RSPCheck[n] = offset_addr;
27 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior
If t == 15 && address<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

670

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.79 LDR (literal)

Load Register (literal). Load Register (literal) calculates an address from the PC value and an immediate offset,
loads a word from memory, and writes it to a register.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

If the PACBTI Extension is implemented, BTI is enabled for the destination security and privilege state, the
operation is not a FNC_RETURN or an EXC_RETURN, and the destination register is PC, then this instruction is
a BTI setting instruction, and when this instruction is executed it will set EPSR.B to one.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rt imm8

T1 variant

LDR{<c>}{<q>} <Rt>, <label>
// Normal form

Decode for this encoding
1 t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12

T2 variant

LDR{<c>}.W <Rt>, <label>
// Preferred syntax, and <Rt>, <label> can be represented in T1

LDR{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
3 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

671

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The SP can be used. The PC can be used, provided the instruction is either outside an IT block
or the last instruction of an IT block. If the PC is used, the instruction branches to the address
(data) loaded to the PC.

<label> For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to
this label. Permitted values of the offset are Multiples of four in the range 0 to 1020.
For encoding T2: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to
this label. Permitted values of the offset are -4095 to 4095. If the offset is zero or positive,
imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative,
imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 data = MemU[address, 4];
6 if t == 15 then
7 if address[1:0] == '00' then
8 // If BTI is enabled, this branch sets the EPSR.B flag to ensure that the target
9 // instruction is BTI clearing.

10 LoadWritePC(data, 0, Zeros(32), FALSE, FALSE, BTIEnabled());
11 else
12 UNPREDICTABLE;
13 else
14 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior
If t == 15 && address<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

672

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.80 LDR (register)

Load Register (register). Load Register (register) calculates an address from a base register value and an offset
register value, loads a word from memory, and writes it to a register. The offset register value can be shifted left by
0, 1, 2, or 3 bits.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

If the PACBTI Extension is implemented, BTI is enabled for the destination security and privilege state, the
operation is not a FNC_RETURN or an EXC_RETURN, and the destination register is PC, then this instruction is
a BTI setting instruction, and when this instruction is executed it will set EPSR.B to one.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if m IN {13,15} then UNPREDICTABLE;
7 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

673

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<q> See C1.2.5 Standard assembler syntax fields.
<Rt> For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The SP can be used. The PC can be used, provided the instruction is either outside an IT block
or the last instruction of an IT block. If the PC is used, the instruction branches to the address
(data) loaded to the PC.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6
7 // Determine if the stack pointer limit should be checked
8 if n == 13 && wback then
9 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);

10 else
11 violatesLimit = FALSE;
12 // Memory operation only performed if limit not violated
13 if !violatesLimit then
14 data = MemU[address, 4];
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if t == 15 then
19 if address[1:0] == '00' then
20 // If BTI is enabled, this branch sets the EPSR.B flag to ensure that the target
21 // instruction is BTI clearing.
22 LoadWritePC(data, n, offset_addr, wback, TRUE, BTIEnabled());
23 else
24 UNPREDICTABLE;
25 else
26 if wback then RSPCheck[n] = offset_addr;
27 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior
If t == 15 && address<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

674

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.81 LDRB (immediate)

Load Register Byte (immediate). Load Register Byte (immediate) calculates an address from a base register value
and an immediate offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.
It can use offset, post-indexed, or pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 imm5 Rn Rt

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 1 Rn Rt imm12

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (immediate)";
2 if Rn == '1111' then SEE "LDRB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 1 P U W imm8

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

675

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Post-indexed variant

Applies when P == 0 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD (immediate)";
2 if Rn == '1111' then SEE "LDRB (literal)";
3 if P == '1' && U == '1' && W == '0' then SEE LDRBT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (wback && n == t) then UNPREDICTABLE;
9 if t == 15 && W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For
PC use see C2.4.82 LDRB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31,
defaulting to 0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

676

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11
12 // Memory operation only performed if limit not violated
13 if !violatesLimit then
14 R[t] = ZeroExtend(MemU[address, 1], 32);
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

677

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.82 LDRB (literal)

Load Register Byte (literal). Load Register Byte (literal) calculates an address from the PC value and an immediate
offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 Rt imm12

T1 variant

LDRB{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 R[t] = ZeroExtend(MemU[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

678

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

679

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.83 LDRB (register)

Load Register Byte (register). Load Register Byte (register) calculates an address from a base register value and an
offset register value, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.
The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 Rm Rn Rt

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (register)";
2 if Rn == '1111' then SEE "LDRB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

680

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 R[t] = ZeroExtend(MemU[address, 1],32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

681

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.84 LDRBT

Load Register Byte Unprivileged. Load Register Byte Unprivileged calculates an address from a base register
value and an immediate offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a
register.

When privileged software uses an LDRBT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 1 1 1 0 imm8

T1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRB (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 R[t] = ZeroExtend(MemU_unpriv[address, 1],32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

682

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.85 LDRD (immediate)

Load Register Dual (immediate). Load Register Dual (immediate) calculates an address from a base register
value and an immediate offset, loads two words from memory, and writes them to two registers. It can use offset,
post-indexed, or pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 Rn Rt Rt2 imm8

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if Rn == '1111' then SEE "LDRD (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if wback && (n == t || n == t2) then UNPREDICTABLE;
7 if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

683

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The load instruction executes but the destination register takes an UNKNOWN value.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see C2.4.86 LDRD

(literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple
of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 R[t] = MemA[address, 4];
14 R[t2] = MemA[address+4, 4];
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

684

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.86 LDRD (literal)

Load Register Dual (literal). Load Register Dual (literal) calculates an address from the PC value and an immediate
offset, loads two words from memory, and writes them to two registers.

For the M profile, the PC value must be word-aligned, otherwise the behavior of the instruction is UNPREDICTABLE.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 1 1 1 1 Rt Rt2 imm8

T1 variant

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label>
// Normal form

LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>]
// Alternative form

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); t2 = UInt(Rt2);
4 imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
5 if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
6 if W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without write-back of the base address.

• The instruction uses post-indexed addressing when P == ’0’ and uses pre-indexed addressing otherwise.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020. If the offset is zero
or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset
is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

685

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation for all encodings
1 // Since the SG instruction is not subject to IT conditions, the SEE check for that
2 // instruction must be done before the condition code check, and not inside the decode
3 // pseudocode (called by EncodingSpecificOperations()).
4 if P == '1' && W == '1' && U == '0' then SEE SG;
5
6 if ConditionPassed() then
7 EncodingSpecificOperations();
8 if PC[1:0] != '00' then UNPREDICTABLE;
9 address = if add then (PC + imm32) else (PC - imm32);

10 R[t] = MemA[address, 4];
11 R[t2] = MemA[address+4, 4];

CONSTRAINED UNPREDICTABLE behavior
If PC<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

686

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.87 LDREX

Load Register Exclusive. Load Register Exclusive calculates an address from a base register value and an
immediate offset, loads a word from memory, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8

T1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be

omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 SetExclusiveMonitors(address,4);
5 R[t] = MemA[address, 4];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

687

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.88 LDREXB

Load Register Exclusive Byte. Load Register Exclusive Byte derives an address from a base register value, loads a
byte from memory, zero-extends it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)

T1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address,1);
5 R[t] = ZeroExtend(MemA[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

688

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.89 LDREXH

Load Register Exclusive Halfword. Load Register Exclusive Halfword derives an address from a base register
value, loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)

T1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address,2);
5 R[t] = ZeroExtend(MemA[address, 2], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

689

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.90 LDRH (immediate)

Load Register Halfword (immediate). Load Register Halfword (immediate) calculates an address from a base
register value and an immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and
writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 imm5 Rn Rt

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 1 Rn Rt imm12

T2 variant

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "Related encodings";
2 if Rn == '1111' then SEE "LDRH (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 1 P U W imm8

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

690

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Post-indexed variant

Applies when P == 0 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rn == '1111' then SEE "LDRH (literal)";
2 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related encodings";
3 if P == '1' && U == '1' && W == '0' then SEE LDRHT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For
PC use see C2.4.91 LDRH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in
the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

691

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 R[t] = ZeroExtend(MemU[address, 2], 32);
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

692

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.91 LDRH (literal)

Load Register Halfword (literal). Load Register Halfword (literal) calculates an address from the PC value and an
immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 Rt imm12

T1 variant

LDRH{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 data = MemU[address, 2];
6 R[t] = ZeroExtend(data, 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

693

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

694

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.92 LDRH (register)

Load Register Halfword (register). Load Register Halfword (register) calculates an address from a base register
value and an offset register value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes
it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 Rm Rn Rt

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRH (literal)";
2 if Rt == '1111' then SEE "Related encodings";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

695

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 data = MemU[address, 2];
7 if wback then R[n] = offset_addr;
8 R[t] = ZeroExtend(data, 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

696

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.93 LDRHT

Load Register Halfword Unprivileged. Load Register Halfword Unprivileged calculates an address from a base
register value and an immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and
writes it to a register.

When privileged software uses an LDRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 1 1 1 0 imm8

T1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRH (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = MemU_unpriv[address, 2];
5 R[t] = ZeroExtend(data, 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

697

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.94 LDRSB (immediate)

Load Register Signed Byte (immediate). Load Register Signed Byte (immediate) calculates an address from a
base register value and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn Rt imm12

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLI (immediate, literal)";
2 if Rn == '1111' then SEE "LDRSB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLI (immediate, literal)";
2 if Rn == '1111' then SEE "LDRSB (literal)";
3 if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

698

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see C2.4.95 LDRSB

(literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 R[t] = SignExtend(MemU[address, 1], 32);
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

699

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.95 LDRSB (literal)

Load Register Signed Byte (literal). Load Register Signed Byte (literal) calculates an address from the PC value
and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 Rt imm12

T1 variant

LDRSB{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "PLI (immediate, literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 R[t] = SignExtend(MemU[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

700

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

701

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.96 LDRSB (register)

Load Register Signed Byte (register). Load Register Signed Byte (register) calculates an address from a base
register value and an offset register value, loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 Rm Rn Rt

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLI (register)";
2 if Rn == '1111' then SEE "LDRSB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

702

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 R[t] = SignExtend(MemU[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

703

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.97 LDRSBT

Load Register Signed Byte Unprivileged. Load Register Signed Byte Unprivileged calculates an address from a
base register value and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register.

When privileged software uses an LDRSBT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 1 1 1 0 imm8

T1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSB (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 R[t] = SignExtend(MemU_unpriv[address, 1], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

704

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.98 LDRSH (immediate)

Load Register Signed Halfword (immediate). Load Register Signed Halfword (immediate) calculates an address
from a base register value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 1 1 Rn Rt imm12

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if Rt == '1111' then SEE "Related encodings";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 1 P U W imm8

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related encodings";
3 if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

705

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see C2.4.99 LDRSH

(literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5 // Determine if the stack pointer limit should be checked
6 if n == 13 && wback then
7 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
8 else
9 violatesLimit = FALSE;

10 // Memory operation only performed if limit not violated
11 if !violatesLimit then
12 R[t] = SignExtend(MemU[address, 2], 32);
13
14 // If the stack pointer is being updated a fault will be raised if
15 // the limit is violated
16 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and R15 is not being used as the destination register:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

706

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.99 LDRSH (literal)

Load Register Signed Halfword (literal). Load Register Signed Halfword (literal) calculates an address from the
PC value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes
it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 Rt imm12

T1 variant

LDRSH{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 data = MemU[address, 2];
6 R[t] = SignExtend(data, 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

707

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

708

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.100 LDRSH (register)

Load Register Signed Halfword (register). Load Register Signed Halfword (register) calculates an address from a
base register value and an offset register value, loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 Rm Rn Rt

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if Rt == '1111' then SEE "Related encodings";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

709

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 data = MemU[address, 2];
7 if wback then R[n] = offset_addr;
8 R[t] = SignExtend(data, 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

710

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.101 LDRSHT

Load Register Signed Halfword Unprivileged. Load Register Signed Halfword Unprivileged calculates an address
from a base register value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes it to a register.

When privileged software uses an LDRSHT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 1 1 1 0 imm8

T1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = MemU_unpriv[address, 2];
5 R[t] = SignExtend(data, 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

711

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.102 LDRT

Load Register Unprivileged. Load Register Unprivileged calculates an address from a base register value and an
immediate offset, loads a word from memory, and writes it to a register.

When privileged software uses an LDRT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 1 1 1 0 imm8

T1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = MemU_unpriv[address, 4];
5 R[t] = data;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

712

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.103 LE, LETP

Loop End, Loop End with Tail Predication. If additional iterations of a loop are required this instruction branches
back to the <label>. It also stores the loop information in the loop info cache so that future iterations of the
loop will branch back to the start just before the LE instruction is encountered. The first variant of the instruction
checks a loop iteration counter (stored in LR) to determine if additional iterations are required. It also decrements
the counter ready for the next iteration.

The second variant does not use an iteration count and always triggers another iteration of the loop.

The third (TP) variant also checks the loop iteration counter to determine if additional iterations are required.
However the counter is decremented by the number of elements of a vector (as indicated by the FPSCR.LTPSIZE
field). On the last iteration of the loop, this variant disables tail predication.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

imml

immh 1

T1: LE variant

LE<q> LR, <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2
3 forever = FALSE;
4 tp = FALSE;
5 imm32 = ZeroExtend(immh:imml:'0', 32);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 1 (0) 1 1 1 1 1 1 0 0

imml

immh 1

T2: LE variant

LE<q> <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2
3 forever = TRUE;
4 tp = FALSE;
5 imm32 = ZeroExtend(immh:imml:'0', 32);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

713

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8.1-M Low Overhead Branch Extension and MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

imml

immh 1

T3: LETP variant

LETP<q> LR, <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 if !HaveMve() then UNDEFINED;
3 HandleException(CheckCPEnabled(10));
4
5 forever = FALSE;
6 tp = TRUE;
7 imm32 = ZeroExtend(immh:imml:'0', 32);
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<LR> LR is used to hold the iteration counter of the loop, this instruction must always use this

register.
<label> Specifies the label of the first instruction in the loop body.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 if tp then
4 ExecuteFPCheck();
5 elsif LTPSIZE != 4 then
6 // Tail predicated loop starts should be paired with an LETP loop end.
7 // Using a LE instruction in this case is a programming error.
8 UFSR.INVSTATE = '1';
9 HandleException(CreateException(UsageFault));

10 if !forever && IsLastLowOverheadLoop() then
11 if tp then
12 FPSCR.LTPSIZE = 4[2:0]; // Disable loop predication
13 else
14 // Decrement the loop counter
15 if !forever then
16 LR = LR - (1 << (4 - LTPSIZE))[31:0];
17 // Set up the branch cache info
18 jumpAddr = PC - imm32;
19 if CCR.LOB == '1' then
20 LO_BRANCH_INFO.VALID = '1';
21 LO_BRANCH_INFO.BF = '0';
22 LO_BRANCH_INFO.LF = if forever then '1' else '0';
23 LO_BRANCH_INFO.T16IND = '0';
24 LO_BRANCH_INFO.BTI = '0';
25 LO_BRANCH_INFO.JUMP_ADDR = jumpAddr[31:1];
26 LO_BRANCH_INFO.END_ADDR = ThisInstrAddr()[31:1];
27 // Branch to the start of the loop
28 BranchTo(jumpAddr);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

714

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.104 LSL (immediate)

Logical Shift Left (immediate). Logical Shift Left (immediate) shifts a register value left by an immediate number
of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 00 imm5 != 00000 Rm Rd

T2 variant

LSL<c>{<q>} {<Rd>,} <Rm>, #<imm>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1 [0] imm3 Rd imm2

sr_type = 00

Rm != 11x1

MOV, shift or rotate by value variant

LSL<c>.W {<Rd>,} <Rm>, #<imm>
// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

MOV, shift or rotate by value variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

715

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

716

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.105 LSL (register)

Logical Shift Left (register). Logical Shift Left (register) shifts a register value left by a variable number of bits,
shifting in zeros, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0010 Rs Rdm

Logical shift left variant

LSL<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 00
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

LSL<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Non flag setting variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

717

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

718

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.106 LSLL (immediate)

Logical Shift Left Long. Logical shift left by 1 to 32 bits of a 64-bit value stored in two general-purpose registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 0 immh RdaHi (1) imml 0 0 1 1 1 1

T1: LSLL variant

LSLL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "UQSHL (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 result = (op1 << amount)[63:0];
6 R[dah] = result[63:32];
7 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

719

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.107 LSLL (register)

Logical Shift Left Long. Logical shift left by 0 to 64 bits of a 64-bit value stored in two general-purpose registers.
The shift amount is read in as the bottom byte of Rm. If the shift amount is negative, the shift direction is reversed.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 Rm RdaHi (1) (0) (0) 0 0 1 1 0 1

T1: LSLL variant

LSLL<c><q> RdaLo, RdaHi, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "UQRSHL (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;
9 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = UInt(R[dah]:R[dal]);
6 result = (op1 << amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

720

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.108 LSLS (immediate)

Logical Shift Left, Setting flags (immediate). Logical Shift Left, Setting flags (immediate) shifts a register value
left by an immediate number of bits, shifting in zeros, writes the result to the destination register, and updates the
condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 00 imm5 != 00000 Rm Rd

T2 variant

LSLS{<q>} {<Rd>,} <Rm>, #<imm>
// Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1 [0] imm3 Rd imm2

sr_type = 00

Rm

MOVS, shift or rotate by value variant

LSLS.W {<Rd>,} <Rm>, #<imm>
// Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

MOVS, shift or rotate by value variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

721

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

722

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.109 LSLS (register)

Logical Shift Left, Setting flags (register). Logical Shift Left, Setting flags (register) shifts a register value left by a
variable number of bits, shifting in zeros, writes the result to the destination register, and updates the condition
flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0010 Rs Rdm

Logical shift left variant

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 00
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

LSLS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Flag setting variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

723

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

724

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.110 LSR (immediate)

Logical Shift Right (immediate). Logical Shift Right (immediate) shifts a register value right by an immediate
number of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 01 imm5 Rm Rd

T2 variant

LSR<c>{<q>} {<Rd>,} <Rm>, #<imm>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1 [0] imm3 Rd imm2

sr_type = 01

Rm != 11x1

MOV, shift or rotate by value variant

LSR<c>.W {<Rd>,} <Rm>, #<imm>
// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

MOV, shift or rotate by value variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

725

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

726

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.111 LSR (register)

Logical Shift Right (register). Logical Shift Right (register) shifts a register value right by a variable number of
bits, shifting in zeros, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0011 Rs Rdm

Logical shift right variant

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

LSR<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Non flag setting variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

727

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

728

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.112 LSRL (immediate)

Logical Shift Right Long. Logical shift right by 1 to 32 bits of a 64-bit value stored in two general-purpose
registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 0 immh RdaHi (1) imml 0 1 1 1 1 1

T1: LSRL variant

LSRL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "URSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 result = (op1 >> amount)[63:0];
6 R[dah] = result[63:32];
7 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

729

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.113 LSRS (immediate)

Logical Shift Right, Setting flags (immediate). Logical Shift Right, Setting flags (immediate) shifts a register value
right by an immediate number of bits, shifting in zeros, writes the result to the destination register, and updates the
condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 01 imm5 Rm Rd

T2 variant

LSRS{<q>} {<Rd>,} <Rm>, #<imm>
// Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1 [0] imm3 Rd imm2

sr_type = 01

Rm

MOVS, shift or rotate by value variant

LSRS.W {<Rd>,} <Rm>, #<imm>
// Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

MOVS, shift or rotate by value variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

730

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

731

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.114 LSRS (register)

Logical Shift Right, Setting flags (register). Logical Shift Right, Setting flags (register) shifts a register value right
by a variable number of bits, shifting in zeros, writes the result to the destination register, and updates the condition
flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0011 Rs Rdm

Logical shift right variant

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 01
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

LSRS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Flag setting variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

732

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

733

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.115 MCR, MCR2

Move to Coprocessor from Register. Move to Coprocessor from Register passes the value of a general-purpose
register to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt);
7 if t == 15 || t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

T2 variant

MCR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt);
7 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<CRn> Is the first coprocessor register, encoded in the "CRn" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

734

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_SendOneWord(R[t], cp, ThisInstr());

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

735

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.116 MCRR, MCRR2

Move to Coprocessor from two Registers. Move to Coprocessor from two Registers passes the values of two
general-purpose registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); t2 = UInt(Rt2);
7 if t == 15 || t2 == 15 then UNPREDICTABLE;
8 if t == 13 || t2 == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

T2 variant

MCRR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); t2 = UInt(Rt2);
7 if t == 15 || t2 == 15 then UNPREDICTABLE;
8 if t == 13 || t2 == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

736

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_SendTwoWords(R[t2], R[t], cp, ThisInstr());

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

737

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.117 MLA

Multiply Accumulate. Multiply Accumulate multiplies two register values, and adds a third register value. The
least significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether
signed or unsigned calculations are performed.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 0 Rm

T1 variant

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE MUL;
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
4 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
5 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
6 result = operand1 * operand2 + addend;
7 R[d] = result[31:0];
8 if setflags then
9 APSR.N = result[31];

10 APSR.Z = IsZeroBit(result[31:0]);
11 // APSR.C unchanged
12 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

738

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

739

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.118 MLS

Multiply and Subtract. Multiply and Subtract multiplies two register values, and subtracts the least significant
32 bits of the result from a third register value. These 32 bits do not depend on whether signed or unsigned
calculations are performed. The result is written to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm

T1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
4 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
5 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
6 result = addend - operand1 * operand2;
7 R[d] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

740

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.119 MOV (immediate)

Move (immediate). Move (immediate) writes an immediate value to the destination register. It can optionally
update the condition flags based on the value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd imm8

T1 variant

MOV<c>{<q>} <Rd>, #<imm8>
// Inside IT block

MOVS{<q>} <Rd>, #<imm8>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8

MOV variant

Applies when S == 0.

MOV<c>.W <Rd>, #<const>
// Inside IT block, and <Rd>, <const> can be represented in T1

MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS.W <Rd>, #<const>
// Outside IT block, and <Rd>, <const> can be represented in T1

MOVS{<c>}{<q>} <Rd>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
3 if d IN {13,15} then UNPREDICTABLE;

T3
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8

T3 variant

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

741

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

MOV{<c>}{<q>} <Rd>, #<imm16>
// <imm16> cannot be represented in T1 or T2

MOVW{<c>}{<q>} <Rd>, #<imm16>
// <imm16> can be represented in T1 or T2

Decode for this encoding
1 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
2 carry = bit UNKNOWN;
3 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8"

field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

742

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.120 MOV (register)

Move (register). Move (register) copies a value from a register to the destination register. It can optionally update
the condition flags based on the value.

This instruction is subject to stack limit checking.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate),
LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, RRX.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 D Rm Rd

T1 variant

MOV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
2 (shift_t, shift_n) = (SRType_LSL, 0);
3 if HaveMainExt() then
4 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op != 11 imm5 Rm Rd

T2 variant

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>}
// Inside IT block

MOVS{<q>} <Rd>, <Rm> {, <shift> #<amount>}
// Outside IT block

Decode for this encoding
1 if op == '11' then SEE "Related encodings";
2 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
3 (shift_t, shift_n) = DecodeImmShift(op, imm5);
4 if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If op == ’00’ && imm5 == ’00000’ && InITBlock(), then one of the following behaviors must
occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passed its condition code check.

• The instruction executes as NOP, as if it failed its condition code check.

• The instruction executes as MOV Rd, Rm.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

743

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 [0] imm3 Rd imm2

sr_type

Rm

MOV, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>}
// Inside IT block
// and <Rd>, <Rm>, <shift>, <amount> can be represented in T1 or T2

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MOVS.W <Rd>, <Rm> {, <shift> #<amount>}
// Outside IT block
// and <Rd>, <Rm>, <shift>, <amount> can be represented in T1 or T2

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if HasArchVersion(Armv8p1) then
2 if S == '1' && Rm == '11x1' then SEE "Wide shift instructions";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
5 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
6 if !setflags && (imm3:imm2:sr_type == '0000000') then
7 if (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;
8 else
9 if (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;

Alias conditions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

744

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Alias variant preferred when
ASRS (immediate) T3 S == ‘1‘ && sr_type == ‘10‘
ASRS (immediate) T2 op == ‘10‘ && !InITBlock()
ASR (immediate) T3 S == ‘0‘ && sr_type == ‘10‘
ASR (immediate) T2 op == ‘10‘ && InITBlock()
LSLS (immediate) T3 S == ‘1‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘00‘
LSLS (immediate) T2 op == ‘00‘ && imm5 != ‘00000‘ && !InITBlock()
LSL (immediate) T3 S == ‘0‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘00‘
LSL (immediate) T2 op == ‘00‘ && imm5 != ‘00000‘ && InITBlock()
LSRS (immediate) T3 S == ‘1‘ && sr_type == ‘01‘
LSRS (immediate) T2 op == ‘01‘ && !InITBlock
LSR (immediate) T3 S ==‘0‘ && sr_type == ‘01‘
LSR (immediate) T2 op == ‘01‘ && InITBlock()
RORS (immediate) - S == ‘1‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘11‘
ROR (immediate) - S == ‘0‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘11‘
RRXS - S == ‘1‘ && imm3 == ‘000‘ && imm2 == ‘00‘ && sr_type == ‘11‘
RRX - S == ‘0‘ && imm3 == ‘000‘ && imm2 == ‘00‘ && sr_type ==‘11‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If

the PC is used:
- The instruction causes a simple branch to the address moved to the PC.
- The instruction must either be outside an IT block or the last instruction of an IT block.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field. The PC

can be used.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding T2: is the type of shift to be applied to the source register, encoded in the "op"
field. It can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10

For encoding T3: is the type of shift to be applied to the source register, encoded in the
"sr_type" field. It can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1
to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1
to 32 (when <shift> = LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo
32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 if d == 15 then
5 BranchTo(result); // setflags is always FALSE here
6 else
7 RSPCheck[d] = result;
8 if setflags then
9 APSR.N = result[31];

10 APSR.Z = IsZeroBit(result);
11 APSR.C = carry;
12 // APSR.V unchanged

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

745

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

746

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.121 MOV, MOVS (register-shifted register)

Move (register-shifted register). Move (register-shifted register) copies a register-shifted register value to the
destination register. It can optionally update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS
(register), LSR (register), RORS (register), ROR (register).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op Rs Rdm

Arithmetic shift right variant

Applies when op == 0100.

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>
// Outside IT block

Logical shift left variant

Applies when op == 0010.

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>
// Outside IT block

Logical shift right variant

Applies when op == 0011.

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>
// Outside IT block

Rotate right variant

Applies when op == 0111.

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>
// Outside IT block

Decode for this encoding
1 if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
2 d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);
3 setflags = !InITBlock(); shift_t = DecodeRegShift(op[2]:op[0]);

T2
Armv8-M Main Extension only

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

747

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type

S Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

Applies when S == 1.

MOVS.W <Rd>, <Rm>, <sr_type> <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

MOVS{<c>}{<q>} <Rd>, <Rm>, <sr_type> <Rs>

Non flag setting variant

Applies when S == 0.

MOV<c>.W <Rd>, <Rm>, <sr_type> <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

MOV{<c>}{<q>} <Rd>, <Rm>, <sr_type> <Rs>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
3 setflags = (S == '1'); shift_t = DecodeRegShift(sr_type);
4 if d IN {13,15} || m IN {13,15} || s IN {13,15} then UNPREDICTABLE;

Alias conditions
Alias variant preferred when
ASRS (register) T1 (aritmetic shift right) op == ‘0100‘ && !InITBlock()
ASRS (register) T2 (flag setting) sr_type == ‘10‘ && S == ‘1‘
ASR (register) T1 (arithmetic shift right) op == ‘0100‘ && InITBlock()
ASR (register) T2 (non flag setting) sr_type == ‘10‘ && S == ‘0‘
LSLS (register) T1 (logical shift left) op == ‘0010‘ && !InITBlock()
LSLS (register) T2 (flag setting) sr_type == ‘00‘ && S == ‘1‘
LSL (register) T1 (logical shift left) op == ‘0010‘ && InITBlock()
LSL (register) T2 (non flag setting) sr_type == ‘00‘ && S == ‘0‘
LSRS (register) T1 (logical shift right) op == ‘0011‘ && !InITBlock()
LSRS (register) T2 (flag setting) sr_type == ‘01‘ && S == ‘1‘
LSR (register) T1 (logical shift right) op == ‘0011‘ && InITBlock()
LSR (register) T2 (non flag setting) sr_type ==‘01‘ && S == ‘0‘
RORS (register) T1 (rotate right) op == ‘0111‘ && !InITBlock()
RORS (register) T2 (flag setting) sr_type == ‘11‘ && S ==‘1‘
ROR (register) T1 (rotate right) op == ‘0111‘ && InITBlock()
ROR (register) T2 (non flag setting) sr_type == ‘11‘ && S == ‘0‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<sr_type> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

748

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ASR when sr_type = 10
ROR when sr_type = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shift_n = UInt(R[s][7:0]);
4 (result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

749

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.122 MOVT

Move Top. Move Top writes an immediate value to the top halfword of the destination register. It does not affect
the contents of the bottom halfword.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8

T1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding
1 d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
2 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 R[d][31:16] = imm16;
4 // R[d][15:0] unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

750

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.123 MRC, MRC2

Move to Register from Coprocessor. Move to Register from Coprocessor causes a coprocessor to transfer a value
to a general-purpose register or to the condition flags.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

T1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt);
7 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

T2 variant

MRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt);
7 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.
<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111),

encoded in the "Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are
written to the APSR condition flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

751

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 value = Coproc_GetOneWord(cp, ThisInstr());
8 if t != 15 then
9 R[t] = value;

10 else
11 APSR.N = value[31];
12 APSR.Z = value[30];
13 APSR.C = value[29];
14 APSR.V = value[28];
15 // value[27:0] are not used.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

752

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.124 MRRC, MRRC2

Move to two Registers from Coprocessor. Move to two Registers from Coprocessor causes a coprocessor to
transfer values to two general-purpose registers.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

T1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); t2 = UInt(Rt2);
7 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
8 if t == 13 || t2 == 13 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

T2 variant

MRRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 cp = UInt(coproc);
4 CheckCPDecodeFaults(cp);
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); t2 = UInt(Rt2);
7 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
8 if t == 13 || t2 == 13 then UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

753

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 (R[t2], R[t]) = Coproc_GetTwoWords(cp, ThisInstr());

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

754

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.125 MRS

Move to Register from Special register. Move to Register from Special register moves the value from the selected
special-purpose register into a general-purpose register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 (0) (1) (1) (1) (1) 1 0 (0) 0 Rd SYSm

T1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding
1 d = UInt(Rd);
2 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following

values:
APSR when SYSm = 00000000
IAPSR when SYSm = 00000001
EAPSR when SYSm = 00000010
XPSR when SYSm = 00000011
IPSR when SYSm = 00000101
EPSR when SYSm = 00000110
IEPSR when SYSm = 00000111
MSP when SYSm = 00001000
PSP when SYSm = 00001001
MSPLIM when SYSm = 00001010
PSPLIM when SYSm = 00001011
PRIMASK when SYSm = 00010000
BASEPRI when SYSm = 00010001
BASEPRI_MAX when SYSm = 00010010
FAULTMASK when SYSm = 00010011
CONTROL when SYSm = 00010100
PAC_KEY_P_0 when SYSm = 00100000
PAC_KEY_P_1 when SYSm = 00100001
PAC_KEY_P_2 when SYSm = 00100010
PAC_KEY_P_3 when SYSm = 00100011
PAC_KEY_U_0 when SYSm = 00100100
PAC_KEY_U_1 when SYSm = 00100101
PAC_KEY_U_2 when SYSm = 00100110
PAC_KEY_U_3 when SYSm = 00100111
MSP_NS when SYSm = 10001000
PSP_NS when SYSm = 10001001
MSPLIM_NS when SYSm = 10001010
PSPLIM_NS when SYSm = 10001011
PRIMASK_NS when SYSm = 10010000
BASEPRI_NS when SYSm = 10010001
FAULTMASK_NS when SYSm = 10010011
CONTROL_NS when SYSm = 10010100

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

755

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SP_NS when SYSm = 10011000
PAC_KEY_P_0_NS when SYSm = 10100000
PAC_KEY_P_1_NS when SYSm = 10100001
PAC_KEY_P_2_NS when SYSm = 10100010
PAC_KEY_P_3_NS when SYSm = 10100011
PAC_KEY_U_0_NS when SYSm = 10100100
PAC_KEY_U_1_NS when SYSm = 10100101
PAC_KEY_U_2_NS when SYSm = 10100110
PAC_KEY_U_3_NS when SYSm = 10100111

The following encodings are UNPREDICTABLE:
- SYSm = 00000100
- SYSm = 000011xx
- SYSm = 00010101
- SYSm = 0001011x
- SYSm = 00011xxx
- SYSm = 00101xxx
- SYSm = 0011xxxx
- SYSm = 01xxxxxx
- SYSm = 10000xxx
- SYSm = 100011xx
- SYSm = 10010010
- SYSm = 10010101
- SYSm = 1001011x
- SYSm = 10011001
- SYSm = 1001101x
- SYSm = 100111xx
- SYSm = 10101xxx
- SYSm = 1011xxxx
- SYSm = 11xxxxxx

An access to a register not ending in _NS returns the register associated with the current
Security state. Access to a register ending in _NS in Secure state returns the Non-secure
register. Access to a register ending in _NS in Non-secure state is RAZ/WI. Access to
BASEPRI_MAX returns the contents of BASEPRI.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 R[d] = Zeros(32);
4
5 // NOTE: the MSB of SYSm is used to select between either the current
6 // domains view of the registers and other domains view of the register.
7 // This is required so that the Secure state can access the Non-secure
8 // versions of banked registers. For security reasons the Secure versions of
9 // the registers are not accessible from the Non-secure state.

10 case SYSm[7:3] of
11 when '00000' // XPSR accesses
12 if UInt(SYSm) == 4 then UNPREDICTABLE;
13 if CurrentModeIsPrivileged() && SYSm[0] == '1' then
14 R[d][8:0] = IPSR.Exception;
15 if SYSm[1] == '1' then
16 R[d][26:24] = '000'; // EPSR reads as zero
17 R[d][21] = '0'; // EPSR.B reads as zero
18 R[d][15:10] = '000000';
19 if SYSm[2] == '0' then
20 R[d][31:27] = APSR[31:27];
21 if HaveDSPExt() then
22 R[d][19:16] = APSR[19:16];
23 when '00001' // SP access
24 if CurrentModeIsPrivileged() then
25 case SYSm[2:0] of
26 when '000'
27 R[d] = SP_Main;
28 when '001'

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

756

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

29 R[d] = SP_Process;
30 when '010'
31 if IsSecure() then
32 R[d] = MSPLIM_S.LIMIT:'000';
33 else
34 if HaveMainExt() then
35 R[d] = MSPLIM_NS.LIMIT:'000';
36 else
37 UNPREDICTABLE;
38 when '011'
39 if IsSecure() then
40 R[d] = PSPLIM_S.LIMIT:'000';
41 else
42 if HaveMainExt() then
43 R[d] = PSPLIM_NS.LIMIT:'000';
44 else
45 UNPREDICTABLE;
46 otherwise
47 UNPREDICTABLE;
48 when '10001' // SP access - alt domain
49 if !HaveSecurityExt() then UNPREDICTABLE;
50 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
51 case SYSm[2:0] of
52 when '000'
53 R[d] = SP_Main_NonSecure;
54 when '001'
55 R[d] = SP_Process_NonSecure;
56 when '010'
57 if HaveMainExt() then
58 R[d] = MSPLIM_NS.LIMIT:'000';
59 else
60 UNPREDICTABLE;
61 when '011'
62 if HaveMainExt() then
63 R[d] = PSPLIM_NS.LIMIT:'000';
64 else
65 UNPREDICTABLE;
66 otherwise
67 UNPREDICTABLE;
68 when '00010' // Priority mask or CONTROL access
69 case SYSm[2:0] of
70 when '000'
71 if CurrentModeIsPrivileged() then
72 R[d][0] = PRIMASK.PM;
73 when '001'
74 if HaveMainExt() then
75 if CurrentModeIsPrivileged() then
76 R[d][7:0] = BASEPRI[7:0];
77 else
78 UNPREDICTABLE;
79 when '010'
80 if HaveMainExt() then
81 if CurrentModeIsPrivileged() then
82 R[d][7:0] = BASEPRI[7:0];
83 else
84 UNPREDICTABLE;
85 when '011'
86 if HaveMainExt() then
87 if CurrentModeIsPrivileged() then
88 R[d][0] = FAULTMASK.FM;
89 else
90 UNPREDICTABLE;
91 when '100'
92 if HaveMveOrFPExt() && IsSecure() then
93 R[d][3:0] = CONTROL[3:0];
94 elsif HaveMveOrFPExt() then
95 R[d][2:0] = CONTROL[2:0];
96 else
97 R[d][1:0] = CONTROL[1:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

757

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

98 // PACBTI Extension required for accessing the PAC and BTI enables
99 if HavePACBTIExt() then

100 if CurrentModeIsPrivileged() then
101 R[d][7:4] = CONTROL[7:4]; // UPAC_EN, PAC_EN, UBTI_EN, BTI_EN
102 else
103 R[d][7] = CONTROL[7]; // UPAC_EN
104 R[d][5] = CONTROL[5]; // UBTI_EN
105 otherwise
106 UNPREDICTABLE;
107 when '00100' // Access to PAC keys
108 if !HavePACBTIExt() then UNPREDICTABLE; // PACBTI Extension required
109 if CurrentModeIsPrivileged() then
110 R[d] = PACKeyReg[SYSm[2:0], IsSecure()];
111 when '10010' // Priority mask or CONTROL access - alt domain
112 if !HaveSecurityExt() then UNPREDICTABLE;
113 if CurrentState == SecurityState_Secure then
114 case SYSm[2:0] of
115 when '000'
116 if CurrentModeIsPrivileged() then
117 R[d][0] = PRIMASK_NS.PM;
118 when '001'
119 if HaveMainExt() then
120 if CurrentModeIsPrivileged() then
121 R[d][7:0] = BASEPRI_NS[7:0];
122 else
123 UNPREDICTABLE;
124 when '011'
125 if HaveMainExt() then
126 if CurrentModeIsPrivileged() then
127 R[d][0] = FAULTMASK_NS.FM;
128 else
129 UNPREDICTABLE;
130 when '100'
131 if HaveMveOrFPExt() then
132 R[d][2:0] = CONTROL_NS[2:0];
133 else
134 R[d][1:0] = CONTROL_NS[1:0];
135 // PACBTI Extension required for accessing the PAC and BTI enables
136 if HavePACBTIExt() then
137 if CurrentModeIsPrivileged() then
138 R[d][7:4] = CONTROL_NS[7:4]; // UPAC_EN, PAC_EN,
139 // UBTI_EN, BTI_EN
140 else
141 R[d][7] = CONTROL_NS[7]; // UPAC_EN
142 R[d][5] = CONTROL_NS[5]; // UBTI_EN
143 otherwise
144 UNPREDICTABLE;
145 when '10011' // SP_NS - Non-secure stack pointer
146 if !HaveSecurityExt() then UNPREDICTABLE;
147 if CurrentState == SecurityState_Secure then
148 case SYSm[2:0] of
149 when '000'
150 R[d] = _SP(LookUpSP_with_security_mode(FALSE, CurrentMode()));
151 otherwise
152 UNPREDICTABLE;
153 when '10100' // Access to Non-secure PAC keys
154 if !HaveSecurityExt() || !HavePACBTIExt() then UNPREDICTABLE;
155 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
156 R[d] = PACKeyReg[SYSm[2:0], FALSE];
157 otherwise
158 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If SYSm not valid special register, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

758

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

If the PACBTI extension is implemented the timing of this instruction is insensitive to the value of the data being
loaded or stored regardless of the value of AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

759

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.126 MSR (register)

Move to Special register from Register. Move to Special register from Register moves the value of a general-purpose
register to the specified special-purpose register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 (0) Rn 1 0 (0) 0 mask (0) (0) SYSm

T1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding
1 n = UInt(Rn);
2 if HaveMainExt() then
3 if mask == '00' || (mask != '10' && !(UInt(SYSm) IN {0..3})) then UNPREDICTABLE;
4 else
5 if mask != '10' then UNPREDICTABLE;
6 if n IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If combination of SYSm and mask not supported, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction treats mask and SYSm as UNKNOWN.

Encoding conditions
_<bits> Effect mask encoding Notes
_nzcvq Write the N, Z, C, V, Q bits, APSR[31:27] 0b10 Always supported
_g Write the GE[3:0] bits, APSR[19:16] 0b01 Supported only if the PE
_nzcvqg Write the N, Z, C, V, Q, GE[3:0] bits 0b11 implements the DSP extension.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following

values:
APSR when SYSm = 00000000
IAPSR when SYSm = 00000001
EAPSR when SYSm = 00000010
XPSR when SYSm = 00000011
IPSR when SYSm = 00000101
EPSR when SYSm = 00000110
IEPSR when SYSm = 00000111
MSP when SYSm = 00001000
PSP when SYSm = 00001001
MSPLIM when SYSm = 00001010
PSPLIM when SYSm = 00001011
PRIMASK when SYSm = 00010000

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

760

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

BASEPRI when SYSm = 00010001
BASEPRI_MAX when SYSm = 00010010
FAULTMASK when SYSm = 00010011
CONTROL when SYSm = 00010100
PAC_KEY_P_0 when SYSm = 00100000
PAC_KEY_P_1 when SYSm = 00100001
PAC_KEY_P_2 when SYSm = 00100010
PAC_KEY_P_3 when SYSm = 00100011
PAC_KEY_U_0 when SYSm = 00100100
PAC_KEY_U_1 when SYSm = 00100101
PAC_KEY_U_2 when SYSm = 00100110
PAC_KEY_U_3 when SYSm = 00100111
MSP_NS when SYSm = 10001000
PSP_NS when SYSm = 10001001
MSPLIM_NS when SYSm = 10001010
PSPLIM_NS when SYSm = 10001011
PRIMASK_NS when SYSm = 10010000
BASEPRI_NS when SYSm = 10010001
FAULTMASK_NS when SYSm = 10010011
CONTROL_NS when SYSm = 10010100
SP_NS when SYSm = 10011000
PAC_KEY_P_0_NS when SYSm = 10100000
PAC_KEY_P_1_NS when SYSm = 10100001
PAC_KEY_P_2_NS when SYSm = 10100010
PAC_KEY_P_3_NS when SYSm = 10100011
PAC_KEY_U_0_NS when SYSm = 10100100
PAC_KEY_U_1_NS when SYSm = 10100101
PAC_KEY_U_2_NS when SYSm = 10100110
PAC_KEY_U_3_NS when SYSm = 10100111

The following encodings are UNPREDICTABLE:
- SYSm = 00000100
- SYSm = 000011xx
- SYSm = 00010101
- SYSm = 0001011x
- SYSm = 00011xxx
- SYSm = 00101xxx
- SYSm = 0011xxxx
- SYSm = 01xxxxxx
- SYSm = 10000xxx
- SYSm = 100011xx
- SYSm = 10010010
- SYSm = 10010101
- SYSm = 1001011x
- SYSm = 10011001
- SYSm = 1001101x
- SYSm = 100111xx
- SYSm = 10101xxx
- SYSm = 1011xxxx
- SYSm = 11xxxxxx

An access to a register not ending in _NS returns the register associated with the current
Security state. Access to a register ending in _NS in Secure state returns the Non-secure
register. Access to a register ending in _NS in Non-secure state is RAZ/WI. Access to
BASEPRI_MAX writes to BASEPRI if the priority that is written is higher than the existing
priority in BASEPRI. Otherwise, the access is ignored.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 // NOTE: the MSB of SYSm is used to select between either the current

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

761

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 // domains view of the registers and other domains view of the register.
6 // This is required to that the Secure state can access the Non-secure
7 // versions of banked registers. For security reasons the Secure versions of
8 // the registers are not accessible from the Non-secure state.
9 case SYSm[7:3] of

10 when '00000' // XPSR accesses
11 if UInt(SYSm) == 4 then UNPREDICTABLE;
12 if SYSm[2] == '0' then // Include APSR
13 if mask[0] == '1' then // GE[3:0] bits
14 if !HaveDSPExt() then
15 UNPREDICTABLE;
16 else
17 APSR[19:16] = R[n][19:16];
18 if mask[1] == '1' then // N, Z, C, V, Q bits
19 APSR[31:27] = R[n][31:27];
20 when '00001' // SP access
21 if CurrentModeIsPrivileged() then
22 case SYSm[2:0] of
23 when '000'
24 // MSR not subject to SP limit, write directly to register.
25 if IsSecure() then
26 exc = _SP(RNamesSP_Main_Secure, FALSE, TRUE, R[n][31:2]:'00');
27 else
28 exc = _SP(RNamesSP_Main_NonSecure, FALSE, TRUE, R[n][31:2]:'00');
29 assert exc.fault == NoFault;
30 when '001'
31 // MSR not subject to SP limit, write directly to register.
32 if IsSecure() then
33 exc = _SP(RNamesSP_Process_Secure, FALSE, TRUE, R[n][31:2]:'00');
34 else
35 exc = _SP(RNamesSP_Process_NonSecure, FALSE, TRUE,
36 R[n][31:2]:'00');
37 assert exc.fault == NoFault;
38 when '010'
39 if IsSecure() then
40 MSPLIM_S.LIMIT = R[n][31:3];
41 else
42 if HaveMainExt() then
43 MSPLIM_NS.LIMIT = R[n][31:3];
44 else
45 UNPREDICTABLE;
46 when '011'
47 if IsSecure() then
48 PSPLIM_S.LIMIT = R[n][31:3];
49 else
50 if HaveMainExt() then
51 PSPLIM_NS.LIMIT = R[n][31:3];
52 else
53 UNPREDICTABLE;
54 otherwise
55 UNPREDICTABLE;
56 when '10001' // SP access - alt domain
57 if !HaveSecurityExt() then UNPREDICTABLE;
58 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
59 case SYSm[2:0] of
60 when '000'
61 // MSR not subject to SP limit, write directly to register.
62 exc = _SP(RNamesSP_Main_NonSecure, FALSE, TRUE, R[n][31:2]:'00');
63 assert exc.fault == NoFault;
64 when '001'
65 // MSR not subject to SP limit, write directly to register.
66 exc = _SP(RNamesSP_Process_NonSecure, FALSE, TRUE, R[n][31:2]:'00');
67 assert exc.fault == NoFault;
68 when '010'
69 if HaveMainExt() then
70 MSPLIM_NS.LIMIT = R[n][31:3];
71 else
72 UNPREDICTABLE;
73 when '011'

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

762

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

74 if HaveMainExt() then
75 PSPLIM_NS.LIMIT = R[n][31:3];
76 else
77 UNPREDICTABLE;
78 otherwise
79 UNPREDICTABLE;
80 when '00010' // Priority mask or CONTROL access
81 case SYSm[2:0] of
82 when '000'
83 if CurrentModeIsPrivileged() then
84 PRIMASK.PM = R[n][0];
85 when '001'
86 if CurrentModeIsPrivileged() then
87 if HaveMainExt() then
88 BASEPRI[7:0] = R[n][7:0];
89 else
90 UNPREDICTABLE;
91 when '010'
92 if CurrentModeIsPrivileged() then
93 if HaveMainExt() then
94 if ((R[n][7:0] != '00000000') &&
95 (UInt(R[n][7:0]) < UInt(BASEPRI[7:0]) ||
96 BASEPRI[7:0] == '00000000')) then
97 BASEPRI[7:0] = R[n][7:0];
98 else
99 UNPREDICTABLE;

100 when '011'
101 if CurrentModeIsPrivileged() then
102 if HaveMainExt() then
103 if ExecutionPriority() > -1 || R[n][0] == '0' then
104 FAULTMASK.FM = R[n][0];
105 else
106 UNPREDICTABLE;
107 when '100'
108 if CurrentModeIsPrivileged() then
109 CONTROL.nPRIV = R[n][0];
110 CONTROL.SPSEL = R[n][1];
111 if HaveMveOrFPExt() && (IsSecure() || NSACR.CP10 == '1') then
112 CONTROL.FPCA = R[n][2];
113 // PACBTI Extension required for accessing the PAC and BTI enables
114 if HavePACBTIExt() then
115 CONTROL[7:4] = R[n][7:4]; // UPAC_EN, PAC_EN, UBTI_EN, BTI_EN
116 if HaveMveOrFPExt() && IsSecure() then
117 CONTROL_S.SFPA = R[n][3];
118 otherwise
119 UNPREDICTABLE;
120 when '00100' // Access to PAC keys
121 if !HavePACBTIExt() then UNPREDICTABLE; // PACBTI Extension required
122 if CurrentModeIsPrivileged() then
123 PACKeyReg[SYSm[2:0], IsSecure()] = R[n];
124 when '10010' // Priority mask or CONTROL access - alt domain
125 if !HaveSecurityExt() then UNPREDICTABLE;
126 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
127 case SYSm[2:0] of
128 when '000'
129 PRIMASK_NS.PM = R[n][0];
130 when '001'
131 if HaveMainExt() then
132 BASEPRI_NS[7:0] = R[n][7:0];
133 else
134 UNPREDICTABLE;
135 when '011'
136 if HaveMainExt() then
137 if ExecutionPriority() > -1 || R[n][0] == '0' then
138 FAULTMASK_NS.FM = R[n][0];
139 else
140 UNPREDICTABLE;
141 when '100'
142 CONTROL_NS.nPRIV = R[n][0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

763

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

143 CONTROL_NS.SPSEL = R[n][1];
144 if HaveMveOrFPExt() then CONTROL_NS.FPCA = R[n][2];
145 // PACBTI Extension required for accessing the PAC and BTI enables
146 if HavePACBTIExt() then
147 CONTROL_NS[7:4] = R[n][7:4]; // UPAC_EN, PAC_EN, UBTI_EN, BTI_EN
148 otherwise
149 UNPREDICTABLE;
150 when '10011' // SP_NS - Non-secure stack pointer
151 if !HaveSecurityExt() then UNPREDICTABLE;
152 if CurrentState == SecurityState_Secure then
153 case SYSm[2:0] of
154 when '000'
155 spName = LookUpSP_with_security_mode(FALSE, CurrentMode());
156 // MSR SP_NS is subject to SP limit check. If a STKOF UsageFault is
157 // generated then it can target either the Secure or Non-secure state
158 - = _SP(spName, FALSE, FALSE, R[n]);
159 otherwise
160 UNPREDICTABLE;
161 when '10100' // Access to Non-secure PAC keys
162 if !HaveSecurityExt() || !HavePACBTIExt() then UNPREDICTABLE;
163 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
164 PACKeyReg[SYSm[2:0], FALSE] = R[n];
165 otherwise
166 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If SYSm not valid special register, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction treats SYSm as UNKNOWN.

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

If the PACBTI extension is implemented the timing of this instruction is insensitive to the value of the data being
loaded or stored regardless of the value of AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

764

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.127 MUL

Multiply. Multiply multiplies two register values. The least significant 32 bits of the result are written to the
destination register. These 32 bits do not depend on whether signed or unsigned calculations are performed.

It can optionally update the condition flags based on the result. In the T32 instruction set, this option is limited to
only a few forms of the instruction. Use of this option adversely affects performance on many implementations.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 1 Rn Rdm

T1 variant

MUL<c>{<q>} <Rdm>, <Rn>{, <Rdm>}
// Inside IT block

MULS{<q>} <Rdm>, <Rn>{, <Rdm>}
// Outside IT block

Decode for this encoding
1 d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T2 variant

MUL<c>.W <Rd>, <Rn>{, <Rm>}
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,

encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

If omitted, <Rd> is used.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

765

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
4 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
5 result = operand1 * operand2;
6 R[d] = result[31:0];
7 if setflags then
8 APSR.N = result[31];
9 APSR.Z = IsZeroBit(result[31:0]);

10 // APSR.C unchanged
11 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

766

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.128 MVN (immediate)

Bitwise NOT (immediate). Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the
destination register. It can optionally update the condition flags based on the value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = (S == '1');
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = NOT(imm32);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

767

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.129 MVN (register)

Bitwise NOT (register). Bitwise NOT (register) writes the bitwise inverse of a register value to the destination
register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 Rm Rd

T1 variant

MVN<c>{<q>} <Rd>, <Rm>
// Inside IT block

MVNS{<q>} <Rd>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2

sr_type

Rm

MVN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MVN<c>.W <Rd>, <Rm>
// Inside IT block, and <Rd>, <Rm> can be represented in T1

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MVNS.W <Rd>, <Rm>
// Outside IT block, and <Rd>, <Rm> can be represented in T1

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

768

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the source register, encoded in the "sr_type" field. It can

have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = NOT(shifted);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

769

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.130 NOP

No Operation. No Operation does nothing.

The architecture makes no guarantees about any timing effects of including a NOP instruction.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

T1 variant

NOP{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0

T2 variant

NOP{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 // Do nothing

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

770

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.131 ORN (immediate)

Logical OR NOT (immediate). Logical OR NOT (immediate) performs a bitwise (inclusive) OR of a register
value and the complement of an immediate value, and writes the result to the destination register. It can optionally
update the condition flags based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S Rn 0 imm3 Rd imm8

Flag setting variant

Applies when S == 1.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Non flag setting variant

Applies when S == 0.

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rn == '1111' then SEE "MVN (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] OR NOT(imm32);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

771

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

772

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.132 ORN (register)

Logical OR NOT (register). Logical OR NOT (register) performs a bitwise (inclusive) OR of a register value
and the complement of an optionally-shifted register value, and writes the result to the destination register. It can
optionally update the condition flags based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S Rn (0) imm3 Rd imm2

sr_type

Rm

ORN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE "MVN (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

773

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] OR NOT(shifted);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

774

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.133 ORR (immediate)

Logical OR (immediate). Logical OR (immediate) performs a bitwise (inclusive) OR of a register value and an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S Rn 0 imm3 Rd imm8

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rn == '1111' then SEE "MOV (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] OR imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

775

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

776

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.134 ORR (register)

Logical OR (register). Logical OR (register) performs a bitwise (inclusive) OR of a register value and an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 0 Rm Rdn

T1 variant

ORR<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

ORRS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S Rn [0] imm3 Rd imm2

sr_type

Rm

ORR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ORR<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1&& !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

777

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ORRS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if HasArchVersion(Armv8p1) then
2 if S == '1' && Rm == '11x1' then SEE "Wide shift instructions";
3 if Rn == '1111' then SEE "MOV (register)";
4 if !HaveMainExt() then UNDEFINED;
5 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
6 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
7 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] OR shifted;
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

778

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.135 PAC

Pointer Authentication Code for the link register, using key. This instruction computes a pointer authentication
code using LR as the address, SP as the modifier and, a key. The computed PAC is written to R12. The intended
use of this instruction is for signing return addresses where the link register value should match the address used
for function return.

This instruction is not permitted in an IT block.

This is a NOP-compatible hint.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 1 1 0 1

T1 variant

PAC R12, LR, SP

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

LR LR register, this instruction must always use this register. This register holds the address.
SP SP register, this instruction must always use this register. This register holds the modifier to

apply during the PAC code generation.
R12 R12 register, this instruction must always use this register. This register holds PAC for

comparison.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 if PACEnabled() then
4 R[12] = CreatePAC(LR, SP);

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

The timing of this instruction is insensitive to the value of the data being loaded or stored regardless of the value of
AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

779

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

The point at which an asynchronous exception is taken does not vary based on any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

780

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.136 PACBTI

Pointer Authentication Code for the link register with BTI clearing, using key. This instruction computes a pointer
authentication code using LR as the address, SP as the modifier and, a key. The computed PAC is written to R12.
The intended use of this instruction is for signing return addresses where the link register value should match the
address used for function return.

This instruction is a valid BTI landing pad when the PACBTI Extension is implemented and EPSR.B is one.

This instruction is not permitted in an IT block.

This is a NOP-compatible hint.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 1 1 0 1

T1 variant

PACBTI R12, LR, SP

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

LR LR register, this instruction must always use this register. This register holds the address.
SP SP register, this instruction must always use this register. This register holds the modifier to

apply during the PAC code generation.
R12 R12 register, this instruction must always use this register. This register holds PAC for

comparison.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 // This instruction can be used as a BTI landing pad.
4 // The EPSR.B bit is reset to zero.
5 EPSR.B = '0';
6
7 if PACEnabled() then
8 R[12] = CreatePAC(LR, SP);

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

781

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior and the PACBTI extension

The timing of this instruction is insensitive to the value of the data being loaded or stored regardless of the value of
AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

The point at which an asynchronous exception is taken does not vary based on any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

782

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.137 PACG

Pointer Authentication Code for a general value, using key. This instruction computes a pointer authentication
code using two input registers and a key. The computed PAC is written to the specified register.

T1
Armv8.1-M PACBTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

PACG{<c>} <Rd>, <Rn>, <Rm>

Decode for this encoding
1 if !HavePACBTIExt() then
2 if HaveDSPExt() then UNPREDICTABLE; else UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
4 if n == 15 || m == 15 || d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose source register containing the value to be encrypted, encoded in the

"Rn" field.
<Rm> Is the general-purpose source register containing the modifier to be used in the encryption

operation, encoded in the "Rm" field.
<Rd> Is the general-purpose destination register which will contain the encrypted value, encoded in

the "Rd" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 // Create PAC and store it in the selected register.
4 if PACEnabled() then
5 R[d] = CreatePAC(R[n], R[m]);

Restricted behavior
Data Independent Timing behavior and the PACBTI extension

The timing of this instruction is insensitive to the value of the data being loaded or stored regardless of the value of
AIRCR.DIT when accessing any of the following:

• PAC_KEY_P_n.

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

The point at which an asynchronous exception is taken does not vary based on any of the following:

• PAC_KEY_P_n.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

783

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• PAC_KEY_U_n.

• The pointer value.

• The modifier value.

• The PAC value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

784

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.138 PKHBT, PKHTB

Pack Halfword. Pack Halfword combines one halfword of its first operand with the other halfword of its shifted
second operand.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 1 0 0 Rn (0) imm3 Rd imm2 tb 0 Rm

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>}
// tbform == FALSE

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>}
// tbform == TRUE

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
3 (shift_t, shift_n) = DecodeImmShift(tb:'0', imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm2. For PKHBT, it is one

of:
1-31 Left shift by specified number of bits, encoded as a binary number.
omitted No shift, encoded as 0b00000.

<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm2. For PKHTB, it is one
of:
1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded

as 0b00000. Other shift amounts are encoded as binary numbers.
omitted Instruction is a pseudo-instruction and is assembled as though PKHBT<c><q>

<Rd>, <Rm>, <Rn> had been written.
For both variants an assembler can permit <imm> = 0 to mean the same thing as omitting the
shift, but this is not standard UAL and must not be used for disassembly.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = Shift(R[m], shift_t, shift_n, APSR.C); // APSR.C ignored
4 bits(32) result;
5 result[15:0] = if tbform then operand2[15:0] else R[n][15:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

785

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 result[31:16] = if tbform then R[n][31:16] else operand2[31:16];
7 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

786

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.139 PLD (literal)

Preload Data (literal). Preload Data signals the memory system that data memory accesses from a specified address
are likely in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 (0) 1 1 1 1 1 1 1 1 1 imm12

T1 variant

PLD{<c>}{<q>} <label>
// Preferred syntax

PLD{<c>}{<q>} [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<label> The label of the literal data item that is likely to be accessed in the near future. The assembler

calculates the required value of the offset from the Align(PC, 4) value of the instruction
to this label. The offset must be in the range -4095 to 4095. If the offset is zero or positive,
imm32 is equal to the offset and add == TRUE. If the offset is negative, imm32 is equal to
minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
4 Hint_PreloadData(address);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

787

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.140 PLD, PLDW (immediate)

Preload Data (immediate). Preload Data signals the memory system that data memory accesses from a specified
address are likely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified address
into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a
write.

The effect of a PLD or PLDW is IMPLEMENTATION DEFINED.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 W 1 Rn 1 1 1 1 imm12

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == '1');

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn 1 1 1 1 1 1 0 0 imm8

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == '1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

788

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see C2.4.139

PLD (literal).
+ Specifies the offset is added to the base register.
<imm> For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,

defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = if add then (R[n] + imm32) else (R[n] - imm32);
4 if is_pldw then
5 Hint_PreloadDataForWrite(address);
6 else
7 Hint_PreloadData(address);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

789

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.141 PLD, PLDW (register)

Preload Data (register). Preload Data is a memory hint instruction that can signal the memory system that data
memory accesses from a specified address are likely in the near future. The memory system can respond by taking
actions that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line
containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a
write.

The effect of a PLD or PLDW is IMPLEMENTATION DEFINED.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn 1 1 1 1 0 0 0 0 0 0 shift Rm

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == '1');
4 (shift_t, shift_n) = (SRType_LSL, UInt(shift));
5 if m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register that is added to the base register.
<Rm> Is the general purpose index register, encoded in the "Rm" field.
<amount> Is the shift amount, in the range 0-3, defaulting to 0 and encoded in the "imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = if add then (R[n] + offset) else (R[n] - offset);
5 if is_pldw then
6 Hint_PreloadDataForWrite(address);
7 else
8 Hint_PreloadData(address);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

790

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.142 PLI (immediate, literal)

Preload Instruction (immediate, literal). Preload Instruction is a memory hint instruction that can signal the memory
system that instruction memory accesses from a specified address are likely in the near future. The memory system
can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as
pre-loading the cache line containing the specified address into the instruction cache.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn 1 1 1 1 imm12

T1 variant

PLI{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "encoding T3";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn 1 1 1 1 1 1 0 0 imm8

T2 variant

PLI{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "encoding T3";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12

T3 variant

PLI{<c>}{<q>} <label>
// Preferred syntax

PLI{<c>}{<q>} [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == '1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

791

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<label> The label of the instruction that is likely to be accessed in the near future. The assembler

calculates the required value of the offset from the Align(PC, 4) value of the instruction
to this label. The offset must be in the range -4095 to 4095. If the offset is zero or positive,
imm32 is equal to the offset and add == TRUE. If the offset is negative, imm32 is equal to
minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.
For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded
in the "imm12" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = if n == 15 then Align(PC,4) else R[n];
4 address = if add then (base + imm32) else (base - imm32);
5 Hint_PreloadInstr(address);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

792

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.143 PLI (register)

Preload Instruction (register). Preload Instruction is a memory hint instruction that can signal the memory system
that instruction memory accesses from a specified address are likely in the near future. The memory system
can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as
pre-loading the cache line containing the specified address into the instruction cache.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn 1 1 1 1 0 0 0 0 0 0 imm2 Rm

T1 variant

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLI (immediate, literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); m = UInt(Rm); add = TRUE;
4 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
5 if m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<amount> Is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = if add then (R[n] + offset) else (R[n] - offset);
5 Hint_PreloadInstr(address);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

793

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.144 POP (multiple registers)

Pop multiple registers from stack. Pop multiple registers from stack loads multiple general-purpose registers from
the stack, loading from consecutive memory locations starting at the address in SP, and updates SP to point above
the loaded data.

If the registers loaded include the PC, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

This instruction is an alias of the LDM, LDMIA, LDMFD instruction. This means that:

• The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.

• The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0

W = 1

1 Rn = 1101 P M (0) register_list

T2 variant

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T3
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

T3 variant

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

794

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<registers> For encoding T2: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory
address, through to the highest-numbered register from the highest memory address. The
registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults
to 0. The PC can be in the list. If it is, the instruction branches to the address loaded to the PC,
and: If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the PC. If the PC is in the list, the "P" field is
set to 1, otherwise this field defaults to 0. If the PC is in the list, the instruction must be either
outside any IT block, or the last instruction in an IT block.

Operation for all encodings
The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to values being loaded into R15, but does apply to all values being loaded
into any other specified register even if R15 is being used.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

795

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.145 POP (single register)

Pop single register from stack. Pop single register from stack loads a single general-purpose register from the
stack, loading from the address in SP, and updates SP to point above the loaded data.

This instruction is an alias of the LDR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of LDR (immediate).

• The description of LDR (immediate) gives the operational pseudocode for this instruction.

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn = 1101 Rt 1

P = 0
U = 1

W = 1

imm8 = 00000100

Post-indexed variant

POP{<c>}{<q>} <register>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<register> Is the general-purpose register <Rt> to be loaded surrounded by { and }.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used,

provided the instruction is either outside an IT block or the last instruction of an IT block. If
the PC is used, the instruction branches to the address (data) loaded to the PC.

Operation for all encodings
The description of LDR (immediate) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

796

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.146 PSSBB

Physical Speculative Store Bypass Barrier. Physical Speculative Store Bypass Barrier is a memory barrier which
prevents speculative loads from bypassing earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively
read an entry earlier in the coherence order for that location than the entry generated by the latest store
satisfying all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order before the PSSBB.

– The memory attributes of the store are the same as the memory attributes of the load.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order after the PSSBB.

– The memory attributes of the store are the same as the memory attributes of the load.

PSSBB does not have any impact on the rules associated with mismatched attributes.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 1 0 0

T1 variant

PSSBB{<q>}

Decode for this encoding
1 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 EncodingSpecificOperations();
2 SpeculativeSynchronizationBarrier();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

797

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.147 PUSH (multiple registers)

Push multiple registers to stack. Push multiple registers to stack stores multiple general-purpose registers to the
stack, storing to consecutive memory locations ending below the address in SP, and updates SP to point to the start
of the stored data.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

This instruction is an alias of the STMDB, STMFD instruction. This means that:

• The encodings in this description are named to match the encodings of STMDB, STMFD.

• The description of STMDB, STMFD gives the operational pseudocode for this instruction.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0

W = 1

0 Rn = 1101 (0) M (0) register_list

T1 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

T2 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and

surrounded by { and }. The lowest-numbered register is stored to the lowest memory address,
through to the highest-numbered register to the highest memory address. The registers in
the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally
contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

798

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

For encoding T2: is a list of one or more registers to be stored, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the LR. If the LR is in the list, the "M" field is
set to 1, otherwise this field defaults to 0.

Operation for all encodings
The description of STMDB, STMFD gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
stored by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

799

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.148 PUSH (single register)

Push single register to stack. Push single register to stack stores a single general-purpose register to the stack,
storing to the 32-bit word below the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of STR (immediate).

• The description of STR (immediate) gives the operational pseudocode for this instruction.

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn = 1101 Rt 1

P = 1
U = 0

W = 1

imm8 = 00000100

Pre-indexed variant

PUSH{<c>}{<q>} <register>
// Standard syntax

is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<register> Is the general-purpose register <Rt> to be stored surrounded by { and }.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation for all encodings
The description of STR (immediate) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

800

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.149 QADD

Saturating Add. Saturating Add adds two register values, saturates the result to the 32-bit signed integer range -231

to 231-1, and writes the result to the destination register. If saturation occurs, it sets the Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
4 if sat then
5 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

801

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.150 QADD16

Saturating Add 16. Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit
signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][15:0]) + SInt(R[m][15:0]);
4 sum2 = SInt(R[n][31:16]) + SInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = SignedSat(sum1, 16);
7 result[31:16] = SignedSat(sum2, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

802

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.151 QADD8

Saturating Add 8. Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed
integer range -27 to 27-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][7:0]) + SInt(R[m][7:0]);
4 sum2 = SInt(R[n][15:8]) + SInt(R[m][15:8]);
5 sum3 = SInt(R[n][23:16]) + SInt(R[m][23:16]);
6 sum4 = SInt(R[n][31:24]) + SInt(R[m][31:24]);
7 bits(32) result;
8 result[7:0] = SignedSat(sum1, 8);
9 result[15:8] = SignedSat(sum2, 8);

10 result[23:16] = SignedSat(sum3, 8);
11 result[31:24] = SignedSat(sum4, 8);
12 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

803

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.152 QASX

Saturating Add and Subtract with Exchange. Saturating Add and Subtract with Exchange exchanges the two
halfwords of the second operand, performs one 16-bit integer addition and one 16-bit subtraction, saturates the
results to the 16-bit signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = SInt(R[n][15:0]) - SInt(R[m][31:16]);
4 sum = SInt(R[n][31:16]) + SInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = SignedSat(diff, 16);
7 result[31:16] = SignedSat(sum, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

804

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.153 QDADD

Saturating Double and Add. Saturating Double and Add adds a doubled register value to another register value,
and writes the result to the destination register. Both the doubling and the addition have their results saturated to
the 32-bit signed integer range -231 to 231-1. If saturation occurs in either operation, it sets the Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm

T1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
4 (R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
5 if sat1 || sat2 then
6 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

805

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.154 QDSUB

Saturating Double and Subtract. Saturating Double and Subtract subtracts a doubled register value from another
register value, and writes the result to the destination register. Both the doubling and the subtraction have their
results saturated to the 32-bit signed integer range -231 to 231-1. If saturation occurs in either operation, it sets the
Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm

T1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
4 (R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
5 if sat1 || sat2 then
6 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

806

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.155 QSAX

Saturating Subtract and Add with Exchange. Saturating Subtract and Add with Exchange exchanges the two
halfwords of the second operand, performs one 16-bit integer subtraction and one 16-bit addition, saturates the
results to the 16-bit signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = SInt(R[n][15:0]) + SInt(R[m][31:16]);
4 diff = SInt(R[n][31:16]) - SInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = SignedSat(sum, 16);
7 result[31:16] = SignedSat(diff, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

807

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.156 QSUB

Saturating Subtract. Saturating Subtract subtracts one register value from another register value, saturates the result
to the 32-bit signed integer range -231 to 231-1, and writes the result to the destination register. If saturation occurs,
it sets the Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm

T1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
4 if sat then
5 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

808

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.157 QSUB16

Saturating Subtract 16. Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the
16-bit signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][15:0]) - SInt(R[m][15:0]);
4 diff2 = SInt(R[n][31:16]) - SInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = SignedSat(diff1, 16);
7 result[31:16] = SignedSat(diff2, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

809

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.158 QSUB8

Saturating Subtract 8. Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the
8-bit signed integer range -27 to 27-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][7:0]) - SInt(R[m][7:0]);
4 diff2 = SInt(R[n][15:8]) - SInt(R[m][15:8]);
5 diff3 = SInt(R[n][23:16]) - SInt(R[m][23:16]);
6 diff4 = SInt(R[n][31:24]) - SInt(R[m][31:24]);
7 R[d][7:0] = SignedSat(diff1, 8);
8 R[d][15:8] = SignedSat(diff2, 8);
9 R[d][23:16] = SignedSat(diff3, 8);

10 R[d][31:24] = SignedSat(diff4, 8);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

810

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.159 RBIT

Reverse Bits. Reverse Bits reverses the bit order in a 32-bit register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 0 Rm2

T1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm); m2 = UInt(Rm2);
4 if d IN {13,15} || m IN {13,15} || m2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded

twice.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 for i = 0 to 31
5 result[31-i] = R[m][i];
6 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

811

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.160 REV

Byte-Reverse Word. Byte-Reverse Word reverses the byte order in a 32-bit register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 0 Rm Rd

T1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm2

T2 variant

REV{<c>}.W <Rd>, <Rm>
// <Rd>, <Rm> can be represented in T1

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm); m2 = UInt(Rm2);
4 if d IN {13,15} || m IN {13,15} || m2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number
must be encoded twice.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

812

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[31:24] = R[m][7:0];
5 result[23:16] = R[m][15:8];
6 result[15:8] = R[m][23:16];
7 result[7:0] = R[m][31:24];
8 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

813

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.161 REV16

Byte-Reverse Packed Halfword. Byte-Reverse Packed Halfword reverses the byte order in each 16-bit halfword of
a 32-bit register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 1 Rm Rd

T1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 1 Rm2

T2 variant

REV16{<c>}.W <Rd>, <Rm>
// <Rd>, <Rm> can be represented in T1

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm); m2 = UInt(Rm2);
4 if d IN {13,15} || m IN {13,15} || m2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number
must be encoded twice.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

814

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[31:24] = R[m][23:16];
5 result[23:16] = R[m][31:24];
6 result[15:8] = R[m][7:0];
7 result[7:0] = R[m][15:8];
8 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

815

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.162 REVSH

Byte-Reverse Signed Halfword. Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword
of a 32-bit register, and sign extends the result to 32 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 1 Rm Rd

T1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 1 Rm2

T2 variant

REVSH{<c>}.W <Rd>, <Rm>
// <Rd>, <Rm> can be represented in T1

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm); m2 = UInt(Rm2);
4 if d IN {13,15} || m IN {13,15} || m2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number
must be encoded twice.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

816

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[31:8] = SignExtend(R[m][7:0], 24);
5 result[7:0] = R[m][15:8];
6 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

817

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.163 ROR (immediate)

Rotate Right (immediate). Rotate Right (immediate) rotates a register value by a constant number of bits, inserting
the bits that are rotated off the right end into the vacated bit positions on the left, and writes the result to the
destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1 [0] imm3 Rd imm2

sr_type = 11

Rm != 11x1

MOV, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> Is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

818

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

819

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.164 ROR (register)

Rotate Right (register). Rotate Right (register) rotates a register value by a variable number of bits, inserting the
bits that are rotated off the right end into the vacated bit positions on the left, and writes the result to the destination
register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0111 Rs Rdm

Rotate right variant

ROR<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 11
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

ROR<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Non flag setting variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

820

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

821

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.165 RORS (immediate)

Rotate Right, Setting flags (immediate). Rotate Right, Setting flags (immediate) rotates a register value by a
constant number of bits, inserting the bits that are rotated off the right end into the vacated bit positions on the left,
writes the result to the destination register, and updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1 [0] imm3 Rd imm2

sr_type = 11

Rm

MOVS, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> Is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

822

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

823

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.166 RORS (register)

Rotate Right, Setting flags (register). Rotate Right, Setting flags (register) rotates a register value by a variable
number of bits, inserting the bits that are rotated off the right end into the vacated bit positions on the left, writes
the result to the destination register, and updates the condition flags based on the result. The variable number of
bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0111 Rs Rdm

Rotate right variant

RORS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 11
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

RORS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Flag setting variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

824

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

825

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.167 RRX

Rotate Right with Extend. Rotate Right with Extend shifts a register value right by one bit, shifting the Carry flag
into bit[31], and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1 [0]

imm3 = 000

Rd

imm2 = 00
sr_type = 11

Rm != 11x1

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

826

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.168 RRXS

Rotate Right with Extend, Setting flags. Rotate Right with Extend, Setting flags shifts a register value right by one
bit, shifting the Carry flag into bit[31] and bit[0] into the Carry flag, writes the result to the destination register and
updates the condition flags (other than Carry) based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1 [0]

imm3 = 000

Rd

imm2 = 00
sr_type = 11

Rm

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

827

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.169 RSB (immediate)

Reverse Subtract (immediate). Reverse Subtract (immediate) subtracts a register value from an immediate value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 1 Rn Rd

T1 variant

RSB<c>{<q>} {<Rd>, }<Rn>, #0
// Inside IT block

RSBS{<q>} {<Rd>, }<Rn>, #0
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8

RSB variant

Applies when S == 0.

RSB<c>.W {<Rd>,} <Rn>, #0
// Inside IT block

RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS.W {<Rd>,} <Rn>, #0
// Outside IT block

RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

828

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"
field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, '1');
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

829

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.170 RSB (register)

Reverse Subtract (register). Reverse Subtract (register) subtracts a register value from an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on the
result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

RSB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

830

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, '1');
5 R[d] = result;
6 if setflags then
7 APSR.Z = IsZeroBit(result);
8 APSR.N = result[31];
9 APSR.C = carry;

10 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

831

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.171 SADD16

Signed Add 16. Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][15:0]) + SInt(R[m][15:0]);
4 sum2 = SInt(R[n][31:16]) + SInt(R[m][31:16]);
5 R[d] = sum2[15:0] : sum1[15:0];
6 APSR.GE[1:0] = if sum1 >= 0 then '11' else '00';
7 APSR.GE[3:2] = if sum2 >= 0 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

832

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.172 SADD8

Signed Add 8. Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][7:0]) + SInt(R[m][7:0]);
4 sum2 = SInt(R[n][15:8]) + SInt(R[m][15:8]);
5 sum3 = SInt(R[n][23:16]) + SInt(R[m][23:16]);
6 sum4 = SInt(R[n][31:24]) + SInt(R[m][31:24]);
7 R[d] = sum4[7:0] : sum3[7:0] : sum2[7:0] : sum1[7:0];
8 APSR.GE[0] = if sum1 >= 0 then '1' else '0';
9 APSR.GE[1] = if sum2 >= 0 then '1' else '0';

10 APSR.GE[2] = if sum3 >= 0 then '1' else '0';
11 APSR.GE[3] = if sum4 >= 0 then '1' else '0';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

833

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.173 SASX

Signed Add and Subtract with Exchange. Signed Add and Subtract with Exchange exchanges the two halfwords of
the second operand, performs one 16-bit integer addition and one 16-bit subtraction, and writes the results to the
destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = SInt(R[n][15:0]) - SInt(R[m][31:16]);
4 sum = SInt(R[n][31:16]) + SInt(R[m][15:0]);
5 R[d] = sum[15:0] : diff[15:0];
6 APSR.GE[1:0] = if diff >= 0 then '11' else '00';
7 APSR.GE[3:2] = if sum >= 0 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

834

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.174 SBC (immediate)

Subtract with Carry (immediate). Subtract with Carry (immediate) subtracts an immediate value and the value of
NOT(Carry flag) from a register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

835

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

836

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.175 SBC (register)

Subtract with Carry (register). Subtract with Carry (register) subtracts an optionally-shifted register value and the
value of NOT(Carry flag) from a register value, and writes the result to the destination register. It can optionally
update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 0 Rm Rdn

T1 variant

SBC<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

SBCS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2

sr_type

Rm

SBC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

SBC<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

837

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SBCS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

838

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.176 SBFX

Signed Bit Field Extract. Signed Bit Field Extract extracts any number of adjacent bits at any position from one
register, sign extends them to 32 bits, and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

T1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn);
3 lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
4 msbit = lsbit + widthminus1;
5 if msbit > 31 then UNPREDICTABLE;
6 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<lsb> Is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the

"imm3:imm2" field.
<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as

<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit <= 31 then
4 R[d] = SignExtend(R[n][msbit:lsbit], 32);
5 else
6 R[d] = bits(32) UNKNOWN;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

839

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

840

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.177 SDIV

Signed Divide. Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value
and writes the result to the destination register. The condition code flags are not affected.

If R[n] == 0x80000000 (-231) and R[m] == 0xFFFFFFFF (-1), the result of the division is 0x80000000.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm

T1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
2 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if SInt(R[m]) == 0 then
4 if IntegerZeroDivideTrappingEnabled() then
5 GenerateIntegerZeroDivide();
6 else
7 result = 0;
8 else
9 result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));

10 R[d] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

841

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.178 SEL

Select Bytes. Select Bytes selects each byte of its result from either its first operand or its second operand,
according to the values of the GE flags.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[7:0] = if APSR.GE[0] == '1' then R[n][7:0] else R[m][7:0];
5 result[15:8] = if APSR.GE[1] == '1' then R[n][15:8] else R[m][15:8];
6 result[23:16] = if APSR.GE[2] == '1' then R[n][23:16] else R[m][23:16];
7 result[31:24] = if APSR.GE[3] == '1' then R[n][31:24] else R[m][31:24];
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

842

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.179 SEV

Send Event. Send Event is a hint instruction. It causes an event to be signaled to all PEs within the multiprocessor
system.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

T1 variant

SEV{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0

T2 variant

SEV{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 SendEvent();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

843

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.180 SG

Secure Gateway. Secure Gateway marks a valid branch target for branches from Non-secure code that call Secure
code.

This instruction sets the Security state to Secure if its address is in Secure memory. If the address of this instruction
is in Non-secure memory the instruction behaves as a NOP.

If the PACTBTI Extension is implemented, this instruction is always a valid BTI landing pad regardless of whether
or not the instruction behaves as a NOP.

If the PE was previously in Non-secure state:

• This instruction sets bit[0] of LR to 0, to indicate that the return address will cause a transition from Secure
to Non-secure state.

• If the Floating-point Extension is implemented, this instruction marks Secure floating-point state as inactive,
by setting CONTROL_S.SFPA to 0. This indicates that the floating-point registers do not contain active state
that belongs to the Secure state.

An INVEP SecureFault is generated if the PE attempts to reenter Thread mode when CCR_S.TRD is set to 1 and
either or both of the following are true:

• CONTROL_S.SPSEL is 0.

• The current Stack Pointer of the Secure state points to an address that contains the value 0xFEFA125A[31:1].

SG is an unconditional instruction and executes as such both inside and outside an IT instruction block. Arm
recommends that software does not place SG inside an IT instruction block.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1

T1 variant

SG{<q>}

Decode for this encoding
1 // No encoding specific operations

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 if HaveSecurityExt() then
4 sAttributes = SecurityCheck(ThisInstrAddr(), TRUE, IsSecure());
5 if !sAttributes.ns then
6 if !IsSecure() then
7 if HasArchVersion(Armv8p1) && CurrentMode() == PEMode_Thread then
8 // The access to the Secure stack should be performed with the privilege
9 // level of the current mode in the Secure state, and not the current state.

10 // NOTE: The load below is performed, and any faults handled even if thread
11 // mode re-entrancy checking is disabled.
12 secIsPriv = CurrentModeIsPrivileged(TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

844

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 secSp = LookUpSP_with_security_mode(TRUE, PEMode_Thread);
14 (exc, spData) = MemA_with_priv_security(_SP(secSp), 4, AccType_NORMAL,
15 FindMemPriv(secIsPriv), TRUE, TRUE);
16 HandleException(exc);
17 // Check for an exception stack frame if thread mode re-entrancy is disabled.
18 if CCR_S.TRD == '1' && (spData[31:1] == 0xFEFA125A[31:1] ||
19 secSp == RNamesSP_Main_Secure) then
20 SFSR.INVEP = '1';
21 HandleException(CreateException(SecureFault));
22
23 // Set up the security meta data flags and change to the Secure state
24 LR[0] = '0';
25 if HaveMveOrFPExt() then
26 CONTROL_S.SFPA = '0';
27 // LOB data cleared to prevent Non-secure code from interfering
28 // with Secure execution
29 if HaveLOBExt() then
30 LO_BRANCH_INFO.VALID = '0';
31 CurrentState = SecurityState_Secure;
32 // IT/ICI/ECI data cleared to prevent Non-secure code from interfering
33 // with Secure execution
34 if HaveMainExt() then
35 ITSTATE = Zeros(8);
36
37 // This instruction can be used as a BTI landing pad.
38 // The EPSR.B bit is reset to zero.
39 EPSR.B = '0';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

845

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.181 SHADD16

Signed Halving Add 16. Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results,
and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][15:0]) + SInt(R[m][15:0]);
4 sum2 = SInt(R[n][31:16]) + SInt(R[m][31:16]);
5 R[d] = sum2[16:1] : sum1[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

846

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.182 SHADD8

Signed Halving Add 8. Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and
writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][7:0]) + SInt(R[m][7:0]);
4 sum2 = SInt(R[n][15:8]) + SInt(R[m][15:8]);
5 sum3 = SInt(R[n][23:16]) + SInt(R[m][23:16]);
6 sum4 = SInt(R[n][31:24]) + SInt(R[m][31:24]);
7 R[d] = sum4[8:1] : sum3[8:1] : sum2[8:1] : sum1[8:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

847

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.183 SHASX

Signed Halving Add and Subtract with Exchange. Signed Halving Add and Subtract with Exchange exchanges the
two halfwords of the second operand, performs one signed 16-bit integer addition and one signed 16-bit subtraction,
halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = SInt(R[n][15:0]) - SInt(R[m][31:16]);
4 sum = SInt(R[n][31:16]) + SInt(R[m][15:0]);
5 R[d] = sum[16:1] : diff[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

848

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.184 SHSAX

Signed Halving Subtract and Add with Exchange. Signed Halving Subtract and Add with Exchange exchanges
the two halfwords of the second operand, performs one signed 16-bit integer subtraction and one signed 16-bit
addition, halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = SInt(R[n][15:0]) + SInt(R[m][31:16]);
4 diff = SInt(R[n][31:16]) - SInt(R[m][15:0]);
5 R[d] = diff[16:1] : sum[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

849

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.185 SHSUB16

Signed Halving Subtract 16. Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves
the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][15:0]) - SInt(R[m][15:0]);
4 diff2 = SInt(R[n][31:16]) - SInt(R[m][31:16]);
5 R[d] = diff2[16:1] : diff1[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

850

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.186 SHSUB8

Signed Halving Subtract 8. Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the
results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][7:0]) - SInt(R[m][7:0]);
4 diff2 = SInt(R[n][15:8]) - SInt(R[m][15:8]);
5 diff3 = SInt(R[n][23:16]) - SInt(R[m][23:16]);
6 diff4 = SInt(R[n][31:24]) - SInt(R[m][31:24]);
7 R[d] = diff4[8:1] : diff3[8:1] : diff2[8:1] : diff1[8:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

851

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.187 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords). Signed Multiply Accumulate (halfwords) performs a signed multiply
accumulate operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top
half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product
is added to a 32-bit accumulate value and the result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. It is not
possible for overflow to occur during the multiplication.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn Ra Rd 0 0 N M Rm

SMLABB variant

Applies when N == 0 && M == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when N == 0 && M == 1.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when N == 1 && M == 0.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when N == 1 && M == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
4 n_high = (N == '1'); m_high = (M == '1');
5 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half

(selected by <x>), encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

852

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = if n_high then R[n][31:16] else R[n][15:0];
4 operand2 = if m_high then R[m][31:16] else R[m][15:0];
5 result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
6 R[d] = result[31:0];
7 if result != SInt(result[31:0]) then // Signed overflow
8 APSR.Q = '1';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

853

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.188 SMLAD, SMLADX

Signed Multiply Accumulate Dual. Signed Multiply Accumulate Dual performs two signed 16-bit by 16-bit
multiplications. It adds the products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn Ra Rd 0 0 0 M Rm

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE SMUAD;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
4 m_swap = (M == '1');
5 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 + product2 + SInt(R[a]);
7 R[d] = result[31:0];
8 if result != SInt(result[31:0]) then // Signed overflow
9 APSR.Q = '1';

Restricted behavior
Data Independent Timing behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

854

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

855

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.189 SMLAL

Signed Multiply Accumulate Long. Signed Multiply Accumulate Long multiplies two signed 32-bit values to
produce a 64-bit value, and accumulates this with a 64-bit value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

856

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

857

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.190 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords). Signed Multiply Accumulate Long (halfwords) multiplies two
signed 16-bit values to produce a 32-bit value, and accumulates this with a 64-bit value. The multiply acts on two
signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other
halves of these source registers are ignored. The 32-bit product is sign-extended and accumulated with a 64-bit
accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm

SMLALBB variant

Applies when N == 0 && M == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when N == 0 && M == 1.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when N == 1 && M == 0.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when N == 1 && M == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
3 n_high = (N == '1'); m_high = (M == '1');
4 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
5 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

858

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half

(selected by <x>), encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <x>), encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = if n_high then R[n][31:16] else R[n][15:0];
4 operand2 = if m_high then R[m][31:16] else R[m][15:0];
5 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
6 R[dHi] = result[63:32];
7 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

859

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.191 SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual. Signed Multiply Accumulate Long Dual performs two signed 16-bit by
16-bit multiplications. It adds the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

860

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
7 R[dHi] = result[63:32];
8 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

861

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.192 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword). Signed Multiply Accumulate (word by halfword) performs a
signed multiply accumulate operation. The multiply acts on a signed 32-bit quantity and a signed 16-bit quantity.
The signed 16-bit quantity is taken from either the bottom or the top half of its source register. The other half of
the second source register is ignored. The top 32 bits of the 48-bit product are added to a 32-bit accumulate value
and the result is written to the destination register. The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn Ra Rd 0 0 0 M Rm

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE "SMULWB, SMULWT";
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_high then R[m][31:16] else R[m][15:0];
4 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
5 R[d] = result[47:16];
6 if (result >> 16) != SInt(R[d]) then // Signed overflow
7 APSR.Q = '1';

Restricted behavior
Data Independent Timing behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

862

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

863

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.193 SMLSD, SMLSDX

Signed Multiply Subtract Dual. Signed Multiply Subtract Dual performs two signed 16-bit by 16-bit multiplications.
It adds the difference of the products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn Ra Rd 0 0 0 M Rm

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE SMUSD;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 - product2 + SInt(R[a]);
7 R[d] = result[31:0];
8 if result != SInt(result[31:0]) then // Signed overflow
9 APSR.Q = '1';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

864

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

865

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.194 SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual. Signed Multiply Subtract Long Dual performs two signed 16-bit by 16-bit
multiplications. It adds the difference of the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

866

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 - product2 + SInt(R[dHi]:R[dLo]);
7 R[dHi] = result[63:32];
8 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

867

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.195 SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate. Signed Most Significant Word Multiply Accumulate
multiplies two signed 32-bit values, extracts the most significant 32 bits of the result, and adds an accumulate
value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn Ra Rd 0 0 0 R Rm

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE SMMUL;
2 if Rd == '1111' then SEE "AUTG and BXAUT";
3 if !HaveDSPExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
5 if d == 13 || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
4 if round then result = result + 0x80000000;
5 R[d] = result[63:32];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

868

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

869

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.196 SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract. Signed Most Significant Word Multiply Subtract multiplies two
signed 32-bit values, subtracts the result from a 32-bit accumulate value that is shifted left by 32 bits, and extracts
the most significant 32 bits of the result of that subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In
this case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' && R == '0' then SEE PACG;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
4 if round then result = result + 0x80000000;
5 R[d] = result[63:32];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

870

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

871

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.197 SMMUL, SMMULR

Signed Most Significant Word Multiply. Signed Most Significant Word Multiply multiplies two signed 32-bit
values, extracts the most significant 32 bits of the result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = SInt(R[n]) * SInt(R[m]);
4 if round then result = result + 0x80000000;
5 R[d] = result[63:32];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

872

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.198 SMUAD, SMUADX

Signed Dual Multiply Add. Signed Dual Multiply Add performs two signed 16-bit by 16-bit multiplications. It
adds the products together, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the addition overflows. The multiplications cannot overflow.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 + product2;
7 R[d] = result[31:0];
8 if result != SInt(result[31:0]) then // Signed overflow
9 APSR.Q = '1';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

873

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

874

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.199 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords). Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from
either the bottom or the top half of their respective source registers. The other halves of these source registers are
ignored. The 32-bit product is written to the destination register. No overflow is possible during this instruction.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm

SMULBB variant

Applies when N == 0 && M == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when N == 0 && M == 1.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB variant

Applies when N == 1 && M == 0.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when N == 1 && M == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 n_high = (N == '1'); m_high = (M == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half

(selected by <x>), encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = if n_high then R[n][31:16] else R[n][15:0];
4 operand2 = if m_high then R[m][31:16] else R[m][15:0];
5 result = SInt(operand1) * SInt(operand2);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

875

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 R[d] = result[31:0];
7 // Signed overflow cannot occur

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

876

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.200 SMULL

Signed Multiply Long. Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the

"RdLo" field.
<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the

"RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = SInt(R[n]) * SInt(R[m]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

877

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.201 SMULWB, SMULWT

Signed Multiply (word by halfword). Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and
a signed 16-bit quantity. The signed 16-bit quantity is taken from either the bottom or the top half of its source
register. The other half of the second source register is ignored. The top 32 bits of the 48-bit product are written to
the destination register. The bottom 16 bits of the 48-bit product are ignored. No overflow is possible during this
instruction.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_high then R[m][31:16] else R[m][15:0];
4 product = SInt(R[n]) * SInt(operand2);
5 R[d] = product[47:16];
6 // Signed overflow cannot occur

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

878

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.202 SMUSD, SMUSDX

Signed Dual Multiply Subtract. Signed Dual Multiply Subtract performs two signed 16-bit by 16-bit multiplications.
It subtracts one of the products from the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow cannot occur.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 - product2;
7 R[d] = result[31:0];
8 // Signed overflow cannot occur

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

879

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

880

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.203 SQRSHR (register)

Signed Saturating Rounding Shift Right. Signed saturating rounding shift right by 0 to 32 bits of a 32-bit value
stored in a general-purpose register. The shift amount is read in as the bottom byte of Rm. If the shift amount is
negative, the shift direction is reversed.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda Rm 1 1 1 (1) (0) (0) 1 0 1 1 0 1

T1: SQRSHR variant

SQRSHR<c><q> Rda, Rm

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(Rm);
6 if Rda == '11x1' || Rm == '11x1' || Rm == Rda then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = SInt(R[da]);
6 op1 = op1 + (1 << (amount - 1));
7 (result, sat) = SignedSatQ((op1 >> amount), 32);
8 if sat then APSR.Q = '1';
9 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

881

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.204 SQRSHRL (register)

Signed Saturating Rounding Shift Right Long. Signed saturating rounding shift right by 0 to 64 bits of a 64-bit
value stored in two general-purpose registers. The shift amount is read in as the bottom byte of Rm. If the shift
amount is negative, the shift direction is reversed.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 Rm RdaHi (1) sat (0) 1 0 1 1 0 1

T1: SQRSHRL variant

SQRSHRL<c><q> RdaLo, RdaHi, #<saturate>, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "SQRSHR (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 saturateTo = if sat == '0' then 64 else 48;
9 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;

10 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<saturate> The bit position for saturation.

This parameter must be one of the following values:
#64 Encoded as sat = 0
#48 Encoded as sat = 1

<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = SInt(R[dah]:R[dal]);
6 op1 = op1 + (1 << (amount - 1));
7 (shiftedOp, didSat) = SignedSatQ((op1 >> amount), saturateTo);
8 result = SignExtend(shiftedOp, 64);
9 if didSat then APSR.Q = '1';

10 R[dah] = result[63:32];
11 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

882

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.205 SQSHL (immediate)

Signed Saturating Shift Left. Signed saturating shift left by 1 to 32 bits of a 32-bit value stored in a general-purpose
register.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 1 1 1 1 1 1

T1: SQSHL variant

SQSHL<c><q> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[da]);
5 (result, sat) = SignedSatQ((op1 << amount), 32);
6 if sat then APSR.Q = '1';
7 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

883

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.206 SQSHLL (immediate)

Signed Saturating Shift Left Long. Signed saturating shift left by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo (1) 0 immh RdaHi (1) imml 1 1 1 1 1 1

T1: SQSHLL variant

SQSHLL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "SQSHL (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[dah]:R[dal]);
5 (result, sat) = SignedSatQ((op1 << amount), 64);
6 if sat then APSR.Q = '1';
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

884

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.207 SRSHR (immediate)

Signed Rounding Shift Right. Signed rounding shift right by 1 to 32 bits of a 32-bit value stored in a general-purpose
register.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 1 0 1 1 1 1

T1: SRSHR variant

SRSHR<c><q> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[da]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[31:0];
7 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

885

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.208 SRSHRL (immediate)

Signed Rounding Shift Right Long. Signed rounding shift right by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 0 immh RdaHi (1) imml 1 0 1 1 1 1

T1: SRSHRL variant

SRSHRL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "SRSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[dah]:R[dal]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

886

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.209 SSAT

Signed Saturate. Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

The APSR.Q flag is set to 1 if the operation saturates.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for this encoding
1 if sh == '1' && (imm3:imm2) == '00000' then
2 if HaveDSPExt() then
3 SEE SSAT16;
4 else
5 UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
8 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
9 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as

<imm>-1.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<amount> For the arithmetic shift right variant: is the shift amount, in the range 1 to 31 encoded in the

"imm3:imm2" field as <amount>.
For the logical shift left variant: is the optional shift amount, in the range 0 to 31, defaulting to
0 and encoded in the "imm3:imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
4 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
5 R[d] = SignExtend(result, 32);
6 if sat then
7 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

887

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.210 SSAT16

Signed Saturate 16. Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

The APSR.Q flag is set to 1 if the operation saturates.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

T1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as

<imm>-1.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result1, sat1) = SignedSatQ(SInt(R[n][15:0]), saturate_to);
4 (result2, sat2) = SignedSatQ(SInt(R[n][31:16]), saturate_to);
5 bits(32) result;
6 result[15:0] = SignExtend(result1, 16);
7 result[31:16] = SignExtend(result2, 16);
8 R[d] = result;
9 if sat1 || sat2 then

10 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

888

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.211 SSAX

Signed Subtract and Add with Exchange. Signed Subtract and Add with Exchange exchanges the two halfwords of
the second operand, performs one 16-bit integer subtraction and one 16-bit addition, and writes the results to the
destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = SInt(R[n][15:0]) + SInt(R[m][31:16]);
4 diff = SInt(R[n][31:16]) - SInt(R[m][15:0]);
5 R[d] = diff[15:0] : sum[15:0];
6 APSR.GE[1:0] = if sum >= 0 then '11' else '00';
7 APSR.GE[3:2] = if diff >= 0 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

889

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.212 SSBB

Speculative Store Bypass Barrier. Speculative Store Bypass Barrier is a memory barrier which prevents speculative
loads from bypassing earlier stores to the same address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order before the SSBB.

• When a load to a location appears in program order before the SSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order after the SSBB.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 0 0 0

T1 variant

SSBB{<q>}

Decode for this encoding
1 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 EncodingSpecificOperations();
2 SpeculativeSynchronizationBarrier();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

890

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.213 SSUB16

Signed Subtract 16. Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to
the destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][15:0]) - SInt(R[m][15:0]);
4 diff2 = SInt(R[n][31:16]) - SInt(R[m][31:16]);
5 R[d] = diff2[15:0] : diff1[15:0];
6 APSR.GE[1:0] = if diff1 >= 0 then '11' else '00';
7 APSR.GE[3:2] = if diff2 >= 0 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

891

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.214 SSUB8

Signed Subtract 8. Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][7:0]) - SInt(R[m][7:0]);
4 diff2 = SInt(R[n][15:8]) - SInt(R[m][15:8]);
5 diff3 = SInt(R[n][23:16]) - SInt(R[m][23:16]);
6 diff4 = SInt(R[n][31:24]) - SInt(R[m][31:24]);
7 R[d] = diff4[7:0] : diff3[7:0] : diff2[7:0] : diff1[7:0];
8 APSR.GE[0] = if diff1 >= 0 then '1' else '0';
9 APSR.GE[1] = if diff2 >= 0 then '1' else '0';

10 APSR.GE[2] = if diff3 >= 0 then '1' else '0';
11 APSR.GE[3] = if diff4 >= 0 then '1' else '0';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

892

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.215 STC, STC2

Store Coprocessor. Store Coprocessor stores data from a coprocessor to a sequence of consecutive memory
addresses.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
4 cp = UInt(coproc);
5 CheckCPDecodeFaults(cp);
6 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
7 if !HaveMainExt() then UNDEFINED;
8 n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 index = (P == '1'); add = (U == '1'); wback = (W == '1');

10 if n == 15 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 0 Rn CRd coproc imm8

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

893

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Offset variant

Applies when P == 1 && W == 0.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
4 cp = UInt(coproc);
5 CheckCPDecodeFaults(cp);
6 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
7 if !HaveMainExt() then UNDEFINED;
8 n = UInt(Rn);imm32 = ZeroExtend(imm8:'00', 32);
9 index = (P == '1'); add = (U == '1'); wback = (W == '1');

10 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

894

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 address = if index then offset_addr else R[n];
9

10 // Determine if the stack pointer limit check should be performed
11 if wback && n == 13 then
12 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
13 else
14 violatesLimit = FALSE;
15
16 // Memory operation only performed if limit not violated
17 if !violatesLimit then
18 repeat
19 MemA[address, 4] = Coproc_GetWordToStore(cp, ThisInstr());
20 address = address + 4;
21 until Coproc_DoneStoring(cp, ThisInstr());
22
23 // If the stack pointer is being updated a fault will be raised
24 // if the limit is violated
25 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

895

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.216 STL

Store-Release Word. Store Release Word stores a word from a register to memory. The instruction also has
memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

T1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 MemO[address, 4] = R[t];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

896

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.217 STLB

Store-Release Byte. Store Release Byte stores a byte from a register to memory. The instruction also has memory
ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

T1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 MemO[address, 1] = R[t][7:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

897

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.218 STLEX

Store-Release Exclusive Word. Store Release Exclusive Word stores a word from a register to memory if the
executing PE has exclusive access to the memory addressed. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 1 0 Rd

T1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,4) then
5 MemO[address, 4] = R[t];
6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

898

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

899

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.219 STLEXB

Store-Release Exclusive Byte. Store Release Exclusive Byte stores a byte from a register to memory if the
executing PE has exclusive access to the memory addressed. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 0 Rd

T1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,1) then
5 MemO[address, 1] = R[t][7:0];
6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

900

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

901

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.220 STLEXH

Store-Release Exclusive Halfword. Store Release Exclusive Halfword stores a halfword from a register to memory
if the executing PE has exclusive access to the memory addressed. The instruction also has memory ordering
semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 1 Rd

T1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,2) then
5 MemO[address, 2] = R[t][15:0];
6 R[d] = ZeroExtend('0');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

902

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 else
8 R[d] = ZeroExtend('1');

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

903

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.221 STLH

Store-Release Halfword. Store Release Halfword stores a halfword from a register to memory. The instruction
also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

T1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 MemO[address, 2] = R[t][15:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

904

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.222 STM, STMIA, STMEA

Store Multiple. Store Multiple stores multiple registers to consecutive memory locations using an address from a
base register. The consecutive memory locations start at this address, and the address just above the last of those
locations can optionally be written back to the base register.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 Rn register_list

T1 variant

STM{IA}{<c>}{<q>} <Rn>!, <registers>
// Preferred syntax

STMEA{<c>}{<q>} <Rn>!, <registers>
// Alternate syntax, Empty Ascending stack

Decode for this encoding
1 n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
2 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers stored.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M (0) register_list

T2 variant

STM{IA}{<c>}.W <Rn>{!}, <registers>
// Preferred syntax
// if <Rn>, '!' and <registers> can be represented in T1

STMEA{<c>}.W <Rn>{!}, <registers>
// Alternate syntax
// Empty Ascending stack
// if <Rn>, '!' and <registers> can be represented in T1

STM{IA}{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

905

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

STMEA{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Empty Ascending stack

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
3 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
4 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers stored.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

Assembler symbols for all encodings

IA Is an optional suffix for the Increment After form.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! The address adjusted by the size of the data loaded is written back to the base register. If

specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and

surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field. If the base register is not the lowest-numbered register in the list, such an
instruction stores an UNKNOWN value for the base register.
For encoding T2: is a list of one or more registers to be stored, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R12, encoded in the
"register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is
set to 1, otherwise it defaults to 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

906

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 endAddress = R[n] + 4*BitCount(registers);
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback && registers[n] == '0' then
8 violatesLimit = ViolatesSPLim(LookUpSP(), endAddress);
9 else

10 violatesLimit = FALSE;
11
12 for i = 0 to 14
13 // Memory operation only performed if limit not violated
14 if registers[i] == '1' && !violatesLimit then
15 if i == n && wback && i != LowestSetBit(registers) then
16 MemA[address, 4] = bits(32) UNKNOWN; // encoding T1 only
17 else
18 MemA[address, 4] = R[i];
19 address = address + 4;
20
21 // If the stack pointer is being updated a fault will be raised if
22 // the limit is violated
23 if wback then RSPCheck[n] = endAddress;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
stored by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

907

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.223 STMDB, STMFD

Store Multiple Decrement Before (Full Descending). Store Multiple Decrement Before stores multiple registers to
consecutive memory locations using an address from a base register. The consecutive memory locations end just
below this address, and the address of the first of those locations can optionally be written back to the base register.

This instruction is used by the alias PUSH (multiple registers).

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M (0) register_list

T1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

STMFD{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Full Descending stack

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
3 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
4 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers stored.

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

908

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

T2 variant

STMDB{<c>}{<q>} SP!, <registers>

Decode for this encoding
1 n = 13; wback = TRUE;
2 registers = '0':M:'000000':register_list;
3 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies write-back, the modification to the base address
on write-back might differ from the number of registers stored.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! The address adjusted by the size of the data loaded is written back to the base register. If

specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and

surrounded by { and }. The registers in the list must be in the range R0-R12, encoded in the
"register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is
set to 1, otherwise it defaults to 0.
For encoding T2: is a list of one or more registers to be stored, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the LR. If the LR is in the list, the "M" field is
set to 1, otherwise this field defaults to 0.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] - 4*BitCount(registers);
4 applyLimit = n == 13 && wback;
5
6 for i = 0 to 14
7 // If R[n] is the SP, memory operation only performed if limit not violated
8 if registers[i] == '1' && !(applyLimit && ViolatesSPLim(LookUpSP(), address)) then
9 MemA[address, 4] = R[i];

10 address = address + 4;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

909

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11
12 // If R[n] is the SP, stack pointer update will raise a fault if limit violated
13 if wback then RSPCheck[n] = R[n] - 4*BitCount(registers);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
stored by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

910

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.224 STR (immediate)

Store Register (immediate). Store Register (immediate) calculates an address from a base register value and an
immediate offset, and stores a word from a register to memory. It can use offset, post-indexed, or pre-indexed
addressing.

This instruction is subject to stack limit checking.

This instruction is used by the alias PUSH (single register).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 imm5 Rn Rt

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rt imm8

T2 variant

STR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 0 Rn Rt imm12

T3 variant

STR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1 or T2

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

911

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
4 index = TRUE; add = TRUE; wback = FALSE;
5 if t == 15 then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '1' && U == '1' && W == '0' then SEE STRT;
2 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Alias conditions
Alias preferred when
PUSH (single register) Rn == ‘1101‘ &&

P == ‘1‘ &&
U == ‘0‘ &&
W == ‘1‘ &&
imm8 == ‘00000100‘

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

912

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in
the range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in
the range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 MemU[address, 4] = R[t];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

913

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.225 STR (register)

Store Register (register). Store Register (register) calculates an address from a base register value and an offset
register value, stores a word from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3
bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if t == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

914

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = R[n] + offset;
5 MemU[address, 4] = R[t];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

915

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.226 STRB (immediate)

Store Register Byte (immediate). Store Register Byte (immediate) calculates an address from a base register
value and an immediate offset, and stores a byte from a register to memory. It can use offset, post-indexed, or
pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 imm5 Rn Rt

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 0 Rn != 1111 Rt imm12

T2 variant

STRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
4 index = TRUE; add = TRUE; wback = FALSE;
5 if t IN {13,15} then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

916

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Post-indexed variant

Applies when P == 0 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '1' && U == '1' && W == '0' then SEE STRBT;
2 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31,
defaulting to 0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

917

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 MemU[address, 1] = R[t][7:0];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

918

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.227 STRB (register)

Store Register Byte (register). Store Register Byte (register) calculates an address from a base register value and
an offset register value, and stores a byte from a register to memory. The offset register value can be shifted left by
0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 Rm Rn Rt

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn != 1111 Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

STRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

919

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = R[n] + offset;
5 MemU[address, 1] = R[t][7:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

920

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.228 STRBT

Store Register Byte Unprivileged. Store Register Byte Unprivileged calculates an address from a base register
value and an immediate offset, and stores a byte from a register to memory. When privileged software uses an
STRBT instruction, the memory access is restricted as if the software was unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 MemU_unpriv[address, 1] = R[t][7:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

921

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.229 STRD (immediate)

Store Register Dual (immediate). Store Register Dual (immediate) calculates an address from a base register value
and an immediate offset, and stores two words from two registers to memory. It can use offset, post-indexed, or
pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 0 Rn Rt Rt2 imm8

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
4 index = (P == '1'); add = (U == '1'); wback = (W == '1');
5 if wback && (n == t || n == t2) then UNPREDICTABLE;
6 if n == 15 || t IN {13,15} || t2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

922

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

+ when U = 1
<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the

range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple
of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 MemA[address, 4] = R[t];
14 MemA[address+4, 4] = R[t2];
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

923

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.230 STREX

Store Register Exclusive. Store Register Exclusive calculates an address from a base register value and an
immediate offset, and stores a word from a register to memory if the executing PE has exclusive access to the
memory addressed.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt Rd imm8

T1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
2 if t == 15 then SEE "TT";
3 if d IN {13,15} || t == 13 || n == 15 then UNPREDICTABLE;
4 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be

omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

924

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 if ExclusiveMonitorsPass(address,4) then
5 MemA[address, 4] = R[t];
6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

925

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.231 STREXB

Store Register Exclusive Byte. Store Register Exclusive Byte derives an address from a base register value, and
stores a byte from a register to memory if the executing PE has exclusive access to the memory addressed.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd

T1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,1) then
5 MemA[address, 1] = R[t][7:0];
6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

926

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

927

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.232 STREXH

Store Register Exclusive Halfword. Store Register Exclusive Halfword derives an address from a base register
value, and stores a halfword from a register to memory if the executing PE has exclusive access to the memory
addressed.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd

T1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,2) then
5 MemA[address, 2] = R[t][15:0];
6 R[d] = ZeroExtend('0');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

928

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 else
8 R[d] = ZeroExtend('1');

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

929

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.233 STRH (immediate)

Store Register Halfword (immediate). Store Register Halfword (immediate) calculates an address from a base
register value and an immediate offset, and stores a halfword from a register to memory. It can use offset,
post-indexed, or pre-indexed addressing.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 imm5 Rn Rt

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 0 Rn Rt imm12

T2 variant

STRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
4 index = TRUE; add = TRUE; wback = FALSE;
5 if t IN {13,15} then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

930

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Post-indexed variant

Applies when P == 0 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '1' && U == '1' && W == '0' then SEE STRHT;
2 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in
the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

931

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 MemU[address, 2] = R[t][15:0];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

932

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.234 STRH (register)

Store Register Halfword (register). Store Register Halfword (register) calculates an address from a base register
value and an offset register value, and stores a halfword from a register to memory. The offset register value can be
shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 Rm Rn Rt

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

STRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

933

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = R[n] + offset;
5 MemU[address, 2] = R[t][15:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

934

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.235 STRHT

Store Register Halfword Unprivileged. Store Register Halfword Unprivileged calculates an address from a base
register value and an immediate offset, and stores a halfword from a register to memory.

When privileged software uses an STRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 MemU_unpriv[address, 2] = R[t][15:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

935

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.236 STRT

Store Register Unprivileged. Store Register Unprivileged calculates an address from a base register value and an
immediate offset, and stores a word from a register to memory.

When privileged software uses an STRT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 1 1 1 0 imm8

T1 variant

STRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = R[t];
5 MemU_unpriv[address, 4] = data;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

936

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.237 SUB (SP minus immediate)

Subtract from SP (immediate). Subtract (SP minus immediate) subtracts an immediate value from the SP value,
and writes the result to the destination register.

This instruction is subject to stack limit checking.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 imm7

T1 variant

SUB{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding
1 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8

SUB variant

Applies when S == 0.

SUB{<c>}.W {<Rd>,} SP, #<const>
// <Rd>, <const> can be represented in T1

SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
4 if d == 15 && S == '0' then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8

T3 variant

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

937

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SUB{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

SUBW{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
3 if d == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field

as <imm7>/4.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the SP.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
4 RSPCheck[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

938

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.238 SUB (SP minus register)

Subtract from SP (register). Subtract (SP minus register) subtracts an optionally-shifted register value from the SP
value, and writes the result to the destination register.

This instruction is subject to stack limit checking.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2

sr_type

Rm

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

SUB{<c>}.W {<Rd>,} SP, <Rm>
// <Rd>, <Rm> can be represented in T1 or T2

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
6 if (d == 15 && S == '0') || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the SP.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

939

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It
can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), '1');
5 RSPCheck[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

940

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.239 SUB (immediate)

Subtract (immediate). Subtract (immediate) subtracts an immediate value from a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 imm3 Rn Rd

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, #<imm3>
// Inside IT block

SUBS{<q>} <Rd>, <Rn>, #<imm3>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Rdn imm8

T2 variant

SUB<c>{<q>} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> can be represented in T1

SUB<c>{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> cannot be represented in T1

SUBS{<q>} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> can be represented in T1

SUBS{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S Rn 0 imm3 Rd imm8

SUB variant

Applies when S == 0.

SUB<c>.W {<Rd>,} <Rn>, #<const>
// Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

941

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, #<const>
// Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
2 if Rn == '1101' then SEE "SUB (SP minus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
5 if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 Rn 0 imm3 Rd imm8

T4 variant

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

SUBW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if Rn == '1111' then SEE ADR;
2 if Rn == '1101' then SEE "SUB (SP minus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
5 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.237 SUB (SP minus immediate).
For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.237 SUB (SP minus immediate). If the PC is used, see C2.4.8 ADR.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

942

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

943

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.240 SUB (immediate, from PC)

Subtract from PC. Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative
address, and writes the result to the destination register. Arm recommends that, where possible, software avoids
using this alias.

This instruction is an alias of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The description of ADR gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

T2 variant

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == ’000000000000’.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded

into <Rd>. The assembler calculates the required value of the offset from the Align(PC,
4) value of the ADR instruction to this label. Permitted values of the size of the offset are
multiples of 4 in the range 0 to 1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is
to be loaded into <Rd>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the ADR instruction to this label. If the offset is zero or positive,
encoding T3 is used, with imm32 equal to the offset. If the offset is negative, encoding T2 is
used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that
the required offset is minus the value of imm32. Permitted values of the size of the offset are
0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

Operation for all encodings
The description of ADR gives the operational pseudocode for this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

944

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.241 SUB (register)

Subtract (register). Subtract (register) subtracts an optionally-shifted register value from a register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 Rm Rn Rd

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, <Rm>
// Inside IT block

SUBS{<q>} {<Rd>,} <Rn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S Rn (0) imm3 Rd imm2

sr_type

Rm

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

SUB<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

945

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SUBS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (register)";
2 if Rn == '1101' then SEE "SUB (SP minus register)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
5 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
6 if d == 13 || (d == 15 && S == '0') || n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field. If the
SP is used, see C2.4.238 SUB (SP minus register).

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

946

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.242 SVC

Supervisor Call. The Supervisor Call instruction generates a call to a system supervisor.

Use it as a call to an operating system to provide a service.

In older versions of the Arm architecture, SVC was called SWI, Software Interrupt.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 1 imm8

T1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm8, 32);
2 // imm32 is for assembly/disassembly. SVC handlers in some
3 // systems interpret imm8 in software, for example to determine the required service.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<imm> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 CallSupervisor();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

947

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.243 SXTAB

Signed Extend and Add Byte. Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it
to 32 bits, adds the result to the value in another register, and writes the final result to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 Rn 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE SXTB;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + SignExtend(rotated[7:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

948

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.244 SXTAB16

Signed Extend and Add Byte 16. Signed Extend and Add Byte 16 extracts two 8-bit values from a register,
sign-extends them to 16 bits each, adds the results to two 16-bit values from another register, and writes the final
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 Rn 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE SXTB16;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = R[n][15:0] + SignExtend(rotated[7:0], 16);
6 result[31:16] = R[n][31:16] + SignExtend(rotated[23:16], 16);
7 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

949

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

950

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.245 SXTAH

Signed Extend and Add Halfword. Signed Extend and Add Halfword extracts a 16-bit value from a register,
sign-extends it to 32 bits, adds the result to a value from another register, and writes the final result to the destination
register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 Rn 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE SXTH;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + SignExtend(rotated[15:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

951

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.246 SXTB

Signed Extend Byte. Signed Extend Byte extracts an 8-bit value from a register, sign extends it to 32 bits, and
writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 8-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 1 Rm Rd

T1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

SXTB{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

952

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = SignExtend(rotated[7:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

953

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.247 SXTB16

Signed Extend Byte 16. Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16
bits each, and writes the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24
bits before extracting the 8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = SignExtend(rotated[7:0], 16);
6 result[31:16] = SignExtend(rotated[23:16], 16);
7 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

954

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.248 SXTH

Signed Extend Halfword. Signed Extend Halfword extracts a 16-bit value from a register, sign extends it to 32 bits,
and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 16-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 0 Rm Rd

T1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

SXTH{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

955

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = SignExtend(rotated[15:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

956

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.249 TBB, TBH

Table Branch Byte or Halfword. Table Branch Byte causes a PC-relative forward branch using a table of single
byte offsets. A base register provides a pointer to the table, and a second register supplies an index into the table.
The branch length is twice the value of the byte returned from the table.

Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets. A base
register provides a pointer to the table, and a second register supplies an index into the table. The branch length is
twice the value of the halfword returned from the table.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm

Byte variant

Applies when H == 0.

TBB{<c>}{<q>} [<Rn>, <Rm>]
// Outside or last in IT block

Halfword variant

Applies when H == 1.

TBH{<c>}{<q>} [<Rn>, <Rm>, LSL #1]
// Outside or last in IT block

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
3 if n == 13 || m IN {13,15} then UNPREDICTABLE;
4 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register holding the address of the table of branch lengths, encoded

in the "Rn" field. The PC can be used. If it is, the table immediately follows this instruction.
<Rm> For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This

register contains an integer pointing to a single byte in the table. The offset in the table is the
value of the index.
For the halfword variant: is the general-purpose index register, encoded in the "Rm" field.
This register contains an integer pointing to a halfword in the table. The offset in the table is
twice the value of the index.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if is_tbh then
4 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
5 else
6 halfwords = UInt(MemU[R[n]+R[m], 1]);
7 BranchTo(PC + 2*halfwords);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

957

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.250 TEQ (immediate)

Test Equivalence (immediate). Test Equivalence (immediate) performs an exclusive OR operation on a register
value and an immediate value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] EOR imm32;
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

958

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.251 TEQ (register)

Test Equivalence (register). Test Equivalence (register) performs an exclusive OR operation on a register value and
an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] EOR shifted;
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 // APSR.V unchanged

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

959

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

960

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.252 TST (immediate)

Test (immediate). Test (immediate) performs a bitwise AND operation on a register value and an immediate value.
It updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the "i:imm3:imm8"

field. See C1.5 Modified immediate constants for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] AND imm32;
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

961

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.253 TST (register)

Test (register). Test (register) performs a bitwise AND operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 0 Rm Rn

T1 variant

TST{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding
1 n = UInt(Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

TST{<c>}.W <Rn>, <Rm>
// <Rn>, <Rm> can be represented in T1

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

962

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] AND shifted;
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 // APSR.V unchanged

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V flags.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of the registers being used in this instruction.

– The values of the N, Z, C, V flags.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

963

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.254 TT, TTT, TTA, TTAT

Test Target (Alternate Domain, Unprivileged). Test Target (TT) queries the Security state and access permissions
of a memory location.

Test Target Unprivileged (TTT) queries the Security state and access permissions of a memory location for an
unprivileged access to that location.

Test Target Alternate Domain (TTA) and Test Target Alternate Domain Unprivileged (TTAT) query the Security
state and access permissions of a memory location for a Non-secure access to that location. These instructions are
only valid when executing in Secure state, and are UNDEFINED if used from Non-secure state.

These instructions return the Security state and access permissions in the destination register. See TT_RESP for
the format of the destination register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn 1 1 1 1 Rd A T (0) (0) (0) (0) (0) (0)

TT variant

Applies when A == 0 && T == 0.

TT{<c>}{<q>} <Rd>, <Rn>

TTA variant

Applies when A == 1 && T == 0.

TTA{<c>}{<q>} <Rd>, <Rn>

TTAT variant

Applies when A == 1 && T == 1.

TTAT{<c>}{<q>} <Rd>, <Rn>

TTT variant

Applies when A == 0 && T == 1.

TTT{<c>}{<q>} <Rd>, <Rn>

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); alt = (A == '1'); forceunpriv = (T == '1');
2 if d IN {13,15} || n == 15 then UNPREDICTABLE;
3 if alt && !IsSecure() then UNDEFINED;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the destination general-purpose register into which the status result of the target test is

written, encoded in the "Rd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

964

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 addr = R[n];
4 R[d] = TTResp(addr, alt, forceunpriv);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

965

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.255 UADD16

Unsigned Add 16. Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][15:0]) + UInt(R[m][15:0]);
4 sum2 = UInt(R[n][31:16]) + UInt(R[m][31:16]);
5 R[d] = sum2[15:0] : sum1[15:0];
6 APSR.GE[1:0] = if sum1 >= 0x10000 then '11' else '00';
7 APSR.GE[3:2] = if sum2 >= 0x10000 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

966

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.256 UADD8

Unsigned Add 8. Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][7:0]) + UInt(R[m][7:0]);
4 sum2 = UInt(R[n][15:8]) + UInt(R[m][15:8]);
5 sum3 = UInt(R[n][23:16]) + UInt(R[m][23:16]);
6 sum4 = UInt(R[n][31:24]) + UInt(R[m][31:24]);
7 R[d] = sum4[7:0] : sum3[7:0] : sum2[7:0] : sum1[7:0];
8 APSR.GE[0] = if sum1 >= 0x100 then '1' else '0';
9 APSR.GE[1] = if sum2 >= 0x100 then '1' else '0';

10 APSR.GE[2] = if sum3 >= 0x100 then '1' else '0';
11 APSR.GE[3] = if sum4 >= 0x100 then '1' else '0';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

967

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.257 UASX

Unsigned Add and Subtract with Exchange. Unsigned Add and Subtract with Exchange exchanges the two
halfwords of the second operand, performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction,
and writes the results to the destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = UInt(R[n][15:0]) - UInt(R[m][31:16]);
4 sum = UInt(R[n][31:16]) + UInt(R[m][15:0]);
5 R[d] = sum[15:0] : diff[15:0];
6 APSR.GE[1:0] = if diff >= 0 then '11' else '00';
7 APSR.GE[3:2] = if sum >= 0x10000 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

968

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.258 UBFX

Unsigned Bit Field Extract. Unsigned Bit Field Extract extracts any number of adjacent bits at any position from
one register, zero extends them to 32 bits, and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

T1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn);
3 lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
4 msbit = lsbit + widthminus1;
5 if msbit > 31 then UNPREDICTABLE;
6 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<lsb> Is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the

"imm3:imm2" field.
<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as

<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit <= 31 then
4 R[d] = ZeroExtend(R[n][msbit:lsbit], 32);
5 else
6 R[d] = bits(32) UNKNOWN;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

969

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

970

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.259 UDF

Permanently Undefined. Permanently Undefined generates an Undefined Instruction exception.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 0 imm8

T1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm8, 32);
2 // imm32 is for assembly and disassembly only, and is ignored by hardware.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 1 0 imm12

T2 variant

UDF{<c>}.W {#}<imm>
// <imm> can be represented in T1

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm4:imm12, 32);
2 // imm32 is for assembly and disassembly only, and is ignored by hardware.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields. Arm deprecates using any <c> value other than
AL.

<q> See C1.2.5 Standard assembler syntax fields.
<imm> For encoding T1: is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8"

field. The PE ignores the value of this constant.
For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. The PE ignores the value of this constant.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 UNDEFINED;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

971

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.260 UDIV

Unsigned Divide. Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer
register value, and writes the result to the destination register. The condition flags are not affected.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm

T1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
2 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if UInt(R[m]) == 0 then
4 if IntegerZeroDivideTrappingEnabled() then
5 GenerateIntegerZeroDivide();
6 else
7 result = 0;
8 else
9 result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));

10 R[d] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

972

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.261 UHADD16

Unsigned Halving Add 16. Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the
results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][15:0]) + UInt(R[m][15:0]);
4 sum2 = UInt(R[n][31:16]) + UInt(R[m][31:16]);
5 R[d] = sum2[16:1] : sum1[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

973

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.262 UHADD8

Unsigned Halving Add 8. Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the
results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][7:0]) + UInt(R[m][7:0]);
4 sum2 = UInt(R[n][15:8]) + UInt(R[m][15:8]);
5 sum3 = UInt(R[n][23:16]) + UInt(R[m][23:16]);
6 sum4 = UInt(R[n][31:24]) + UInt(R[m][31:24]);
7 R[d] = sum4[8:1] : sum3[8:1] : sum2[8:1] : sum1[8:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

974

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.263 UHASX

Unsigned Halving Add and Subtract with Exchange. Unsigned Halving Add and Subtract with Exchange exchanges
the two halfwords of the second operand, performs one unsigned 16-bit integer addition and one unsigned 16-bit
subtraction, halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = UInt(R[n][15:0]) - UInt(R[m][31:16]);
4 sum = UInt(R[n][31:16]) + UInt(R[m][15:0]);
5 R[d] = sum[16:1] : diff[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

975

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.264 UHSAX

Unsigned Halving Subtract and Add with Exchange. Unsigned Halving Subtract and Add with Exchange exchanges
the two halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit
addition, halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = UInt(R[n][15:0]) + UInt(R[m][31:16]);
4 diff = UInt(R[n][31:16]) - UInt(R[m][15:0]);
5 R[d] = diff[16:1] : sum[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

976

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.265 UHSUB16

Unsigned Halving Subtract 16. Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions,
halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][15:0]) - UInt(R[m][15:0]);
4 diff2 = UInt(R[n][31:16]) - UInt(R[m][31:16]);
5 R[d] = diff2[16:1] : diff1[16:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

977

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.266 UHSUB8

Unsigned Halving Subtract 8. Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions,
halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][7:0]) - UInt(R[m][7:0]);
4 diff2 = UInt(R[n][15:8]) - UInt(R[m][15:8]);
5 diff3 = UInt(R[n][23:16]) - UInt(R[m][23:16]);
6 diff4 = UInt(R[n][31:24]) - UInt(R[m][31:24]);
7 R[d] = diff4[8:1] : diff3[8:1] : diff2[8:1] : diff1[8:1];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

978

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.267 UMAAL

Unsigned Multiply Accumulate Accumulate Long. Unsigned Multiply Accumulate Accumulate Long multiplies
two unsigned 32-bit values to produce a 64-bit value, adds two unsigned 32-bit values, and writes the 64-bit result
to two registers.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm

T1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the first addend and the destination register for

the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the second addend and the destination register

for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

979

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

980

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.268 UMLAL

Unsigned Multiply Accumulate Long. Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values
to produce a 64-bit value, and accumulates this with a 64-bit value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

981

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

982

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.269 UMULL

Unsigned Multiply Long. Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit
result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the

"RdLo" field.
<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the

"RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = UInt(R[n]) * UInt(R[m]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

983

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

984

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.270 UQADD16

Unsigned Saturating Add 16. Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates
the results to the 16-bit unsigned integer range 0 to 216-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][15:0]) + UInt(R[m][15:0]);
4 sum2 = UInt(R[n][31:16]) + UInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(sum1, 16);
7 result[31:16] = UnsignedSat(sum2, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

985

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.271 UQADD8

Unsigned Saturating Add 8. Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates
the results to the 8-bit unsigned integer range 0 to 28-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][7:0]) + UInt(R[m][7:0]);
4 sum2 = UInt(R[n][15:8]) + UInt(R[m][15:8]);
5 sum3 = UInt(R[n][23:16]) + UInt(R[m][23:16]);
6 sum4 = UInt(R[n][31:24]) + UInt(R[m][31:24]);
7 bits(32) result;
8 result[7:0] = UnsignedSat(sum1, 8);
9 result[15:8] = UnsignedSat(sum2, 8);

10 result[23:16] = UnsignedSat(sum3, 8);
11 result[31:24] = UnsignedSat(sum4, 8);
12 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

986

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.272 UQASX

Unsigned Saturating Add and Subtract with Exchange. Unsigned Saturating Add and Subtract with Exchange
exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer addition and one
unsigned 16-bit subtraction, saturates the results to the 16-bit unsigned integer range 0 to 216-1, and writes the
results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = UInt(R[n][15:0]) - UInt(R[m][31:16]);
4 sum = UInt(R[n][31:16]) + UInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(diff, 16);
7 result[31:16] = UnsignedSat(sum, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

987

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.273 UQRSHL (register)

Unsigned Saturating Rounding Shift Left. Unsigned saturating rounding shift left by 0 to 32 bits of a 32-bit value
stored in a general-purpose register. The shift amount is read in as the bottom byte of Rm. If the shift amount is
negative, the shift direction is reversed.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda Rm 1 1 1 (1) (0) (0) 0 0 1 1 0 1

T1: UQRSHL variant

UQRSHL<c><q> Rda, Rm

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(Rm);
6 if Rda == '11x1' || Rm == '11x1' || Rm == Rda then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = UInt(R[da]);
6 op1 = op1 + (1 << (- 1 - amount));
7 (result, sat) = UnsignedSatQ((op1 << amount), 32);
8 if sat then APSR.Q = '1';
9 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

988

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.274 UQRSHLL (register)

Unsigned Saturating Rounding Shift Left Long. Unsigned saturating rounding shift left by 0 to 64 bits of a 64-bit
value stored in two general-purpose registers. The shift amount is read in as the bottom byte of Rm. If the shift
amount is negative, the shift direction is reversed.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 Rm RdaHi (1) sat (0) 0 0 1 1 0 1

T1: UQRSHLL variant

UQRSHLL<c><q> RdaLo, RdaHi, #<saturate>, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "UQRSHL (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 saturateTo = if sat == '0' then 64 else 48;
9 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;

10 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<saturate> The bit position for saturation.

This parameter must be one of the following values:
#64 Encoded as sat = 0
#48 Encoded as sat = 1

<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = UInt(R[dah]:R[dal]);
6 op1 = op1 + (1 << (- 1 - amount));
7 (shiftedOp, didSat) = UnsignedSatQ((op1 << amount), saturateTo);
8 result = ZeroExtend(shiftedOp, 64);
9 if didSat then APSR.Q = '1';

10 R[dah] = result[63:32];
11 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

989

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.275 UQSAX

Unsigned Saturating Subtract and Add with Exchange. Unsigned Saturating Subtract and Add with Exchange
exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one
unsigned 16-bit addition, saturates the results to the 16-bit unsigned integer range 0 to 216-1, and writes the results
to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = UInt(R[n][15:0]) + UInt(R[m][31:16]);
4 diff = UInt(R[n][31:16]) - UInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(sum, 16);
7 result[31:16] = UnsignedSat(diff, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

990

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.276 UQSHL (immediate)

Unsigned Saturating Shift Left. Unsigned saturating shift left by 1 to 32 bits of a 32-bit value stored in a
general-purpose register.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 0 0 1 1 1 1

T1: UQSHL variant

UQSHL<c><q> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[da]);
5 (result, sat) = UnsignedSatQ((op1 << amount), 32);
6 if sat then APSR.Q = '1';
7 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

991

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.277 UQSHLL (immediate)

Unsigned Saturating Shift Left Long. Unsigned saturating shift left by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 0 immh RdaHi (1) imml 0 0 1 1 1 1

T1: UQSHLL variant

UQSHLL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "UQSHL (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 (result, sat) = UnsignedSatQ((op1 << amount), 64);
6 if sat then APSR.Q = '1';
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

992

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.278 UQSUB16

Unsigned Saturating Subtract 16. Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer
subtractions, saturates the results to the 16-bit unsigned integer range 0 to 216-1, and writes the results to
the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][15:0]) - UInt(R[m][15:0]);
4 diff2 = UInt(R[n][31:16]) - UInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(diff1, 16);
7 result[31:16] = UnsignedSat(diff2, 16);
8 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

993

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.279 UQSUB8

Unsigned Saturating Subtract 8. Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions,
saturates the results to the 8-bit unsigned integer range 0 to 28-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][7:0]) - UInt(R[m][7:0]);
4 diff2 = UInt(R[n][15:8]) - UInt(R[m][15:8]);
5 diff3 = UInt(R[n][23:16]) - UInt(R[m][23:16]);
6 diff4 = UInt(R[n][31:24]) - UInt(R[m][31:24]);
7 bits(32) result;
8 result[7:0] = UnsignedSat(diff1, 8);
9 result[15:8] = UnsignedSat(diff2, 8);

10 result[23:16] = UnsignedSat(diff3, 8);
11 result[31:24] = UnsignedSat(diff4, 8);
12 R[d] = result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

994

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.280 URSHR (immediate)

Unsigned Rounding Shift Right. Unsigned rounding shift right by 1 to 32 bits of a 32-bit value stored in a
general-purpose register.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 0 1 1 1 1 1

T1: URSHR variant

URSHR<c><q> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[da]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[31:0];
7 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

995

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.281 URSHRL (immediate)

Unsigned Rounding Shift Right Long. Unsigned rounding shift right by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 0 immh RdaHi (1) imml 0 1 1 1 1 1

T1: URSHRL variant

URSHRL<c><q> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "URSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then SEE "Related encodings";
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

996

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.282 USAD8

Unsigned Sum of Absolute Differences. Unsigned Sum of Absolute Differences performs four unsigned 8-bit
subtractions, and adds the absolute values of the differences together.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 absdiff1 = Abs(UInt(R[n][7:0]) - UInt(R[m][7:0]));
4 absdiff2 = Abs(UInt(R[n][15:8]) - UInt(R[m][15:8]));
5 absdiff3 = Abs(UInt(R[n][23:16]) - UInt(R[m][23:16]));
6 absdiff4 = Abs(UInt(R[n][31:24]) - UInt(R[m][31:24]));
7 result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
8 R[d] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

997

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.283 USADA8

Unsigned Sum of Absolute Differences and Accumulate. Unsigned Sum of Absolute Differences and Accumulate
performs four unsigned 8-bit subtractions, and adds the absolute values of the differences to a 32-bit accumulate
operand.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn Ra Rd 0 0 0 0 Rm

T1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE USAD8;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 absdiff1 = Abs(UInt(R[n][7:0]) - UInt(R[m][7:0]));
4 absdiff2 = Abs(UInt(R[n][15:8]) - UInt(R[m][15:8]));
5 absdiff3 = Abs(UInt(R[n][23:16]) - UInt(R[m][23:16]));
6 absdiff4 = Abs(UInt(R[n][31:24]) - UInt(R[m][31:24]));
7 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
8 R[d] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

998

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.284 USAT

Unsigned Saturate. Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

The Q flag is set to 1 if the operation saturates.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for this encoding
1 if sh == '1' && (imm3:imm2) == '00000' then
2 if HaveDSPExt() then
3 SEE USAT16;
4 else
5 UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
8 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
9 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<amount> For the arithmetic shift right variant: is the shift amount, in the range 1 to 31 encoded in the

"imm3:imm2" field as <amount>.
For the logical shift left variant: is the optional shift amount, in the range 0 to 31, defaulting to
0 and encoded in the "imm3:imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
4 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
5 R[d] = ZeroExtend(result, 32);
6 if sat then
7 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

999

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.285 USAT16

Unsigned Saturate 16. Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

The Q flag is set to 1 if the operation saturates.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

T1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result1, sat1) = UnsignedSatQ(SInt(R[n][15:0]), saturate_to);
4 (result2, sat2) = UnsignedSatQ(SInt(R[n][31:16]), saturate_to);
5 bits(32) result;
6 result[15:0] = ZeroExtend(result1, 16);
7 result[31:16] = ZeroExtend(result2, 16);
8 R[d] = result;
9 if sat1 || sat2 then

10 APSR.Q = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1000

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.286 USAX

Unsigned Subtract and Add with Exchange. Unsigned Subtract and Add with Exchange exchanges the two
halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit
addition, and writes the results to the destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = UInt(R[n][15:0]) + UInt(R[m][31:16]);
4 diff = UInt(R[n][31:16]) - UInt(R[m][15:0]);
5 R[d] = diff[15:0] : sum[15:0];
6 APSR.GE[1:0] = if sum >= 0x10000 then '11' else '00';
7 APSR.GE[3:2] = if diff >= 0 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1001

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.287 USUB16

Unsigned Subtract 16. Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the
results to the destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][15:0]) - UInt(R[m][15:0]);
4 diff2 = UInt(R[n][31:16]) - UInt(R[m][31:16]);
5 R[d] = diff2[15:0] : diff1[15:0];
6 APSR.GE[1:0] = if diff1 >= 0 then '11' else '00';
7 APSR.GE[3:2] = if diff2 >= 0 then '11' else '00';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1002

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.288 USUB8

Unsigned Subtract 8. Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results
to the destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][7:0]) - UInt(R[m][7:0]);
4 diff2 = UInt(R[n][15:8]) - UInt(R[m][15:8]);
5 diff3 = UInt(R[n][23:16]) - UInt(R[m][23:16]);
6 diff4 = UInt(R[n][31:24]) - UInt(R[m][31:24]);
7 R[d] = diff4[7:0] : diff3[7:0] : diff2[7:0] : diff1[7:0];
8 APSR.GE[0] = if diff1 >= 0 then '1' else '0';
9 APSR.GE[1] = if diff2 >= 0 then '1' else '0';

10 APSR.GE[2] = if diff3 >= 0 then '1' else '0';
11 APSR.GE[3] = if diff4 >= 0 then '1' else '0';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1003

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.289 UXTAB

Unsigned Extend and Add Byte. Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends
it to 32 bits, adds the result to the value in another register, and writes the final result to the destination register.
The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 Rn 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE UXTB;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + ZeroExtend(rotated[7:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1004

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.290 UXTAB16

Unsigned Extend and Add Byte 16. Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register,
zero-extends them to 16 bits each, adds the results to two 16-bit values from another register, and writes the final
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 Rn 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE UXTB16;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = R[n][15:0] + ZeroExtend(rotated[7:0], 16);
6 result[31:16] = R[n][31:16] + ZeroExtend(rotated[23:16], 16);
7 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1005

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1006

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.291 UXTAH

Unsigned Extend and Add Halfword. Unsigned Extend and Add Halfword extracts a 16-bit value from a register,
zero-extends it to 32 bits, adds the result to a value from another register, and writes the final result to the destination
register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 Rn 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE UXTH;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + ZeroExtend(rotated[15:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1007

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.292 UXTB

Unsigned Extend Byte. Unsigned Extend Byte extracts an 8-bit value from a register, zero extends it to 32 bits,
and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 8-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 1 Rm Rd

T1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

UXTB{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1008

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = ZeroExtend(rotated[7:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1009

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.293 UXTB16

Unsigned Extend Byte 16. Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them
to 16 bits each, and writes the results to the destination register. The instruction can specify a rotation by 0, 8, 16,
or 24 bits before extracting the 8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = ZeroExtend(rotated[7:0], 16);
6 result[31:16] = ZeroExtend(rotated[23:16], 16);
7 R[d] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1010

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.294 UXTH

Unsigned Extend Halfword. Unsigned Extend Halfword extracts a 16-bit value from a register, zero extends it to
32 bits, and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits
before extracting the 16-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 0 Rm Rd

T1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

UXTH{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred
disassembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1011

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = ZeroExtend(rotated[15:0], 32);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1012

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.295 VABAV

Vector Absolute Difference and Accumulate Across Vector. Subtract the elements of the second source vector
register from the corresponding elements of the first source vector and accumulate the absolute values of the results.
The initial value of the general-purpose destination register is added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 0 size Qn 0 Rda 1 1 1 1 N 0 M 0 Qm 1

T1: VABAV variant

VABAV<v><q>.<dt> Rda, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' || N == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Rda> General-purpose source and destination register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1013

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 op1 = Q[n, curBeat];
7 op2 = Q[m, curBeat];
8 result = UInt(R[da]);
9 for e = 0 to elements-1

10 if elmtMask[e*(esize>>3)] == '1' then
11 result = result + Abs(Int(Elem[op1, e, esize], unsigned) -
12 Int(Elem[op2, e, esize], unsigned));
13
14 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1014

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.296 VABD

Vector Absolute Difference. Subtract the elements of the second source vector register from the corresponding
elements of the first source vector register and place the absolute values of the results in the elements of the
destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 1 1 N 1 M 0 Qm 0

T1: VABD variant

VABD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1015

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value = Abs(Int(Elem[op1, e, esize], unsigned) - Int(Elem[op2, e, esize], unsigned));
11 Elem[result, e, esize] = value[esize-1:0];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1016

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.297 VABD (floating-point)

Vector Absolute Difference. Subtract the elements of the second source vector from the corresponding elements of
the first source vector and place the absolute values of the results in the elements of the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Qn 0 Qd 0 1 1 0 1 N 1 M 0 Qm 0

T1: VABD variant

VABD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPAbs(FPSub(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred));
13 Elem[result, e, esize] = value;
14
15 for e = 0 to 3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1017

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1018

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.298 VABS

Floating-point Absolute. Floating-point Absolute takes the absolute value of a half-precision or single-precision or
double-precision register, and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPAbs(S[m][15:0]);
6 when '10' S[d] = FPAbs(S[m]);
7 when '11' D[d] = FPAbs(D[m]);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1019

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1020

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.299 VABS (floating-point)

Vector Absolute. Compute the absolute value of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 1 1 1 0 1 M 0 Qm 0

T1: VABS variant

VABS<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as size = 01
F32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = FPAbs(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value;
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1021

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1022

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.300 VABS (vector)

Vector Absolute. Compute the absolute value of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 0 1 1 0 1 M 0 Qm 0

T1: VABS variant

VABS<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = Abs(SInt(Elem[op1, e, esize]));

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1023

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1024

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.301 VADC

Whole Vector Add With Carry. Add with carry across beats, with carry in from and out to FPSCR.C. Initial value
of FPSCR.C can be overridden by using the I variant. FPSCR.C is not updated for beats disabled because of
predication. FPSCR.N, .V and .Z are zeroed whenever FPSCR.C is updated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Qn 0 Qd I 1 1 1 1 N 0 M 0 Qm 0

T1: VADC variant

VADC{I}<v><q>.I32 Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 carryInit = (I == '1');
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<I> Specifies where the initial carry in for wide arithmetic comes from.
This parameter must be one of the following values:
- Encoded as I = 0

Indicates carry input comes from FPSCR.C.
I Encoded as I = 1

Indicates carry input is 0.
<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 op2 = Q[m, curBeat];
8 if carryInit && IsFirstBeat() then
9 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', '0', '0');

10 (result, carryOut, -) = AddWithCarry(op1, op2, FPSCR.C);
11 if elmtMask[0] == '1' then
12 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', carryOut, '0');
13

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1025

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1026

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.302 VADD

Floating-point Add. Floating-point Add adds two half-precision or single-precision or double-precision registers,
and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1027

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPAdd(S[n][15:0], S[m][15:0], TRUE);
6 when '10' S[d] = FPAdd(S[n], S[m], TRUE);
7 when '11' D[d] = FPAdd(D[n], D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1028

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.303 VADD (floating-point)

Vector Add. Add the value of the elements in the first source vector register to either the respective elements in the
second source vector register or a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Qn 0 Qd 0 1 1 0 1 N 1 M 0 Qm 0

T1: VADD variant

VADD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd 0 1 1 1 1 N 1 0 0 Rm

T2: VADD variant

VADD<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1029

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPAdd(Elem[op1, e, esize], R[m][esize-1:0], FALSE, pred);
13 Elem[result, e, esize] = value;
14 else
15 for e = 0 to elements-1
16 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
17 pred = (elmtMask[e*(esize>>3)] == '0');
18 op2 = Q[m, curBeat];
19 value = FPAdd(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred);
20 Elem[result, e, esize] = value;
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1030

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.304 VADD (vector)

Vector Add. Add the value of the elements in the first source vector register to either the respective elements in
the second source vector register or a general-purpose register. The result is then written to the destination vector
register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Qn 0 Qd 0 1 0 0 0 N 1 M 0 Qm 0

T1: VADD variant

VADD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 1 N 1 0 0 Rm

T2: VADD variant

VADD<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 withScalar = TRUE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1031

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 value = Elem[op1, e, esize] + R[m][esize-1:0];
11 Elem[result, e, esize] = value;
12 else
13 op2 = Q[m, curBeat];
14 for e = 0 to elements-1
15 value = Elem[op1, e, esize] + Elem[op2, e, esize];
16 Elem[result, e, esize] = value;
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1032

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.305 VADDLV

Vector Add Long Across Vector. Add across the elements of a vector accumulating the result into a scalar. The
64-bit result is stored across two registers, the upper-half is stored in an odd-numbered register and the lower half
is stored in an even-numbered register. The initial value of the general-purpose destination registers can optionally
be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi (1) (0) 0 1 RdaLo (0) 1 1 1 1 0 0 A 0 Qm 0

T1: VADDLV variant

VADDLV{A}<v><q>.<dt> RdaLo, RdaHi, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VADDV";
2 CheckDecodeFaults(ExtType_Mve);
3 dah = UInt(RdaHi:'1');
4 dal = UInt(RdaLo:'0');
5 m = UInt(Qm);
6 accumulate = (A == '1');
7 esize = 32;
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Unsigned flag: S indicates signed, U indicates unsigned.

This parameter must be one of the following values:
S32 Encoded as U = 0
U32 Encoded as U = 1

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register. The value RdaLo » 1 is encoded in the RdaLo field.

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register. The value RdaHi » 1 is encoded in the RdaHi field.

<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1033

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[dah]:R[dal], unsigned) else 0;
7 op = Q[m, curBeat];
8
9 for e = 0 to elements-1

10 if elmtMask[e*(esize>>3)] == '1' then
11 result = result + Int(Elem[op, e, esize], unsigned);
12
13 R[dah] = result[63:32];
14 R[dal] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1034

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.306 VADDV

Vector Add Across Vector. Add across the elements of a vector accumulating the result into a scalar. The initial
value of the general-purpose destination register can optionally be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 size 0 1 Rda (0) 1 1 1 1 0 0 A 0 Qm 0

T1: VADDV variant

VADDV{A}<v><q>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 da = UInt(Rda:'0');
4 m = UInt(Qm);
5 accumulate = (A == '1');
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 unsigned = (U == '1');
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Rda> General-purpose source and destination register. This must be an even numbered register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1035

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 result = if accumulate || !IsFirstBeat() then Int(R[da], unsigned) else 0;
7 op = Q[m, curBeat];
8
9 for e = 0 to elements-1

10 if elmtMask[e*(esize>>3)] == '1' then
11 result = result + Int(Elem[op, e, esize], unsigned);
12
13 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1036

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.307 VAND

Vector Bitwise And. Compute a bitwise AND of a vector register with another vector register. The result is written
to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 0 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VAND variant

VAND<v><q>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] AND Q[m, curBeat];
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1037

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1038

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.308 VAND (immediate)

Vector Bitwise AND. This is a pseudo-instruction, equivalent to a VBIC (immediate) instruction with the immediate
value bitwise inverted.

This is an alias of VBIC (immediate).

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 1 1 imm4

VAND variant

VAND<v><q>.<dt> Qda, #<imm>

is equivalent to

VBIC<v><q>.<dt> Qda, #~<imm>

and is never the preferred disassembly

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1039

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.309 VBIC (immediate)

Vector Bitwise Clear. Compute a bitwise AND of a vector register and the complement of an immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 1 1 imm4

T1: VBIC variant

VBIC<v><q>.<dt> Qda, #<imm>

Decode for this encoding
1 if cmode == '111x' then SEE "VMOV (immediate) (vector)";
2 if cmode IN {'0xx0', '110x', '10x0'} then SEE "VMVN (immediate)";
3 CheckDecodeFaults(ExtType_Mve);
4 if Da == '1' then UNDEFINED;
5 da = UInt(Da:Qda);
6 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0001
cmode = 0011
cmode = 0101
cmode = 0111

I16 Encoded as:
cmode = 1001
cmode = 1011

<Qda> Source and destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 opd = Q[da, curBeat];
7 imm32 = if curBeat[0] == '0' then imm64[31:0] else imm64[63:32];
8 result = opd AND NOT(imm32);
9

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1040

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1041

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.310 VBIC (register)

Vector Bitwise Clear. Compute a bitwise AND of a vector register and the complement of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 1 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VBIC variant

VBIC<v><q>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 opm = Q[m, curBeat];
7 opn = Q[n, curBeat];
8 result = opn AND NOT(opm);
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1042

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1043

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.311 VBRSR

Vector Bit Reverse and Shift Right. Reverse the specified number of LSB bits in each element of a vector register
and set the other bits to zero. The number of bits to reverse is read in from the bottom byte of Rm and clamped to
the range [0, <dt>].

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 0 N 1 1 0 Rm

T1: VBRSR variant

VBRSR<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> Source vector register.
<Rm> General-purpose register containing the number of LSB bits to reverse in its bottom 8 bits.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 revBit = UInt(R[m][7:0]);
9 for e = 0 to elements-1

10 Elem[result, e, esize] = BitReverseShiftRight(Elem[op1, e, esize], revBit);
11

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1044

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1045

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.312 VCADD

Vector Complex Add with Rotate. This instruction performs a complex addition of the first operand with the second
operand rotated in the complex plane by the specified amount. A 90 degree rotation of this operand corresponds
to a multiplication by a positive imaginary unit, while a 270 degree rotation corresponds to a multiplication by a
negative imaginary unit. Even and odd elements of the source vectors are interpreted to be the real and imaginary
components, respectively, of a complex number. The result is then written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 0 Qd rot 1 1 1 1 N 0 M 0 Qm 0

T1: VCADD variant

VCADD<v><q>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if D:Qd == M:Qm && size == '10' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#90 Encoded as rot = 0
#270 Encoded as rot = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1046

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 result = Zeros(32);
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 case rot:curBeat[0] of
11 when '00' result = (Q[n, curBeat] - Q[m, curBeat+1])[31:0];
12 when '01' result = (Q[n, curBeat] + Q[m, curBeat-1])[31:0];
13 when '10' result = (Q[n, curBeat] + Q[m, curBeat+1])[31:0];
14 when '11' result = (Q[n, curBeat] - Q[m, curBeat-1])[31:0];
15 else
16 op1 = Q[n, curBeat];
17 op2 = Q[m, curBeat];
18 for e = 0 to elements-1
19 case rot:e[0] of
20 when '00' value = Elem[op1, e, esize] - Elem[op2, e+1, esize];
21 when '01' value = Elem[op1, e, esize] + Elem[op2, e-1, esize];
22 when '10' value = Elem[op1, e, esize] + Elem[op2, e+1, esize];
23 when '11' value = Elem[op1, e, esize] - Elem[op2, e-1, esize];
24 Elem[result, e, esize] = value[esize-1:0];
25
26 for e = 0 to 3
27 if elmtMask[e] == '1' then
28 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1047

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.313 VCADD (floating-point)

Vector Complex Add with Rotate. This instruction performs a complex addition of the first operand with the second
operand rotated in the complex plane by the specified amount. A 90 degree rotation of this operand corresponds
to a multiplication by a positive imaginary unit, while a 270 degree rotation corresponds to a multiplication by a
negative imaginary unit. Even and odd elements of the source vectors are interpreted to be the real and imaginary
components, respectively, of a complex number. The results are written into the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot 1 D 0 sz Qn 0 Qd 0 1 0 0 0 N 1 M 0 Qm 0

T1: VCADD variant

VCADD<v><q>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '0' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if D:Qd == M:Qm && sz == '1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as sz = 0
F32 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#90 Encoded as rot = 0
#270 Encoded as rot = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1048

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 if esize == 32 then
8 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
9 pred = (elmtMask[0*(esize>>3)] == '0');

10 case rot:curBeat[0] of
11 when '00' result = FPSub(Q[n, curBeat], Q[m, curBeat+1], FALSE, pred);
12 when '01' result = FPAdd(Q[n, curBeat], Q[m, curBeat-1], FALSE, pred);
13 when '10' result = FPAdd(Q[n, curBeat], Q[m, curBeat+1], FALSE, pred);
14 when '11' result = FPSub(Q[n, curBeat], Q[m, curBeat-1], FALSE, pred);
15 else
16 op1 = Q[n, curBeat];
17 op2 = Q[m, curBeat];
18 for e = 0 to elements-1
19 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
20 pred = (elmtMask[e*(esize>>3)] == '0');
21 case rot:e[0] of
22 when '00' value = FPSub(Elem[op1, e, esize], Elem[op2, e+1, esize], FALSE, pred);
23 when '01' value = FPAdd(Elem[op1, e, esize], Elem[op2, e-1, esize], FALSE, pred);
24 when '10' value = FPAdd(Elem[op1, e, esize], Elem[op2, e+1, esize], FALSE, pred);
25 when '11' value = FPSub(Elem[op1, e, esize], Elem[op2, e-1, esize], FALSE, pred);
26 Elem[result, e, esize] = value;
27
28 for e = 0 to 3
29 if elmtMask[e] == '1' then
30 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1049

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.314 VCLS

Vector Count Leading Sign-bits. Count the leading sign bits of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 0 0 0 1 M 0 Qm 0

T1: VCLS variant

VCLS<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = CountLeadingSignBits(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1050

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1051

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.315 VCLZ

Vector Count Leading Zeros. Count the leading zeros of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 0 0 1 1 M 0 Qm 0

T1: VCLZ variant

VCLZ<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = CountLeadingZeroBits(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1052

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1053

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.316 VCMLA (floating-point)

Vector Complex Multiply Accumulate. This instruction operates on complex numbers that are represented in
registers as pairs of elements. Each element holds a floating-point value. The odd element holds the imaginary part
of the number, and the even element holds the real part of the number. The instruction performs the computation
on the corresponding complex number element pairs from the two source registers and the destination register.
Considering the complex number from the second source register on an Argand diagram, the number is rotated
counterclockwise by 0, 90, 180, or 270 degrees. If the transformation was a rotation by 0 or 180 degrees, the two
elements of the transformed complex number are multiplied by the real element of the first source register. If the
transformation was a rotation by 90 or 270 degrees, the two elements are multiplied by the imaginary element of
the complex number from the first source register. The result of the multiplication is added on to the existing value
in the destination vector register. The multiplication and addition operations are fused and the result is not rounded.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot Da 1 sz Qn 0 Qda 0 1 0 0 0 N 1 M 0 Qm 0

T1: VCMLA variant

VCMLA<v><q>.<dt> Qda, Qn, Qm, #<rotate>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '0' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if sz == '1' && (Da:Qda == M:Qm || Da:Qda == N:Qn) then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as sz = 0
F32 Encoded as sz = 1

<Qda> Source and destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#0 Encoded as rot = 00
#90 Encoded as rot = 01
#180 Encoded as rot = 10
#270 Encoded as rot = 11

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1054

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 dest = Q[da, curBeat];
8 if esize == 32 then
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[0*(esize>>3)] == '0');
11 if (curBeat[0] == '0') then
12 case rot of
13 when '00'
14 element1 = Q[m, curBeat];
15 element2 = Q[n, curBeat];
16 when '01'
17 element1 = FPNeg(Q[m, curBeat+1]);
18 element2 = Q[n, curBeat+1];
19 when '10'
20 element1 = FPNeg(Q[m, curBeat]);
21 element2 = Q[n, curBeat];
22 when '11'
23 element1 = Q[m, curBeat+1];
24 element2 = Q[n, curBeat+1];
25 else
26 case rot of
27 when '00'
28 element1 = Q[m, curBeat];
29 element2 = Q[n, curBeat-1];
30 when '01'
31 element1 = Q[m, curBeat-1];
32 element2 = Q[n, curBeat];
33 when '10'
34 element1 = FPNeg(Q[m, curBeat]);
35 element2 = Q[n, curBeat-1];
36 when '11'
37 element1 = FPNeg(Q[m, curBeat-1]);
38 element2 = Q[n, curBeat];
39 result = FPMulAdd(dest, element2, element1, FALSE, pred);
40 else
41 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
42 pred0 = (elmtMask[0*(esize>>3)] == '0');
43 pred1 = (elmtMask[1*(esize>>3)] == '0');
44 op1 = Q[m, curBeat];
45 op2 = Q[n, curBeat];
46 case rot of
47 when '00'
48 elem1 = Elem[op1, 0, esize];
49 elem2 = Elem[op2, 0, esize];
50 elem3 = Elem[op1, 1, esize];
51 elem4 = Elem[op2, 0, esize];
52 when '01'
53 elem1 = FPNeg(Elem[op1, 1, esize]);
54 elem2 = Elem[op2, 1, esize];
55 elem3 = Elem[op1, 0, esize];
56 elem4 = Elem[op2, 1, esize];
57 when '10'
58 elem1 = FPNeg(Elem[op1, 0, esize]);
59 elem2 = Elem[op2, 0, esize];
60 elem3 = FPNeg(Elem[op1, 1, esize]);
61 elem4 = Elem[op2, 0, esize];
62 when '11'
63 elem1 = Elem[op1, 1, esize];
64 elem2 = Elem[op2, 1, esize];
65 elem3 = FPNeg(Elem[op1, 0, esize]);
66 elem4 = Elem[op2, 1, esize];
67 Elem[result, 0, esize] = FPMulAdd(Elem[dest, 0, esize], elem2, elem1, FALSE, pred0);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1055

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

68 Elem[result, 1, esize] = FPMulAdd(Elem[dest, 1, esize], elem4, elem3, FALSE, pred1);
69
70 for e = 0 to 3
71 if elmtMask[e] == '1' then
72 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1056

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.317 VCMP

Floating-point Compare. Floating-point Compare compares two registers, or one register and zero. It writes the
result to FPSCR condition flags. These are normally transferred to the APSR condition flags by a subsequent
VMRS instruction.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size

E = 0

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = FALSE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size

E = 0

1 (0) 0 (0) (0) (0) (0)

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1057

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = TRUE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = integer UNKNOWN;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if with_zero then FPZero('0',16) else S[m][15:0];
7 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d][15:0], op16, quiet_nan_exc,
8 TRUE);
9 when '10'

10 op32 = if with_zero then FPZero('0',32) else S[m];
11 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op32, quiet_nan_exc,
12 TRUE);
13 when '11'
14 op64 = if with_zero then FPZero('0',64) else D[m];
15 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op64, quiet_nan_exc,
16 TRUE);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1058

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1059

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.318 VCMP (floating-point)

Vector Compare. Perform a lane-wise comparison between each element in the first source vector register and
either the respective elements in the second source vector register or the value of a general-purpose register. The
resulting boolean conditions are placed in VPR.P0. The VPR.P0 flags for predicated lanes are zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 0 1 1 Qn 1 0 0 0 fcA 1 1 1 1 fcC 0 M 0 Qm fcB

T1: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if fcA == '0' && fcB == '1' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = fcA:fcB:fcC;
7 withScalar = FALSE;
8 esize = 8 << UInt(if sz == '1' then '01' else '10');
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 0 1 1 Qn 1 0 0 0 fcA 1 1 1 1 fcC 1 fcB 0 Rm

T2: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = fcA:fcB:fcC;
6 withScalar = TRUE;
7 esize = 8 << UInt(if sz == '1' then '01' else '10');
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if fcA == '0' && fcB == '1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1060

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fcA = 0, fcB = 0, fcC = 0
NE Encoded as fcA = 0, fcB = 0, fcC = 1
GE Encoded as fcA = 1, fcB = 0, fcC = 0
LT Encoded as fcA = 1, fcB = 0, fcC = 1
GT Encoded as fcA = 1, fcB = 1, fcC = 0
LE Encoded as fcA = 1, fcB = 1, fcC = 1

<Qn> First source vector register
<Qm> Source vector register.
<Rm> Source general-purpose register (ZR is permitted, PC is not).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
16 predicated = (elmtMask[e*(esize>>3)] == '0');
17 (flN, flZ, flC, flV) = FPCompare(Elem[op1, e, esize], op2, TRUE, FALSE, predicated);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1061

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.319 VCMP (vector)

Vector Compare. Perform a lane-wise comparison between each element in the first source vector register and
either the respective elements in the second source vector register or the value of a general-purpose register. The
resulting boolean conditions are placed in VPR.P0. The VPR.P0 flags for predicated lanes are zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 0 M 0 Qm 0

T1: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = '00':fc;
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 0 M 0 Qm 1

T2: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = '01':fc;
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1062

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 1 1 1 1 1 fcl 0 M 0 Qm fch

T3: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = '1':fch:fcl;
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 1 0 0 Rm

T4: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = '00':fc;
6 withScalar = TRUE;
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 1 1 0 Rm

T5: VCMP variant

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1063

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VCMP<v><q>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = '01':fc;
6 withScalar = TRUE;
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 1 1 1 1 1 fcl 1 fch 0 Rm

T6: VCMP variant

VCMP<v><q>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = '1':fch:fcl;
6 withScalar = TRUE;
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1064

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T3 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for T4 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T5 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T6 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1065

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qn> First source vector register
<Qm> Second source vector register
<Rm> Source general-purpose register (ZR is permitted, PC is not).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 (result, flC, flV) = AddWithCarry(Elem[op1, e, esize], NOT(op2), '1');
16 flN = result[esize-1];
17 flZ = IsZeroBit(result);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1066

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.320 VCMPE

Floating-point Compare, raising Invalid Operation on NaN. Floating-point Compare, raising Invalid Operation on
NaN compares two registers, or one register and zero. It writes the result to FPSCR condition flags. These are
normally transferred to the APSR condition flags by a subsequent VMRS instruction.

It raises an Invalid Operation exception if either operand is any type of NaN.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size

E = 1

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = FALSE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size

E = 1

1 (0) 0 (0) (0) (0) (0)

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1067

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = TRUE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = integer UNKNOWN;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if with_zero then FPZero('0',16) else S[m][15:0];
7 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d][15:0], op16, quiet_nan_exc,
8 TRUE);
9 when '10'

10 op32 = if with_zero then FPZero('0',32) else S[m];
11 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op32, quiet_nan_exc,
12 TRUE);
13 when '11'
14 op64 = if with_zero then FPZero('0',64) else D[m];
15 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op64, quiet_nan_exc,
16 TRUE);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1068

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1069

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.321 VCMUL (floating-point)

Vector Complex Multiply. This instruction operates on complex numbers that are represented in registers as pairs of
elements. Each element holds a floating-point value. The odd element holds the imaginary part of the number, and
the even element holds the real part of the number. The instruction performs the computation on the corresponding
complex number element pairs from the two source registers and the destination register. Considering the complex
number from the second source register on an Argand diagram, the number is rotated counterclockwise by 0, 90,
180, or 270 degrees. If the transformation was a rotation by 0 or 180 degrees, the two elements of the transformed
complex number are multiplied by the real element of the first source register. If the transformation was a rotation
by 90 or 270 degrees, the two elements are multiplied by the imaginary element of the complex number from the
first source register. The results are written into the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd

roth

1 1 1 0 N 0 M 0 Qm

rotl

T1: VCMUL variant

VCMUL<v><q>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '0' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if sz == '1' && (D:Qd == M:Qm || D:Qd == N:Qn) then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as sz = 0
F32 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#0 Encoded as roth = 0, rotl = 0
#90 Encoded as roth = 0, rotl = 1
#180 Encoded as roth = 1, rotl = 0
#270 Encoded as roth = 1, rotl = 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1070

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 32 then
8 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
9 pred = (elmtMask[0*(esize>>3)] == '0');

10 if (curBeat[0] == '0') then
11 case roth:rotl of
12 when '00'
13 element1 = Q[m, curBeat];
14 element2 = Q[n, curBeat];
15 when '01'
16 element1 = FPNeg(Q[m, curBeat+1]);
17 element2 = Q[n, curBeat+1];
18 when '10'
19 element1 = FPNeg(Q[m, curBeat]);
20 element2 = Q[n, curBeat];
21 when '11'
22 element1 = Q[m, curBeat+1];
23 element2 = Q[n, curBeat+1];
24 else
25 case roth:rotl of
26 when '00'
27 element1 = Q[m, curBeat];
28 element2 = Q[n, curBeat-1];
29 when '01'
30 element1 = Q[m, curBeat-1];
31 element2 = Q[n, curBeat];
32 when '10'
33 element1 = FPNeg(Q[m, curBeat]);
34 element2 = Q[n, curBeat-1];
35 when '11'
36 element1 = FPNeg(Q[m, curBeat-1]);
37 element2 = Q[n, curBeat];
38 result = FPMul(element2, element1, FALSE, pred);
39 else
40 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
41 pred0 = (elmtMask[0*(esize>>3)] == '0');
42 pred1 = (elmtMask[1*(esize>>3)] == '0');
43 op1 = Q[m, curBeat];
44 op2 = Q[n, curBeat];
45 case roth:rotl of
46 when '00'
47 elem1 = Elem[op1, 0, esize];
48 elem2 = Elem[op2, 0, esize];
49 elem3 = Elem[op1, 1, esize];
50 elem4 = Elem[op2, 0, esize];
51 when '01'
52 elem1 = FPNeg(Elem[op1, 1, esize]);
53 elem2 = Elem[op2, 1, esize];
54 elem3 = Elem[op1, 0, esize];
55 elem4 = Elem[op2, 1, esize];
56 when '10'
57 elem1 = FPNeg(Elem[op1, 0, esize]);
58 elem2 = Elem[op2, 0, esize];
59 elem3 = FPNeg(Elem[op1, 1, esize]);
60 elem4 = Elem[op2, 0, esize];
61 when '11'
62 elem1 = Elem[op1, 1, esize];
63 elem2 = Elem[op2, 1, esize];
64 elem3 = FPNeg(Elem[op1, 0, esize]);
65 elem4 = Elem[op2, 1, esize];
66 Elem[result, 0, esize] = FPMul(elem2, elem1, FALSE, pred0);
67 Elem[result, 1, esize] = FPMul(elem4, elem3, FALSE, pred1);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1071

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

68
69 for e = 0 to 3
70 if elmtMask[e] == '1' then
71 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1072

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.322 VCTP

Create Vector Tail Predicate. Creates a predicate pattern in VPR.P0 such that any element numbered the value of
Rn or greater is predicated. Any element numbered lower than the value of Rn is not predicated. If placed within
a VPT block and a lane is predicated, the corresponding VPR.P0 pattern will also be predicated. The generated
VPR.P0 pattern can be used by an ensuing predication instruction to apply tail predication on a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 size Rn 1 1 1 0 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T1: VCTP variant

VCTP<v><q>.<dt> Rn

Decode for this encoding
1 if Rn == '1111' then SEE "Related encodings";
2 if !HaveMve() then UNDEFINED;
3 HandleException(CheckCPEnabled(10));
4 n = UInt(Rn);
5 predSize = UInt(size);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rn == '1101' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector to process.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10
64 Encoded as size = 11

<Rn> The register containing the number of elements that need to be processed.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 loopCount = R[n];
7 if UInt(loopCount) <= (1 << (4 - predSize)) then
8 fullMask = ZeroExtend(Ones(UInt(loopCount[4-predSize:0] : Zeros(predSize))), 16);
9 else

10 fullMask = Ones(16);
11
12 Elem[VPR.P0, curBeat, 4] = elmtMask AND Elem[fullMask, curBeat, 4];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1073

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.323 VCVT (between double-precision and single-precision)

Convert between double-precision and single-precision. This instruction does one of the following:

• Converts the value in a double-precision register to single-precision and writes the result to a single-precision
register.

• Converts the value in a single-precision register to double-precision and writes the result to a double-precision
register.

T1
Armv8-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 sz 1 1 M 0 Vm

Single-precision to double-precision variant

Applies when sz == 0.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when sz == 1.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_DpFp);
2 double_to_single = (sz == '1');
3 if double_to_single then
4 if VFPSmallRegisterBank() && (M == '1') then UNDEFINED;
5 d = UInt(Vd:D);
6 m = UInt(M:Vm);
7 else
8 if VFPSmallRegisterBank() && (D == '1') then UNDEFINED;
9 d = UInt(D:Vd);

10 m = UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations(); ExecuteFPCheck();
3 if double_to_single then
4 S[d] = FPDoubleToSingle(D[m], TRUE);
5 else
6 D[d] = FPSingleToDouble(S[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1074

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.324 VCVT (between floating-point and fixed-point)

Floating-point Convert (between floating-point and fixed-point). Floating-point Convert (between floating-point
and fixed-point) converts a value in a register from floating-point to fixed-point, or from fixed-point to floating-point,
and places the result in the destination register. Software can specify the fixed-point value as either signed or
unsigned.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the
low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values
sign-extend the result value to the destination register width. Unsigned conversions to fixed-point values zero-extend
the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

T1
Armv8-M Floating-point Extension only, sf == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4

Fixed-point to half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision to fixed-point variant

Armv8.1-M Floating-point Extension only.

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Fixed-point to single-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision to fixed-point variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Fixed-point to double-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1075

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Double-precision to fixed-point variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

Decode for this encoding
1 dp_operation = (sf == '11');
2 CheckFPDecodeFaults(sf);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if sf == '01' && InITBlock() then UNPREDICTABLE;
5 to_fixed = (op == '1'); unsigned = (U == '1');
6 esize = if sx == '0' then 16 else 32;
7 fract = esize - UInt(imm4:i);
8 if to_fixed then
9 round_zero = TRUE;

10 else
11 round_nearest = TRUE;
12 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
13 if fract < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If fract < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<dt> Is the data type for the fixed-point number, encoded in the "U:sx" field. It can have the

following values:
S16 when U = 0, sx = 0
S32 when U = 0, sx = 1
U16 when U = 1, sx = 0
U32 when U = 1, sx = 1

<Sdm> Is the 32-bit name of the floating-point destination and source register, encoded in the "Vd:D"
field.

<Ddm> Is the 64-bit name of the floating-point destination and source register, encoded in the "D:Vd"
field.

<fbits> The number of fraction bits in the fixed-point number:
- If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded

in [imm4, i]
- If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded

in [imm4, i].

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_fixed then
5 case sf of
6 when '01'
7 result = FPToFixed(S[d][15:0], esize, fract, unsigned, round_zero, TRUE);
8 S[d] = if unsigned then ZeroExtend(result, 32) else SignExtend(result, 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1076

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 when '10'
10 result = FPToFixed(S[d], esize, fract, unsigned, round_zero, TRUE);
11 S[d] = if unsigned then ZeroExtend(result, 32) else SignExtend(result, 32);
12 when '11'
13 result = FPToFixed(D[d], esize, fract, unsigned, round_zero, TRUE);
14 D[d] = if unsigned then ZeroExtend(result, 64) else SignExtend(result, 64);
15 else
16 case sf of
17 when '01'
18 fp16 = FixedToFP(S[d][esize-1:0], 16, fract, unsigned, round_nearest, TRUE);
19 S[d] = Zeros(16):fp16;
20 when '10'
21 S[d] = FixedToFP(S[d][esize-1:0], 32, fract, unsigned, round_nearest, TRUE);
22 when '11'
23 D[d] = FixedToFP(D[d][esize-1:0], 64, fract, unsigned, round_nearest, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1077

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.325 VCVT (between floating-point and fixed-point) (vector)

Vector Convert between floating-point and fixed-point. Convert between floating-point and fixed-point values in
elements of a vector register. The number of fractional bits in the fixed-point value is specified by an immediate.
Fixed-point values can be specified as signed or unsigned. The floating-point to fixed-point operation uses the
Round towards Zero rounding mode. The fixed-point to floating-point operation uses the Round to Nearest
rounding mode. For floating-point to fixed-point operation, if the source value is outside the range of the target
fixed-point type, the result is saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Qd 0 1 1 fsi op 0 1 M 1 Qm 0

T1: VCVT variant

VCVT<v><q>.<dt> Qd, Qm, #<fbits>

Decode for this encoding
1 if imm6 == '000xxx' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 if D == '1' || M == '1' then UNDEFINED;
4 if imm6 == '0xxxxx' || (fsi == '0' && imm6 == '10xxxx') then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 esize = 16 << UInt(fsi);
8 elements = 32 DIV esize;
9 toFixed = (op == '1');

10 unsigned = (U == '1');
11 fracBits = 64 - UInt(imm6);
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter must be one of the following values:

F16.S16 Encoded as fsi = 0, op = 0, U = 0
Convert signed 16-bit integer to half-precision floating-point

F16.U16 Encoded as fsi = 0, op = 0, U = 1
Convert unsigned 16-bit integer to half-precision floating-point

S16.F16 Encoded as fsi = 0, op = 1, U = 0
Convert half-precision floating-point to signed 16-bit integer

U16.F16 Encoded as fsi = 0, op = 1, U = 1
Convert half-precision floating-point to unsigned 16-bit integer

F32.S32 Encoded as fsi = 1, op = 0, U = 0
Convert signed 32-bit integer to single-precision floating-point

F32.U32 Encoded as fsi = 1, op = 0, U = 1
Convert unsigned 32-bit integer to single-precision floating-point

S32.F32 Encoded as fsi = 1, op = 1, U = 0
Convert single-precision floating-point to signed 32-bit integer

U32.F32 Encoded as fsi = 1, op = 1, U = 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1078

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Convert single-precision floating-point to unsigned 32-bit integer
<Qd> Destination vector register.
<Qm> Source vector register.
<fbits> The number of fraction bits in the fixed-point number. For 16-bit fixed-point, this number

must be in the range 1-16. For 32-bit fixed-point, this number must be in the range 1-32. The
value of (64 - <fbits>) is encoded in imm6.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 if toFixed then
12 // Round to zero
13 value = FPToFixed(Elem[op1, e, esize], esize, fracBits, unsigned, TRUE, FALSE, pred);
14 else
15 // Round nearest
16 value = FixedToFP(Elem[op1, e, esize], esize, fracBits, unsigned, TRUE, FALSE, pred);
17 Elem[result, e, esize] = value[esize-1:0];
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1079

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.326 VCVT (between floating-point and integer)

Vector Convert between floating-point and integer. Convert between floating-point and integer values in elements of
a vector register. When converting to integer the value is rounded towards zero, when converting to floating-point
the value is rounded to nearest. For floating-point to integer operation, if the source value is outside the range of
the target integer type, the result is saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Qd 0 0 1 1 op 1 M 0 Qm 0

T1: VCVT variant

VCVT<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 toInteger = (op[1] == '1');
7 unsigned = (op[0] == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter must be one of the following values:

F16.S16 Encoded as op = 00, size = 01
Convert signed 16-bit integer to half-precision floating-point

F32.S32 Encoded as op = 00, size = 10
Convert signed 32-bit integer to single-precision floating-point

F16.U16 Encoded as op = 01, size = 01
Convert unsigned 16-bit integer to half-precision floating-point

F32.U32 Encoded as op = 01, size = 10
Convert unsigned 32-bit integer to single-precision floating-point

S16.F16 Encoded as op = 10, size = 01
Convert half-precision floating-point to signed 16-bit integer

S32.F32 Encoded as op = 10, size = 10
Convert single-precision floating-point to signed 32-bit integer

U16.F16 Encoded as op = 11, size = 01
Convert half-precision floating-point to unsigned 16-bit integer

U32.F32 Encoded as op = 11, size = 10
Convert single-precision floating-point to unsigned 32-bit integer

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1080

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 if toInteger then
12 // Round to zero
13 value = FPToFixed(Elem[op1, e, esize], esize, 0, unsigned, TRUE, FALSE, pred);
14 else
15 // Round to nearest
16 value = FixedToFP(Elem[op1, e, esize], esize, 0, unsigned, TRUE, FALSE, pred);
17 Elem[result, e, esize] = value[esize-1:0];
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1081

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.327 VCVT (between single and half-precision floating-point)

Vector Convert between half-precision and single-precision. Convert between half-precision and single-precision
floating-point values in elements of a vector register. For half-precision to single-precision operation, the top half
(T variant) or bottom half (B variant) of the source vector register is selected. For single-precision to half-precision
operation, the top half (T variant) or bottom half (B variant) of the destination vector register is selected and the
other half retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op 1 1 1 0 0 D 1 1 1 1 1 1 Qd T 1 1 1 0 0 0 M 0 Qm 1

T1: VCVT variant

VCVT<T><v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 elements = 4;
6 halfToSingle = (op == '1');
7 esize = if halfToSingle then 16 else 32;
8 top = UInt(T);
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies that the FP16 value read from or written to the top (T) or bottom (B) half of the FP32
vector register element.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter must be one of the following values:

F16.F32 Encoded as op = 0
Convert single-precision to half-precision

F32.F16 Encoded as op = 1
Convert half-precision to single-precision

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1082

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if halfToSingle then
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[top*(esize>>3)] == '0');
11 result = FPHalfToSingle(Elem[op1, top, 16], FALSE, pred);
12 else
13 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
14 pred = (elmtMask[0*(esize>>3)] == '0');
15 // Write to the selected half of the destination element
16 Elem[result, top, 16] = FPSingleToHalf(op1, FALSE, pred);
17 // Do not overwrite the other half
18 Elem[result, 1-top, 16] = Elem[Q[d, curBeat], 1-top, 16];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1083

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.328 VCVT (floating-point to integer)

Convert floating-point to integer with Round towards Zero. Convert floating-point to integer with Round towards
Zero converts a value in a register from floating-point to a 32-bit integer, using the Round towards Zero rounding
mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0

opc2

Vd 1 0 size

op = 1

1 M 0 Vm

Half-precision to unsigned single-precision variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 0 && size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision to signed single-precision variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 1 && size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision to unsigned single-precision variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 0 && size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision to signed single-precision variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 1 && size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision to unsigned single-precision variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 0 && size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision to signed single-precision variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 1 && size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1084

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 unsigned = (opc2 == '0'); round_zero = (op == '1');
5 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
6 if size == '01' && InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = FPToFixed(S[m][15:0], 32, 0, unsigned, round_zero, TRUE);
7 when '10'
8 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);
9 when '11'

10 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1085

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.329 VCVT (from floating-point to integer)

Vector Convert from floating-point to integer. Convert each element of a vector from floating-point to integer using
the specified rounding mode and place the results in a second vector. If a source element is outside the range of the
target integer type, the result element is saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Qd 0 0 0 RM op 1 M 0 Qm 0

T1: VCVT variant

VCVT<ANPM><v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (op == '1');
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<ANPM> The rounding mode.
This parameter must be one of the following values:
A Encoded as RM = 00

Round to nearest with ties to away
N Encoded as RM = 01

Round to nearest with ties to even
P Encoded as RM = 10

Round towards plus infinity
M Encoded as RM = 11

Round towards minus infinity
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter must be one of the following values:

S16.F16 Encoded as op = 0, size = 01
Convert half-precision floating-point to signed 16-bit integer

S32.F32 Encoded as op = 0, size = 10
Convert single-precision floating-point to signed 32-bit integer

U16.F16 Encoded as op = 1, size = 01
Convert half-precision floating-point to unsigned 16-bit integer

U32.F32 Encoded as op = 1, size = 10
Convert single-precision floating-point to unsigned 32-bit integer

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1086

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 U = unsigned;
12 Elem[result, e, esize] = FPToFixedDirected(Elem[op1, e, esize], 0, U, RM, FALSE, pred);
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1087

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.330 VCVT (integer to floating-point)

Convert integer to floating-point. Convert integer to floating-point converts a value in a register from a 32-bit
integer to floating-point, using the rounding mode specified by FPSCR, and places the result in the destination
register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
5 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 if size == '01' && InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<dt> Is the data type for the operand, encoded in the "op" field. It can have the following values:

U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1088

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 case size of
5 when '01'
6 fp16 = FixedToFP(S[m], 16, 0, unsigned, round_nearest, TRUE);
7 S[d] = Zeros(16):fp16;
8 when '10'
9 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);

10 when '11'
11 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1089

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.331 VCVTA

Convert floating-point to integer with Round to Nearest with Ties to Away. Convert floating-point to integer with
Round to Nearest with Ties to Away converts a value in a register from floating-point to a 32-bit integer using the
Round to Nearest with Ties to Away rounding mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 00 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1090

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1091

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.332 VCVTB

Floating-point Convert Bottom. Floating-point Convert Bottom does one of the following:

• Converts the half-precision value in the bottom half of a single-precision register to single-precision and
writes the result to a single-precision register.

• Converts the value in a single-precision register to half-precision and writes the result into the bottom half of
a single-precision register, preserving the other half of the target register.

• Converts the half-precision value in the bottom half of a single-precision register to double-precision and
writes the result to a double-precision register, without intermediate rounding.

• Converts the value in the double-precision register to half-precision and writes the result into the bottom half
of a single-precision register, preserving the other half of the target register, without intermediate rounding.

T1
Armv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz

T = 0

1 M 0 Vm

Half-precision to single-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Single-precision to half-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Half-precision to double-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Double-precision to half-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (sz == '1');
2 CheckDecodeFaults(if dp_operation then ExtType_DpFp else ExtType_SpFp);
3 if (VFPSmallRegisterBank() && dp_operation &&
4 ((M == '1' && op == '1') || (D == '1' && op == '0'))) then
5 UNDEFINED;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1092

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 convert_from_half = (op == '0');
7 lowbit = if T == '1' then 16 else 0;
8 if dp_operation then
9 if convert_from_half then

10 d = UInt(D:Vd); m = UInt(Vm:M);
11 else
12 d = UInt(Vd:D); m = UInt(M:Vm);
13 else
14 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if convert_from_half then
6 if dp_operation then
7 D[d] = FPHalfToDouble(S[m][lowbit+15:lowbit], TRUE);
8 else
9 S[d] = FPHalfToSingle(S[m][lowbit+15:lowbit], TRUE);

10 else
11 if dp_operation then
12 S[d][lowbit+15:lowbit] = FPDoubleToHalf(D[m], TRUE);
13 else
14 S[d][lowbit+15:lowbit] = FPSingleToHalf(S[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1093

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.333 VCVTM

Convert floating-point to integer with Round towards -Infinity. Convert floating-point to integer with Round
towards -Infinity converts a value in a register from floating-point to a 32-bit integer using the Round towards
-Infinity rounding mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 11 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1094

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1095

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.334 VCVTN

Convert floating-point to integer with Round to Nearest. Convert floating-point to integer with Round to Nearest
converts a value in a register from floating-point to a 32-bit integer using the Round to Nearest rounding mode,
and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 01 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1096

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1097

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.335 VCVTP

Convert floating-point to integer with Round towards +Infinity. Convert floating-point to integer with Round
towards +Infinity converts a value in a register from floating-point to a 32-bit integer using the Round towards
+Infinity rounding mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 10 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1098

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1099

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.336 VCVTR

Convert floating-point to integer. Convert floating-point to integer converts a value in a register from floating-point
to a 32-bit integer, using the rounding mode specified by FPSCR, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0

opc2

Vd 1 0 size

op = 0

1 M 0 Vm

Half-precision to unsigned single-precision variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 0 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision to signed single-precision variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 1 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision to unsigned single-precision variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 0 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision to signed single-precision variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 1 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision to unsigned single-precision variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 0 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision to signed single-precision variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 1 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1100

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 unsigned = (opc2 == '0'); round_zero = (op == '1');
5 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
6 if size == '01' && InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = FPToFixed(S[m][15:0], 32, 0, unsigned, round_zero, TRUE);
7 when '10'
8 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);
9 when '11'

10 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1101

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.337 VCVTT

Floating-point Convert Top. Floating-point Convert Top does one of the following:

• Converts the half-precision value in the top half of a single-precision register to single-precision and writes
the result to a single-precision register.

• Converts the value in a single-precision register to half-precision and writes the result into the top half of a
single-precision register, preserving the other half of the target register.

• Converts the half-precision value in the top half of a single-precision register to double-precision and writes
the result to a double-precision register, without intermediate rounding.

• Converts the value in the double-precision register to half-precision and writes the result into the top half of a
double-precision register, preserving the other half of the target register, without intermediate rounding.

T1
Armv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz

T = 1

1 M 0 Vm

Half-precision to single-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Single-precision to half-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Half-precision to double-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Double-precision to half-precision variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (sz == '1');
2 CheckDecodeFaults(if dp_operation then ExtType_DpFp else ExtType_SpFp);
3 if (VFPSmallRegisterBank() && dp_operation &&
4 ((M == '1' && op == '1') || (D == '1' && op == '0'))) then
5 UNDEFINED;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1102

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 convert_from_half = (op == '0');
7 lowbit = if T == '1' then 16 else 0;
8 if dp_operation then
9 if convert_from_half then

10 d = UInt(D:Vd); m = UInt(Vm:M);
11 else
12 d = UInt(Vd:D); m = UInt(M:Vm);
13 else
14 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if convert_from_half then
6 if dp_operation then
7 D[d] = FPHalfToDouble(S[m][lowbit+15:lowbit], TRUE);
8 else
9 S[d] = FPHalfToSingle(S[m][lowbit+15:lowbit], TRUE);

10 else
11 if dp_operation then
12 S[d][lowbit+15:lowbit] = FPDoubleToHalf(D[m], TRUE);
13 else
14 S[d][lowbit+15:lowbit] = FPSingleToHalf(S[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1103

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.338 VCX1

Custom Extension Instruction Class 1. Custom extension register instruction class 1 computes a value based on
an immediate, and optionally the destination value, and writes the result to the destination register. The source
and destination registers are within the Floating-point register file, and require the current execution state to have
access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 0 D 1 0 op1 Vd 0 coproc op2 0 op3

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX1A <coproc>, <Sd>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX1A <coproc>, <Dd>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 && sz == 0

VCX1 <coproc>, <Sd>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 && sz == 1

VCX1 <coproc>, <Dd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 CheckCDEDecodeFaults(cp, FALSE);
4 dp_operation = (sz == '1');
5 imm = op1:op2:op3;
6 acc = (A == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 if VFPSmallRegisterBank() && dp_operation && D == '1' then UNDEFINED;
9 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1104

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif dp_operation then
6 if acc then
7 D[d] = VCX_op1(ThisInstr(), D[d], 64);
8 else
9 D[d] = VCX_op0(ThisInstr(), 64);

10 else
11 if acc then
12 S[d] = VCX_op1(ThisInstr(), S[d], 32);
13 else
14 S[d] = VCX_op0(ThisInstr(), 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1105

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.339 VCX1 (vector)

Custom Extension Instruction Class 1 Vector. Custom extension register instruction class 1 vector computes a
value based on an immediate, and optionally the destination value, and writes the result to the destination register.
The source and destination registers are within the Floating-point and SIMD register file, and require the current
execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 0 D 1 0 op2 Vd 0 coproc op3 1 op4

Accumulator variant

Applies when A == 1

VCX1A<v> <coproc>, <Qd>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX1<v> <coproc>, <Qd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 CheckCDEDecodeFaults(cp, TRUE);
4 if D == '1' || Vd[0] == '1' then UNDEFINED;
5 imm = op1:op2:op3:op4;
6 acc = (A == '1');
7 d = UInt(D:Vd[3:1]);
8 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1106

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as
<Qd>*2.

<imm> Is the immediate encoded in "op1:op2:op3:op4".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op1(ThisInstr(), Q[d, curBeat], 32, TRUE, curBeat, elmtMask);
13 else
14 result = VCX_op0(ThisInstr(), 32, TRUE, curBeat, elmtMask);
15
16 for e = 0 to 3
17 // If the vector lane is not predicated
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1107

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.340 VCX2

Custom Extension Instruction Class 2. Custom extension register instruction class 2 computes a value based on a
source register, an immediate, and optionally the destination value, and writes the result to the destination register.
The source and destination registers are within the Floating-point register file, and require the current execution
state to have access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 0 D 1 1 op1 Vd 0 coproc op2 0 M op3 Vm

Single-register accumulator variant

Applies when A == 1 && sz == 0

VCX2A <coproc>, <Sd>, <Sm>, #<imm>

Double-register accumulator variant

Applies when A == 1 && sz == 1

VCX2A <coproc>, <Dd>, <Dm>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX2 <coproc>, <Sd>, <Sm>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX2 <coproc>, <Dd>, <Dm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 CheckCDEDecodeFaults(cp, FALSE);
4 dp_operation = (sz == '1');
5 imm = op1:op2:op3;
6 acc = (A == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
9 if VFPSmallRegisterBank() && dp_operation && (D == '1' || M == '1') then UNDEFINED;

10 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1108

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Dm> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "M:Vm"
fields.

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vm:M"
fields

<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif dp_operation then
6 if acc then
7 D[d] = VCX_op2(ThisInstr(), D[d], D[m], 64);
8 else
9 D[d] = VCX_op1(ThisInstr(), D[m], 64);

10 else
11 if acc then
12 S[d] = VCX_op2(ThisInstr(), S[d], S[m], 32);
13 else
14 S[d] = VCX_op1(ThisInstr(), S[m], 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1109

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.341 VCX2 (vector)

Custom Extension Instruction Class 2 Vector. Custom extension register instruction class 2 vector computes a
value based on a source register, an immediate, and optionally the destination value, and writes the result to the
destination register. The source and destination registers are within the Floating-point and SIMD register file, and
require the current execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 0 D 1 1 op2 Vd 0 coproc op3 1 M op4 Vm

Accumulator variant

Applies when A == 1

VCX2A<v> <coproc>, <Qd>, <Qm>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX2<v> <coproc>, <Qd>, <Qm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 CheckCDEDecodeFaults(cp, TRUE);
4 if D == '1' || M == '1' || Vd[0] == '1' || Vm[0] == '1' then UNDEFINED;
5 imm = op1:op2:op3:op4;
6 acc = (A == '1');
7 d = UInt(D:Vd[3:1]);
8 m = UInt(M:Vm[3:1]);
9 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1110

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as
<Qd>*2.

<Qm> Is the source vector register Q0 - Q7, encoded in the "M:Vm" fields as <Qm>*2.
<imm> Is the immediate encoded in "op1:op2:op3:op4".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op2(ThisInstr(), Q[d, curBeat], Q[m, curBeat], 32, TRUE,
13 curBeat, elmtMask);
14 else
15 result = VCX_op1(ThisInstr(), Q[m, curBeat], 32, TRUE, curBeat, elmtMask);
16
17 for e = 0 to 3
18 // If the vector lane is not predicated
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1111

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.342 VCX3

Custom Extension Instruction Class 3. Custom extension register instruction class 3 computes a value based on
two source registers, an immediate, and optionally the destination value, and writes the result to the destination
register. The source and destination registers are within the Floating-point register file, and require the current
execution state to have access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 1 D op1 Vn Vd 0 coproc N 0 M op2 Vm

Single-register accumulator variant

Applies when A == 1 && sz == 0

VCX3A <coproc>, <Sd>, <Sn>, <Sm>, #<imm>

Double-register accumulator variant

Applies when A == 1 && sz == 1

VCX3A <coproc>, <Dd>, <Dn>, <Dm>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX3 <coproc>, <Sd>, <Sn>, <Sm>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX3 <coproc>, <Dd>, <Dn>, <Dm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 CheckCDEDecodeFaults(cp, FALSE);
4 dp_operation = (sz == '1');
5 imm = op1:op2;
6 acc = (A == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

10 if VFPSmallRegisterBank() && dp_operation && (D == '1' || M == '1' || N == '1') then
11 UNDEFINED;
12 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1112

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Dm> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "M:Vm"
fields.

<Dn> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "N:Vn"
fields

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vm:M"
fields

<Sn> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vn:N"
fields.

<imm> Is the immediate encoded in "op1:op2".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif dp_operation then
6 if acc then
7 D[d] = VCX_op3(ThisInstr(), D[d], D[n], D[m], 64);
8 else
9 D[d] = VCX_op2(ThisInstr(), D[n], D[m], 64);

10 else
11 if acc then
12 S[d] = VCX_op3(ThisInstr(), S[d], S[n], S[m], 32);
13 else
14 S[d] = VCX_op2(ThisInstr(), S[n], S[m], 32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1113

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.343 VCX3 (vector)

Custom Extension Instruction Class 3 Vector. Custom extension register instruction class 3 vector computes a
value based on two source registers, an immediate, and optionally the destination value, and writes the result to the
destination register. The source and destination registers are within the Floating-point and SIMD register file, and
require the current execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 1 D op2 Vn Vd 0 coproc N 1 M op3 Vm

Accumulator variant

Applies when A == 1

VCX3A<v> <coproc>, <Qd>, <Qn>, <Qm>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX3<v> <coproc>, <Qd>, <Qn>, <Qm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 CheckCDEDecodeFaults(cp, TRUE);
4 if D == '1' || M == '1' || N == '1' || Vd[0] == '1' || Vm[0] == '1' || Vn[0] == '1' then
5 UNDEFINED;
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 d = UInt(D:Vd[3:1]);
9 n = UInt(N:Vn[3:1]);

10 m = UInt(M:Vm[3:1]);
11 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1114

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Qm> Is the source vector register Q0 - Q7, encoded in the "M:Vm" fields as <Qm>*2.
<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as

<Qd>*2.
<Qn> Is the source vector register Q0 - Q7, encoded in the "N:Vn" fields as <Qn>*2.
<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op3(ThisInstr(), Q[d, curBeat], Q[n, curBeat], Q[m, curBeat], 32,
13 TRUE, curBeat, elmtMask);
14 else
15 result = VCX_op2(ThisInstr(), Q[n, curBeat], Q[m, curBeat], 32,
16 TRUE, curBeat, elmtMask);
17
18 for e = 0 to 3
19 // If the vector lane is not predicated
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1115

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.344 VDDUP, VDWDUP

Vector Decrement and Duplicate, Vector Decrement with Wrap and Duplicate. Creates a vector with elements of
successively decrementing values, starting at an offset specified by Rn. The value is decremented by the specified
immediate value, which can take the following values: 1, 2, 4, 8. For all variants, the updated start offset is written
back to Rn. For the wrapping variant, the operation wraps so that the values written to the vector register elements
are in the range [0, Rm). However, if Rn and Rm are not a multiple of imm, or if Rn >= Rm, the operation is
CONSTRAINED UNPREDICTABLE, with the resulting values of Rn and Qd UNKNOWN.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 1 1 1 1 1

immh

1 1 0 Rm

imml

T1: VDWDUP variant

VDWDUP<v><q>.<dt> Qd, Rn, Rm, #<imm>

Decode for this encoding
1 if Rm == '111' then SEE "VDDUP";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if D == '1' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(Rm:'1');
7 n = UInt(Rn:'0');
8 wrap = TRUE;
9 imm2i = 1 << UInt(immh:imml);

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if Rm == '110' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 1 1 1 1 1

immh

1 1 0 1 1 1

imml

T2: VDDUP variant

VDDUP<v><q>.<dt> Qd, Rn, #<imm>

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1116

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn:'0');
6 m = integer UNKNOWN;
7 wrap = FALSE;
8 imm2i = 1 << UInt(immh:imml);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<Rn> Current offset to start writing into Qd. Must be a multiple of imm. This must be an even
numbered register.

Assembler symbols for T2 encodings

<Rn> Current offset to start writing into Qd. This must be an even numbered register.

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<Qd> Destination vector register.
<Rm> Size of the range. Must be a multiple of imm. This must be an odd numbered register.
<imm> The increment between successive element values.

This parameter must be one of the following values:
#1 Encoded as immh = 0, imml = 0
#2 Encoded as immh = 0, imml = 1
#4 Encoded as immh = 1, imml = 0
#8 Encoded as immh = 1, imml = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 curOffset = UInt(R[n]);
8 if wrap then
9 bufSize = UInt(R[m]);

10 if bufSize MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
11 if curOffset MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
12 if curOffset >= bufSize then CONSTRAINED_UNPREDICTABLE;
13 for e = 0 to elements - 1
14 Elem[result, e, esize] = curOffset[esize-1:0];
15 if wrap && curOffset == 0 then
16 curOffset = bufSize - imm2i;
17 else
18 curOffset = curOffset - imm2i;
19 R[n] = curOffset[31:0];
20
21 for e = 0 to 3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1117

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

22 if elmtMask[e] == '1' then
23 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1118

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.345 VDIV

Floating-point Divide. Floating-point Divide divides one floating-point value by another floating-point value and
writes the result to a third floating-point register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1119

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = Zeros(16) : FPDiv(S[n][15:0], S[m][15:0], TRUE);
7 when '10'
8 S[d] = FPDiv(S[n], S[m], TRUE);
9 when '11'

10 D[d] = FPDiv(D[n], D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1120

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.346 VDUP

Vector Duplicate. Set each element of a vector register to the value of a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 B 1 0 Qd 0 Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)

T1: VDUP variant

VDUP<v><q>.<size> Qd, Rt

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if B:E == '11' then UNDEFINED;
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 t = UInt(Rt);
6 case B:E of
7 when '00' esize = 32; elements = 1;
8 when '01' esize = 16; elements = 2;
9 when '10' esize = 8; elements = 4;

10 otherwise
11 UNDEFINED;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
32 Encoded as B = 0, E = 0
16 Encoded as B = 0, E = 1
8 Encoded as B = 1, E = 0

<Qd> Destination vector register.
<Rt> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 for e = 0 to elements-1
8 Elem[result, e, esize] = R[t][esize-1:0];
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1121

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1122

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.347 VEOR

Vector Bitwise Exclusive Or. Compute a bitwise EOR of a vector register with another vector register. The result
is written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 0 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VEOR variant

VEOR<v><q>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] EOR Q[m, curBeat];
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1123

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1124

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.348 VFMA

Floating-point Fused Multiply Accumulate. Floating-point Fused Multiply Accumulate multiplies two registers,
adds the product to the destination register, and places the result in the destination register. The result of the
multiply is not rounded before the addition.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1125

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(S[d][15:0], op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(S[d], op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(D[d], op64, D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1126

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.349 VFMA (vector by scalar plus vector, floating-point)

Vector Fused Multiply Accumulate. Multiply each element of a vector register by a general-purpose register value
to produce a vector of results. Each result is then added to its respective element in the destination register. The
result of each multiply is not rounded before the addition.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 Qn 1 Qda 0 1 1 1 0 N 1 0 0 Rm

T1: VFMA variant

VFMA<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qda> Accumulator vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 element2 = R[m][esize-1:0];
9 op3 = Q[da, curBeat];

10 for e = 0 to elements-1
11 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
12 pred = (elmtMask[e*(esize>>3)] == '0');
13 element1 = Elem[op1, e, esize];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1127

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 element3 = Elem[op3, e, esize];
15 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FALSE, pred);
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1128

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.350 VFMA, VFMS (floating-point)

Vector Fused Multiply Accumulate, Vector Fused Multiply Subtract. Multiply each element of the first source
vector register by its respective element in the second vector register. Each result is then added to or subtracted
from its respective element in the destination register. The result of each multiply is not rounded before the addition
or subtraction.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 Da 0 sz Qn 0 Qda 0 1 1 0 0 N 1 M 1 Qm 0

T1: VFMA variant

VFMA<v><q>.<dt> Qda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 add = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 Da 1 sz Qn 0 Qda 0 1 1 0 0 N 1 M 1 Qm 0

T2: VFMS variant

VFMS<v><q>.<dt> Qda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 add = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1129

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qda> Source and destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 op3 = Q[da, curBeat];

10 for e = 0 to elements-1
11 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
12 pred = (elmtMask[e*(esize>>3)] == '0');
13 element1 = Elem[op1, e, esize];
14 element2 = Elem[op2, e, esize];
15 element3 = Elem[op3, e, esize];
16 if !add then
17 element1 = FPNeg(element1);
18 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FALSE, pred);
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1130

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.351 VFMAS (vector by vector plus scalar, floating-point)

Vector Fused Multiply Accumulate Scalar. Multiply each element in the source vector by the respective element
from the destination vector and add to a scalar value. The resulting values are stored in the destination vector
register. The result of each multiply is not rounded before the addition.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 Qn 1 Qda 1 1 1 1 0 N 1 0 0 Rm

T1: VFMAS variant

VFMAS<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 add = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qda> Source and destination vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[da, curBeat];
9 element3 = R[m][esize-1:0];

10 for e = 0 to elements-1
11 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
12 pred = (elmtMask[e*(esize>>3)] == '0');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1131

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 element1 = Elem[op1, e, esize];
14 element2 = Elem[op2, e, esize];
15 if !add then
16 element1 = FPNeg(element1);
17 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FALSE, pred);
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1132

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.352 VFMS

Floating-point Fused Multiply Subtract. Floating-point Fused Multiply Subtract negates one register and multiplies
it with another register, adds the product to the destination register, and places the result in the destination register.
The result of the multiply is not rounded before the addition.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1133

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(S[d][15:0], op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(S[d], op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(D[d], op64, D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1134

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.353 VFNMA

Floating-point Fused Negate Multiply Accumulate. Floating-point Fused Negate Multiply Accumulate negates
one floating-point register value and multiplies it by another floating-point register value, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.
The result of the multiply is not rounded before the addition.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1135

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d][15:0]), op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1136

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.354 VFNMS

Floating-point Fused Negate Multiply Subtract. Floating-point Fused Negate Multiply Subtract multiplies together
two floating-point register values, adds the negation of the floating-point value in the destination register to the
product, and writes the result back to the destination register. The result of the multiply is not rounded before the
addition.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1137

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d][15:0]), op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1138

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.355 VHADD

Vector Halving Add. Add the value of the elements in the first source vector register to either the respective
elements in the second source vector register or a general-purpose register. The result is halved before being
written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 0 0 N 1 M 0 Qm 0

T1: VHADD variant

VHADD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 0 1 1 1 1 N 1 0 0 Rm

T2: VHADD variant

VHADD<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1139

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) + Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) + Int(Elem[op2, e, esize], unsigned);
15 Elem[result, e, esize] = value[esize:1];
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1140

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.356 VHCADD

Vector Halving Complex Add with Rotate. This instruction performs a complex addition of the first operand
with the second operand rotated in the complex plane by the specified amount. A 90 degree rotation of this
operand corresponds to a multiplication by a positive imaginary unit, while a 270 degree rotation corresponds to a
multiplication by a negative imaginary unit. Even and odd elements of the source vectors are interpreted to be the
real and imaginary components, respectively, of a complex number. The result is halved before being written to
the destination register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 0 Qd rot 1 1 1 1 N 0 M 0 Qm 0

T1: VHCADD variant

VHCADD<v><q>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if D:Qd == M:Qm && size == '10' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#90 Encoded as rot = 0
#270 Encoded as rot = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1141

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 case rot:curBeat[0] of
11 when '00' result = (SInt(Q[n, curBeat]) - SInt(Q[m, curBeat+1]))[32:1];
12 when '01' result = (SInt(Q[n, curBeat]) + SInt(Q[m, curBeat-1]))[32:1];
13 when '10' result = (SInt(Q[n, curBeat]) + SInt(Q[m, curBeat+1]))[32:1];
14 when '11' result = (SInt(Q[n, curBeat]) - SInt(Q[m, curBeat-1]))[32:1];
15 else
16 op1 = Q[n, curBeat];
17 op2 = Q[m, curBeat];
18 for e = 0 to elements-1
19 case rot:e[0] of
20 when '00' value = SInt(Elem[op1, e, esize]) - SInt(Elem[op2, e+1, esize]);
21 when '01' value = SInt(Elem[op1, e, esize]) + SInt(Elem[op2, e-1, esize]);
22 when '10' value = SInt(Elem[op1, e, esize]) + SInt(Elem[op2, e+1, esize]);
23 when '11' value = SInt(Elem[op1, e, esize]) - SInt(Elem[op2, e-1, esize]);
24 Elem[result, e, esize] = value[esize:1];
25
26 for e = 0 to 3
27 if elmtMask[e] == '1' then
28 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1142

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.357 VHSUB

Vector Halving Subtract. Subtract the value of the elements in the second source vector register from either the
respective elements in the first source vector register or a general-purpose register. The result is halved before
being written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 1 0 N 1 M 0 Qm 0

T1: VHSUB variant

VHSUB<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 1 1 1 1 1 N 1 0 0 Rm

T2: VHSUB variant

VHSUB<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1143

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) - Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) - Int(Elem[op2, e, esize], unsigned);
15 Elem[result, e, esize] = value[esize:1];
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1144

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.358 VIDUP, VIWDUP

Vector Increment and Duplicate, Vector Increment with Wrap and Duplicate. Creates a vector with elements of
successively incrementing values, starting at an offset specified by Rn. The value is incremented by the specified
immediate value, which can take the following values: 1, 2, 4, 8. For all variants, the updated start offset is written
back to Rn. For the wrapping variant, the operation wraps so that the values written to the vector register elements
are in the range [0, Rm). However, if Rn and Rm are not a multiple of imm, or if Rn >= Rm, the operation is
CONSTRAINED UNPREDICTABLE, with the resulting values of Rn and Qd UNKNOWN.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 0 1 1 1 1

immh

1 1 0 Rm

imml

T1: VIWDUP variant

VIWDUP<v><q>.<dt> Qd, Rn, Rm, #<imm>

Decode for this encoding
1 if Rm == '111' then SEE "VIDUP";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if D == '1' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(Rm:'1');
7 n = UInt(Rn:'0');
8 wrap = TRUE;
9 imm2i = 1 << UInt(immh:imml);

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if Rm == '110' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 0 1 1 1 1

immh

1 1 0 1 1 1

imml

T2: VIDUP variant

VIDUP<v><q>.<dt> Qd, Rn, #<imm>

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1145

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn:'0');
6 m = integer UNKNOWN;
7 wrap = FALSE;
8 imm2i = 1 << UInt(immh:imml);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<Rn> Current offset to start writing into Qd. Must be a multiple of imm. This must be an even
numbered register.

Assembler symbols for T2 encodings

<Rn> Current offset to start writing into Qd. This must be an even numbered register.

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<Qd> Destination vector register.
<Rm> Size of the range. Must be a multiple of imm. This must be an odd numbered register.
<imm> The increment between successive element values.

This parameter must be one of the following values:
#1 Encoded as immh = 0, imml = 0
#2 Encoded as immh = 0, imml = 1
#4 Encoded as immh = 1, imml = 0
#8 Encoded as immh = 1, imml = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 curOffset = UInt(R[n]);
8 if wrap then
9 bufSize = UInt(R[m]);

10 if bufSize MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
11 if curOffset MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
12 if curOffset >= bufSize then CONSTRAINED_UNPREDICTABLE;
13 for e = 0 to elements - 1
14 Elem[result, e, esize] = curOffset[esize-1:0];
15 curOffset = curOffset + imm2i;
16 if wrap && curOffset == bufSize then
17 curOffset = 0;
18 R[n] = curOffset[31:0];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1146

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1147

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.359 VINS

Floating-point move Insertion. Floating-point move Insertion copies the lower 16 bits of the 32-bit source
Floating-point Extension register into the upper 16 bits of the 32-bit destination Floating-point Extension register,
while preserving the values in the remaining bits.

T1
Armv8.1-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm

T1 variant

VINS<q>.F16 <Sd>, <Sm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_HpFp);
2 d = UInt(Vd:D); m = UInt(Vm:M);
3 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 S[d][31:16] = S[m][15:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1148

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.360 VLD2

Vector Deinterleaving Load - Stride 2. Loads two 64-bit contiguous blocks of data from memory and writes them
to parts of 2 destination registers. The parts of the destination registers written to, and the offsets from the base
address register, are determined by the pat parameter. If the instruction is executed 2 times with the same base
address and destination registers, but with different pat values, the effect is to load data from memory and to
deinterleave it into the specified registers with a stride of 2. The base address register can optionally be incremented
by 32.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 1 Rn Qd 1 1 1 1 size (0) pat (0) (0) (0) (0) 0

T1: VLD2 variant (Non write-back: W=0)

VLD2<pat><q>.<size> {Qd, Qd+1}, [Rn]

T1: VLD2 variant (Writeback: W=1)

VLD2<pat><q>.<size> {Qd, Qd+1}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 6 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 0
1 Encoded as pat = 1

<q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Destination vector register.
<Rn> The base register for the target address.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1149

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[0] EOR curBeat[1]));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[0]);
16 xE = UInt(curBeat[0] : e[1]);
17 when 16
18 y = UInt(e[0]);
19 xE = UInt(curBeat[0]);
20 when 32
21 y = UInt(curBeat[0]);
22 xE = 0;
23 Elem[Q[d + y, xBeat], xE, esize] = MemA_MVE[address, esize DIV 8];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 32;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1150

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.361 VLD4

Vector Deinterleaving Load - Stride 4. Loads two 64-bit contiguous blocks of data from memory and writes them
to parts of 4 destination registers. The parts of the destination registers written to, and the offsets from the base
address register, are determined by the pat parameter. If the instruction is executed 4 times with the same base
address and destination registers, but with different pat values, the effect is to load data from memory and to
deinterleave it into the specified registers with a stride of 4. The base address register can optionally be incremented
by 64.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 1 Rn Qd 1 1 1 1 size pat (0) (0) (0) (0) 1

T1: VLD4 variant (Non write-back: W=0)

VLD4<pat><q>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]

T1: VLD4 variant (Writeback: W=1)

VLD4<pat><q>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 4 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 00
1 Encoded as pat = 01
2 Encoded as pat = 10
3 Encoded as pat = 11

<q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1151

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Qd> Destination vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[1:0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[1] EOR (pattern[0] AND curBeat[1])));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[1:0]);
16 xE = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
17 when 16
18 y = UInt(curBeat[0] : e[0]);
19 xE = UInt(pattern[0] EOR curBeat[1]);
20 when 32
21 y = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
22 xE = 0;
23 Elem[Q[d + y, xBeat], xE, esize] = MemA_MVE[address, esize DIV 8];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 64;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1152

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.362 VLDM

Floating-point Load Multiple. Floating-point Load Multiple loads multiple extension registers from consecutive
memory locations using an address from a general-purpose register.

This instruction is subject to stack limit checking.

This instruction is used by the alias VPOP.

This instruction is interrupt-continuable.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm7

imm1 = 0

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1 && Rn != 1111.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '0' && U == '1' && W == '0' && Rn == '1111' then SEE "VSCCLRM";
3 if P == '1' && W == '0' then SEE VLDR;
4 CheckDecodeFaults(ExtType_MveOrFp);
5 if P == U && W == '1' then UNDEFINED;
6 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
7 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
8 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 regs = UInt(imm8) DIV 2;

10 if n == 15 then UNPREDICTABLE;
11 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
12 if !HasArchVersion(Armv8p1) then
13 if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1153

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

• One or more of the floating-point registers are UNKNOWN. If the instruction specifies write-back, the base
register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1 && Rn != 1111.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for this encoding
1 if P == '0' && U == '0' then SEE "Related encodings";
2 if P == '0' && U == '1' && W == '0' && Rn == '1111' then SEE "VSCCLRM";
3 if P == '1' && W == '0' then SEE VLDR;
4 CheckDecodeFaults(ExtType_MveOrFp);
5 if P == '1' && U == '1' && W == '1' then UNDEFINED;
6 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
7 single_regs = TRUE; add = (U == '1'); wback = (W == '1');
8 d = UInt(Vd:D); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 regs = UInt(imm8);

10 if n == 15 then UNPREDICTABLE;
11 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the floating-point registers are UNKNOWN. If the instruction specifies write-back, the base
register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Alias conditions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1154

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Alias preferred when
VPOP P == ‘0‘ &&

U == ‘1‘ &&
W == ‘1‘ &&
Rn == ‘1101‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register write-back. Encoded in the "W" field as 1 if present, otherwise 0.
<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first

register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit must be checked
8 if n == 13 && wback then
9 // If memory operation is not performed as a result of a stack limit violation,

10 // and the write-back of the SP itself does not raise a stack limit violation, it
11 // is "IMPLEMENTATION_DEFINED" whether a SPLIM exception is raised.
12 // Arm recommends that any instruction which discards a memory access as
13 // a result of a stack limit violation, and where the write-back of the SP itself
14 // does not raise a stack limit violation, generates an SPLIM exception.
15 if boolean IMPLEMENTATION_DEFINED "SPLIM exception on invalid memory access" then
16 if ViolatesSPLim(LookUpSP(), address) then
17 if HaveMainExt() then
18 UFSR.STKOF = '1';
19 // If the Main Extension is not implemented the fault always escalates to
20 // a HardFault
21 excInfo = CreateException(UsageFault);
22 HandleException(excInfo);
23 applylimit = TRUE;
24 else
25 applylimit = FALSE;
26
27 // Memory operation only performed if limit not violated
28 if !(applylimit && ViolatesSPLim(LookUpSP(), regval)) then
29 for r = 0 to regs-1
30 if single_regs then
31 if (d+r) < 32 || !VFPSmallRegisterBank() then
32 S[d+r] = MemA[address, 4];
33 address = address+4;
34 else
35 if (d+r) < 16 || !VFPSmallRegisterBank() then
36 word1 = MemA[address, 4]; word2 = MemA[address+4, 4];
37 // Combine the word-aligned words in the correct order for
38 // current endianness.
39 D[d+r] = if BigEndian(address, 8) then word1:word2 else word2:word1;
40 elsif boolean UNKNOWN then
41 - = MemA[address, 4]; - = MemA[address+4, 4];
42 address = address+8;
43

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1155

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

44 // If the stack pointer is being updated a fault will be raised if
45 // the limit is violated
46 if wback then RSPCheck[n] = regval;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1156

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.363 VLDR

Floating-point Load Register. Floating-point Load Register loads a Floating-point Extension register from memory,
using an address from a general-purpose register, with an optional offset.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 1 imm8

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 if VFPSmallRegisterBank() && (D == '1') then UNDEFINED;
3 fp_size = 64; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
4 d = UInt(D:Vd); n = UInt(Rn);

T2
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 0 imm8

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 32; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
3 d = UInt(Vd:D); n = UInt(Rn);

T3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1157

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 0 1 imm8

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 16; add = (U == '1'); imm32 = ZeroExtend(imm8:'0', 32);
3 d = UInt(Vd:D); n = UInt(Rn);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
.64 Optional data size specifiers.
<Dd> The destination register for a doubleword load.
.32 Optional data size specifiers.
<Sd> The destination register for a singleword load.
<label> The label of the literal data item to be loaded. The assembler calculates the required value of

the offset from the Align(PC, 4) value of the instruction to this label. Permitted values are
multiples of 4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal to
the offset and add == TRUE. If the offset is negative, imm32 is equal to minus the offset and
add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> The immediate offset used for forming the address. For the immediate forms of the syntax,
<imm> can be omitted, in which case the #0 form of the instruction is assembled. Permitted
values are multiples of 4 in the range 0 to 1020.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 base = if n == 15 then Align(PC,4) else R[n];
5 address = if add then (base + imm32) else (base - imm32);
6 case fp_size of
7 when 16
8 S[d] = Zeros(16) : MemA[address, 2];
9 when 32

10 S[d] = MemA[address, 4];
11 when 64
12 word1 = MemA[address, 4]; word2 = MemA[address+4, 4];
13 // Combine the word-aligned words in the correct order for current endianness.
14 D[d] = if BigEndian(address, 8) then word1:word2 else word2:word1;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1158

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1159

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.364 VLDR (System Register)

Load System Register. Load a system register from memory. The target address is calculated from a base register
plus an immediate offset. Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is
executed from Non-secure state. If CP10 is not enabled and either the Main extension is not implemented or the
Floating-point context is active, access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS
will not trigger lazy state preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not
trigger Floating-point context creation regardless of the value of FPCCR.ASPEN. FPSCR_nzcvqc allows access to
FPSCR condition and saturation flags. The VPR register can only be accessed from privileged mode. FPCXT_NS,
enables saving and restoration of the Non-secure floating-point context. If neither the Floating-point extension nor
MVE are implemented and Floating-point context is active then the current FPSCR value is accessed. FPCXT_S,
enables saving and restoration of the Secure floating-point context.

This instruction is subject to stack limit checking.

T1
Armv8.1-M Floating-point Extension or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A

regh

W 1 Rn regl 0 1 1 1 1 1 imm

T1: VLDR variant (Offset: P=1, W=0)

VLDR<c><q> <reg>, [Rn{, #+/-<imm>}]

T1: VLDR variant (Pre-indexed: P=1, W=1)

VLDR<c><q> <reg>, [Rn, #+/-<imm>]!

T1: VLDR variant (Post-indexed: P=0, W=1)

VLDR<c><q> <reg>, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HasArchVersion(Armv8p1) then
3 UFSR.NOCP = '1';
4 HandleException(CreateException(UsageFault));
5 fpCxtAnyAccess = (regh:regl == '111x');
6 fpCxtNSAccess = (regh:regl == '1110');
7 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
8 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
9 if fpCxtNSAccess then

10 if !HaveMainExt() || !fpInactive then
11 HandleException(CheckCPEnabled(10));
12 else
13 CheckDecodeFaults(ExtType_MveOrFp);
14 n = UInt(Rn);
15 index = (P == '1');
16 add = (A == '1');
17 wback = (W == '1');
18 r = regh:regl;
19 imm32 = ZeroExtend(imm:'00', 32);
20 if (regh:regl) IN {'10xx', '01xx', '0011', '0000'} then CONSTRAINED_UNPREDICTABLE;
21 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1160

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<reg> The system register to access

This parameter must be one of the following values:
FPSCR Encoded as regh = 0, regl = 001
FPSCR_nzcvqc Encoded as regh = 0, regl = 010
VPR Encoded as regh = 1, regl = 100
P0 Encoded as regh = 1, regl = 101
FPCXT_NS Encoded as regh = 1, regl = 110
FPCXT_S Encoded as regh = 1, regl = 111

<Rn> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
11 address = if index then offsetAddr else R[n];
12
13 // Determine if the stack pointer limit should be checked
14 if n == 13 && wback then
15 violatesLimit = ViolatesSPLim(LookUpSP(), offsetAddr);
16 else
17 violatesLimit = FALSE;
18 // Memory operation only performed if limit not violated
19 if !violatesLimit then
20 case r of
21 when '0001'
22 FPSCR = MemA[address, 4];
23 when '0010'
24 // Only update the N, Z, C, V, and QC flags
25 FPSCR[31:27] = MemA[address, 4][31:27];
26 when '1100'
27 if HaveMve() then
28 if CurrentModeIsPrivileged() then
29 VPR = MemA[address, 4];
30 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
31 - = MemA[address, 4];
32 else
33 UNPREDICTABLE;
34 when '1101'
35 if HaveMve() then
36 VPR.P0 = MemA[address, 4][15:0];
37 else
38 UNPREDICTABLE;
39 when '1110'
40 if (HaveFPExt() || HaveMve()) && !fpInactive then
41 FPCXT_Type cxt = MemA[address, 4];
42 CONTROL_S.SFPA = cxt.SFPA;
43 FPSCR = Zeros(4):cxt[27:0];
44 when '1111'
45 FPCXT_Type cxt = MemA[address, 4];
46 CONTROL_S.SFPA = cxt.SFPA;
47 FPSCR = Zeros(4):cxt[27:0];
48 otherwise
49 UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1161

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

50
51 // If the stack pointer is being updated a fault will be raised if
52 // the limit is violated
53 if wback then
54 RSPCheck[n] = offsetAddr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1162

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.365 VLDRB, VLDRH, VLDRW

Vector Load Register. Load consecutive elements from memory into a destination vector register. Each element
loaded will be the zero or sign-extended representation of the value in memory. In indexed mode, the target address
is calculated from a base register offset by an immediate value. Otherwise, the base register address is used directly.
The sum of the base register and the immediate value can optionally be written back to the base register. Predicated
lanes are zeroed instead of retaining their previous values.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 P A 0 W 1 0 Rn Qd 0 1 1 1 size imm

T1: VLDRB variant (Offset: P=1, W=0)

VLDRB<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T1: VLDRB variant (Pre-indexed: P=1, W=1)

VLDRB<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T1: VLDRB variant (Post-indexed: P=0, W=1)

VLDRB<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '00' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 8;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm, 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = (U == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 P A 0 W 1 1 Rn Qd 0 1 1 1 size imm

T2: VLDRH variant (Offset: P=1, W=0)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1163

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VLDRH<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T2: VLDRH variant (Pre-indexed: P=1, W=1)

VLDRH<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T2: VLDRH variant (Post-indexed: P=0, W=1)

VLDRH<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '0x' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 16;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm:'0', 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = (U == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 1 Rn Qd 1 1 1 1 0 0 imm

T5: VLDRB variant (Offset: P=1, W=0)

VLDRB<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T5: VLDRB variant (Pre-indexed: P=1, W=1)

VLDRB<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T5: VLDRB variant (Post-indexed: P=0, W=1)

VLDRB<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 8;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm, 32);
11 index = (P == '1');
12 add = (A == '1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1164

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 1 Rn Qd 1 1 1 1 0 1 imm

T6: VLDRH variant (Offset: P=1, W=0)

VLDRH<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T6: VLDRH variant (Pre-indexed: P=1, W=1)

VLDRH<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T6: VLDRH variant (Post-indexed: P=0, W=1)

VLDRH<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 16;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'0', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T7
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 1 Rn Qd 1 1 1 1 1 0 imm

T7: VLDRW variant (Offset: P=1, W=0)

VLDRW<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T7: VLDRW variant (Pre-indexed: P=1, W=1)

VLDRW<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1165

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T7: VLDRW variant (Post-indexed: P=0, W=1)

VLDRW<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 32;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'00', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 2.

Assembler symbols for T5 encodings

<dt> Data size. This parameter is ".8".
<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T6 encodings

<dt> Data size. This parameter is ".16".
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 2.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1166

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for T7 encodings

<dt> Data size. This parameter is ".32".
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
8 address = if index then offsetAddr else R[n];
9 address = address + (curBeat * mbytes * elements);

10
11 for e = 0 to elements-1
12 if elmtMask[e*(esize >> 3)] == '1' then
13 Elem[result, e, esize] = Extend(MemA_MVE[address + (e * mbytes), mbytes], unsigned);
14
15 // The optional write back to the base register is only performed on the
16 // last beat of the instruction.
17 if wback && IsLastBeat() then
18 R[n] = offsetAddr;
19
20 Q[d, curBeat] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1167

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.366 VLDRB, VLDRH, VLDRW, VLDRD (vector)

Vector Gather Load. Load a byte, halfword, word, or doubleword from memory at the address contained in either:

a) A base register R[n] plus an offset contained in each element of Q[m], optionally shifted by the element size, or

b) Each element of Q[m] plus an immediate offset. The base element can optionally be written back, irrespective
of predication, with that value incremented by the immediate or by the immediate scaled by the memory element
size.

Each element loaded will be the zero or sign-extended representation of the value in memory. The result is written
back into the corresponding element in the destination vector register Q[d]. Predicated lanes are zeroed instead of
retaining their previous values.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 0 M 0 Qm os

T1: VLDRB variant

VLDRB<v><q>.<dt> Qd, [Rn, Qm]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' || (U == '0' && size == '00') then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '00';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 8;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
19 if os == '1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 0 M 1 Qm os

T2: VLDRH variant

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1168

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VLDRH<v><q>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' || size == '00' || (U == '0' && size == '01') then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '01';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 16;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 1 M 0 Qm os

T3: VLDRW variant

VLDRW<v><q>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if U == '0' || size != '10' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '10';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 32;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 1 M 1 Qm os

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1169

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T4: VLDRD variant

VLDRD<v><q>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if U == '0' || size != '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '11';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 64;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 1 Qm (0) Qd 1 1 1 1 0 M imm

T5: VLDRW variant (Non write-back: W=0)

VLDRW<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]

T5: VLDRW variant (Write-back: W=1)

VLDRW<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '10';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 32;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 unsigned = TRUE;
16 wback = (W == '1');
17 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
18 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;

T6

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1170

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 1 Qm (0) Qd 1 1 1 1 1 M imm

T6: VLDRD variant (Non write-back: W=0)

VLDRD<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]

T6: VLDRD variant (Write-back: W=1)

VLDRD<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '11';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 64;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 unsigned = TRUE;
16 wback = (W == '1');
17 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
18 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1171

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U32 Encoded as size = 10, U = 1
<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the

base address.

Assembler symbols for T3 encodings

<dt> Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
This parameter must be the following value:
U32 Encoded as size = 10, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T4 encodings

<dt> Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
This parameter must be the following value:
U64 Encoded as size = 11, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T5 encodings

<dt> Data size. This parameter is ".32".
<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Assembler symbols for T6 encodings

<dt> Data size. This parameter is ".64".
<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 8.

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Rn> The base register for the target address.
<os> The amount by which the vector offset is left shifted by before being added to the

general-purpose base address. If the value is present it must correspond to memory transfer
size (1=half word, 2=word, 3=double word).
This parameter must be one of the following values:
<omitted> Encoded as os = 0
<Offset scaled> Encoded as os = 1

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1172

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 64 then
8 // 64 bit accesses read their base address or offset from the first element
9 // in each pair of 32 bit elements.

10 if useReg then
11 baseAddr = R[n];
12 offset = Q[m, UInt(curBeat[1]:'0')];
13 if scaleOffset then
14 offset = LSL(offset, UInt(msize));
15 else
16 baseAddr = Q[m, UInt(curBeat[1]:'0')];
17 offsetAddress = if add then baseAddr + offset else baseAddr - offset;
18 bigEndian = BigEndian(offsetAddress, 8);
19 address = (if (curBeat[0] == '0') == bigEndian then offsetAddress + 4
20 else offsetAddress);
21 if elmtMask[0] == '1' then
22 result = MemA_MVE[address, 4];
23 // Address write-back is not predicated
24 if wback && (curBeat[0] == '1') then
25 Q[m, curBeat-1] = offsetAddress[31:0];
26 else
27 // 32, 16, or 8 bit accesses
28 for e = 0 to (elements - 1)
29 if useReg then
30 baseAddr = R[n];
31 offset = ZeroExtend(Elem[Q[m, curBeat], e, esize], 32);
32 if scaleOffset then
33 offset = LSL(offset, UInt(msize));
34 else
35 // 16 / 8 bit vector+immediate accesses are not supported
36 baseAddr = Q[m, curBeat];
37 address = if add then baseAddr + offset else baseAddr - offset;
38 if elmtMask[e*(esize>>3)] == '1' then
39 memValue = MemA_MVE[address, mesize DIV 8];
40 Elem[result, e, esize] = Extend(memValue, esize, unsigned);
41 // Address write-back is not predicated
42 if wback then
43 Elem[Q[m, curBeat], e, esize] = address[esize-1:0];
44
45
46 Q[d, curBeat] = result;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1173

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.367 VLLDM

Floating-point Lazy Load Multiple. Floating-point Lazy Load Multiple restores the contents of the Secure
Floating-point registers that were protected by a VLSTM instruction, and marks the Floating-point context as
active.

If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT == 1), this
instruction deactivates lazy state preservation and enables access to the Secure Floating-point registers.

If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state preservation was not enabled
(FPCCR.LSPEN == 0) or because a Floating-point instruction caused the Secure Floating-point register contents
to be stored to memory, this instruction loads the stored Secure Floating-point register contents back into the
Floating-point registers.

If Secure Floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension and MVE are not implemented, this instruction is available in Secure state, but
behaves as a NOP.

T1
Armv8-M Main Extension only

• In Armv8.0-M, bit[7] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[7] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 1 Rn (0) (0) (0) (0) 1 0 1 0 [0] (0) (0) (0) (0) (0) (0) (0)

T1 variant

VLLDM{<c>}{<q>} <Rn> {, <reglist>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() || !VFPSmallRegisterBank() then UNDEFINED;
4 lowRegsOnly = TRUE;
5 if n == 15 then UNPREDICTABLE;

T2
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 1 Rn (0) (0) (0) (0) 1 0 1 0 1 (0) (0) (0) (0) (0) (0) (0)

T2 variant

VLLDM{<c>}{<q>} <Rn>, <reglist>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() then UNDEFINED;
4 lowRegsOnly = FALSE;
5 if n == 15 then UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1174

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<reglist> For encoding T1: Optional register list of {D0-D15}, having the register list is the preferred

disassembly
For encoding T2: Mandatory register list of {D0-D31}

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if CONTROL_S.SFPA == '1' then
5 // Check access to the co-processor is permitted
6 exc = CheckCPEnabled(10);
7 HandleException(exc);
8
9 if FPCCR_S.LSPACT == '1' then // state in floating-point is still valid

10 FPCCR_S.LSPACT = '0';
11 else
12 if !IsAligned(R[n],8) then
13 UFSR.UNALIGNED = '1';
14 exc = CreateException(UsageFault);
15 HandleException(exc);
16
17 for i = 0 to 15
18 if exc.fault == NoFault then
19 (exc, S[i]) = MemA_with_priv_security(R[n] + (4*i), 4, AccType_NORMAL,
20 FindMemPriv(), IsSecure(), TRUE);
21 if exc.fault == NoFault then
22 (exc, FPSCR) = MemA_with_priv_security(R[n] + 0x40, 4, AccType_NORMAL,
23 FindMemPriv(), IsSecure(), TRUE);
24 if exc.fault == NoFault then
25 if HaveMve() then
26 (exc, VPR) = MemA_with_priv_security(R[n] + 0x44, 4, AccType_NORMAL,
27 FindMemPriv(), IsSecure(), TRUE);
28 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
29 (exc, -) = MemA_with_priv_security(R[n] + 0x44, 4, AccType_NORMAL,
30 FindMemPriv(), IsSecure(), TRUE);
31
32 if FPCCR_S.TS == '1' then
33 for i = 0 to 15
34 if exc.fault == NoFault then
35 (exc, S[i+16]) = MemA_with_priv_security(R[n] + 0x48 + (4*i), 4,
36 AccType_NORMAL,
37 FindMemPriv(),
38 IsSecure(), TRUE);
39 if !lowRegsOnly && boolean UNKNOWN then
40 for i = 0 to 31
41 if exc.fault == NoFault then
42 (exc, -) = MemA_with_priv_security(R[n] + 0x88 + (4*i), 4,
43 AccType_NORMAL,
44 FindMemPriv(),
45 IsSecure(), TRUE);
46 // If an interrupt or a memory fault causes this instruction to abort,
47 // then all the registers that would have been loaded must be cleared.
48 if exc.fault != NoFault then
49 InvalidateFPRegs(TRUE, FPCCR_S.TS == '1');
50
51 HandleException(exc);
52
53 CONTROL.FPCA = '1';

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1175

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data being loaded.

• The point at which an asynchronous exception is taken does not vary based on the value or values being
loaded by this instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1176

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.368 VLSTM

Floating-point Lazy Store Multiple. Floating-point Lazy Store Multiple stores the contents of Secure Floating-point
registers to a prepared stack frame, and clears the Secure Floating-point registers.

If Floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a Floating-point instruction
other than VLSTM or VLLDM is executed:

• The contents of Secure Floating-point registers are stored to memory.

• The Secure Floating-point registers are cleared.

If Secure Floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension and MVE are not implemented, this instruction is available in Secure state, but
behaves as a NOP.

T1
Armv8-M Main Extension only

• In Armv8.0-M, bit[7] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[7] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 0 Rn (0) (0) (0) (0) 1 0 1 0 [0] (0) (0) (0) (0) (0) (0) (0)

T1 variant

VLSTM{<c>}{<q>} <Rn> {, <reglist>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() || !VFPSmallRegisterBank() then UNDEFINED;
4 lowRegsOnly = TRUE;
5 if n == 15 then UNPREDICTABLE;

T2
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 0 Rn (0) (0) (0) (0) 1 0 1 0 1 (0) (0) (0) (0) (0) (0) (0)

T2 variant

VLSTM{<c>}{<q>} <Rn>, <reglist>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() then UNDEFINED;
4 lowRegsOnly = FALSE;
5 if n == 15 then UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1177

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<reglist> For encoding T1: Optional register list of {D0-D15}, having the register list is the preferred

disassembly
For encoding T2: Mandatory register list of {D0-D31}

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if CONTROL_S.SFPA == '1' then
5 // Check access to the co-processor is permitted
6 exc = CheckCPEnabled(10);
7 HandleException(exc);
8
9 // LSPACT should not be active at the same time as there is active

10 // floating-point state. This is a possible attack scenario so raise
11 // a SecureFault.
12 lspact = if FPCCR_S.S == '1' then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
13 if lspact == '1' then
14 SFSR.LSERR = '1';
15 exc = CreateException(SecureFault);
16 HandleException(exc);
17 else
18 if !IsAligned(R[n],8) then
19 UFSR.UNALIGNED = '1';
20 exc = CreateException(UsageFault);
21 HandleException(exc);
22
23 if FPCCR.LSPEN == '0' then
24 for i = 0 to 15
25 MemA[R[n] + (4*i), 4] = S[i];
26 MemA[R[n] + 0x40, 4] = FPSCR;
27 if HaveMve() then
28 MemA[R[n] + 0x44, 4] = VPR;
29 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
30 MemA[R[n] + 0x44, 4] = bits(32) UNKNOWN;
31
32 pushFPCalleeFrame = FPCCR.TS == '1';
33 if pushFPCalleeFrame then
34 for i = 0 to 15
35 MemA[R[n] + 0x48 + (4*i), 4] = S[i+16];
36
37 InvalidateFPRegs(pushFPCalleeFrame, pushFPCalleeFrame);
38
39 if !lowRegsOnly && boolean UNKNOWN then
40 for i = 0 to 31
41 MemA[R[n] + 0x88 + (4*i), 4] = bits(32) UNKNOWN;
42 else
43 UpdateFPCCR(R[n], FALSE);
44
45 CONTROL.FPCA = '0';

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1178

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1179

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.369 VMAX, VMAXA

Vector Maximum, Vector Maximum Absolute. Find the maximum value of the elements in the source operands,
and store the result in the corresponding destination elements.

The absolute variant takes the elements from the destination vector, treating them as unsigned, and compares them
to the absolute values of the corresponding elements in the source vector. The larger values are stored back into the
destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 1 0 N 1 M 0 Qm 0

T1: VMAX variant

VMAX<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 absolute = FALSE;
8 unsigned = U == '1';
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da 1 1 size 1 1 Qda 0 1 1 1 0 1 0 M 0 Qm 1

T2: VMAXA variant

VMAXA<v><q>.<dt> Qda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || M == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(M:Qm);
6 d = da;
7 n = da;
8 absolute = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1180

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 unsigned = FALSE;
10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value1 = Int(Elem[op1, e, esize], unsigned || absolute);
11 value2 = Int(Elem[op2, e, esize], unsigned);
12 if absolute then
13 value2 = Abs(value2);
14 Elem[result, e, esize] = Max(value1, value2)[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and the T1 variant of this instruction is being executed:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1181

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1182

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.370 VMAXNM

Floating-point Maximum Number. Floating-point Maximum Number determines the floating-point maximum
number.

NaN handling is specified by IEEE754-2008.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if InITBlock() then UNPREDICTABLE;
6 maximum = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1183

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 case size of
4 when '01'
5 if maximum then
6 S[d] = Zeros(16) : FPMaxNum(S[n][15:0], S[m][15:0], TRUE);
7 else
8 S[d] = Zeros(16) : FPMinNum(S[n][15:0], S[m][15:0], TRUE);
9 when '10'

10 if maximum then
11 S[d] = FPMaxNum(S[n], S[m], TRUE);
12 else
13 S[d] = FPMinNum(S[n], S[m], TRUE);
14 when '11'
15 if maximum then
16 D[d] = FPMaxNum(D[n], D[m], TRUE);
17 else
18 D[d] = FPMinNum(D[n], D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1184

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.371 VMAXNM, VMAXNMA (floating-point)

Vector Maximum, Vector Maximum Absolute. Find the floating-point maximum number of the elements in the
source operands, and store the result in the corresponding destination elements. It handles NaNs in consistence
with the IEEE754-2008 specification, and returns the numerical operand when one operand is numerical and the
other is a quiet NaN.

The absolute variant takes the absolute values of the elements from the destination vector and compares them to
the absolute values of the corresponding elements in the source vector. The larger values are stored back into the
destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Qn 0 Qd 0 1 1 1 1 N 1 M 1 Qm 0

T1: VMAXNM variant

VMAXNM<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 absolute = FALSE;
7 esize = if sz == '1' then 16 else 32;
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 1 1 1 1 Qda 0 1 1 1 0 1 0 M 0 Qm 1

T2: VMAXNMA variant

VMAXNMA<v><q>.<dt> Qda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 d = da;
6 n = da;
7 absolute = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1185

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = if sz == '1' then 16 else 32;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 predicated = (elmtMask[e*(esize>>3)] == '0');
12 value1 = Elem[op1, e, esize];
13 value2 = Elem[op2, e, esize];
14 if absolute then
15 value1 = FPAbs(value1);
16 value2 = FPAbs(value2);
17 Elem[result, e, esize] = FPMaxNum(value1, value2, FALSE, predicated);
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1186

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.372 VMAXNMV, VMAXNMAV (floating-point)

Vector Maximum Across Vector, Vector Maximum Absolute Across Vector. Find the maximum value of the
elements of a vector register. Store the maximum value in the general-purpose destination register only if it is
larger than the starting value of the general-purpose destination register. The general-purpose register is read as the
same width as the vector elements. For half-precision the upper half of the general-purpose register is cleared on
write-back. This instruction handles NaNs in consistence with the IEEE754-2008 specification, and returns the
numerical operand when one operand is numerical and the other is a quiet NaN.

The absolute variant of the instruction compares the absolute value of vector elements.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 1 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T1: VMAXNMV variant

VMAXNMV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = FALSE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 0 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T2: VMAXNMAV variant

VMAXNMAV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = TRUE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1187

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Elem[R[da], 0, esize];
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Elem[op1, e, esize];
11 result = FPConvertNaN(result, FALSE);
12 value = FPConvertNaN(value, FALSE);
13 if absolute then
14 value = FPAbs(value);
15 result = FPMaxNum(value, result, FALSE);
16
17 R[da] = ZeroExtend(result);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1188

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.373 VMAXV, VMAXAV

Vector Maximum Across Vector, Vector Maximum Absolute Across Vector. Find the maximum value of the
elements of a vector register. Store the maximum value in the general-purpose destination register only if it is
larger than the starting value of the general-purpose destination register. The general-purpose register is read as the
same width as the vector elements. The result of the operation is sign-extended to 32 bits before being stored back.

The absolute variant of the instruction compares the absolute value of signed vector elements and treats the value
in the general-purpose register as unsigned.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 0 size 1 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T1: VMAXV variant

VMAXV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 absolute = FALSE;
7 unsigned = U == '1';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 1 1 1 0 size 0 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T2: VMAXAV variant

VMAXAV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 absolute = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1189

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 unsigned = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Int(Elem[R[da], 0, esize], absolute || unsigned);
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Int(Elem[op1, e, esize], unsigned);
11 if absolute then
12 value = Abs(value);
13 result = Max(value, result);
14
15 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1190

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.374 VMIN, VMINA

Vector Minimum, Vector Minimum Absolute. Find the minimum value of the elements in the source operands, and
store the result in the corresponding destination elements.

The absolute variant takes the elements from the destination vector, treating them as unsigned, and compares them
to the absolute values of the corresponding elements in the source vector. The smaller values are stored back into
the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 1 0 N 1 M 1 Qm 0

T1: VMIN variant

VMIN<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 absolute = FALSE;
8 unsigned = U == '1';
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da 1 1 size 1 1 Qda 1 1 1 1 0 1 0 M 0 Qm 1

T2: VMINA variant

VMINA<v><q>.<dt> Qda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || M == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(M:Qm);
6 d = da;
7 n = da;
8 absolute = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1191

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 unsigned = FALSE;
10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value1 = Int(Elem[op1, e, esize], unsigned || absolute);
11 value2 = Int(Elem[op2, e, esize], unsigned);
12 if absolute then
13 value2 = Abs(value2);
14 Elem[result, e, esize] = Min(value1, value2)[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1, and the T1 variant of this instruction is being executed:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1192

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1193

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.375 VMINNM

Floating-point Minimum Number. Floating-point Minimum Number determines the floating-point minimum
number.

NaN handling is specified by IEEE754-2008.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if InITBlock() then UNPREDICTABLE;
6 maximum = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1194

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 case size of
4 when '01'
5 if maximum then
6 S[d] = Zeros(16) : FPMaxNum(S[n][15:0], S[m][15:0], TRUE);
7 else
8 S[d] = Zeros(16) : FPMinNum(S[n][15:0], S[m][15:0], TRUE);
9 when '10'

10 if maximum then
11 S[d] = FPMaxNum(S[n], S[m], TRUE);
12 else
13 S[d] = FPMinNum(S[n], S[m], TRUE);
14 when '11'
15 if maximum then
16 D[d] = FPMaxNum(D[n], D[m], TRUE);
17 else
18 D[d] = FPMinNum(D[n], D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1195

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.376 VMINNM, VMINNMA (floating-point)

Vector Minimum, Vector Minimum Absolute. Find the floating-point minimum number of the elements in the
source operands, and store the result in the corresponding destination elements. It handles NaNs in consistence
with the IEEE754-2008 specification, and returns the numerical operand when one operand is numerical and the
other is a quiet NaN.

The absolute variant takes the absolute values of the elements from the destination vector and compares them to
the absolute values of the corresponding elements in the source vector. The smaller values are stored back into the
destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Qn 0 Qd 0 1 1 1 1 N 1 M 1 Qm 0

T1: VMINNM variant

VMINNM<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 absolute = FALSE;
7 esize = if sz == '1' then 16 else 32;
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 1 1 1 1 Qda 1 1 1 1 0 1 0 M 0 Qm 1

T2: VMINNMA variant

VMINNMA<v><q>.<dt> Qda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 d = da;
6 n = da;
7 absolute = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1196

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = if sz == '1' then 16 else 32;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 predicated = (elmtMask[e*(esize>>3)] == '0');
12 value1 = Elem[op1, e, esize];
13 value2 = Elem[op2, e, esize];
14 if absolute then
15 value1 = FPAbs(value1);
16 value2 = FPAbs(value2);
17 Elem[result, e, esize] = FPMinNum(value1, value2, FALSE, predicated);
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1197

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.377 VMINNMV, VMINNMAV (floating-point)

Vector Minimum Across Vector, Vector Minimum Absolute Across Vector. Find the minimum value of the
elements of a vector register. Store the minimum value in the general-purpose destination register only if it is
smaller than the starting value of the general-purpose destination register. The general-purpose register is read as
the same width as the vector elements. For half-precision the upper half of the general-purpose register is cleared
on write-back. This instruction handles NaNs in consistence with the IEEE754-2008 specification, and returns the
numerical operand when one operand is numerical and the other is a quiet NaN.

The absolute variant of the instruction compares the absolute value of vector elements.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 1 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T1: VMINNMV variant

VMINNMV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = FALSE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 0 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T2: VMINNMAV variant

VMINNMAV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = TRUE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1198

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Elem[R[da], 0, esize];
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Elem[op1, e, esize];
11 result = FPConvertNaN(result, FALSE);
12 value = FPConvertNaN(value, FALSE);
13 if absolute then
14 value = FPAbs(value);
15 result = FPMinNum(value, result, FALSE);
16
17 R[da] = ZeroExtend(result);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1199

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.378 VMINV, VMINAV

Vector Minimum Across Vector, Vector Minimum Absolute Across Vector. Find the minimum value of the
elements of a vector register. Store the minimum value in the general-purpose destination register only if it is
smaller than the starting value of the general-purpose destination register. The general-purpose register is read as
the same width as the vector elements. The result of the operation is sign-extended to 32 bits before being stored
back.

The absolute variant of the instruction compares the absolute value of signed vector elements and treats the value
in the general-purpose register as unsigned.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 0 size 1 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T1: VMINV variant

VMINV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 absolute = FALSE;
7 unsigned = U == '1';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 1 1 1 0 size 0 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T2: VMINAV variant

VMINAV<v><q>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1200

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 absolute = TRUE;
7 unsigned = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Int(Elem[R[da], 0, esize], absolute || unsigned);
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Int(Elem[op1, e, esize], unsigned);
11 if absolute then
12 value = Abs(value);
13 result = Min(value, result);
14
15 R[da] = result[31:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1201

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.379 VMLA

Floating-point Multiply Accumulate. Floating-point Multiply Accumulate multiplies two floating-point registers,
adds the product to the destination register, and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 add = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1202

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 if add then
7 addend16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
8 else
9 addend16 = FPNeg(FPMul(S[n][15:0], S[m][15:0], TRUE));

10 S[d] = Zeros(16) : FPAdd(S[d][15:0], addend16, TRUE);
11 when '10'
12 if add then
13 addend32 = FPMul(S[n], S[m], TRUE);
14 else
15 addend32 = FPNeg(FPMul(S[n], S[m], TRUE));
16 S[d] = FPAdd(S[d], addend32, TRUE);
17 when '11'
18 if add then
19 addend64 = FPMul(D[n], D[m], TRUE);
20 else
21 addend64 = FPNeg(FPMul(D[n], D[m], TRUE));
22 D[d] = FPAdd(D[d], addend64, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1203

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.380 VMLA (vector by scalar plus vector)

Vector Multiply Accumulate. Multiply each element in the source vector by a scalar value and add to the respective
element from the destination vector. Store the result in the destination register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 1 Qda 0 1 1 1 0 N 1 0 0 Rm

T1: VMLA variant

VMLA<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qda> Accumulator vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 element2 = SInt(R[m][esize-1:0]);
9 op3 = Q[da, curBeat];

10 for e = 0 to elements-1
11 element1 = SInt(Elem[op1, e, esize]);
12 element3 = SInt(Elem[op3, e, esize]);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1204

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 value = (element1 * element2) + element3;
14 Elem[result, e, esize] = value[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1205

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.381 VMLADAV

Vector Multiply Add Dual Accumulate Across Vector. The elements of the vector registers are handled in pairs.
In the base variant, corresponding elements from the two source registers are multiplied together, whereas the
exchange variant swaps the values in each pair of values read from the first source register, before multiplying them
with the values from the second source register. The results of the pairs of multiply operations are combined by
adding them together. At the end of each beat these results are accumulated and the lower 32 bits written back to
the general-purpose destination register. The initial value of the general-purpose destination register can optionally
be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 Qn sz Rda X 1 1 1 0 N 0 A 0 Qm 0

T1: VMLADAV variant

VMLADAV{A}{X}<v><q>.<dt> Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 if U == '1' && X == '1' then UNDEFINED;
4 da = UInt(Rda:'0');
5 m = UInt(Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 accumulate = (A == '1');
9 esize = if sz == '0' then 16 else 32;

10 elements = 32 DIV esize;
11 unsigned = (U == '1');
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 Qn 0 Rda X 1 1 1 1 N 0 A 0 Qm 0

T2: VMLADAV variant

VMLADAV{A}{X}<v><q>.<dt> Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 if U == '1' && X == '1' then UNDEFINED;
4 da = UInt(Rda:'0');
5 m = UInt(Qm);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1206

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 accumulate = (A == '1');
9 esize = 8;

10 elements = 32 DIV esize;
11 unsigned = (U == '1');
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 0, U = 0
U16 Encoded as sz = 0, U = 1
S32 Encoded as sz = 1, U = 0
U32 Encoded as sz = 1, U = 1

Assembler symbols for T2 encodings

<dt> Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as U = 0
U8 Encoded as U = 1

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register. This must be an even numbered register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[da], unsigned) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = Int(Q[n, curBeat+1], unsigned) * Int(Q[m, curBeat], unsigned);
14 else
15 mul = Int(Q[n, curBeat-1], unsigned) * Int(Q[m, curBeat], unsigned);
16 else
17 mul = Int(Q[n, curBeat], unsigned) * Int(Q[m, curBeat], unsigned);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1207

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

18 result = result + mul;
19 else
20 op1 = Q[n, curBeat];
21 op2 = Q[m, curBeat];
22 for e = 0 to elements-1
23 if elmtMask[e*(esize>>3)] == '1' then
24 if exchange then
25 if e[0] == '0' then
26 mul = (Int(Elem[op1, e+1, esize], unsigned) *
27 Int(Elem[op2, e, esize], unsigned));
28 else
29 mul = (Int(Elem[op1, e-1, esize], unsigned) *
30 Int(Elem[op2, e, esize], unsigned));
31 else
32 elem1 = Int(Elem[op1, e, esize], unsigned);
33 elem2 = Int(Elem[op2, e, esize], unsigned);
34 mul = elem1 * elem2;
35 result = result + mul;
36 R[da] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1208

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.382 VMLALDAV

Vector Multiply Add Long Dual Accumulate Across Vector. The elements of the vector registers are handled in
pairs. In the base variant, corresponding elements from the two source registers are multiplied together, whereas
the exchange variant swaps the values in each pair of values read from the first source register, before multiplying
them with the values from the second source register. The results of the pairs of multiply operations are combined
by adding them together. At the end of each beat these results are accumulated. The 64-bit result is stored across
two registers, the upper-half is stored in an odd-numbered register and the lower half is stored in an even-numbered
register. The initial value of the general-purpose destination registers can optionally be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn sz RdaLo X 1 1 1 0 N 0 A 0 Qm 0

T1: VMLALDAV variant

VMLALDAV{A}{X}<v><q>.<dt> RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VMLADAV";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 if U == '1' && X == '1' then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Qm);
8 n = UInt(N:Qn);
9 exchange = (X == '1');

10 accumulate = (A == '1');
11 esize = if sz == '0' then 16 else 32;
12 elements = 32 DIV esize;
13 unsigned = (U == '1');
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 0, U = 0

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1209

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U16 Encoded as sz = 0, U = 1
S32 Encoded as sz = 1, U = 0
U32 Encoded as sz = 1, U = 1

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register. The value RdaLo » 1 is encoded in the RdaLo field.

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register. The value RdaHi » 1 is encoded in the RdaHi field.

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[dah]:R[dal], unsigned) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = Int(Q[n, curBeat+1], unsigned) * Int(Q[m, curBeat], unsigned);
14 else
15 mul = Int(Q[n, curBeat-1], unsigned) * Int(Q[m, curBeat], unsigned);
16 else
17 mul = Int(Q[n, curBeat], unsigned) * Int(Q[m, curBeat], unsigned);
18 result = result + mul;
19 else
20 op1 = Q[n, curBeat];
21 op2 = Q[m, curBeat];
22 for e = 0 to elements-1
23 if elmtMask[e*(esize>>3)] == '1' then
24 if exchange then
25 if e[0] == '0' then
26 mul = (Int(Elem[op1, e+1, esize], unsigned) *
27 Int(Elem[op2, e, esize], unsigned));
28 else
29 mul = (Int(Elem[op1, e-1, esize], unsigned) *
30 Int(Elem[op2, e, esize], unsigned));
31 else
32 elem1 = Int(Elem[op1, e, esize], unsigned);
33 elem2 = Int(Elem[op2, e, esize], unsigned);
34 mul = elem1 * elem2;
35 result = result + mul;
36 R[dah] = result[63:32];
37 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1210

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.383 VMLALV

Vector Multiply Accumulate Long Across Vector. This is an alias of VMLALDAV without exchange.

This is an alias of VMLALDAV with the following condition satisfied: X==0.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn sz RdaLo 0 1 1 1 0 N 0 A 0 Qm 0

VMLALV variant

VMLALV{A}<v><q>.<dt> RdaLo, RdaHi, Qn, Qm

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1211

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.384 VMLAS (vector by vector plus scalar)

Vector Multiply Accumulate Scalar. Multiply each element in the source vector by the respective element from the
destination vector and add to a scalar value. Store the result in the destination register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 1 Qda 1 1 1 1 0 N 1 0 0 Rm

T1: VMLAS variant

VMLAS<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qda> Source and destination vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[da, curBeat];
9 element3 = SInt(R[m][esize-1:0]);

10 for e = 0 to elements-1
11 element1 = SInt(Elem[op1, e, esize]);
12 element2 = SInt(Elem[op2, e, esize]);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1212

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 value = (element1 * element2) + element3;
14 Elem[result, e, esize] = value[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1213

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.385 VMLAV

Vector Multiply Accumulate Across Vector. This is an alias of VMLADAV without exchange.

This is an alias of VMLADAV with the following condition satisfied: X==0.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 Qn sz Rda 0 1 1 1 0 N 0 A 0 Qm 0

VMLAV variant

VMLAV{A}<v><q>.<dt> Rda, Qn, Qm

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1214

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.386 VMLS

Floating-point Multiply Subtract. Floating-point Multiply Subtract multiplies two floating-point registers, subtracts
the product from the destination floating-point register, and places the result in the destination floating-point
register.

Arm recommends that software does not use the VMLS instruction in the Round towards +Infinity and Round
towards -Infinity rounding modes, because the rounding of the product and of the sum can change the result of the
instruction in opposite directions, defeating the purpose of these rounding modes.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 add = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1215

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 if add then
7 addend16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
8 else
9 addend16 = FPNeg(FPMul(S[n][15:0], S[m][15:0], TRUE));

10 S[d] = Zeros(16) : FPAdd(S[d][15:0], addend16, TRUE);
11 when '10'
12 if add then
13 addend32 = FPMul(S[n], S[m], TRUE);
14 else
15 addend32 = FPNeg(FPMul(S[n], S[m], TRUE));
16 S[d] = FPAdd(S[d], addend32, TRUE);
17 when '11'
18 if add then
19 addend64 = FPMul(D[n], D[m], TRUE);
20 else
21 addend64 = FPNeg(FPMul(D[n], D[m], TRUE));
22 D[d] = FPAdd(D[d], addend64, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1216

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.387 VMLSDAV

Vector Multiply Subtract Dual Accumulate Across Vector. The elements of the vector registers are handled in pairs.
In the base variant, corresponding elements from the two source registers are multiplied together, whereas the
exchange variant swaps the values in each pair of values read from the first source register, before multiplying them
with the values from the second source register. The results of the pairs of multiply operations are combined by
subtracting one from the other. At the end of each beat these results are accumulated and the lower 32 bits written
back to the general-purpose destination register. The initial value of the general-purpose destination register can
optionally be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 Qn sz Rda X 1 1 1 0 N 0 A 0 Qm 1

T1: VMLSDAV variant

VMLSDAV{A}{X}<v><q>.<dt> Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 da = UInt(Rda:'0');
4 m = UInt(Qm);
5 n = UInt(N:Qn);
6 exchange = (X == '1');
7 accumulate = (A == '1');
8 esize = if sz == '0' then 16 else 32;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 1 1 1 Qn 0 Rda X 1 1 1 0 N 0 A 0 Qm 1

T2: VMLSDAV variant

VMLSDAV{A}{X}<v><q>.S8 Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 da = UInt(Rda:'0');
4 m = UInt(Qm);
5 n = UInt(N:Qn);
6 exchange = (X == '1');
7 accumulate = (A == '1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1217

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = 8;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 0
S32 Encoded as sz = 1

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<Rda> General-purpose source and destination register. This must be an even numbered register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then SInt(R[da]) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat]);
14 else
15 mul = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
16 else
17 mul = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
18 if curBeat[0] == '0' then
19 result = result + mul;
20 else
21 result = result - mul;
22 else
23 op1 = Q[n, curBeat];
24 op2 = Q[m, curBeat];
25 for e = 0 to elements-1
26 if elmtMask[e*(esize>>3)] == '1' then
27 if exchange then
28 if e[0] == '0' then
29 mul = (SInt(Elem[op1, e+1, esize]) *
30 SInt(Elem[op2, e, esize]));
31 else
32 mul = (SInt(Elem[op1, e-1, esize]) *
33 SInt(Elem[op2, e, esize]));
34 else
35 elem1 = SInt(Elem[op1, e, esize]);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1218

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

36 elem2 = SInt(Elem[op2, e, esize]);
37 mul = elem1 * elem2;
38 if e[0] == '0' then
39 result = result + mul;
40 else
41 result = result - mul;
42 R[da] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1219

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.388 VMLSLDAV

Vector Multiply Subtract Long Dual Accumulate Across Vector. The elements of the vector registers are handled
in pairs. In the base variant, corresponding elements from the two source registers are multiplied together, whereas
the exchange variant swaps the values in each pair of values read from the first source register, before multiplying
them with the values from the second source register. The results of the pairs of multiply operations are combined
by subtracting one from the other. At the end of each beat these results are accumulated. The 64-bit result is
stored across two registers, the upper-half is stored in an odd-numbered register and the lower half is stored in an
even-numbered register. The initial value of the general-purpose destination registers can optionally be added to
the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 RdaHi Qn sz RdaLo X 1 1 1 0 N 0 A 0 Qm 1

T1: VMLSLDAV variant

VMLSLDAV{A}{X}<v><q>.<dt> RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VMLSDAV";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 dah = UInt(RdaHi:'1');
5 dal = UInt(RdaLo:'0');
6 m = UInt(Qm);
7 n = UInt(N:Qn);
8 exchange = (X == '1');
9 accumulate = (A == '1');

10 esize = if sz == '0' then 16 else 32;
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 0
S32 Encoded as sz = 1

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register. The value RdaLo » 1 is encoded in the RdaLo field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1220

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register. The value RdaHi » 1 is encoded in the RdaHi field.

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then SInt(R[dah]:R[dal]) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat]);
14 else
15 mul = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
16 else
17 mul = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
18 if curBeat[0] == '0' then
19 result = result + mul;
20 else
21 result = result - mul;
22 else
23 op1 = Q[n, curBeat];
24 op2 = Q[m, curBeat];
25 for e = 0 to elements-1
26 if elmtMask[e*(esize>>3)] == '1' then
27 if exchange then
28 if e[0] == '0' then
29 mul = (SInt(Elem[op1, e+1, esize]) *
30 SInt(Elem[op2, e, esize]));
31 else
32 mul = (SInt(Elem[op1, e-1, esize]) *
33 SInt(Elem[op2, e, esize]));
34 else
35 elem1 = SInt(Elem[op1, e, esize]);
36 elem2 = SInt(Elem[op2, e, esize]);
37 mul = elem1 * elem2;
38 if e[0] == '0' then
39 result = result + mul;
40 else
41 result = result - mul;
42 R[dah] = result[63:32];
43 R[dal] = result[31:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1221

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.389 VMOV (between general-purpose register and half-precision register)

Floating-point Move (between general-purpose register and half-precision register). Floating-point Move (between
general-purpose register and half-precision register) transfers the contents of a half-precision register to a
general-purpose register, or the contents of a general-purpose register to a half-precision register

T1
Armv8.1-M Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)

General-purpose register to half-precision register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16, <Sn>, <Rt>

Half-precision register to general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16, <Rt>, <Sn>

Decode for this encoding
1 CheckDecodeFaults(ExtType_HpFp);
2 to_arm_register = (op == '1');
3 t = UInt(Rt); n = UInt(Vn:N);
4 if t == 15 || t == 13 then UNPREDICTABLE;
5 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sn> Is the 32-bit name of the floating-point source register, encoded in the "Vn:N" field.
<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt"

field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if to_arm_register then
4 R[t] = Zeros(16) : S[n][15:0];
5 else
6 S[n] = Zeros(16) : R[t][15:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1222

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.390 VMOV (between general-purpose register and single-precision register)

Floating-point Move (between general-purpose register and single-precision register). Floating-point Move
(between general-purpose register and single-precision register) transfers the contents of a single-precision register
to a general-purpose register, or the contents of a general-purpose register to a single-precision register.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)

General-purpose register to single-precision register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

Single-precision register to general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
3 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt"
field.

<Sn> Is the 32-bit name of the floating-point register to be transferred, encoded in the "Vn:N" field.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_register then
5 R[t] = S[n];
6 else
7 S[n] = R[t];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1223

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.391 VMOV (between two general-purpose registers and a doubleword register)

Floating-point Move (between two general-purpose registers and a doubleword register). Floating-point Move
(between two general-purpose registers and a doubleword register) transfers two words from two general-purpose
registers to a doubleword register, or from a doubleword register to two general-purpose registers.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm

Doubleword register to general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

General-purpose registers to doubleword register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 if VFPSmallRegisterBank() && (M == '1') then UNDEFINED;
3 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
4 if t == 15 || t2 == 15 then UNPREDICTABLE;
5 if t == 13 || t2 == 13 then UNPREDICTABLE;
6 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<Dm> Is the 64-bit name of the floating-point register to be transferred, encoded in the "M:Vm" field.
<Rt2> Is the first general-purpose register that <Dm>[63:32] will be transferred to or from, encoded

in the "Rt" field.
<Rt> Is the first general-purpose register that <Dm>[31:0] will be transferred to or from, encoded in

the "Rt" field.
<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_registers then
5 R[t] = D[m][31:0];
6 R[t2] = D[m][63:32];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1224

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 else
8 D[m][31:0] = R[t];
9 D[m][63:32] = R[t2];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1225

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.392 VMOV (between two general-purpose registers and two single-precision registers)

Floating-point Move (between two general-purpose registers and two single-precision registers). Floating-point
Move (between two general-purpose registers and two single-precision registers) transfers the contents of two
consecutively numbered single-precision registers to two general-purpose registers, or the contents of two
general-purpose registers to a pair of single-precision registers. The general-purpose registers do not have
to be contiguous.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm

Single-precision register to general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

General-purpose register to single-precision register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
3 if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
4 if t == 13 || t2 == 13 then UNPREDICTABLE;
5 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.
The general-purpose registers listed in the instruction become UNKNOWN for a move from the single-precision
registers. This behavior does not affect any other general-purpose registers.

Assembler symbols for all encodings

<Rt2> Is the second general-purpose register that <Sm1> will be transferred to or from, encoded in
the "Rt" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1226

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rt> Is the first general-purpose register that <Sm> will be transferred to or from, encoded in the
"Rt" field.

<Sm1> Is the 32-bit name of the second floating-point register to be transferred. This is the next
floating-point register after <Sm>.

<Sm> Is the 32-bit name of the first floating-point register to be transferred, encoded in the "Vm:M"
field.

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_registers then
5 R[t] = S[m];
6 R[t2] = S[m+1];
7 else
8 S[m] = R[t];
9 S[m+1] = R[t2];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1227

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.393 VMOV (general-purpose register to vector lane)

Vector Move (general-purpose register to vector lane). Copy the value of a general-purpose register to a vector
lane.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M Floating-point Extension or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 op1 0 Qd h Rt 1 0 1 1 D op2 1 (0) (0) (0) (0)

T1: VMOV variant

VMOV<c><q>.<dt> Qd[idx], Rt

Decode for this encoding
1 d = UInt(D:Qd);
2 t = UInt(Rt);
3 esize = integer UNKNOWN; elemIdx = integer UNKNOWN;
4 case (h:op1:op2) of
5 when 'x1xxx' instType = ExtType_Mve; esize = 8; elemIdx = UInt((h:op1:op2)[1:0]);
6 when 'x0xx1' instType = ExtType_Mve; esize = 16; elemIdx = UInt((h:op1:op2)[1]);
7 when 'x0x00' instType = ExtType_MveOrFp; esize = 32; elemIdx = 0;
8 otherwise instType = ExtType_Unknown;
9 CheckDecodeFaults(instType);

10 targetBeat = UInt((h:op1:op2)[4]:(h:op1:op2)[2]);
11 if D == '1' then UNDEFINED;
12 if op1 == '0x' && op2 == '10' then UNDEFINED;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
32 Encoded as op1 = 0x, op2 = 00
16 Encoded as op1 = 0x, op2 = x1
8 Encoded as op1 = 1x, op2 = xx

<Qd> Destination vector register.
<idx> Element index to select in the vector register, must be in the range 0 to ((128/dt)-1). This value

is encoded into the bits of h:op1:op2 which are not used to encode dt.
<Rt> Source general-purpose register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if InITBlock() || !HaveMve() then
6 Elem[Q[d, targetBeat],elemIdx,esize] = R[t][esize-1:0];
7 else
8 (curBeat, -) = GetCurInstrBeat();
9 if curBeat == targetBeat then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1228

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 Elem[Q[d, curBeat],elemIdx,esize] = R[t][esize-1:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1229

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.394 VMOV (half of doubleword register to single general-purpose register)

Floating-point Move (half of doubleword register to single general-purpose register). Floating-point Move (half
of doubleword register to single general-purpose register) transfers one word from the upper or lower half of a
doubleword register to a general-purpose register.

This instruction is an alias of VMOV (vector lane to general-purpose register)

T1
Armv8.0-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 H 1 Vn Rt 1 0 1 1 N 0 0 1 (0) (0) (0) (0)

VMOV variant

VMOV<c><q>.<dt> Rt, Dn[x]

is equivalent to

VMOV<c>.<dt> Rt, Qn[idx]

where Dn[x] is expressed as Qn[idx]

Operation for all encodings
The description of VMOV (vector lane to general-purpose register) gives the operational pseudocode for this
instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1230

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.395 VMOV (immediate)

Floating-point Move (immediate). Floating-point Move (immediate) places an immediate constant into the
destination floating-point register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 case size of
6 when '01'
7 d = UInt(Vd:D);
8 imm16 = VFPExpandImm(imm4H:imm4L, 16);
9 imm32 = Zeros(16) : imm16;

10 when '10'
11 d = UInt(Vd:D);
12 imm32 = VFPExpandImm(imm4H:imm4L, 32);
13 when '11'
14 d = UInt(D:Vd);
15 imm64 = VFPExpandImm(imm4H:imm4L, 64);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<imm> Is a floating-point constant. For details of the range of constants available and the encoding of

<imm>, see the definition of VFPExpandImm().

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1231

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if dp_operation then
5 D[d] = imm64;
6 else
7 S[d] = imm32;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1232

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.396 VMOV (immediate) (vector)

Vector Move (immediate). Set each element of a vector register to the immediate operand value. The immediate is
generated by the AdvSIMDExpandImm() function based on the requested data type and immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Qd 0 cmode 0 1 op 1 imm4

T1: VMOV variant

VMOV<v><q>.<dt> Qd, #<imm>

Decode for this encoding
1 if op == '0' && cmode IN {'0xx1', '10x1'} then SEE "VORR (immediate)";
2 if op == '1' && cmode IN {'0xx0', '110x', '10x0'} then SEE "VMVN (immediate)";
3 if op == '1' && cmode IN {'0xx1', '10x1'} then SEE "VBIC (immediate)";
4 CheckDecodeFaults(ExtType_Mve);
5 if D == '1' then UNDEFINED;
6 if cmode == '1111' && op == '1' then UNDEFINED;
7 d = UInt(D:Qd);
8 imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0000, op = 0
cmode = 0010, op = 0
cmode = 0100, op = 0
cmode = 0110, op = 0
cmode = 1100, op = 0
cmode = 1101, op = 0

I16 Encoded as:
cmode = 1000, op = 0
cmode = 1010, op = 0

I8 Encoded as:
cmode = 1110, op = 0

I64 Encoded as:
cmode = 1110, op = 1

F32 Encoded as:
cmode = 1111, op = 0

<Qd> Destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1233

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 if curBeat[0] == '0' then
7 result = imm64[31:0];
8 else
9 result = imm64[63:32];

10
11 for e = 0 to 3
12 if elmtMask[e] == '1' then
13 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1234

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.397 VMOV (register)

Floating-point Move (register). Floating-point Move (register) copies the contents of one register to another.

T2
Armv8-M Floating-point Extension, or Armv8.1-M MVE. sz == 1 UNDEFINED in implementations that do not
include either MVE or Double-precision support.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 0 1 M 0 Vm

Single-precision scalar variant

Armv8-M Floating-point Extension, or Armv8.1-M MVE.

Applies when sz == 0.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension with Double-precision support, or Armv8.1-M MVE.

Applies when sz == 1.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (sz == '1');
2 CheckDecodeFaults(if dp_operation then ExtType_MveOrDpFp else ExtType_MveOrFp);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
5 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if dp_operation then
5 D[d] = D[m];
6 else
7 S[d] = S[m];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1235

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1236

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.398 VMOV (register) (vector)

Vector Move (register). Copy the value of one vector register to another vector register.

This is an alias of VORR with the following condition satisfied: Qm == Qn.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Qm 0 Qd 0 0 0 0 1 M 1 M 1 Qm 0

VMOV variant

VMOV<v><q> Qd, Qm

is equivalent to

VORR<v><q> Qd, Qm, Qm

and is the preferred disassembly when Qm == Qn

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1237

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.399 VMOV (single general-purpose register to half of doubleword register)

Floating-point Move (single general-purpose register to half of doubleword register). Floating-point Move (single
general-purpose register to half of doubleword register) transfers one word from a general-purpose register to the
upper or lower half of a doubleword register.

This instruction is an alias of VMOV (general-purpose register to vector lane)

T1
Armv8.0-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 H 0 Vd Rt 1 0 1 1 D 0 0 1 (0) (0) (0) (0)

VMOV variant

VMOV<c><q>.<size> Dd[x], Rt

is equivalent to

VMOV<c>.<dt> Qd[idx], Rt

where Dd[x] is expressed as Qd[idx]

Operation for all encodings
The description of VMOV (general-purpose register to vector lane) gives the operational pseudocode for this
instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1238

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.400 VMOV (two 32-bit vector lanes to two general-purpose registers)

Vector Move (two 32-bit vector lanes to two general-purpose registers). Copy two 32-bit vector lanes to two
general-purpose registers.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 D 0 0 Rt2 Qd 0 1 1 1 1 (0) (0) (0) idx Rt

T1: VMOV variant

VMOV<c><q> Rt, Rt2, Qd[idx], Qd[idx2]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 t = UInt(Rt);
5 t2 = UInt(Rt2);
6 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;
8 if Rt2 == '11x1' || Rt == Rt2 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Rt> Destination general-purpose register
<Rt2> Destination general-purpose register
<idx> The first index for the vector register.

This parameter must be one of the following values:
2 Encoded as idx = 0
3 Encoded as idx = 1

<Qd> Source vector register.
<idx2> The second index for the vector register. This must be two less than the first index.

This parameter must be one of the following values:
0 Encoded as idx = 0
1 Encoded as idx = 1

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if InITBlock() then
6 R[t] = Q[d, UInt('0':idx)];
7 R[t2] = Q[d, UInt('1':idx)];
8 else
9 (curBeat, -) = GetCurInstrBeat();

10 if curBeat[0] == idx then
11 tReg = if curBeat[1] == '0' then t else t2;
12 R[tReg] = Q[d, curBeat];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1239

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1240

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.401 VMOV (two general-purpose registers to two 32-bit vector lanes)

Vector Move (two general-purpose registers to two 32-bit vector lanes). Copy two general-purpose registers to two
32-bit vector lanes.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 D 0 1 Rt2 Qd 0 1 1 1 1 (0) (0) (0) idx Rt

T1: VMOV variant

VMOV<c><q> Qd[idx], Qd[idx2], Rt, Rt2

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 t = UInt(Rt);
5 t2 = UInt(Rt2);
6 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;
8 if Rt2 == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<idx> The first index for the vector register.

This parameter must be one of the following values:
2 Encoded as idx = 0
3 Encoded as idx = 1

<idx2> The second index for the vector register. This must be two less than the first index.
This parameter must be one of the following values:
0 Encoded as idx = 0
1 Encoded as idx = 1

<Rt> Source general-purpose register to be written to Qd[idx2].
<Rt2> Source general-purpose register to be written to Qd[idx].

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if InITBlock() then
6 Q[d, UInt('0':idx)] = R[t];
7 Q[d, UInt('1':idx)] = R[t2];
8 else
9 (curBeat, -) = GetCurInstrBeat();

10 if curBeat[0] == idx then
11 tReg = if curBeat[1] == '0' then t else t2;
12 Q[d, curBeat] = R[tReg];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1241

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1242

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.402 VMOV (vector lane to general-purpose register)

Vector Move (vector lane to general-purpose register). Copy the value of a vector lane to a general-purpose register.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M Floating-point Extension or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 U op1 1 Qn h Rt 1 0 1 1 N op2 1 (0) (0) (0) (0)

T1: VMOV variant

VMOV<c><q>.<dt> Rt, Qn[idx]

Decode for this encoding
1 n = UInt(N:Qn);
2 t = UInt(Rt);
3 esize = integer UNKNOWN; elemIdx = integer UNKNOWN;
4 case (U:h:op1:op2) of
5 when 'xx1xxx' instType = ExtType_Mve; esize = 8; elemIdx = UInt((h:op1:op2)[1:0]);
6 when 'xx0xx1' instType = ExtType_Mve; esize = 16; elemIdx = UInt((h:op1:op2)[1]);
7 when '0x0x00' instType = ExtType_MveOrFp; esize = 32; elemIdx = 0;
8 otherwise instType = ExtType_Unknown;
9 CheckDecodeFaults(instType);

10 targetBeat = UInt((h:op1:op2)[4]:(h:op1:op2)[2]);
11 unsigned = (U == '1');
12 if N == '1' then UNDEFINED;
13 if U == '1' && op1 == '0x' && op2 == '00' then UNDEFINED;
14 if op1 == '0x' && op2 == '10' then UNDEFINED;
15 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
32 Encoded as op1 = 0x, op2 = 00, U = 0
S16 Encoded as op1 = 0x, op2 = x1, U = 0
U16 Encoded as op1 = 0x, op2 = x1, U = 1
S8 Encoded as op1 = 1x, op2 = xx, U = 0
U8 Encoded as op1 = 1x, op2 = xx, U = 1

<Rt> Destination general-purpose register.
<Qn> Source vector register.
<idx> Element index to select in the vector register, must be in the range 0 to ((128/dt)-1). This value

is encoded into the bits of h:op1:op2 which are not used to encode dt.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1243

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4
5 if InITBlock() || !HaveMve() then
6 R[t] = Extend(Elem[Q[n, targetBeat],elemIdx,esize], unsigned);
7 else
8 (curBeat, -) = GetCurInstrBeat();
9 if curBeat == targetBeat then

10 R[t] = Extend(Elem[Q[n, curBeat],elemIdx,esize], unsigned);

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1244

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.403 VMOVL

Vector Move Long. Selects an element of 8 or 16-bits from either the top half (T variant) or bottom half (B variant)
of each source element, sign- or zero-extends, and places the 16 or 32-bit results in the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 1 sz 0 0 0 Qd T 1 1 1 1 0 1 M 0 Qm 0

T1: VMOVL variant

VMOVL<T><v><q>.<dt> Qd, Qm

Decode for this encoding
1 if sz IN {'11', '00'} then SEE "VSHLL";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 esize = 8 * UInt(sz);
8 elements = 16 DIV esize;
9 top = UInt(T);

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 01, U = 0
U8 Encoded as sz = 01, U = 1
S16 Encoded as sz = 10, U = 0
U16 Encoded as sz = 10, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1245

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, 2*e + top, esize], unsigned);

10 Elem[result, e, 2*esize] = operand[(2*esize)-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1246

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.404 VMOVN

Vector Move and Narrow. Performs an element-wise narrowing to half-width, writing the result to either the top
half (T variant) or bottom half (B variant) of the result element. The other half of the destination vector element
retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 size 0 1 Qd T 1 1 1 0 1 0 M 0 Qm 1

T1: VMOVN variant

VMOVN<T><v><q>.<dt> Qd, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 esize = 8 << UInt(size);
8 elements = 16 DIV esize;
9 top = UInt(T);

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I16 Encoded as size = 00
I32 Encoded as size = 01

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1247

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = UInt(Elem[op1, e, 2*esize]);

10 Elem[result, 2*e + top, esize] = operand[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1248

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.405 VMOVX

Floating-point Move extraction. Floating-point Move extraction copies the upper 16 bits of the 32-bit source
floating-point register into the lower 16 bits of the 32-bit destination floating-point register, while clearing the
remaining bits to zero.

T1
Armv8.1-M Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm

T1 variant

VMOVX<q>.F16 <Sd>, <Sm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_HpFp);
2 d = UInt(Vd:D); m = UInt(Vm:M);
3 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 S[d] = Zeros(16) : S[m][31:16];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1249

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.406 VMRS

Move to general-purpose Register from Floating-point Special register. Move to general-purpose Register from
Floating-point Special register moves the value of FPSCR, FPCXT_NS, FPCXT_S, VPR, or VPR.P0 to a
general-purpose register, or thevalues of FPSCR condition flags to the APSR condition flags.

Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is executed from Non-secure
state.

If CP10 is not enabled and either the Main extension is not implemented or the Floating-point context is active,
access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS will not trigger lazy state
preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not trigger Floating-point
context creation regardless of the value of FPCCR.ASPEN.

T1
Armv8-M Floating-point Extension, or Armv8.1-M MVE.

• For Armv8.1-M, FPCXT access instructions are required. The reg field is configurable, and all of the listed
registers can be accessed.

• For Armv8.0-M, only access to FPSCR is permitted, and the reg field is not configurable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

T1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

Decode for this encoding
1 fpCxtAnyAccess = HasArchVersion(Armv8p1) && (reg == '111x');
2 fpCxtNSAccess = HasArchVersion(Armv8p1) && (reg == '1110');
3 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
4 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
5 if fpCxtNSAccess then
6 if !HaveMainExt() || !fpInactive then
7 HandleException(CheckCPEnabled(10));
8 else
9 CheckDecodeFaults(ExtType_MveOrFp);

10 t = UInt(Rt);
11 if t == 13 || (t == 15 && reg != '0001') then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Rt> Is the general-purpose destination register, encoded in the "Rt" field. Is one of:

APSR_nzcv Encoded as 0b1111. This instruction transfers the FPSCR.N, Z, C, V
condition flags to the APSR.N, Z, C, V condition flags.
R0-R14 General-purpose register.

<spec_reg> Is the special register to be accessed, encoded in the "reg" field. The permitted values are:
FPSCR when reg = 0b0001
FPSCR_nzcvq when reg = 0b0010, access to FPSCR condition and saturation flags.

If Armv8.1-M is not implemented, access to this register is UNPREDICTABLE.
VPR when reg = 0b1100. If MVE is not implemented, access to this

register is UNPREDICTABLE. The VPR register can only be accessed from privileged mode.
P0 when reg = 0b1101. If MVE is implemented access to VPR.P0

predicate field is permitted, otherwise the access is UNPREDICTABLE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1250

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

FPCCR_NS when reg = 0b1110. Enables saving and restoration of the
Non-secure floating-point context. If the Floating-point context is active then the current
FPSCR value is accessed and the default value in FPDSCR_NS is written into FPSCR,
otherwise the default value in FPDSCR_NS is accessed. If neither the Floating-point extension
nor MVE are implemented then access to this payload behaves as a NOP. If Armv8.1-M is not
implemented, access to this register is UNPREDICTABLE.
FPCXT_S when reg = 0b1111. Enables saving and restoration of the Secure

floating-point context. If Armv8.1-M is not implemented, access to this register is
UNPREDICTABLE.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 case reg of
11 when '0001'
12 if t == 15 then
13 APSR.N = FPSCR.N;
14 APSR.Z = FPSCR.Z;
15 APSR.C = FPSCR.C;
16 APSR.V = FPSCR.V;
17 else
18 R[t] = FPSCR;
19 when '0010'
20 if HasArchVersion(Armv8p1) then
21 // Only read the N, Z, C, V, and QC flags
22 R[t] = FPSCR[31:27]:Zeros(27);
23 else
24 UNPREDICTABLE;
25 when '1100'
26 if HaveMve() then
27 if CurrentModeIsPrivileged() then
28 R[t] = VPR;
29 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
30 R[t] = Zeros(32);
31 else
32 UNPREDICTABLE;
33 when '1101'
34 if HaveMve() then
35 R[t] = Zeros(16):VPR.P0;
36 else
37 UNPREDICTABLE;
38 when '1110'
39 if HasArchVersion(Armv8p1) then
40 if HaveFPExt() || HaveMve() then
41 FPCXT_Type cxt = Zeros(32);
42 if !fpInactive then
43 cxt.SFPA = CONTROL_S.SFPA;
44 cxt[27:0] = FPSCR[27:0];
45 else
46 cxt[27:0] = FPDSCR_NS[27:0];
47 R[t] = cxt;
48 // If the floating-point context isn't Secure the FPSCR
49 // value is set to the Non-secure default so any
50 // Non-secure functions that are called before a
51 // floating-point instruction is executed in the secure
52 // state will get the same FPSCR value as functions
53 // called after a Secure floating-point instruction
54 // (which is the value of FPDSCR_NS).
55 if !fpInactive && CONTROL_S.SFPA == '0' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1251

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

56 FPSCR = FPDSCR_NS[31:0];
57 else
58 UNPREDICTABLE;
59 when '1111'
60 if HasArchVersion(Armv8p1) then
61 FPCXT_Type cxt = Zeros(32);
62 cxt.SFPA = CONTROL_S.SFPA;
63 cxt[27:0] = FPSCR[27:0];
64 R[t] = cxt;
65 FPSCR = FPDSCR_NS[31:0];
66 CONTROL_S.SFPA = '0';
67 else
68 UNPREDICTABLE;
69 otherwise
70 UNPREDICTABLE;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1 and this instruction accesses the FPSCR.N, Z, C, V, Q flags or VPR.P0:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the FPSCR.N, Z, C, V, Q flags or VPR.P0.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of its registers.

– The values of the FPSCR.N, Z, C, V, Q flags or VPR.P0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1252

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.407 VMSR

Move to Floating-point Special register from general-purpose Register. Move to Floating-point Special register
from general-purpose Register moves the value of a general-purpose register to FPSCR, FPCXT_NS, FPCXT_S,
VPR, or VPR.P0.

Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is executed from Non-secure
state.

If CP10 is not enabled and either the Main extension is not implemented or the Floating-point context is active,
access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS will not trigger lazy state
preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not trigger Floating-point
context creation regardless of the value of FPCCR.ASPEN.

T1
Armv8-M Floating-point Extension, or Armv8.1-M MVE.

• For Armv8.1-M, FPCXT access instructions are required. The reg field is configurable, and all of the listed
registers can be accessed.

• For Armv8.0-M, only access to FPSCR is permitted, and the reg field is not configurable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

T1 variant

VMSR{<c>}{<q>} <spec_reg>, <Rt>

Decode for this encoding
1 fpCxtAnyAccess = HasArchVersion(Armv8p1) && (reg == '111x');
2 fpCxtNSAccess = HasArchVersion(Armv8p1) && (reg == '1110');
3 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
4 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
5 if fpCxtNSAccess then
6 if !HaveMainExt() || !fpInactive then
7 HandleException(CheckCPEnabled(10));
8 else
9 CheckDecodeFaults(ExtType_MveOrFp);

10 t = UInt(Rt);
11 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<spec_reg> Is the special register to be accessed, encoded in the "reg" field. The permitted values are:

FPSCR when reg = 0b0001
FPSCR_nzcvq when reg = 0b0010, access to FPSCR condition and saturation flags.

If Armv8.1-M is not implemented, access to this register is UNPREDICTABLE.
VPR when reg = 0b1100. If MVE is not implemented, access to this

register is UNPREDICTABLE. The VPR register can only be accessed from privileged mode.
P0 when reg = 0b1101. If MVE is implemented access to VPR.P0

predicate field is permitted, otherwise the access is UNPREDICTABLE.
FPCCR_NS when reg = 0b1110. Enables saving and restoration of the

Non-secure floating-point context. If the Floating-point context is active then the current
FPSCR value is accessed and the default value in FPDSCR_NS is written into FPSCR,
otherwise the default value in FPDSCR_NS is accessed. If neither the Floating-point extension
nor MVE are implemented then access to this payload behaves as a NOP. If Armv8.1-M is not
implemented, access to this register is UNPREDICTABLE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1253

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

FPCXT_S when reg = 0b1111. Enables saving and restoration of the Secure
floating-point context. If Armv8.1-M is not implemented, access to this register is
UNPREDICTABLE.

<Rt> Is the general-purpose source register to be transferred to <spec_reg>, encoded in the "Rt"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 case reg of
11 when '0001'
12 FPSCR = R[t];
13 when '0010'
14 if HasArchVersion(Armv8p1) then
15 // Only update the N, Z, C, V, and QC flags
16 FPSCR[31:27] = R[t][31:27];
17 else
18 UNPREDICTABLE;
19 when '1100'
20 if HaveMve() then
21 if CurrentModeIsPrivileged() then
22 VPR = R[t];
23 else
24 UNPREDICTABLE;
25 when '1101'
26 if HaveMve() then
27 VPR.P0 = R[t][15:0];
28 else
29 UNPREDICTABLE;
30 when '1110'
31 if HasArchVersion(Armv8p1) then
32 if (HaveFPExt() || HaveMve()) && !fpInactive then
33 FPCXT_Type cxt = R[t];
34 CONTROL_S.SFPA = cxt.SFPA;
35 FPSCR = Zeros(4):cxt[27:0];
36 else
37 UNPREDICTABLE;
38 when '1111'
39 if HasArchVersion(Armv8p1) then
40 FPCXT_Type cxt = R[t];
41 CONTROL_S.SFPA = cxt.SFPA;
42 FPSCR = Zeros(4):cxt[27:0];
43 else
44 UNPREDICTABLE;
45 otherwise
46 UNPREDICTABLE;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1 and this instruction accesses the FPSCR.N, Z, C, V, Q flags or VPR.P0:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the FPSCR.N, Z, C, V, Q flags or VPR.P0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1254

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of its registers.

– The values of the FPSCR.N, Z, C, V, Q flags or VPR.P0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1255

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.408 VMUL

Floating-point Multiply. Floating-point Multiply multiplies two floating-point register values, and places the result
in the destination floating-point register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1256

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = Zeros(16) : FPMul(S[n][15:0], S[m][15:0], TRUE);
7 when '10'
8 S[d] = FPMul(S[n], S[m], TRUE);
9 when '11'

10 D[d] = FPMul(D[n], D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1257

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.409 VMUL (floating-point)

Vector Multiply. Multiply the value of the elements in the first source vector register by either the respective
elements in the second source vector register or a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Qn 0 Qd 0 1 1 0 1 N 1 M 1 Qm 0

T1: VMUL variant

VMUL<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 1 Qd 0 1 1 1 0 N 1 1 0 Rm

T2: VMUL variant

VMUL<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1258

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPMul(Elem[op1, e, esize], R[m][esize-1:0], FALSE, pred);
13 Elem[result, e, esize] = value;
14 else
15 for e = 0 to elements-1
16 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
17 pred = (elmtMask[e*(esize>>3)] == '0');
18 op2 = Q[m, curBeat];
19 value = FPMul(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred);
20 Elem[result, e, esize] = value;
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1259

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.410 VMUL (vector)

Vector Multiply. Multiply the value of the elements in the first source vector register by either the respective
elements in the second source vector register or a general-purpose register. The result is then written to the
destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Qn 0 Qd 0 1 0 0 1 N 1 M 1 Qm 0

T1: VMUL variant

VMUL<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 0 N 1 1 0 Rm

T2: VMUL variant

VMUL<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 withScalar = TRUE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1260

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 value = SInt(Elem[op1, e, esize]) * SInt(R[m][esize-1:0]);
11 Elem[result, e, esize] = value[esize-1:0];
12 else
13 op2 = Q[m, curBeat];
14 for e = 0 to elements-1
15 value = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e, esize]);
16 Elem[result, e, esize] = value[esize-1:0];
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1261

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.411 VMULH, VRMULH

Vector Multiply Returning High Half, Vector Rounding Multiply Returning High Half. Multiply each element of a
vector register by its respective element in another vector register and return the high half of the result. The result
is optionally rounded before the high half is selected.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 0 N 0 M 0 Qm 1

T1: VMULH variant

VMULH<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 0 N 0 M 0 Qm 1

T2: VRMULH variant

VRMULH<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1262

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 rVal = if round then 1 << (esize-1) else 0;

10 for e = 0 to elements-1
11 value = (Int(Elem[op1, e, esize], unsigned) * Int(Elem[op2, e, esize], unsigned)) + rVal;
12 Elem[result, e, esize] = value[(2*esize)-1:esize];
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1263

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.412 VMULL (integer)

Vector Multiply Long. Performs an element-wise integer multiplication of two single-width source operand
elements. These are selected from either the top half (T variant) or bottom half (B variant) of double-width source
vector register elements. The operation produces a double-width result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 1 Qd T 1 1 1 0 N 0 M 0 Qm 0

T1: VMULL variant

VMULL<T><v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 unsigned = (U == '1');
9 top = UInt(T);

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if size == '10' && (D:Qd == M:Qm || D:Qd == N:Qn) then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1264

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 32 then
8 op1 = Q[n, UInt(curBeat[1]:T)];
9 op2 = Q[m, UInt(curBeat[1]:T)];

10 mul = Int(op1, unsigned) * Int(op2, unsigned);
11 result = if curBeat[0] == '1' then mul[63:32] else mul[31:0];
12 else
13 op1 = Q[n, curBeat];
14 op2 = Q[m, curBeat];
15 elements = 16 DIV esize;
16 for e = 0 to elements-1
17 element1 = Elem[op1, e * 2 + top, esize];
18 element2 = Elem[op2, e * 2 + top, esize];
19 Elem[result, e, esize * 2] = (Int(element1, unsigned) *
20 Int(element2, unsigned))[2*esize-1:0];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1265

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.413 VMULL (polynomial)

Vector Multiply Long. Performs an element-wise polynomial multiplication of two single-width source operand
elements. These are selected from either the top half (T variant) or bottom half (B variant) of double-width source
vector register elements. The operation produces a double-width result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1

size

1 1 1 0 0 D 1 1 Qn 1 Qd T 1 1 1 0 N 0 M 0 Qm 0

T1: VMULL variant

VMULL<T><v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = 8 << UInt(size);
7 elements = 16 DIV esize;
8 top = UInt(T);
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Specifies whether to do 8x8->16 or 16x16->32 polynomial multiplications.

This parameter must be one of the following values:
P8 Encoded as size = 0

Indicates 8x8->16
P16 Encoded as size = 1

Indicates 16x16->32
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1266

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 op2 = Q[n, curBeat];
9 for e = 0 to elements-1

10 element1 = Elem[op1, e * 2 + top, esize];
11 element2 = Elem[op2, e * 2 + top, esize];
12 Elem[result, e, esize*2] = PolynomialMult(element1, element2)[esize*2-1:0];
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1267

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.414 VMVN (immediate)

Vector Bitwise NOT. Set each element of a vector register to the bitwise inverse of the immediate operand
value. The immediate is generated by the AdvSIMDExpandImm() function based on the requested data type and
immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Qd 0 cmode 0 1 1 1 imm4

T1: VMVN variant

VMVN<v><q>.<dt> Qd, #<imm>

Decode for this encoding
1 if cmode == '111x' then SEE "VMOV (immediate) (vector)";
2 if cmode IN {'0xx1', '10x1'} then SEE "VBIC (immediate)";
3 CheckDecodeFaults(ExtType_Mve);
4 if D == '1' then UNDEFINED;
5 d = UInt(D:Qd);
6 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0000
cmode = 0010
cmode = 0100
cmode = 0110
cmode = 1100
cmode = 1101

I16 Encoded as:
cmode = 1000
cmode = 1010

<Qd> Destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1268

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 if curBeat[0] == '0' then
7 result = NOT(imm64[31:0]);
8 else
9 result = NOT(imm64[63:32]);

10
11 for e = 0 to 3
12 if elmtMask[e] == '1' then
13 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1269

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.415 VMVN (register)

Vector Bitwise Not. Bitwise invert the value of a vector register and place the result in another vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 0 0 0 0 Qd 0 0 1 0 1 1 1 M 0 Qm 0

T1: VMVN variant

VMVN<v><q> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = NOT(Q[m, curBeat]);
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1270

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.416 VNEG

Floating-point Negate. Floating-point Negate inverts the sign bit of a half-precision or single-precision or
double-precision register, and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPNeg(S[m][15:0]);
6 when '10' S[d] = FPNeg(S[m]);
7 when '11' D[d] = FPNeg(D[m]);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1271

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1272

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.417 VNEG (floating-point)

Vector Negate. Negate the value of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 1 1 1 1 1 M 0 Qm 0

T1: VNEG variant

VNEG<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as size = 01
F32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = FPNeg(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value;
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1273

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1274

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.418 VNEG (vector)

Vector Negate. Negate the value of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 0 1 1 1 1 M 0 Qm 0

T1: VNEG variant

VNEG<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = -SInt(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1275

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1276

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.419 VNMLA

Floating-point Multiply Accumulate and Negate. Floating-point Multiply Accumulate and Negate multiplies two
floating-point register values, adds the negation of the floating-point value in the destination register to the negation
of the product, and writes the result back to the destination register.

Arm recommends that software does not use the VNMLA instruction in the Round towards +Infinity and Round
towards -Infinity rounding modes, because the rounding of the product and of the sum can change the result of the
instruction in opposite directions, defeating the purpose of these rounding modes.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 operation = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1277

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 product16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
7 case operation of
8 when VFPNegMul_VNMLA
9 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), FPNeg(product16), TRUE);

10 when VFPNegMul_VNMLS
11 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), product16, TRUE);
12 when VFPNegMul_VNMUL
13 S[d] = Zeros(16) : FPNeg(product16);
14 when '10'
15 product32 = FPMul(S[n], S[m], TRUE);
16 case operation of
17 when VFPNegMul_VNMLA
18 S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
19 when VFPNegMul_VNMLS
20 S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
21 when VFPNegMul_VNMUL
22 S[d] = FPNeg(product32);
23 when '11'
24 product64 = FPMul(D[n], D[m], TRUE);
25 case operation of
26 when VFPNegMul_VNMLA
27 D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
28 when VFPNegMul_VNMLS
29 D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
30 when VFPNegMul_VNMUL
31 D[d] = FPNeg(product64);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1278

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.420 VNMLS

Floating-point Multiply Subtract and Negate. Floating-point Multiply Subtract and Negate multiplies two
floating-point register values, adds the negation of the floating-point value in the destination register to the
product, and writes the result back to the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 operation = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1279

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 product16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
7 case operation of
8 when VFPNegMul_VNMLA
9 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), FPNeg(product16), TRUE);

10 when VFPNegMul_VNMLS
11 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), product16, TRUE);
12 when VFPNegMul_VNMUL
13 S[d] = Zeros(16) : FPNeg(product16);
14 when '10'
15 product32 = FPMul(S[n], S[m], TRUE);
16 case operation of
17 when VFPNegMul_VNMLA
18 S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
19 when VFPNegMul_VNMLS
20 S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
21 when VFPNegMul_VNMUL
22 S[d] = FPNeg(product32);
23 when '11'
24 product64 = FPMul(D[n], D[m], TRUE);
25 case operation of
26 when VFPNegMul_VNMLA
27 D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
28 when VFPNegMul_VNMLS
29 D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
30 when VFPNegMul_VNMUL
31 D[d] = FPNeg(product64);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1280

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.421 VNMUL

Floating-point Multiply and Negate. Floating-point Multiply and Negate multiplies two floating-point register
values, and writes the negation of the result to the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNMUL{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 operation = VFPNegMul_VNMUL;
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1281

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 product16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
7 case operation of
8 when VFPNegMul_VNMLA
9 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), FPNeg(product16), TRUE);

10 when VFPNegMul_VNMLS
11 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), product16, TRUE);
12 when VFPNegMul_VNMUL
13 S[d] = Zeros(16) : FPNeg(product16);
14 when '10'
15 product32 = FPMul(S[n], S[m], TRUE);
16 case operation of
17 when VFPNegMul_VNMLA
18 S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
19 when VFPNegMul_VNMLS
20 S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
21 when VFPNegMul_VNMUL
22 S[d] = FPNeg(product32);
23 when '11'
24 product64 = FPMul(D[n], D[m], TRUE);
25 case operation of
26 when VFPNegMul_VNMLA
27 D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
28 when VFPNegMul_VNMLS
29 D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
30 when VFPNegMul_VNMUL
31 D[d] = FPNeg(product64);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1282

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.422 VORN

Vector Bitwise Or Not. Compute a bitwise OR NOT of a vector register with another vector register. The result is
written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 1 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VORN variant

VORN<v><q>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] OR NOT(Q[m, curBeat]);
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1283

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1284

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.423 VORN (immediate)

Vector Bitwise OR NOT. This is a pseudo-instruction, equivalent to a VORR (immediate) instruction with the
immediate value bitwise inverted.

This is an alias of VORR (immediate).

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 0 1 imm4

VORN variant

VORN<v><q>.<dt> Qda, #<imm>

is equivalent to

VORR<v><q>.<dt> Qda, #~<imm>

and is never the preferred disassembly

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1285

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.424 VORR

Vector Bitwise Or. Compute a bitwise OR of a vector register with another vector register. The result is written to
the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VORR variant

VORR<v><q>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] OR Q[m, curBeat];
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1286

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1287

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.425 VORR (immediate)

Vector Bitwise OR. OR the value of a vector register with the immediate operand value. The immediate is generated
by the AdvSIMDExpandImm() function based on the requested data type and immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 0 1 imm4

T1: VORR variant

VORR<v><q>.<dt> Qda, #<imm>

Decode for this encoding
1 if cmode IN {'xxx0', '11x1'} then SEE "VMOV (immediate) (vector)";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0001
cmode = 0011
cmode = 0101
cmode = 0111

I16 Encoded as:
cmode = 1001
cmode = 1011

<Qda> Source and destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 opd = Q[da, curBeat];
7 imm32 = if curBeat[0] == '0' then imm64[31:0] else imm64[63:32];
8 result = opd OR imm32;
9

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1288

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1289

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.426 VPNOT

Vector Predicate NOT. Inverts the predicate condition in VPR.P0. The VPR.P0 flags for predicated lanes are
zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 1 1 (0) (0) (0) 1 0 0 0 (0) 1 1 1 1 (0) 1 (0) 0 1 1 0 1

T1: VPNOT variant

VPNOT<v><q>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2
3 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 Elem[VPR.P0, curBeat, 4] = (NOT Elem[VPR.P0, curBeat, 4]) AND elmtMask;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1290

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.427 VPOP

Pop Floating-point registers from stack. Pop Floating-point registers from stack loads multiple consecutive
Floating-point registers from the stack.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

This instruction is an alias of the VLDM instruction. This means that:

• The encodings in this description are named to match the encodings of VLDM.

• The description of VLDM gives the operational pseudocode for this instruction.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 0
U = 1

D

W = 1

1 Rn = 1101 Vd 1 0 1 1 imm7

imm1 = 0

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

T2
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 0
U = 1

D

W = 1

1 Rn = 1101 Vd 1 0 1 0 imm8

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1291

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first
register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register.

Operation for all encodings
The description of VLDM gives the operational pseudocode for this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1292

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.428 VPSEL

Vector Predicated Select. Compute a bytewise conditional select of a vector register with another vector register,
based on the VPR predicate bits

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 Qn 1 Qd 0 1 1 1 1 N 0 M 0 Qm 1

T1: VPSEL variant

VPSEL<v><q>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 opm = Q[m, curBeat];
8 opn = Q[n, curBeat];
9 vpr = Elem[VPR.P0, curBeat, 4];

10 for e = 0 to 3
11 Elem[result, e, 8] = Elem[if vpr[e] == '1' then opn else opm, e, 8];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1293

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

If AIRCR.DIT is 1 and this instruction sets the FPSCR.N, Z, C, V, Q flags or VPR.P0:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V, Q flags or VPR.P0.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V, Q flags or VPR.P0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1294

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.429 VPST

Vector Predicate Set Then. Predicates the following instructions, up to a maximum of four instructions. This
instruction is similar to VPT. However no comparison is performed and instead the current value of VPR.P0 is
used as the predicate condition.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh 1 1 (0) (0) (0) 1 Mkl (0) 1 1 1 1 (0) 1 (0) 0 1 1 0 1

T1: VPST variant

VPST{x{y{z}}}

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3
4 mask = Mkh:Mkl;
5 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
6 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<x> Specifies the condition for an optional second instruction in the VPT block, and whether the

condition is the same as for the first instruction (T) or its inverse (E). This is encoded in the
mask field in a similar way to the IT instruction, except that rather than encoding T and E
directly into f_cond[0], a 1 in the corresponding mask bit indicates that the previous predicate
value in VPR.P0 should be inverted

<y> Specifies the condition for an optional third instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

<z> Specifies the condition for an optional fourth instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Only one mask field per pair of beats, so the mask is only updated on odd beats.
7 if curBeat[0] == '1' then
8 SetVPTMask(curBeat, mask);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1295

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.430 VPT

Vector Predicate Then. Predicates the following instructions, up to a maximum of four instructions, by masking
the operation of instructions on a per-lane basis based on the VPR.P0 predicate values. The predicated instructions
are referred to as the Vector Predication Block or simply the VPT Block. The VPR.P0 predicate values may be
inverted after each instruction in the VPT block based on the mask fields (see x, y, and z).

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 0 M 0 Qm 0

T1: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if M == '1' then UNDEFINED;
5 m = UInt(M:Qm);
6 n = UInt(Qn);
7 mask = Mkh:Mkl;
8 f_cond = '00':fc;
9 withScalar = FALSE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 ebytes = esize DIV 8;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
14 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 0 M 0 Qm 1

T2: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if M == '1' then UNDEFINED;
5 m = UInt(M:Qm);
6 n = UInt(Qn);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1296

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 mask = Mkh:Mkl;
8 f_cond = '01':fc;
9 withScalar = FALSE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 ebytes = esize DIV 8;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
14 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 1 1 1 1 1 fcl 0 M 0 Qm fch

T3: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if M == '1' then UNDEFINED;
5 m = UInt(M:Qm);
6 n = UInt(Qn);
7 mask = Mkh:Mkl;
8 f_cond = '1':fch:fcl;
9 withScalar = FALSE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 ebytes = esize DIV 8;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
14 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 1 0 0 Rm

T4: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = '00':fc;
8 withScalar = TRUE;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1297

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 1 1 0 Rm

T5: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = '01':fc;
8 withScalar = TRUE;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 1 1 1 1 1 fcl 1 fch 0 Rm

T6: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = '1':fch:fcl;
8 withScalar = TRUE;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1298

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T3 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for T4 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T5 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1299

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T6 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Qn> Source vector register.
<Qm> Source vector register.
<Rm> Source general-purpose register (ZR is permitted, PC is not).
<x> Specifies the condition for an optional second instruction in the VPT block, and whether the

condition is the same as for the first instruction (T) or its inverse (E). This is encoded in the
mask field in a similar way to the IT instruction, except that rather than encoding T and E
directly into f_cond[0], a 1 in the corresponding mask bit indicates that the previous predicate
value in VPR.P0 should be inverted

<y> Specifies the condition for an optional third instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

<z> Specifies the condition for an optional fourth instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 (result, flC, flV) = AddWithCarry(Elem[op1, e, esize], NOT(op2), '1');
16 flN = result[esize-1];
17 flZ = IsZeroBit(result);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;
22 // Only one mask field per pair of beats, so the mask is only updated on odd beats.
23 if curBeat[0] == '1' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1300

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

24 SetVPTMask(curBeat, mask);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1301

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.431 VPT (floating-point)

Vector Predicate Then. Predicates the following instructions, up to a maximum of four instructions, by masking
the operation of instructions on a per-lane basis based on the VPR.P0 predicate values. The predicated instructions
are referred to as the Vector Predication Block or simply the VPT Block. The VPR.P0 predicate values may be
inverted after each instruction in the VPT block based on the mask fields (see x, y, and z).

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Mkh 1 1 Qn 1 Mkl fcA 1 1 1 1 fcC 0 M 0 Qm fcB

T1: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if (fcA == '0' && fcB == '1') || Mkh:Mkl == '0000' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = fcA:fcB:fcC;
8 withScalar = FALSE;
9 esize = 8 << UInt(if sz == '1' then '01' else '10');

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Mkh 1 1 Qn 1 Mkl fcA 1 1 1 1 fcC 1 fcB 0 Rm

T2: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if Rm == '1101' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_MveFp);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = fcA:fcB:fcC;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1302

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 withScalar = TRUE;
9 esize = 8 << UInt(if sz == '1' then '01' else '10');

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if fcA == '0' && fcB == '1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fcA = 0, fcB = 0, fcC = 0
NE Encoded as fcA = 0, fcB = 0, fcC = 1
GE Encoded as fcA = 1, fcB = 0, fcC = 0
LT Encoded as fcA = 1, fcB = 0, fcC = 1
GT Encoded as fcA = 1, fcB = 1, fcC = 0
LE Encoded as fcA = 1, fcB = 1, fcC = 1

<Qn> Source vector register.
<Qm> Source vector register.
<Rm> Source general-purpose register (ZR is permitted, PC is not).
<x> Specifies the condition for an optional second instruction in the VPT block, and whether the

condition is the same as for the first instruction (T) or its inverse (E). This is encoded in the
mask field in a similar way to the IT instruction, except that rather than encoding T and E
directly into f_cond[0], a 1 in the corresponding mask bit indicates that the previous predicate
value in VPR.P0 should be inverted

<y> Specifies the condition for an optional third instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

<z> Specifies the condition for an optional fourth instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
16 predicated = (elmtMask[e*(esize>>3)] == '0');
17 (flN, flZ, flC, flV) = FPCompare(Elem[op1, e, esize], op2, TRUE, FALSE, predicated);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;
22 // Only one mask field per pair of beats, so the mask is only updated on odd beats.
23 if curBeat[0] == '1' then
24 SetVPTMask(curBeat, mask);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1303

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.432 VPUSH

Push Floating-point registers to stack. Push Floating-point registers to stack stores multiple consecutive registers
from the Floating-point register file to the stack.

This instruction is interrupt-continuable.

This instruction is subject to stack limit checking.

This instruction is an alias of the VSTM instruction. This means that:

• The encodings in this description are named to match the encodings of VSTM.

• The description of VSTM gives the operational pseudocode for this instruction.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 1
U = 0

D

W = 1

0 Rn = 1101 Vd 1 0 1 1 imm7

imm1 = 0

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

T2
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 1
U = 0

D

W = 1

0 Rn = 1101 Vd 1 0 1 0 imm8

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1304

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first
register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register.

Operation for all encodings
The description of VSTM gives the operational pseudocode for this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1305

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.433 VQABS

Vector Saturating Absolute. Compute the absolute value of and saturate each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 1 1 0 1 M 0 Qm 0

T1: VQABS variant

VQABS<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = Abs(SInt(Elem[op1, e, esize]));

10 (Elem[result, e, esize], sat) = SignedSatQ(value, esize);
11 if sat && elmtMask[e*(esize>>3)] == '1' then
12 FPSCR.QC = '1';
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1306

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.434 VQADD

Vector Saturating Add. Add the value of the elements in the first source vector register to either the respective
elements in the second source vector register or a general-purpose register. The result is saturated before being
written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 0 0 N 1 M 1 Qm 0

T1: VQADD variant

VQADD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 0 1 1 1 1 N 1 1 0 Rm

T2: VQADD variant

VQADD<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1307

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) + Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) + Int(Elem[op2, e, esize], unsigned);
15 (Elem[result, e, esize], sat) = SatQ(value, esize, unsigned);
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1308

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.435 VQDMLADH, VQRDMLADH

Vector Saturating Doubling Multiply Add Dual Returning High Half, Vector Saturating Rounding Doubling
Multiply Add Dual Returning High Half. The elements of the vector registers are handled in pairs. In the base
variant, corresponding elements from the two source registers are multiplied together, whereas the exchange variant
swaps the values in each pair of values read from the first source register, before multiplying them with the values
from the second source register. The results of the pairs of multiply operations are combined by adding them
together and doubling the result. The high halves of the resulting values are selected as the final results. The base
variant writes the results into the lower element of each pair of elements in the destination register, whereas the
exchange variant writes to the upper element in each pair. The results are optionally rounded before the high half
is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 0

T1: VQDMLADH variant

VQDMLADH{X}<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 1

T2: VQRDMLADH variant

VQRDMLADH{X}<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1309

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 rVal = if round then 1 << (esize-1) else 0;
8 // 32 bit operations are handled differently as they perform cross beat
9 // register accesses

10 if esize == 32 then
11 if (curBeat[0] == '1') == exchange then
12 if exchange then
13 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat-1]);
14 mul2 = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
15 else
16 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
17 mul2 = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat+1]);
18 (value, sat) = SignedSatQ(2 * (mul1 + mul2) + rVal, esize*2);
19 result = value[63:32];
20 if sat && elmtMask[0] == '1' then
21 FPSCR.QC = '1';
22 else
23 // No computation on this beat, so don't write to the dest register.
24 elmtMask = Zeros();
25 else
26 op1 = Q[n, curBeat];
27 op2 = Q[m, curBeat];
28 for e = 0 to elements-1
29 if (e[0] == '1') == exchange then
30 if exchange then
31 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e-1, esize]);
32 mul2 = SInt(Elem[op1, e-1, esize]) * SInt(Elem[op2, e, esize]);
33 else
34 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e, esize]);
35 mul2 = SInt(Elem[op1, e+1, esize]) * SInt(Elem[op2, e+1, esize]);
36 (value, sat) = SignedSatQ(2 * (mul1 + mul2) + rVal, esize*2);
37 Elem[result, e, esize] = value[esize+esize-1:esize];
38 if sat && elmtMask[e*(esize>>3)] == '1' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1310

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

39 FPSCR.QC = '1';
40 else
41 // No computation on this lane, so assign original value.
42 Elem[result, e, esize] = Elem[Q[d, curBeat], e, esize];
43
44 for e = 0 to 3
45 if elmtMask[e] == '1' then
46 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1311

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.436 VQDMLAH, VQRDMLAH (vector by scalar plus vector)

Vector Saturating Doubling Multiply Accumulate, Vector Saturating Rounding Doubling Multiply Accumulate.
Multiply each element in the source vector by a scalar value, double the result and add to the respective element
from the destination vector High Half. Store the high half of each result in the destination register. The result is
optionally rounded before the high half is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 0 1 1 1 0 N 1 1 0 Rm

T1: VQDMLAH variant

VQDMLAH<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 round = FALSE;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 0 1 1 1 0 N 1 0 0 Rm

T2: VQRDMLAH variant

VQRDMLAH<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 round = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1312

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qda> Accumulator vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 element2 = SInt(R[m][esize-1:0]);
9 op3 = Q[da, curBeat];

10 rVal = if round then 1 << (esize-1) else 0;
11 for e = 0 to elements-1
12 element1 = SInt(Elem[op1, e, esize]);
13 element3 = SInt(Elem[op3, e, esize]) << esize;
14 (value, sat) = SignedSatQ((2 * element1 * element2) + element3 + rVal, esize*2);
15 Elem[result, e, esize] = value[esize+esize-1:esize];
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1 and this instruction sets the FPSCR.N, Z, C, V, Q flags or VPR.P0:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V, Q flags or VPR.P0.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V, Q flags or VPR.P0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1313

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.437 VQDMLASH, VQRDMLASH (vector by vector plus scalar)

Vector Saturating Doubling Multiply Accumulate Scalar High Half, Vector Saturating Rounding Doubling Multiply
Accumulate Scalar High Half. Multiply each element in the source vector by the respective element from the
destination vector, double the result and add to a scalar value. Store the high half of each result in the destination
register. The result is optionally rounded before the high half is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 1 1 1 1 0 N 1 1 0 Rm

T1: VQDMLASH variant

VQDMLASH<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 round = FALSE;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 1 1 1 1 0 N 1 0 0 Rm

T2: VQRDMLASH variant

VQRDMLASH<v><q>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 round = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1314

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qda> Source and destination vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[da, curBeat];
9 element3 = SInt(R[m][esize-1:0]) << esize;

10 rVal = if round then 1 << (esize-1) else 0;
11 for e = 0 to elements-1
12 element1 = SInt(Elem[op1, e, esize]);
13 element2 = SInt(Elem[op2, e, esize]);
14 (value, sat) = SignedSatQ((2 * element1 * element2) + element3 + rVal, esize*2);
15 Elem[result, e, esize] = value[esize+esize-1:esize];
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1315

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.438 VQDMLSDH, VQRDMLSDH

Vector Saturating Doubling Multiply Subtract Dual Returning High Half, Vector Saturating Rounding Doubling
Multiply Subtract Dual Returning High Half. The elements of the vector registers are handled in pairs. In the base
variant, corresponding elements from the two source registers are multiplied together, whereas the exchange variant
swaps the values in each pair of values read from the first source register, before multiplying them with the values
from the second source register. The results of the pairs of multiply operations are combined by subtracting one
from the other and doubling the result. The high halves of the resulting values are selected as the final results. The
base variant writes the results into the lower element of each pair of elements in the destination register, whereas
the exchange variant writes to the upper element in each pair. The results are optionally rounded before the high
half is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 0

T1: VQDMLSDH variant

VQDMLSDH{X}<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 1

T2: VQRDMLSDH variant

VQRDMLSDH{X}<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1316

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 rVal = if round then 1 << (esize-1) else 0;
8 // 32 bit operations are handled differently as they perform cross beat
9 // register accesses

10 if esize == 32 then
11 if (curBeat[0] == '1') == exchange then
12 if exchange then
13 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat-1]);
14 mul2 = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
15 else
16 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
17 mul2 = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat+1]);
18 (value, sat) = SignedSatQ(2 * (mul1 - mul2) + rVal, esize*2);
19 result = value[63:32];
20 if sat && elmtMask[0] == '1' then
21 FPSCR.QC = '1';
22 else
23 // No computation on this beat, so don't write to the dest register.
24 elmtMask = Zeros();
25 else
26 op1 = Q[n, curBeat];
27 op2 = Q[m, curBeat];
28 for e = 0 to elements-1
29 if (e[0] == '1') == exchange then
30 if exchange then
31 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e-1, esize]);
32 mul2 = SInt(Elem[op1, e-1, esize]) * SInt(Elem[op2, e, esize]);
33 else
34 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e, esize]);
35 mul2 = SInt(Elem[op1, e+1, esize]) * SInt(Elem[op2, e+1, esize]);
36 (value, sat) = SignedSatQ(2 * (mul1 - mul2) + rVal, esize*2);
37 Elem[result, e, esize] = value[esize+esize-1:esize];
38 if sat && elmtMask[e*(esize>>3)] == '1' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1317

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

39 FPSCR.QC = '1';
40 else
41 // No computation on this lane, so assign original value.
42 Elem[result, e, esize] = Elem[Q[d, curBeat], e, esize];
43
44 for e = 0 to 3
45 if elmtMask[e] == '1' then
46 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1318

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.439 VQDMULH, VQRDMULH

Vector Saturating Doubling Multiply Returning High Half, Vector Saturating Rounding Doubling Multiply
Returning High Half. Multiply a general-purpose register value by each element of a vector register to produce
a vector of results or multiply each element of a vector register by its corresponding element in another vector
register, double the results, and place the most significant half of the final results in the destination vector. The
results are optionally rounded before being saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Qn 0 Qd 0 1 0 1 1 N 1 M 0 Qm 0

T1: VQDMULH variant

VQDMULH<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 withScalar = FALSE;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Qn 0 Qd 0 1 0 1 1 N 1 M 0 Qm 0

T2: VQRDMULH variant

VQRDMULH<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1319

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 withScalar = FALSE;
10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 0 N 1 1 0 Rm

T3: VQDMULH variant

VQDMULH<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 withScalar = TRUE;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 0 N 1 1 0 Rm

T4: VQRDMULH variant

VQRDMULH<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 withScalar = TRUE;

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<Qn> First source vector register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1320

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for T2 encodings

<Qn> First source vector register.

Assembler symbols for T3 encodings

<Qn> Source vector register.

Assembler symbols for T4 encodings

<Qn> Source vector register.

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = if withScalar then R[m] else Q[m, curBeat];
9 rVal = if round then 1 << (esize-1) else 0;

10 for e = 0 to elements-1
11 opm = if withScalar then op2[esize-1:0] else Elem[op2, e, esize];
12 value = ((2 * SInt(Elem[op1, e, esize]) * SInt(opm)) + rVal) >> esize;
13 (Elem[result, e, esize], sat) = SignedSatQ(value, esize);
14 if sat && elmtMask[e*(esize>>3)] == '1' then
15 FPSCR.QC = '1';
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1 and this instruction sets the FPSCR.N, Z, C, V, Q flags or VPR.P0:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V, Q flags or VPR.P0.

• The point at which an asynchronous exception is taken does not vary based on any of the following:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1321

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– The values of the data supplied in any of its registers.

– The values of the N, Z, C, V, Q flags or VPR.P0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1322

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.440 VQDMULL

Vector Multiply Long. Performs an element-wise integer multiplication of two single-width source operand
elements. These are selected from either the top half (T variant) or bottom half (B variant) of double-width source
vector register elements or the lower single-width portion of the general-purpose register. The product of the
multiplication is doubled and saturated to produce a double-width product that is written back to the destination
vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd T 1 1 1 1 N 0 M 0 Qm 1

T1: VQDMULL variant

VQDMULL<T><v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = 16 << UInt(sz);
7 top = UInt(T);
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if sz == '1' && (D:Qd == M:Qm || D:Qd == N:Qn) then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd T 1 1 1 1 N 1 1 0 Rm

T2: VQDMULL variant

VQDMULL<T><v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = 16 << UInt(sz);
7 top = UInt(T);
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1323

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 if D:Qd == N:Qn && sz == '1' then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 0
S32 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 32 then
8 op1 = Q[n, UInt(curBeat[1]:T)];
9 if withScalar then

10 op2 = R[m];
11 else
12 op2 = Q[m, UInt(curBeat[1]:T)];
13 (mul, sat) = SignedSatQ(2 * SInt(op1) * SInt(op2), 64);
14 result = if curBeat[0] == '1' then mul[63:32] else mul[31:0];
15 if sat && elmtMask[0] == '1' then
16 FPSCR.QC = '1';
17 else
18 op1 = Q[n, curBeat];
19 if withScalar then
20 op2 = R[m];
21 else
22 op2 = Q[m, curBeat];
23 elements = 16 DIV esize;
24 for e = 0 to elements-1
25 element1 = Elem[op1, e * 2 + top, esize];
26 if withScalar then
27 element2 = Elem[op2, 0, esize];
28 else
29 element2 = Elem[op2, e * 2 + top, esize];
30 value = 2 * SInt(element1) * SInt(element2);
31 (Elem[result, e, esize * 2], sat) = SignedSatQ(value, 2 * esize);
32 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
33 FPSCR.QC = '1';
34
35 for e = 0 to 3
36 if elmtMask[e] == '1' then
37 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1324

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.441 VQMOVN

Vector Saturating Move and Narrow. Performs an element-wise saturation to half-width, writing the result to either
the top half (T variant) or bottom half (B variant) of the result element. The other half of the destination vector
element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D 1 1 size 1 1 Qd T 1 1 1 0 0 0 M 0 Qm 1

T1: VQMOVN variant

VQMOVN<T><v><q>.<dt> Qd, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 unsigned = (U == '1');
8 esize = 8 << UInt(size);
9 elements = 16 DIV esize;

10 top = UInt(T);
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as size = 00, U = 0
U16 Encoded as size = 00, U = 1
S32 Encoded as size = 01, U = 0
U32 Encoded as size = 01, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1325

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 (value, sat) = SatQ(operand, esize, unsigned);
11 Elem[result, 2*e + top, esize] = value;
12 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
13 FPSCR.QC = '1';
14
15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1326

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.442 VQMOVUN

Vector Saturating Move Unsigned and Narrow. Performs an element-wise saturation to half-width, writing the
result to either the top half (T variant) or bottom half (B variant) of the result element. The other half of the
destination vector element retains its previous value. The result is always saturated to an unsigned value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 size 0 1 Qd T 1 1 1 0 1 0 M 0 Qm 1

T1: VQMOVUN variant

VQMOVUN<T><v><q>.<dt> Qd, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 unsigned = FALSE;
8 destUnsigned = TRUE;
9 esize = 8 << UInt(size);

10 elements = 16 DIV esize;
11 top = UInt(T);
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as size = 00
S32 Encoded as size = 01

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1327

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 (value, sat) = SatQ(operand, esize, destUnsigned);
11 Elem[result, 2*e + top, esize] = value;
12 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
13 FPSCR.QC = '1';
14
15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1328

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.443 VQNEG

Vector Saturating Negate. Negate the value and saturate each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 1 1 1 1 M 0 Qm 0

T1: VQNEG variant

VQNEG<v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = -SInt(Elem[op1, e, esize]);

10 (Elem[result, e, esize], sat) = SignedSatQ(value, esize);
11 if sat && elmtMask[e*(esize>>3)] == '1' then
12 FPSCR.QC = '1';
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1329

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.444 VQRSHL

Vector Saturating Rounding Shift Left. The vector variant shifts each element of the first vector by a value from
the least significant byte of the corresponding element of the second vector and places the results in the destination
vector.

The register variants shift each element of a vector register by the value specified in a source register. The direction
of the shift depends on the sign of the element from the second vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 1 N 1 M 1 Qm 0

T1: VQRSHL variant

VQRSHL<v><q>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 withScalar = FALSE;
9 withVector = TRUE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 1 1 Qda 1 1 1 1 0 1 1 1 0 Rm

T2: VQRSHL variant

VQRSHL<v><q>.<dt> Qda, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1330

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 m = da;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 withVector = FALSE;
12 esize = 8 << UInt(size);
13 elements = 32 DIV esize;
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 // 0 for left shift, 2^(n-1) for right shift
16 roundConst = 1 << (-1-shiftAmount);
17 operand = Int(Elem[op1, e, esize], unsigned);
18 (value, sat) = SatQ((operand + roundConst) << shiftAmount, esize, unsigned);
19 Elem[result, e, esize] = value;
20 if sat && elmtMask[e*(esize>>3)] == '1' then
21 FPSCR.QC = '1';
22
23 for e = 0 to 3
24 if elmtMask[e] == '1' then
25 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1331

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.445 VQRSHRN

Vector Saturating Rounding Shift Right and Narrow. Performs an element-wise saturation to half-width, with shift,
writing the rounded result to either the top half (T variant) or bottom half (B variant) of the result element. The
other half of the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 0 1 M 0 Qm 1

T1: VQRSHRN variant

VQRSHRN<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = (U == '1');
6 imm5 = sz:imm;
7 case sz of
8 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
9 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);

10 otherwise UNDEFINED;
11 esize = 8 << UInt(size);
12 elements = 16 DIV esize;
13 top = UInt(T);
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 01, U = 0
U16 Encoded as sz = 01, U = 1
S32 Encoded as sz = 1x, U = 0
U32 Encoded as sz = 1x, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1332

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 // 0 for left shift, 2^(n-1) for right shift
11 operand = operand + (1 << (shiftAmount-1));
12 operand = operand >> shiftAmount;
13 (value, sat) = SatQ(operand, esize, unsigned);
14 Elem[result, 2*e + top, esize] = value;
15 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
16 FPSCR.QC = '1';
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1333

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.446 VQRSHRUN

Vector Saturating Rounding Shift Right Unsigned and Narrow. Performs an element-wise saturation to half-width,
with shift, writing the rounded result to either the top half (T variant) or bottom half (B variant) of the result
element. The other half of the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 0

T1: VQRSHRUN variant

VQRSHRUN<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = FALSE;
6 destUnsigned = TRUE;
7 imm5 = sz:imm;
8 case sz of
9 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);

10 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
11 otherwise UNDEFINED;
12 esize = 8 << UInt(size);
13 elements = 16 DIV esize;
14 top = UInt(T);
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 01
S32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1334

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 // 0 for left shift, 2^(n-1) for right shift
11 operand = operand + (1 << (shiftAmount-1));
12 operand = operand >> shiftAmount;
13 (value, sat) = SatQ(operand, esize, destUnsigned);
14 Elem[result, 2*e + top, esize] = value;
15 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
16 FPSCR.QC = '1';
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1335

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.447 VQSHL, VQSHLU

Vector Saturating Shift Left, Vector Saturating Shift Left Unsigned. The register variants shift each element of
a vector register by the value specified in a source register. The direction of the shift depends on the sign of the
element from the second vector register.

The immediate variant shifts each element of a vector register to the left by the immediate value.

The vector variant shifts each element of the first vector by a value from the least significant byte of the
corresponding element of the second vector and places the results in the destination vector.

The unsigned variant produces unsigned results, although the operands are signed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 0 1 Qda 1 1 1 1 0 1 1 1 0 Rm

T1: VQSHL variant

VQSHL<v><q>.<dt> Qda, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;
8 m = da;
9 unsigned = (U == '1');

10 destUnsigned = unsigned;
11 withScalar = TRUE;
12 withVector = FALSE;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D sz imm Qd 0 0 1 1 1 0 1 M 1 Qm 0

T2: VQSHL variant

VQSHL<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1336

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 destUnsigned = unsigned;
8 n = integer UNKNOWN;
9 imm6 = sz:imm;

10 case sz of
11 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;
12 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
13 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
14 otherwise UNDEFINED;
15 withScalar = FALSE;
16 withVector = FALSE;
17 esize = 8 << UInt(size);
18 elements = 32 DIV esize;
19 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D sz imm Qd 0 0 1 1 0 0 1 M 1 Qm 0

T3: VQSHLU variant

VQSHLU<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = FALSE;
7 destUnsigned = TRUE;
8 n = integer UNKNOWN;
9 imm6 = sz:imm;

10 case sz of
11 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;
12 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
13 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
14 otherwise UNDEFINED;
15 withScalar = FALSE;
16 withVector = FALSE;
17 esize = 8 << UInt(size);
18 elements = 32 DIV esize;
19 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 0 N 1 M 1 Qm 0

T4: VQSHL variant

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1337

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VQSHL<v><q>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 destUnsigned = unsigned;
9 withScalar = FALSE;

10 withVector = TRUE;
11 esize = 8 << UInt(size);
12 elements = 32 DIV esize;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001, U = 0
U8 Encoded as sz = 001, U = 1
S16 Encoded as sz = 01x, U = 0
U16 Encoded as sz = 01x, U = 1
S32 Encoded as sz = 1xx, U = 0
U32 Encoded as sz = 1xx, U = 1

Assembler symbols for T3 encodings

<dt> The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001
S16 Encoded as sz = 01x
S32 Encoded as sz = 1xx

Assembler symbols for T4 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1338

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.
<imm> The number of bits to shift by, in the range 0 to <dt>-1. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 operand = Int(Elem[op1, e, esize], unsigned);
16 (value, sat) = SatQ(operand << shiftAmount, esize, destUnsigned);
17 Elem[result, e, esize] = value;
18 if sat && elmtMask[e*(esize>>3)] == '1' then
19 FPSCR.QC = '1';
20
21 for e = 0 to 3
22 if elmtMask[e] == '1' then
23 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1339

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.448 VQSHRN

Vector Saturating Shift Right and Narrow. Performs an element-wise saturation to half-width, with shift, writing
the result to either the top half (T variant) or bottom half (B variant) of the result element. The other half of the
destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 0 1 M 0 Qm 0

T1: VQSHRN variant

VQSHRN<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = (U == '1');
6 imm5 = sz:imm;
7 case sz of
8 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
9 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);

10 otherwise UNDEFINED;
11 esize = 8 << UInt(size);
12 elements = 16 DIV esize;
13 top = UInt(T);
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 01, U = 0
U16 Encoded as sz = 01, U = 1
S32 Encoded as sz = 1x, U = 0
U32 Encoded as sz = 1x, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1340

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 operand = operand >> shiftAmount;
11 (value, sat) = SatQ(operand, esize, unsigned);
12 Elem[result, 2*e + top, esize] = value;
13 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
14 FPSCR.QC = '1';
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1341

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.449 VQSHRUN

Vector Saturating Shift Right Unsigned and Narrow. Performs an element-wise saturation to half-width, with shift,
writing the result to either the top half (T variant) or bottom half (B variant) of the result element. The other half of
the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 0

T1: VQSHRUN variant

VQSHRUN<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = FALSE;
6 destUnsigned = TRUE;
7 imm5 = sz:imm;
8 case sz of
9 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);

10 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
11 otherwise UNDEFINED;
12 esize = 8 << UInt(size);
13 elements = 16 DIV esize;
14 top = UInt(T);
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 01
S32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1342

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 operand = operand >> shiftAmount;
11 (value, sat) = SatQ(operand, esize, destUnsigned);
12 Elem[result, 2*e + top, esize] = value;
13 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
14 FPSCR.QC = '1';
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1343

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.450 VQSUB

Vector Saturating Subtract. Subtract the value of the elements in the second source vector register from either the
respective elements in the first source vector register or a general-purpose register. The result is saturated before
being written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 1 0 N 1 M 1 Qm 0

T1: VQSUB variant

VQSUB<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 1 1 1 1 1 N 1 1 0 Rm

T2: VQSUB variant

VQSUB<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1344

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) - Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) - Int(Elem[op2, e, esize], unsigned);
15 (Elem[result, e, esize], sat) = SatQ(value, esize, unsigned);
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1345

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.451 VREV16

Vector Reverse. Reverse the order of 8-bit elements within each halfword of the source vector register and places
the result in the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 0 0 1 0 1 M 0 Qm 0

T1: VREV16 variant

VREV16<v><q>.<size> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size != '00' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 64 DIV esize;
8 width = 2;
9 groupsize = (1 << (3-width-UInt(size))); // elements per reversing group: 2

10 reverse_mask = (groupsize-1)[esize-1:0]; // EORing mask used for index calculations
11 groups_per_beat = width;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be the following value:
8 Encoded as size = 00

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 64 bit wide operations are handled differently as they perform cross beat
8 // register accesses
9 if width == 0 then

10 op1 = Q[m, UInt(curBeat[1:0] EOR 1[1:0])];
11 for e = 0 to (groupsize >> 1)-1
12 // Calculate destination element index by bitwise EOR on source element index:
13 elemIdx = UInt((e[esize-1:0] EOR (UInt(reverse_mask) >> 1)[esize-1:0]));
14 Elem[result, elemIdx, esize] = Elem[op1, e, esize];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1346

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 else
16 op1 = Q[m, curBeat];
17 for g = 0 to groups_per_beat-1
18 for e = 0 to groupsize -1
19 elemIdx = (g*groupsize) + UInt(e[esize-1:0] EOR (reverse_mask));
20 Elem[result, elemIdx, esize] = Elem[op1, (g*groupsize)+e, esize];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1347

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.452 VREV32

Vector Reverse. Reverse the order of 8-bit or 16-bit elements within each word of the source vector register and
places the result in the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 0 0 0 1 1 M 0 Qm 0

T1: VREV32 variant

VREV32<v><q>.<size> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '1x' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 64 DIV esize;
8 width = 1;
9 groupsize = (1 << (3-width-UInt(size))); // elements per reversing group: 2 or 4

10 reverse_mask = (groupsize-1)[esize-1:0]; // EORing mask used for index calculations
11 groups_per_beat = width;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 64 bit wide operations are handled differently as they perform cross beat
8 // register accesses
9 if width == 0 then

10 op1 = Q[m, UInt(curBeat[1:0] EOR 1[1:0])];
11 for e = 0 to (groupsize >> 1)-1
12 // Calculate destination element index by bitwise EOR on source element index:
13 elemIdx = UInt((e[esize-1:0] EOR (UInt(reverse_mask) >> 1)[esize-1:0]));

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1348

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 Elem[result, elemIdx, esize] = Elem[op1, e, esize];
15 else
16 op1 = Q[m, curBeat];
17 for g = 0 to groups_per_beat-1
18 for e = 0 to groupsize -1
19 elemIdx = (g*groupsize) + UInt(e[esize-1:0] EOR (reverse_mask));
20 Elem[result, elemIdx, esize] = Elem[op1, (g*groupsize)+e, esize];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1349

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.453 VREV64

Vector Reverse. Reverse the order of 8-bit, 16-bit or 32-bit elements within each doubleword of the source vector
register and places the result in the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 0 0 0 0 1 M 0 Qm 0

T1: VREV64 variant

VREV64<v><q>.<size> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 64 DIV esize;
8 width = 0;
9 groupsize = (1 << (3-width-UInt(size))); // elements per reversing group: 2, 4 or 8

10 reverse_mask = (groupsize-1)[esize-1:0]; // EORing mask used for index calculations
11 groups_per_beat = width;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 64 bit wide operations are handled differently as they perform cross beat
8 // register accesses
9 if width == 0 then

10 op1 = Q[m, UInt(curBeat[1:0] EOR 1[1:0])];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1350

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11 for e = 0 to (groupsize >> 1)-1
12 // Calculate destination element index by bitwise EOR on source element index:
13 elemIdx = UInt((e[esize-1:0] EOR (UInt(reverse_mask) >> 1)[esize-1:0]));
14 Elem[result, elemIdx, esize] = Elem[op1, e, esize];
15 else
16 op1 = Q[m, curBeat];
17 for g = 0 to groups_per_beat-1
18 for e = 0 to groupsize -1
19 elemIdx = (g*groupsize) + UInt(e[esize-1:0] EOR (reverse_mask));
20 Elem[result, elemIdx, esize] = Elem[op1, (g*groupsize)+e, esize];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1351

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.454 VRHADD

Vector Rounding Halving Add. Add the value of the elements in the first source vector register to the respective
elements in the second source vector register. The result is halved and rounded before being written to the
destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 0 1 N 1 M 0 Qm 0

T1: VRHADD variant

VRHADD<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1352

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value = Int(Elem[op1, e, esize], unsigned) + Int(Elem[op2, e, esize], unsigned);
11 Elem[result, e, esize] = (value + 1)[esize:1];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1353

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.455 VRINT (floating-point)

Vector Round Integer. Round a floating-point value to an integer value. The result remains in floating-point format.
It is not converted to an integer.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Qd 0 0 1 op 1 M 0 Qm 0

T1: VRINT variant

VRINT<op><v><q>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if op == '1x0' then UNDEFINED;
4 if size IN {'11', '00'} then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 case op of

10 when '010' // A, Round to nearest, with ties away
11 rmode = '01'; away = TRUE; exact = FALSE;
12 when '000' // N, Round to nearest, with ties to even
13 rmode = '00'; away = FALSE; exact = FALSE;
14 when '111' // P, Round towards Plus Infinity
15 rmode = '01'; away = FALSE; exact = FALSE;
16 when '101' // M, Round towards Minus Infinity
17 rmode = '10'; away = FALSE; exact = FALSE;
18 when '001' // X, Round to nearest with ties to even, raising inexact
19 // exception if result not numerically equal to input
20 rmode = '00'; away = FALSE; exact = TRUE;
21 when '011' // Z, Round towards zero
22 rmode = '11'; away = FALSE; exact = FALSE;
23 otherwise
24 UNDEFINED;
25 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<op> The rounding mode.
This parameter must be one of the following values:
N Encoded as op = 000

Round to nearest with ties to even
X Encoded as op = 001

Round to nearest with ties to even, raising inexact exception if result not numerically
equal to input
A Encoded as op = 010

Round to nearest with ties to away
Z Encoded as op = 011

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1354

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Round towards zero
M Encoded as op = 101

Round towards minus infinity
P Encoded as op = 111

Round towards plus infinity
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as size = 01
F32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 conv = FPRoundInt(Elem[op1, e, esize], rmode, away, exact, FALSE, pred);
12 Elem[result, e, esize] = conv;
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1355

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.456 VRINTA

Floating-point Round to Nearest Integer with Ties to Away. Floating-point Round to Nearest Integer with Ties to
Away rounds a floating-point value to an integral floating-point value of the same size using the Round to Nearest
with Ties to Away rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 00 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTA{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTA{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTA{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 case RM of
5 when '00' // Round to nearest, with ties away
6 rmode = '01'; away = TRUE;
7 when '01' // Round to nearest, with ties to even
8 rmode = '00'; away = FALSE;
9 when '10' // Round towards Plus Infinity

10 rmode = '01'; away = FALSE;
11 when '11' // Round towards Minus Infinity
12 rmode = '10'; away = FALSE;
13 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
14 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
15 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1356

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 exact = FALSE;
5
6 case size of
7 when '01'
8 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
9 when '10'

10 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
11 when '11'
12 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1357

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.457 VRINTM

Floating-point Round to Integer towards -Infinity. Floating-point Round to Integer towards -Infinity rounds a
floating-point value to an integral floating-point value of the same size using the Round towards -Infinity rounding
mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 11 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTM{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTM{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTM{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 case RM of
5 when '00' // Round to nearest, with ties away
6 rmode = '01'; away = TRUE;
7 when '01' // Round to nearest, with ties to even
8 rmode = '00'; away = FALSE;
9 when '10' // Round towards Plus Infinity

10 rmode = '01'; away = FALSE;
11 when '11' // Round towards Minus Infinity
12 rmode = '10'; away = FALSE;
13 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
14 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
15 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1358

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 exact = FALSE;
5
6 case size of
7 when '01'
8 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
9 when '10'

10 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
11 when '11'
12 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1359

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.458 VRINTN

Floating-point Round to Nearest Integer with Ties to Even. Floating-point Round to Nearest Integer with Ties to
Even rounds a floating-point value to an integral floating-point value of the same size using the Round to Nearest
rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with
the same sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 01 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTN{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTN{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTN{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 case RM of
5 when '00' // Round to nearest, with ties away
6 rmode = '01'; away = TRUE;
7 when '01' // Round to nearest, with ties to even
8 rmode = '00'; away = FALSE;
9 when '10' // Round towards Plus Infinity

10 rmode = '01'; away = FALSE;
11 when '11' // Round towards Minus Infinity
12 rmode = '10'; away = FALSE;
13 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
14 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
15 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1360

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 exact = FALSE;
5
6 case size of
7 when '01'
8 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
9 when '10'

10 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
11 when '11'
12 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1361

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.459 VRINTP

Floating-point Round to Integer towards +Infinity. Floating-point Round to Integer towards +Infinity rounds a
floating-point value to an integral floating-point value of the same size using the Round towards +Infinity rounding
mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 10 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTP{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTP{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTP{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 case RM of
5 when '00' // Round to nearest, with ties away
6 rmode = '01'; away = TRUE;
7 when '01' // Round to nearest, with ties to even
8 rmode = '00'; away = FALSE;
9 when '10' // Round towards Plus Infinity

10 rmode = '01'; away = FALSE;
11 when '11' // Round towards Minus Infinity
12 rmode = '10'; away = FALSE;
13 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
14 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
15 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1362

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 exact = FALSE;
5
6 case size of
7 when '01'
8 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
9 when '10'

10 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
11 when '11'
12 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1363

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.460 VRINTR

Floating-point Round to Integer. Floating-point Round to Integer rounds a floating-point value to an integral
floating-point value of the same size using the rounding mode specified in FPSCR. A zero input gives a zero result
with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size

op = 0

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTR{<c>}{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTR{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTR{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1364

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4
5 rmode = if op == '1' then '11' else FPSCR.RMode;
6 exact = FALSE;
7 away = FALSE;
8
9 case size of

10 when '01'
11 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
12 when '10'
13 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
14 when '11'
15 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1365

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.461 VRINTX

Floating-point Round to Integer, raising Inexact exception. This instruction rounds a floating-point value to an
integral floating-point value of the same size. A zero input gives a zero result with the same sign, an infinite input
gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

VRINTX uses the rounding mode specified in FPSCR, and raises an Inexact exception when the result value is not
numerically equal to the input value.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTX{<c>}{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTX{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTX{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1366

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4
5 rmode = FPSCR[23:22];
6 away = FALSE;
7 exact = TRUE;
8
9 case size of

10 when '01'
11 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
12 when '10'
13 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
14 when '11'
15 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1367

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.462 VRINTZ

Floating-point Round to Integer towards Zero. Floating-point Round to Integer towards Zero rounds a floating-point
value to an integral floating-point value of the same size, using the Round towards Zero rounding mode. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN
is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size

op = 1

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1368

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4
5 rmode = if op == '1' then '11' else FPSCR.RMode;
6 exact = FALSE;
7 away = FALSE;
8
9 case size of

10 when '01'
11 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
12 when '10'
13 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
14 when '11'
15 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1369

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.463 VRMLALDAVH

Vector Rounding Multiply Add Long Dual Accumulate Across Vector Returning High 64 bits. The elements of the
vector registers are handled in pairs. In the base variant, corresponding elements from the two source registers
are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first
source register, before multiplying them with the values from the second source register. The results of the pairs of
multiply operations are combined by adding them together. At the end of each beat these results are accumulated.
The upper 64 bits of a 72-bit accumulator value is selected and stored across two registers, the top 32 bits are
stored in an odd-numbered register and the lower 32 bits are stored in an even-numbered register. The initial value
of the general-purpose destination registers can optionally be shifted up by 8 bits and added to the result. The
result is rounded before the top 64 bits are selected.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn 0 RdaLo X 1 1 1 1 N 0 A 0 Qm 0

T1: VRMLALDAVH variant

VRMLALDAVH{A}{X}<v><q>.<dt> RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '11x' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 if U == '1' && X == '1' then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Qm);
8 n = UInt(N:Qn);
9 exchange = (X == '1');

10 accumulate = (A == '1');
11 esize = 32;
12 elements = 32 DIV esize;
13 unsigned = (U == '1');
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Unsigned flag: S indicates signed, U indicates unsigned.

This parameter must be one of the following values:
S32 Encoded as U = 0

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1370

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U32 Encoded as U = 1
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an

even numbered register. The value RdaLo » 1 is encoded in the RdaLo field.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be

an odd numbered register. The value RdaHi » 1 is encoded in the RdaHi field.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[dah]:R[dal], unsigned) << 8 else 0;
7 if elmtMask[0] == '1' then
8 if exchange then
9 if curBeat[0] == '0' then

10 mul = Int(Q[n, curBeat+1], unsigned) * Int(Q[m, curBeat], unsigned);
11 else
12 mul = Int(Q[n, curBeat-1], unsigned) * Int(Q[m, curBeat], unsigned);
13 else
14 mul = Int(Q[n, curBeat], unsigned) * Int(Q[m, curBeat], unsigned);
15 result = result + mul + (1 << 7);
16 R[dah] = result[71:40];
17 R[dal] = result[39:8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1371

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.464 VRMLALVH

Vector Multiply Accumulate Long Across Vector Returning High 64 bits. This is an alias of VRMLALDAVH
without exchange.

This is an alias of VRMLALDAVH with the following condition satisfied: X==0.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn 0 RdaLo 0 1 1 1 1 N 0 A 0 Qm 0

VRMLALVH variant

VRMLALVH{A}<v><q>.<dt> RdaLo, RdaHi, Qn, Qm

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1372

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.465 VRMLSLDAVH

Vector Rounding Multiply Subtract Long Dual Accumulate Across Vector Returning High 64 bits. The elements of
the vector registers are handled in pairs. In the base variant, corresponding elements from the two source registers
are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first
source register, before multiplying them with the values from the second source register. The results of the pairs
of multiply operations are combined by subtracting one from the other. At the end of each beat these results are
accumulated. The upper 64 bits of a 72-bit accumulator value is selected and stored across two registers, the top 32
bits are stored in an odd-numbered register and the lower 32 bits are stored in an even-numbered register. The
initial value of the general-purpose destination registers can optionally be shifted up by 8 bits and added to the
result. The result is rounded before the top 64 bits are selected.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 RdaHi Qn 0 RdaLo X 1 1 1 0 N 0 A 0 Qm 1

T1: VRMLSLDAVH variant

VRMLSLDAVH{A}{X}<v><q>.S32 RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VMLSDAV";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 dah = UInt(RdaHi:'1');
5 dal = UInt(RdaLo:'0');
6 m = UInt(Qm);
7 n = UInt(N:Qn);
8 exchange = (X == '1');
9 accumulate = (A == '1');

10 esize = 32;
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v, q> See C1.2.5 Standard assembler syntax fields.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an

even numbered register. The value RdaLo » 1 is encoded in the RdaLo field.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be

an odd numbered register. The value RdaHi » 1 is encoded in the RdaHi field.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1373

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then SInt(R[dah]:R[dal]) << 8 else 0;
7 if elmtMask[0] == '1' then
8 if exchange then
9 if curBeat[0] == '0' then

10 mul = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat]);
11 else
12 mul = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
13 else
14 mul = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
15 if curBeat[0] == '0' then
16 result = result + mul + (1 << 7);
17 else
18 result = result - mul + (1 << 7);
19 R[dah] = result[71:40];
20 R[dal] = result[39:8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1374

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.466 VRSHL

Vector Rounding Shift Left. The vector variant shifts each element of the first vector by a value from the least
significant byte of the corresponding element of the second vector and places the results in the destination vector.

The register variants shift each element of a vector register by the value specified in a source register. The direction
of the shift depends on the sign of the element from the second vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 1 N 1 M 0 Qm 0

T1: VRSHL variant

VRSHL<v><q>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 withScalar = FALSE;
9 withVector = TRUE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 1 1 Qda 1 1 1 1 0 0 1 1 0 Rm

T2: VRSHL variant

VRSHL<v><q>.<dt> Qda, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;
8 m = da;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1375

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 unsigned = (U == '1');
10 withScalar = TRUE;
11 withVector = FALSE;
12 esize = 8 << UInt(size);
13 elements = 32 DIV esize;
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 // 0 for left shift, if applicable, 2^(n-1) for right shift
16 roundConst = 1 << (-1-shiftAmount);
17 operand = Int(Elem[op1, e, esize], unsigned);
18 Elem[result, e, esize] = ((operand + roundConst) << shiftAmount)[esize-1:0];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1376

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.467 VRSHR

Vector Rounding Shift Right. The immediate variant shifts each element of a vector register to the right by the
immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D sz imm Qd 0 0 0 1 0 0 1 M 1 Qm 0

T1: VRSHR variant

VRSHR<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 n = integer UNKNOWN;
8 imm6 = sz:imm;
9 case sz of

10 when '001' size = '00'; shiftAmount = 16 - UInt(imm6);
11 when '01x' size = '01'; shiftAmount = 32 - UInt(imm6);
12 when '1xx' size = '10'; shiftAmount = 64 - UInt(imm6);
13 otherwise UNDEFINED;
14 withScalar = FALSE;
15 withVector = FALSE;
16 esize = 8 << UInt(size);
17 elements = 32 DIV esize;
18 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001, U = 0
U8 Encoded as sz = 001, U = 1
S16 Encoded as sz = 01x, U = 0
U16 Encoded as sz = 01x, U = 1
S32 Encoded as sz = 1xx, U = 0
U32 Encoded as sz = 1xx, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1377

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 // 0 for left shift, if applicable, 2^(n-1) for right shift
16 roundConst = 1 << (shiftAmount-1);
17 operand = Int(Elem[op1, e, esize], unsigned);
18 Elem[result, e, esize] = ((operand + roundConst) >> shiftAmount)[esize-1:0];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1378

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.468 VRSHRN

Vector Rounding Shift Right and Narrow. Performs an element-wise narrowing to half-width, with shift, writing
the rounded result to either the top half (T variant) or bottom half (B variant) of the result element. The other half
of the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 1

T1: VRSHRN variant

VRSHRN<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 imm5 = sz:imm;
6 case sz of
7 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
8 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
9 otherwise UNDEFINED;

10 esize = 8 << UInt(size);
11 elements = 16 DIV esize;
12 top = UInt(T);
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
I16 Encoded as sz = 01
I32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1379

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = UInt(Elem[op1, e, 2*esize]);

10 // 0 for left shift, 2^(n-1) for right shift
11 operand = operand + (1 << (shiftAmount-1));
12 operand = operand >> shiftAmount;
13 Elem[result, 2*e + top, esize] = operand[esize-1:0];
14
15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1380

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.469 VSBC

Whole Vector Subtract With Carry. Beat-wise subtracts the value of the elements in the second source vector
register and the value of NOT(Carry flag) from the respective elements in the first source vector register, the carry
flag being FPSCR.C. The initial value of FPSCR.C can be overridden by using the I variant. FPSCR.C is not
updated for beats disabled due to predication. FPSCR.N, .V and .Z are zeroed whenever FPSCR.C is updated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 Qn 0 Qd I 1 1 1 1 N 0 M 0 Qm 0

T1: VSBC variant

VSBC{I}<v><q>.I32 Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 carryInit = (I == '1');
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<I> Specifies where the initial carry in for wide arithmetic comes from.
This parameter must be one of the following values:
- Encoded as I = 0

Indicates carry input comes from FPSCR.C.
I Encoded as I = 1

Indicates carry input is 1.
<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 op2 = NOT(Q[m, curBeat]);
8 if carryInit && IsFirstBeat() then
9 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', '1', '0');

10 (result, carryOut, -) = AddWithCarry(op1, op2, FPSCR.C);
11 if elmtMask[0] == '1' then
12 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', carryOut, '0');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1381

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1382

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.470 VSCCLRM

Floating-point Secure Context Clear Multiple. Zeros VPR and the specified floating-point registers if there is an
active floating-point context. This instruction is UNDEFINED if executed in Non-secure state. This instruction is
present on all PEs that implement the Armv8.1-M architecture, even if the Floating-point Extension or the MVE
integer variant is not present. It is IMPLEMENTATION DEFINED whether this instruction is interrupt-continuable.
See EPSR.ICI. If an exception returns to this instruction with nonzero EPSR.ICI bits, and the PE does not support
interrupt-continuable behavior, the instruction restarts from the beginning. It is permissible to specify any or none
of the floating-point registers to be cleared, but the VPR must always be specified. If the Floating-point and MVE
are not implemented, this instruction is available in Secure state, but behaves as a NOP.

T1
Armv8-M Security Extension and Armv8.1-M Main Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 0 1 1 1 1 1 Vd 1 0 1 1 imm7 0

T1: VSCCLRM variant

VSCCLRM<c><q> <dreglist>

Decode for this encoding
1
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then UNPREDICTABLE;
4 if !IsSecure() then UNDEFINED;
5 if HaveMveOrFPExt() && (FPCCR.ASPEN == '0' || CONTROL_S.SFPA == '1') then
6 HandleException(CheckCPEnabled(10));
7 singleRegs = FALSE;
8 d = UInt(D:Vd);
9 regs = UInt(imm7);

10 topReg = d+regs-1;
11 if topReg > 31 then UNPREDICTABLE;

T2
Armv8-M Security Extension and Armv8.1-M Main Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 0 1 1 1 1 1 Vd 1 0 1 0 imm8

T2: VSCCLRM variant

VSCCLRM<c><q> <sreglist>

Decode for this encoding
1
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then UNPREDICTABLE;
4 if !IsSecure() then UNDEFINED;
5 if HaveMveOrFPExt() && (FPCCR.ASPEN == '0' || CONTROL_S.SFPA == '1') then
6 HandleException(CheckCPEnabled(10));
7 singleRegs = TRUE;
8 d = UInt(Vd:D);
9 regs = UInt(imm8);

10 topReg = d+regs-1;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1383

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11 if topReg > 63 then UNPREDICTABLE;
12 if topReg > 31 && topReg[0] == '0' then UNPREDICTABLE;

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be cleared, separated by

commas and surrounded by { and }. The first register in the list is encoded in "D:Vd", and
"imm7" is set to the number of registers in the list. Because this instruction always clears the
VPR register, it is mandatory to have VPR in the register list.

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be cleared, separated by
commas and surrounded by { and }. The first register in the list is encoded in "Vd:D", and
"imm8" is set to the number of registers in the list. Registers above S31 are specified by using
D registers in the register list. Because this instruction always clears the VPR register, it is
mandatory to have VPR in the register list.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if HaveMveOrFPExt() && (FPCCR.ASPEN == '0' || CONTROL_S.SFPA == '1') then
5 ExecuteFPCheck();
6
7 for r = 0 to regs-1
8 if singleRegs then
9 if (d+r) < 32 || !VFPSmallRegisterBank() then

10 S[d+r] = Zeros();
11 else
12 if (d+r) < 16 || !VFPSmallRegisterBank() then
13 D[d+r] = Zeros();
14 VPR = Zeros(32);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1384

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.471 VSEL

Floating-point Conditional Select. Floating-point Conditional Select allows the destination register to take the
value from either one or the other of two source registers according to the condition codes in the APSR.

The condition codes for VSEL are limited to GE, GT, EQ, and VS. The effect of LT, LE, NE, and VC can be
achieved by exchanging the source operands.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 size N 0 M 0 Vm

VSELEQ, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELEQ, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 00 && size == 01.

VSELEQ.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELEQ, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELGE, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELGE, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 10 && size == 01.

VSELGE.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1385

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VSELGE, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 10 && size == 10.

VSELGE.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELGT, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELGT, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 11 && size == 01.

VSELGT.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELGT, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELVS, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 01 && size == 11.

VSELVS.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELVS, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 01 && size == 01.

VSELVS.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELVS, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 01 && size == 10.

VSELVS.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1386

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if InITBlock() then UNPREDICTABLE;
6 cond = cc:(cc[1] EOR cc[0]):'0';
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = Zeros(16) : (if ConditionHolds(cond) then S[n] else S[m])[15:0];
7 when '10'
8 S[d] = if ConditionHolds(cond) then S[n] else S[m];
9 when '11'

10 D[d] = if ConditionHolds(cond) then D[n] else D[m];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1387

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.472 VSHL

Vector Shift Left. The immediate variant shifts each element of a vector register to the left by the immediate value.

The register variants shift each element of a vector register by the value specified in a source register. The direction
of the shift depends on the sign of the element from the second vector register.

The vector variant shifts each element of the first vector by a value from the least significant byte of the
corresponding element of the second vector and places the results in the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D sz imm Qd 0 0 1 0 1 0 1 M 1 Qm 0

T1: VSHL variant

VSHL<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = TRUE;
7 n = integer UNKNOWN;
8 imm6 = sz:imm;
9 case sz of

10 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;
11 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
12 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
13 otherwise UNDEFINED;
14 withScalar = FALSE;
15 withVector = FALSE;
16 esize = 8 << UInt(size);
17 elements = 32 DIV esize;
18 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 0 1 Qda 1 1 1 1 0 0 1 1 0 Rm

T2: VSHL variant

VSHL<v><q>.<dt> Qda, Rm

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1388

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;
8 m = da;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 withVector = FALSE;
12 esize = 8 << UInt(size);
13 elements = 32 DIV esize;
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 0 N 1 M 0 Qm 0

T3: VSHL variant

VSHL<v><q>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 withScalar = FALSE;
9 withVector = TRUE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> The size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as sz = 001
I16 Encoded as sz = 01x
I32 Encoded as sz = 1xx

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1389

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U32 Encoded as size = 10, U = 1

Assembler symbols for T3 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.
<imm> The number of bits to shift by, in the range 0 to <dt>-1. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 operand = Int(Elem[op1, e, esize], unsigned);
16 Elem[result, e, esize] = (operand << shiftAmount)[esize-1:0];
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1390

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.473 VSHLC

Whole Vector Left Shift with Carry. Logical shift left by 1-32 bits, with carry across beats, carry in from
general-purpose register, and carry out to the same general-purpose register. Permits treating a vector register as a
single 128-bit scalar. The carry in is from the lower <imm> bits of the general-purpose register, not the upper bits.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 Da 1 imm Qda 0 1 1 1 1 1 1 0 0 Rdm

T1: VSHLC variant

VSHLC<v><q> Qda, Rdm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if Da == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 dm = UInt(Rdm);
5 (-, amount) = DecodeImmShift('10', imm);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rdm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qda> Source and destination vector register.
<Rdm> Source and destination general-purpose register for carry in and out.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 (result, carry) = LSL_C(Q[da, curBeat], R[dm], amount);
7 if elmtMask[0] == '1' then
8 R[dm] = carry;
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1391

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1392

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.474 VSHLL

Vector Shift Left Long. Selects an element of 8 or 16-bits from either the top half (T variant) or bottom half (B
variant) of each source element, performs a signed or unsigned left shift by an immediate value, and places the 16
or 32-bit results in the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 1 sz imm Qd T 1 1 1 1 0 1 M 0 Qm 0

T1: VSHLL variant

VSHLL<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if imm == '000' && sz IN {'10', '01'} then SEE "VMOVL";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 imm5 = sz:imm;
8 case sz of
9 when '01' size = '00'; shiftAmount = UInt(imm5) - 8;

10 when '1x' size = '01'; shiftAmount = UInt(imm5) - 16;
11 otherwise UNDEFINED;
12 esize = 8 << UInt(size);
13 elements = 16 DIV esize;
14 top = UInt(T);
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D 1 1 size 0 1 Qd T 1 1 1 0 0 0 M 0 Qm 1

T2: VSHLL variant

VSHLL<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 unsigned = (U == '1');

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1393

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = 8 << UInt(size);
9 elements = 16 DIV esize;

10 shiftAmount = esize;
11 top = UInt(T);
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 01, U = 0
U8 Encoded as sz = 01, U = 1
S16 Encoded as sz = 1x, U = 0
U16 Encoded as sz = 1x, U = 1

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz). If <imm> == <dt> the encoding is T2, otherwise the encoding is T1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, 2*e + top, esize], unsigned);

10 operand = operand << shiftAmount;
11 Elem[result, e, 2*esize] = operand[(2*esize)-1:0];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1394

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1395

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.475 VSHR

Vector Shift Right. Shifts each element of a vector register to the right by the immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D sz imm Qd 0 0 0 0 0 0 1 M 1 Qm 0

T1: VSHR variant

VSHR<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 imm6 = sz:imm;
8 case sz of
9 when '001' size = '00'; shiftAmount = 16 - UInt(imm6);

10 when '01x' size = '01'; shiftAmount = 32 - UInt(imm6);
11 when '1xx' size = '10'; shiftAmount = 64 - UInt(imm6);
12 otherwise UNDEFINED;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001, U = 0
U8 Encoded as sz = 001, U = 1
S16 Encoded as sz = 01x, U = 0
U16 Encoded as sz = 01x, U = 1
S32 Encoded as sz = 1xx, U = 0
U32 Encoded as sz = 1xx, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1396

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, esize], unsigned);

10 Elem[result, e, esize] = (operand >> shiftAmount)[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1397

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.476 VSHRN

Vector Shift Right and Narrow. Performs an element-wise narrowing to half-width, with shift, writing the result to
either the top half (T variant) or bottom half (B variant) of the result element. The other half of the destination
vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 1

T1: VSHRN variant

VSHRN<T><v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 imm5 = sz:imm;
6 case sz of
7 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
8 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
9 otherwise UNDEFINED;

10 esize = 8 << UInt(size);
11 elements = 16 DIV esize;
12 top = UInt(T);
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
I16 Encoded as sz = 01
I32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1398

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = UInt(Elem[op1, e, 2*esize]);

10 operand = operand >> shiftAmount;
11 Elem[result, 2*e + top, esize] = operand[esize-1:0];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1399

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.477 VSLI

Vector Shift Left and Insert. Takes each element in the operand vector, left shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the left of each element are lost.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D sz imm Qd 0 0 1 0 1 0 1 M 1 Qm 0

T1: VSLI variant

VSLI<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = TRUE;
7 imm6 = sz:imm;
8 case sz of
9 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;

10 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
11 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
12 otherwise UNDEFINED;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as sz = 001
16 Encoded as sz = 01x
32 Encoded as sz = 1xx

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 0 to <dt>-1. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1400

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 mask = LSL(Ones(esize), shiftAmount);
9 for e = 0 to elements-1

10 shiftedOp = (LSL(Elem[op1, e, esize], shiftAmount))[esize-1:0];
11 Elem[result, e, esize] = (Elem[result, e, esize] AND NOT(mask)) OR shiftedOp;
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1401

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.478 VSQRT

Floating-point Square Root. Floating-point Square Root calculates the square root of a floating-point register value
and writes the result to another floating-point register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPSqrt(S[m][15:0]);
6 when '10' S[d] = FPSqrt(S[m]);
7 when '11' D[d] = FPSqrt(D[m]);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1402

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.479 VSRI

Vector Shift Right and Insert. Takes each element in the operand vector, right shifts them by an immediate value,
and inserts the results in the destination vector. Bits shifted out of the right of each element are lost.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D sz imm Qd 0 0 1 0 0 0 1 M 1 Qm 0

T1: VSRI variant

VSRI<v><q>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = TRUE;
7 imm6 = sz:imm;
8 case sz of
9 when '001' size = '00'; shiftAmount = 16 - UInt(imm6);

10 when '01x' size = '01'; shiftAmount = 32 - UInt(imm6);
11 when '1xx' size = '10'; shiftAmount = 64 - UInt(imm6);
12 otherwise UNDEFINED;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as sz = 001
16 Encoded as sz = 01x
32 Encoded as sz = 1xx

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1403

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 mask = LSR(Ones(esize), shiftAmount);
9 for e = 0 to elements-1

10 shiftedOp = (LSR(Elem[op1, e, esize], shiftAmount))[esize-1:0];
11 Elem[result, e, esize] = (Elem[result, e, esize] AND NOT(mask)) OR shiftedOp;
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1404

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.480 VST2

Vector Interleaving Store - Stride 2. Saves two 64-bit contiguous blocks of data to memory made up of multiple
parts of 2 source registers. The parts of the source registers written to, and the offsets from the base address register,
are determined by the pat parameter. If the instruction is executed 2 times with the same base address and source
registers, but with different pat values, the effect is to interleave the specified registers with a stride of 2 and to save
the data to memory. The base address register can optionally be incremented by 32.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 0 Rn Qd 1 1 1 1 size (0) pat (0) (0) (0) (0) 0

T1: VST2 variant (Non write-back: W=0)

VST2<pat><q>.<size> {Qd, Qd+1}, [Rn]

T1: VST2 variant (Writeback: W=1)

VST2<pat><q>.<size> {Qd, Qd+1}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 6 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 0
1 Encoded as pat = 1

<q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Source vector register.
<Rn> The base register for the target address.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1405

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[0] EOR curBeat[1]));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[0]);
16 xE = UInt(curBeat[0] : e[1]);
17 when 16
18 y = UInt(e[0]);
19 xE = UInt(curBeat[0]);
20 when 32
21 y = UInt(curBeat[0]);
22 xE = 0;
23 MemA_MVE[address, esize DIV 8] = Elem[Q[d + y, xBeat], xE, esize];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 32;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1406

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.481 VST4

Vector Interleaving Store - Stride 4. Saves two 64-bit contiguous blocks of data to memory made up of multiple
parts of 4 source registers. The parts of the source registers written to, and the offsets from the base address register,
are determined by the pat parameter. If the instruction is executed 4 times with the same base address and source
registers, but with different pat values, the effect is to interleave the specified registers with a stride of 4 and to save
the data to memory. The base address register can optionally be incremented by 64.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 0 Rn Qd 1 1 1 1 size pat (0) (0) (0) (0) 1

T1: VST4 variant (Non write-back: W=0)

VST4<pat><q>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]

T1: VST4 variant (Write-back: W=1)

VST4<pat><q>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 4 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 00
1 Encoded as pat = 01
2 Encoded as pat = 10
3 Encoded as pat = 11

<q> See C1.2.5 Standard assembler syntax fields.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Source vector register.
<Rn> The base register for the target address.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1407

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[1:0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[1] EOR (pattern[0] AND curBeat[1])));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[1:0]);
16 xE = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
17 when 16
18 y = UInt(curBeat[0] : e[0]);
19 xE = UInt(pattern[0] EOR curBeat[1]);
20 when 32
21 y = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
22 xE = 0;
23 MemA_MVE[address, esize DIV 8] = Elem[Q[d + y, xBeat], xE, esize];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 64;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1408

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.482 VSTM

Floating-point Store Multiple. Floating-point Store Multiple stores multiple extension registers to consecutive
memory locations using an address from a general-purpose register.

This instruction is subject to stack limit checking.

This instruction is used by the alias VPUSH.

This instruction is interrupt-continuable.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm7

imm1 = 0

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '1' && W == '0' then SEE VSTR;
3 CheckDecodeFaults(ExtType_MveOrFp);
4 if P == U && W == '1' then UNDEFINED;
5 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
6 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
7 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
8 regs = UInt(imm8) DIV 2;
9 if n == 15 then UNPREDICTABLE;

10 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
11 if !HasArchVersion(Armv8p1) then
12 if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1409

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction if
the register list had not gone out of range, become UNKNOWN. If the instruction specifies write-back, then
that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T2
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for this encoding
1 if P == '0' && U == '0' then SEE "Related encodings";
2 if P == '1' && W == '0' then SEE VSTR;
3 CheckDecodeFaults(ExtType_MveOrFp);
4 if P == '1' && U == '1' && W == '1' then UNDEFINED;
5 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
6 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
7 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
8 if n == 15 then UNPREDICTABLE;
9 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction if
the register list had not gone out of range, become UNKNOWN. If the instruction specifies write-back, then
that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Alias conditions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1410

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Alias is preferred when
VPUSH P == ‘1‘ &&

U == ‘0‘ &&
W == ‘1‘ &&
RN == ‘1101‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register write-back. Encoded in the "W" field as 1 if present, otherwise 0.
<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first

register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit should be checked
8 if n == 13 && wback then
9 violatesLimit = ViolatesSPLim(LookUpSP(), regval);

10 else
11 violatesLimit = FALSE;
12
13 // Memory operation only performed if limit not violated
14 if !violatesLimit then
15 for r = 0 to regs-1
16 if single_regs then
17 if (d+r) < 32 || !VFPSmallRegisterBank() then
18 MemA[address, 4] = S[d+r];
19 address = address+4;
20 else
21 // Store as two word-aligned words in the correct order for current
22 // endianness.
23 if (d+r) < 16 || !VFPSmallRegisterBank() then
24 bigEndian = BigEndian(address, 8);
25 MemA[address, 4] = if bigEndian then D[d+r][63:32] else D[d+r][31:0];
26 MemA[address+4, 4] = if bigEndian then D[d+r][31:0] else D[d+r][63:32];
27 elsif boolean UNKNOWN then
28 MemA[address, 4] = bits(32) UNKNOWN;
29 MemA[address+4, 4] = bits(32) UNKNOWN;
30 address = address+8;
31
32 // If the stack pointer is being updated a fault will be raised if
33 // the limit is violated
34 if wback then RSPCheck[n] = regval;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1411

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1412

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.483 VSTR

Floating-point Store Register. Floating-point Store Register stores a single Floating-point Extension register to
memory, using an address from a general-purpose register, with an optional offset.

T1
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 1 imm8

T1 variant

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 if VFPSmallRegisterBank() && (D == '1') then UNDEFINED;
3 fp_size = 64; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
4 d = UInt(D:Vd); n = UInt(Rn);
5 if n == 15 then UNPREDICTABLE;

T2
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 0 imm8

T2 variant

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 32; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
3 d = UInt(Vd:D); n = UInt(Rn);
4 if n == 15 then UNPREDICTABLE;

T3
Armv8-M Floating-point Extension, Armv8.1-M Floating-point Extension, or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 0 1 imm8

T3 variant

VSTR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 16; add = (U == '1'); imm32 = ZeroExtend(imm8:'0', 32);
3 d = UInt(Vd:D); n = UInt(Rn);
4 if n == 15 then UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1413

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
.64 Optional data size specifiers.
<Dd> The source register for a doubleword store.
.32 Optional data size specifiers.
<Sd> The source register for a singleword store.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> The immediate offset used for forming the address. Values are multiples of 4 in the range
0-1020. <imm> can be omitted, meaning an offset of +0.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then (R[n] + imm32) else (R[n] - imm32);
5 case fp_size of
6 when 16
7 MemA[address, 2] = S[d][15:0];
8 when 32
9 MemA[address, 4] = S[d];

10 when 64
11 // Store as two word-aligned words in the correct order for current endianness.
12 bigEndian = BigEndian(address, 8);
13 MemA[address, 4] = if bigEndian then D[d][63:32] else D[d][31:0];
14 MemA[address+4, 4] = if bigEndian then D[d][31:0] else D[d][63:32];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1414

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.484 VSTR (System Register)

Store System Register. Store a system register in memory. The target address is calculated from a base register
plus an immediate offset. Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is
executed from Non-secure state. If CP10 is not enabled and either the Main extension is not implemented or the
Floating-point context is active, access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS
will not trigger lazy state preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not
trigger Floating-point context creation regardless of the value of FPCCR.ASPEN. FPSCR_nzcvqc allows access to
FPSCR condition and saturation flags. The VPR register can only be accessed from privileged mode. FPCXT_NS,
enables saving and restoration of the Non-secure floating-point context. If the Floating-point context is active then
the current FPSCR value is accessed and the default value in FPDSCR_NS is written into FPSCR, otherwise the
default value in FPDSCR_NS is accessed. The payloads cannot be accessed if neither the Floating-point extension
nor MVE are implemented. FPCXT_S, enables saving and restoration of the Secure floating-point context.

This instruction is subject to stack limit checking.

T1
Armv8.1-M Floating-point Extension or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A

regh

W 0 Rn regl 0 1 1 1 1 1 imm

T1: VSTR variant (Offset: P=1, W=0)

VSTR<c><q> <reg>, [Rn{, #+/-<imm>}]

T1: VSTR variant (Pre-indexed: P=1, W=1)

VSTR<c><q> <reg>, [Rn, #+/-<imm>]!

T1: VSTR variant (Post-indexed: P=0, W=1)

VSTR<c><q> <reg>, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HasArchVersion(Armv8p1) then
3 UFSR.NOCP = '1';
4 HandleException(CreateException(UsageFault));
5 fpCxtAnyAccess = (regh:regl == '111x');
6 fpCxtNSAccess = (regh:regl == '1110');
7 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
8 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
9 if fpCxtNSAccess then

10 if !HaveMainExt() || !fpInactive then
11 HandleException(CheckCPEnabled(10));
12 else
13 CheckDecodeFaults(ExtType_MveOrFp);
14 n = UInt(Rn);
15 index = (P == '1');
16 add = (A == '1');
17 wback = (W == '1');
18 r = regh:regl;
19 imm32 = ZeroExtend(imm:'00', 32);
20 if (regh:regl) IN {'10xx', '01xx', '0011', '0000'} then CONSTRAINED_UNPREDICTABLE;
21 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1415

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c, q> See C1.2.5 Standard assembler syntax fields.
<reg> The system register to access

This parameter must be one of the following values:
FPSCR Encoded as regh = 0, regl = 001
FPSCR_nzcvqc Encoded as regh = 0, regl = 010
VPR Encoded as regh = 1, regl = 100
P0 Encoded as regh = 1, regl = 101
FPCXT_NS Encoded as regh = 1, regl = 110
FPCXT_S Encoded as regh = 1, regl = 111

<Rn> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
11 address = if index then offsetAddr else R[n];
12
13 // Determine if the stack pointer limit should be checked
14 if n == 13 && wback then
15 violatesLimit = ViolatesSPLim(LookUpSP(), offsetAddr);
16 else
17 violatesLimit = FALSE;
18 // Memory operation only performed if limit not violated
19 if !violatesLimit then
20 case r of
21 when '0001'
22 MemA[address, 4] = FPSCR;
23 when '0010'
24 // Only read the N, Z, C, V, and QC flags
25 MemA[address, 4] = FPSCR[31:27]:Zeros(27);
26 when '1100'
27 if HaveMve() then
28 if CurrentModeIsPrivileged() then
29 MemA[address, 4] = VPR;
30 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
31 MemA[address, 4] = bits(32) UNKNOWN;
32 else
33 UNPREDICTABLE;
34 when '1101'
35 if HaveMve() then
36 MemA[address, 4] = Zeros(16):VPR.P0;
37 else
38 UNPREDICTABLE;
39 when '1110'
40 if HaveFPExt() || HaveMve() then
41 FPCXT_Type cxt = Zeros(32);
42 if !fpInactive then
43 cxt.SFPA = CONTROL_S.SFPA;
44 cxt[27:0] = FPSCR[27:0];
45 else
46 cxt[27:0] = FPDSCR_NS[27:0];
47 MemA[address, 4] = cxt;
48 // If the floating-point context isn't secure the FPSCR
49 // value is set to the NS default so any NS functions

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1416

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

50 // that are called before a floating-point instruction
51 // is executed in the secure state will get the same
52 // FPSCR value as functions called after a secure
53 // floating-point instruction (which is the value
54 // of FPDSCR_NS).
55 if !fpInactive && CONTROL_S.SFPA == '0' then
56 // Ensuring that the memory access has succeeded before
57 // updating the value of FPSCR.
58 FPSCR = FPDSCR_NS[31:0];
59 when '1111'
60 FPCXT_Type cxt = Zeros(32);
61 cxt.SFPA = CONTROL_S.SFPA;
62 cxt[27:0] = FPSCR[27:0];
63 MemA[address, 4] = cxt;
64 // Ensuring that the memory access has succeeded before
65 // updating the value of FPSCR.
66 FPSCR = FPDSCR_NS[31:0];
67 CONTROL_S.SFPA = '0';
68 otherwise
69 UNPREDICTABLE;
70
71 // If the stack pointer is being updated a fault will be raised if
72 // the limit is violated
73 if wback then
74 RSPCheck[n] = offsetAddr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1417

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.485 VSTRB, VSTRH, VSTRW

Vector Store Register. Store consecutive elements to memory from a vector register. In indexed mode, the target
address is calculated from a base register offset by an immediate value. Otherwise, the base register address is used
directly. The sum of the base register and the immediate value can optionally be written back to the base register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A 0 W 0 0 Rn Qd 0 1 1 1 size imm

T1: VSTRB variant (Offset: P=1, W=0)

VSTRB<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T1: VSTRB variant (Pre-indexed: P=1, W=1)

VSTRB<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T1: VSTRB variant (Post-indexed: P=0, W=1)

VSTRB<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '00' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 8;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm, 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = TRUE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A 0 W 0 1 Rn Qd 0 1 1 1 size imm

T2: VSTRH variant (Offset: P=1, W=0)

VSTRH<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1418

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2: VSTRH variant (Pre-indexed: P=1, W=1)

VSTRH<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T2: VSTRH variant (Post-indexed: P=0, W=1)

VSTRH<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '0x' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 16;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm:'0', 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = TRUE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 0 Rn Qd 1 1 1 1 0 0 imm

T5: VSTRB variant (Offset: P=1, W=0)

VSTRB<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T5: VSTRB variant (Pre-indexed: P=1, W=1)

VSTRB<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T5: VSTRB variant (Post-indexed: P=0, W=1)

VSTRB<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 8;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm, 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1419

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 0 Rn Qd 1 1 1 1 0 1 imm

T6: VSTRH variant (Offset: P=1, W=0)

VSTRH<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T6: VSTRH variant (Pre-indexed: P=1, W=1)

VSTRH<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T6: VSTRH variant (Post-indexed: P=0, W=1)

VSTRH<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 16;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'0', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T7
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 0 Rn Qd 1 1 1 1 1 0 imm

T7: VSTRW variant (Offset: P=1, W=0)

VSTRW<v><q>.<dt> Qd, [Rn{, #+/-<imm>}]

T7: VSTRW variant (Pre-indexed: P=1, W=1)

VSTRW<v><q>.<dt> Qd, [Rn, #+/-<imm>]!

T7: VSTRW variant (Post-indexed: P=0, W=1)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1420

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VSTRW<v><q>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 32;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'00', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
16 Encoded as size = 01
32 Encoded as size = 10

<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be the following value:
32 Encoded as size = 10

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 2.

Assembler symbols for T5 encodings

<dt> Data size. This parameter is ".8".
<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T6 encodings

<dt> Data size. This parameter is ".16".
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 2.

Assembler symbols for T7 encodings

<dt> Data size. This parameter is ".32".
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Assembler symbols for all encodings

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1421

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Source vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
7 address = if index then offsetAddr else R[n];
8 address = address + (curBeat * mbytes * elements);
9

10 for e = 0 to elements-1
11 if elmtMask[e*(esize >> 3)] == '1' then
12 elem = Elem[Q[d, curBeat], e, esize][(mbytes*8)-1:0];
13 MemA_MVE[address + (e * mbytes), mbytes] = elem;
14
15 // The optional write back to the base register is only performed on the
16 // last beat of the instruction.
17 if wback && IsLastBeat() then
18 R[n] = offsetAddr;

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1422

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.486 VSTRB, VSTRH, VSTRW, VSTRD (vector)

Vector Scatter Store. Store data from elements of Q[d] into a memory byte, halfword, word, or doubleword at the
address contained in either:

a) A base register R[n] plus an offset contained in each element of Q[m], optionally shifted by the element size, or

b) Each element of Q[m] plus an immediate offset. The base element can optionally be written back, irrespective
of predication, with that value incremented by the immediate or by the immediate scaled by the memory element
size.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 0 M 0 Qm os

T1: VSTRB variant

VSTRB<v><q>.<dt> Qd, [Rn, Qm]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '00';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 8;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
17 if os == '1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 0 M 1 Qm os

T2: VSTRH variant

VSTRH<v><q>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1423

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '01';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 16;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 1 M 0 Qm os

T3: VSTRW variant

VSTRW<v><q>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size != '10' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '10';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 32;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 1 M 1 Qm os

T4: VSTRD variant

VSTRD<v><q>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1424

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size != '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '11';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 64;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 0 Qm (0) Qd 1 1 1 1 0 M imm

T5: VSTRW variant (Non write-back: W=0)

VSTRW<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]

T5: VSTRW variant (Write-back: W=1)

VSTRW<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '10';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 32;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 wback = (W == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 0 Qm (0) Qd 1 1 1 1 1 M imm

T6: VSTRD variant (Non write-back: W=0)

VSTRD<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1425

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T6: VSTRD variant (Write-back: W=1)

VSTRD<v><q>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '11';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 64;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 wback = (W == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
16 Encoded as size = 01
32 Encoded as size = 10

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T3 encodings

<dt> This parameter must be the following value:
32 Encoded as size = 10

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T4 encodings

<dt> This parameter must be the following value:
64 Encoded as size = 11

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T5 encodings

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1426

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<dt> Data size. This parameter is ".32".
<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Assembler symbols for T6 encodings

<dt> Data size. This parameter is ".64".
<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 8.

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<Qd> Source vector register.
<Rn> The base register for the target address.
<os> The amount by which the vector offset is left shifted by before being added to the

general-purpose base address. If the value is present it must correspond to memory transfer
size (1=half word, 2=word, 3=double word).
This parameter must be one of the following values:
<omitted> Encoded as os = 0
<Offset scaled> Encoded as os = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 if esize == 64 then
7 // 64 bit accesses read their base address or offset from the first element
8 // in each pair of 32 bit elements.
9 if useReg then

10 baseAddr = R[n];
11 offset = Q[m, UInt(curBeat[1]:'0')];
12 if scaleOffset then
13 offset = LSL(offset, UInt(msize));
14 else
15 baseAddr = Q[m, UInt(curBeat[1]:'0')];
16 offsetAddress = if add then baseAddr + offset else baseAddr - offset;
17 bigEndian = BigEndian(offsetAddress, 8);
18 address = (if (curBeat[0] == '0') == bigEndian then offsetAddress + 4
19 else offsetAddress);
20 if elmtMask[0] == '1' then
21 MemA_MVE[address, 4] = Q[d, curBeat];
22 // Address write-back is not predicated
23 if wback && (curBeat[0] == '1') then
24 Q[m, curBeat-1] = offsetAddress[31:0];
25 else
26 // 32, 16, or 8 bit accesses
27 for e = 0 to (elements - 1)
28 if useReg then
29 baseAddr = R[n];
30 offset = ZeroExtend(Elem[Q[m, curBeat], e, esize], 32);
31 if scaleOffset then
32 offset = LSL(offset, UInt(msize));
33 else
34 // 16 / 8 bit vector+immediate accesses are not supported
35 baseAddr = Q[m, curBeat];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1427

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

36 address = if add then baseAddr + offset else baseAddr - offset;
37 if elmtMask[e*(esize>>3)] == '1' then
38 memValue = Elem[Q[d, curBeat], e, esize][mesize-1:0];
39 MemA_MVE[address, mesize DIV 8] = memValue;
40 // Address write-back is not predicated
41 if wback then
42 Elem[Q[m, curBeat], e, esize] = address[esize-1:0];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value of the data being stored.

• The point at which an asynchronous exception is taken does not vary based on the value being stored by this
instruction.

The timing invariance does not apply to the addresses being accessed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1428

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.487 VSUB

Floating-point Subtract. Floating-point Subtract subtracts one floating-point register value from another
floating-point register value, and places the results in the destination floating-point register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1429

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = Zeros(16) : FPSub(S[n][15:0], S[m][15:0], TRUE);
7 when '10'
8 S[d] = FPSub(S[n], S[m], TRUE);
9 when '11'

10 D[d] = FPSub(D[n], D[m], TRUE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1430

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.488 VSUB (floating-point)

Vector Subtract. Subtract the value of the elements in the second source vector register from either the respective
elements in the first source vector register or a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Qn 0 Qd 0 1 1 0 1 N 1 M 0 Qm 0

T1: VSUB variant

VSUB<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd 1 1 1 1 1 N 1 0 0 Rm

T2: VSUB variant

VSUB<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1431

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPSub(Elem[op1, e, esize], R[m][esize-1:0], FALSE, pred);
13 Elem[result, e, esize] = value;
14 else
15 for e = 0 to elements-1
16 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
17 pred = (elmtMask[e*(esize>>3)] == '0');
18 op2 = Q[m, curBeat];
19 value = FPSub(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred);
20 Elem[result, e, esize] = value;
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1432

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.489 VSUB (vector)

Vector Subtract. Subtract the value of the elements in the second source vector register from either the respective
elements in the first source vector register or a general-purpose register. The result is then written to the destination
vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Qn 0 Qd 0 1 0 0 0 N 1 M 0 Qm 0

T1: VSUB variant

VSUB<v><q>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 1 N 1 0 0 Rm

T2: VSUB variant

VSUB<v><q>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 withScalar = TRUE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1433

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v, q> See C1.2.5 Standard assembler syntax fields.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 value = Elem[op1, e, esize] - R[m][esize-1:0];
11 Elem[result, e, esize] = value;
12 else
13 op2 = Q[m, curBeat];
14 for e = 0 to elements-1
15 value = Elem[op1, e, esize] - Elem[op2, e, esize];
16 Elem[result, e, esize] = value;
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

Restricted behavior
Data Independent Timing behavior

If AIRCR.DIT is 1:

• The execution time of this instruction is insensitive to the value or values of the data subject to this instruction.

• The point at which an asynchronous exception is taken does not vary based on the value or values being used
by this instruction.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1434

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.490 WFE

Wait For Event. Wait For Event is a hint instruction. If the Event Register is clear, it suspends execution in the
lowest power state available consistent with a fast wakeup without the need for software restoration, until a reset,
exception or other event occurs.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

T1 variant

WFE{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0

T2 variant

WFE{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if EventRegistered() then
4 ClearEventRegister();
5 else
6 WaitForEvent();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1435

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.491 WFI

Wait For Interrupt. Wait For Interrupt is a hint instruction. It suspends execution, in the lowest power state available
consistent with a fast wakeup without the need for software restoration, until a reset, asynchronous exception or
other event occurs.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0

T1 variant

WFI{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1

T2 variant

WFI{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 WaitForInterrupt();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1436

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.492 WLS, DLS, WLSTP, DLSTP

While Loop Start, Do Loop Start, While Loop Start with Tail Predication, Do Loop Start with Tail Predication.
This instruction partially sets up a loop. A LE or LETP (Loop End) instruction completes the setup. The base
variants of this instruction (WLS and DLS) set LR to the number of loop iterations to be performed, whereas
the TP variants of this instruction set LR to the number of vector-elements that must be processed. For the TP
variants, if the number of elements required is not a multiple of the vector length then the appropriate number of
vector elements will be predicated on the last iteration of the loop. When using WLS or WLSTP, if the number
of iterations required is zero, then these instructions branch to the label specified. Each loop start instruction is
normally used with a matching LE or LETP instruction.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 (0) (0) Rn 1 1 0 0

imml

immh 1

T1: WLS variant

WLS<q> LR, Rn, <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 n = UInt(Rn);
3 tSize = 4[2:0]; // No truncation. Set size to full vector length
4 imm32 = ZeroExtend(immh:imml:'0', 32);
5 isWhileLoop = TRUE;
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 (0) (0) Rn 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T2: DLS variant

DLS<q> LR, Rn

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 n = UInt(Rn);
3 tSize = 4[2:0]; // No truncation. Set size to full vector length
4 imm32 = Zeros(32);
5 isWhileLoop = FALSE;
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

T3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1437

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Armv8.1-M Low Overhead Branch Extension and MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 size Rn 1 1 0 0

imml

immh 1

T3: WLSTP variant

WLSTP<q>.<size> LR, Rn, <label>

Decode for this encoding
1 if Rn == '1111' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3 if !HaveMve() then UNDEFINED;
4 HandleException(CheckCPEnabled(10));
5 n = UInt(Rn);
6 tSize = '0':size;
7 imm32 = ZeroExtend(immh:imml:'0', 32);
8 isWhileLoop = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rn == '1101' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M Low Overhead Branch Extension and MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 size Rn 1 1 1 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T4: DLSTP variant

DLSTP<q>.<size> LR, Rn

Decode for this encoding
1 if Rn == '1111' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3 if !HaveMve() then UNDEFINED;
4 HandleException(CheckCPEnabled(10));
5 n = UInt(Rn);
6 tSize = '0':size;
7 imm32 = Zeros(32);
8 isWhileLoop = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rn == '1101' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<LR> LR is used to hold the iteration counter of the loop, this instruction must always use this
register.

<Rn> The register holding the number of loop iterations to perform.
<label> Specifies the label of the instruction to branch to if no loop iterations are required.

Assembler symbols for T2 encodings

<LR> LR is used to hold the iteration counter of the loop, this instruction must always use this
register.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1438

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rn> The register holding the number of loop iterations to perform.

Assembler symbols for T3 encodings

<LR> LR is used to hold the number of elements to process, this instruction must always use this
register.

<Rn> The register holding the number of elements to process.
<label> Specifies the label of the instruction after the loop (the first instruction after the LE).

Assembler symbols for T4 encodings

<LR> LR is used to hold the number of elements to process, this instruction must always use this
register.

<Rn> The register holding the number of elements to process.

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields.
<size> The size of the elements in the vector to process. This value is stored in the FPSCR.LTPSIZE

field, and causes tail predication to be applied on the last iteration of the loop.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10
64 Encoded as size = 11

Operation for all encodings
1 EncodingSpecificOperations();
2
3 count = R[n];
4 if isWhileLoop && count == Zeros(32) then
5 BranchTo(PC + imm32);
6 else
7 // To avoid creating unnecessary floating-point context, the
8 // LTPSIZE is only set if tail predication is being used.
9 if tSize != 4[2:0] then

10 ExecuteFPCheck();
11 FPSCR.LTPSIZE = tSize;
12 // Set up the new iteration count
13 LR = count;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1439

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.493 YIELD

Yield hint. Yield is a hint instruction. It enables software with a multithreading capability to indicate to the
hardware that it is performing a task, for example a spinlock, that could be swapped out to improve overall system
performance. Hardware can use this hint to suspend and resume multiple code threads if it supports the capability.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

T1 variant

YIELD{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1

T2 variant

YIELD{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields.
<q> See C1.2.5 Standard assembler syntax fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 Hint_Yield();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1440

Part D
Armv8-M Registers and Payload Specification

Chapter D1
Register and Payload Specification

This chapter specifies the Armv8-M registers and payloads. It contains the following sections:

Register Index

Alphabetical list of registers

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1442

Chapter D1. Register and Payload Specification
D1.1. Register index

D1.1 Register index

Address Component

- Special and general-purpose registers
- Payloads
0xE0000000 Instrumentation Macrocell
0xE0001000 Data Watchpoint and Trace
0xE0002000 Flash Patch and Breakpoint
0xE0003000 Performance Monitoring Unit
0xE0005000 Reliability, Availability and Serviceability Extension Fault Status Register
0xE000E004 Implementation Control Block
0xE000E010 SysTick Timer
0xE000E100 Nested Vectored Interrupt Controller
0xE000ECFC System Control Block
0xE000ED90 Memory Protection Unit
0xE000EDD0 Security Attribution Unit
0xE000EDF0 Debug Control Block
0xE000EF00 Software Interrupt Generation
0xE000EF04 Reliability, Availability and Serviceability Extension Fault Status Register
0xE000EF34 Floating-Point Extension
0xE000EF50 Cache Maintenance Operations
0xE000EFB0 Debug Identification Block
0xE002E004 Implementation Control Block (NS alias)
0xE002E010 SysTick Timer (NS alias)
0xE002E100 Nested Vectored Interrupt Controller (NS alias)
0xE002ECFC System Control Block (NS alias)
0xE002ED90 Memory Protection Unit (NS alias)
0xE002EDF0 Debug Control Block (NS alias)
0xE002EF00 Software Interrupt Generation (NS alias)
0xE002EF04 Reliability, Availability and Serviceability Extension Fault Status Register (NS Alias)
0xE002EF34 Floating-Point Extension (NS alias)
0xE002EF50 Cache Maintenance Operations (NS alias)
0xE002EFB0 Debug Identification Block (NS alias)
0xE0040000 Trace Port Interface Unit

D1.1.1 Special and general-purpose registers

Name Description

APSR Application Program Status Register
BASEPRI Base Priority Mask Register
CONTROL Control Register
Dn Floating-point Double-precision register n
EPSR Execution Program Status Register
FAULTMASK Fault Mask Register
FPSCR Floating-point Status and Control Register
IPSR Interrupt Program Status Register
LO_BRANCH_INFO Loop and branch tracking information
LR Link Register
MSPLIM Main Stack Pointer Limit Register
PAC_KEY_P_n Pointer Authentication Key Privileged n

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1443

Chapter D1. Register and Payload Specification
D1.1. Register index

Name Description

PAC_KEY_U_n Pointer Authentication Key Unprivileged n
PC Program Counter
PRIMASK Exception Mask Register
PSPLIM Process Stack Pointer Limit Register
Qn Vector register n
Rn General-Purpose Register n
SP Current Stack Pointer Register
SP_NS Current Stack Pointer register (Non-secure)
Sn Floating-point Single-precision register n
VPR Vector Predication Status and Control Register
XPSR Combined Program Status Registers

D1.1.2 Payloads

Name Description

EXC_RETURN Exception Return Payload
FNC_RETURN Function Return Payload
FPCXT Floating-point context payload
MAIR_ATTR Memory Attribute Indirection Register Attributes
RETPSR Combined Exception Return Program Status Registers
TT_RESP Test Target Response Payload

D1.1.3 Instrumentation Macrocell

Address Register Description

0xE0000000 ITM_STIMn ITM Stimulus Port Register n
0xE0000E00 ITM_TERn ITM Trace Enable Register n
0xE0000E40 ITM_TPR ITM Trace Privilege Register
0xE0000E80 ITM_TCR ITM Trace Control Register
0xE0000FB0 ITM_LAR ITM Software Lock Access Register
0xE0000FB4 ITM_LSR ITM Software Lock Status Register
0xE0000FBC ITM_DEVARCH ITM Device Architecture Register
0xE0000FCC ITM_DEVTYPE ITM Device Type Register
0xE0000FD0 ITM_PIDR4 ITM Peripheral Identification Register 4
0xE0000FD4 ITM_PIDR5 ITM Peripheral Identification Register 5
0xE0000FD8 ITM_PIDR6 ITM Peripheral Identification Register 6
0xE0000FDC ITM_PIDR7 ITM Peripheral Identification Register 7
0xE0000FE0 ITM_PIDR0 ITM Peripheral Identification Register 0
0xE0000FE4 ITM_PIDR1 ITM Peripheral Identification Register 1
0xE0000FE8 ITM_PIDR2 ITM Peripheral Identification Register 2
0xE0000FEC ITM_PIDR3 ITM Peripheral Identification Register 3
0xE0000FF0 ITM_CIDR0 ITM Component Identification Register 0
0xE0000FF4 ITM_CIDR1 ITM Component Identification Register 1
0xE0000FF8 ITM_CIDR2 ITM Component Identification Register 2
0xE0000FFC ITM_CIDR3 ITM Component Identification Register 3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1444

Chapter D1. Register and Payload Specification
D1.1. Register index

D1.1.4 Data Watchpoint and Trace

Address Register Description

0xE0001000 DWT_CTRL DWT Control Register
0xE0001004 DWT_CYCCNT DWT Cycle Count Register
0xE0001008 DWT_CPICNT DWT CPI Count Register
0xE000100C DWT_EXCCNT DWT Exception Overhead Count Register
0xE0001010 DWT_SLEEPCNT DWT Sleep Count Register
0xE0001014 DWT_LSUCNT DWT LSU Count Register
0xE0001018 DWT_FOLDCNT DWT Folded Instruction Count Register
0xE000101C DWT_PCSR DWT Program Counter Sample Register
0xE0001020 DWT_COMPn DWT Comparator Register n
0xE0001028 DWT_FUNCTIONn DWT Comparator Function Register n
0xE000102C DWT_VMASKn DWT Comparator Value Mask Register n
0xE0001FB0 DWT_LAR DWT Software Lock Access Register
0xE0001FB4 DWT_LSR DWT Software Lock Status Register
0xE0001FBC DWT_DEVARCH DWT Device Architecture Register
0xE0001FCC DWT_DEVTYPE DWT Device Type Register
0xE0001FD0 DWT_PIDR4 DWT Peripheral Identification Register 4
0xE0001FD4 DWT_PIDR5 DWT Peripheral Identification Register 5
0xE0001FD8 DWT_PIDR6 DWT Peripheral Identification Register 6
0xE0001FDC DWT_PIDR7 DWT Peripheral Identification Register 7
0xE0001FE0 DWT_PIDR0 DWT Peripheral Identification Register 0
0xE0001FE4 DWT_PIDR1 DWT Peripheral Identification Register 1
0xE0001FE8 DWT_PIDR2 DWT Peripheral Identification Register 2
0xE0001FEC DWT_PIDR3 DWT Peripheral Identification Register 3
0xE0001FF0 DWT_CIDR0 DWT Component Identification Register 0
0xE0001FF4 DWT_CIDR1 DWT Component Identification Register 1
0xE0001FF8 DWT_CIDR2 DWT Component Identification Register 2
0xE0001FFC DWT_CIDR3 DWT Component Identification Register 3

D1.1.5 Flash Patch and Breakpoint

Address Register Description

0xE0002000 FP_CTRL Flash Patch Control Register
0xE0002004 FP_REMAP Flash Patch Remap Register
0xE0002008 FP_COMPn Flash Patch Comparator Register n
0xE0002FB0 FP_LAR FPB Software Lock Access Register
0xE0002FB4 FP_LSR FPB Software Lock Status Register
0xE0002FBC FP_DEVARCH FPB Device Architecture Register
0xE0002FCC FP_DEVTYPE FPB Device Type Register
0xE0002FD0 FP_PIDR4 FP Peripheral Identification Register 4
0xE0002FD4 FP_PIDR5 FP Peripheral Identification Register 5
0xE0002FD8 FP_PIDR6 FP Peripheral Identification Register 6
0xE0002FDC FP_PIDR7 FP Peripheral Identification Register 7
0xE0002FE0 FP_PIDR0 FP Peripheral Identification Register 0
0xE0002FE4 FP_PIDR1 FP Peripheral Identification Register 1
0xE0002FE8 FP_PIDR2 FP Peripheral Identification Register 2
0xE0002FEC FP_PIDR3 FP Peripheral Identification Register 3
0xE0002FF0 FP_CIDR0 FP Component Identification Register 0
0xE0002FF4 FP_CIDR1 FP Component Identification Register 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1445

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE0002FF8 FP_CIDR2 FP Component Identification Register 2
0xE0002FFC FP_CIDR3 FP Component Identification Register 3

D1.1.6 Performance Monitoring Unit

Address Register Description

0xE0003000 PMU_EVCNTRn Performance Monitoring Unit Event Counter Register
0xE000307C PMU_CCNTR Performance Monitoring Unit Cycle Counter Register
0xE0003400 PMU_EVTYPERn Performance Monitoring Unit Event Type and Filter Register
0xE000347C PMU_CCFILTR Performance Monitoring Unit Cycle Counter Filter Register
0xE0003C00 PMU_CNTENSET Performance Monitoring Unit Count Enable Set Register
0xE0003C20 PMU_CNTENCLR Performance Monitoring Unit Count Enable Clear Register
0xE0003C40 PMU_INTENSET Performance Monitoring Unit Interrupt Enable Set Register
0xE0003C60 PMU_INTENCLR Performance Monitoring Unit Interrupt Enable Clear Register
0xE0003C80 PMU_OVSCLR Performance Monitoring Unit Overflow Flag Status Clear Register
0xE0003CA0 PMU_SWINC Performance Monitoring Unit Software Increment Register
0xE0003CC0 PMU_OVSSET Performance Monitoring Unit Overflow Flag Status Set Register
0xE0003E00 PMU_TYPE Performance Monitoring Unit Type Register
0xE0003E04 PMU_CTRL Performance Monitoring Unit Control Register
0xE0003FB8 PMU_AUTHSTATUS Performance Monitoring Unit Authentication Status Register
0xE0003FBC PMU_DEVARCH Performance Monitoring Unit Device Architecture Register
0xE0003FCC PMU_DEVTYPE Performance Monitoring Unit Device Type Register
0xE0003FD0 PMU_PIDR4 Performance Monitoring Unit Peripheral Identification Register 4
0xE0003FE0 PMU_PIDR0 Performance Monitoring Unit Peripheral Identification Register 0
0xE0003FE4 PMU_PIDR1 Performance Monitoring Unit Peripheral Identification Register 1
0xE0003FE8 PMU_PIDR2 Performance Monitoring Unit Peripheral Identification Register 2
0xE0003FEC PMU_PIDR3 Performance Monitoring Unit Peripheral Identification Register 3
0xE0003FF0 PMU_CIDR0 Performance Monitoring Unit Component Identification Register 0
0xE0003FF4 PMU_CIDR1 Performance Monitoring Unit Component Identification Register 1
0xE0003FF8 PMU_CIDR2 Performance Monitoring Unit Component Identification Register 2
0xE0003FFC PMU_CIDR3 Performance Monitoring Unit Component Identification Register 3

D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register

Address Register Description

0xE0005000 ERRFRn Error Record Feature Register n
0xE0005008 ERRCTRLn Error Record Control Register n
0xE0005010 ERRSTATUSn Error Record Primary Status Register n
0xE0005018 ERRADDRn Error Record Address Register n
0xE000501C ERRADDR2n Error Record Address 2 Register n
0xE0005020 ERRMISC0n Error Record Miscellaneous 0 Register n
0xE0005024 ERRMISC1n Error Record Miscellaneous 1 Register n
0xE0005028 ERRMISC2n Error Record Miscellaneous 2 Register n
0xE000502C ERRMISC3n Error Record Miscellaneous 3 Register n
0xE0005030 ERRMISC4n Error Record Miscellaneous 4 Register n
0xE0005034 ERRMISC5n Error Record Miscellaneous 5 Register n
0xE0005038 ERRMISC6n Error Record Miscellaneous 6 Register n
0xE000503C ERRMISC7n Error Record Miscellaneous 7 Register n

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1446

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE0005E00 ERRGSRn RAS Fault Group Status Register
0xE0005E10 ERRIIDR Error Implementer ID Register
0xE0005FC8 ERRDEVID Error Record Device ID Register

D1.1.8 Implementation Control Block

Address Register Description

0xE000E004 ICTR Interrupt Controller Type Register
0xE000E008 ACTLR Auxiliary Control Register
0xE000E00C CPPWR Coprocessor Power Control Register

D1.1.9 SysTick Timer

Address Register Description

0xE000E010 SYST_CSR SysTick Control and Status Register
0xE000E014 SYST_RVR SysTick Reload Value Register
0xE000E018 SYST_CVR SysTick Current Value Register
0xE000E01C SYST_CALIB SysTick Calibration Value Register

D1.1.10 Nested Vectored Interrupt Controller

Address Register Description

0xE000E100 NVIC_ISERn Interrupt Set Enable Register n
0xE000E180 NVIC_ICERn Interrupt Clear Enable Register n
0xE000E200 NVIC_ISPRn Interrupt Set Pending Register n
0xE000E280 NVIC_ICPRn Interrupt Clear Pending Register n
0xE000E300 NVIC_IABRn Interrupt Active Bit Register n
0xE000E380 NVIC_ITNSn Interrupt Target Non-secure Register n
0xE000E400 NVIC_IPRn Interrupt Priority Register n

D1.1.11 System Control Block

Address Register Description

0xE000ECFC REVIDR Revision ID Register
0xE000ED00 CPUID CPUID Base Register
0xE000ED04 ICSR Interrupt Control and State Register
0xE000ED08 VTOR Vector Table Offset Register
0xE000ED0C AIRCR Application Interrupt and Reset Control Register
0xE000ED10 SCR System Control Register
0xE000ED14 CCR Configuration and Control Register
0xE000ED18 SHPR1 System Handler Priority Register 1
0xE000ED1C SHPR2 System Handler Priority Register 2
0xE000ED20 SHPR3 System Handler Priority Register 3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1447

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000ED24 SHCSR System Handler Control and State Register
0xE000ED28 MMFSR MemManage Fault Status Register
0xE000ED28 CFSR Configurable Fault Status Register
0xE000ED29 BFSR BusFault Status Register
0xE000ED2A UFSR UsageFault Status Register
0xE000ED2C HFSR HardFault Status Register
0xE000ED30 DFSR Debug Fault Status Register
0xE000ED34 MMFAR MemManage Fault Address Register
0xE000ED38 BFAR BusFault Address Register
0xE000ED3C AFSR Auxiliary Fault Status Register
0xE000ED40 ID_PFR0 Processor Feature Register 0
0xE000ED44 ID_PFR1 Processor Feature Register 1
0xE000ED48 ID_DFR0 Debug Feature Register 0
0xE000ED4C ID_AFR0 Auxiliary Feature Register 0
0xE000ED50 ID_MMFR0 Memory Model Feature Register 0
0xE000ED54 ID_MMFR1 Memory Model Feature Register 1
0xE000ED58 ID_MMFR2 Memory Model Feature Register 2
0xE000ED5C ID_MMFR3 Memory Model Feature Register 3
0xE000ED60 ID_ISAR0 Instruction Set Attribute Register 0
0xE000ED64 ID_ISAR1 Instruction Set Attribute Register 1
0xE000ED68 ID_ISAR2 Instruction Set Attribute Register 2
0xE000ED6C ID_ISAR3 Instruction Set Attribute Register 3
0xE000ED70 ID_ISAR4 Instruction Set Attribute Register 4
0xE000ED74 ID_ISAR5 Instruction Set Attribute Register 5
0xE000ED78 CLIDR Cache Level ID Register
0xE000ED7C CTR Cache Type Register
0xE000ED80 CCSIDR Current Cache Size ID register
0xE000ED84 CSSELR Cache Size Selection Register
0xE000ED88 CPACR Coprocessor Access Control Register
0xE000ED8C NSACR Non-secure Access Control Register

D1.1.12 Memory Protection Unit

Address Register Description

0xE000ED90 MPU_TYPE MPU Type Register
0xE000ED94 MPU_CTRL MPU Control Register
0xE000ED98 MPU_RNR MPU Region Number Register
0xE000ED9C MPU_RBAR MPU Region Base Address Register
0xE000EDA0 MPU_RLAR MPU Region Limit Address Register
0xE000EDA4 MPU_RBAR_An MPU Region Base Address Register Alias n
0xE000EDA8 MPU_RLAR_An MPU Region Limit Address Register Alias n
0xE000EDC0 MPU_MAIR0 MPU Memory Attribute Indirection Register 0
0xE000EDC4 MPU_MAIR1 MPU Memory Attribute Indirection Register 1

D1.1.13 Security Attribution Unit

Address Register Description

0xE000EDD0 SAU_CTRL SAU Control Register

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1448

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000EDD4 SAU_TYPE SAU Type Register
0xE000EDD8 SAU_RNR SAU Region Number Register
0xE000EDDC SAU_RBAR SAU Region Base Address Register
0xE000EDE0 SAU_RLAR SAU Region Limit Address Register
0xE000EDE4 SFSR Secure Fault Status Register
0xE000EDE8 SFAR Secure Fault Address Register

D1.1.14 Debug Control Block

Address Register Description

0xE000EDF0 DHCSR Debug Halting Control and Status Register
0xE000EDF4 DCRSR Debug Core Register Select Register
0xE000EDF8 DCRDR Debug Core Register Data Register
0xE000EDFC DEMCR Debug Exception and Monitor Control Register
0xE000EE00 DSCEMCR Debug Set Clear Exception and Monitor Control Register
0xE000EE04 DAUTHCTRL Debug Authentication Control Register
0xE000EE08 DSCSR Debug Security Control and Status Register

D1.1.15 Software Interrupt Generation

Address Register Description

0xE000EF00 STIR Software Triggered Interrupt Register

D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register

Address Register Description

0xE000EF04 RFSR RAS Fault Status Register

D1.1.17 Floating-Point Extension

Address Register Description

0xE000EF34 FPCCR Floating-Point Context Control Register
0xE000EF38 FPCAR Floating-Point Context Address Register
0xE000EF3C FPDSCR Floating-Point Default Status Control Register
0xE000EF40 MVFR0 Media and VFP Feature Register 0
0xE000EF44 MVFR1 Media and VFP Feature Register 1
0xE000EF48 MVFR2 Media and VFP Feature Register 2

D1.1.18 Cache Maintenance Operations

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1449

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000EF50 ICIALLU Instruction Cache Invalidate All to PoU
0xE000EF58 ICIMVAU Instruction Cache line Invalidate by Address to PoU
0xE000EF5C DCIMVAC Data Cache line Invalidate by Address to PoC
0xE000EF60 DCISW Data Cache line Invalidate by Set/Way
0xE000EF64 DCCMVAU Data Cache line Clean by address to PoU
0xE000EF68 DCCMVAC Data Cache line Clean by Address to PoC
0xE000EF6C DCCSW Data Cache Clean line by Set/Way
0xE000EF70 DCCIMVAC Data Cache line Clean and Invalidate by Address to PoC
0xE000EF74 DCCISW Data Cache line Clean and Invalidate by Set/Way
0xE000EF78 BPIALL Branch Predictor Invalidate All

D1.1.19 Debug Identification Block

Address Register Description

0xE000EFB0 DLAR SCS Software Lock Access Register
0xE000EFB4 DLSR SCS Software Lock Status Register
0xE000EFB8 DAUTHSTATUS Debug Authentication Status Register
0xE000EFBC DDEVARCH SCS Device Architecture Register
0xE000EFCC DDEVTYPE SCS Device Type Register
0xE000EFD0 DPIDR4 SCS Peripheral Identification Register 4
0xE000EFD4 DPIDR5 SCS Peripheral Identification Register 5
0xE000EFD8 DPIDR6 SCS Peripheral Identification Register 6
0xE000EFDC DPIDR7 SCS Peripheral Identification Register 7
0xE000EFE0 DPIDR0 SCS Peripheral Identification Register 0
0xE000EFE4 DPIDR1 SCS Peripheral Identification Register 1
0xE000EFE8 DPIDR2 SCS Peripheral Identification Register 2
0xE000EFEC DPIDR3 SCS Peripheral Identification Register 3
0xE000EFF0 DCIDR0 SCS Component Identification Register 0
0xE000EFF4 DCIDR1 SCS Component Identification Register 1
0xE000EFF8 DCIDR2 SCS Component Identification Register 2
0xE000EFFC DCIDR3 SCS Component Identification Register 3

D1.1.20 Implementation Control Block (NS alias)

Address Register Description

0xE002E004 ICTR Interrupt Controller Type Register (NS)
0xE002E008 ACTLR Auxiliary Control Register (NS)
0xE002E00C CPPWR Coprocessor Power Control Register (NS)

D1.1.21 SysTick Timer (NS alias)

Address Register Description

0xE002E010 SYST_CSR SysTick Control and Status Register (NS)
0xE002E014 SYST_RVR SysTick Reload Value Register (NS)
0xE002E018 SYST_CVR SysTick Current Value Register (NS)
0xE002E01C SYST_CALIB SysTick Calibration Value Register (NS)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1450

Chapter D1. Register and Payload Specification
D1.1. Register index

D1.1.22 Nested Vectored Interrupt Controller (NS alias)

Address Register Description

0xE002E100 NVIC_ISERn Interrupt Set Enable Register n (NS)
0xE002E180 NVIC_ICERn Interrupt Clear Enable Register n (NS)
0xE002E200 NVIC_ISPRn Interrupt Set Pending Register n (NS)
0xE002E280 NVIC_ICPRn Interrupt Clear Pending Register n (NS)
0xE002E300 NVIC_IABRn Interrupt Active Bit Register n (NS)
0xE002E400 NVIC_IPRn Interrupt Priority Register n (NS)

D1.1.23 System Control Block (NS alias)

Address Register Description

0xE002ECFC REVIDR Revision ID Register (NS)
0xE002ED00 CPUID CPUID Base Register (NS)
0xE002ED04 ICSR Interrupt Control and State Register (NS)
0xE002ED08 VTOR Vector Table Offset Register (NS)
0xE002ED0C AIRCR Application Interrupt and Reset Control Register (NS)
0xE002ED10 SCR System Control Register (NS)
0xE002ED14 CCR Configuration and Control Register (NS)
0xE002ED18 SHPR1 System Handler Priority Register 1 (NS)
0xE002ED1C SHPR2 System Handler Priority Register 2 (NS)
0xE002ED20 SHPR3 System Handler Priority Register 3 (NS)
0xE002ED24 SHCSR System Handler Control and State Register (NS)
0xE002ED28 CFSR Configurable Fault Status Register (NS)
0xE002ED28 MMFSR MemManage Fault Status Register (NS)
0xE002ED29 BFSR BusFault Status Register (NS)
0xE002ED2A UFSR UsageFault Status Register (NS)
0xE002ED2C HFSR HardFault Status Register (NS)
0xE002ED30 DFSR Debug Fault Status Register (NS)
0xE002ED34 MMFAR MemManage Fault Address Register (NS)
0xE002ED38 BFAR BusFault Address Register (NS)
0xE002ED3C AFSR Auxiliary Fault Status Register (NS)
0xE002ED40 ID_PFR0 Processor Feature Register 0 (NS)
0xE002ED44 ID_PFR1 Processor Feature Register 1 (NS)
0xE002ED48 ID_DFR0 Debug Feature Register 0 (NS)
0xE002ED4C ID_AFR0 Auxiliary Feature Register 0 (NS)
0xE002ED50 ID_MMFR0 Memory Model Feature Register 0 (NS)
0xE002ED54 ID_MMFR1 Memory Model Feature Register 1 (NS)
0xE002ED58 ID_MMFR2 Memory Model Feature Register 2 (NS)
0xE002ED5C ID_MMFR3 Memory Model Feature Register 3 (NS)
0xE002ED60 ID_ISAR0 Instruction Set Attribute Register 0 (NS)
0xE002ED64 ID_ISAR1 Instruction Set Attribute Register 1 (NS)
0xE002ED68 ID_ISAR2 Instruction Set Attribute Register 2 (NS)
0xE002ED6C ID_ISAR3 Instruction Set Attribute Register 3 (NS)
0xE002ED70 ID_ISAR4 Instruction Set Attribute Register 4 (NS)
0xE002ED74 ID_ISAR5 Instruction Set Attribute Register 5 (NS)
0xE002ED78 CLIDR Cache Level ID Register (NS)
0xE002ED7C CTR Cache Type Register (NS)
0xE002ED80 CCSIDR Current Cache Size ID register (NS)
0xE002ED84 CSSELR Cache Size Selection Register (NS)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1451

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE002ED88 CPACR Coprocessor Access Control Register (NS)

D1.1.24 Memory Protection Unit (NS alias)

Address Register Description

0xE002ED90 MPU_TYPE MPU Type Register (NS)
0xE002ED94 MPU_CTRL MPU Control Register (NS)
0xE002ED98 MPU_RNR MPU Region Number Register (NS)
0xE002ED9C MPU_RBAR MPU Region Base Address Register (NS)
0xE002EDA0 MPU_RLAR MPU Region Limit Address Register (NS)
0xE002EDA4 MPU_RBAR_An MPU Region Base Address Register Alias n (NS)
0xE002EDA8 MPU_RLAR_An MPU Region Limit Address Register Alias n (NS)
0xE002EDC0 MPU_MAIR0 MPU Memory Attribute Indirection Register 0 (NS)
0xE002EDC4 MPU_MAIR1 MPU Memory Attribute Indirection Register 1 (NS)

D1.1.25 Debug Control Block (NS alias)

Address Register Description

0xE002EDF0 DHCSR Debug Halting Control and Status Register (NS)
0xE002EDF8 DCRDR Debug Core Register Data Register (NS)
0xE002EDFC DEMCR Debug Exception and Monitor Control Register (NS)
0xE002EE00 DSCEMCR Debug Set Clear Exception and Monitor Control Register (NS)
0xE002EE04 DAUTHCTRL Debug Authentication Control Register (NS)

D1.1.26 Software Interrupt Generation (NS alias)

Address Register Description

0xE002EF00 STIR Software Triggered Interrupt Register (NS)

D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register (NS Alias)

Address Register Description

0xE002EF04 RFSR RAS Fault Status Register (NS)

D1.1.28 Floating-Point Extension (NS alias)

Address Register Description

0xE002EF34 FPCCR Floating-Point Context Control Register (NS)
0xE002EF38 FPCAR Floating-Point Context Address Register (NS)
0xE002EF3C FPDSCR Floating-Point Default Status Control Register (NS)
0xE002EF40 MVFR0 Media and VFP Feature Register 0 (NS)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1452

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE002EF44 MVFR1 Media and VFP Feature Register 1 (NS)
0xE002EF48 MVFR2 Media and VFP Feature Register 2 (NS)

D1.1.29 Cache Maintenance Operations (NS alias)

Address Register Description

0xE002EF50 ICIALLU Instruction Cache Invalidate All to PoU (NS)
0xE002EF58 ICIMVAU Instruction Cache line Invalidate by Address to PoU (NS)
0xE002EF5C DCIMVAC Data Cache line Invalidate by Address to PoC (NS)
0xE002EF60 DCISW Data Cache line Invalidate by Set/Way (NS)
0xE002EF64 DCCMVAU Data Cache line Clean by address to PoU (NS)
0xE002EF68 DCCMVAC Data Cache line Clean by Address to PoC (NS)
0xE002EF6C DCCSW Data Cache Clean line by Set/Way (NS)
0xE002EF70 DCCIMVAC Data Cache line Clean and Invalidate by Address to PoC (NS)
0xE002EF74 DCCISW Data Cache line Clean and Invalidate by Set/Way (NS)
0xE002EF78 BPIALL Branch Predictor Invalidate All (NS)

D1.1.30 Debug Identification Block (NS alias)

Address Register Description

0xE002EFB0 DLAR SCS Software Lock Access Register (NS)
0xE002EFB4 DLSR SCS Software Lock Status Register (NS)
0xE002EFB8 DAUTHSTATUS Debug Authentication Status Register (NS)
0xE002EFBC DDEVARCH SCS Device Architecture Register (NS)
0xE002EFCC DDEVTYPE SCS Device Type Register (NS)
0xE002EFD0 DPIDR4 SCS Peripheral Identification Register 4 (NS)
0xE002EFD4 DPIDR5 SCS Peripheral Identification Register 5 (NS)
0xE002EFD8 DPIDR6 SCS Peripheral Identification Register 6 (NS)
0xE002EFDC DPIDR7 SCS Peripheral Identification Register 7 (NS)
0xE002EFE0 DPIDR0 SCS Peripheral Identification Register 0 (NS)
0xE002EFE4 DPIDR1 SCS Peripheral Identification Register 1 (NS)
0xE002EFE8 DPIDR2 SCS Peripheral Identification Register 2 (NS)
0xE002EFEC DPIDR3 SCS Peripheral Identification Register 3 (NS)
0xE002EFF0 DCIDR0 SCS Component Identification Register 0 (NS)
0xE002EFF4 DCIDR1 SCS Component Identification Register 1 (NS)
0xE002EFF8 DCIDR2 SCS Component Identification Register 2 (NS)
0xE002EFFC DCIDR3 SCS Component Identification Register 3 (NS)

D1.1.31 Trace Port Interface Unit

Address Register Description

0xE0040000 TPIU_SSPSR TPIU Supported Parallel Port Sizes Register
0xE0040004 TPIU_CSPSR TPIU Current Parallel Port Sizes Register
0xE0040010 TPIU_ACPR TPIU Asynchronous Clock Prescaler Register
0xE00400F0 TPIU_SPPR TPIU Selected Pin Protocol Register
0xE0040300 TPIU_FFSR TPIU Formatter and Flush Status Register

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1453

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE0040304 TPIU_FFCR TPIU Formatter and Flush Control Register
0xE0040308 TPIU_PSCR TPIU Periodic Synchronization Control Register
0xE0040FA0 TPIU_CLAIMSET TPIU Claim Tag Set Register
0xE0040FA4 TPIU_CLAIMCLR TPIU Claim Tag Clear Register
0xE0040FB0 TPIU_LAR TPIU Software Lock Access Register
0xE0040FB4 TPIU_LSR TPIU Software Lock Status Register
0xE0040FC8 TPIU_DEVID TPIU Device Identifier Register
0xE0040FCC TPIU_DEVTYPE TPIU Device Type Register
0xE0040FD0 TPIU_PIDR4 TPIU Peripheral Identification Register 4
0xE0040FD4 TPIU_PIDR5 TPIU Peripheral Identification Register 5
0xE0040FD8 TPIU_PIDR6 TPIU Peripheral Identification Register 6
0xE0040FDC TPIU_PIDR7 TPIU Peripheral Identification Register 7
0xE0040FE0 TPIU_PIDR0 TPIU Peripheral Identification Register 0
0xE0040FE4 TPIU_PIDR1 TPIU Peripheral Identification Register 1
0xE0040FE8 TPIU_PIDR2 TPIU Peripheral Identification Register 2
0xE0040FEC TPIU_PIDR3 TPIU Peripheral Identification Register 3
0xE0040FF0 TPIU_CIDR0 TPIU Component Identification Register 0
0xE0040FF4 TPIU_CIDR1 TPIU Component Identification Register 1
0xE0040FF8 TPIU_CIDR2 TPIU Component Identification Register 2
0xE0040FFC TPIU_CIDR3 TPIU Component Identification Register 3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1454

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2 Alphabetical list of registers

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1455

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.1 ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED configuration and control options.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000E008.

Secure software can access the Non-secure version of this register via ACTLR_NS located at 0xE002E008.
The location 0xE002E008 is RES0 to software executing in Non-secure state and the debugger.

It is IMPLEMENTATION DEFINED whether this register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ACTLR bit assignments are:

031

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1456

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.2 AFSR, Auxiliary Fault Status Register

The AFSR characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED fault status information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED3C.

Secure software can access the Non-secure version of this register via AFSR_NS located at 0xE002ED3C.
The location 0xE002ED3C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The AFSR bit assignments are:

031

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1457

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.3 AIRCR, Application Interrupt and Reset Control Register

The AIRCR characteristics are:

Purpose
Sets or returns interrupt control and reset configuration.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED0C.

Secure software can access the Non-secure version of this register via AIRCR_NS located at 0xE002ED0C.
The location 0xE002ED0C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The AIRCR bit assignments are:

On a read:

0

(0)

1234567

RES0

8101112

RES0

1314151631

VECTKEYSTAT

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

IESB

VECTCLRACTIVE
SYSRESETREQ
SYSRESETREQS

DIT

On a write:

0

(0)

1234567

RES0

8101112

RES0

1314151631

VECTKEY

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

IESB

VECTCLRACTIVE
SYSRESETREQ
SYSRESETREQS

DIT

VECTKEY, bits [31:16], on a write
Vector key. Writes to the AIRCR must be accompanied by a write of the value 0x05FA to this field. Writes
to the AIRCR fields that are not accompanied by this value are ignored for the purpose of updating any of the
AIRCR values or initiating any AIRCR functionality.

This field is not banked between Security states.

The possible values of this field are:

0x05FA
Permit write to AIRCR fields.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1458

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Not 0x05FA
Accompanying write to AIRCR fields ignored.

VECTKEYSTAT, bits [31:16], on a read
Vector key status. Returns the bitwise inverse of the value required to be written to VECTKEY.

This field is not banked between Security states.

This field reads as 0xFA05.

ENDIANNESS, bit [15]
Data endianness. Indicates how the PE interprets the memory system data endianness.

This bit is not banked between Security states.

The possible values of this bit are:

0
Little-endian.

1
Big-endian.

This bit is read-only.

This bit reads as an IMPLEMENTATION DEFINED value.

PRIS, bit [14]
Prioritize Secure exceptions. The value of this bit defines whether Secure exception priority boosting is
enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0
Priority ranges of Secure and Non-secure exceptions are identical.

1
Non-secure exceptions are de-prioritized.

To allow lock down of this bit, it is IMPLEMENTATION DEFINED whether this bit is writable.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

BFHFNMINS, bit [13]
BusFault, HardFault, and NMI Non-secure enable. The value of this bit defines whether BusFault and NMI
exceptions are Non-secure, and whether exceptions target the Non-secure HardFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault, HardFault, and NMI are Secure.

1
BusFault and NMI are Non-secure and exceptions can target Non-secure HardFault.

If an implementation resets into Secure state, this bit resets to zero. If an implementation does not support
Secure state, this bit is RAO/WI. To allow lock down of this field it is IMPLEMENTATION DEFINED whether
this bit is writable. The effect of setting both BFHFNMINS and PRIS to 1 is UNPREDICTABLE.

From Armv8.1-M the clearing of this field to zero, except by reset, is deprecated.

This bit is read-only from Non-secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1459

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to zero on a Warm reset.

Bits [12:11]
Reserved, RES0.

PRIGROUP, bits [10:8]
Priority grouping. The value of this field defines the exception priority binary point position for the selected
Security state.

This field is banked between Security states.

The possible values of this field are:

0b000
Group priority [7:1], subpriority [0].

0b001
Group priority [7:2], subpriority [1:0].

0b010
Group priority [7:3], subpriority [2:0].

0b011
Group priority [7:4], subpriority [3:0].

0b100
Group priority [7:5], subpriority [4:0].

0b101
Group priority [7:6], subpriority [5:0].

0b110
Group priority [7], subpriority [6:0].

0b111
No group priority, subpriority [7:0].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

Bits [7:6]
Reserved, RES0.

IESB, bit [5]
Implicit ESB Enable. This bit indicates and allows modification of whether an implicit Error Synchronization
Barriers occurs around lazy Floating-point state preservation, and on every exception entry and return.

This bit is not banked between Security states.

The possible values of this bit are:

0
No Implicit ESB.

1
Implicit ESB are enabled.

Enabling implicit ESB’s also causes imprecise BusFault exceptions to escalate as if they were precise,
however because the address of the instruction that caused the fault is not known they are still reported as an
IMPRECISERR in BFSR.

If a PE does not allow configuring implicit ESB insertion, this bit is WI and the value read indicates whether
the PE never or always inserts an implicit ESB around lazy Floating-point state preservation, and on exception
entry and return.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1460

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If RAS is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DIT, bit [4]
Data Independent Timing. This bit indicates and allows modification of whether for the selected Security
state data independent timing operations are guaranteed to be timing invariant with respect to the data values
being operated on.

This bit is banked between Security states.

The possible values of this bit are:

0
The architecture makes no statement about the timing properties of any instructions.

1
The architecture requires that the timing of every load and store instruction is insensitive to the value of
the data being loaded or stored.

For certain data processing instructions, the instruction takes a time which is independent of:

• The values of the data supplied in any of its registers.

• The values of the NZCV flags.

For certain data processing instructions, the response of the instruction to asynchronous exceptions does
not vary based on:

• The values of the data supplied in any of its registers.

• The values of the NZCV flags.

If configuration of timing invariance is not supported this bit is WI, and the value read indicates whether the
PE always or never exhibits timing invariant behavior.

This bit resets to zero on a Warm reset.

SYSRESETREQS, bit [3]
System reset request Secure only. The value of this bit defines whether the SYSRESETREQ bit is functional
for Non-secure use.

This bit is not banked between Security states.

The possible values of this bit are:

0
SYSRESETREQ functionality is available to both Security states.

1
SYSRESETREQ functionality is only available to Secure state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SYSRESETREQ, bit [2]
System reset request. This bit allows software or a debugger to request a system reset.

This bit is not banked between Security states.

The possible values of this bit are:

0
Do not request a system reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1461

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Request a system reset.

When SYSRESETREQS is set to 1, the Non-secure view of this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

VECTCLRACTIVE, bit [1]
Clear active state.

A debugger write of one to this bit when the PE is halted in Debug state:

• IPSR is cleared to zero.

• If DHCSR.S_NSUIDE==0, the active state for all Non-secure exceptions is cleared.

• If DHCSR.S_SUIDE==0 and DHCSR.S_SDE==1, the active state for all Secure exceptions is cleared.

This bit is not banked between Security states.

The possible values of this bit are:

0
Do not clear active state.

1
Clear active state.

Writes to this bit while the PE is in Non-debug state are ignored.

This bit reads as zero.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1462

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.4 APSR, Application Program Status Register

The APSR characteristics are:

Purpose
Provides privileged and unprivileged access to the PE Execution state fields.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The APSR bit assignments are:

015

RES0

1619

GE

2026

RES0

27

Q

28

V

29

C

30

Z

31

N

N, bit [31]
Negative condition flag. When updated by a flag setting instruction this bit indicates whether the result of the
operation when treated as a two’s complement signed integer is negative.

The possible values of this bit are:

0
Result is positive or zero.

1
Result is negative.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

Z, bit [30]
Zero condition flag. When updated by a flag setting instruction this bit indicates whether the result of the
operation was zero.

The possible values of this bit are:

0
Result is nonzero.

1
Result is zero.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

C, bit [29]
Carry condition flag. When updated by a flag setting instruction this bit indicates whether the operation
resulted in an unsigned overflow or whether the last bit shifted out of the result was set.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1463

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No carry occurred, or last bit shifted was clear.

1
Carry occurred, or last bit shifted was set.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

V, bit [28]
Overflow condition flag. When updated by a flag setting instruction this bit indicates whether a signed
overflow occurred.

The possible values of this bit are:

0
Signed overflow did not occur.

1
Signed overflow occurred.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

Q, bit [27]
Sticky saturation flag. When updated by certain instructions this bit indicates either that an overflow occurred
or that the result was saturated. This bit is cumulative and can only be cleared to zero by software.

The possible values of this bit are:

0
Saturation or overflow has not occurred since bit was last cleared.

1
Saturation or overflow has occurred since bit was last cleared.

See individual instruction pages for details.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [26:20]
Reserved, RES0.

GE, bits [19:16]
Greater than or equal flags. When updated by parallel addition and subtraction instructions these bits record
whether the result was greater than or equal to zero. SEL instructions use these bits to determine which
register to select a particular byte from.

See individual instruction pages for details.

If the DSP Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

Bits [15:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1464

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.5 BASEPRI, Base Priority Mask Register

The BASEPRI characteristics are:

Purpose
Changes the priority level required for exception preemption.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The BASEPRI bit assignments are:

07

BASEPRI

831

RES0

Bits [31:8]
Reserved, RES0.

BASEPRI, bits [7:0]
Base priority mask. BASEPRI changes the priority level required for exception preemption. It has an effect
only when BASEPRI has a lower value than the unmasked priority level of the currently executing software.

The possible values of this field are:

0
Disables masking by BASEPRI.

1-255
Priority value.

The number of implemented bits in BASEPRI is the same as the number of implemented bits in each field of
the priority registers, and BASEPRI has the same format as those fields.

If the PE implements fewer than eight bits of priority, the least significant bits of this field are RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1465

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.6 BFAR, BusFault Address Register

The BFAR characteristics are:

Purpose
Shows the address associated with a precise data access BusFault.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED38.

Secure software can access the Non-secure version of this register via BFAR_NS located at 0xE002ED38.
The location 0xE002ED38 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The BFAR bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Data address for a precise BusFault. This register is updated with the address of a location that produced
a BusFault. BFSR shows the reason for the fault. This field is valid only when BFSR.BFARVALID is set,
otherwise it is UNKNOWN.

In implementations without unique SFAR, BFAR and MMFAR registers, the value of this register is
UNKNOWN if MMFSR.MMFARVALID or SFSR.SFARVALID is set.

If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

This field resets to an UNKNOWN value on a Warm reset.

Note

If an implementation shares a common SFAR, BFAR and MMFAR it must not leak Secure state
information to the Non-secure state. One possible implementation is that BFAR shares resource
with the Secure MMFAR if AIRCR.BFHFNMINS is zero, and with the Non-secure MMFAR if
AIRCR.BFHFNMINS is set.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1466

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.7 BFSR, BusFault Status Register

The BFSR characteristics are:

Purpose
Shows the status of bus errors resulting from instruction fetches and data accesses. This includes errors
resulting from RAS errors.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
8-bit read/write-one-to-clear register located at 0xE000ED29.

Secure software can access the Non-secure version of this register via BFSR_NS located at 0xE002ED29.
The location 0xE002ED29 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

This register is part of CFSR.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The BFSR bit assignments are:

0123456

(0)

7

BFARVALID
LSPERR
STKERR

UNSTKERR

IBUSERR
PRECISERR
IMPRECISERR

BFARVALID, bit [7]
BFAR valid. Indicates validity of the contents of the BFAR register.

The possible values of this bit are:

0
BFAR content not valid.

1
BFAR content valid.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1467

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bit [6]
Reserved, RES0.

LSPERR, bit [5]
Lazy state preservation error. Records whether a precise BusFault occurred during floating-point lazy
Floating-point state preservation.

The possible values of this bit are:

0
No BusFault occurred.

1
BusFault occurred.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

STKERR, bit [4]
Stack error. Records whether a precise derived BusFault occurred during exception entry stacking.

The possible values of this bit are:

0
No derived BusFault occurred.

1
Derived BusFault occurred during exception entry.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

UNSTKERR, bit [3]
Unstack error. Records whether a precise derived BusFault occurred during exception return unstacking.

The possible values of this bit are:

0
No derived BusFault occurred.

1
Derived BusFault occurred during exception return.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

IMPRECISERR, bit [2]
Imprecise error. Records whether an imprecise data access error has occurred.

The possible values of this bit are:

0
No imprecise data access error has occurred.

1
Imprecise data access error has occurred.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1468

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

PRECISERR, bit [1]
Precise error. Records whether a precise data access error has occurred.

The possible values of this bit are:

0
No precise data access error has occurred.

1
Precise data access error has occurred.

When a precise error is recorded, the associated address is written to the BFAR and BFSR.BFARVALID bit
is set.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

IBUSERR, bit [0]
Instruction bus error. Records whether a precise BusFault on an instruction prefetch has occurred.

The possible values of this bit are:

0
No BusFault on instruction prefetch has occurred.

1
A BusFault on an instruction prefetch has occurred.

An IBUSERR is only recorded if the instruction is issued for execution.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1469

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.8 BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

Purpose
Invalidate all entries from branch predictors.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF78.

Secure software can access the Non-secure version of this register via BPIALL_NS located at 0xE002EF78.
The location 0xE002EF78 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The BPIALL bit assignments are:

031

Ignored

Ignored, bits [31:0]
Ignored. The value written to this field is ignored.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1470

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.9 CCR, Configuration and Control Register

The CCR characteristics are:

Purpose
Sets or returns configuration and control data.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to read accesses through unprivileged DAP requests when
DAUTHCTRL.UIDAPEN (either bank) is set. Write accesses through unprivileged DAP requests are not
permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED14.

Secure software can access the Non-secure version of this register via CCR_NS located at 0xE002ED14.
The location 0xE002ED14 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CCR bit assignments are:

0

(1)

12

(0)

3457

RES0

89

(1)

101115

RES0

16

DC

17

IC

18

BP

19202131

RES0

TRD
LOB

STKOFHFNMIGN
BFHFNMIGN

USERSETMPEND
UNALIGN_TRP

DIV_0_TRP

Bits [31:21]
Reserved, RES0.

TRD, bit [20]
Thread reentrancy disabled. Enables checking for exception stack frame integrity signatures on SG
instructions. If enabled this check causes a fault to be raised if an attempt is made to re-enter Secure
Thread mode while a call to Secure Thread mode is already in progress.

This bit is not banked between Security states.

The possible values of this bit are:

0
Integrity signature checking not performed.

1
Integrity signature checking performed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1471

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is RAZ/WI from Non-secure state.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

LOB, bit [19]
Loop and branch info cache enable. Enables the branch cache used by loop and branch future instructions for
the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
Branch cache disabled for the selected Security state.

1
Branch cache enabled for the selected Security state.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

If the branch cache is not supported, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

BP, bit [18]
Branch prediction enable. Enables program flow prediction for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
Program flow prediction disabled for the selected Security state.

1
Program flow prediction enabled for the selected Security state.

If program flow prediction cannot be disabled, this bit is RAO/WI. If the program flow prediction is not
supported, this bit is RAZ/WI. Arm recommends that the RAO/WI behavior should only be used where the
branch predictor is static and does not display any dynamic behavior.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

IC, bit [17]
Instruction cache enable. This is a global enable bit for instruction caches in the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
Instruction caches disabled for the selected Security state.

1
Instruction caches enabled for the selected Security state.

If the PE does not implement instruction caches, this bit is RAZ/WI.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1472

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

DC, bit [16]
Data cache enable. Enables data caching of all data accesses to Normal memory.

This bit is banked between Security states.

The possible values of this bit are:

0
Data caching disabled.

1
Data caching enabled.

The secure version of this bit controls the Cacheability of accesses to secure memory.

The Non-secure version of this bit controls the Cacheability of accesses to Non-secure memory.

If the PE does not implement data caches, this bit is RAZ/WI.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:11]
Reserved, RES0.

STKOFHFNMIGN, bit [10]
Stack overflow in HardFault and NMI ignore. Controls the effect of a stack limit violation while executing at
a requested priority less than 0 for the Security state with which the stack limit register is associated.

This bit is banked between Security states.

The possible values of this bit are:

0
Stack limit faults not ignored.

1
Stack limit faults at requested priorities of less than 0 ignored.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bit [9]
Reserved, RES1.

BFHFNMIGN, bit [8]
BusFault in HardFault or NMI ignore. Determines the effect of precise BusFaults arising from data accesses
performed by code running at a requested priority less than 0.

This bit is not banked between Security states.

The possible values of this bit are:

0
Precise BusFaults not ignored.

1
Precise BusFaults at requested priorities of less than 0 ignored.

If AIRCR.BFHFNMINS is 0, this bit is read-only from Non-secure state.

Setting this bit to one is deprecated from Armv8.1-M onwards.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1473

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [7:5]
Reserved, RES0.

DIV_0_TRP, bit [4]
Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to perform
integer division by zero.

This bit is banked between Security states.

The possible values of this bit are:

0
DIVBYZERO UsageFault generation disabled.

1
DIVBYZERO UsageFault generation enabled.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

UNALIGN_TRP, bit [3]
Unaligned trap. Controls the trapping of unaligned word or halfword accesses.

This bit is banked between Security states.

The possible values of this bit are:

0
Unaligned accesses permitted from LDR, LDRH, STR, and STRH.

1
Any unaligned transaction generates an UNALIGNED UsageFault.

Unaligned load/store multiples and atomic/exclusive accesses always generate an UNALIGNED UsageFault.

If the Main Extension is not implemented, this bit is RES1.

This bit resets to zero on a Warm reset if the Main Extension is implemented.

Bit [2]
Reserved, RES0.

USERSETMPEND, bit [1]
User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts via the
STIR.

This bit is banked between Security states.

The possible values of this bit are:

0
Unprivileged accesses to the STIR generate a fault.

1
Unprivileged accesses to the STIR are permitted.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bit [0]
Reserved, RES1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1474

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.10 CCSIDR, Current Cache Size ID register

The CCSIDR characteristics are:

Purpose
The CCSIDR provides information about the architecture of the currently selected cache.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If CSSELR points to an unimplemented cache, the value of this register is UNKNOWN.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED80.

Secure software can access the Non-secure version of this register via CCSIDR_NS located at 0xE002ED80.
The location 0xE002ED80 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

Preface

Provides indirect read access to the architecture of the cache currently selected by CSSELR. The parameters
NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are
required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Field descriptions

The CCSIDR bit assignments are:

02

LineSize

312

Associativity

1327

NumSets

28293031

WT
WB

WA
RA

WT, bit [31]
Write-Through. Indicates whether the currently selected cache level supports Write-Through.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1475

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

WB, bit [30]
Writeback. Indicates whether the currently selected cache level supports Write-Back.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

RA, bit [29]
Read-allocate. Indicates whether the currently selected cache level supports read-allocation.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

WA, bit [28]
Write-Allocate. Indicates whether the currently selected cache level supports write-allocation.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

NumSets, bits [27:13]
Number of sets. Indicates (Number of sets in the currently selected cache) - 1. Therefore, a value of 0
indicates that 1 is set in the cache. The number of sets does not have to be a power of 2.

This field reads as an IMPLEMENTATION DEFINED value.

Associativity, bits [12:3]
Associativity. Indicates (Associativity of cache) - 1. A value of 0 indicates an associativity of 1. The
associativity does not have to be a power of 2.

This field reads as an IMPLEMENTATION DEFINED value.

LineSize, bits [2:0]
Line size. Indicates (Log2(Number of words per line in the currently selected cache)) - 2.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1476

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.11 CFSR, Configurable Fault Status Register

The CFSR characteristics are:

Purpose
Contains the three Configurable Fault Status Registers.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000ED28.

Secure software can access the Non-secure version of this register via CFSR_NS located at 0xE002ED28.
The location 0xE002ED28 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CFSR bit assignments are:

07

MMFSR

815

BFSR

1631

UFSR

UFSR, bits [31:16]
UsageFault Status Register. Provides information on UsageFault exceptions.

This field is banked between Security states.

See UFSR.

This field resets to zero on a Warm reset.

BFSR, bits [15:8]
BusFault Status Register. Provides information on BusFault exceptions.

This field is not banked between Security states.

See BFSR.

This field resets to zero on a Warm reset.

MMFSR, bits [7:0]
MemManage Fault Status Register. Provides information on MemManage exceptions.

This field is banked between Security states.

See MMFSR.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1477

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.12 CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose
Identifies the type of caches implemented and the level of coherency and unification.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED78.

Secure software can access the Non-secure version of this register via CLIDR_NS located at 0xE002ED78.
The location 0xE002ED78 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The CLIDR bit assignments are:

02

Ctype1

35

Ctype2

68

Ctype3

911

Ctype4

1214

Ctype5

1517

Ctype6

1820

Ctype7

2123

LoUIS

2426

LoC

2729

LoUU

3031

ICB

ICB, bits [31:30]
Inner cache boundary. This field indicates the boundary between inner and outer domain.

The possible values of this field are:

0b00
Not disclosed in this mechanism.

0b01
L1 cache is the highest inner level.

0b10
L2 cache is the highest inner level.

0b11
L3 cache is the highest inner level.

This field reads as an IMPLEMENTATION DEFINED value.

LoUU, bits [29:27]
Level of Unification Uniprocessor. This field indicates the Level of Unification Uniprocessor for the cache
hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

LoC, bits [26:24]
Level of Coherence. This field indicates the Level of Coherence for the cache hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1478

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LoUIS, bits [23:21]
Level of Unification Inner Shareable. This field indicates the Level of Unification Shareable for the cache
hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

Ctypem, bits [3(m-1)+2:3(m-1)], for m = 1 to 7
Cache type field m. Indicates the type of cache implemented at level m.

The possible values of this field are:

0b000
No cache.

0b001
Instruction cache only.

0b010
Data cache only.

0b011
Separate instruction and data caches.

0b100
Unified cache.

All other values are reserved.

If Ctype<m> is set to 0b000, and m < 7, then all of the following apply.

Level m represents the last level of software-visible cache.

Ctype<m=1> through to Ctype7 must read as zero.

Software must treat Ctype<m+1> through Ctype7 as if they are invalid and read as an UNKNOWN value.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1479

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.13 CONTROL, Control Register

The CONTROL characteristics are:

Purpose
Provides access to the PE control fields.

Usage constraints
Privileged access only, unprivileged reads are permitted but unprivileged writes are ignored unless otherwise
specified.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The CONTROL bit assignments are:

01234567831

RES0

UPAC_EN
PAC_EN

UBTI_EN
BTI_EN

nPRIV
SPSEL
FPCA
SFPA

Bits [31:8]
Reserved, RES0.

UPAC_EN, bit [7]
Unprivileged pointer authentication enable. When this feature is enabled the pointer authentication
instructions can create and validate the PAC in unprivileged mode. An INVSTATE UsageFault is generated if
the PAC validation operation fails.

This bit is banked between Security states.

The possible values of this bit are:

0
Pointer authentication is disabled for unprivileged accesses.

1
Pointer authentication is enabled for unprivileged accesses.

If the PACBTI Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

PAC_EN, bit [6]
Privileged pointer authentication enable. When this feature is enabled the pointer authentication instructions
can create and validate the PAC in privileged mode. An INVSTATE UsageFault is generated if the PAC
validation operation fails.

This bit is banked between Security states.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1480

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Pointer authentication is disabled for privileged accesses.

1
Pointer authentication is enabled for privileged accesses.

If the PACBTI Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

UBTI_EN, bit [5]
Unprivileged branch target identification enable. Unless otherwise stated, when this feature is enabled the
branch target for BTI setting instructions in unprivileged mode must be a BTI clearing instruction otherwise
an INVSTATE UsageFault is generated.

This bit is banked between Security states.

The possible values of this bit are:

0
Branch target identification disabled for unprivileged accesses.

1
Branch target identification enabled for unprivileged accesses.

If the PACBTI Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

BTI_EN, bit [4]
Privileged branch target identification enable. Unless otherwise stated, when this feature is enabled the
branch target for BTI setting instructions in privileged mode must be a BTI clearing instruction, otherwise an
INVSTATE UsageFault is generated.

This bit is banked between Security states.

The possible values of this bit are:

0
Branch target identification disabled for privileged accesses.

1
Branch target identification enabled for privileged accesses.

If the PACBTI Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SFPA, bit [3]
Secure Floating-point active. Indicates that the Floating-point registers contain active state that belongs to the
Secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0
The Floating-point registers do not contain state that belongs to the Secure state.

1
The Floating-point registers contain state that belongs to the Secure state.

This bit accessible from both privileged and unprivileged modes using the MRS or MSR instructions.

This bit is RAZ/WI from Non-secure state.

If the Security Extension is not implemented, this bit is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1481

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If neither the Floating-point Extension or MVE are implemented, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

FPCA, bit [2]
Floating-point context active. Defines whether the Floating-point Extension is active in the current context.

This bit is not banked between Security states.

The possible values of this bit are:

0
Floating-point Extension is not active.

1
Floating-point Extension is active.

When NSACR.CP10 is set to zero, the Non-secure view of this bit is read-only. If FPCCR.ASPEN is set to 1,
enabling automatic Floating-point state preservation, then the PE sets this bit to 1 on successful completion
of any Floating-point instruction.

If neither the Floating-point Extension or MVE are implemented, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

SPSEL, bit [1]
Stack-pointer select. Defines the stack pointer to be used.

This bit is banked between Security states.

The possible values of this bit are:

0
Use SP_main as the current stack.

1
In Thread mode use SP_process as the current stack.

This bit resets to zero on a Warm reset.

nPRIV, bit [0]
Not privileged. Defines the execution privilege in Thread mode.

This bit is banked between Security states.

The possible values of this bit are:

0
Thread mode has privileged access.

1
Thread mode has unprivileged access only.

If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether this field is RW or
RAZ/WI.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1482

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.14 CPACR, Coprocessor Access Control Register

The CPACR characteristics are:

Purpose
Specifies the access privileges for coprocessors and the Floating-point Extension. If MVE is implemented,
this register specifies the access privileges for MVE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED88.

Secure software can access the Non-secure version of this register via CPACR_NS located at 0xE002ED88.
The location 0xE002ED88 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CPACR bit assignments are:

01

CP0

23

CP1

45

CP2

67

CP3

89

CP4

1011

CP5

1213

CP6

1415

CP7

1619

RES0

2021

CP10

2223

CP11

2431

RES0

Bits [31:24]
Reserved, RES0.

CP11, bits [23:22]
CP11 Privilege. The value in this field is ignored. If the CP10 field is RAZ/WI this field is also RAZ/WI. If
the value of this field is not programmed to the same value as the CP10 field, then the value is UNKNOWN.

This field resets to an UNKNOWN value on a Warm reset.

CP10, bits [21:20]
CP10 Privilege. Defines the access rights for the Floating-point functionality.

The possible values of this field are:

0b00
All accesses to the Floating-point Extension and MVE result in NOCP UsageFault.

0b01
Unprivileged accesses to the Floating-point Extension and MVE result in NOCP UsageFault.

0b11
Full access to the Floating-point Extension and MVE.

All other values are reserved.

The features controlled by this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1483

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• Unless otherwise specified, the execution of any instructions within the encoding space defined by
IsCPInstruction() for CP10.

• Access to any Floating-point registers in the range D0-D16.

See individual instruction pages for details.

If neither the Floating-point Extension or MVE are implemented, this field is RAZ/WI.

This field resets to an UNKNOWN value on a Warm reset.

Bits [19:16]
Reserved, RES0.

CPm, bits [2m+1:2m], for m = 0 to 7
Coprocessor m privilege. Controls access privileges for coprocessor m.

The possible values of this field are:

0b00
Access denied. Any attempted access generates a NOCP UsageFault.

0b01
Privileged access only. An unprivileged access generates a NOCP UsageFault.

0b10
Reserved.

0b11
Full access.

If coprocessor m is not implemented, this field is RAZ/WI.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1484

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.15 CPPWR, Coprocessor Power Control Register

The CPPWR characteristics are:

Purpose
Specifies whether coprocessors are permitted to enter a non-retentive power state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000E00C.

Secure software can access the Non-secure version of this register via CPPWR_NS located at 0xE002E00C.
The location 0xE002E00C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If no coprocessors are implemented this register is RAZ/WI.

Field descriptions

The CPPWR bit assignments are:

01234567891011121314151619

RES0

202122232431

RES0

SUS11
SU11

SUS10
SU10

SUS7
SU7

SUS6
SU6

SUS5
SU5

SU0
SUS0
SU1
SUS1

SU2
SUS2
SU3
SUS3

SU4
SUS4

Bits [31:24]
Reserved, RES0.

SUS11, bit [23]
State UNKNOWN Secure only 11. The value in this field is ignored. If the value of this bit is not programmed
to the same value as the SUS10 field, then the value is UNKNOWN.

If SU10 is always RAZ/WI this field is also RAZ/WI.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1485

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SU11, bit [22]
State UNKNOWN 11. The value in this field is ignored. If the value of this bit is not programmed to the same
value as the SU10 field, then the value is UNKNOWN.

When SUS10 is set to 1, the Non-secure view of this bit is RAZ/WI. If SU10 is always RAZ/WI this field is
also RAZ/WI.

This bit resets to zero on a Warm reset.

SUS10, bit [21]
State UNKNOWN Secure only 10. This bit indicates and allows modification of whether the SU10 field can be
modified from Non-secure state.

The possible values of this bit are:

0
The SU10 field is accessible from both Security states.

1
The SU10 field is only accessible from the Secure state.

If SU10 is always RAZ/WI this field is also RAZ/WI.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SU10, bit [20]
State UNKNOWN 10. This bit indicates and allows modification of whether the state associated with the
Floating-point and MVE units is permitted to become UNKNOWN. This can be used as a hint to power control
logic that these units might be powered down.

The possible values of this bit are:

0
The Floating-point and MVE state is not permitted to become UNKNOWN.

1
The Floating-point and MVE state is permitted to become UNKNOWN.

When SUS10 is set to 1, the Non-secure view of this bit is RAZ/WI. It is IMPLEMENTATION DEFINED
whether this bit is always RAZ/WI.

This bit resets to zero on a Warm reset.

Bits [19:16]
Reserved, RES0.

SUSm, bit [2m+1], for m = 0 to 7
State UNKNOWN Secure only m. This field indicates and allows modification of whether the SUm field can
be modified from Non-secure state.

The possible values of this field are:

0
The SUm field is accessible from both Security states.

1
The SUm field is only accessible from the Secure state.

If SUm is always RAZ/WI this field is also RAZ/WI.

This field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1486

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SUm, bit [2m], for m = 0 to 7
State UNKNOWN m. This field indicates and allows modification of whether the state associated with
coprocessor m is permitted to become UNKNOWN. This can be used as a hint to power control logic that the
coprocessor might be powered down.

The possible values of this field are:

0
The coprocessor state is not permitted to become UNKNOWN.

1
The coprocessor state is permitted to become UNKNOWN.

When SUSm is set to 1, the Non-secure view of this bit is RAZ/WI. It is IMPLEMENTATION DEFINED whether
this bit is always RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1487

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.16 CPUID, CPUID Base Register

The CPUID characteristics are:

Purpose
Provides identification information for the PE, including an implementer code for the device and a device ID
number.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED00.

Secure software can access the Non-secure version of this register via CPUID_NS located at 0xE002ED00.
The location 0xE002ED00 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The CPUID bit assignments are:

03

Revision

415

PartNo

16192023

Variant

2431

Implementer

Architecture

Implementer, bits [31:24]
Implementer code. This field must hold an implementer code that has been assigned by Arm.

The possible values of this field are:

0x41
’A’: Arm Limited.

Not 0x41
Implementer other than Arm Limited.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and
must not be used.

This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [23:20]
Variant number. IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish
between different product variants, or major revisions of a product.

This field reads as an IMPLEMENTATION DEFINED value.

Architecture, bits [19:16]
Architecture version. Defines the Architecture implemented by the PE.

The possible values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1488

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b1100
Armv8-M architecture without Main Extension.

0b1111
Armv8-M architecture with Main Extension.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

PartNo, bits [15:4]
Part number. IMPLEMENTATION DEFINED primary part number for the device.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [3:0]
Revision number. IMPLEMENTATION DEFINED revision number for the device.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1489

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.17 CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose
Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache
type (either instruction or data cache)

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED84.

Secure software can access the Non-secure version of this register via CSSELR_NS located at 0xE002ED84.
The location 0xE002ED84 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CSSELR bit assignments are:

013

Level

431

RES0

InD

Bits [31:4]
Reserved, RES0.

Level, bits [3:1]
Cache level. Selects which cache level is to be identified. Permitted values are from 0b000, indicating Level
1 cache, to 0b110 indicating Level 7 cache.

The possible values of this field are:

0b000
Level 1 cache.

0b001
Level 2 cache.

0b010
Level 3 cache.

0b011
Level 4 cache.

0b100
Level 5 cache.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1490

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b101
Level 6 cache.

0b110
Level 7 cache.

All other values are reserved.

Writing a reserved value or value corresponding to an unimplemented level of cache is CONSTRAINED
UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

InD, bit [0]
Instruction not data. Selects whether the instruction or the data cache is to be identified.

The possible values of this bit are:

0
Data or unified cache.

1
Instruction cache.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1491

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.18 CTR, Cache Type Register

The CTR characteristics are:

Purpose
Provides information about the architecture of the caches.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED7C.

Secure software can access the Non-secure version of this register via CTR_NS located at 0xE002ED7C.
The location 0xE002ED7C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

Field descriptions

The CTR bit assignments are:

When Format!='0b100':

028

RES0

2931

Format

When Format=='0b100':

03

IminLine

413

RES0

1415

RES1

1619

DminLine

2023

ERG

2427

CWG

28

(0)

2931

Format

Format, bits [31:29]
Cache Type Register format. Indicates whether cache type information is provided.

The possible values of this field are:

0b000
No cache type information is provided.

0b100
Cache type information is provided.

All other values are reserved.

The value of this field is an IMPLEMENTATION DEFINED choice of either 0b000 or 0b100.

If CLIDR is nonzero then this field must read as 0b100.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [28:0], when Format!=’0b100’
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1492

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bit [28], when Format==’0b100’
Reserved, RES0.

CWG, bits [27:24], when Format==’0b100’
Cache Write-Back Granule. Log2 of the number of words of the maximum size of memory that can be
overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

The possible values of this field are:

0b0000
Indicates that this register does not provide Cache Write-Back Granule information and either the
architectural maximum of 512 words (2KB) must be assumed, or the Cache Write-Back Granule can be
determined from maximum cache line size encoded in the Cache Size ID Registers.

0b0001-0b1000
Log2 of the number of words.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

ERG, bits [23:20], when Format==’0b100’
Exclusives Reservation Granule. Log2 of the number of words of the maximum size of the reservation
granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The possible values of this field are:

0b0000
Indicates that this register does not provide Exclusives Reservation Granule information and the
architectural maximum of 512 words (2KB) must be assumed.

0b0001-0b1000
Log2 of the number of words.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DminLine, bits [19:16], when Format==’0b100’
Data cache minimum line length. Log2 of the number of words in the smallest cache line of all the data
caches and unified caches that are controlled by the PE.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [15:14], when Format==’0b100’
Reserved, RES1.

Bits [13:4], when Format==’0b100’
Reserved, RES0.

IminLine, bits [3:0], when Format==’0b100’
Instruction cache minimum line length. Log2 of the number of words in the smallest cache line of all the
instruction caches that are controlled by the PE.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1493

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.19 Dn, Floating-point Double-precision register, n = 0 - 15

The D{0..15} characteristics are:

Purpose
Provides access to the Floating-point Double-precision register file. These registers are an alias of the
Floating-point register file.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
64-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The D{0..15} bit assignments are:

063

VALUE

VALUE, bits [63:0]
Floating-point double-precision register value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1494

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.20 DAUTHCTRL, Debug Authentication Control Register

The DAUTHCTRL characteristics are:

Purpose
This register allows the IMPLEMENTATION DEFINED authentication interface to be overridden from software.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If Armv8.1-M is implemented, this register is word, halfword and byte accessible.

This register is RES0 if accessed via the debugger.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Attributes
32-bit read/write register located at 0xE000EE04.

Secure software can access the Non-secure version of this register via DAUTHCTRL_NS located at
0xE002EE04. The location 0xE002EE04 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The DAUTHCTRL bit assignments are:

012347

RES0

89101131

RES0

UIDEN
UIDAPEN

FSDMA
INTSPNIDEN

SPIDENSEL
INTSPIDEN
SPNIDENSEL

Bits [31:11]
Reserved, RES0.

UIDEN, bit [10]
Unprivileged Invasive Debug Enable. Enables halting debug for unprivileged modes, regardless of the state
of other debug controls.

This bit is banked between Security states.

The possible values of this bit are:

0
Halting debug operates as normal.

1
Unprivileged halting debug allowed.

See UnprivHaltingDebugAllowed() and UpdateDebugEnable().

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1495

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

UIDAPEN, bit [9]
Unprivileged Invasive DAP Access Enable. Enables unprivileged DAP access to specific PPB registers.

This bit is banked between Security states.

The possible values of this bit are:

0
No unprivileged DAP access.

1
Unprivileged DAP access allowed.

Unprivileged DAP access is allowed if either of the banked fields is set.

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

FSDMA, bit [8]
Force Secure DebugMonitor Allowed. Allows Secure DebugMonitor to be enabled without having to enable
secure halting debug.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure DebugMonitor determined by other means.

1
Secure DebugMonitor allowed.

This bit is RAZ/WI from Non-secure state.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [7:4]
Reserved, RES0.

INTSPNIDEN, bit [3]
Internal Secure non-invasive debug enable. Overrides the external Secure non-invasive debug authentication
interface.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure Non-invasive debug prohibited.

1
Secure Non-invasive debug allowed.

Ignored if DAUTHCTRL.SPNIDENSEL == 0. See SecureNoninvasiveDebugAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

SPNIDENSEL, bit [2]
Secure non-invasive debug enable select. Selects between DAUTHCTRL and the IMPLEMENTATION
DEFINED external authentication interface for control of Secure non-invasive debug.

This bit is not banked between Security states.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1496

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
Secure non-invasive debug controlled by the IMPLEMENTATION DEFINED external authentication
interface. In the CoreSight authentication interface, this is controlled by the SPNIDEN signal.

1
Secure non-invasive debug controlled by DAUTHCTRL.INTSPNIDEN.

The PE ignores the value of this bit and Secure non-invasive debug is allowed if DHCSR.S_SDE == 1. See
SecureNoninvasiveDebugAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

INTSPIDEN, bit [1]
Internal Secure invasive debug enable. Overrides the external Secure invasive debug authentication interfaces.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure halting and self-hosted debug prohibited.

1
Secure halting and self-hosted debug allowed.

Ignored if DAUTHCTRL.SPIDENSEL == 0. See SecureHaltingDebugAllowed() and SecureDebugMonitorAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

SPIDENSEL, bit [0]
Secure invasive debug enable select. Selects between DAUTHCTRL and the IMPLEMENTATION DEFINED
external authentication interface for control of Secure invasive debug.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure halting and self-hosted debug controlled by the IMPLEMENTATION DEFINED external
authentication interface. In the CoreSight authentication interface, both are controlled by the SPIDEN
signal.

1
Secure halting and self-hosted debug controlled by DAUTHCTRL.INTSPIDEN.

See SecureHaltingDebugAllowed() and SecureDebugMonitorAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1497

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.21 DAUTHSTATUS, Debug Authentication Status Register

The DAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFB8.

Secure software can access the Non-secure version of this register via DAUTHSTATUS_NS located at
0xE002EFB8. The location 0xE002EFB8 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DAUTHSTATUS bit assignments are:

01

NSID

2345

SID

67

SNID

815

RES0

161718192021

SUID

22232431

RES0

SUNID
NSUNID

NSNID
NSUID

Bits [31:24]
Reserved, RES0.

SUNID, bits [23:22]
Secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive debug is
allowed for the Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Non-invasive Debug not implemented.

0b01
Reserved.

0b10
Secure Non-invasive debug prohibited.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1498

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11
Secure Non-invasive debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

SUID, bits [21:20]
Secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for the
Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Debug not implemented.

0b01
Reserved.

0b10
Secure halting debug prohibited.

0b11
Secure halting debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

NSUNID, bits [19:18]
Non-secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive Debug is
allowed for the Non-secure state.

The possible values of this field are:

0b00
Unprivileged Non-invasive debug not implemented.

0b01
Reserved.

0b10
Non-secure Non-invasive debug prohibited.

0b11
Non-secure Non-invasive debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

NSUID, bits [17:16]
Non-secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for
the Non-secure state.

The possible values of this field are:

0b00
Unprivileged halting debug not implemented.

0b01
Reserved.

0b10
Non-secure halting debug prohibited.

0b11
Non-secure halting debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1499

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:8]
Reserved, RES0.

SNID, bits [7:6]
Secure Non-invasive Debug. Indicates whether Secure non-invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure non-invasive debug prohibited.

0b11
Security Extension implemented and Secure non-invasive debug allowed.

SID, bits [5:4]
Secure Invasive Debug. Indicates whether Secure invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure invasive debug prohibited.

0b11
Security Extension implemented and Secure invasive debug allowed.

NSNID, bits [3:2]
Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure non-invasive debug prohibited.

0b11
Non-secure non-invasive debug allowed.

NSID, bits [1:0]
Non-secure Invasive Debug. Indicates whether Non-secure invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure invasive debug prohibited.

0b11
Non-secure invasive debug allowed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1500

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.22 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC

The DCCIMVAC characteristics are:

Purpose
Clean and invalidate data or unified cache line by address to PoC.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF70.

Secure software can access the Non-secure version of this register via DCCIMVAC_NS located at
0xE002EF70. The location 0xE002EF70 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCCIMVAC bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1501

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.23 DCCISW, Data Cache line Clean and Invalidate by Set/Way

The DCCISW characteristics are:

Purpose
Clean and invalidate data or unified cache line by set/way.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF74.

Secure software can access the Non-secure version of this register via DCCISW_NS located at 0xE002EF74.
The location 0xE002EF74 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCCISW bit assignments are:

0

(0)

13

Level

431

SetWay

SetWay, bits [31:4]
Cache set/way. Contains two fields: Way, bits[31:32-A], the number of the way to operate on. Set,
bits[B-1:L], the number of the set to operate on. Bits[L-1:4] are RES0. A = Log2(ASSOCIATIVITY), L =
Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length, in bytes), and
NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on.
The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1
for operations on L2 cache.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1502

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.24 DCCMVAC, Data Cache line Clean by Address to PoC

The DCCMVAC characteristics are:

Purpose
Clean data or unified cache line by address to PoC.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF68.

Secure software can access the Non-secure version of this register via DCCMVAC_NS located at
0xE002EF68. The location 0xE002EF68 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCCMVAC bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1503

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.25 DCCMVAU, Data Cache line Clean by address to PoU

The DCCMVAU characteristics are:

Purpose
Clean data or unified cache line by address to PoU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF64.

Secure software can access the Non-secure version of this register via DCCMVAU_NS located at
0xE002EF64. The location 0xE002EF64 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCCMVAU bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1504

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.26 DCCSW, Data Cache Clean line by Set/Way

The DCCSW characteristics are:

Purpose
Clean data or unified cache line by set/way.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF6C.

Secure software can access the Non-secure version of this register via DCCSW_NS located at 0xE002EF6C.
The location 0xE002EF6C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCCSW bit assignments are:

0

(0)

13

Level

431

SetWay

SetWay, bits [31:4]
Cache set/way. Contains two fields: Way, bits [31:32-A], the number of the way to operate on. Set, bits
[B-1:L], the number of the set to operate on. Bits [L-1:4] are RES0. A = Log2(ASSOCIATIVITY), L =
Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length, in bytes), and
NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on.
The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1
for operations on L2 cache.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1505

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.27 DCIDR0, SCS Component Identification Register 0

The DCIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFF0.

Secure software can access the Non-secure version of this register via DCIDR0_NS located at 0xE002EFF0.
The location 0xE002EFF0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1506

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.28 DCIDR1, SCS Component Identification Register 1

The DCIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFF4.

Secure software can access the Non-secure version of this register via DCIDR1_NS located at 0xE002EFF4.
The location 0xE002EFF4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1507

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.29 DCIDR2, SCS Component Identification Register 2

The DCIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFF8.

Secure software can access the Non-secure version of this register via DCIDR2_NS located at 0xE002EFF8.
The location 0xE002EFF8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1508

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.30 DCIDR3, SCS Component Identification Register 3

The DCIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFFC.

Secure software can access the Non-secure version of this register via DCIDR3_NS located at 0xE002EFFC.
The location 0xE002EFFC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1509

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.31 DCIMVAC, Data Cache line Invalidate by Address to PoC

The DCIMVAC characteristics are:

Purpose
Invalidate data or unified cache line by address to PoC.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via an unprivileged debugger. It is IMPLEMENTATION DEFINED whether
a DAP error is generated.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF5C.

Secure software can access the Non-secure version of this register via DCIMVAC_NS located at
0xE002EF5C. The location 0xE002EF5C is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCIMVAC bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1510

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.32 DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

Purpose
Invalidate data or unified cache line by set/way.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via an unprivileged debugger. It is IMPLEMENTATION DEFINED whether
a DAP error is generated.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF60.

Secure software can access the Non-secure version of this register via DCISW_NS located at 0xE002EF60.
The location 0xE002EF60 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCISW bit assignments are:

0

(0)

13

Level

431

SetWay

SetWay, bits [31:4]
Cache set/way. Contains two fields: Way, bits[31:32-A], the number of the way to operate on. Set,
bits[B-1:L], the number of the set to operate on. Bits[L-1:4] are RES0. A = Log2(ASSOCIATIVITY), L =
Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length, in bytes), and
NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on.
The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1
for operations on L2 cache.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1511

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.33 DCRDR, Debug Core Register Data Register

The DCRDR characteristics are:

Purpose
With the DCRSR, provides debug access to the general-purpose registers, special-purpose registers, and the
Floating-point Extension registers. If the Main Extension is implemented, it can also be used for message
passing between an external debugger and a debug agent running on the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then this register is accessible only to the debugger and UNKNOWN
to software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read/write register located at 0xE000EDF8.

Secure software can access the Non-secure version of this register via DCRDR_NS located at 0xE002EDF8.
The location 0xE002EDF8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCRDR bit assignments are:

031

DBGTMP

DBGTMP, bits [31:0]
Data temporary buffer. Provides debug access for reading and writing the general-purpose registers,
special-purpose registers, and Floating-point Extension registers.

The value of this register is UNKNOWN if the PE is in Debug state, the debugger has written to DCRSR since
entering Debug state and DHCSR.S_REGRDY is set to 0. The value of this register is UNKNOWN if the Main
Extension is not implemented and the PE is in Non-debug state.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1512

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.34 DCRSR, Debug Core Register Select Register

The DCRSR characteristics are:

Purpose
With the DCRDR, provides debug access to the general-purpose registers, special-purpose registers, and
the Floating-point Extension registers. A write to the DCRSR specifies the register to transfer, whether the
transfer is a read or write, and starts the transfer.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Writes to this register while the PE is in Non-debug state are ignored.

This register is accessible only to the debugger and RES0 to software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit write-only register located at 0xE000EDF4.

This register is not banked between Security states.

Field descriptions

The DCRSR bit assignments are:

07

REGSEL

815

RES0

161731

RES0

REGWnR

Bits [31:17]
Reserved, RES0.

REGWnR, bit [16]
Register write/not-read. Specifies the access type for the transfer.

The possible values of this bit are:

0
Read.

1
Write.

Bits [15:8]
Reserved, RES0.

REGSEL, bits [7:0]
Register selector. Specifies the general-purpose register, special-purpose register, or Floating-point Extension
register to transfer.

The possible values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1513

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b00000000-0b00001100
General-purpose registers R0-R12.

0b00001101
Current stack pointer, SP.

0b00001110
LR.

0b00001111
DebugReturnAddress.

0b00010000
XPSR / EAPSR, on a read accesses XPSR, otherwise EAPSR is accessed.

0b00010001
Current state main stack pointer, SP_main.

Accessible only when privileged debug is permitted for the current state.

0b00010010
Current state process stack pointer, SP_process.

0b00010100
Current state. The value corresponds to {CONTROL[7:0], FAULTMASK[7:0], BASEPRI[7:0],
PRIMASK[7:0]}.

All bits are accessible except when one or more of the following restrictions apply.

If the PE is in Non-secure state the bit corresponding to CONTROL.SFPA is RAZ/WI.

When only unprivileged debug is permitted for the current Security state, the bits corresponding to the
following fields are RES0:

• All fields corresponding to the Control register except CONTROL.FPCA and CONTROL.SFPA.

• FAULTMASK[7:0].

• BASEPRI[7:0].

• PRIMASK[7:0].

If the Main Extension is not implemented FAULTMASK[7:0] and BASEPRI[7:0] are RES0.

0b00011000
Non-secure main stack pointer, MSP_NS.

If the Security Extension is not implemented, this value is reserved.

Accessible only when DHCSR.S_NSUIDE == 0.

0b00011001
Non-secure process stack pointer, PSP_NS.

If the Security Extension is not implemented, this value is reserved.

0b00011010
Secure main stack pointer, MSP_S.

If the Security Extension is not implemented, this value is reserved.

Accessible only when DHCSR.S_SDE == 1 and DHCSR.S_SUIDE == 0.

0b00011011
Secure process stack pointer, PSP_S.

If the Security Extension is not implemented, this value is reserved.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1514

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Accessible only when DHCSR.S_SDE == 1.

0b00011100
Secure main stack limit, MSPLIM_S.

If the Security Extension is not implemented, this value is reserved.

Accessible only when DHCSR.S_SDE == 1 and DHCSR.S_SUIDE == 0.

0b00011101
Secure process stack limit, PSPLIM_S.

If the Security Extension is not implemented, this value is reserved.

Accessible only when DHCSR.S_SDE == 1.

0b00011110
Non-secure main stack limit, MSPLIM_NS.

If the Main Extension is not implemented, this value is reserved.

Accessible only when DHCSR.S_NSUIDE == 0.

0b00011111
Non-secure process stack limit, PSPLIM_NS.

If the Main Extension is not implemented, this value is reserved.

0b00100001
FPSCR.

If MVE and the Floating-point Extension are not implemented, this value is reserved.

0b00100010
Secure state. The value corresponds to {CONTROL_S[7:0], FAULTMASK_S[7:0], BASEPRI_S[7:0],
PRIMASK_S[7:0]}.

All bits are RES0 when DHCSR.S_SDE == 0.

All bits are accessible when DHCSR.S_SDE == 1 and DHCSR.S_SUIDE == 0.

When DHCSR.S_SDE == 1 and DHCSR.S_SUIDE == 1 the bits corresponding to the following fields
are RES0:

• All fields corresponding to the CONTROL_S register except for CONTROL_S.SFPA and
CONTROL_S.FPCA.

• FAULTMASK_S[7:0].

• BASEPRI_S[7:0].

• PRIMASK_S[7:0].

If the Main Extension is not implemented, FAULTMASK_S[7:0] and BASEPRI_S[7:0] are RES0.

If the Security Extension is not implemented, this value is reserved.

0b00100011
Non-secure state. The value corresponds to {CONTROL_NS[7:0], FAULTMASK_NS[7:0],
BASEPRI_NS[7:0], PRIMASK_NS[7:0]}. All bits are accessible when DHCSR.S_NSUIDE == 0.

When DHCSR.S_NSUIDE == 1 the bits corresponding to following fields are RES0:

• All fields corresponding to the CONTROL_NS register except for CONTROL_NS.FPCA.

• FAULTMASK_NS[7:0].

• BASEPRI_NS[7:0].

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1515

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• PRIMASK_NS[7:0].

If the Main Extension is not implemented, FAULTMASK_NS[7:0] and BASEPRI_NS[7:0] are RES0.

If the Security Extension is not implemented, this value is reserved.

0b00100100
VPR.

If MVE is not implemented, this value is reserved.

0b01000000-0b01011111
Floating-point registers, S0-S31.

If MVE and the Floating-point Extension are not implemented, these values are reserved.

0b10000000-0b10000011
Current state PAC_KEY_P, word 0 to 3.

If the PACBTI Extension is not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the current state.

0b10000100-0b10000111
Current state PAC_KEY_U, word 0 to 3.

If the PACBTI Extension is not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the current state.

0b10001000-0b10001011
Secure PAC_KEY_P_S, word 0 to 3.

Accessible only when DHCSR.S_SDE == 1.

If the PACBTI or Security Extensions are not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Secure state.

0b10001100-0b10001111
Secure PAC_KEY_U_S, word 0 to 3.

Accessible only when DHCSR.S_SDE == 1.

If the PACBTI or Security Extensions are not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Secure state.

0b10010000-0b10010011
Non-secure PAC_KEY_P_NS, word 0 to 3.

If the PACBTI or Security Extensions are not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Non-secure state.

0b10010100-0b10010111
Non-secure PAC_KEY_U_NS, word 0 to 3.

If the PACBTI or Security Extensions are not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Non-secure state.

All other values are reserved.

If the Security Extension and either MVE or the Floating-point Extension are implemented, then FPSCR,
VPR and S0-S31 are not accessible:

• From Non-secure state if DHCSR.S_SDE == 0 and FPCCR indicates the registers contain values from
Secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1516

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• From Non-secure state if DHCSR.S_SDE == 0 and NSACR prevents Non-secure access to the registers.

• FPCCR.LSPACT, the banked variant associated with the Floating-point context as indicated by
FPCCR_S.S, is set and only unprivileged debug is permitted for the security state associated with the
Floating-point state (as indicated by FPCCR.S).

Registers that are not accessible are RAZ/WI.

If this field is written with a reserved value, the PE might behave as if a defined value was written, or ignore
the value written, and the value of DCRDR becomes UNKNOWN.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1517

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.35 DDEVARCH, SCS Device Architecture Register

The DDEVARCH characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFBC.

Secure software can access the Non-secure version of this register via DDEVARCH_NS located at
0xE002EFBC. The location 0xE002EFBC is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DDEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1518

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
DEVARCH information present.

This bit reads as one.

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
M-Profile debug architecture v3.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0010
M-Profile debug architecture v3.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0010.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA04
M-Profile debug architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA04.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1519

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.36 DDEVTYPE, SCS Device Type Register

The DDEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFCC.

Secure software can access the Non-secure version of this register via DDEVTYPE_NS located at
0xE002EFCC. The location 0xE002EFCC is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DDEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other.

This field reads as 0b0000.

MAJOR, bits [3:0]
Major type. CoreSight major type.

The possible values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1520

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0x0
Miscellaneous.

This field reads as 0b0000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1521

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.37 DEMCR, Debug Exception and Monitor Control Register

The DEMCR characteristics are:

Purpose
Manages vector catch behavior and DebugMonitor handling when debugging.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If Armv8.1-M is implemented, this register is word, halfword and byte accessible.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Attributes
32-bit read/write register located at 0xE000EDFC.

Secure software can access the Non-secure version of this register via DEMCR_NS located at 0xE002EDFC.
The location 0xE002EDFC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DEMCR bit assignments are:

013

RES0

45678910111215

RES0

16171819202122

(0)

23242531

RES0

TRCENA
MONPRKEY

UMON_EN
SDME

MON_REQ
MON_STEP
MON_PEND

MON_EN
VC_SFERR

VC_CORERESET
VC_MMERR
VC_NOCPERR
VC_CHKERR
VC_STATERR

VC_BUSERR
VC_INTERR
VC_HARDERR

Bits [31:25]
Reserved, RES0.

TRCENA, bit [24]
Trace enable. Global enable for all DWT, PMU, and ITM features.

The possible values of this bit are:

0
DWT, PMU, and ITM features disabled.

1
DWT, PMU, and ITM features enabled.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1522

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the DWT, PMU, and ITM units are not implemented, this bit is RES0. See the descriptions of DWT, PMU,
and ITM for details of which features this bit controls.

Setting this bit to 0 might not stop all events. To ensure that all events are stopped, software must set all
DWT, PMU, and ITM feature enable bits to 0, and ensure that all trace generated by the DWT, PMU, and
ITM has been flushed, before setting this bit to 0.

It is IMPLEMENTATION DEFINED whether this bit affects how the system processes trace.

Arm recommends that this bit is set to 1 when using an ETM even if any implemented DWT, PMU, and ITM
are not being used.

This bit resets to zero on a Cold reset.

MONPRKEY, bit [23]
Monitor pend req key. Writes to the MON_PEND and MON_REQ fields are ignored unless MONPRKEY is
concurrently written to zero.

The possible values of this bit are:

0
Concurrent write to MON_PEND and MON_REQ are not ignored.

1
Concurrent write to MON_PEND and MON_REQ are ignored.

This bit reads-as-zero.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

Bit [22]
Reserved, RES0.

UMON_EN, bit [21]
Unprivileged monitor enable. DebugMonitor pend enable when the PE is in an unprivileged mode.

The possible values of this bit are:

0
DebugMonitor exception controlled by DEMCR.MON_EN.

1
DebugMonitor exception can be pended for unprivileged execution.

Writes to this field by unprivileged DAP accesses are ignored.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SDME, bit [20]
Secure DebugMonitor enable. Indicates whether the DebugMonitor targets the Secure or the Non-secure
state and whether debug events are allowed in Secure state.

The possible values of this bit are:

0
Debug events prohibited in Secure state and the DebugMonitor exception targets Non-secure state.

1
Debug events allowed in Secure state and the DebugMonitor exception targets Secure state.

When DebugMonitor exception is not pending or active, this bit reflects the value of SecureDebugMonitorAllowed(),
otherwise, the previous value is retained.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1523

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is read-only.

If the Security Extension is not implemented, this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

MON_REQ, bit [19]
Monitor request. DebugMonitor semaphore bit.

The PE does not use this bit. The monitor software defines the meaning and use of this bit.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_STEP, bit [18]
Monitor step. Enable DebugMonitor exception stepping.

The possible values of this bit are:

0
Stepping disabled.

1
Stepping enabled.

The effect of changing this bit at an execution priority that is lower than the priority of the DebugMonitor
exception is UNPREDICTABLE.

The effect of a write to DEMCR.MON_STEP is CONSTRAINED UNPREDICTABLE unless one of:

• The PE is executing at a priority that is greater than or the same as the priority of the DebugMonitor
exception.

• Before the write, DEMCR.MON_STEP == 0 and the write writes 0 to DEMCR.MON_STEP.

The CONSTRAINED UNPREDICTABLE write does one of the following:

• The write is ignored.

• DEMCR.MON_STEP is set to 1. The effect of the subsequent instruction is UNPREDICTABLE, and the
PE might generate a DebugMonitor exception at any time, if enabled and permitted.

• DEMCR.MON_STEP is set to 0. It is UNPREDICTABLE whether an ’in progress’ step completes.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_PEND, bit [17]
Monitor pend. Sets or clears the pending state of the DebugMonitor exception.

The possible values of this bit are:

0
Clear the status of the DebugMonitor exception to not pending.

1
Set the status of the DebugMonitor exception to pending.

When the DebugMonitor exception is pending it becomes active subject to the exception priority rules. The
effect of setting this bit to 1 is not affected by the value of the MON_EN and UMON_EN bits. This means
that software or a debugger can set MON_PEND to 1 and pend a DebugMonitor exception, even when
MON_EN and UMON_EN are set to 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1524

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

MON_EN, bit [16]
Monitor enable. Enable the DebugMonitor exception.

The possible values of this bit are:

0
DebugMonitor exception disabled.

1
DebugMonitor exception enabled.

If a debug event halts the PE, the PE ignores the value of this bit. Unprivileged writes to this bit from the
DAP are ignored.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:12]
Reserved, RES0.

VC_SFERR, bit [11]
Vector Catch SecureFault. SecureFault exception Halting debug vector catch enable.

The possible values of this bit are:

0
Halting debug trap on SecureFault disabled.

1
Halting debug trap on SecureFault enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• DHCSR.S_SDE == 0.

• DHCSR.S_SUIDE == 1.

If the Security Extension is not implemented, this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_HARDERR, bit [10]
Vector Catch HardFault errors. HardFault exception Halting debug vector catch enable.

The possible values of this bit are:

0
Halting debug trap on HardFault disabled.

1
Halting debug trap on HardFault enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1525

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, either DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and
the exception targets Secure state.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_INTERR, bit [9]
Vector Catch interrupt errors. Enable Halting debug vector catch for faults arising from lazy Floating-point
state preservation, stack violations and context stacking or unstacking during exception entry or return.

The possible values of this bit are:

0
Halting debug trap on faults disabled.

1
Halting debug trap on faults enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_BUSERR, bit [8]
Vector Catch BusFault errors. BusFault exception Halting debug vector catch enable.

The possible values of this bit are:

0
Halting debug trap on BusFault disabled.

1
Halting debug trap on BusFault enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1526

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

VC_STATERR, bit [7]
Vector Catch state errors. Enable Halting debug trap on a UsageFault exception caused by a state information
error, for example an Undefined Instruction exception.

The possible values of this bit are:

0
Halting debug trap on UsageFault caused by state information error disabled.

1
Halting debug trap on UsageFault caused by state information error enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_CHKERR, bit [6]
Vector Catch check errors. Enable Halting debug trap on a UsageFault exception caused by an alignment
check error or divide-by-zero trap.

The possible values of this bit are:

0
Halting debug trap on UsageFault caused by checking error disabled.

1
Halting debug trap on UsageFault caused by checking error enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_NOCPERR, bit [5]
Vector Catch NOCP errors. Enable Halting debug trap on a UsageFault caused by an access to a coprocessor.

The possible values of this bit are:

0
Halting debug trap on UsageFault caused by access to a coprocessor disabled.

1
Halting debug trap on UsageFault caused by access to a coprocessor enabled.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1527

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_MMERR, bit [4]
Vector Catch MemManage errors. Enable Halting debug trap on a MemManage exception.

The possible values of this bit are:

0
Halting debug trap on MemManage disabled.

1
Halting debug trap on MemManage enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Bits [3:1]
Reserved, RES0.

VC_CORERESET, bit [0]
Vector Catch Core reset. Enable Reset Vector Catch. This causes a Warm reset to halt a running system.

The possible values of this bit are:

0
Halting debug trap on reset disabled.

1
Halting debug trap on reset enabled.

If DHCSR.C_DEBUGEN == 0, the PE ignores the value of this bit. Otherwise, when this bit is set to 1 a
Warm reset will pend a Vector Catch debug event. The debug event is pended regardless of debug permissions
or the security state of the PE, and the PE will halt when it enters a mode or state where debug is enabled.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1528

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.38 DFSR, Debug Fault Status Register

The DFSR characteristics are:

Purpose
Shows which debug event occurred.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000ED30.

Secure software can access the Non-secure version of this register via DFSR_NS located at 0xE002ED30.
The location 0xE002ED30 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DFSR bit assignments are:

012345631

RES0

PMU
EXTERNAL

VCATCH

HALTED
BKPT
DWTTRAP

Bits [31:6]
Reserved, RES0.

PMU, bit [5]
PMU event. Sticky flag indicating whether a PMU counter overflow event has occurred.

The possible values of this bit are:

0
PMU event has not occurred.

1
PMU event has occurred.

If version Armv8.1 of the architecture and PMU are not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1529

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

EXTERNAL, bit [4]
External event. Sticky flag indicating whether an External debug request debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

This bit resets to zero on a Cold reset.

VCATCH, bit [3]
Vector Catch event. Sticky flag indicating whether a Vector catch debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DWTTRAP, bit [2]
Watchpoint event. Sticky flag indicating whether a Watchpoint debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

If the DWT is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

BKPT, bit [1]
Breakpoint event. Sticky flag indicating whether a Breakpoint debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

This bit resets to zero on a Cold reset.

HALTED, bit [0]
Halt or step event. Sticky flag indicating that a Halt request debug event or Step debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1530

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.39 DHCSR, Debug Halting Control and Status Register

The DHCSR characteristics are:

Purpose
Controls Halting debug.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

It is IMPLEMENTATION DEFINED whether this register is accessible only to the debugger and RES0 for
software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read/write register located at 0xE000EDF0.

Secure software can access the Non-secure version of this register via DHCSR_NS located at 0xE002EDF0.
The location 0xE002EDF0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DHCSR bit assignments are:

On a read:

01234

(0)

56715

RES0

16171819202122232425262731

RES0

S_RESTART_ST
S_RESET_ST

S_RETIRE_ST
S_FPD

S_SUIDE
S_NSUIDE

S_SDE
S_LOCKUP

C_DEBUGEN
C_HALT
C_STEP
C_MASKINTS

C_SNAPSTALL
C_PMOV

S_REGRDY
S_HALT
S_SLEEP

On a write:

01234

(0)

56715

RES0

1631

DBGKEY

C_PMOV
C_SNAPSTALL

C_MASKINTS

C_DEBUGEN
C_HALT
C_STEP

DBGKEY, bits [31:16], on a write
Debug key. A debugger must write 0xA05F to this field to enable write access to the remaining bits,
otherwise the PE ignores the write access.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1531

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this field are:

0xA05F
Writes accompanied by this value update bits[15:0].

Not 0xA05F
Write ignored.

Bits [31:27], on a read
Reserved, RES0.

S_RESTART_ST, bit [26], on a read
Restart sticky status. Indicates the PE has processed a request to clear DHCSR.C_HALT to 0. That is, either
a write to DHCSR that clears DHCSR.C_HALT from 1 to 0, or an External Restart Request.

The possible values of this bit are:

0
PE has not left Debug state since the last read of DHCSR.

1
PE has left Debug state since the last read of DHCSR.

If the PE is not halted when C_HALT is cleared to zero, it is UNPREDICTABLE whether this bit is set to 1. If
DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit clears to zero when read.

Note

If the request to clear C_HALT is made simultaneously with a request to set C_HALT, for example
a restart request and external debug request occur together, then the PE notionally leaves Debug
state and immediately halts again and S_RESTART_ST is set to 1.

S_RESET_ST, bit [25], on a read
Reset sticky status. Indicates whether the PE has been reset since the last read of the DHCSR.

The possible values of this bit are:

0
No reset since last DHCSR read.

1
At least one reset since last DHCSR read.

This bit clears to zero when read.

This bit resets to one on a Warm reset.

S_RETIRE_ST, bit [24], on a read
Retire sticky status. Set to 1 every time the PE retires one or more instructions.

The possible values of this bit are:

0
No instruction retired since last DHCSR read.

1
At least one instruction retired since last DHCSR read.

This bit clears to zero when read.

This bit resets to an UNKNOWN value on a Warm reset.

S_FPD, bit [23], on a read
Floating-point registers Debuggable. Indicates that FPSCR, VPR, and the Floating-point registers are
RAZ/WI in the current PE state when accessed via DCRSR. This reflects !CanDebugAccessFP().

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1532

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
Floating-point registers accessible.

1
Floating-point registers are RAZ/WI.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

S_SUIDE, bit [22], on a read
Secure unprivileged halting debug enabled. Indicates whether Secure unprivileged-only halting debug is
allowed or active.

The possible values of this bit are:

0
Secure invasive halting debug prohibited or not restricted to an unprivileged mode.

1
Unprivileged Secure invasive halting debug enabled.

If the PE is in Non-debug state, this bit reflects the value of UnprivHaltingDebugAllowed(TRUE) &&
!SecureHaltingDebugAllowed().

The value of this bit does not change whilst the PE remains in Debug state.

If the Security Extension is not implemented, this bit is RES0.

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

S_NSUIDE, bit [21], on a read
Non-secure unprivileged halting debug enabled. Indicates whether Non-secure unprivileged-only halting
debug is allowed or active.

The possible values of this bit are:

0
Non-secure invasive halting debug prohibited or not restricted to an unprivileged mode.

1
Unprivileged Non-secure invasive halting debug enabled.

If the PE is in Non-debug state, this bit reflects the value of UnprivHaltingDebugAllowed(FALSE) &&
!HaltingDebugAllowed().

The value of this bit does not change whilst the PE remains in Debug state.

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

S_SDE, bit [20], on a read
Secure debug enabled. Indicates whether Secure invasive debug is allowed.

The possible values of this bit are:

0
Secure invasive debug prohibited.

1
Secure invasive debug allowed.

If the PE is in Non-debug state, this bit reflects the value of SecureHaltingDebugAllowed() or
UnprivHaltingDebugAllowed(TRUE).

The value of this bit does not change while the PE remains in Debug state.

If the Security Extension is not implemented, this bit is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1533

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

S_LOCKUP, bit [19], on a read
Lockup status. Indicates whether the PE is in Lockup state.

The possible values of this bit are:

0
Not locked up.

1
Locked up.

This bit can only be read as 1 by a remote debugger, using the DAP. The value of 1 indicates that the PE is
running but locked up. The bit clears to 0 when the PE enters Debug state.

S_SLEEP, bit [18], on a read
Sleeping status. Indicates whether the PE is sleeping.

The possible values of this bit are:

0
Not sleeping.

1
Sleeping.

The debugger must set the C_HALT bit to 1 to gain control, or wait for an interrupt or other wakeup event to
wakeup the system.

S_HALT, bit [17], on a read
Halted status. Indicates whether the PE is in Debug state.

The possible values of this bit are:

0
In Non-debug state.

1
In Debug state.

S_REGRDY, bit [16], on a read
Register ready status. Handshake flag to transfers through the DCRDR.

The possible values of this bit are:

0
Write to DCRSR performed, but transfer not yet complete.

1
Transfer complete, or no outstanding transfer.

This bit is valid only when the PE is in Debug state, otherwise this bit is UNKNOWN.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [15:7]
Reserved, RES0.

C_PMOV, bit [6]
Halt on PMU overflow control. Request entry to Debug state when a PMU counter overflows.

The possible values of this bit are:

0
No action.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1534

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
If C_DEBUGEN is set to 1, then when a PMU counter is configured to generate an interrupt overflows,
the PE sets DHCSR.C_HALT to 1 and DFSR.PMU to 1.

PMU_OVSSET and PMU_OVSCLR indicate which counter or counters triggered the halt.

If the Main Extension is not implemented, this bit is RES0.

If version Armv8.1 of the architecture and PMU are not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

C_SNAPSTALL, bit [5]
Snap stall control. Allow imprecise entry to Debug state.

The possible values of this bit are:

0
No action.

1
Allows imprecise entry to Debug state, for example by forcing any stalled load or store instruction to be
abandoned.

Setting this bit to 1 allows a debugger to request an imprecise entry to Debug state. Writing 1 to this bit
makes the state of the memory system UNPREDICTABLE. Therefore if a debugger writes 1 to this bit it must
reset the system before leaving Debug state.

The effect of setting this bit to 1 is UNPREDICTABLE unless the DHCSR write also sets C_DEBUGEN and
C_HALT to 1. This means that if the PE is not already in Debug state, it enters Debug state when the stalled
instruction completes.

If the Security Extension is implemented, then writes to this bit are ignored when DHCSR.S_SDE == 0 or
DHCSR.S_SUIDE == 1.

If DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() == FALSE, or DHCSR.S_NSUIDE == 1, the PE
ignores this bit and behaves as if it is set to 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Note

A debugger can write to the DHCSR to clear this bit to 0. However, this does not remove the
UNPREDICTABLE state of the memory system caused by setting C_SNAPSTALL to 1. The
architecture does not guarantee that setting this bit to 1 will force an entry to Debug State. Arm
strongly recommends that a value of 1 is never written to C_SNAPSTALL when the PE is in Debug
state. It is IMPLEMENTATION DEFINED whether this bit behaves as RAZ/WI.

Bit [4]
Reserved, RES0.

C_MASKINTS, bit [3]
Mask interrupts control. When debug is enabled, the debugger can write to this bit to mask PendSV, SysTick
and external interrupts.

The possible values of this bit are:

0
Do not mask.

1
Mask PendSV, SysTick and external interrupts.

The effect of any single write to DHCSR that changes the value of this bit is UNPREDICTABLE unless one of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1535

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• Before the write, DHCSR.{S_HALT, C_HALT} are both set to 1 and the write also writes 1 to
DHCSR.C_HALT.

• Before the write, DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, and the write
writes 0 to DHCSR.C_MASKINTS.

This means that a single write to DHCSR must not clear DHCSR.C_HALT to 0 and change the value of the
C_MASKINTS bit.

If the Security Extension is implemented and either DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, this bit
does not affect interrupts targeting Secure state.

If DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() == FALSE, or DHCSR.S_NSUIDE == 1, the PE
ignores this bit and behaves as if it is set to 0.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

Note

This bit does not affect NMI.

C_STEP, bit [2]
Step control. Enable single instruction step.

The possible values of this bit are:

0
No effect.

1
Single step enabled.

The effect of a single write to DHCSR that changes the value of this bit is UNPREDICTABLE unless one of:

• Before the write, DHCSR.{S_HALT, C_HALT} are both set to 1.

• Before the write, DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE or
DHCSR.C_STEP == 0, and the write writes 0 to DHCSR.C_STEP.

The PE ignores this bit and behaves as if it set to 0 if any of:

• UnprivHaltingDebugAllowed(IsSecure()) == FALSE and either DHCSR.C_DEBUGEN == 0 or
HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 and the PE is in Secure state.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

C_HALT, bit [1]
Halt control. PE to enter Debug state halt request.

The possible values of this bit are:

0
Causes the PE to leave Debug state, if the PE is in Debug state.

1
Halt the PE.

The PE sets C_HALT to 1 when a debug event pends an entry to Debug state.

The PE ignores this bit and behaves as if it is set to 0 if any of:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1536

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• UnprivHaltingDebugAllowed(IsSecure()) == FALSE and either DHCSR.C_DEBUGEN == 0 or
HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 and the PE is in Secure state.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to zero on a Warm reset.

C_DEBUGEN, bit [0]
Debug enable control. Enable Halting debug.

The possible values of this bit are:

0
Disabled.

1
Enabled.

If a debugger writes to DHCSR to change the value of this bit from 0 to 1, it must also write 0 to the
C_MASKINTS bit, otherwise behavior is UNPREDICTABLE.

If this bit is set to 0:

• The PE behaves as if DHCSR.{C_MASKINTS, C_STEP, C_HALT} are all set to 0.

• DHCSR.{S_RESTART_ST, C_MASKINTS, C_STEP, C_HALT} are UNKNOWN on reads of DHCSR.

This bit is read/write to the debugger. Writes from software are ignored.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1537

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.40 DLAR, SCS Software Lock Access Register

The DLAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the SCS, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE000EFB0.

Secure software can access the Non-secure version of this register via DLAR_NS located at 0xE002EFB0.
The location 0xE002EFB0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DLAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1538

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.41 DLSR, SCS Software Lock Status Register

The DLSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the SCS, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE000EFB4.

Secure software can access the Non-secure version of this register via DLSR_NS located at 0xE002EFB4.
The location 0xE002EFB4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DLSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of the component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side effects.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1539

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Warm reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1540

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.42 DPIDR0, SCS Peripheral Identification Register 0

The DPIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFE0.

Secure software can access the Non-secure version of this register via DPIDR0_NS located at 0xE002EFE0.
The location 0xE002EFE0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1541

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.43 DPIDR1, SCS Peripheral Identification Register 1

The DPIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFE4.

Secure software can access the Non-secure version of this register via DPIDR1_NS located at 0xE002EFE4.
The location 0xE002EFE4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1542

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.44 DPIDR2, SCS Peripheral Identification Register 2

The DPIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFE8.

Secure software can access the Non-secure version of this register via DPIDR2_NS located at 0xE002EFE8.
The location 0xE002EFE8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1543

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.45 DPIDR3, SCS Peripheral Identification Register 3

The DPIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFEC.

Secure software can access the Non-secure version of this register via DPIDR3_NS located at 0xE002EFEC.
The location 0xE002EFEC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1544

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.46 DPIDR4, SCS Peripheral Identification Register 4

The DPIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFD0.

Secure software can access the Non-secure version of this register via DPIDR4_NS located at 0xE002EFD0.
The location 0xE002EFD0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1545

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.47 DPIDR5, SCS Peripheral Identification Register 5

The DPIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFD4.

Secure software can access the Non-secure version of this register via DPIDR5_NS located at 0xE002EFD4.
The location 0xE002EFD4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1546

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.48 DPIDR6, SCS Peripheral Identification Register 6

The DPIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFD8.

Secure software can access the Non-secure version of this register via DPIDR6_NS located at 0xE002EFD8.
The location 0xE002EFD8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1547

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.49 DPIDR7, SCS Peripheral Identification Register 7

The DPIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFDC.

Secure software can access the Non-secure version of this register via DPIDR7_NS located at 0xE002EFDC.
The location 0xE002EFDC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1548

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.50 DSCEMCR, Debug Set Clear Exception and Monitor Control Register

The DSCEMCR characteristics are:

Purpose
Atomically sets or clears selected fields in the DEMCR register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Present only if version Armv8.1-M of the architecture is implemented.

This register is RES0 if Armv8.1-M is not implemented.

Attributes
32-bit write-only register located at 0xE000EE00.

Secure software can access the Non-secure version of this register via DSCEMCR_NS located at
0xE002EE00. The location 0xE002EE00 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DSCEMCR bit assignments are:

0

(0)

12

(0)

3416

RES0

1718

(0)

192031

RES0

CLR_MON_REQ
CLR_MON_PEND

SET_MON_PEND
SET_MON_REQ

Bits [31:20]
Reserved, RES0.

CLR_MON_REQ, bit [19]
Clear monitor request. Atomically clears the DEMCR.MON_REQ field.

The possible values of this bit are:

0
No effect.

1
Clear DEMCR.MON_REQ.

A write to this register with both SET_MON_REQ and CLR_MON_REQ set to 1 causes DEMCR.MON_REQ
to become UNKNOWN.

Bit [18]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1549

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CLR_MON_PEND, bit [17]
Clear monitor pend. Atomically clears the DEMCR.MON_PEND field.

The possible values of this bit are:

0
No effect.

1
Clear DEMCR.MON_PEND.

A write to this register with both SET_MON_PEND and CLR_MON_PEND set to 1 causes
DEMCR.MON_PEND to become UNKNOWN.

Bits [16:4]
Reserved, RES0.

SET_MON_REQ, bit [3]
Set monitor request. Atomically sets the DEMCR.MON_REQ field.

The possible values of this bit are:

0
No effect.

1
Sets DEMCR.MON_REQ.

A write to this register with both SET_MON_REQ and CLR_MON_REQ set to 1 causes DEMCR.MON_REQ
to become UNKNOWN.

Bit [2]
Reserved, RES0.

SET_MON_PEND, bit [1]
Set monitor pend. Atomically sets the DEMCR.MON_PEND field.

The possible values of this bit are:

0
No effect.

1
Sets DEMCR.MON_PEND.

A write to this register with both SET_MON_PEND and CLR_MON_PEND set to 1 causes
DEMCR.MON_PEND to become UNKNOWN.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1550

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.51 DSCSR, Debug Security Control and Status Register

The DSCSR characteristics are:

Purpose
Provides control and status information for Secure debug.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

This register is accessible only to the debugger and RES0 to software.

Configurations
Present only if the Security Extension is implemented.

This register is RES0 if the Security Extension is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read/write register located at 0xE000EE08.

This register is not banked between Security states.

Field descriptions

The DSCSR bit assignments are:

01215

RES0

16171831

RES0

CDSKEY
CDS

SBRSELEN
SBRSEL

Bits [31:18]
Reserved, RES0.

CDSKEY, bit [17]
CDS write-enable key. Writes to the CDS bit are ignored unless CDSKEY is concurrently written to zero.

The possible values of this bit are:

0
Concurrent write to CDS not ignored.

1
Concurrent write to CDS ignored.

This bit reads-as-one.

CDS, bit [16]
Current domain Secure. This field indicates the current Security state of the processor.

The possible values of this bit are:

0
PE is in Non-secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1551

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
PE is in Secure state.

This bit is only writable if all of the following are true:

• DHCSR.S_SDE is 1.

• The processor is in Secure state and either DHCSR.S_NSUIDE == 0 or the current mode for the
Non-secure state is unprivileged, or the processor is in Non-secure state and either DHCSR.S_SUIDE
== 0 or the current mode for the Secure state is unprivileged.

• The access to the register originates from the debugger.

• The PE is halted in Debug state.

• CDSKEY is concurrently written to zero.

Bits [15:2]
Reserved, RES0.

SBRSEL, bit [1]
Secure banked register select. If SBRSELEN is 1 this bit selects whether the Non-secure or the Secure
versions of the memory-mapped banked registers are accessible to the debugger.

The possible values of this bit are:

0
Selects the Non-secure versions.

1
Selects the Secure versions.

This bit behaves as RAZ/WI if DHCSR.S_SDE is 0.

This bit resets to zero on a Cold reset.

SBRSELEN, bit [0]
Secure banked register select enable. Controls whether the SBRSEL field or the current Security state of the
processor selects which version of the memory-mapped banked registers are accessible to the debugger.

The possible values of this bit are:

0
The current Security state of the PE determines which memory-mapped Banked registers are accessed
by the debugger.

1
DSCSR.SBRSEL selects which memory-mapped Banked registers are accessed by the debugger.

This bit behaves as RAO/WI if DHCSR.S_SDE is 0.

This bit resets to zero on a Cold reset.

Note

This method of banked register selection means that the register aliasing is not used for accesses
from the debugger. Accesses to the aliased addresses from the debugger have the same behavior as
reserved addresses.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1552

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.52 DWT_CIDR0, DWT Component Identification Register 0

The DWT_CIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FF0.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1553

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.53 DWT_CIDR1, DWT Component Identification Register 1

The DWT_CIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FF4.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1554

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.54 DWT_CIDR2, DWT Component Identification Register 2

The DWT_CIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FF8.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1555

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.55 DWT_CIDR3, DWT Component Identification Register 3

The DWT_CIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FFC.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1556

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.56 DWT_COMPn, DWT Comparator Register, n = 0 - 14

The DWT_COMP{0..14} characteristics are:

Purpose
Provides a reference value for use by watchpoint comparator n.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read/write register located at 0xE0001020 + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_COMP{0..14} bit assignments are:

When DWT_FUNCTIONn.MATCH == 0b0001:

031

CYCVALUE

When DWT_FUNCTIONn.MATCH == 0b001x:

0

(0)

131

PCVALUE

When DWT_FUNCTIONn.MATCH == 0b10xx:

031

DVALUE

When DWT_FUNCTIONn.MATCH == 0bx1xx:

031

DADDR

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1557

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CYCVALUE, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b0001
Cycle value. Reference value for comparison with cycle count.

This field resets to an UNKNOWN value on a Cold reset.

PCVALUE, bits [31:1], when DWT_FUNCTIONn.MATCH == 0b001x
PC value. Reference value for comparison with Program Counter.

This field resets to an UNKNOWN value on a Cold reset.

Bit [0], when DWT_FUNCTIONn.MATCH == 0b001x
Reserved, RES0.

DADDR, bits [31:0], when DWT_FUNCTIONn.MATCH == 0bx1xx
Data address. Reference value for comparison with load or store address.

For halfword address comparisons, DADDR[0] is RES0. For byte address comparisons, DADDR[1:0] are
RES0.

This field resets to an UNKNOWN value on a Cold reset.

DVALUE, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b10xx
Data value. Reference value for comparison with load or store data.

For halfword or word comparisons, the data value is in little-endian order. That is, the least significant byte
of this register is compared with the byte targeting the lowest address in memory.

For byte or halfword comparisons, if the value of the byte or halfword is not replicated across all byte or
halfword lanes, the value used for the comparison is UNKNOWN.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1558

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.57 DWT_CPICNT, DWT CPI Count Register

The DWT_CPICNT characteristics are:

Purpose
Counts additional cycles required to execute multicycle instructions and instruction fetch stalls.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001008.

This register is not banked between Security states.

Field descriptions

The DWT_CPICNT bit assignments are:

07

CPICNT

831

RESERVED

RESERVED, bits [31:8]
Reserved, RAZ/WI

CPICNT, bits [7:0]
Base instruction overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.CPIEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed.

• No load-store operation is in progress, see DWT_LSUCNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• The PE is not in a power-saving mode, see DWT_SLEEPCNT.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and
NoninvasiveDebugAllowed() == TRUE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1559

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The definition of "no instruction is executed" is IMPLEMENTATION DEFINED. Arm recommends that this
counts each cycle on which no instruction is retired.

Initialized to zero when the counter is disabled and DWT_CTRL.CPIEVTENA is written with 1. An Event
Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1560

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.58 DWT_CTRL, DWT Control Register

The DWT_CTRL characteristics are:

Purpose
Provides configuration and status information for the DWT unit, and used to control features of the unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read/write register located at 0xE0001000.

This register is not banked between Security states.

Field descriptions

The DWT_CTRL bit assignments are:

01458

POSTINIT

91011121315

RES0

1617181920212223242526272831

NUMCOMP

NOTRCPKT
NOEXTTRIG
NOCYCCNT
NOPRFCNT

CYCDISS
CYCEVTENA

FOLDEVTENA
LSUEVTENA

CYCCNTENA
POSTPRESET

CYCTAP
SYNCTAP

PCSAMPLENA
EXCTRCENA
CPIEVTENA
EXCEVTENA
SLEEPEVTENA

NUMCOMP, bits [31:28]
Number of comparators. Number of DWT comparators implemented.

A value of zero indicates no comparator support.

This field reads as an IMPLEMENTATION DEFINED value.

NOTRCPKT, bit [27]
No trace packets. Indicates whether the implementation does not support trace.

The possible values of this bit are:

0
Trace supported.

1
Trace not supported.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1561

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If this bit is RAZ, the NOCYCCNT bit must also RAZ.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

NOEXTTRIG, bit [26]
No External Triggers. Shows whether the implementation does not support external triggers.

Reserved, RES0.

NOCYCCNT, bit [25]
No cycle count. Indicates whether the implementation does not include a cycle counter.

The possible values of this bit are:

0
Cycle counter implemented.

1
Cycle counter not implemented.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

NOPRFCNT, bit [24]
No profile counters. Indicates whether the implementation does not include the profiling counters.

The possible values of this bit are:

0
Profiling counters implemented.

1
Profiling counters not implemented.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

CYCDISS, bit [23]
Cycle counter disabled secure. Controls whether the cycle counter is disabled in Secure state.

The possible values of this bit are:

0
No effect.

1
Disable incrementing of the cycle counter when the PE is in Secure state.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

CYCEVTENA, bit [22]
Cycle event enable. Enables Event Counter packet generation on POSTCNT underflow.

The possible values of this bit are:

0
No Event Counter packets generated when POSTCNT underflows.

1
If PCSAMPLENA set to 0, an Event Counter packet is generated when POSTCNT underflows.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1562

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the NOTRCPKT bit is RAO or the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

FOLDEVTENA, bit [21]
Fold event enable. Enables DWT_FOLDCNT counter.

The possible values of this bit are:

0
DWT_FOLDCNT disabled.

1
DWT_FOLDCNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0. The reset value is 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

LSUEVTENA, bit [20]
LSU event enable. Enables DWT_LSUCNT counter.

The possible values of this bit are:

0
DWT_LSUCNT disabled.

1
DWT_LSUCNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

SLEEPEVTENA, bit [19]
Sleep event enable. Enable DWT_SLEEPCNT counter.

The possible values of this bit are:

0
DWT_SLEEPCNT disabled.

1
DWT_SLEEPCNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

EXCEVTENA, bit [18]
Exception event enable. Enables DWT_EXCCNT counter.

The possible values of this bit are:

0
DWT_EXCCNT disabled.

1
DWT_EXCCNT enabled.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1563

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

CPIEVTENA, bit [17]
CPI event enable. Enables DWT_CPICNT counter.

The possible values of this bit are:

0
DWT_CPICNT disabled.

1
DWT_CPICNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

EXCTRCENA, bit [16]
Exception trace enable. Enables generation of Exception Trace packets.

The possible values of this bit are:

0
Exception Trace packet generation disabled.

1
Exception Trace packet generation enabled.

If the NOTRCPKT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Bits [15:13]
Reserved, RES0.

PCSAMPLENA, bit [12]
PC sample enable. Enables use of POSTCNT counter as a timer for Periodic PC Sample packet generation.

The possible values of this bit are:

0
Periodic PC Sample packet generation disabled.

1
Periodic PC Sample packet generated on POSTCNT underflow.

If the NOTRCPKT bit is RAO or the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

SYNCTAP, bits [11:10]
Synchronization tap. Selects the position of the synchronization packet request counter tap on the CYCCNT
counter. This determines the rate of Synchronization packet requests made by the DWT.

The possible values of this field are:

0b00
Synchronization packet request disabled.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1564

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b01
Synchronization counter tap at CYCCNT[24].

0b10
Synchronization counter tap at CYCCNT[26].

0b11
Synchronization counter tap at CYCCNT[28].

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

CYCTAP, bit [9]
Cycle count tap. Selects the position of the POSTCNT tap on the CYCCNT counter.

The possible values of this bit are:

0
POSTCNT tap at CYCCNT[6].

1
POSTCNT tap at CYCCNT[10].

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Cold reset.

POSTINIT, bits [8:5]
POSTCNT initial. Initial value for the POSTCNT counter.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

POSTPRESET, bits [4:1]
POSTCNT preset. Reload value for the POSTCNT counter.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

CYCCNTENA, bit [0]
CYCCNT enable. Enables CYCCNT.

The possible values of this bit are:

0
CYCCNT disabled.

1
CYCCNT enabled.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1565

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.59 DWT_CYCCNT, DWT Cycle Count Register

The DWT_CYCCNT characteristics are:

Purpose
Shows or sets the value of the processor cycle counter, CYCCNT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOCYCCNT == 0.

This register is RES0 if DWT_CTRL.NOCYCCNT == 1.

Attributes
32-bit read/write register located at 0xE0001004.

This register is not banked between Security states.

Preface

The PMU_CCNTR register, if implemented, is an alias of this register.

Field descriptions

The DWT_CYCCNT bit assignments are:

031

CYCCNT

CYCCNT, bits [31:0]
Incrementing cycle counter value. Increments one on each processor clock cycle when DWT_CTRL.CYCCNTENA
== 1 and DEMCR.TRCENA == 1. On overflow, CYCCNT wraps to zero.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1566

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.60 DWT_DEVARCH, DWT Device Architecture Register

The DWT_DEVARCH characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FBC.

This register is not banked between Security states.

Field descriptions

The DWT_DEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1
DEVARCH information present.

This bit reads as one.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1567

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
DWT architecture v2.0.

0b0001
DWT architecture v2.1. The DWT_VMASKn registers are implemented.

DWT architecture v2.1 is mandatory for a DWT implementation that includes data value comparators in a PE
that implements v8.1-M and MVE. If the DWT implementation does not include data value comparators, it is
IMPDEF whether it is v2.0 or v2.1.

This field reads as an IMPLEMENTATION DEFINED value.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0001
DWT architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA02
DWT architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA02.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1568

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.61 DWT_DEVTYPE, DWT Device Type Register

The DWT_DEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FCC.

This register is not banked between Security states.

Field descriptions

The DWT_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other.

This field reads as 0b0000.

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

This field reads as 0b0000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1569

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.62 DWT_EXCCNT, DWT Exception Overhead Count Register

The DWT_EXCCNT characteristics are:

Purpose
Counts the total cycles spent in exception processing.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE000100C.

This register is not banked between Security states.

Field descriptions

The DWT_EXCCNT bit assignments are:

07

EXCCNT

831

RESERVED

RESERVED, bits [31:8]
Reserved, RAZ/WI

EXCCNT, bits [7:0]
The exception overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.EXCEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• An exception-entry or exception-exit related operation is in progress.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the operation is set to Non-secure
and NoninvasiveDebugAllowed() == TRUE.

Exception-entry or exception-exit related operations include the stacking of registers on exception entry, lazy
Floating-point state preservation, unstacking of registers on exception exit, and preemption.

Initialized to zero when the counter is disabled and DWT_CTRL.EXCEVTENA is written with 1. An Event
Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1570

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.63 DWT_FOLDCNT, DWT Folded Instruction Count Register

The DWT_FOLDCNT characteristics are:

Purpose
Increments for each additional instruction executed in the current cycle.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001018.

This register is not banked between Security states.

Field descriptions

The DWT_FOLDCNT bit assignments are:

07

FOLDCNT

831

RESERVED

RESERVED, bits [31:8]
Reserved, RAZ/WI

FOLDCNT, bits [7:0]
Folded instruction counter.

Counts on each cycle when all of the following are true:

• DWT_CTRL.FOLDEVTENA == 1 and DEMCR.TRCENA == 1.

• At least two instructions are executed, see DWT_CPICNT.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and
NoninvasiveDebugAllowed() == TRUE.

The counter is incremented by the number of instructions executed, minus one.

Initialized to zero when the counter is disabled and DWT_CTRL.FOLDEVTENA is written with 1. An event
is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1571

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.64 DWT_FUNCTIONn, DWT Comparator Function Register, n = 0 - 14

The DWT_FUNCTION{0..14} characteristics are:

Purpose
Controls the operation of watchpoint comparator n.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read/write register located at 0xE0001028 + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_FUNCTION{0..14} bit assignments are:

03

MATCH

4569

RES0

10111223

RES0

242526

RES0

2731

ID

MATCHED
DATAVSIZE

ACTION

ID, bits [31:27]
Identify capability. Identifies the capabilities for MATCH for comparator n.

The possible values of this field are:

0b00000
Reserved.

0b01000
Data Address, and Data Address With Value.

0b01001
Cycle Counter, Data Address, and Data Address With Value.

0b01010
Instruction Address, Data Address, and Data Address With Value.

0b01011
Cycle Counter, Instruction Address, Data Address and Data Address With Value.

0b11000
Data Address, Data Address Limit, and Data Address With Value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1572

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11010
Instruction Address, Instruction Address Limit, Data Address, Data Address Limit, and Data Address
With Value.

0b11100
Data Address, Data Address Limit, Data Value, Linked Data Value, and Data Address With Value.

0b11110
Instruction Address, Instruction Address Limit, Data Address, Data Address Limit, Data value, Linked
Data Value, and Data Address With Value.

All other values are reserved.

Comparator 0 never supports linking. If more than one comparator is implemented, then at least one
comparator must support linking. Arm recommends that odd-numbered comparators support linking.

Cycle Counter matching is only supported if the Main Extension is implemented and DWT_CTRL.NOCYCCNT
== 0, meaning the cycle counter is implemented. Comparator 0 must support Cycle Counter matching if the
cycle counter is implemented.

Data Address With Value is supported for the first four comparators only, and only if the Main Extension
and ITM are implemented, and DWT_CTRL.NOTRCPKT == 0. Data Value and Linked Data Value not
supported if the Main Extension is not implemented.

This field is read-only.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [26:25]
Reserved, RES0.

MATCHED, bit [24]
Comparator matched. Set to 1 when the comparator matches.

The possible values of this bit are:

0
No match.

1
Match. The comparator has matched since the last read of this register.

For an Instruction Address Limit or Data Address Limit comparator, this bit is UNKNOWN on reads.

This bit is read-only.

This bit clears to zero when read.

This bit resets to an UNKNOWN value on a Cold reset.

Bits [23:12]
Reserved, RES0.

DATAVSIZE, bits [11:10]
Data value size. Defines the size of the object being watched for by Data Value and Data Address comparators.

The possible values of this field are:

0b00
1 byte.

0b01
2 bytes.

0b10
4 bytes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1573

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

For an Instruction Address or Instruction Address Limit comparator, DATAVSIZE must be 0b01 (2 bytes).
If this comparator is part of an data address range pair, DATAVSIZE must be 0b00 (1 byte).

For a Data Address comparator, DWT_COMPn must be aligned to the size specified by DATAVSIZE. For a
Data Value or Linked Data Value comparator:

• For halfword comparisons, DWT_COMPn [31:16] must be equal to DWT_COMPn[15:0].

• For byte comparisons, DWT_COMPn [31:24], DWT_COMPn [23:16], and DWT_COMPn [15:8] must
be equal to DWT_COMPn [7:0].

This field resets to an UNKNOWN value on a Cold reset.

Bits [9:6]
Reserved, RES0.

ACTION, bits [5:4]
Action on match. Defines the action on a match. This field is ignored and the comparator generates no actions
if it is disabled by MATCH.

The possible values of this field are:

0b00
Trigger only.

0b01
Generate debug event.

0b10
For a Cycle Counter, Instruction Address, Data Address, Data Value or Linked Data Value comparator,
generate a Data Trace Match packet.

For a Data Address With Value comparator, generate a Data Trace Data Value packet.

0b11
For a Data Address Limit comparator, generate a Data Trace Data Address packet.

For a Cycle Counter, Instruction Address Limit, or Data Address comparator, generate a Data Trace PC
Value packet.

For a Data Address With Value comparator, generate both a Data Trace PC Value packet and a Data
Trace Data Value packet.

If the Main Extension is not implemented, the values 0b10 and 0b11 are reserved.

This field resets to an UNKNOWN value on a Cold reset.

MATCH, bits [3:0]
Match type. Controls the type of match generated by this comparator.

The possible values of this field are:

0b0000
Disabled. Never generates a match.

0b0001
Cycle Counter. Matches if DWT_CYCCNT equals the comparator value. The comparator is checked
each time DWT_CYCCNT is written to, directly or indirectly.

Only supported if the Main Extension is implemented, DWT_FUNCTION<n>.ID<0> == 1 and
DWT_CTRL.NOCYCCNT == 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1574

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0010
Instruction Address. If not linked to, an instruction matches if the address of the first byte of the
instruction matches the comparator address.

Only supported if DWT_FUNCTION<n>.ID<1> == 1.

0b0011
Instruction Address Limit. When comparator <n-1> is configured as Instruction Address (0b0010) an
access will generate a match if the first byte of the instruction lies between the lower address (specified
by the comparator <n-1>) and the limit address (specified by this comparator, <n>). Both the lower
address and the limit address are inclusive to the address range.

It is UNPREDICTABLE whether or not a match is generated on an access by any comparator when either:

• Comparator <n-1> is configured as a comparator type which is neither Instruction Address (0b0010)
nor Disabled (0b0000).

• The lower address is unsigned greater-than-or-equal-to the limit address.

If comparator <n-1> is Disabled (0b0000) no access will generate a match for this comparator.

Only supported if DWT_FUNCTION<n>.ID<4> == 1 and DWT_FUNCTION<n>.ID<1> == 1.

0b0100
Data Address. If not linked to by a Data Address Limit comparator, an access matches if any accessed
byte lies between the comparator address and a limit defined by the DATAVSIZE field. Supported for all
comparators.

0b0101
Data Address, writes. As 0b0100, except that only write accesses generate a match.

0b0110
Data Address, reads. As 0b0100, except that only read accesses generate a match.

0b0111
Data Address Limit. An access will generate a match when all of the following are true:

• Comparator <n-1> is configured as one of Data Address (0b01xx, not 0b0111) or Data Address
With Value (0b11xx, not 0b1111).

• Any accessed byte lies between the lower address (specified by comparator <n-1>) and the limit
address (specified by this comparator <n>).

• Both the lower address and limit address are inclusive to the range.

It is UNPREDICTABLE whether or not a match is generated on an access by any comparator when either:

• Comparator <n-1> is not configured as one of Data Address (0b01xx, not 0b0111) nor Data
Address With Value (0b11xx, not 0b1111).

• The lower address is unsigned greater-than-or-equal-to the limit address.

If comparator <n-1> is configured as Disabled (0b0000) no access will generate a match for this
comparator.

Only supported if DWT_FUNCTION<n>.ID<4> == 1.

0b1000
Data Value. An access matches if the value accessed matches the comparator value.

Only supported if the Main Extension is implemented and DWT_FUNCTION<n>.ID<2> == 1.

0b1001
Data Value, writes. As 0b1000, except that only write accesses generate a match.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1575

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b1010
Data Value, reads. As 0b1000, except that only read accesses generate a match.

0b1011
Linked Data Value. An access will generate a match when all of the following are true:

• Comparator <n-1> is configured as Data Address (0b01xx, not 0b0111), or Data Address With
Value (0b11xx, not 0b1111).

• DATAVSIZE for the two comparators <n> and <n-1> are equal.

• The value accessed matches the comparator value specified by comparator <n>.

• Any accessed byte lies between the lower address (specified by comparator <n-1>) and limit defined
by the DATAVSIZE field.

• Both the lower address and the limit address are inclusive to the range.

It is UNPREDICTABLE whether or not any comparator generates a match if any of the following are true:

• Comparator <n-1> is not configured as one of Data Address (0b01xx, not 0b0111), Data Address
With Value (0b11xx, not 0b1111), or Disabled (0b0000).

• DATAVSIZE for the two comparators <n-1> and <n> are not equal.

If comparator <n-1> is programmed to Disabled (0b0000) no access will generate a match for this
comparator.

Only supported if the Main Extension is implemented and DWT_FUNCTION<n>.ID<4> == 1 and
DWT_FUNCTION<n>.ID<2> == 1.

0b1100
Data Address With Value. As 0b01xx, except that the data value is traced.

Supported for the first four comparators only, and only if DWT_CTRL.NOTRCPKT == 0 and ITM is
also implemented.

0b1101
Data Address With Value, writes. As 0b1100, except that only write accesses generate a match.

0b1110
Data Address With Value, reads. As 0b1100, except that only read accesses generate a match.

Any value not supported by the comparator is reserved. For a pair of linked comparators, <n> and <n-1>,
DWT_FUNCTION<n-1>.MATCH[1:0] determines the matching access types.

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1576

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.65 DWT_LAR, DWT Software Lock Access Register

The DWT_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the DWT, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0001FB0.

This register is not banked between Security states.

Field descriptions

The DWT_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1577

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.66 DWT_LSR, DWT Software Lock Status Register

The DWT_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the DWT, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0001FB4.

This register is not banked between Security states.

Field descriptions

The DWT_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of this component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side effects.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1578

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1579

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.67 DWT_LSUCNT, DWT LSU Count Register

The DWT_LSUCNT characteristics are:

Purpose
Increments on the additional cycles required to execute all load or store instructions.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001014.

This register is not banked between Security states.

Field descriptions

The DWT_LSUCNT bit assignments are:

07

LSUCNT

831

RESERVED

RESERVED, bits [31:8]
Reserved, RAZ/WI

LSUCNT, bits [7:0]
Load-store overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.LSUEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• A load-store operation is in progress.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the operation is set to Non-secure
and NoninvasiveDebugAllowed() == TRUE.

Initialized to zero when the counter is disabled and DWT_CTRL.LSUEVTENA is written with 1. An Event
Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1580

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.68 DWT_PCSR, DWT Program Counter Sample Register

The DWT_PCSR characteristics are:

Purpose
Samples the current value of the Program Counter.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE000101C.

This register is not banked between Security states.

Field descriptions

The DWT_PCSR bit assignments are:

031

EIASAMPLE

EIASAMPLE, bits [31:0]
Executed instruction address sample. Recently executed instruction address sample value.

The possible values of this field are:

0xFFFFFFFF
One of the following is true:

• The PE is halted in Debug state.

• The address of the recently executed instruction is not available.

• NoninvasiveDebugAllowed(FALSE) == FALSE.

• UDE is implemented, NoninvasiveDebugAllowed(TRUE) == FALSE and the instruction was
executed in a privileged mode.

• The Security Extension is implemented, the sampled instruction was executed in Secure state, and
SecureNoninvasiveDebugAllowed(FALSE) == FALSE.

• The Security Extension and UDE are implemented and SecureNoninvasiveDebugAllowed(TRUE)
== FALSE, and the instruction was executed in Secure state and privileged mode.

• DEMCR.TRCENA == 0.

• The address of a recently-executed instruction is not available.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1581

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Not 0xFFFFFFFF
Instruction address of a recently executed instruction. Bit [0] of the sample instruction address is 0.

The conditions when the address of a recently-executed instruction is not available are IMPLEMENTATION
DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1582

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.69 DWT_PIDR0, DWT Peripheral Identification Register 0

The DWT_PIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FE0.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1583

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.70 DWT_PIDR1, DWT Peripheral Identification Register 1

The DWT_PIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FE4.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1584

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.71 DWT_PIDR2, DWT Peripheral Identification Register 2

The DWT_PIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FE8.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1585

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.72 DWT_PIDR3, DWT Peripheral Identification Register 3

The DWT_PIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FEC.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1586

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.73 DWT_PIDR4, DWT Peripheral Identification Register 4

The DWT_PIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FD0.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1587

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.74 DWT_PIDR5, DWT Peripheral Identification Register 5

The DWT_PIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FD4.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1588

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.75 DWT_PIDR6, DWT Peripheral Identification Register 6

The DWT_PIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FD8.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1589

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.76 DWT_PIDR7, DWT Peripheral Identification Register 7

The DWT_PIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FDC.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1590

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.77 DWT_SLEEPCNT, DWT Sleep Count Register

The DWT_SLEEPCNT characteristics are:

Purpose
Counts the total number of cycles that the processor is sleeping.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001010.

This register is not banked between Security states.

Field descriptions

The DWT_SLEEPCNT bit assignments are:

07

SLEEPCNT

831

RESERVED

RESERVED, bits [31:8]
Reserved, RAZ/WI

SLEEPCNT, bits [7:0]
Sleep counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.SLEEPEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• No load-store operation is in progress, see DWT_LSUCNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• The PE is in a power-saving mode.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and
NoninvasiveDebugAllowed() == TRUE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1591

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Power-saving modes include WFI, WFE, and Sleep-on-exit.

All power-saving features are IMPLEMENTATION DEFINED and therefore when this counter counts is
IMPLEMENTATION DEFINED. In particular, it is IMPLEMENTATION DEFINED whether the counter increments
if the PE is in a power-saving mode and SCR.SLEEPDEEP is set.

Initialized to zero when the counter is disabled and DWT_CTRL.SLEEPEVTENA is written with 1. An
Event Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

Note

Arm recommends that this counter counts all cycles when the PE is sleeping and SCR.SLEEPDEEP
is clear, regardless of whether a WFI or WFE instruction, or Sleep-on-exit, caused the entry to the
power-saving mode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1592

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.78 DWT_VMASKn, DWT Comparator Value Mask Register, n = 0 - 14

The DWT_VMASK{0..14} characteristics are:

Purpose
Provides a mask value for use by watchpoint comparator n when comparing data values.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the DWT implements DWT architecture version 2.1 or later.

This register is RES0 if the DWT implements DWT architecture version 2.0 or earlier.

Attributes
32-bit read/write register located at 0xE000102C + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_VMASK{0..14} bit assignments are:

When DWT_FUNCTIONn.MATCH != 0b10xx:

031

RES0

When DWT_FUNCTIONn.MATCH == 0b10xx:

031

VMASK

Bits [31:0], when DWT_FUNCTIONn.MATCH != 0b10xx
Reserved, RES0.

VMASK, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b10xx
Data value mask. Mask value for use in the comparison with load or store data.

The possible values of each bit are:

0
The comparison matches only if DWT_COMPn[m] matches bit [m] of the candidate data value.

1
The comparison ignores bit [m] of the candidate data value. If DWT_COMPn[m] is not set to zero, the
result of the comparison is UNPREDICTABLE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1593

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For halfword or word comparisons, the mask is in little-endian order. That is, the least significant byte of this
register masks the byte targeting the lowest address in memory.

For byte or halfword comparisons, if the value of the byte or halfword is not replicated across all byte or
halfword lanes, the value used for the comparison is UNKNOWN.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1594

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.79 EPSR, Execution Program Status Register

The EPSR characteristics are:

Purpose
Holds Execution state bits.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The EPSR bit assignments are:

When {EPSR[26:25], EPSR[11:10]} != 0:

09

RES0

1015

IT

1620

RES0

21

B

2223

RES0

24

T

2526

IT

2731

RES0

When {EPSR[26:25], EPSR[11:10]} == 0, and a multicycle load or store instruction is in progress:

09

RES0

1015

ICI

1620

RES0

21

B

2223

RES0

24

T

2526

ICI

2731

RES0

When {EPSR[26:25], EPSR[11:10]} == 0, and beat-wise vector instructions are in progress:

09

RES0

1011

ECI

1215

ECI

1620

RES0

21

B

2223

RES0

24

T

2526

ECI

2731

RES0

Bits [31:27]
Reserved, RES0.

T, bit [24]
T32 state bit. Determines the current instruction set state.

The possible values of this bit are:

0
Execution of any instruction generates an INVSTATE UsageFault.

1
Instructions decoded as T32 instructions.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [23:22]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1595

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

B, bit [21]
Branch target identification active. Indicates whether a BTI clearing instruction is expected.

The possible values of this bit are:

0
Branch target identification inactive.

1
Branch target identification active.

If the PACBTI Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [20:16]
Reserved, RES0.

IT, bits [15:10, 26:25] , when [{EPSR[26:25], EPSR[11:10]} != 0]
If-then flags. This field encodes the current condition and position in an IT block sequence.

The field IT[7:0] is equivalent to EPSR[15:10,26:25].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

ICI, bits [26:25, 15:10] , when [{EPSR[26:25], EPSR[11:10]} == 0, and a multicycle load or store instruction is
in progress]
Interrupt continuation flags. This field encodes information on the outstanding register list for an interrupted
exception-continuable multicycle load or store instruction.

The field ICI[7:0] is equivalent to EPSR[26:25,15:10].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

ECI, bits [26:25, 11:10, 15:12] , when [{EPSR[26:25], EPSR[11:10]} == 0, and beat-wise vector instructions
are in progress]
Exception continuation flags for beat-wise vector instructions. This field encodes which beats of the in-flight
instructions have completed.

The possible values of this field are:

0b00000000
No completed beats.

0b00000001
Completed beats: A0.

0b00000010
Completed beats: A0 A1.

0b00000011
Reserved.

0b00000100
Completed beats: A0 A1 A2.

0b00000101
Completed beats: A0 A1 A2 B0.

0b0000011X
Reserved.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1596

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b00001XXX
Reserved.

In the enumeration above the letters correspond to the instructions at the return address and beyond, whilst
the numbers correspond to the beats of those instructions that have been completed. For example, the
sequence A0 A1 A2 B0 means the first three beats of the instruction at the return address, plus the first
beat of the instruction at the return address +4 have been completed. The field ECI[7:0] is equivalent to
EPSR[26:25,11:10,15:12].

This field resets to zero on a Warm reset.

Bits [9:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1597

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.80 ERRADDRn, Error Record Address Register, n = 0 - 55

The ERRADDR{0..55} characteristics are:

Purpose
If an error has an associated address, this must be written to the address register when the error is recorded. It
is IMPLEMENTATION DEFINED how the recorded addresses map to the software-visible physical addresses.
Software might have to reconstruct the actual physical addresses using the identity of the node and knowledge
of the system. Ignores writes if ERRSTATUS<n>.AV is set to 1.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005018 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRADDR{0..55} bit assignments are:

031

PADDR

PADDR, bits [31:0]
Address, bits [31:0]. Unimplemented bits are RES0.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1598

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.81 ERRADDR2n, Error Record Address 2 Register, n = 0 - 55

The ERRADDR2{0..55} characteristics are:

Purpose
If an error has an associated address, this must be written to the address register when the error is recorded. It
is IMPLEMENTATION DEFINED how the recorded addresses map to the software-visible physical addresses.
Software might have to reconstruct the actual physical addresses using the identity of the node and knowledge
of the system. Ignores writes if ERRSTATUS<n>.AV is set to 1.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000501C + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRADDR2{0..55} bit assignments are:

023

PADDR

2427

RES0

28

(0)

29

AI

30

SI

31

NS

NS, bit [31]
Non-secure attribute.

The possible values of this bit are:

0
The address is Secure.

1
The address is Non-secure.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an UNKNOWN value on a Cold reset.

SI, bit [30]
Secure Incorrect. Indicates whether the NS bit is valid.

The possible values of this bit are:

0
The NS bit is correct. That is, it matches the programmers’ view of the Non-secure attribute for this
recorded location.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1599

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The NS bit might not be correct, and might not match the programmers’ view of the Non-secure attribute
for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an UNKNOWN value on a Cold reset.

AI, bit [29]
Address Incomplete or incorrect. Indicates whether the PADDR field in ERRADDR<n> and ERRADDR2<n>
is a valid physical address.

The possible values of this bit are:

0
The PADDR field is a valid physical address. That is, it matches the programmers’ view of the physical
address for this recorded location.

1
The PADDR field might not be a valid physical address, and might not match the programmers’ view of
the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit resets to an UNKNOWN value on a Cold reset.

Bit [28]
Reserved, RES0.

Bits [27:24]
Reserved, RES0.

PADDR, bits [23:0]
Address, bits [55:32]. Unimplemented bits are RES0.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1600

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.82 ERRCTRLn, Error Record Control Register, n = 0 - 55

The ERRCTRL{0..55} characteristics are:

Purpose
The error control register contains enable bits for the node that writes to this record.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005008 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRCTRL{0..55} bit assignments are:

0

ED

1

(0)

2

UI

3

FI

4

UE

57

RES0

89

(0)

101112

RES0

13

CI

1431

RES0

DUI CFI

Bits [31:14]
Reserved, RES0.

CI, bit [13]
Critical error interrupt enable. When enabled the critical error interrupt is generated for a critical error
condition.

The possible values of this bit are:

0
Critical error interrupt not generated for critical errors. Critical errors are treated as Uncontained errors.

1
Critical error interrupt generated for critical errors.

This bit is RES0 if the node does not support this control.

This bit resets to an UNKNOWN value on a Cold reset.

Bits [12:11]
Reserved, RES0.

DUI, bit [10]
Enable error recovery interrupt enable for deferred errors. When enabled the error recovery interrupt is
generated for all detected Deferred errors.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1601

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Error recovery interrupt not generated for deferred errors.

1
Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error. This bit is RES0 if the node does not support this control.

This bit resets to an UNKNOWN value on a Cold reset.

Bit [9]
Reserved, RES0.

CFI, bit [8]
Enable fault handling interrupt for corrected errors. When enabled, if the node implements a Corrected error
counter, then the fault handling interrupt is generated when the counter overflows and the overflow bit is set.
Otherwise the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0
Fault handling interrupt not generated for corrected errors.

1
Fault handling interrupt generated for corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error. This bit is RES0 if the node does not support this control.

This bit resets to an UNKNOWN value on a Cold reset.

Bits [7:5]
Reserved, RES0.

UE, bit [4]
Enable in-band uncorrected error reporting. When enabled, responses to transactions that detect an
uncorrected error that cannot be deferred are signaled as a detected error (external abort).

The possible values of this bit are:

0
External abort response for uncorrected errors disabled.

1
External abort response for uncorrected errors enabled.

This bit is RES0 if the node does not support this control.

This bit resets to an UNKNOWN value on a Cold reset.

FI, bit [3]
Enable fault handling interrupt.

When enabled, the fault handling interrupt is generated for all detected Deferred errors and Uncorrected
errors.

If the fault handling interrupt for corrected errors control is not implemented then:

• If the node implements a Corrected error counter then the fault handling interrupt is also generated when
the counter overflows and the overflow bit is set.

• Otherwise the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1602

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Fault handling interrupt disabled.

1
Fault handling interrupt enabled.

This bit is RES0 if the node does not support this control.

This bit resets to an UNKNOWN value on a Cold reset.

UI, bit [2]
Enable error recovery interrupt. Uncorrected error recovery interrupt enable. When enabled, the error
recovery interrupt is generated for all detected Uncorrected errors that are not deferred.

The possible values of this bit are:

0
Error recovery interrupt disabled.

1
Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error. This bit is RES0 if the node does not support this control.

This bit resets to an UNKNOWN value on a Cold reset.

Bit [1]
Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software. This
bit reads as an IMPLEMENTATION DEFINED value and writes to this bit have IMPLEMENTATION DEFINED
behavior.

Reserved, RES0.

ED, bit [0]
Error reporting and logging enable. When disabled, the node behaves as if error detection and correction
are disabled, and no errors are recorded or signaled by the node. Arm recommends that, when disabled,
correct error detection and correction codes are written for writes, unless disabled by an IMPLEMENTATION
DEFINED control for error injection.

The possible values of this bit are:

0
Error reporting disabled.

1
Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting is disabled. That is, even with error reporting disabled, the node might continue to silently correct
errors. Uncorrectable errors might result in corrupt data being silently propagated by the node. This bit is
RES1 if the node does not support this control.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1603

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.83 ERRDEVID, Error Record Device ID Register

The ERRDEVID characteristics are:

Purpose
Defines the number of error records that can be accessed through the Memory-mapped registers.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005FC8.

This register is not banked between Security states.

Field descriptions

The ERRDEVID bit assignments are:

015

NUM

1631

RES0

Bits [31:16]
Reserved, RES0.

NUM, bits [15:0]
Number of implemented error record indexes.

Highest numbered index of the error records in this group, plus one. Each implemented record is owned by a
node. A node might own multiple records.

This manual describes the memory-mapped view of a group with up to 56 records, the most that can be
contained in a 4KB component, meaning the highest value for this field is 56.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1604

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.84 ERRFRn, Error Record Feature Register, n = 0 - 55

The ERRFR{0..55} characteristics are:

Purpose
Identifies the features implemented by the associated record n, and of those features that are software
programmable.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005000 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRFR{0..55} bit assignments are:

01

ED

23

RES0

45

UI

67

FI

89

UE

1011

CFI

1214

CEC

15

RP

1617

DUI

1819

CEO

2021

RES0

2223

CI

2431

RES0

Bits [31:24]
Reserved, RES0.

CI, bits [23:22]
Critical Error Interrupt. Indicates whether the critical error interrupt and associated controls are implemented.

The possible values of this field are:

0b00
Does not support feature.

0b01
Feature always enabled.

0b10
Feature is controllable.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [21:20]
Reserved, RES0.

CEO, bits [19:18]
Corrected Error overwrite. Indicates the behavior when a second Corrected error is detected after a first
Corrected error has been recorded by the node.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1605

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this field are:

0b00
Count Corrected error if a counter is implemented. Keep the previous error syndrome. If the counter
overflows, or no counter is implemented then ERRSTATUS<n>.OF is set to 1.

0b01
Count Corrected error. If ERRSTATUS<n>.OF == 1 before the Corrected error is counted then keep
the previous syndrome. Otherwise the previous syndrome is overwritten. If the counter overflows then
ERRSTATUS<n>.OF is set to 1.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DUI, bits [17:16]
Error recovery interrupt for deferred errors. Indicates whether the node implements a control for enabling
error recovery interrupts on deferred errors.

The possible values of this field are:

0b00
Does not support feature. ERRCTLR<n>.DUI is RES0.

0b10
Feature is controllable using ERRCTLR<n>.DUI.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

RP, bit [15]
Repeat counter. Indicates whether the node implements a repeat Corrected error counter in ERRMISC0<n>.

The possible values of this bit are:

0b0
A single CE counter is implemented.

0b1
A first (repeat) counter and a second (other) counter are implemented. The repeat counter is the same
size as the primary error counter.

This bit is RES0 if ERRFR<n>.CEC == 0b000.

This bit reads as an IMPLEMENTATION DEFINED value.

CEC, bits [14:12]
Corrected Error Counter. Indicates whether the node implements a standard Corrected error (CE) counter
mechanism in ERRMISC0<n>.

The possible values of this field are:

0b000
Does not implement the standard Corrected error counter model.

0b010
Implements an 8-bit Corrected error counter in ERRMISC0<n>[7:0].

0b100
Implements a 16-bit Corrected error counter in ERRMISC0<n>[15:0].

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1606

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CFI, bits [11:10]
Fault handling for Corrected errors. Indicates whether the node implements a control for enabling fault
handling interrupts on Corrected errors.

The possible values of this field are:

0b00
Does not support feature, ERRCTLR<n>.CFI is RES0.

0b10
Feature is controllable using ERRCTLR<n>.CFI.

All other values are reserved.

This bit is ‘RES0 if ERRFR<n>.FI == 0b00.

This field reads as an IMPLEMENTATION DEFINED value.

UE, bits [9:8]
In-band uncorrected error reporting. Indicates whether the node implements in-band uncorrected error
reporting (external aborts), and, if so, whether it implements controls for enabling and disabling in-band
uncorrected error reporting.

The possible values of this field are:

0b00
Does not support feature, ERRCTLR<n>.UE is RES0.

0b01
Feature always enabled, ERRCTLR<n>.UE is RES0.

0b10
Feature is controllable using ERRCTLR<n>.UE.

This field reads as an IMPLEMENTATION DEFINED value.

FI, bits [7:6]
Fault handling interrupt. Indicates whether the node implements a fault handling interrupt, and, if so, whether
it implements controls for enabling and disabling the fault handling interrupt.

The possible values of this field are:

0b00
Does not support feature, ERRCTLR<n>.FI is RES0.

0b01
Feature always enabled, ERRCTLR<n>.FI is RES0.

0b10
Feature is controllable using ERRCTLR<n>.FI.

This field reads as an IMPLEMENTATION DEFINED value.

UI, bits [5:4]
Error recovery interrupt for uncorrected errors. Indicates whether the node implements an error recovery
interrupt, and, if so, whether it implements controls for enabling and disabling the error recovery interrupt.

The possible values of this field are:

0b00
Does not support feature, ERRCTLR<n>.UI is RES0.

0b01
Feature always enabled, ERRCTLR<n>.UI is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1607

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b10
Feature is controllable using ERRCTLR<n>.UI.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:2]
Reserved, RES0.

ED, bits [1:0]
Error reporting and logging. Indicates whether the node implements controls for enabling and disabling error
reporting and logging.

The possible values of this field are:

0b01
Feature always enabled, ERRCTLR<n>.ED is RES1.

0b10
Feature is controllable using ERRCTLR<n>.ED.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1608

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.85 ERRGSRn, RAS Fault Group Status Register

The ERRGSR{0..1} characteristics are:

Purpose
Each ERRGSR<n> register shows the status for up to 32 records in the group. <n> selects the set of 32
records from the records in the group.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005E00 + 4n.

This register is not banked between Security states.

Field descriptions

The ERRGSR{0..1} bit assignments are:

031

S

S, bits [31:0]
Status for Error Record <m>. Each bit is a read-only copy of the corresponding ERRSTATUS<m>.V field.

The possible values of this field are:

0
No error.

1
One or more errors.

This bit is RES0 if <m> is greater than or equal to the number of implemented records, or if the record does
not support this type of reporting.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1609

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.86 ERRIIDR, Error Implementer ID Register

The ERRIIDR characteristics are:

Purpose
Defines the implementer of the component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005E10.

This register is not banked between Security states.

Field descriptions

The ERRIIDR bit assignments are:

011

Architect

1215

Revision

1619

Variant

2031

ProductID

ProductID, bits [31:20]
This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [19:16]
Component Major Revision. This field distinguishes between variants or major revisions of the product.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [15:12]
Component minor revision. This field distinguishes between minor revisions of the product.

This field reads as an IMPLEMENTATION DEFINED value.

Architect, bits [11:0]
The possible values of this field are:

0x43B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x43B.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1610

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.87 ERRMISC0n, Error Record Miscellaneous 0 Register, n = 0 - 55

The ERRMISC0{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005020 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If the node supports the architecturally-defined error counter then it is implemented in ERMISC0<n>.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC0<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a Corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, must ignore
writes. This prevents the loss of information if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC0{0..55} bit assignments are:

When Contents are IMPLEMENTATION DEFINED:

031

IMPLEMENTATION DEFINED

When Standard 16-bit CE counter:

014

CEC16

151631

IMPLEMENTATION DEFINED

OF16

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1611

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

When Standard 16-bit CE counter pair:

014

CECR

151630

CECO

31

OFO OFR

When Standard 8-bit CE counter:

06

CEC8

7831

IMPLEMENTATION DEFINED

OF8

Bits [31:0], when Contents are IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED.

Bits [31:8], when Standard 8-bit CE counter
IMPLEMENTATION DEFINED.

OF8, bit [7], when Standard 8-bit CE counter
Overflow. Sticky overflow bit.

The possible values of this bit are:

0
Counter has not overflowed.

1
Counter has overflowed.

Set to 1 when the Corrected error count field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERRSTATUS<n>.OF to an UNKNOWN value and a
direct write to ERRSTATUS<n>.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

CEC8, bits [6:0], when Standard 8-bit CE counter
Corrected error count.

This field resets to an UNKNOWN value on a Cold reset.

Bits [31:16], when Standard 16-bit CE counter
IMPLEMENTATION DEFINED.

OF16, bit [15], when Standard 16-bit CE counter
Overflow. Sticky overflow bit.

The possible values of this bit are:

0
Counter has not overflowed.

1
Counter has overflowed.

Set to 1 when the Corrected error count field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERRSTATUS<n>.OF to an UNKNOWN value and a
direct write to ERRSTATUS<n>.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1612

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CEC16, bits [14:0], when Standard 16-bit CE counter
Corrected error count.

This field resets to an UNKNOWN value on a Cold reset.

OFO, bit [31], when Standard 16-bit CE counter pair
Overflow Other. Sticky overflow bit, other.

The possible values of this bit are:

0
Other Counter has not overflowed.

1
Other Counter has overflowed.

Set to 1 when the Corrected error count, other, field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERRSTATUS<n>.OF to an UNKNOWN value and a
direct write to ERRSTATUS<n>.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

CECO, bits [30:16], when Standard 16-bit CE counter pair
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
CECR.

This field resets to an UNKNOWN value on a Cold reset.

OFR, bit [15], when Standard 16-bit CE counter pair
Overflow Repeat. Sticky overflow bit, repeat.

The possible values of this bit are:

0
Repeat Counter has not overflowed.

1
Repeat Counter has overflowed.

Set to 1 when the Corrected error count, repeat, field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERRSTATUS<n>.OF to an UNKNOWN value and a
direct write to ERRSTATUS<n>.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

CECR, bits [14:0], when Standard 16-bit CE counter pair
Corrected error count. Incremented for the first detected countable error, which also records other syndrome
for the error, and subsequently for each countable error that matches the recorded other syndrome. Corrected
errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether
Deferred and Uncorrected errors are countable errors.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1613

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.88 ERRMISC1n, Error Record Miscellaneous 1 Register, n = 0 - 55

The ERRMISC1{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005024 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC1<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC1{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1614

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.89 ERRMISC2n, Error Record Miscellaneous 2 Register, n = 0 - 55

The ERRMISC2{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005028 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC2<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC2{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1615

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.90 ERRMISC3n, Error Record Miscellaneous 3 Register, n = 0 - 55

The ERRMISC3{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000502C + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC3<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC3{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1616

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.91 ERRMISC4n, Error Record Miscellaneous 4 Register, n = 0 - 55

The ERRMISC4{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005030 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC4<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC4{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1617

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.92 ERRMISC5n, Error Record Miscellaneous 5 Register, n = 0 - 55

The ERRMISC5{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005034 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC5<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC5{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1618

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.93 ERRMISC6n, Error Record Miscellaneous 6 Register, n = 0 - 55

The ERRMISC6{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005038 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC6<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC6{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1619

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.94 ERRMISC7n, Error Record Miscellaneous 7 Register, n = 0 - 55

The ERRMISC7{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000503C + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

- Corrected error counter or counters, if the node supports the counting of Corrected errors.

- Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

- Other state information not present in the corresponding status and address registers.

If ERRSTATUS<n>.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERRMISC7<n>
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC7{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1620

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.95 ERRSTATUSn, Error Record Primary Status Register, n = 0 - 55

The ERRSTATUS{0..55} characteristics are:

Purpose
Contains status information for the error record.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005010 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register contains the following information:

- Whether any error has been detected (valid).

- Whether any detected error was not corrected, and returned to a Requester.

- Whether any detected error was not corrected and deferred.

- Whether an error record has been discarded because additional errors have been detected before the first error was
handled by software (overflow).

- Whether any error has been reported.

- Whether the other error record registers contain valid information.

- Whether the error was reported because poison data was detected or because a corrupt value was detected by an
error detection code.

- A primary error code.

- An IMPLEMENTATION DEFINED extended error code.

Within this register:

- The {AV, V, MV} bits are valid bits that define whether the error record registers are valid.

- The {UE, OF, CE, DE, UET} bits encode the type of error or errors recorded.

- The {CI, ER, PN, IERR, SERR} fields are syndrome fields.

After reading the status register, software must clear the valid bits to allow new errors to be recorded. Between
reading the register and clearing the valid bits, a new error might have overwritten the register. To prevent this
error being lost, a write to ERRSTATUS<n> is ignored if all of:

- Any of the ERRSTATUS<n>.{V, UE, OF, CE, DE} fields are nonzero before the write.

- The write does not clear the nonzero ERRSTATUS<n>.{V, UE, OF, CE, DE} field(s) to zero by writing one(s) to
the applicable field(s).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1621

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Field descriptions

The ERRSTATUS{0..55} bit assignments are:

07

SERR

815

IERR

1618

RES0

19

CI

2021

UET

22

PN

23

DE

2425

CE

2627

OF

2829

UE

30

V

31

AV MV
ER

AV, bit [31]
Address Valid.

The possible values of this bit are:

0
ERRADDR<n> and ERRADDR2<n> not valid.

1
ERRADDR<n> and ERRADDR2<n> contain an address associated with the highest priority error
recorded by this record.

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset.

V, bit [30]
Status Register valid.

The possible values of this bit are:

0
ERRSTATUS<n> not valid.

1
ERRSTATUS<n> valid. At least one error has been recorded.

This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset.

UE, bit [29]
Uncorrected error or errors.

The possible values of this bit are:

0
No errors that could neither be corrected nor deferred.

1
At least one error that has neither been corrected nor deferred.

This bit reads as UNKNOWN if ERRSTATUS<n>.V is set to 0. This bit is read/write-one-to-clear.

This bit resets to an UNKNOWN value on a Cold reset.

ER, bit [28]
Error Reported.

The possible values of this bit are:

0
No in-band error (external abort) reported.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1622

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
An external abort was signaled by the node to the Requester making the access or other transaction. This
can be because any of:

• ERRCTLR<n>.UE is implemented and was set to 1 when an Uncorrected error was detected.

• ERRCTLR<n>.UE is not implemented and the node always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 1 by a Deferred error. This bit is not valid and
reads UNKNOWN if any of:

• ERRSTATUS<n>.UE is set to 0 and this bit is only set to 1 by Uncorrected errors.

• ERRSTATUS<n>.{UE, DE} are both set to 0 and this bit can be set to 1 by Deferred errors.

• ERRSTATUS<n>.V is set to 0.

This bit is read/write-one-to-clear.

This bit resets to an UNKNOWN value on a Cold reset.

OF, bit [27]
Overflow.

Indicates that multiple errors have been detected. This bit is set to 1 when one of the following occurs:

• A corrected error counter is implemented, an error is counted, and the counter overflows.

• A corrected error counter is not implemented, a corrected error is recorded, and ERRSTATUS<n>.V
was previously set to 1.

A type of error other than a corrected error is recorded and ERRSTATUS<n>.V was previously set to 1.

Otherwise, this bit is unchanged when an error is recorded.

If a corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.

• A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an
UNKNOWN value.

The possible values of this bit are:

0
No error syndrome has been discarded and, if a Corrected error counter is implemented, it has not
overflowed since this bit was last cleared to zero.

1
At least one error syndrome has been discarded or, if a Corrected error counter is implemented, it might
have overflowed, since this bit was last cleared to zero.

This bit is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

This bit is read/write-one-to-clear.

This bit resets to an UNKNOWN value on a Cold reset.

MV, bit [26]
Miscellaneous Registers Valid.

The possible values of this bit are:

0
ERRMISC*<n> not valid.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1623

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The IMPLEMENTATION DEFINED contents of the ERRMISC*<n> registers contains additional
information for an error recorded by this record.

This bit is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

This bit is read/write-one-to-clear.

This bit resets to an UNKNOWN value on a Cold reset.

CE, bits [25:24]
Corrected error or errors.

The possible values of this field are:

0b00
No errors were corrected.

0b01
At least one transient error was corrected.

0b10
At least one error was corrected.

0b11
At least one persistent error was corrected.

The mechanism by which a node detects whether a correctable error is transient or persistent is IMPLEMEN-
TATION DEFINED. If no such mechanism is implemented then the node sets this field to 0b10 when an error
is corrected.

This field is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

This field resets to an UNKNOWN value on a Cold reset.

DE, bit [23]
Deferred error or errors.

The possible values of this bit are:

0
No errors were deferred.

1
At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

This bit is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

This bit is read/write-one-to-clear.

This bit resets to an UNKNOWN value on a Cold reset.

PN, bit [22]
Poison.

The possible values of this bit are:

0
Uncorrected or deferred error from a corrupted value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1624

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Uncorrected error or Deferred error from a poisoned value. Indicates that an error occurred because of
the detection of a poison value rather because of the detection of a corrupted value.

It is IMPLEMENTATION DEFINED whether a node can distinguish a poisoned value from a corrupted value.

This bit is not valid and reads UNKNOWN if any of:

• ERRSTATUS<n>.V is set to 0.

• ERRSTATUS<n>.{CE, UE} are both set to 0.

This bit is read/write-one-to-clear.

This bit resets to an UNKNOWN value on a Cold reset.

Note

If a node detects a corrupted value and defers the error by producing poison then this bit is set to
0b0 at the producer node. The value 0b1 might only be an indication of a poisoned value. As in
some EDC schemes, it is possible to mistake a corrupted value for a poisoned value.

UET, bits [21:20]
Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected
error.

The possible values of this field are:

0b00
Uncorrected error, Uncontainable error (UC).

0b01
Uncorrected error, Unrecoverable error (UEU).

0b10
Uncorrected error, Latent or Restartable error (UEO).

0b11
Uncorrected error, Signaled or Recoverable error (UER).

This field is not valid and reads UNKNOWN if any of:

• ERRSTATUS<n>.V is set to 0.

• ERRSTATUS<n>.UE is set to 0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

Note: Software might use the information in the error record registers to determine what recovery is necessary.

This field resets to an UNKNOWN value on a Cold reset.

CI, bit [19]
Critical error. Indicates whether a critical error condition has been recorded.

The possible values of this bit are:

0
No critical error condition.

1
Critical error condition.

This bit is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

This bit is read/write-one-to-clear.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1625

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to an UNKNOWN value on a Cold reset.

Bits [18:16]
Reserved, RES0.

IERR, bits [15:8]
IMPLEMENTATION DEFINED error code.

Used with any primary error code SERR value. Further IMPLEMENTATION DEFINED information can be
placed in the MISC registers.

The subset of architecturally-defined values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register then the value read back from this field is UNKNOWN.

This field is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

This field resets to an UNKNOWN value on a Cold reset.

Note

One or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

SERR, bits [7:0]
Architecturally-defined primary error code. The primary error code might be used by a fault handling agent
to triage an error without requiring device-specific code. For example, to count and threshold corrected errors
in software, or generate a short log entry.

The possible values of this field are:

0
No error.

1
IMPLEMENTATION DEFINED error.

2
Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.

3
IMPLEMENTATION DEFINED pin.

4
Assertion failure. For example, consistency failure.

5
Internal data path. For example, parity on ALU result.

6
Data value from associative memory. For example, ECC error on cache data.

7
Address/control value or values from associative memory. For example, ECC error on cache tag.

10
Data value from producer. For example, parity error on write data bus.

11
Address/control value or values from producer. For example, parity error on address bus.

12
Data value from (non-associative) external memory. For example, ECC error in SDRAM.

13
Illegal address (software fault). For example, access to unpopulated memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1626

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

14
Illegal access (software fault). For example, byte write to word register.

15
Illegal state (software fault). For example, device not ready.

16
Internal data register. For example, parity on a floating-point or MVE register. For a PE, all
general-purpose, stack pointer, and floating-point or MVE registers are data registers.

17
Internal control register. For example, parity on a system register. For a PE, all registers other than
general-purpose, stack pointer, and floating-point or MVE registers are control registers.

18
Error response from Completer of access. For example, error response from cache write-back.

19
External timeout. For example, timeout on interaction with another node.

20
Internal timeout. For example, timeout on interface within the node.

21
Deferred error from Completer not supported at Requester. For example, poisoned data received from a
Completer of an access by a Requester that cannot defer the error further.

All other values are reserved.

The subset of architecturally-defined values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register then the value read back from this field is UNKNOWN.

This field is not valid and reads UNKNOWN if ERRSTATUS<n>.V is set to 0.

Note: one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1627

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.96 EXC_RETURN, Exception Return Payload

The EXC_RETURN characteristics are:

Purpose
Value provided in LR on entry to an exception, and used with a BX or load to PC to perform an exception
return.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The EXC_RETURN bit assignments are:

0

ES

1

(0)

23456

S

723

RES1

2431

PREFIX

DCRS
FType

SPSEL
Mode

PREFIX, bits [31:24]
Prefix. Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

Bits [23:7]
Reserved, RES1.

S, bit [6]
Secure or Non-secure stack. Indicates whether a Secure or Non-secure stack is used to restore stack frame on
exception return.

The possible values of this bit are:

0
Non-secure stack used.

1
Secure stack used.

Behavior is UNPREDICTABLE if the Security Extension is not implemented and this field is not zero.

If the Security Extension is not implemented, this bit is RES0.

DCRS, bit [5]
Default callee register stacking. Indicates whether the default stacking rules apply, or whether the Additional
state context, also known as callee registers, are already on the stack.

The possible values of this bit are:

0
Stacking of the Additional state context registers skipped.

1
Default rules for stacking the Additional state context registers followed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1628

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Behavior is UNPREDICTABLE if the Security Extension is not implemented and this field is not one.

If the Security Extension is not implemented, this bit is RES1.

FType, bit [4]
Stack frame type. Indicates whether the stack frame is a standard integer only stack frame or an extended
Floating-point stack frame.

The possible values of this bit are:

0
Extended stack frame.

1
Standard stack frame.

Behavior is UNPREDICTABLE if neither the Floating-point Extension or MVE are implemented and this field
is not one.

If neither the Floating-point Extension or MVE are implemented, this bit is RES1.

Mode, bit [3]
Mode. Indicates the Mode that was stacked from.

The possible values of this bit are:

0
Handler mode.

1
Thread mode.

SPSEL, bit [2]
Stack pointer selection. The value of this bit indicates the transitory value of the CONTROL.SPSEL bit
associated with the Security state of the exception as indicated by EXC_RETURN.ES.

The possible values of this bit are:

0
Main stack pointer.

1
Process stack pointer.

Bit [1]
Reserved, RES0.

ES, bit [0]
Exception Secure. The security domain the exception was taken to.

The possible values of this bit are:

0
Non-secure.

1
Secure.

Behavior is UNPREDICTABLE if the Security Extension is not implemented and this field is not zero.

If the Security Extension is not implemented, this bit is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1629

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.97 FAULTMASK, Fault Mask Register

The FAULTMASK characteristics are:

Purpose
Provides access to the PE FAULTMASK register.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The FAULTMASK bit assignments are:

0131

RES0

FM

Bits [31:1]
Reserved, RES0.

FM, bit [0]
Fault mask enable.

The Secure and Non-secure FAULTMASK registers individually boost the current execution priority based
on the settings of AIRCR.PRIS and AIRCR.BFHFNMINS.

If AIRCR.BFHFNMINS is zero, AIRCR.PRIS is zero, and FAULTMASK_NS.FM is one, the execution
priority is boosted to 0.

If AIRCR.BFHFNMINS is zero, AIRCR.PRIS is one, and FAULTMASK_NS.FM is one, the execution
priority is boosted to 0x80.

If AIRCR.BFHFNMINS is zero and FAULTMASK_S is one, the execution priority is boosted to -1.

If AIRCR.BFHFNMINS is one and FAULTMASK_NS is one, the execution priority is boosted to -1.

If AIRCR.BFHFNMINS is one and FAULTMASK_S is one, the execution priority is boosted to -3.

The possible values of this bit are:

0
No effect.

1
Boost priority.

On an exception return from a raw execution priority greater or equal to zero, the FM bit corresponding to
EXC_RETURN.ES is cleared.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1630

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.98 FNC_RETURN, Function Return Payload

The FNC_RETURN characteristics are:

Purpose
Value provided in LR on entry to Non-secure state from a Secure BLXNS.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The FNC_RETURN bit assignments are:

0

S

123

ONES

2431

PREFIX

PREFIX, bits [31:24]
This field reads as 0b11111110.

ONES, bits [23:1]
This field reads as 0b11111111111111111111111.

S, bit [0]
Secure. Indicates whether the function call was from the Non-secure or Secure state. Because FNC_RETURN
is only used when calling from the Secure state, this bit is always set to 1. However, some function chaining
cases can result in an SG instruction clearing this bit, so the architecture ignores the state of this bit when
processing a branch to FNC_RETURN.

The possible values of this bit are:

0
From Non-secure state.

1
From Secure state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1631

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.99 FPCAR, Floating-Point Context Address Register

The FPCAR characteristics are:

Purpose
Holds the location of the unpopulated Floating-point register space allocated on an exception stack frame.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write register located at 0xE000EF38.

Secure software can access the Non-secure version of this register via FPCAR_NS located at 0xE002EF38.
The location 0xE002EF38 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The FPCAR bit assignments are:

02

RES0

331

ADDRESS

ADDRESS, bits [31:3]
Address. The location of the unpopulated Floating-point register space allocated on an exception stack frame.

This field resets to an UNKNOWN value on a Warm reset.

Bits [2:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1632

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.100 FPCCR, Floating-Point Context Control Register

The FPCCR characteristics are:

Purpose
Holds control data for the Floating Point Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write register located at 0xE000EF34.

Secure software can access the Non-secure version of this register via FPCCR_NS located at 0xE002EF34.
The location 0xE002EF34 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The FPCCR bit assignments are:

012

S

3456789101125

RES0

26

TS

2728293031

ASPEN
LSPEN

LSPENS
CLRONRET

CLRONRETS
UFRDY

SPLIMVIOL
MONRDY

LSPACT
USER
THREAD

HFRDY
MMRDY
BFRDY
SFRDY

ASPEN, bit [31]
Automatic state preservation enable. When this bit is set to 1, execution of a Floating-point instruction sets
the CONTROL.FPCA bit to 1.

This bit is banked between Security states.

The possible values of this bit are:

0
Executing a floating-point instruction has no effect on CONTROL.FPCA.

1
Executing a floating-point instruction sets CONTROL.FPCA to 1.

Setting this bit to 1 means the hardware automatically preserves Floating-point context on exception entry
and restores it on exception return. As of version Armv8.1-M of the architecture Arm deprecates setting this
field to 0.

This bit resets to one on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1633

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LSPEN, bit [30]
Lazy Floating-point state preservation enable. Enables lazy Floating-point state preservation.

This bit is not banked between Security states.

The possible values of this bit are:

0
Disable automatic lazy Floating-point state save.

1
Enable automatic lazy Floating-point state save.

Writes to this bit from Non-secure state are ignored if LSPENS is set to 1.

This bit resets to one on a Warm reset.

LSPENS, bit [29]
Lazy Floating-point state preservation enable Secure. This bit controls whether the LSPEN bit is writable
from the Non-secure state. This behaves as RAZ/WI when accessed from the Non-secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0
LSPEN is readable and writable from both Security states.

1
LSPEN is readable from both Security states, but writes to LSPEN are ignored from the Non-secure
state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

CLRONRET, bit [28]
Clear on return. Clear Floating-point context on exception return.

This bit is not banked between Security states.

The possible values of this bit are:

0
Disabled.

1
Enabled.

When set to 1 the Floating-point context registers (S0 to S15, FPSCR, and VPR) are cleared on exception
return (including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT is set to 0. Writes to
this bit from Non-secure state are ignored if CLRONRETS is set to one.

This bit resets to zero on a Warm reset.

CLRONRETS, bit [27]
Clear on return, Secure only. This bit controls whether the CLRONRET bit is writable from the Non-secure
state.

This bit is not banked between Security states.

The possible values of this bit are:

0
The CLRONRET field is accessibly from both Security states.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1634

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The Non-secure view of the CLRONRET field is read-only.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

TS, bit [26]
Treat as Secure. Treat Floating-point registers as Secure enable.

This bit is not banked between Security states.

The possible values of this bit are:

0
Disabled.

1
Enabled.

When set to 0 the Floating-point registers are treated as Non-secure even when the PE is in Secure state
and, therefore, the callee saved registers are never pushed to the stack. If the Floating-point registers never
contain data that needs to be protected, clearing this flag can reduce interrupt latency. As this field changes
how secure stack frames are interpreted, UNPREDICTABLE behavior can result if the state of this bit is not
consistent with the current Secure stacks. Therefore, firmware must take care when modifying this value.
This field behaves as RAZ/WI from the Non-secure state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bits [25:11]
Reserved, RES0.

UFRDY, bit [10]
UsageFault enable. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the UsageFault exception to pending.

This bit is banked between Security states.

The possible values of this bit are:

0
Not able to set the UsageFault exception to pending.

1
Able to set the UsageFault exception to pending.

This bit resets to an UNKNOWN value on a Warm reset.

SPLIMVIOL, bit [9]
Stack pointer limit violation. This bit indicates whether the Floating-point context violates the stack pointer
limit that was active when lazy Floating-point state preservation was activated. SPLIMVIOL modifies the
lazy Floating-point state preservation behavior.

This bit is banked between Security states.

The possible values of this bit are:

0
The existing behavior is retained.

1
The memory accesses associated with the Floating-point state preservation are not performed. However
if the Floating-point state is Secure and FPCCR.TS is set to 1 the registers are still zeroed and the
Floating-point state is lost.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1635

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to an UNKNOWN value on a Warm reset.

MONRDY, bit [8]
DebugMonitor ready. Indicates whether the software executing, when the PE allocated the Floating-point
stack frame, was able to set the DebugMonitor exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
Not able to set the DebugMonitor exception to pending.

1
Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

This bit resets to an UNKNOWN value on a Warm reset.

SFRDY, bit [7]
SecureFault ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the SecureFault exception to pending.

This bit is not banked between Security states.

This bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

BFRDY, bit [6]
BusFault ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the BusFault exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
Not able to set the BusFault exception to pending.

1
Able to set the BusFault exception to pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

MMRDY, bit [5]
MemManage ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the MemManage exception to pending.

This bit is banked between Security states.

The possible values of this bit are:

0
Not able to set the MemManage exception to pending.

1
Able to set the MemManage exception to pending.

This bit resets to an UNKNOWN value on a Warm reset.

HFRDY, bit [4]
HardFault ready. Indicates whether the software executing, when the PE allocated the Floating-point stack

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1636

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

frame, was able to set the HardFault exception to pending. If there is both a Secure HardFault and a
Non-secure HardFault, this bit only applies to the Non-secure HardFault.

This bit is not banked between Security states.

The possible values of this bit are:

0
Not able to set the HardFault exception to pending.

1
Able to set the HardFault exception to pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

THREAD, bit [3]
Thread mode. Indicates the PE mode when it allocated the Floating-point stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0
Handler mode.

1
Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

This bit resets to an UNKNOWN value on a Warm reset.

S, bit [2]
Security. Security status of the Floating-point context. This bit is only present in the Secure version of
the register. This bit is updated whenever lazy Floating-point state preservation is activated, or when a
Floating-point instruction is executed.

This bit is not banked between Security states.

The possible values of this bit are:

0
Indicates the Floating-point context belongs to the Non-secure state.

1
Indicates the Floating-point context belongs to the Secure state.

This bit is RAZ/WI from Non-secure state.

This bit resets to one on a Warm reset.

USER, bit [1]
User privilege. Indicates the privilege level of the software executing when the PE allocated the Floating-point
stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0
Privileged.

1
Unprivileged.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1637

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LSPACT, bit [0]
Lazy state preservation active. Indicates whether lazy Floating-point state preservation is active.

This bit is banked between Security states.

The possible values of this bit are:

0
Lazy state preservation is not active.

1
Lazy state preservation is active.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1638

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.101 FPCXT, Floating-point context payload

The FPCXT characteristics are:

Purpose
Values produced or consumed by instructions that provide access to the Floating-point context.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The FPCXT bit assignments are:

0123456

RES0

7815

RES0

1618

LTPSIZE

192021

RES0

222324

FZ

25

DN

26272830

RES0

31

SFPA
QC

AHP
RMode

FZ16
IDC

IOC
DZC
OFC
UFC

IXC

SFPA, bit [31]
Secure Floating-point active. The value corresponds to CONTROL.SFPA.

Bits [30:28]
Reserved, RES0.

QC, bit [27]
Cumulative saturation bit. The value corresponds to FPSCR.QC.

AHP, bit [26]
Alternative half-precision control bit. The value corresponds to FPSCR.AHP.

DN, bit [25]
Default NaN mode control bit. The value corresponds to FPSCR.DN.

FZ, bit [24]
Flush-to-zero mode control for single and double precision Floating-point. The value corresponds to
FPSCR.FZ.

RMode, bits [23:22]
Rounding mode control field. The value corresponds to FPSCR.RMode.

Bits [21:20]
Reserved, RES0.

FZ16, bit [19]
Flush-to-zero mode control bit on half-precision data-processing instructions. The value corresponds to
FPSCR.FZ16.

LTPSIZE, bits [18:16]
The vector element size that is used when applying low-overhead-loop tail predication to vector instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1639

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:8]
Reserved, RES0.

IDC, bit [7]
Input Denormal cumulative exception bit. The value corresponds to FPSCR.IDC.

Bits [6:5]
Reserved, RES0.

IXC, bit [4]
Inexact cumulative exception bit. The value corresponds to FPSCR.IXC.

UFC, bit [3]
Underflow cumulative exception bit. The value corresponds to FPSCR.UFC.

OFC, bit [2]
Overflow cumulative exception bit. The value corresponds to FPSCR.OFC.

DZC, bit [1]
Divide by Zero cumulative exception bit. The value corresponds to FPSCR.DZC.

IOC, bit [0]
Invalid Operation cumulative exception bit. The value corresponds to FPSCR.IOC.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1640

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.102 FPDSCR, Floating-Point Default Status Control Register

The FPDSCR characteristics are:

Purpose
Holds the default values for the Floating-point status control data that the PE assigns to FPSCR when it
creates a new Floating-point context.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write register located at 0xE000EF3C.

Secure software can access the Non-secure version of this register via FPDSCR_NS located at 0xE002EF3C.
The location 0xE002EF3C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The FPDSCR bit assignments are:

015

RES0

1618

LTPSIZE

192021

RES0

222324

FZ

25

DN

262731

RES0

AHP FZ16
RMode

Bits [31:27]
Reserved, RES0.

AHP, bit [26]
Alternative half-precision. Default value for FPSCR.AHP.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DN, bit [25]
Default NaN. Default value for FPSCR.DN.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

FZ, bit [24]
Flush-to-zero. Default value for FPSCR.FZ.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1641

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

RMode, bits [23:22]
Rounding mode. Default value for FPSCR.RMode.

If the Floating-point Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

Bits [21:20]
Reserved, RES0.

FZ16, bit [19]
Flush-to-zero mode control bit on half-precision data-processing instructions. Default value for FPSCR.FZ16.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

If the Floating-point Extension is implemented without half-precision support, this bit is RES0.

This bit resets to zero on a Warm reset.

LTPSIZE, bits [18:16]
The vector element size used when applying low-overhead-loop tail predication to vector instructions. Default
value for FPSCR.LTPSIZE.

If the Low Overhead Branch Extension is not implemented, this field is RES0.

This field reads as 0x4.

Bits [15:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1642

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.103 FPSCR, Floating-point Status and Control Register

The FPSCR characteristics are:

Purpose
Provides control of the Floating-point unit.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Preface

Writes to FPSCR can have side effects on various aspects of processor operation. All of these side effects are
synchronous to FPSCR write. This means that they are guaranteed not to be visible to earlier instructions in the
execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

Field descriptions

The FPSCR bit assignments are:

0123456

RES0

7815

RES0

1618

LTPSIZE

192021

RES0

222324

FZ

25

DN

262728

V

29

C

30

Z

31

N

QC
AHP

RMode
FZ16

IDC

IOC
DZC
OFC
UFC

IXC

N, bit [31]
Negative condition flag. When updated by a VCMP instruction, this bit indicates whether the result was less
than.

The possible values of this bit are:

0
Compare result was not less than.

1
Compare result was less than.

See VCMP for details.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

Z, bit [30]
Zero condition flag. When updated by a VCMP instruction, this bit indicates whether the result was equal.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1643

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Compare result was not equal.

1
Compare result was equal.

See VCMP for details.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

C, bit [29]
Carry condition flag. Accessed by the VCMP, VADC, and VSBC instructions. For VCMP this bit indicates
whether the result was not less than. In VADC and VSBC this bit is used to hold the carry in/out flag.

The possible values of this bit are:

0
Compare result was less than.

1
Compare result was not less than.

See VCMP, VADC, and VSBC for details.

This bit resets to an UNKNOWN value on a Warm reset.

V, bit [28]
Overflow condition flag. When updated by a VCMP instruction, this bit indicates whether the result was
unordered.

The possible values of this bit are:

0
Compare result was not unordered.

1
Compare result was unordered.

See VCMP for details.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

QC, bit [27]
Cumulative saturation bit. This bit is set to 1 to indicate that an MVE integer operation has saturated since 0
was last written to this bit.

If MVE is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

AHP, bit [26]
Alternative half-precision control bit. This bit controls how the PE interprets 16-bit Floating-point values.

The possible values of this bit are:

0
IEEE half-precision format selected.

1
Alternative half-precision format selected.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1644

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

DN, bit [25]
Default NaN mode control bit. This bit determines whether Floating-point operations propagate NaNs or use
the Default NaN.

The possible values of this bit are:

0
NaN operands propagate through to the output of a Floating-point operation.

1
Any operation involving one of more NaNs returns the Default NaN.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

FZ, bit [24]
Flush-to-zero mode control for single and double precision Floating-point. This bit determines whether
denormal Floating-point values are treated as though they are zero.

The possible values of this bit are:

0
Flush-to-zero mode disabled. Behavior of the Floating-point unit is fully compliant with the IEEE754
standard.

1
Flush-to-zero mode enabled.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

RMode, bits [23:22]
Rounding mode control field. This field determines what rounding mode is applied to Floating-point
operations.

The possible values of this field are:

0b00
Round to Nearest (RN) mode.

0b01
Round towards Plus Infinity (RP) mode.

0b10
Round towards Minus Infinity (RM) mode.

0b11
Round towards Zero (RZ) mode.

If the Floating-point Extension is not implemented, this field is RAZ/WI.

This field resets to an UNKNOWN value on a Warm reset.

Bits [21:20]
Reserved, RES0.

FZ16, bit [19]
Flush-to-zero mode control bit on half-precision data-processing instructions.

The possible values of this bit are:

0
Flush-to-zero mode disabled. Behavior of the Floating-point unit is fully compliant with the IEEE 754
standard.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1645

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Flush-to-zero mode enabled.

The value of this bit applies to both scalar and MVE Floating-point half-precision calculations.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

If the Floating-point Extension is implemented without half-precision support, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

LTPSIZE, bits [18:16]
The vector element size used when applying low-overhead-loop tail predication to vector instructions.

The possible values of this field are:

0b000
8 bits.

0b001
16 bits.

0b010
32 bits.

0b011
64 bits.

0b100
Tail predication not applied.

All other values are reserved.

The loop hardware behaves as if this field had the value 4 (indicating no low-overhead-loop predication) if no
floating-point context is active. This field reads as 4 and ignores writes if MVE is not implemented.

If the Low Overhead Branch Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

Bits [15:8]
Reserved, RES0.

IDC, bit [7]
Input Denormal cumulative exception bit. This sticky flag records whether a Floating-point input denormal
exception has been detected since last cleared.

The possible values of this bit are:

0
Input Denormal exception has not occurred since 0 was last written to this bit.

1
Input Denormal exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [6:5]
Reserved, RES0.

IXC, bit [4]
Inexact cumulative exception bit. This sticky flag records whether a Floating-point inexact exception has
been detected since last cleared.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1646

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Inexact exception has not occurred since 0 was last written to this bit.

1
Inexact exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

UFC, bit [3]
Underflow cumulative exception bit. This sticky flag records whether a Floating-point Underflow exception
has been detected since last cleared.

The possible values of this bit are:

0
Underflow exception has not occurred since 0 was last written to this bit.

1
Underflow exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

OFC, bit [2]
Overflow cumulative exception bit. This sticky flag records whether a Floating-point overflow exception has
been detected since last cleared.

The possible values of this bit are:

0
Overflow exception has not occurred since 0 was last written to this bit.

1
Overflow exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

DZC, bit [1]
Divide by Zero cumulative exception bit. This sticky flag records whether a Floating-point divide by zero
exception has been detected since last cleared.

The possible values of this bit are:

0
Division by Zero exception has not occurred since 0 was last written to this bit.

1
Division by Zero exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

IOC, bit [0]
Invalid Operation cumulative exception bit. This sticky flag records whether a Floating-point invalid operation
exception has been detected since last cleared.

The possible values of this bit are:

0
Invalid Operation exception has not occurred since 0 was last written to this bit.

1
Invalid Operation exception has occurred since 0 was last written to this bit.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1647

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1648

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.104 FP_CIDR0, FP Component Identification Register 0

The FP_CIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FF0.

This register is not banked between Security states.

Field descriptions

The FP_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1649

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.105 FP_CIDR1, FP Component Identification Register 1

The FP_CIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FF4.

This register is not banked between Security states.

Field descriptions

The FP_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1650

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.106 FP_CIDR2, FP Component Identification Register 2

The FP_CIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FF8.

This register is not banked between Security states.

Field descriptions

The FP_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1651

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.107 FP_CIDR3, FP Component Identification Register 3

The FP_CIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FFC.

This register is not banked between Security states.

Field descriptions

The FP_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1652

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.108 FP_COMPn, Flash Patch Comparator Register, n = 0 - 125

The FP_COMP{0..125} characteristics are:

Purpose
Holds an address for comparison.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read/write register located at 0xE0002008 + 4n.

This register is not banked between Security states.

Field descriptions

The FP_COMP{0..125} bit assignments are:

0

BE

131

BPADDR

BPADDR, bits [31:1]
Breakpoint address. Specifies bits[31:1] of the breakpoint instruction address.

BE, bit [0]
Breakpoint enable. Selects between remapping and breakpoint functionality.

The possible values of this bit are:

0
Breakpoint disabled.

1
Breakpoint enabled.

For backwards compatibility, when disabling a breakpoint software must write zero to the whole register.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1653

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.109 FP_CTRL, Flash Patch Control Register

The FP_CTRL characteristics are:

Purpose
Provides FPB implementation information, and the global enable for the FPB unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read/write register located at 0xE0002000.

This register is not banked between Security states.

Field descriptions

The FP_CTRL bit assignments are:

0123

RES0

47811

NUM_LIT

12141527

RES0

2831

REV

NUM_CODE
NUM_CODE

ENABLE
KEY

REV, bits [31:28]
Revision. Flash Patch and Breakpoint Unit architecture revision.

The possible values of this field are:

0b0001
Flash Patch Breakpoint version 2 implemented.

All other values are reserved.

This field is read-only.

This field reads as 0b0001.

Bits [27:15]
Reserved, RES0.

NUM_CODE, bits [14:12,7:4]
Number of implemented code comparators. Indicates the number of implemented instruction address
comparators. Zero indicates no Instruction Address comparators are implemented. The Instruction Address
comparators are numbered from 0 to NUM_CODE - 1.

This field is read-only.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1654

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

NUM_LIT, bits [11:8]
Number of literal comparators. This field is RAZ/WI. Remapping is not supported in Armv8-M.

Reserved, RAZ/WI

Bits [3:2]
Reserved, RES0.

KEY, bit [1]
FP_CTRL write-enable key. Writes to the FP_CTRL are ignored unless KEY is concurrently written to one.

The possible values of this bit are:

0
Concurrent write to FP_CTRL ignored.

1
Concurrent write to FP_CTRL permitted.

This bit reads-as-zero.

ENABLE, bit [0]
Flash Patch global enable. Enables the FPB.

The possible values of this bit are:

0
All FPB functionality disabled.

1
FPB enabled.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1655

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.110 FP_DEVARCH, FPB Device Architecture Register

The FP_DEVARCH characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FBC.

This register is not banked between Security states.

Field descriptions

The FP_DEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1
DEVARCH information present.

This bit reads as one.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1656

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
FPB architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0001
FPB architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA03
FPB architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA03.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1657

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.111 FP_DEVTYPE, FPB Device Type Register

The FP_DEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FCC.

This register is not banked between Security states.

Field descriptions

The FP_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other.

This field reads as 0b0000.

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

This field reads as 0b0000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1658

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.112 FP_LAR, FPB Software Lock Access Register

The FP_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the FPB, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0002FB0.

This register is not banked between Security states.

Field descriptions

The FP_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1659

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.113 FP_LSR, FPB Software Lock Status Register

The FP_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the FPB, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0002FB4.

This register is not banked between Security states.

Field descriptions

The FP_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of this component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side effects.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1660

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1661

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.114 FP_PIDR0, FP Peripheral Identification Register 0

The FP_PIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FE0.

This register is not banked between Security states.

Field descriptions

The FP_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1662

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.115 FP_PIDR1, FP Peripheral Identification Register 1

The FP_PIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FE4.

This register is not banked between Security states.

Field descriptions

The FP_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1663

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.116 FP_PIDR2, FP Peripheral Identification Register 2

The FP_PIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FE8.

This register is not banked between Security states.

Field descriptions

The FP_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1664

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.117 FP_PIDR3, FP Peripheral Identification Register 3

The FP_PIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FEC.

This register is not banked between Security states.

Field descriptions

The FP_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1665

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.118 FP_PIDR4, FP Peripheral Identification Register 4

The FP_PIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FD0.

This register is not banked between Security states.

Field descriptions

The FP_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1666

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.119 FP_PIDR5, FP Peripheral Identification Register 5

The FP_PIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FD4.

This register is not banked between Security states.

Field descriptions

The FP_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1667

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.120 FP_PIDR6, FP Peripheral Identification Register 6

The FP_PIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FD8.

This register is not banked between Security states.

Field descriptions

The FP_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1668

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.121 FP_PIDR7, FP Peripheral Identification Register 7

The FP_PIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FDC.

This register is not banked between Security states.

Field descriptions

The FP_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1669

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.122 FP_REMAP, Flash Patch Remap Register

The FP_REMAP characteristics are:

Purpose
Indicates whether the implementation supports Flash Patch remap and, if it does, holds the target address for
remap.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002004.

This register is not banked between Security states.

Field descriptions

The FP_REMAP bit assignments are:

04

RES0

528

REMAP

293031

RES0

RMPSPT

Bits [31:30]
Reserved, RES0.

RMPSPT, bit [29]
Remap supported. This field is RAZ. Remapping is not supported in Armv8-M.

REMAP, bits [28:5]
Remap address.

Reserved, RES0.

Bits [4:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1670

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.123 HFSR, HardFault Status Register

The HFSR characteristics are:

Purpose
Shows the cause of any HardFaults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000ED2C.

Secure software can access the Non-secure version of this register via HFSR_NS located at 0xE002ED2C.
The location 0xE002ED2C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The HFSR bit assignments are:

0

(0)

1229

RES0

3031

DEBUGEVT VECTTBL
FORCED

DEBUGEVT, bit [31]
Debug event. Indicates when a debug event has occurred.

The possible values of this bit are:

0
No debug event has occurred.

1
Debug event has occurred. The Debug Fault Status Register has been updated.

The PE sets this bit to 1 when a breakpoint is encountered and Halting debug is disabled and a DebugMonitor
exception cannot be taken.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

FORCED, bit [30]
Forced. Indicates that a fault with configurable priority has been escalated to a HardFault exception, because
it could not be made active, because of priority, or because it was disabled.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1671

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No priority escalation has occurred.

1
Processor has escalated a configurable-priority exception to HardFault.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bits [29:2]
Reserved, RES0.

VECTTBL, bit [1]
Vector table. Indicates when a fault has occurred because of a vector table read error on exception processing.

The possible values of this bit are:

0
No vector table read fault has occurred.

1
Vector table read fault has occurred.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1672

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.124 ICIALLU, Instruction Cache Invalidate All to PoU

The ICIALLU characteristics are:

Purpose
Invalidate all instruction caches to PoU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF50.

Secure software can access the Non-secure version of this register via ICIALLU_NS located at 0xE002EF50.
The location 0xE002EF50 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ICIALLU bit assignments are:

031

Ignored

Ignored, bits [31:0]
The value written to this field is ignored. Ignored.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1673

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.125 ICIMVAU, Instruction Cache line Invalidate by Address to PoU

The ICIMVAU characteristics are:

Purpose
Invalidate instruction cache line by address to PoU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF58.

Secure software can access the Non-secure version of this register via ICIMVAU_NS located at
0xE002EF58. The location 0xE002EF58 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ICIMVAU bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1674

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.126 ICSR, Interrupt Control and State Register

The ICSR characteristics are:

Purpose
Controls and provides status information for NMI, PendSV, SysTick and interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED04.

Secure software can access the Non-secure version of this register via ICSR_NS located at 0xE002ED04.
The location 0xE002ED04 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The ICSR bit assignments are:

On a read:

08

VECTACTIVE

910

RES0

111220

VECTPENDING

21

(0)

2223242526272829

(0)

3031

PENDNMISET
PENDNMICLR
PENDSVSET

PENDSVCLR
PENDSTSET

RETTOBASE
ISRPENDING
ISRPREEMPT

STTNS
PENDSTCLR

On a write:

08

VECTACTIVE

910

RES0

111220

VECTPENDING

21

(0)

2223242526272829

(0)

3031

PENDNMISET
PENDNMICLR
PENDSVSET

PENDSVCLR
PENDSTSET

RETTOBASE
ISRPENDING
ISRPREEMPT

STTNS
PENDSTCLR

PENDNMISET, bit [31], on a write
Pend NMI set. Allows the NMI exception to be set as pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Sets the NMI exception pending.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1675

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If both PENDNMISET and PENDNMICLR are written to one simultaneously, the pending state of the NMI
exception becomes UNKNOWN.

This bit is write-one-to-set. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

PENDNMISET, bit [31], on a read
Pend NMI set. Indicates whether the NMI exception is pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
NMI exception not pending.

1
NMI exception pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

PENDNMICLR, bit [30]
Pend NMI clear. Allows the NMI exception pending state to be cleared.

This bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

Bit [29]
Reserved, RES0.

PENDSVSET, bit [28], on a write
Pend PendSV set. Allows the PendSV exception for the selected Security state to be set as pending.

This bit is banked between Security states.

The possible values of this bit are:

0
No effect.

1
Sets the PendSV exception pending.

If both PENDSVSET and PENDSVCLR are written to one simultaneously, the pending state of the associated
PendSV exception becomes UNKNOWN.

This bit is write-one-to-set. Writes of zero are ignored.

PENDSVSET, bit [28], on a read
Pend PendSV set. Indicates whether the PendSV for the selected Security state exception is pending.

This bit is banked between Security states.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1676

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
PendSV exception not pending.

1
PendSV exception pending.

This bit resets to zero on a Warm reset.

PENDSVCLR, bit [27]
Pend PendSV clear. Allows the PendSV exception pending state to be cleared for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
No effect.

1
Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

PENDSTSET, bit [26], on a write
Pend SysTick set. Allows the SysTick for the selected Security state exception to be set as pending.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Sets the SysTick exception for the selected Security state pending.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

PENDSTSET, bit [26], on a read
Pend SysTick set. Indicates whether the SysTick for the selected Security state exception is pending.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
SysTick exception not pending.

1
SysTick exception pending.

If both PENDSTSET and PENDSTCLR are written to one simultaneously, the pending state of the associated
SysTick exception becomes UNKNOWN.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1677

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

PENDSTCLR, bit [25]
Pend SysTick clear. Allows the SysTick exception pending state to be cleared for the selected Security state.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

STTNS, bit [24]
SysTick Targets Non-secure. Controls whether in a single SysTick implementation, the SysTick is Secure or
Non-secure.

This bit is not banked between Security states.

The possible values of this bit are:

0
SysTick is Secure.

1
SysTick is Non-secure.

Behaves as RAZ/WI when either no SysTick or both SysTick timers are implemented. In a PE with the Main
Extension and Security Extension this bit is RES0. This bit is RAZ/WI when accessed from the Non-secure
state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

ISRPREEMPT, bit [23]
Interrupt preempt. Indicates whether a pending exception will be handled on exit from Debug state.

This bit is not banked between Security states.

The possible values of this bit are:

0
Will not handle.

1
Will handle a pending exception.

The value of this bit is UNKNOWN when not in Debug state.

This bit is read-only.

If neither Halting debug or the Main Extension are implemented, this bit is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1678

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

ISRPENDING, bit [22]
Interrupt pending. Indicates whether an external interrupt, generated by the NVIC, is pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
No external interrupt pending.

1
External interrupt pending.

The value of DHCSR.C_MASKINTS is ignored.

This bit is read-only.

If neither Halting debug or the Main Extension are implemented, this bit is RES0.

Bit [21]
Reserved, RES0.

VECTPENDING, bits [20:12]
Vector pending. The exception number of the highest priority pending and enabled interrupt.

This field is not banked between Security states.

The possible values of this field are:

Zero
No pending and enabled exception.

Nonzero
Exception number.

From Armv8.1-M this value is 1 when accessed as Non-secure and a Secure exception is the highest priority
pending exception.

If DHCSR.C_MASKINTS is set, the PendSV, SysTick, and configurable external interrupts are masked and
will not be shown as pending in VECTPENDING.

This field is read-only.

RETTOBASE, bit [11]
Return to base. In Handler mode, indicates whether there is more than one active exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
There is more than one active exception.

1
There is only one active exception.

In Thread mode the value of this bit is UNKNOWN.

This bit is read-only.

If the Main Extension is not implemented, this bit is RES0.

Bits [10:9]
Reserved, RES0.

VECTACTIVE, bits [8:0]
Vector active. The exception number of the current executing exception.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1679

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field is not banked between Security states.

The possible values of this field are:

Zero
Thread mode.

Nonzero
Exception number.

This value is the same as the IPSR Exception number. When the IPSR value has been set to 1 because of a
function call to Non-secure state, this field is also set to 1.

This field is read-only.

If neither Halting debug or the Main Extension are implemented, this field is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1680

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.127 ICTR, Interrupt Controller Type Register

The ICTR characteristics are:

Purpose
Provides information about the interrupt controller.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, it is IMPLEMENTATION DEFINED if this register is accessible through unprivileged DAP
requests when DAUTHCTRL.UIDAPEN (either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000E004.

Secure software can access the Non-secure version of this register via ICTR_NS located at 0xE002E004.
The location 0xE002E004 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ICTR bit assignments are:

03431

RES0

INTLINESNUM

Bits [31:4]
Reserved, RES0.

INTLINESNUM, bits [3:0]
Interrupt line set number. The number, n, of the highest implemented NVIC_IPRn register is the minimum of
((8 * INTLINESNUM) + 7) and 123. For all other NVIC registers, the number, n, of the highest implemented
register is equal to INTLINESNUM.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1681

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.128 ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose
Provides information about the IMPLEMENTATION DEFINED features of the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED4C.

Secure software can access the Non-secure version of this register via ID_AFR0_NS located at 0xE002ED4C.
The location 0xE002ED4C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_AFR0 bit assignments are:

03

IMPDEF0

47

IMPDEF1

811

IMPDEF2

1215

IMPDEF3

1631

RES0

Bits [31:16]
Reserved, RES0.

IMPDEFm, bits [4m+3:4m], for m = 0 to 3
IMPLEMENTATION DEFINED. IMPLEMENTATION DEFINED meaning.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1682

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.129 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose
Provides top level information about the debug system.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED48.

Secure software can access the Non-secure version of this register via ID_DFR0_NS located at 0xE002ED48.
The location 0xE002ED48 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_DFR0 bit assignments are:

019

RES0

2023

MProfDbg

2427

RES0

2831

UDE

UDE, bits [31:28]
Unprivileged Debug Extension. Indicates support for the Unprivileged Debug Extension.

The possible values of this field are:

0b0000
Unprivileged Debug Extension is not implemented.

0b0001
Unprivileged Debug Extension is implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:24]
Reserved, RES0.

MProfDbg, bits [23:20]
M-Profile debug. Indicates the supported M-Profile debug architecture.

The possible values of this field are:

0b0000
Halting debug is not implemented.

0b0010
Armv8-M Debug architecture including Halting debug is implemented.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1683

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [19:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1684

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.130 ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED60.

Secure software can access the Non-secure version of this register via ID_ISAR0_NS located at
0xE002ED60. The location 0xE002ED60 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR0 bit assignments are:

03

RES0

47

BitCount

811

BitField

1215

CmpBranch

1619

Coproc

2023

Debug

2427

Divide

2831

RES0

Bits [31:28]
Reserved, RES0.

Divide, bits [27:24]
Divide. Indicates the supported Divide instructions.

The possible values of this field are:

0b0001
Supports SDIV and UDIV instructions.

All other values are reserved.

This field reads as 0b0001.

Debug, bits [23:20]
Debug. Indicates the implemented Debug instructions.

The possible values of this field are:

0b0001
Supports BKPT instruction.

All other values are reserved.

This field reads as 0b0001.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1685

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Coproc, bits [19:16]
Coprocessor. Indicates the supported coprocessor instructions.

The possible values of this field are:

0b0000
No coprocessor instructions support other than FPU or MVE.

0b0100
Coprocessor instructions supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CmpBranch, bits [15:12]
Compare and branch. Indicates the supported combined Compare and Branch instructions.

The possible values of this field are:

0b0001
Supports CBNZ and CBZ instructions.

0b0011
Supports CBNZ and CBZ instructions along with non-predicated low overhead looping (WLS, DLS, LE
and LCTP) and branch future (BF, BFX, BFL, BFLX, and BFCSEL) instructions.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

BitField, bits [11:8]
Bit field. Indicates the supported bit field instructions.

The possible values of this field are:

0b0001
BFC, BFI, SBFX, and UBFX supported.

All other values are reserved.

This field reads as 0b0001.

BitCount, bits [7:4]
Bit count. Indicates the supported bit count instructions.

The possible values of this field are:

0b0001
CLZ supported.

All other values are reserved.

This field reads as 0b0001.

Bits [3:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1686

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.131 ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED64.

Secure software can access the Non-secure version of this register via ID_ISAR1_NS located at
0xE002ED64. The location 0xE002ED64 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR1 bit assignments are:

011

RES0

1215

Extend

1619

IfThen

2023

Immediate

2427

Interwork

2831

RES0

Bits [31:28]
Reserved, RES0.

Interwork, bits [27:24]
Interworking. Indicates the implemented interworking instructions.

The possible values of this field are:

0b0010
BLX, BX, and loads to PC interwork.

All other values are reserved.

This field reads as 0b0010.

Immediate, bits [23:20]
Immediate. Indicates the implemented for data-processing instructions with long immediates.

The possible values of this field are:

0b0001
ADDW, MOVW, MOVT, and SUBW supported.

0b0010
Same as 0b0001.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1687

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

IfThen, bits [19:16]
If-Then. Indicates the implemented If-Then instructions.

The possible values of this field are:

0b0001
IT instruction supported.

All other values are reserved.

This field reads as 0b0001.

Extend, bits [15:12]
Extend. Indicates the implemented Extend instructions.

The possible values of this field are:

0b0001
SXTB, SXTH, UXTB, and UXTH.

0b0010
Adds SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB, UXTAB16, and UXTAH, DSP
Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [11:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1688

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.132 ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED68.

Secure software can access the Non-secure version of this register via ID_ISAR2_NS located at
0xE002ED68. The location 0xE002ED68 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR2 bit assignments are:

03

LoadStore

47

MemHint

8111215

Mult

1619

MultS

2023

MultU

2427

RES0

2831

Reversal

MultiAccessInt

Reversal, bits [31:28]
Reversal. Indicates the implemented Reversal instructions.

The possible values of this field are:

0b0010
REV, REV16, REVSH and RBIT instructions supported.

All other values are reserved.

This field reads as 0b0010.

Bits [27:24]
Reserved, RES0.

MultU, bits [23:20]
Multiply unsigned. Indicates the implemented advanced unsigned Multiply instructions.

The possible values of this field are:

0b0001
UMULL and UMLAL.

0b0010
Adds UMAAL, DSP Extension only.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1689

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

MultS, bits [19:16]
Multiply signed. Indicates the implemented advanced signed Multiply instructions.

The possible values of this field are:

0b0001
SMULL and SMLAL.

0b0011
Adds all saturating and DSP signed multiplies, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Mult, bits [15:12]
Multiplies. Indicates the implemented additional Multiply instructions.

The possible values of this field are:

0b0010
MUL, MLA, and MLS.

All other values are reserved.

This field reads as 0b0010.

MultiAccessInt, bits [11:8]
Multi-access instructions. Indicates the support for interruptible multi-access instructions.

The possible values of this field are:

0b0001
LDM and STM instructions are restartable.

0b0010
LDM and STM instructions, and if Armv8.1-M is implemented the CLRM instruction, are continuable.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

MemHint, bits [7:4]
Memory hints. Indicates the implemented Memory hint instructions.

The possible values of this field are:

0b0011
PLI and PLD instructions implemented.

All other values are reserved.

This field reads as 0b0011.

LoadStore, bits [3:0]
Load/store. Indicates the implemented additional load/store instructions.

The possible values of this field are:

0b0010
Supports load-acquire, store-release, and exclusive load and store instructions.

All other values are reserved.

This field reads as 0b0010.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1690

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.133 ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED6C.

Secure software can access the Non-secure version of this register via ID_ISAR3_NS located at
0xE002ED6C. The location 0xE002ED6C is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR3 bit assignments are:

03

Saturate

47

SIMD

811

SVC

1215

SynchPrim

1619

TabBranch

2023

T32Copy

2427

TrueNOP

2831

RES0

Bits [31:28]
Reserved, RES0.

TrueNOP, bits [27:24]
True no-operation. Indicates the implemented true NOP instructions.

The possible values of this field are:

0b0001
NOP instruction and compatible hints implemented.

All other values are reserved.

This field reads as 0b0001.

T32Copy, bits [23:20]
T32 copy. Indicates the support for T32 non flag-setting MOV instructions.

The possible values of this field are:

0b0001
Encoding T1 of MOV (register) supports copying low register to low register.

All other values are reserved.

This field reads as 0b0001.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1691

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

TabBranch, bits [19:16]
Table branch. Indicates the implemented Table Branch instructions.

The possible values of this field are:

0b0001
TBB and TBH implemented.

All other values are reserved.

This field reads as 0b0001.

SynchPrim, bits [15:12]
Synchronization primitives. Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented
synchronization primitive instructions.

The possible values of this field are:

0b0001
LDREX, STREX, LDREXB, STREXB, LDREXH, STREXH, and CLREX implemented.

All other values are reserved.

This field reads as 0b0001.

SVC, bits [11:8]
Supervisor Call. Indicates the implemented SVC instructions.

The possible values of this field are:

0b0001
SVC instruction implemented.

All other values are reserved.

This field reads as 0b0001.

SIMD, bits [7:4]
Single-instruction, multiple-data. Indicates the implemented SIMD instructions.

The possible values of this field are:

0b0001
SSAT, USAT, and Q-bit implemented.

0b0011
Adds all packed arithmetic and GE-bits, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Saturate, bits [3:0]
Saturate. Indicates the implemented saturating instructions.

The possible values of this field are:

0b0000
None implemented.

0b0001
QADD, QDADD, QDSUB, QSUB, and Q-bit implemented, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1692

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.134 ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED70.

Secure software can access the Non-secure version of this register via ID_ISAR4_NS located at
0xE002ED70. The location 0xE002ED70 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR4 bit assignments are:

03

Unpriv

47

WithShifts

811

Writeback

1215

RES0

1619

Barrier

20232427

PSR_M

2831

RES0

SyncPrim_frac

Bits [31:28]
Reserved, RES0.

PSR_M, bits [27:24]
Program Status Registers M. Indicates the implemented M profile instructions to modify the PSRs.

The possible values of this field are:

0b0001
M profile forms of CPS, MRS, and MSR implemented.

All other values are reserved.

This field reads as 0b0001.

SyncPrim_frac, bits [23:20]
Synchronization primitives fractional. Used in conjunction with ID_ISAR3.SynchPrim to indicate the
implemented synchronization primitive instructions.

The possible values of this field are:

0b0011
LDREX, STREX, CLREX, LDREXB, LDREXH, STREXB, and STREXH implemented.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1693

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as 0b0011.

Barrier, bits [19:16]
Barrier. Indicates the implemented Barrier instructions.

The possible values of this field are:

0b0001
CSDB, DMB, DSB, ISB, PSSBB and SSBB barrier instructions implemented.

All other values are reserved.

This field reads as 0b0001.

Bits [15:12]
Reserved, RES0.

Writeback, bits [11:8]
Writeback. Indicates the support for write-back addressing modes.

The possible values of this field are:

0b0001
All write-back addressing modes supported.

All other values are reserved.

This field reads as 0b0001.

WithShifts, bits [7:4]
With shifts. Indicates the support for write-back addressing modes.

The possible values of this field are:

0b0011
Support for constant shifts on load/store and other instructions.

All other values are reserved.

This field reads as 0b0011.

Unpriv, bits [3:0]
Unprivileged. Indicates the implemented unprivileged instructions.

The possible values of this field are:

0b0010
LDRBT, LDRHT, LDRSBT, LDRSHT, LDRT, STRBT, STRHT, and STRT implemented.

All other values are reserved.

This field reads as 0b0010.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1694

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.135 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED74.

Secure software can access the Non-secure version of this register via ID_ISAR5_NS located at
0xE002ED74. The location 0xE002ED74 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR5 bit assignments are:

019

RES0

2023

PACBTI

2431

RES0

Bits [31:24]
Reserved, RES0.

PACBTI, bits [23:20]
Pointer authentication algorithm. Indicates which version of QARMA or an IMPLEMENTATION DEFINED
algorithm is implemented for address authentication in the PE.

The possible values of this field are:

0b0000
Address authentication and branch target identification is not implemented.

0b0001
Address authentication using the QARMA5 algorithm is implemented. Applies to all pointer
authentication instructions.

0b0010
Address authentication using an IMPLEMENTATION DEFINED algorithm is implemented. Applies to all
pointer authentication instructions.

0b0100
Address authentication using the QARMA3 algorithm is implemented. Applies to all pointer
authentication instructions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1695

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

If the PACBTI Extension is not implemented, this field is RES0.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [19:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1696

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.136 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED50.

Secure software can access the Non-secure version of this register via ID_MMFR0_NS located at
0xE002ED50. The location 0xE002ED50 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR0 bit assignments are:

03

RES0

47

PMSA

811

OuterShr

1215

ShareLvl

1619

TCM

2023

AuxReg

2431

RES0

Bits [31:24]
Reserved, RES0.

AuxReg, bits [23:20]
Auxiliary Registers. Indicates support for Auxiliary Control Registers.

The possible values of this field are:

0b0000
No Auxiliary Control Registers.

0b0001
Auxiliary Control Registers supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

TCM, bits [19:16]
Tightly Coupled Memories. Indicates support for Tightly Coupled Memories (TCMs).

The possible values of this field are:

0b0000
None supported.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1697

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
TCMs supported with IMPLEMENTATION DEFINED control.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

ShareLvl, bits [15:12]
Shareability Levels. Indicates the number of Shareability levels implemented.

The possible values of this field are:

0b0000
One level of Shareability implemented.

0b0001
Two levels of Shareability implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

OuterShr, bits [11:8]
Outermost Shareability. Indicates the outermost Shareability domain implemented.

The possible values of this field are:

0b0000
Implemented as Non-cacheable.

0b0001
Implemented with hardware coherency support.

0b1111
Shareability ignored.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

PMSA, bits [7:4]
Protected memory system architecture. Indicates support for the protected memory system architecture
(PMSA).

The possible values of this field are:

0b0100
Supports PMSAv8.

All other values are reserved.

This field reads as 0b0100.

Bits [3:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1698

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.137 ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED54.

Secure software can access the Non-secure version of this register via ID_MMFR1_NS located at
0xE002ED54. The location 0xE002ED54 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR1 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1699

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.138 ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED58.

Secure software can access the Non-secure version of this register via ID_MMFR2_NS located at
0xE002ED58. The location 0xE002ED58 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR2 bit assignments are:

023

RES0

2427

WFIStall

2831

RES0

Bits [31:28]
Reserved, RES0.

WFIStall, bits [27:24]
WFI stall. Indicates the support for Wait For Interrupt (WFI) stalling.

The possible values of this field are:

0b0000
WFI never stalls.

0b0001
WFI has the ability to stall.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [23:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1700

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.139 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED5C.

Secure software can access the Non-secure version of this register via ID_MMFR3_NS located at
0xE002ED5C. The location 0xE002ED5C is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR3 bit assignments are:

03

CMaintVA

47

CMaintSW

811

BPMaint

1231

RES0

Bits [31:12]
Reserved, RES0.

BPMaint, bits [11:8]
Branch predictor maintenance. Indicates the supported branch predictor maintenance.

The possible values of this field are:

0b0000
None supported.

0b0001
Support for invalidate all of branch predictors.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CMaintSW, bits [7:4]
Cache maintenance set/way. Indicates the supported cache maintenance operations by set/way.

The possible values of this field are:

0b0000
None supported.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1701

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
Maintenance by set/way operations supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CMaintVA, bits [3:0]
Cache maintenance by address. Indicates the supported cache maintenance operations by address.

The possible values of this field are:

0b0000
None supported.

0b0001
Maintenance by address and instruction cache invalidate all supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1702

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.140 ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose
Gives top-level information about the instruction set supported by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED40.

Secure software can access the Non-secure version of this register via ID_PFR0_NS located at 0xE002ED40.
The location 0xE002ED40 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_PFR0 bit assignments are:

03

State0

47

State1

827

RES0

2831

RAS

RAS, bits [31:28]
RAS Extension. Identifies which version of the RAS extension is implemented.

The possible values of this field are:

0b0000
No RAS extension.

0b0010
Version 1 of the RAS extension implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:8]
Reserved, RES0.

State1, bits [7:4]
T32 instruction set support.

The possible values of this field are:

0b0011
T32 instruction set including Thumb-2 Technology implemented.

All other values are reserved.

This field reads as 0b0011.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1703

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

State0, bits [3:0]
A32 instruction set support.

The possible values of this field are:

0b0000
A32 instruction set not implemented.

All other values are reserved.

This field reads as 0b0000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1704

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.141 ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose
Gives information about the programmers’ model and Extensions support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED44.

Secure software can access the Non-secure version of this register via ID_PFR1_NS located at 0xE002ED44.
The location 0xE002ED44 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_PFR1 bit assignments are:

03

RES0

47

Security

811

MProgMod

1231

RES0

Bits [31:12]
Reserved, RES0.

MProgMod, bits [11:8]
M programmers’ model. Identifies support for the M-Profile programmers’ model support.

The possible values of this field are:

0b0010
Two-stack programmers’ model.

All other values are reserved.

This field reads as 0b0010.

Security, bits [7:4]
Security. Identifies whether the Security Extension is implemented.

The possible values of this field are:

0b0000
Security Extension not implemented.

0b0001
Security Extension implemented.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1705

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0011
Security Extension implemented with state handling instructions (VSCCLRM, CLRM, FPCXT access
instructions and disabling SG Thread mode re-entrancy).

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1706

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.142 IPSR, Interrupt Program Status Register

The IPSR characteristics are:

Purpose
Provides privileged access to the current exception number field.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The IPSR bit assignments are:

08

Exception

931

RES0

Bits [31:9]
Reserved, RES0.

Exception, bits [8:0]
Exception number. Holds the exception number of the currently-executing exception, or zero for Thread
mode.

The possible values of this field are:

Zero
PE in Thread mode.

Nonzero
PE in Handler mode in given exception number. On a function call from Secure state the value is set to 1
to ensure that the Non-secure state cannot determine which exception handler is executing.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1707

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.143 ITM_CIDR0, ITM Component Identification Register 0

The ITM_CIDR0 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FF0.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1708

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.144 ITM_CIDR1, ITM Component Identification Register 1

The ITM_CIDR1 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FF4.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1709

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.145 ITM_CIDR2, ITM Component Identification Register 2

The ITM_CIDR2 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FF8.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1710

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.146 ITM_CIDR3, ITM Component Identification Register 3

The ITM_CIDR3 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FFC.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1711

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.147 ITM_DEVARCH, ITM Device Architecture Register

The ITM_DEVARCH characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FBC.

This register is not banked between Security states.

Field descriptions

The ITM_DEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1
DEVARCH information present.

This bit reads as one.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1712

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
ITM architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0001
ITM architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA01
ITM architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA01.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1713

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.148 ITM_DEVTYPE, ITM Device Type Register

The ITM_DEVTYPE characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FCC.

This register is not banked between Security states.

Field descriptions

The ITM_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other. Only permitted if the MAJOR field reads as 0x0.

0x4
Associated with a Bus, stimulus derived from bus activity. Only permitted if the MAJOR field reads as
0x3.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1714

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

0x3
Trace Source.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1715

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.149 ITM_LAR, ITM Software Lock Access Register

The ITM_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the ITM, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but
unprivileged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0000FB0.

This register is not banked between Security states.

Field descriptions

The ITM_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1716

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.150 ITM_LSR, ITM Software Lock Status Register

The ITM_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the ITM, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0000FB4.

This register is not banked between Security states.

Field descriptions

The ITM_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1717

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Lock clear. Software writes are permitted to the registers of this component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Warm reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1718

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.151 ITM_PIDR0, ITM Peripheral Identification Register 0

The ITM_PIDR0 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FE0.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1719

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.152 ITM_PIDR1, ITM Peripheral Identification Register 1

The ITM_PIDR1 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FE4.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1720

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.153 ITM_PIDR2, ITM Peripheral Identification Register 2

The ITM_PIDR2 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FE8.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1721

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.154 ITM_PIDR3, ITM Peripheral Identification Register 3

The ITM_PIDR3 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FEC.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1722

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.155 ITM_PIDR4, ITM Peripheral Identification Register 4

The ITM_PIDR4 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FD0.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1723

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.156 ITM_PIDR5, ITM Peripheral Identification Register 5

The ITM_PIDR5 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FD4.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1724

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.157 ITM_PIDR6, ITM Peripheral Identification Register 6

The ITM_PIDR6 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FD8.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1725

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.158 ITM_PIDR7, ITM Peripheral Identification Register 7

The ITM_PIDR7 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FDC.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1726

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.159 ITM_STIMn, ITM Stimulus Port Register, n = 0 - 255

The ITM_STIM{0..255} characteristics are:

Purpose
Provides the interface for generating Instrumentation packets.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but
unprivileged writes are ignored if ITM_TPR.PRIVMASK[n DIV 8] is set to one.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

All writes are ignored if ITM_TCR.ITMENA == 0 or ITM_TER{n DIV 32}.STIMENA[n MOD 32] == 0.

This register is word, halfword, and byte accessible.

Accesses that are not word aligned are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000000 + 4n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ITM_STIM{0..255} bit assignments are:

On a read:

01231

RES0

DISABLED FIFOREADY

On a write:

031

STIMULUS

STIMULUS, bits [31:0], on a write
Stimulus data. Data to write to the stimulus port output buffer, for forwarding as an Instrumentation packet.
The size of write access determines the type of Instrumentation packet generated.

Bits [31:2], on a read
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1727

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

DISABLED, bit [1], on a read
Disabled. Indicates whether the stimulus port is enabled or disabled.

The possible values of this bit are:

0
Stimulus port and ITM are enabled.

1
Stimulus port or ITM is disabled.

FIFOREADY, bit [0], on a read
FIFO ready. Indicates whether the stimulus port can accept data.

The possible values of this bit are:

0
Stimulus port cannot accept data.

1
Stimulus port can accept at least one word.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1728

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.160 ITM_TCR, ITM Trace Control Register

The ITM_TCR characteristics are:

Purpose
Configures and controls transfers through the ITM interface.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but
unprivileged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000E80.

This register is not banked between Security states.

Field descriptions

The ITM_TCR bit assignments are:

01234567

RES0

8910111215

RES0

1622

TraceBusID

232431

RES0

BUSY
GTSFREQ

TSPrescale
STALLENA

SWOENA

ITMENA
TSENA
SYNCENA
TXENA

Bits [31:24]
Reserved, RES0.

BUSY, bit [23]
ITM busy. Indicates whether the ITM is currently processing events.

The possible values of this bit are:

0
ITM is not processing any events.

1
Events present and being drained.

Events means the ITM is generating or processing any of:

• Packets generated by the ITM from writes to Stimulus Ports.

• Other packets generated by the ITM itself.

• Packets generated by the DWT.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1729

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is read-only.

TraceBusID, bits [22:16]
Trace bus identity. Identifier for multi-source trace stream formatting. If multi-source trace is in use, the
debugger must write a unique nonzero trace ID value to this field.

The possible values of this field are:

0x00
Multi-source trace not in use.

0x01-0x6F
Unique trace ID value to be used for ITM trace packets.

All other values are reserved. If the ITM is the only trace source in the system, this field might be RAZ.

This field resets to an UNKNOWN value on a Cold reset.

Bits [15:12]
Reserved, RES0.

GTSFREQ, bits [11:10]
Global timestamp frequency. Defines how often the ITM generates a global timestamp, based on the global
timestamp clock frequency, or disables generation of global timestamps.

The possible values of this field are:

0b00
Disable generation of Global Timestamp packets.

0b01
Generate timestamp request whenever the ITM detects a change in global timestamp counter bits [N-1:7].
This is approximately every 128 cycles.

0b10
Generate timestamp request whenever the ITM detects a change in global timestamp counter bits
[N-1:13]. This is approximately every 8192 cycles.

0b11
Generate a timestamp after every packet, if the output FIFO is empty.

N is the size of the global timestamp counter.

If the implementation does not support global timestamping then these bits are reserved, RAZ/WI.

This field resets to zero on a Cold reset.

TSPrescale, bits [9:8]
Timestamp prescale. Local timestamp prescaler, used with the trace packet reference clock.

The possible values of this field are:

0b00
No prescaling.

0b01
Divide by 4.

0b10
Divide by 16.

0b11
Divide by 64.

If the processor does not implement the timestamp prescaler then these bits are reserved, RAZ/WI.

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1730

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [7:6]
Reserved, RES0.

STALLENA, bit [5]
Stall enable. Stall the PE to guarantee delivery of Data Trace packets.

The possible values of this bit are:

0
Drop Hardware Source packets and generate an Overflow packet if the ITM output is stalled.

1
Stall the PE to guarantee delivery of Data Trace packets.

If stalling is not implemented, this bit is RAZ/WI.

SWOENA, bit [4]
SWO enable. Enables asynchronous clocking of the timestamp counter.

The possible values of this bit are:

0
Timestamp counter uses the processor system clock.

1
Timestamp counter uses asynchronous clock from the TPIU interface. The timestamp counter is held in
reset while the output line is idle.

Which clocking modes are implemented is IMPLEMENTATION DEFINED. If the implementation does not
support both modes this bit is either RAZ or RAO, to indicate the implemented mode.

This bit resets to an UNKNOWN value on a Cold reset.

TXENA, bit [3]
Transmit enable. Enables forwarding of hardware event packets from the DWT unit or PMU to the ITM for
output to the TPIU.

The possible values of this bit are:

0
Disabled.

1
Enabled.

It is IMPLEMENTATION DEFINED whether the DWT or PMU discards packets that cannot be forwarded to
the ITM.

This bit resets to zero on a Cold reset.

Note

If a debugger changes this bit from 0 to 1, the DWT or PMU might forward a hardware event packet
that it has previously generated.

SYNCENA, bit [2]
Synchronization enable. Enables Synchronization packet transmission for a synchronous TPIU.

The possible values of this bit are:

0
Disabled.

1
Enabled.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1731

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Note

If a debugger sets this bit to 1 it must also configure DWT_CTRL.SYNCTAP for the correct
synchronization speed.

TSENA, bit [1]
Timestamp enable. Enables Local timestamp generation.

The possible values of this bit are:

0
Disabled.

1
Enabled.

This bit resets to zero on a Cold reset.

ITMENA, bit [0]
ITM enable. Enables the ITM.

The possible values of this bit are:

0
Disabled.

1
Enabled.

This is the global enable for the ITM unit. A debugger must set this bit to 1 to permit writes to all Stimulus
Port registers.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1732

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.161 ITM_TERn, ITM Trace Enable Register, n = 0 - 7

The ITM_TER{0..7} characteristics are:

Purpose
Provide an individual enable bit for each ITM_STIM register.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000E00 + 4n.

This register is not banked between Security states.

Field descriptions

The ITM_TER{0..7} bit assignments are:

031

STIMENA

STIMENA, bits [31:0]
Stimulus enable. For STIMENA[m] in ITM_TERn, controls whether stimulus port ITM_STIM<32n+m> is
enabled.

The possible values of each bit are:

0
Stimulus port (32n + m) disabled.

1
Stimulus port (32n + m) enabled.

Bits corresponding to unimplemented stimulus ports are RAZ/WI. Unprivileged writes to ITM_TERn do not
update STIMENA[m] if ITM_TPR.PRIVMASK[(32n+m) DIV 8] is set to 1.

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1733

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.162 ITM_TPR, ITM Trace Privilege Register

The ITM_TPR characteristics are:

Purpose
Controls which stimulus ports can be accessed by unprivileged code.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but
unprivileged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000E40.

This register is not banked between Security states.

Field descriptions

The ITM_TPR bit assignments are:

031

PRIVMASK

PRIVMASK, bits [31:0]
Privilege mask. For PRIVMASK[m], defines the access permissions of stimulus ports ITM_STIM<8m> to
ITM_STIM<8m+7> inclusive.

The possible values of each bit are:

0
Unprivileged access permitted.

1
Privileged access only.

Bits corresponding to unimplemented stimulus ports are RAZ/WI.

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1734

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.163 LO_BRANCH_INFO, Loop and branch tracking information

The LO_BRANCH_INFO characteristics are:

Purpose
Holds the cached loop end point and branching information.

Usage constraints
This register is not accessible from software.

Configurations
Present only if version Armv8.1-M of the architecture and LOB are implemented.

This cache is not implemented otherwise.

Attributes
67-bit read/write register.

This register is not banked between Security states.

Field descriptions

The LO_BRANCH_INFO bit assignments are:

0131

JUMP_ADDR

32

BF

3363

END_ADDR

64

LF

6566

BTI VALID
T16IND

BTI, bit [66]
When set this field indicates that the BF is a BTI setting instruction. EPSR.B will be set to one when BTI is
enabled (see CONTROL register) and the LO_BRANCH_INFO.VALID bit is set.

T16IND, bit [65]
When set this field indicates that BF is a 16-bit T32 indirect branch. For BF and link instructions, this flag
calculates the offset of the return address set in LR from the branch point.

LF, bit [64]
Link / forever. If BF is set, this field indicates that the link register is populated with a return address at the
point the branch is taken. If BF is clear, this flag indicates a forever loop that does not decrement LR at the
end of each loop iteration.

END_ADDR, bits [63:33]
The partial address of either the last instruction in a low-overhead-loop, or an upcoming branch set by a
Branch Future instruction. If the VALID bit is set and this field matches the address of the next instruction, a
branch back to the start of the loop is triggered (as specified by the JUMP_ADDR field).

BF, bit [32]
Indicates that the value in this register originates from a BF instruction.

JUMP_ADDR, bits [31:1]
The address to jump to when an end address match is detected.

VALID, bit [0]
The cached loop information in the rest of this register is only valid if this bit is set. The PE is permitted to
clear this bit and invalidate the cache at any point.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1735

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.164 LR, Link Register

The LR characteristics are:

Purpose
Exception and procedure call link register.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The LR bit assignments are:

031

VALUE

VALUE, bits [31:0]
Link register. 32-bit link register updated to hold a return address, FNC_RETURN or EXC_RETURN on a
function call or exception entry. LR can be used as a general-purpose register.

This field resets to an UNKNOWN value on Warm reset when the Main Extension is not implemented.

This field resets to 0xFFFFFFFF on a Warm reset if the Main Extension is implemented.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1736

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.165 MAIR_ATTR, Memory Attribute Indirection Register Attributes

The MAIR_ATTR characteristics are:

Purpose
Defines the memory attribute encoding for use in the MPU_MAIR0 and MPU_MAIR1.

Usage constraints
None.

Configurations
All.

Attributes
8-bit payload.

Field descriptions

The MAIR_ATTR bit assignments are:

When Outer != 0b0000:

03

Inner

47

Outer

When Outer == 0b0000:

01

RES0

2347

Outer

Device

Outer, bits [7:4]
Outer attributes. Specifies the Outer memory attributes.

The possible values of this field are:

0b0000
Device memory.

0b00RW
Normal memory, Outer Write-Through transient (RW!=0b00).

0b0100
Normal memory, Outer Non-cacheable.

0b01RW
Normal memory, Outer Write-Back Transient (RW!=0b00).

0b10RW
Normal memory, Outer Write-Through Non-transient.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1737

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11RW
Normal memory, Outer Write-Back Non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

Device, bits [3:2], when Outer == 0b0000
Device attributes. Specifies the memory attributes for Device.

The possible values of this field are:

0b00
Device-nGnRnE.

0b01
Device-nGnRE.

0b10
Device-nGRE.

0b11
Device-GRE.

Bits [1:0], when Outer == 0b0000
Reserved, RES0.

Inner, bits [3:0], when Outer != 0b0000
Inner attributes. Specifies the Inner memory attributes.

The possible values of this field are:

0b0000
UNPREDICTABLE.

0b00RW
Normal memory, Inner Write-Through Transient (RW!=0b00).

0b0100
Normal memory, Inner Non-cacheable.

0b01RW
Normal memory, Inner Write-Back Transient (RW!=0b00).

0b10RW
Normal memory, Inner Write-Through Non-transient.

0b11RW
Normal memory, Inner Write-Back Non-transient.

R and W specify the inner read and write allocation policy: 0 = do not allocate, 1 = allocate.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1738

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.166 MMFAR, MemManage Fault Address Register

The MMFAR characteristics are:

Purpose
Shows the address of the memory location that caused an MPU fault.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED34.

Secure software can access the Non-secure version of this register via MMFAR_NS located at 0xE002ED34.
The location 0xE002ED34 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MMFAR bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Data address for an MemManage fault. This register is updated with the address of a location that produced a
MemManage fault. The MMFSR shows the cause of the fault, and whether this field is valid. This field is
valid only when MMFSR.MMFARVALID is set, otherwise it is UNKNOWN.

In implementations without unique BFAR, SFAR and MMFAR registers, the value of this register is
UNKNOWN if BFSR.BFARVALID or SFSR.SFARVALID is set.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1739

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.167 MMFSR, MemManage Fault Status Register

The MMFSR characteristics are:

Purpose
Shows the status of MPU faults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
8-bit read/write-one-to-clear register located at 0xE000ED28.

Secure software can access the Non-secure version of this register via MMFSR_NS located at 0xE002ED28.
The location 0xE002ED28 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

This register is part of CFSR.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MMFSR bit assignments are:

012

(0)

3456

(0)

7

MMFARVALID
MLSPERR
MSTKERR

IACCVIOL
DACCVIOL
MUNSTKERR

MMFARVALID, bit [7]
MMFAR valid flag. Indicates validity of the MMFAR register.

The possible values of this bit are:

0
MMFAR content not valid.

1
MMFAR content valid.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1740

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bit [6]
Reserved, RES0.

MLSPERR, bit [5]
MemManage lazy Floating-point state preservation error flag. Records whether a MemManage fault occurred
during lazy Floating-point state preservation.

The possible values of this bit are:

0
No MemManage occurred.

1
MemManage occurred.

This bit resets to zero on a Warm reset.

MSTKERR, bit [4]
MemManage stacking error flag. Records whether a derived MemManage fault occurred during exception
entry stacking.

The possible values of this bit are:

0
No derived MemManage occurred.

1
Derived MemManage occurred during exception entry.

This bit resets to zero on a Warm reset.

MUNSTKERR, bit [3]
MemManage unstacking error flag. Records whether a derived MemManage fault occurred during exception
return unstacking.

The possible values of this bit are:

0
No derived MemManage fault occurred.

1
Derived MemManage fault occurred during exception return.

This bit resets to zero on a Warm reset.

Bit [2]
Reserved, RES0.

DACCVIOL, bit [1]
Data access violation flag. Records whether a data access violation has occurred.

The possible values of this bit are:

0
No MemManage fault on data access has occurred.

1
MemManage fault on data access has occurred.

A DACCVIOL will be accompanied by an MMFAR update.

This bit resets to zero on a Warm reset.

IACCVIOL, bit [0]
Instruction access violation. Records whether an instruction related memory access violation has occurred.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1741

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No MemManage fault on instruction access has occurred.

1
MemManage fault on instruction access has occurred.

An IACCVIOL is only recorded if a faulted instruction is executed.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1742

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.168 MPU_CTRL, MPU Control Register

The MPU_CTRL characteristics are:

Purpose
Enables the MPU and, when the MPU is enabled, controls whether the system address map is enabled as
a background region for privileged accesses, and whether the MPU is enabled for HardFaults, NMIs, and
exception handlers when FAULTMASK is set to 1.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000ED94.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_CTRL_NS located at
0xE002ED94. The location 0xE002ED94 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MPU_CTRL bit assignments are:

012331

RES0

PRIVDEFENA
HFNMIENA

ENABLE

Bits [31:3]
Reserved, RES0.

PRIVDEFENA, bit [2]
Privileged default enable. Controls whether the system address map is enabled for privileged software.

The possible values of this bit are:

0
Use of the system address map disabled. Any instruction or data access that does not access a defined
memory region faults.

1
Enables the system address map as a memory region for privileged accesses only.

When the ENABLE bit is set to 0, the PE ignores the PRIVDEFENA bit. If no regions are enabled and the
PRIVDEFENA and ENABLE bits are set to 1, only privileged code can execute from the system address
map.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1743

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

HFNMIENA, bit [1]
HardFault, NMI enable. Controls whether the PE with a requested execution priority of less than 0 accesses
memory with the MPU enabled or disabled. This applies to accesses by the handlers of HardFault and NMI,
and all accesses when FAULTMASK is set to 1.

The possible values of this bit are:

0
MPU disabled for these accesses.

1
MPU enabled for these accesses.

If HFNMIENA is set to 1 when ENABLE is set to 0, behavior is UNPREDICTABLE.

This bit resets to zero on a Warm reset.

ENABLE, bit [0]
Enable. Enables the MPU.

The possible values of this bit are:

0
The MPU is disabled.

1
The MPU is enabled.

Disabling the MPU, by setting the ENABLE bit to 0, means that privileged and unprivileged accesses use the
system address map.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1744

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.169 MPU_MAIR0, MPU Memory Attribute Indirection Register 0

The MPU_MAIR0 characteristics are:

Purpose
Along with MPU_MAIR1, provides the memory attribute encodings corresponding to the AttrIndx values.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000EDC0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_MAIR0_NS located at
0xE002EDC0. The location 0xE002EDC0 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MPU_MAIR0 bit assignments are:

07

Attr0

815

Attr1

1623

Attr2

2431

Attr3

Attrm, bits [8m+7:8m], for m = 0 to 3
Attribute m. Memory attribute encoding for MPU regions with an AttrIndx of m.

The possible values of this field are:

All
See MAIR_ATTR for encoding.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1745

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.170 MPU_MAIR1, MPU Memory Attribute Indirection Register 1

The MPU_MAIR1 characteristics are:

Purpose
Along with MPU_MAIR0, provides the memory attribute encodings corresponding to the AttrIndx values.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000EDC4.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_MAIR1_NS located at
0xE002EDC4. The location 0xE002EDC4 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MPU_MAIR1 bit assignments are:

07

Attr4

815

Attr5

1623

Attr6

2431

Attr7

Attrm, bits [8(m-4)+7:8(m-4)], for m = 4 to 7
Attribute m. Memory attribute encoding for MPU regions with an AttrIndx of m.

The possible values of this field are:

All
See MAIR_ATTR for encoding.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1746

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.171 MPU_RBAR, MPU Region Base Address Register

The MPU_RBAR characteristics are:

Purpose
Provides indirect read and write access to the base address of the currently selected MPU region for the
selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000ED9C.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RBAR_NS located at
0xE002ED9C. The location 0xE002ED9C is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register provides access to the configuration of the MPU region selected by MPU_RNR.REGION for the
appropriate Security state. The field descriptions apply to the currently selected region.

Field descriptions

The MPU_RBAR bit assignments are:

0

XN

1234

SH

531

BASE

AP[2:1]

BASE, bits [31:5]
Base address. Contains bits [31:5] of the lower inclusive limit of the selected MPU memory region. This
value is zero extended to provide the base address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the BASE bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

SH, bits [4:3]
Shareability. Defines the Shareability domain of this region for Normal memory.

The possible values of this field are:

0b00
Non-shareable.

0b10
Outer Shareable.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1747

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11
Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

This field resets to an UNKNOWN value on a Warm reset.

AP[2:1], bits [2:1]
Access permissions. Defines the access permissions for this region.

The possible values of this field are:

0b00
Read/write by privileged code only.

0b01
Read/write by any privilege level.

0b10
Read-only by privileged code only.

0b11
Read-only by any privilege level.

This field resets to an UNKNOWN value on a Warm reset.

XN, bit [0]
Execute-never. Defines whether code can be executed from this region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

1
Execution not permitted.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1748

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.172 MPU_RBAR_An, MPU Region Base Address Register Alias, n = 1 - 3

The MPU_RBAR_A{1..3} characteristics are:

Purpose
Provides indirect read and write access to the base address of the MPU region selected by
MPU_RNR[7:2]:(n[1:0]) for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000EDA4 + 8(n-1).

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RBAR_An_NS located at
0xE002EDA4 + 8(n-1). The location 0xE002EDA4 + 8(n-1) is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register is an alias of the MPU_RBAR register and provides access to the configuration of the MPU region
selected by MPU_RNR.REGION had REGION[1:0] been set to n[1:0].

Field descriptions

The MPU_RBAR_A{1..3} bit assignments are:

0

XN

1234

SH

531

BASE

AP[2:1]

BASE, bits [31:5]
Base address. Contains bits [31:5] of the lower inclusive limit of the selected MPU memory region. This
value is zero extended to provide the base address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the BASE bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

SH, bits [4:3]
Shareability. Defines the Shareability domain of this region for Normal memory.

The possible values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1749

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b00
Non-shareable.

0b10
Outer Shareable.

0b11
Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

This field resets to an UNKNOWN value on a Warm reset.

AP[2:1], bits [2:1]
Access permissions. Defines the access permissions for this region.

The possible values of this field are:

0b00
Read/write by privileged code only.

0b01
Read/write by any privilege level.

0b10
Read-only by privileged code only.

0b11
Read-only by any privilege level.

This field resets to an UNKNOWN value on a Warm reset.

XN, bit [0]
Execute-never. Defines whether code can be executed from this region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

1
Execution not permitted.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1750

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.173 MPU_RLAR, MPU Region Limit Address Register

The MPU_RLAR characteristics are:

Purpose
Provides indirect read and write access to the limit address of the currently selected MPU region for the
selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000EDA0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RLAR_NS located at
0xE002EDA0. The location 0xE002EDA0 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register provides access to the configuration of the MPU region selected by MPU_RNR.REGION for the
appropriate Security state. The field descriptions apply to the currently selected region.

Field descriptions

The MPU_RLAR bit assignments are:

0

EN

13

AttrIndx

4531

LIMIT

PXN

LIMIT, bits [31:5]
Limit address. Contains bits [31:5] of the upper inclusive limit of the selected MPU memory region. This
value is postfixed with 0x1F to provide the limit address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the LIMIT bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

PXN, bit [4]
Privileged execute-never. Defines whether code can be executed from this privileged region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

1
Execution from a privileged mode is not permitted.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1751

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

AttrIndx, bits [3:1]
Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

This field resets to an UNKNOWN value on a Warm reset.

EN, bit [0]
Enable. Region enable.

The possible values of this bit are:

0
Region disabled.

1
Region enabled.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1752

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.174 MPU_RLAR_An, MPU Region Limit Address Register Alias, n = 1 - 3

The MPU_RLAR_A{1..3} characteristics are:

Purpose
Provides indirect read and write access to the limit address of the currently selected MPU region selected by
MPU_RNR[7:2]:(n[1:0]) for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000EDA8 + 8(n-1).

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RLAR_An_NS located at
0xE002EDA8 + 8(n-1). The location 0xE002EDA8 + 8(n-1) is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register is an alias of the MPU_RLAR register and provides access to the configuration of the MPU region
selected by MPU_RNR.REGION had REGION[1:0] been set to n[1:0].

Field descriptions

The MPU_RLAR_A{1..3} bit assignments are:

0

EN

13

AttrIndx

4531

LIMIT

PXN

LIMIT, bits [31:5]
Limit address. Contains bits [31:5] of the upper inclusive limit of the selected MPU memory region. This
value is postfixed with 0x1F to provide the limit address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the LIMIT bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

PXN, bit [4]
Privileged execute-never. Defines whether code can be executed from this privileged region.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1753

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Execution only permitted if read permitted.

1
Execution from a privileged mode is not permitted.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

AttrIndx, bits [3:1]
Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

This field resets to an UNKNOWN value on a Warm reset.

EN, bit [0]
Enable. Region enable.

The possible values of this bit are:

0
Region disabled.

1
Region enabled.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1754

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.175 MPU_RNR, MPU Region Number Register

The MPU_RNR characteristics are:

Purpose
Selects the region currently accessed by MPU_RBAR and MPU_RLAR.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
If no MPU regions are implemented, this register is RAZ/WI.

Attributes
32-bit read/write register located at 0xE000ED98.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RNR_NS located at
0xE002ED98. The location 0xE002ED98 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MPU_RNR bit assignments are:

07

REGION

831

RES0

Bits [31:8]
Reserved, RES0.

REGION, bits [7:0]
Region number. Indicates the memory region accessed by MPU_RBAR and MPU_RLAR.

Writing a value corresponding to an unimplemented region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1755

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.176 MPU_TYPE, MPU Type Register

The MPU_TYPE characteristics are:

Purpose
The MPU Type Register indicates how many regions the MPU for the selected Security state supports.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED90.

Secure software can access the Non-secure version of this register via MPU_TYPE_NS located at
0xE002ED90. The location 0xE002ED90 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

Field descriptions

The MPU_TYPE bit assignments are:

017

RES0

815

DREGION

1631

RES0

SEPARATE

Bits [31:16]
Reserved, RES0.

DREGION, bits [15:8]
Data regions. Number of regions supported by the MPU.

If this field reads-as-zero, the PE does not implement an MPU for the selected Security state.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [7:1]
Reserved, RES0.

SEPARATE, bit [0]
Separate. Indicates support for separate instructions and data address regions.

Armv8-M only supports unified MPU regions.

This bit reads as zero.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1756

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.177 MSPLIM, Main Stack Pointer Limit Register

The MSPLIM characteristics are:

Purpose
Holds the lower limit of the Main stack pointer.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The MSPLIM bit assignments are:

02

RES0

331

LIMIT

LIMIT, bits [31:3]
Stack limit. Bits [31:3] of the Main stack pointer limit address for the selected Security state.

Many instructions and exception entry will generate an exception if the appropriate stack pointer would be
updated to a value lower than this limit. If the Main Extension is not implemented, the Non-secure MSPLIM
is RES0.

This field resets to zero on a Warm reset.

Bits [2:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1757

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.178 MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose
Describes the features provided by the Floating-point Extension.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000EF40.

Secure software can access the Non-secure version of this register via MVFR0_NS located at 0xE002EF40.
The location 0xE002EF40 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The MVFR0 bit assignments are:

03

SIMDReg

47

FPSP

811

FPDP

1215

RES0

1619

FPDivide

2023

FPSqrt

2427

RES0

2831

FPRound

FPRound, bits [31:28]
Floating-point rounding modes. Indicates the rounding modes supported by the Floating-point Extension.

The possible values of this field are:

0b0000
Not supported.

0b0001
All rounding modes supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:24]
Reserved, RES0.

FPSqrt, bits [23:20]
Floating-point square root. Indicates the support for Floating-point square root operations.

The possible values of this field are:

0b0000
Not supported.

0b0001
Supported.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1758

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPDivide, bits [19:16]
Floating-point divide. Indicates the support for Floating-point divide operations.

The possible values of this field are:

0b0000
Not supported.

0b0001
Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [15:12]
Reserved, RES0.

FPDP, bits [11:8]
Floating-point double-precision. Indicates support for Floating-point double-precision operations.

The possible values of this field are:

0b0000
Not supported.

0b0010
Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPSP, bits [7:4]
Floating-point single-precision. Indicates support for Floating-point single-precision operations.

The possible values of this field are:

0b0000
Not supported.

0b0010
Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

SIMDReg, bits [3:0]
SIMD registers. Indicates size of Floating-Point Extension register file.

The possible values of this field are:

0b0001
16 x 64-bit registers.

All other values are reserved.

This field reads as 0b0001.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1759

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.179 MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose
Describes the features provided by the Floating-point Extension.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000EF44.

Secure software can access the Non-secure version of this register via MVFR1_NS located at 0xE002EF44.
The location 0xE002EF44 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The MVFR1 bit assignments are:

03

FPFtZ

47

FPDNaN

811

MVE

1219

RES0

2023

FP16

2427

FPHP

2831

FMAC

FMAC, bits [31:28]
Fused multiply accumulate. Indicates whether the Floaing-point Extension implements the fused multiply
accumulate instructions.

The possible values of this field are:

0b0000
Not supported.

0b0001
Implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPHP, bits [27:24]
Floating-point half-precision conversion. Indicates whether the Floating-point Extension implements
half-precision Floating-point conversion instructions.

The possible values of this field are:

0b0000
Not supported.

0b0001
Half-precision to single-precision implemented.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1760

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0010
Half-precision to single and double-precision implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FP16, bits [23:20]
Floating-point half-precision data processing. Indicates whether the Floating-point Extension implements
half-precision floating-point data processing instructions.

The possible values of this field are:

0b0000
No Half-precision data processing support.

0b0001
Half-precision data processing instructions supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [19:12]
Reserved, RES0.

MVE, bits [11:8]
Indicates support for M-profile vector extension.

The possible values of this field are:

0b0000
Not supported.

0b0001
Supported, no Floating-point.

0b0010
Supported, with single-precision and half-precision Floating-point.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPDNaN, bits [7:4]
Floating-point default NaN. Indicates whether the Floating-point Extension implementation supports NaN
propagation.

The possible values of this field are:

0b0000
Not supported.

0b0001
Propagation of NaN values supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPFtZ, bits [3:0]
Floating-point flush-to-zero. Indicates whether subnormals are always flushed-to-zero.

The possible values of this field are:

0b0000
Not supported.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1761

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
Full denormalized numbers arithmetic supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1762

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.180 MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose
Describes the features provided by the Floating-point Extension.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000EF48.

Secure software can access the Non-secure version of this register via MVFR2_NS located at 0xE002EF48.
The location 0xE002EF48 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The MVFR2 bit assignments are:

03

RES0

47

FPMisc

831

RES0

Bits [31:8]
Reserved, RES0.

FPMisc, bits [7:4]
Floating-point miscellaneous. Indicates support for miscellaneous Floating-point features.

The possible values of this field are:

0b0000
Floating-point extensions not implemented.

0b0100
Selection, directed conversion to integer, VMINNM and VMAXNM supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1763

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.181 NSACR, Non-secure Access Control Register

The NSACR characteristics are:

Purpose
Defines the Non-secure access permissions for the Floating-point Extension and coprocessors CP0 to CP7. If
MVE is implemented this register Specifies the Non-secure access permissions for MVE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED8C.

If the Security Extension is not implemented this register returns a value of 0x00000CFF.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The NSACR bit assignments are:

0123456789

RES0

10111231

RES0

CP11
CP10

CP7
CP6
CP5

CP0
CP1
CP2
CP3

CP4

Bits [31:12]
Reserved, RES0.

CP11, bit [11]
CP11 access. Enables Non-secure access to the Floating-point Extension and MVE.

Programming with a different value than that used for CP10 is UNPREDICTABLE.

If neither the Floating-point Extension or MVE are implemented, this bit is RAZ/WI.

This bit resets to an Architecturally UNKNOWN value on a Warm reset.

CP10, bit [10]
CP10 access. Enables Non-secure access to the Floating-point Extension and MVE.

The possible values of this bit are:

0
Non-secure accesses to the Floating-point Extension or MVE, unless otherwise specified, generate a
NOCP UsageFault.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1764

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Non-secure access to the Floating-point Extension or MVE permitted.

If neither the Floating-point Extension or MVE are implemented, this bit is RAZ/WI.

This bit resets to an Architecturally UNKNOWN value on a Warm reset.

Bits [9:8]
Reserved, RES0.

CPm, bit [m], for m = 0 to 7
CPm access. Enables Non-secure access to coprocessor CPm.

The possible values of this field are:

0
Non-secure accesses to this coprocessor generate a NOCP UsageFault.

1
Non-secure access to this coprocessor permitted.

A CPm bit is RAZ/WI if CPm is:

• Not implemented.

• Correspond to a coprocessor that is hardwired to operate in a single Security state.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1765

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.182 NVIC_IABRn, Interrupt Active Bit Register, n = 0 - 15

The NVIC_IABR{0..15} characteristics are:

Purpose
For each group of 32 interrupts, shows the active state of each interrupt.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000E300 + 4n.

Secure software can access the Non-secure version of this register via NVIC_IABRn_NS located at
0xE002E300 + 4n. The location 0xE002E300 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_IABR{0..15} bit assignments are:

031

ACTIVE

ACTIVE, bits [31:0]
Active state. For ACTIVE[m] in NVIC_IABRn, indicates the active state for interrupt 32n+m.

The possible values of each bit are:

0
Interrupt not active.

1
Interrupt is active.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1766

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.183 NVIC_ICERn, Interrupt Clear Enable Register, n = 0 - 15

The NVIC_ICER{0..15} characteristics are:

Purpose
Clears or reads the enabled state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000E180 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ICERn_NS located at
0xE002E180 + 4n. The location 0xE002E180 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ICER{0..15} bit assignments are:

031

CLRENA

CLRENA, bits [31:0], on a write
Clear enable. For CLRENA[m] in NVIC_ICERn, allows interrupt 32n + m to be disabled.

The possible values of each bit are:

0
No effect.

1
Disable interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

CLRENA, bits [31:0], on a read
Clear enable. For CLRENA[m] in NVIC_ICERn, indicates whether interrupt 32n + m is enabled.

The possible values of each bit are:

0
Interrupt 32n + m disabled.

1
Interrupt 32n + m enabled.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1767

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.184 NVIC_ICPRn, Interrupt Clear Pending Register, n = 0 - 15

The NVIC_ICPR{0..15} characteristics are:

Purpose
Clears or reads the pending state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000E280 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ICPRn_NS located at
0xE002E280 + 4n. The location 0xE002E280 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ICPR{0..15} bit assignments are:

031

CLRPEND

CLRPEND, bits [31:0], on a write
Clear pending. For CLRPEND[m] in NVIC_ICPRn, allows interrupt 32n + m to be unpended.

The possible values of each bit are:

0
No effect.

1
Clear pending state of interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

CLRPEND, bits [31:0], on a read
Clear pending. For CLRPEND[m] in NVIC_ICPRn, indicates whether interrupt 32n + m is pending.

The possible values of each bit are:

0
Interrupt 32n + m is not pending.

1
Interrupt 32n + m is pending.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1768

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.185 NVIC_IPRn, Interrupt Priority Register, n = 0 - 123

The NVIC_IPR{0..123} characteristics are:

Purpose
Sets or reads interrupt priorities.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000E400 + 4n.

Secure software can access the Non-secure version of this register via NVIC_IPRn_NS located at
0xE002E400 + 4n. The location 0xE002E400 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The NVIC_IPR{0..123} bit assignments are:

07

PRI_N0

815

PRI_N1

1623

PRI_N2

2431

PRI_N3

PRI_Nm, bits [8m+7:8m], for m = 0 to 3
Priority ’N’+m. For register NVIC_IPRn, this field indicates and allows modification of the priority of
interrupt number 4n+m, or is RES0 if the PE does not implement this interrupt.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

If interrupt number 4n+m targets Secure state, this field is RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1769

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.186 NVIC_ISERn, Interrupt Set Enable Register, n = 0 - 15

The NVIC_ISER{0..15} characteristics are:

Purpose
Enables or reads the enabled state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-set register located at 0xE000E100 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ISERn_NS located at
0xE002E100 + 4n. The location 0xE002E100 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ISER{0..15} bit assignments are:

031

SETENA

SETENA, bits [31:0], on a write
Set enable. For SETENA[m] in NVIC_ISERn, allows interrupt 32n + m to be set enabled.

The possible values of each bit are:

0
No effect.

1
Enable interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

SETENA, bits [31:0], on a read
Set enable. For SETENA[m] in NVIC_ISERn, indicates whether interrupt 32n + m is enabled.

The possible values of each bit are:

0
Interrupt 32n + m disabled.

1
Interrupt 32n + m enabled.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1770

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.187 NVIC_ISPRn, Interrupt Set Pending Register, n = 0 - 15

The NVIC_ISPR{0..15} characteristics are:

Purpose
Enables or reads the pending state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-set register located at 0xE000E200 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ISPRn_NS located at
0xE002E200 + 4n. The location 0xE002E200 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ISPR{0..15} bit assignments are:

031

SETPEND

SETPEND, bits [31:0], on a write
Set pending. For SETPEND[m] in NVIC_ISPRn, allows interrupt 32n + m to be set pending.

The possible values of each bit are:

0
No effect.

1
Pend interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field is write-one-to-set. Writes of zero are ignored.

This field resets to zero on a Warm reset.

SETPEND, bits [31:0], on a read
Set pending. For SETPEND[m] in NVIC_ISPRn, indicates whether interrupt 32n + m is pending.

The possible values of each bit are:

0
Interrupt 32n + m is not pending.

1
Interrupt 32n + m pending.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1771

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1772

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.188 NVIC_ITNSn, Interrupt Target Non-secure Register, n = 0 - 15

The NVIC_ITNS{0..15} characteristics are:

Purpose
For each group of 32 interrupts, determines whether each interrupt targets Non-secure or Secure state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000E380 + 4n.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The NVIC_ITNS{0..15} bit assignments are:

031

ITNS

ITNS, bits [31:0]
Interrupt Targets Non-secure. For ITNS[m] in NVIC_ITNSn, this field indicates and allows modification of
the target Security state for interrupt 32n+m.

The possible values of each bit are:

0
Interrupt targets Secure state.

1
Interrupt targets Non-secure state.

Bits corresponding to unimplemented interrupts are RES0. It is IMPLEMENTATION DEFINED whether
individual bits are WI and have an IMPLEMENTATION DEFINED constant value. Where an interrupt is
configured to target Secure state, accesses to the associated fields in Non-secure versions of the NVIC_IABR,
NVIC_ICER, NVIC_ISER, NVIC_ICPR, NVIC_IPR and NVIC_ISPR are RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1773

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.189 PAC_KEY_P_n, Pointer Authentication Key Privileged, n = 0 - 3

The PAC_KEY_P_{0..3} characteristics are:

Purpose
Holds word n of the key used for PAC calculation in Privileged software.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if the PACBTI Extension is implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PAC_KEY_P_{0..3} bit assignments are:

031

VALUE

VALUE, bits [31:0]
Pointer authentication key, word n. Holds bits[31 + 32n:32n] of the 128-bit key.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1774

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.190 PAC_KEY_U_n, Pointer Authentication Key Unprivileged, n = 0 - 3

The PAC_KEY_U_{0..3} characteristics are:

Purpose
Holds word n of the key used for PAC calculation in Unprivileged software.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if the PACBTI Extension is implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PAC_KEY_U_{0..3} bit assignments are:

031

VALUE

VALUE, bits [31:0]
Pointer authentication key, word n. Holds bits[31 + 32n:32n] of the 128-bit key.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1775

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.191 PC, Program Counter

The PC characteristics are:

Purpose
Holds the current Program Counter value.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The PC bit assignments are:

031

VALUE

VALUE, bits [31:0]
Program Counter. Holds the address of the current instruction.

Software can refer to PC as R15.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1776

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.192 PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status Register

The PMU_AUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
Performance Monitoring Units.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FB8.

This register is not banked between Security states.

Field descriptions

The PMU_AUTHSTATUS bit assignments are:

01

NSID

2345

SID

67

SNID

815

RES0

161718192021

SUID

22232431

RES0

SUNID
NSUNID

NSNID
NSUID

Bits [31:24]
Reserved, RES0.

SUNID, bits [23:22]
Secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive debug is
allowed for the Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Non-invasive Debug not implemented.

0b01
Reserved.

0b10
Secure Non-invasive debug prohibited.

0b11
Secure Non-invasive debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1777

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SUID, bits [21:20]
Secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for the
Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Debug not implemented.

0b01
Reserved.

0b10
Secure halting debug prohibited.

0b11
Secure halting debug allowed in unprivileged mode.

This reflects the value of UnprivHaltingDebugAllowed(TRUE) && !SecureHaltingDebugAllowed().

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

NSUNID, bits [19:18]
Non-secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive Debug is
allowed for the Non-secure state.

The possible values of this field are:

0b00
Unprivileged Non-invasive debug not implemented.

0b01
Reserved.

0b10
Non-secure Non-invasive debug prohibited.

0b11
Non-secure Non-invasive debug allowed in unprivileged mode.

If the Main Extension is not implemented, this field is RES0.

NSUID, bits [17:16]
Non-secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for
the Non-secure state.

The possible values of this field are:

0b00
Unprivileged halting debug not implemented.

0b01
Reserved.

0b10
Non-secure halting debug prohibited.

0b11
Non-secure halting debug allowed in unprivileged mode.

This reflects the value of UnprivHaltingDebugAllowed(FALSE) && !HaltingDebugAllowed().

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

Bits [15:8]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1778

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SNID, bits [7:6]
Secure Non-invasive Debug. Indicates whether Secure non-invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure non-invasive debug prohibited.

0b11
Security Extension implemented and Secure non-invasive debug allowed.

SID, bits [5:4]
Secure Invasive Debug. Indicates whether Secure invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure invasive debug prohibited.

0b11
Security Extension implemented and Secure invasive debug allowed.

NSNID, bits [3:2]
Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure non-invasive debug prohibited.

0b11
Non-secure non-invasive debug allowed.

NSID, bits [1:0]
Non-secure Invasive Debug. Indicates whether Non-secure invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure invasive debug prohibited.

0b11
Non-secure invasive debug allowed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1779

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.193 PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Register

The PMU_CCFILTR characteristics are:

Purpose
This register is reserved for future use.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE000347C.

This register is not banked between Security states.

Field descriptions

The PMU_CCFILTR bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1780

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.194 PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register

The PMU_CCNTR characteristics are:

Purpose
Holds the value of the cycle counter, which counts processor clock cycles.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE000307C.

This register is not banked between Security states.

Preface

This register is an alias of the DWT_CYCCNT register.

Field descriptions

The PMU_CCNTR bit assignments are:

031

CCNT

CCNT, bits [31:0]
Cycle count. The cycle count increments on every processor clock cycle.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1781

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.195 PMU_CIDR0, Performance Monitoring Unit Component Identification Register 0

The PMU_CIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FF0.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
Preamble.

This field reads as 0x0D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1782

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.196 PMU_CIDR1, Performance Monitoring Unit Component Identification Register 1

The PMU_CIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FF4.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
Component class.

This field reads as 0x9.

PRMBL_1, bits [3:0]
Preamble.

This field reads as 0x0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1783

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.197 PMU_CIDR2, Performance Monitoring Unit Component Identification Register 2

The PMU_CIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FF8.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
Preamble.

This field reads as 0x05.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1784

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.198 PMU_CIDR3, Performance Monitoring Unit Component Identification Register 3

The PMU_CIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FFC.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
Preamble.

This field reads as 0xB1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1785

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.199 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear Register

The PMU_CNTENCLR characteristics are:

Purpose
Disables the Cycle Count Register, PMU_CCNTR, and any implemented event counters PMU_EVCNTR<n>.
Reading this register shows which counters are enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C20.

This register is not banked between Security states.

Field descriptions

The PMU_CNTENCLR bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR disable bit. Disables the cycle counter register.

The possible values of this bit are:

0
When read, means the cycle counter is disabled. When written, has no effect.

1
When read, means the cycle counter is enabled. When written, disables the cycle counter.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter PMU_EVCNTR<n> disable bit. Disables PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that PMU_EVCNTR<n> is disabled. When written, has no effect.

1
When read, means that PMU_EVCNTR<n> event counter is enabled. When written, disables
PMU_EVCNTR<n>.

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1786

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1787

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.200 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Register

The PMU_CNTENSET characteristics are:

Purpose
Enables the Cycle Count Register, PMU_CCNTR, and any implemented event counters PMU_EVCNTR<n>.
Reading this register shows which counters are enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C00.

This register is not banked between Security states.

Field descriptions

The PMU_CNTENSET bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR enable bit. Enables the cycle counter register.

The possible values of this bit are:

0
When read, means the cycle counter is disabled. When written, has no effect.

1
When read, means the cycle counter is enabled. When written, enables the cycle counter.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter PMU_EVCNTR<n> enable bit. Enables PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that PMU_EVCNTR<n> is disabled. When written, has no effect.

1
When read, means that PMU_EVCNTR<n> event counter is enabled. When written, enables
PMU_EVCNTR<n>.

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1788

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1789

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.201 PMU_CTRL, Performance Monitoring Unit Control Register

The PMU_CTRL characteristics are:

Purpose
Configures and controls the Performance Monitoring Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003E04.

This register is not banked between Security states.

Field descriptions

The PMU_CTRL bit assignments are:

0

E

1

P

2

C

34

RES0

5

DP

68

RES0

910

(0)

111231

RES0

TRO FZO

Bits [31:12]
Reserved, RES0.

TRO, bit [11]
Trace-on-overflow. Enable trace-on-overflow.

The possible values of this bit are:

0
Trace-on-overflow disabled.

1
Trace whenever any of the first eight counters overflows an 8-bit value.

This bit resets to an UNKNOWN value on a Warm reset.

Bit [10]
Reserved, RES0.

FZO, bit [9]
Freeze-on-overflow. Stops events being counted once PMU_OVSCLR or PMU_OVSSET is nonzero.

The possible values of this bit are:

0
This bit has no effect on event counting.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1790

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
While any bit of PMU_OVSCLR.Pn or PMU_OVSSET.Pn is nonzero, event counters do not count
events.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [8:6]
Reserved, RES0.

DP, bit [5]
Controls whether the cycle counter is disabled in Secure state. This bit is an alias of the DWT_CTRL.CYCDISS
bit.

Bits [4:3]
Reserved, RES0.

C, bit [2]
Cycle counter reset. Reset the PMU_CCNTR counter.

The possible values of this bit are:

0
No action.

1
Reset PMU_CCNTR to zero.

Resetting PMU_CCNTR does not clear the PMU_CCNTR overflow bit to 0.

This bit is write-only.

This bit reads as zero.

P, bit [1]
Event counter reset. Reset event counters.

The possible values of this bit are:

0
No action.

1
Reset all event counters, not including PMU_CCNTR, to zero.

Resetting the event counters does not clear any overflow bits to 0.

This bit is write-only.

This bit reads as zero.

E, bit [0]
Enable. Enable the event counters.

The possible values of this bit are:

0
All counters, including PMU_CCNTR, are disabled.

1
All counters are enabled by PMU_CNTENSET.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1791

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.202 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Register

The PMU_DEVARCH characteristics are:

Purpose
Identifies the programmers’ model architecture of the Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FBC.

This register is not banked between Security states.

Field descriptions

The PMU_DEVARCH bit assignments are:

015

ARCHID

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Defines the architecture of the component.

For Performance Monitoring Units, this is Arm Limited.

Bits [31:28] are the JEP 106 continuation code, 0x4.

Bits [27:21] are the JEP 106 ID code, 0x3B.

PRESENT, bit [20]
Determines the presence of DEVARCH. When set to 1, indicates that the DEVARCH is present.

This bit reads as 0x1.

REVISION, bits [19:16]
Defines the architecture revision.

For architectures defined by Arm this is the minor revision.

For Performance Monitoring Units, the revision defined by Armv8.1-M is 0x0.

All other values are reserved.

ARCHID, bits [15:0]
Defines this part to be an Armv8-M debug component.

For architectures defined by Arm this is further subdivided. For Performance Monitoring Units:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1792

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:12] are the architecture version, 0x0.

Bits [11:0] are the architecture part number, 0xA06.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1793

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.203 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register

The PMU_DEVTYPE characteristics are:

Purpose
Indicates to a debugger that this component is part of the Performance Monitoring Unit interface of the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FCC.

This register is not banked between Security states.

Field descriptions

The PMU_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Subtype.

This field reads as 0x1.

MAJOR, bits [3:0]
Major type.

This field reads as 0x6.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1794

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.204 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register

The PMU_EVCNTR{0..30} characteristics are:

Purpose
Holds performance counter n, which counts events.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003000 + 4n.

This register is not banked between Security states.

Preface

If n is greater than or equal to the number of accessible counters, reads and writes of this register are RES0.

Field descriptions

The PMU_EVCNTR{0..30} bit assignments are:

015

Counter

1631

RESERVED

RESERVED, bits [31:16]
Reserved, RAZ/WI

Counter, bits [15:0]
Event counter n.

Value of event counter n, where n is the number of this register. n is a number in the range 0-30. The size of
this counter is 16 bits.

The counter counts whenever the selected event occurs, and either of:

• SecureNoninvasiveDebugAllowed() == TRUE.

• The NS-Req for the operation is set to Non-secure and NoninvasiveDebugAllowed() == TRUE.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1795

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.205 PMU_EVTYPERn, Performance Monitoring Unit Event Type and Filter Register

The PMU_EVTYPER{0..30} characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003400 + 4n.

This register is not banked between Security states.

Preface

If n is greater than or equal to the number of accessible counters, reads and writes of this register are RES0.

Field descriptions

The PMU_EVTYPER{0..30} bit assignments are:

015

evtCount

1631

RES0

Bits [31:16]
Reserved, RES0.

evtCount, bits [15:0]
Event to Count. The event number of the event that is counted by event counter PMU_EVCNTR<n>. If the
associated counter does not support the event number that is written to this register, the value read back is
UNKNOWN.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1796

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.206 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear Register

The PMU_INTENCLR characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMU_CCNTR,
and the event counters, PMU_EVCNTR. Reading the register shows which overflow interrupt requests are
enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C60.

This register is not banked between Security states.

Field descriptions

The PMU_INTENCLR bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow interrupt request disable bit. Disable the overflow interrupt for the cycle counter.

The possible values of this bit are:

0
When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.

1
When read, means the cycle counter overflow interrupt request is enabled. When written, disables the
cycle count overflow interrupt request.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow interrupt request disable bit for PMU_EVCNTR<n>. Disable the overflow interrupt
for PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter interrupt request is disabled. When
written, has no effect.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1797

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
When read, means that the PMU_EVCNTR<n> event counter interrupt request is enabled. When written,
disables the PMU_EVCNTR<n> interrupt request.

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1798

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.207 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set Register

The PMU_INTENSET characteristics are:

Purpose
Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMU_CCNTR,
and the event counter, PMU_EVCNTR. Reading the register shows which overflow interrupt requests are
enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C40.

This register is not banked between Security states.

Field descriptions

The PMU_INTENSET bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow interrupt request enable bit. Enable the overflow interrupt for the cycle counter.

The possible values of this bit are:

0
When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.

1
When read, means the cycle counter overflow interrupt request is enabled. When written, enables the
cycle count overflow interrupt request.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow interrupt request enable bit for PMU_EVCNTR<n>. Enable the overflow interrupt
for PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter interrupt request is disabled. When
written, has no effect.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1799

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
When read, means that the PMU_EVCNTR<n> event counter interrupt request is enabled. When written,
enables the PMU_EVCNTR<n> interrupt request.

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1800

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.208 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear Register

The PMU_OVSCLR characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMU_CCNTR, and each of the
implemented event counters, PMU_EVCNTR<n>. Writing to this register clears these bits.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C80.

This register is not banked between Security states.

Field descriptions

The PMU_OVSCLR bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow bit. Clears the PMU_CCNTR overflow bit.

The possible values of this bit are:

0
When read, means the cycle counter has not overflowed. When written, has no effect.

1
When read, means the cycle counter has overflowed. When written, clears the overflow bit to 0.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow clear bit for PMU_EVCNTR<n>. Clears the PMU_EVCNTR<n> overflow bit.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter has not overflowed. When written, has no
effect.

1
When read, means that the PMU_EVCNTR<n> event counter has overflowed. When written, clears the
PMU_EVCNTR<n> overflow bit to 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1801

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1802

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.209 PMU_OVSSET, Performance Monitoring Unit Overflow Flag Status Set Register

The PMU_OVSSET characteristics are:

Purpose
Sets the state of the overflow bit for the Cycle Count Register, PMU_CCNTR, and each of the implemented
event counters, PMU_EVCNTR<n>.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003CC0.

This register is not banked between Security states.

Field descriptions

The PMU_OVSSET bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow bit. Set the overflow status for PMU_CCNTR.

The possible values of this bit are:

0
When read, means the cycle counter has not overflowed. When written, has no effect.

1
When read, means the cycle counter has overflowed. When written, sets the overflow bit to 1.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow set bit for PMU_EVCNTR<n>. Set the overflow status for PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter has not overflowed. When written, has no
effect.

1
When read, means that the PMU_EVCNTR<n> event counter has overflowed. When written, sets the
PMU_EVCNTR<n> overflow bit to 1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1803

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1804

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.210 PMU_PIDR0, Performance Monitoring Unit Peripheral Identification Register 0

The PMU_PIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FE0.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number, least significant byte.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1805

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.211 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Register 1

The PMU_PIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FE4.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number, most significant nibble.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1806

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.212 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Register 2

The PMU_PIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FE8.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC. RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]
Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1807

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.213 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Register 3

The PMU_PIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FEC.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
Part minor revision. Parts using PMU_PIDR2.REVISION as an extension to the Part number must use this
field as a major revision number.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer modified. Indicates someone other than the Designer has modified the component.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1808

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.214 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Register 4

The PMU_PIDR4 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FD0.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

DES_2, bits [3:0]
Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1809

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.215 PMU_SWINC, Performance Monitoring Unit Software Increment Register

The PMU_SWINC characteristics are:

Purpose
Increments a counter that is configured to count the Software increment event, event 0x00.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit write-only register located at 0xE0003CA0.

This register is not banked between Security states.

Field descriptions

The PMU_SWINC bit assignments are:

030

Pn

31

(0)

Bit [31]
Reserved, RES0.

Pn, bits [30:0]
Event counter software increment bit for PMU_EVCNTR<n>. An event counter n, configured for SW_INCR
events, increments on every write to bit n of this field.

The possible values of this field are:

0
No action. The write to this bit is ignored.

1
A SW_INCR event is generated for event counter n.

Note

Bits [30:N] are WI, where N is the number of counters and the value of PMU_TYPE.N.

This field reads as zero.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1810

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.216 PMU_TYPE, Performance Monitoring Unit Type Register

The PMU_TYPE characteristics are:

Purpose
Contains information regarding what the Performance Monitoring Unit supports.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003E00.

This register is not banked between Security states.

Field descriptions

The PMU_TYPE bit assignments are:

07

N

813

SIZE

14

CC

1520

RES0

2122

(0)

232427

RES0

2831

RES0

TRO FZO

Bits [31:28]
Reserved, RES0.

Bits [27:24]
Reserved, RES0.

TRO, bit [23]
Trace-on-overflow support. Identifies whether the trace-on-overflow function is supported.

The possible values of this bit are:

0
Trace-on-overflow not supported.

1
Trace-on-overflow supported.

This bit reads as one.

Bit [22]
Reserved, RES0.

FZO, bit [21]
Freeze-on-overflow support. Identifies whether the freeze-on-overflow mechanism is supported.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1811

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Freeze-on-overflow mechanism not supported.

1
Freeze-on-overflow mechanism supported.

This bit reads as one.

Bits [20:15]
Reserved, RES0.

CC, bit [14]
Cycle counter present. This bit is set if a dedicated cycle counter is present.

This bit reads as one.

SIZE, bits [13:8]
Size of counters. This field determines the spacing of counters in the memory-map.

Note

In Armv8-M this indicates all counters are word-aligned, as the largest counter is PMU_CCNTR
with 32-bits.

This field reads as 0b011111.

N, bits [7:0]
Number of counters.

Number of counters implemented in addition to the cycle counter, PMU_CCNTR.

00000010 PMU_CCNTR and 2 event counters implemented.

00000011 PMU_CCNTR and 3 event counters implemented.

and so on up to 00011111, which indicates PMU_CCNTR and 31 event counters implemented.

Note

This field will be nonzero when the PMU is implemented, and serves to indicate the PMU is
supported. The maximum number of event counters is 31, so bits[7:5] are always zero.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1812

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.217 PRIMASK, Exception Mask Register

The PRIMASK characteristics are:

Purpose
Provides access to the PE PRIMASK register.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PRIMASK bit assignments are:

0131

RES0

PM

Bits [31:1]
Reserved, RES0.

PM, bit [0]
Exception mask register. Setting the Secure PRIMASK to one raises the execution priority to 0. Setting
the Non-secure PRIMASK to one raises the execution priority to 0 if AIRCR.PRIS is clear, or 0x80 if
AIRCR.PRIS is set.

The possible values of this bit are:

0
No effect on execution priority.

1
Boosts execution priority to either 0 or 0x80.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1813

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.218 PSPLIM, Process Stack Pointer Limit Register

The PSPLIM characteristics are:

Purpose
Holds the lower limit for the Process stack pointer.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PSPLIM bit assignments are:

02

RES0

331

LIMIT

LIMIT, bits [31:3]
Stack limit. Bits [31:3] of the Process stack limit address for the selected Security state.

Many instructions and exception entry will generate an exception if the appropriate stack pointer would be
updated to a value lower than this limit. If the Main Extension is not implemented, the Non-secure PSPLIM
is RES0.

This field resets to zero on a Warm reset.

Bits [2:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1814

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.219 Qn, Vector register, n = 0 - 7

The Q{0..7} characteristics are:

Purpose
Provides access to the Vector register file. These registers are an alias of the Floating-point register file.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
Present only if version Armv8.1 of the architecture and MVE are implemented.

This register is RES0 if MVE is not implemented.

Attributes
128-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The Q{0..7} bit assignments are:

0127

VALUE

VALUE, bits [127:0]
MVE Vector register value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1815

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.220 Rn, General-Purpose Register, n = 0 - 12

The R{0..12} characteristics are:

Purpose
General-purpose register.

Usage constraints
Both privileged and unprivileged accesses are permitted.

This register is word, halfword, and byte accessible.

Configurations
This register is always implemented.

Attributes
32-bit read/write register.

This register is not banked between Security states.

Field descriptions

The R{0..12} bit assignments are:

031

VALUE

VALUE, bits [31:0]
General purpose register value. Armv8-M implemented thirteen general-purpose 32-bit registers, R0 to R12.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1816

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.221 RETPSR, Combined Exception Return Program Status Registers

The RETPSR characteristics are:

Purpose
Value pushed to the stack on exception entry. On exception return this is used to restore the flags and other
architectural state. This payload is also used for FNC_RETURN stacking, however in this case only some of
the fields are used. See FunctionReturn() for details.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The RETPSR bit assignments are:

When {RETPSR[26:25], RETPSR[11:10]} != 0:

08

Exception

91015

IT

1619

GE

2021

B

2223

RES0

24

T

2526

IT

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

When {RETPSR[26:25], RETPSR[11:10]} == 0, and a multi-cycle load or store instruction was in progress
when the exception was taken:

08

Exception

91015

ICI

1619

GE

2021

B

2223

RES0

24

T

2526

ICI

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

When {RETPSR[26:25], RETPSR[11:10]} == 0, and beat-wise vector instructions were in progress when
the exception was taken:

08

Exception

91011

ECI

1215

ECI

1619

GE

2021

B

2223

RES0

24

T

2526

ECI

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

N, bit [31]
Negative flag. Value corresponding to APSR.N.

Z, bit [30]
Zero flag. Value corresponding to APSR.Z.

C, bit [29]
Carry flag. Value corresponding to APSR.C.

V, bit [28]
Overflow flag. Value corresponding to APSR.V.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1817

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Q, bit [27]
Saturate flag. Value corresponding to APSR.Q.

T, bit [24]
T32 state. Value corresponding to EPSR.T.

Bits [23:22]
Reserved, RES0.

B, bit [21]
Branch target identification active. Value corresponding to EPSR.B.

SFPA, bit [20]
Secure Floating-point active. Value corresponding to CONTROL.SFPA.

GE, bits [19:16]
Greater-than or equal flag. Value corresponding to APSR.GE.

IT, bits [15:10,26:25] , when [{RETPSR[26:25], RETPSR[11:10]} != 0]
If-then flags. Value corresponding to EPSR.IT.

ICI, bits [26:25,15:10] , when [{RETPSR[26:25], RETPSR[11:10]} == 0, and a multi-cycle load or store
instruction was in progress when the exception was taken]
Interrupt continuation flags. Value corresponding to EPSR.ICI.

ECI, bits [26:25, 11:10, 15:12] , when [{RETPSR[26:25], RETPSR[11:10]} == 0, and beat-wise vector
instructions were in progress when the exception was taken]
Exception continuation flags for beat-wise vector instructions. Value corresponding to EPSR.ECI.

SPREALIGN, bit [9]
Stack-pointer re-align. Indicates whether the SP was re-aligned to an 8-byte alignment on exception entry.

The possible values of this bit are:

0
The stack pointer was 8-byte aligned before exception entry began, no special handling is required on
exception return.

1
The stack pointer was only 4-byte aligned before exception entry. The exception entry realigned SP to
8-byte alignment by increasing the stack frame size by 4-bytes.

Exception, bits [8:0]
Exception number. Value corresponding to IPSR.Exception.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1818

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.222 REVIDR, Revision ID Register

The REVIDR characteristics are:

Purpose
Provides implementation-specific minor revision information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

Configurations
Present only if version Armv8.1-M of the architecture is implemented.

This register is RES0 if Armv8.1-M is not implemented.

Attributes
32-bit read-only register located at 0xE000ECFC.

Secure software can access the Non-secure version of this register via REVIDR_NS located at 0xE002ECFC.
The location 0xE002ECFC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The REVIDR bit assignments are:

031

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1819

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.223 RFSR, RAS Fault Status Register

The RFSR characteristics are:

Purpose
Records syndrome information for a RAS exception.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000EF04.

Secure software can access the Non-secure version of this register via RFSR_NS located at 0xE002EF04.
The location 0xE002EF04 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The RFSR bit assignments are:

01

UET

215

RES0

1630

IS

31

V

V, bit [31]
Valid. Indicates the register values are valid.

This bit is write-one-to-clear. Writes of zero are ignored.

This bit resets to zero on a Warm reset.

IS, bits [30:16]
IMPLEMENTATION DEFINED Syndrome. Contains additional IMPLEMENTATION DEFINED syndrome
information.

Bits [15:2]
Reserved, RES0.

UET, bits [1:0]
Error Type. Describes the state of the processor after taking the RAS exception.

The possible values of this field are:

0b00
Uncontainable error (UC).

0b01
Unrecoverable error (UEU).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1820

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b10
Restartable error (UEO).

0b11
Recoverable error (UER).

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1821

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.224 Sn, Floating-point Single-precision register, n = 0 - 31

The S{0..31} characteristics are:

Purpose
Provides access to the floating-point register file. These registers are an alias of the Floating-point register
file.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The S{0..31} bit assignments are:

031

VALUE

VALUE, bits [31:0]
Floating-point single-precision register value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1822

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.225 SAU_CTRL, SAU Control Register

The SAU_CTRL characteristics are:

Purpose
Allows enabling of the Security Attribution Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDD0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

It is IMPLEMENTATION DEFINED whether this register:

- Resets to 0x0 - in this case SAU_REGIONn registers are UNKNOWN at reset.

- Resets to an IMPLEMENTATION DEFINED value.

Field descriptions

The SAU_CTRL bit assignments are:

01231

RES0

ALLNS ENABLE

Bits [31:2]
Reserved, RES0.

ALLNS, bit [1]
All Non-secure. When SAU_CTRL.ENABLE is 0 this bit controls if the memory is marked with the
Non-secure attribute or the Secure attribute.

The possible values of this bit are:

0
Memory is marked with the Secure attribute and is not Non-secure callable.

1
Memory is marked with the Non-secure attribute.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1823

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

ENABLE, bit [0]
Enable. Enables the SAU.

The possible values of this bit are:

0
The SAU is disabled.

1
The SAU is enabled.

If this register resets to 1, the SAU region registers also reset to an IMPLEMENTATION DEFINED value.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1824

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.226 SAU_RBAR, SAU Region Base Address Register

The SAU_RBAR characteristics are:

Purpose
Provides indirect read and write access to the base address of the currently selected SAU region.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDDC.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SAU_RBAR bit assignments are:

04

RES0

531

BADDR

BADDR, bits [31:5]
Base address. Holds bits [31:5] of the base address for the selected SAU region.

Bits [4:0] of the base address are defined as 0x00.

It is IMPLEMENTATION DEFINED whether any of the BADDR bits are WI

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [4:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1825

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.227 SAU_RLAR, SAU Region Limit Address Register

The SAU_RLAR characteristics are:

Purpose
Provides indirect read and write access to the limit address of the currently selected SAU region.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDE0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SAU_RLAR bit assignments are:

0124

RES0

531

LADDR

NSC ENABLE

LADDR, bits [31:5]
Limit address. Holds bits [31:5] of the limit address for the selected SAU region.

Bits [4:0] of the limit address are defined as 0x1F.

It is IMPLEMENTATION DEFINED whether any of the LADDR bits are WI

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [4:2]
Reserved, RES0.

NSC, bit [1]
Non-secure callable. Controls whether Non-secure state is permitted to execute an SG instruction from this
region.

The possible values of this bit are:

0
Region is marked with the Secure attribute and is not Non-secure callable.

1
Region is marked with the Secure attribute and is Non-secure callable.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1826

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

ENABLE, bit [0]
Enable. SAU region enable.

The possible values of this bit are:

0
SAU region is disabled.

1
SAU region is enabled.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1827

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.228 SAU_RNR, SAU Region Number Register

The SAU_RNR characteristics are:

Purpose
Selects the region currently accessed by SAU_RBAR and SAU_RLAR.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDD8.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SAU_RNR bit assignments are:

07

REGION

831

RES0

Bits [31:8]
Reserved, RES0.

REGION, bits [7:0]
Region number. Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR.

If no SAU regions are implemented, this field is RES0. Writing a value corresponding to an unimplemented
region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1828

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.229 SAU_TYPE, SAU Type Register

The SAU_TYPE characteristics are:

Purpose
Indicates the number of regions implemented by the Security Attribution Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000EDD4.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_TYPE bit assignments are:

07

SREGION

831

RES0

Bits [31:8]
Reserved, RES0.

SREGION, bits [7:0]
SAU regions. The number of implemented SAU regions.

If this field is RAZ, the SAU behaves as follows:

• SAU_CTRL.ENABLE behaves as RAZ/WI.

• It is IMPLEMENTATION DEFINED whether SAU_CTRL.ALLNS behaves as RAO/WI and all attribution
is performed by the IDAU.

• SAU_RNR, SAU_RBAR, and SAU_RLAR behave as RAZ/WI.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1829

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.230 SCR, System Control Register

The SCR characteristics are:

Purpose
Sets or returns system control data.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED10.

Secure software can access the Non-secure version of this register via SCR_NS located at 0xE002ED10.
The location 0xE002ED10 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SCR bit assignments are:

0

(0)

1234531

RES0

SEVONPEND
SLEEPDEEPS

SLEEPONEXIT
SLEEPDEEP

Bits [31:5]
Reserved, RES0.

SEVONPEND, bit [4]
Send event on pend. Determines whether an interrupt assigned to the same Security state as the SEVONPEND
bit transitioning from inactive state to pending state generates a wakeup event.

This bit is banked between Security states.

The possible values of this bit are:

0
Transitions from inactive to pending are not wakeup events.

1
Transitions from inactive to pending are wakeup events.

This bit resets to zero on a Warm reset.

SLEEPDEEPS, bit [3]
Sleep deep secure. This field controls whether the SLEEPDEEP bit is only accessible from the Secure state.

This bit is not banked between Security states.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1830

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
The SLEEPDEEP bit accessible from both Security states.

1
The SLEEPDEEP bit behaves as RAZ/WI when accessed from the Non-secure state.

This bit is only accessible from the Secure state, and behaves as RAZ/WI when accessed from the Non-secure
state. If a PE does not implement the deep sleep state this bit behaves as RAZ/WI from both Security states.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SLEEPDEEP, bit [2]
Sleep deep. Provides a qualifying hint indicating that waking from sleep might take longer. An
implementation can use this bit to select between two alternative sleep states.

This bit is not banked between Security states.

The possible values of this bit are:

0
Selected sleep state is not deep sleep.

1
Selected sleep state is deep sleep.

Details of the implemented sleep states, if any, and details of the use of this bit, are IMPLEMENTATION
DEFINED. If the PE does not implement a deep sleep state then this bit can be RAZ/WI.

This bit resets to zero on a Warm reset.

SLEEPONEXIT, bit [1]
Sleep on exit. Determines whether, on an exit from an ISR that returns to the base level of execution priority,
the PE enters a sleep state.

This bit is banked between Security states.

The possible values of this bit are:

0
Enter sleep state disabled.

1
Enter sleep state permitted.

The Secure version of this field is used if the Background state being returned to is the Secure state, otherwise
the Non-secure version is used.

This bit resets to zero on a Warm reset.

Bit [0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1831

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.231 SFAR, Secure Fault Address Register

The SFAR characteristics are:

Purpose
Shows the address of the memory location that caused a Security violation.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000EDE8.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SFAR bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. The address of an access that caused an attribution unit violation. This field is only valid when
SFSR.SFARVALID is set, otherwise the value in this register is UNKNOWN. This allows the actual flip flops
associated with this register to be shared with other fault address registers. If an implementation chooses to
share the storage in this way, care must be taken to not leak Secure address information to the Non-secure
state. One way of achieving this is to share the SFAR register with the MMFAR_S register, which is not
accessible to the Non-secure state.

In implementations without unique SFAR, BFAR and MMFAR registers, the value of this register is
UNKNOWN if MMFSR.MMFARVALID or BFSR.BFARVALID is set.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1832

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.232 SFSR, Secure Fault Status Register

The SFSR characteristics are:

Purpose
Provides information about any security related faults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000EDE4.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SFSR bit assignments are:

01234567831

RES0

LSERR
SFARVALID

LSPERR
INVTRAN

INVEP
INVIS
INVER
AUVIOL

Bits [31:8]
Reserved, RES0.

LSERR, bit [7]
Lazy state error flag. Sticky flag indicating that an error occurred during lazy Floating-point state preservation
activation or deactivation.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

SFARVALID, bit [6]
Secure fault address valid. This bit is set when the SFAR register contains a valid value. As with similar
fields, such as BFSR.BFARVALID and MMFSR.MMFARVALID, this bit can be cleared by other exceptions,
such as BusFault.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1833

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
SFAR content not valid.

1
SFAR content valid.

This bit resets to zero on a Warm reset.

LSPERR, bit [5]
Lazy state preservation error flag. Stick flag indicating that an SAU or IDAU violation occurred during the
lazy Floating-point state preservation.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVTRAN, bit [4]
Invalid transition flag. Sticky flag indicating that an exception was raised due to a branch that was not flagged
as being domain crossing causing a transition from Secure to Non-secure memory.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

AUVIOL, bit [3]
Attribution unit violation flag.

Sticky flag indicating that an attempt was made to access parts of the address space that are marked as Secure
with NS-Req for the transaction set to Non-secure.

This bit is not set if the violation occurred during:

• Lazy state preservation, see LSPERR.

• Vector fetches.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVER, bit [2]
Invalid exception return flag. This can be caused by EXC_RETURN.DCRS being set to 0 when returning
from an exception in the Non-secure state, or by EXC_RETURN.ES being set to 1 when returning from an
exception in the Non-secure state.

The possible values of this bit are:

0
Error has not occurred.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1834

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVIS, bit [1]
Invalid integrity signature flag. This bit is set if the integrity signature in an exception stack frame is found to
be invalid during the unstacking operation.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVEP, bit [0]
Invalid entry point. This bit is set if there is an invalid attempt to enter Secure state.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1835

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.233 SHCSR, System Handler Control and State Register

The SHCSR characteristics are:

Purpose
Provides access to the active and pending status of system exceptions.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED24.

Secure software can access the Non-secure version of this register via SHCSR_NS located at 0xE002ED24.
The location 0xE002ED24 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

Exception processing automatically updates the SHCSR fields. However, software can write to the register to add
or remove the pending or active state of an exception. When updating the SHCSR, Arm recommends using a
read-modify-write sequence, to avoid unintended effects on the state of the exception handlers.

Removing the active state of an exception can change the current execution priority, and affect the exception return
consistency checks. If software removes the active state, causing a change in current execution priority, this can
defeat the architectural behavior that prevents an exception from preempting its own handler.

Pending state bits are set to one when an exception occurs and are cleared to zero when the exception becomes
active.

Active state bits are set to one when the associated exception becomes active.

Field descriptions

The SHCSR bit assignments are:

0123456

(0)

789

(0)

1011121314151617181920212231

RES0

HARDFAULTPENDED
SECUREFAULTPENDED

SECUREFAULTENA
USGFAULTENA
BUSFAULTENA
MEMFAULTENA

SVCALLPENDED
BUSFAULTPENDED
MEMFAULTPENDED
USGFAULTPENDED

MEMFAULTACT
BUSFAULTACT
HARDFAULTACT
USGFAULTACT

SECUREFAULTACT
NMIACT
SVCALLACT

MONITORACT
PENDSVACT
SYSTICKACT

Bits [31:22]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1836

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

HARDFAULTPENDED, bit [21]
HardFault exception pended state. This bit indicates and allows modification of the pending state of the
HardFault exception corresponding to the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
HardFault exception not pending for the selected Security state.

1
HardFault exception pending for the selected Security state.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Note

The Non-secure HardFault exception will not preempt if AIRCR.BFHFNMINS is set to zero.

SECUREFAULTPENDED, bit [20]
SecureFault exception pended state. This bit indicates and allows modification of the pending state of the
SecureFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
SecureFault exception not pending.

1
SecureFault exception pending.

This bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SECUREFAULTENA, bit [19]
SecureFault exception enable. The value of this bit defines whether the SecureFault exception is enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0
SecureFault exception disabled.

1
SecureFault exception enabled.

When disabled, exceptions that target SecureFault escalate to Secure state HardFault.

This bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

USGFAULTENA, bit [18]
UsageFault exception enable. The value of this bit defines whether the UsageFault exception is enabled for
the selected Security state.

This bit is banked between Security states.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1837

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
UsageFault exception disabled for the selected Security state.

1
UsageFault exception enabled for the selected Security state.

When the UsageFault exception is disabled, exceptions targeting UsageFault escalate to HardFault.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

BUSFAULTENA, bit [17]
BusFault exception enable. The value of this bit defines whether the BusFault exception is enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault exception disabled.

1
BusFault exception enabled.

The BusFault exception is not banked between Security states. When the BusFault exception is disabled,
exceptions targeting BusFault escalate to HardFault.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTENA, bit [16]
MemManage exception enable. The value of this bit defines whether the MemManage exception is enabled
for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
MemManage exception disabled for the selected Security state.

1
MemManage exception enabled for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Note

When the MemManage exception is disabled, exceptions targeting MemManage escalate to
HardFault.

SVCALLPENDED, bit [15]
SVCall exception pended state. This bit indicates and allows modification of the pending state of the SVCall
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1838

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
SVCall exception not pending for the selected Security state.

1
SVCall exception pending for the selected Security state.

This bit resets to zero on a Warm reset.

BUSFAULTPENDED, bit [14]
BusFault exception pended state. This bit indicates and allows modification of the pending state of the
BusFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault exception not pending.

1
BusFault exception pending.

The BusFault exception is not banked between Security states.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTPENDED, bit [13]
MemManage exception pended state. This bit indicates and allows modification of the pending state of the
MemManage exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
MemManage exception not pending for the selected Security state.

1
MemManage exception pending for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

USGFAULTPENDED, bit [12]
UsageFault exception pended state. The UsageFault exception is banked between Security states, this bit
indicates and allows modification of the pending state of the UsageFault exception for the selected Security
state.

This bit is banked between Security states.

The possible values of this bit are:

0
UsageFault exception not pending for the selected Security state.

1
UsageFault exception pending for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1839

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SYSTICKACT, bit [11]
SysTick exception active state. This bit indicates and allows modification of the active state of the SysTick
exception for the selected Security state.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
SysTick exception not active for the selected Security state.

1
SysTick exception active for the selected Security state.

If two timers are implemented, then SYSTICKACT is banked between Security states. If one timer is
implemented this bit corresponds to the Secure state if ICSR.STTNS is zero, or the Non-secure state if
ICSR.STTNS is one.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

PENDSVACT, bit [10]
PendSV exception active state. This bit indicates and allows modification of the active state of the PendSV
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
PendSV exception not active for the selected Security state.

1
PendSV exception active for the selected Security state.

This bit resets to zero on a Warm reset.

Bit [9]
Reserved, RES0.

MONITORACT, bit [8]
DebugMonitor exception active state. This bit indicates and allows modification of the active state of the
DebugMonitor exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
DebugMonitor exception not active.

1
DebugMonitor exception active.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1840

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SVCALLACT, bit [7]
SVCall exception active state. This bit indicates and allows modification of the active state of the SVCall
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
SVCall exception not active for the selected Security state.

1
SVCall exception active for the selected Security state.

This bit resets to zero on a Warm reset.

Bit [6]
Reserved, RES0.

NMIACT, bit [5]
NMI exception active state. This bit indicates and allows modification of the active state of the NMI
exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
NMI exception not active.

1
NMI exception active.

The NMI exception is not banked between Security states. This field behaves as writes ignored unless all the
following are true:

• AIRCR.BFHFNMINS is set to one.

• This field is being written to zero.

• Either the access is from Secure software and targets the Non-secure alias or the access is from the
debugger, DHCSR.S_SDE is one and the access targets the Non-secure bank of the register.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SECUREFAULTACT, bit [4]
SecureFault exception active state. This bit indicates and allows modification of the active state of the
SecureFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
SecureFault exception not active.

1
SecureFault exception active.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1841

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

USGFAULTACT, bit [3]
UsageFault exception active state for the selected Security state. This bit indicates and allows modification of
the active state of the UsageFault exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
UsageFault exception not active for the selected Security state.

1
UsageFault exception active for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

HARDFAULTACT, bit [2]
HardFault exception active state. Indicates and allows limited modification of the active state of the HardFault
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
HardFault exception not active for the selected Security state.

1
HardFault exception active for the selected Security state.

This field ignores writes when any of the following are true:

• The field is being written to one.

• The write targets the Secure instance of this field.

• The access is from Non-secure state or from a debugger when DHCSR.S_SDE is zero.

This bit resets to zero on a Warm reset.

BUSFAULTACT, bit [1]
BusFault exception active state. This bit indicates and allows modification of the active state of the BusFault
exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault exception not active.

1
BusFault exception active.

The BusFault exception is not banked between Security states.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTACT, bit [0]
MemManage exception active state for the selected Security state. This bit indicates and allows modification
of the active state of the MemManage exception for the selected Security state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1842

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is banked between Security states.

The possible values of this bit are:

0
MemManage exception not active for the selected Security state.

1
MemManage exception active for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1843

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.234 SHPR1, System Handler Priority Register 1

The SHPR1 characteristics are:

Purpose
Sets or returns priority for system handlers 4 - 7.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED18.

Secure software can access the Non-secure version of this register via SHPR1_NS located at 0xE002ED18.
The location 0xE002ED18 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SHPR1 bit assignments are:

07

PRI_4

815

PRI_5

1623

PRI_6

2431

PRI_7

PRI_7, bits [31:24]
Priority 7. Priority of system handler 7, SecureFault.

This field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

This field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

PRI_6, bits [23:16]
Priority 6. Priority of system handler 6, UsageFault.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

This field resets to zero on a Warm reset.

PRI_5, bits [15:8]
Priority 5. Priority of system handler 5, BusFault.

This field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1844

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

PRI_4, bits [7:0]
Priority 4. Priority of system handler 4, MemManage.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1845

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.235 SHPR2, System Handler Priority Register 2

The SHPR2 characteristics are:

Purpose
Sets or returns priority for system handlers 8 - 11.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED1C.

Secure software can access the Non-secure version of this register via SHPR2_NS located at 0xE002ED1C.
The location 0xE002ED1C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SHPR2 bit assignments are:

07

PRI_8

815

PRI_9

1623

PRI_10

2431

PRI_11

PRI_11, bits [31:24]
Priority 11. Priority of system handler 11, SVCall.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

This field resets to zero on a Warm reset.

PRI_10, bits [23:16]
Reserved, RES0.

PRI_9, bits [15:8]
Reserved, RES0.

PRI_8, bits [7:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1846

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.236 SHPR3, System Handler Priority Register 3

The SHPR3 characteristics are:

Purpose
Sets or returns priority for system handlers 12 - 15.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED20.

Secure software can access the Non-secure version of this register via SHPR3_NS located at 0xE002ED20.
The location 0xE002ED20 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SHPR3 bit assignments are:

07

PRI_12

815

PRI_13

1623

PRI_14

2431

PRI_15

PRI_15, bits [31:24]
Priority 15. Priority of system handler 15, SysTick.

If two SysTick timers are implemented this field is banked between Security states.

If less than two SysTick timers are implemented this field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI. If
one timer is implemented, this field corresponds to the Secure state if ICSR.STTNS is zero, or the Non-secure
state if ICSR.STTNS is one.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to zero on a Warm reset.

PRI_14, bits [23:16]
Priority 14. Priority of system handler 14, PendSV.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1847

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

PRI_13, bits [15:8]
Reserved, RES0.

PRI_12, bits [7:0]
Priority 12. Priority of system handler 12, DebugMonitor.

This field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RAZ/WI.

If DEMCR.SDME is one this field is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1848

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.237 SP, Current Stack Pointer Register

The SP characteristics are:

Purpose
Exception and procedure stack pointer register.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The SP bit assignments are:

01231

VALUE

RES0H

VALUE, bits [31:2]
Stack pointer. Holds bits[31:2] of the stack pointer address. The current stack pointer is selected from one of
MSP_NS, PSP_NS, MSP_S or PSP_S.

Software can refer to SP as R13.

Bits [1:0]
Reserved, RES0H.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1849

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.238 SP_NS, Current Stack Pointer register (Non-secure)

The SP_NS characteristics are:

Purpose
Provides access to the current Non-secure stack pointer.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The SP_NS bit assignments are:

01231

VALUE

RES0H

VALUE, bits [31:2]
Stack pointer. Holds bits[31:2] of the current Non-secure stack pointer address. SP_NS is selected from
one of MSP_NS or PSP_NS. Access to SP_NS is provided via MRS and MSR and is subject to stack limit
checking.

Bits [1:0]
Reserved, RES0H.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1850

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.239 STIR, Software Triggered Interrupt Register

The STIR characteristics are:

Purpose
Provides a mechanism for software to generate an interrupt.

Usage constraints
Unprivileged accesses generate a fault if CCR.USERSETMPEND is zero.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit write-only register located at 0xE000EF00.

Secure software can access the Non-secure version of this register via STIR_NS located at 0xE002EF00.
The location 0xE002EF00 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The STIR bit assignments are:

08

INTID

931

RES0

Bits [31:9]
Reserved, RES0.

INTID, bits [8:0], on a write
Interrupt ID. Indicates the interrupt to be pended. The value written is (ExceptionNumber - 16).

Writing to this register has the same effect as setting the NVIC_ISPRn bit corresponding to the interrupt to 1.
Like NVIC_ISPRn, an attempt to pend an interrupt targeting Secure state from Non-secure is ignored.

INTID, bits [8:0], on a read
This field reads as zero.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1851

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.240 SYST_CALIB, SysTick Calibration Value Register

The SYST_CALIB characteristics are:

Purpose
Reads the SysTick timer calibration value and parameters for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read-only register located at 0xE000E01C.

Secure software can access the Non-secure version of this register via SYST_CALIB_NS located at
0xE002E01C. The location 0xE002E01C is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

Preface

If the Main Extension is implemented then, two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CALIB bit assignments are:

023

TENMS

2429

RES0

3031

NOREF SKEW

NOREF, bit [31]
No reference. Indicates whether the IMPLEMENTATION DEFINED reference clock is implemented.

The possible values of this bit are:

0
Reference clock is implemented.

1
Reference clock is not implemented.

When this bit is 1, the CLKSOURCE bit of the SYST_CSR register is forced to 1 and cannot be cleared to 0.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1852

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit reads as an IMPLEMENTATION DEFINED value.

SKEW, bit [30]
Skew. Indicates whether the 10ms calibration value is exact.

The possible values of this bit are:

0
TENMS calibration value is exact.

1
TENMS calibration value is inexact.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

This bit reads as an IMPLEMENTATION DEFINED value.

Bits [29:24]
Reserved, RES0.

TENMS, bits [23:0]
Ten milliseconds. Optionally holds a reload value to be used for 10ms (100Hz) timing, subject to system
clock skew errors. If this field is zero, the calibration value is not known.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1853

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.241 SYST_CSR, SysTick Control and Status Register

The SYST_CSR characteristics are:

Purpose
Controls the SysTick timer and provides status data for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read/write register located at 0xE000E010.

Secure software can access the Non-secure version of this register via SYST_CSR_NS located at
0xE002E010. The location 0xE002E010 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CSR bit assignments are:

012315

RES0

161731

RES0

COUNTFLAG
CLKSOURCE

ENABLE
TICKINT

Bits [31:17]
Reserved, RES0.

COUNTFLAG, bit [16]
Count flag. Indicates whether the counter has counted to zero since the last read of this register.

The possible values of this bit are:

0
Timer has not counted to 0.

1
Timer has counted to 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1854

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

COUNTFLAG is set to 1 by a count transition from 1 to 0. COUNTFLAG is cleared to 0 if software reads
this bit as one, and by any write to the SYST_CVR for the selected Security state. Debugger reads do not
clear the COUNTFLAG.

If set this bit clears to zero when read by software. Reads from the debugger do not clear this bit.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:3]
Reserved, RES0.

CLKSOURCE, bit [2]
Clock source. Indicates the SysTick clock source.

The possible values of this bit are:

0
Uses the IMPLEMENTATION DEFINED external reference clock.

1
Uses the PE clock.

If no external clock is implemented, this bit reads as 1 and ignores writes.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

TICKINT, bit [1]
Tick interrupt. Indicates whether counting to 0 causes the status of the SysTick exception to change to
pending.

The possible values of this bit are:

0
Count to 0 does not affect the SysTick exception status.

1
Count to 0 changes the SysTick exception status to pending.

Changing the value of the counter to 0 by writing the SysTick does not change the status of the SysTick
exception.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

ENABLE, bit [0]
SysTick enable. Indicates the enabled status of the SysTick counter.

The possible values of this bit are:

0
Counter is disabled.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1855

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Counter is enabled.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1856

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.242 SYST_CVR, SysTick Current Value Register

The SYST_CVR characteristics are:

Purpose
Reads or clears the SysTick timer current counter value for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read/write-to-clear register located at 0xE000E018.

Secure software can access the Non-secure version of this register via SYST_CVR_NS located at
0xE002E018. The location 0xE002E018 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CVR bit assignments are:

023

CURRENT

2431

RES0

Bits [31:24]
Reserved, RES0.

CURRENT, bits [23:0], on a read
Current counter value. Provides the value of the SysTick timer counter for the selected Security state.

It is IMPLEMENTATION DEFINED whether the current counter value decrements if the PE is sleeping and
SCR.SLEEPDEEP is set.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1857

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CURRENT, bits [23:0], on a write
Reset counter value. Writing any value clears the SysTick timer counter for the selected Security state to
zero.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1858

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.243 SYST_RVR, SysTick Reload Value Register

The SYST_RVR characteristics are:

Purpose
Provides access SysTick timer counter reload value for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read/write register located at 0xE000E014.

Secure software can access the Non-secure version of this register via SYST_RVR_NS located at
0xE002E014. The location 0xE002E014 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both instances of this register behave as RES0.

Field descriptions

The SYST_RVR bit assignments are:

023

RELOAD

2431

RES0

Bits [31:24]
Reserved, RES0.

RELOAD, bits [23:0]
Counter reload value. The value to load into the SYST_CVR for the selected Security state when the counter
reaches 0.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1859

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.244 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register

The TPIU_ACPR characteristics are:

Purpose
Defines a prescaler value for the baud rate of the Serial Wire Output (SWO). Writing to the register
automatically updates the prescale counter, immediately affecting the baud rate of the serial data output.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on the output stream is
UNPREDICTABLE and the required recovery process is IMPLEMENTATION DEFINED.

Configurations
Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Attributes
32-bit read/write register located at 0xE0040010.

This register is not banked between Security states.

Field descriptions

The TPIU_ACPR bit assignments are:

015

SWOSCALER

1631

RES0

Bits [31:16]
Reserved, RES0.

SWOSCALER, bits [15:0]
SWO and Parallel trace port baud rate prescaler. Sets the ratio between an IMPLEMENTATION DEFINED
reference clock and the TPIU output clock rates. The prescaler always sets the ratio for the SWO output
clock. When TPIU_DEVID.CPPT is one, the prescaler also sets the ratio for the Parallel trace port clock.
The supported scaler value range is IMPLEMENTATION DEFINED, to a maximum scaler value of 0xFFFF.
Unused bits of this field are RAZ/WI.

The possible values of this field are:

n
SWO or Parallel trace port output clock = Asynchronous_Reference_Clock/(n + 1).

This field resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1860

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.245 TPIU_CIDR0, TPIU Component Identification Register 0

The TPIU_CIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FF0.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1861

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.246 TPIU_CIDR1, TPIU Component Identification Register 1

The TPIU_CIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FF4.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1862

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.247 TPIU_CIDR2, TPIU Component Identification Register 2

The TPIU_CIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FF8.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1863

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.248 TPIU_CIDR3, TPIU Component Identification Register 3

The TPIU_CIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FFC.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1864

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.249 TPIU_CLAIMCLR, TPIU Claim Tag Clear Register

The TPIU_CLAIMCLR characteristics are:

Purpose
In conjunction with TPIU_CLAIMSET, provides Claim Tag bits that can be separately set and cleared to
indicate whether functionality is in use by a debug agent.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on the output stream is
UNPREDICTABLE and the required recovery process is IMPLEMENTATION DEFINED.

Configurations
Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Present only if version Armv8.1-M of the architecture is implemented.

This register is RES0 if Armv8.1-M is not implemented.

Attributes
32-bit read/write register located at 0xE0040FA4.

This register is not banked between Security states.

Preface

Unimplemented Claim Tag bits are RAZ/WI.

Field descriptions

The TPIU_CLAIMCLR bit assignments are:

012345678910111213141516171819202122232425262728293031

CLR31
CLR30
CLR29
CLR28

CLR27
CLR26
CLR25
CLR24

CLR23
CLR22
CLR21
CLR20

CLR19
CLR18
CLR17
CLR16

CLR0
CLR1
CLR2
CLR3

CLR4
CLR5
CLR6
CLR7

CLR8
CLR9
CLR10
CLR11

CLR12
CLR13
CLR14
CLR15

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1865

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CLRm, bit [m], for m = 0 to 31, on a read
Claim Tag Clear. Indicates the current status of Claim Tag bit m, and is used to set Claim Tag bit m to 0b0.

The possible values of this field are:

0b0
Claim Tag bit m is not set.

0b1
Claim Tag bit m is set.

The number of Claim Tag bits is indicated in TPIU_CLAIMSET.

This field resets to zero on a Cold reset.

CLRm, bit [m], for m = 0 to 31, on a write
Claim Tag Clear. Indicates the current status of Claim Tag bit m, and is used to set Claim Tag bit m to 0b0.

The possible values of this field are:

0b0
Ignored.

0b1
Clear Claim Tag bit m to 0b0.

The number of Claim Tag bits is indicated in TPIU_CLAIMSET.

This field is write-one-to-clear. Writes of zero are ignored.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1866

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.250 TPIU_CLAIMSET, TPIU Claim Tag Set Register

The TPIU_CLAIMSET characteristics are:

Purpose
In conjunction with TPIU_CLAIMCLR, provides Claim Tag bits that can be separately set and cleared to
indicate whether functionality is in use by a debug agent.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on the output stream is
UNPREDICTABLE and the required recovery process is IMPLEMENTATION DEFINED.

Configurations
Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Present only if version Armv8.1-M of the architecture is implemented.

This register is RES0 if Armv8.1-M is not implemented.

Attributes
32-bit read/write register located at 0xE0040FA0.

This register is not banked between Security states.

Preface

Unimplemented Claim Tag bits are RAZ/WI.

Field descriptions

The TPIU_CLAIMSET bit assignments are:

012345678910111213141516171819202122232425262728293031

SET31
SET30
SET29
SET28

SET27
SET26
SET25
SET24

SET23
SET22
SET21
SET20

SET19
SET18
SET17
SET16

SET0
SET1
SET2
SET3

SET4
SET5
SET6
SET7

SET8
SET9
SET10
SET11

SET12
SET13
SET14
SET15

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1867

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SETm, bit [m], for m = 0 to 31, on a read
Claim Tag Set. Indicates whether Claim Tag bit m is implemented, and is used to set Claim Tag bit m to 0b1.

The possible values of this field are:

0b0
Claim Tag bit m is not implemented.

0b1
Claim Tag bit m is implemented.

This field resets to 0xF on a Cold reset.

SETm, bit [m], for m = 0 to 31, on a write
Claim Tag Set. Indicates whether Claim Tag bit m is implemented, and is used to set Claim Tag bit m to 0b1.

The possible values of this field are:

0b0
Ignored.

0b1
Set Claim Tag bit m to 0b1.

This field is write-one-to-set. Writes of zero are ignored.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1868

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.251 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register

The TPIU_CSPSR characteristics are:

Purpose
Controls the width of the parallel trace port.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read/write register located at 0xE0040004.

This register is not banked between Security states.

Field descriptions

The TPIU_CSPSR bit assignments are:

031

CWIDTH

CWIDTH, bits [31:0]
Current width. CWIDTH[m] represents a parallel trace port width of (m+1).

The possible values of each bit are:

0
Width (N+1) is not the current parallel trace port width.

1
Width (N+1) is the current parallel trace port width.

A debugger must set only one bit is set to 1, and all others must be zero. The effect of writing a value with
more than one bit set to 1 is UNPREDICTABLE. The effect of a write to an unsupported bit is UNPREDICTABLE.

This register resets to the value for the smallest supported parallel trace port size.

This field resets to an IMPLEMENTATION DEFINED value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1869

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.252 TPIU_DEVID, TPIU Device Identifier Register

The TPIU_DEVID characteristics are:

Purpose
Describes the TPIU to a debugger.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FC8.

This register is not banked between Security states.

In earlier versions of the M-Profile architecture, this register was named TPIU_TYPE.

Field descriptions

The TPIU_DEVID bit assignments are:

05

IMP DEF

68

FIFOSZ

910111215

IMP DEF

16

(0)

171831

RES0

CPPT
NRZVALID

PTINVALID
MANCVALID

Bits [31:18]
Reserved, RES0.

CPPT, bit [17]
Clock Prescaler Parallel Trace. Indicates whether the Parallel trace port prescaler is controlled by
TPIU_ACPR.

The possible values of this bit are:

0
Parallel trace port is not affected by the prescaler controlled by TPIU_ACPR.

1
Parallel trace port is affected by the prescaler controlled by TPIU_ACPR.

This bit is RES0 if TPIU_DEVID.PTINVALID == 1.

This bit reads as an IMPLEMENTATION DEFINED value.

Bit [16]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1870

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:12]
IMPLEMENTATION DEFINED.

NRZVALID, bit [11]
NRZ valid. Indicates support for SWO using UART/NRZ encoding.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

MANCVALID, bit [10]
Manchester valid. Indicates support for SWO using Manchester encoding.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

PTINVALID, bit [9]
Parallel Trace Interface invalid. Indicates support for parallel trace port operation.

The possible values of this bit are:

0
Supported.

1
Not supported.

This bit reads as an IMPLEMENTATION DEFINED value.

FIFOSZ, bits [8:6]
FIFO depth. Indicates the minimum implemented size of the TPIU output FIFO for trace data.

The possible values of this field are:

0
IMPLEMENTATION DEFINED FIFO depth.

Other
Minimum FIFO size is 2FIFOSZ.

For example, a value of 0b011 indicates a FIFO size of at least 23 = 8 bytes.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [5:0]
IMPLEMENTATION DEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1871

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.253 TPIU_DEVTYPE, TPIU Device Type Register

The TPIU_DEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FCC.

This register is not banked between Security states.

Field descriptions

The TPIU_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other. Only permitted if the MAJOR field reads as 0x0.

0x1
Trace port. Only permitted if the MAJOR field reads as 0x1.

This field reads as an IMPLEMENTATION DEFINED value.

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1872

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0x1
Trace sink.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1873

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.254 TPIU_FFCR, TPIU Formatter and Flush Control Register

The TPIU_FFCR characteristics are:

Purpose
Controls the TPIU formatter. This register might contain other formatter and flush control fields that are
outside the scope of the architecture. Contact Arm for more information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read/write register located at 0xE0040304.

This register is not banked between Security states.

Field descriptions

The TPIU_FFCR bit assignments are:

0123

RES0

45

RES0

678910

RES0

111214

RES0

1531

RES0

RES0
TrigIn

RES0

EnFmt
FOnMan

Bits [31:15,11,7,3:2]
Reserved, RES0.

Bits [14:12]
Reserved for formatter stop controls.

Reserved, RES0.

Bits [10:9]
Reserved for additional trigger mark controls.

Reserved, RES0.

TrigIn, bit [8]
Trigger input asserted. Indicate a trigger on the trace port when an IMPLEMENTATION DEFINED TRIGIN
signal is asserted.

It is IMPLEMENTATION DEFINED whether this bit is R/W or RAO.

This bit resets to zero on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1874

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

FOnMan, bit [6]
Flush On Manual. Setting this bit to 1 generates a flush. The TPIU clears the bit to 0 when the flush
completes.

This bit resets to zero on a Cold reset.

Bits [5:4]
Reserved for additional flush controls.

Reserved, RES0.

EnFmt, bits [1:0]
Formatter control. Selects the output formatting mode.

The possible values of this field are:

0b00
Bypass. Disable formatting. Only supported when SWO mode is selected. Only a single trace source is
supported in bypass mode:

• If only a single trace source is connected to this TPIU, it is selected.

• If multiple sources (including the ITM) are implemented and connected to this TPIU, then all other
trace sources, except for the ITM, must be disabled. Otherwise, the trace output is UNPREDICTABLE.

All other trace sources are discarded.

0b10
Continuous. Enable formatting and embed triggers and null cycles in the formatted output.

All other values are reserved.

If no formatter is implemented, this field is RES0. This field must be set to 0b10when the parallel trace port is
selected, or when using multiple trace sources. Changing the value of this field when TPIU_FFSR.FtStopped
is 0 is UNPREDICTABLE.

This field resets to zero on a Cold reset.

Note

An optional TRACECTL pin might be implemented as part of the parallel trace port that allows
Bypass mode when using a parallel trace port and a further mode, EnFmt == 0b01. The CoreSight
architecture describes EnFmt[1] as the EnFCont bit and EnFmt[0] as the EnFTC bit.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1875

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.255 TPIU_FFSR, TPIU Formatter and Flush Status Register

The TPIU_FFSR characteristics are:

Purpose
Shows the status and capabilities of the TPIU formatter.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040300.

This register is not banked between Security states.

Field descriptions

The TPIU_FFSR bit assignments are:

0123431

RES0

FtNonStop
TCPresent

FInProg
FtStopped

Bits [31:4]
Reserved, RES0.

FtNonStop, bit [3]
Non-stop formatter. Indicates the formatter cannot be stopped.

The possible values of this bit are:

0
Formatter can be stopped.

1
Formatter cannot be stopped.

If no formatter is implemented, this bit is RAO.

TCPresent, bit [2]
TRACECTL present. Indicates presence of the TRACECTL pin.

The possible values of this bit are:

0
No TRACECTL pin is available. The data formatter must be used and only in continuous mode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1876

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The optional TRACECTL pin is present.

If a parallel trace port is not implemented, this bit is RAZ.

Note

If a parallel trace port is implemented, Arm recommends the TRACECTL pin is not implemented.

FtStopped, bit [1]
Formatter stopped. Indicates the formatter is stopped.

The possible values of this bit are:

0
Formatter is enabled.

1
The formatter has received a stop request signal and all trace data and post-amble has been output. Any
further trace data is ignored.

If no formatter is implemented, or the formatter cannot be stopped, this bit is RAZ.

FInProg, bit [0]
Flush in progress. Set to 1 when a flush is initiated and clears to zero when all data received before the flush
is acknowledged has been output on the trace port. That is, the trace has been received at the sink, formatted,
and output on the trace port.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1877

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.256 TPIU_LAR, TPIU Software Lock Access Register

The TPIU_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the TPIU, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0040FB0.

This register is not banked between Security states.

Field descriptions

The TPIU_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1878

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.257 TPIU_LSR, TPIU Software Lock Status Register

The TPIU_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the TPIU, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

This register is RAZ/WI if accessed via the debugger, regardless of DAUTHCTRL.UIDAPEN (either bank).
It is IMPLEMENTATION DEFINED whether a DAP error is generated.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0040FB4.

This register is not banked between Security states.

Field descriptions

The TPIU_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of this component.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1879

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1880

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.258 TPIU_PIDR0, TPIU Peripheral Identification Register 0

The TPIU_PIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FE0.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1881

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.259 TPIU_PIDR1, TPIU Peripheral Identification Register 1

The TPIU_PIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FE4.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1882

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.260 TPIU_PIDR2, TPIU Peripheral Identification Register 2

The TPIU_PIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FE8.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1883

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.261 TPIU_PIDR3, TPIU Peripheral Identification Register 3

The TPIU_PIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FEC.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1884

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.262 TPIU_PIDR4, TPIU Peripheral Identification Register 4

The TPIU_PIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FD0.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1885

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.263 TPIU_PIDR5, TPIU Peripheral Identification Register 5

The TPIU_PIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FD4.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1886

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.264 TPIU_PIDR6, TPIU Peripheral Identification Register 6

The TPIU_PIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FD8.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1887

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.265 TPIU_PIDR7, TPIU Peripheral Identification Register 7

The TPIU_PIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FDC.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1888

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.266 TPIU_PSCR, TPIU Periodic Synchronization Control Register

The TPIU_PSCR characteristics are:

Purpose
Defines the reload value for the Periodic Synchronization Counter register. The Periodic Synchronization
Counter decrements for each byte that is output by the TPIU. If the formatter is implemented and enabled,
the TPIU forces completion of the current frame when the counter reaches zero. It is IMPLEMENTATION
DEFINED whether the TPIU forces all trace sources to generate synchronization packets when the counter
reaches zero. Bytes generated by the TPIU as part of a Halfword synchronization packet or a Full frame
synchronization packet are not counted.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present if the TPIU is implemented and DWT_CYCCNT is not implemented.

OPTIONAL if both the TPIU and DWT_CYCCNT are implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read/write register located at 0xE0040308.

This register is not banked between Security states.

Field descriptions

The TPIU_PSCR bit assignments are:

04

PSCount

531

RES0

Bits [31:5]
Reserved, RES0.

PSCount, bits [4:0]
Periodic Synchronization Count. Determines the reload value of the Periodic Synchronization Counter. The
reload value takes effect the next time the counter reaches zero. Reads from this register return the reload
value programmed into this register.

The possible values of this field are:

0b00000
Synchronization disabled.

0b00111
128 bytes.

0b01000
256 bytes.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1889

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

...
...

0b11111
231 bytes.

All other values are reserved.

The Periodic Synchronization Counter might have a maximum value smaller than 231. In this case, if the
programmed reload value is greater than the maximum value, then the Periodic Synchronization Counter is
reloaded with its maximum value and the TPIU will generate synchronization requests at this interval.

This field resets to 0xA on a Cold reset.

Note

In the CoreSight TPIU, TPIU_PSCR specifies the number of frames between synchronizations,
each frame being 16 bytes. This definition of TPIU_PSCR specifies a number of bytes and is
encoded as a power-of-two rather than a plain binary number.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1890

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.267 TPIU_SPPR, TPIU Selected Pin Protocol Register

The TPIU_SPPR characteristics are:

Purpose
Selects the protocol used for trace output.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on the output stream is
UNPREDICTABLE and the required recovery process is IMPLEMENTATION DEFINED.

Configurations
Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Attributes
32-bit read/write register located at 0xE00400F0.

This register is not banked between Security states.

Field descriptions

The TPIU_SPPR bit assignments are:

01231

RES0

TXMODE

Bits [31:2]
Reserved, RES0.

TXMODE, bits [1:0]
Transmit mode. Specifies the protocol for trace output from the TPIU.

The possible values of this field are:

0b00
Parallel trace port mode. This value is reserved if TPIU_DEVID.PTINVALID == 1.

0b01
Asynchronous SWO, using Manchester encoding. This value is reserved if TPIU_DEVID.MANCVALID
== 0.

0b10
Asynchronous SWO, using NRZ encoding. This value is reserved if TPIU_DEVID.NRZVALID == 0.

All other values are reserved.

The effect of selecting a reserved value, or a mode that the implementation does not support, is UNPRE-
DICTABLE.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1891

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field resets to an IMPLEMENTATION DEFINED value on a Cold reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1892

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.268 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register

The TPIU_SSPSR characteristics are:

Purpose
Indicates the supported parallel trace port sizes.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible through unprivileged DAP requests when DAUTHCTRL.UIDAPEN
(either bank) is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040000.

This register is not banked between Security states.

Field descriptions

The TPIU_SSPSR bit assignments are:

031

SWIDTH

SWIDTH, bits [31:0]
Supported width. SWIDTH[m] indicates whether a parallel trace port width of (m+1) is supported.

The possible values of each bit are:

0
Parallel trace port width (m+1) not supported.

1
Parallel trace port width (m+1) supported.

The value of this register is IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1893

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.269 TT_RESP, Test Target Response Payload

The TT_RESP characteristics are:

Purpose
Provides the response information from a TT, TTA, TTT, or TTAT instruction that is not UNDEFINED.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The TT_RESP bit assignments are:

07

MREGION

815

SREGION

161718

R

19202122

S

232431

IREGION

IRVALID
NSRW

NSR

MRVALID
SRVALID
RW

IREGION, bits [31:24]
IDAU region number. Indicates the IDAU region number containing the target address.

This field is zero if IRVALID is zero.

IRVALID, bit [23]
IREGION valid flag. For a Secure request, indicates the validity of the IREGION field.

The possible values of this bit are:

0
IREGION content not valid.

1
IREGION content valid.

This bit is always zero if the IDAU cannot provide a region number, the address is exempt from security
attribution, or if the requesting TT or TTT variant was executed from the Non-secure state.

S, bit [22]
Security. For a Secure request, indicates the Security attribute of the target address.

The possible values of this bit are:

0
Target address is Non-secure.

1
Target address is Secure.

This bit is always zero if the requesting TT or TTT instruction was executed from the Non-secure state.

NSRW, bit [21]
Non-secure read and writable. Equal to RW AND NOT S. This field is only valid if the variant of the TT
group of instructions was executed from Secure state and the RW field is valid.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1894

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

NSR, bit [20]
Non-secure readable. Equal to R AND NOT S. This field is only valid if the variant of the TT group of
instructions was executed from Secure state and the R field is valid.

RW, bit [19]
Read and writable.

Set to 1 if the address specified by the TT instruction variant can be read and written according to the
permissions of the selected MPU when operating in the privilege level for the selected mode and selected
Security state. For TTT and TTAT, this field returns the permissions for unprivileged access, regardless of
whether the selected mode and state is privileged or unprivileged.

This field is invalid and RAZ if the TT instruction was executed from an unprivileged mode and the A flag
was not specified. This field is also RAZ if the address matches multiple MPU regions.

R, bit [18]
Readable.

Read accessibility. Set to 1 if the address specified by the TT instruction variant can be read according to the
permissions of the selected MPU when operating in the privilege level for the selected mode and selected
Security state. For TTT and TTAT, this field returns the permissions for unprivileged access, regardless of
whether the selected mode and state is privileged or unprivileged.

This field is invalid and RAZ if the TT instruction was executed from an unprivileged mode and the A flag
was not specified. This field is also RAZ if the address matches multiple MPU regions.

SRVALID, bit [17]
SREGION valid flag. For a Secure request indicates validity of the SREGION field.

The possible values of this bit are:

0
SREGION content not valid.

1
SREGION content valid.

The SREGION field is invalid if any of the following are true:

• SAU_CTRL.ENABLE is set to zero.

• The address specified by the TT instruction variant field does not match any enabled SAU regions.

• The address specified matches multiple enabled SAU regions.

• The address specified by the TT instruction variant is exempt from the Secure memory attribution.

• The TT or TTT instruction variant was executed from the Non-secure state or the Security Extension is
not implemented.

The TTA and TTAT instruction variants are UNDEFINED when exceuted from Non-secure state.

MRVALID, bit [16]
MREGION valid flag. Indicates validity of the MREGION field.

The possible values of this bit are:

0
MREGION content not valid.

1
MREGION content valid.

The MREGION field is invalid if any of the following is true:

• The MPU is not implemented or MPU_CTRL.ENABLE is set to zero.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1895

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• The address specified by the TT instruction variant does not match any enabled MPU regions.

• The address matched multiple MPU regions.

• The TT or TTT instruction variants, without the A flag specified, were executed from an unprivileged
mode.

The TTA and TTAT instructions are UNDEFINED when executed from Non-secure state.

SREGION, bits [15:8]
SAU region number. Holds the SAU region that the address maps to.

This field is only valid if the instruction was executed from Secure state. This field is zero if SRVALID is 0.

MREGION, bits [7:0]
MPU region number. Holds the MPU region that the address maps to.

This field is zero if MRVALID is 0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1896

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.270 UFSR, UsageFault Status Register

The UFSR characteristics are:

Purpose
Contains the status for some instruction execution faults, and for data access faults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
16-bit read/write-one-to-clear register located at 0xE000ED2A.

Secure software can access the Non-secure version of this register via UFSR_NS located at 0xE002ED2A.
The location 0xE002ED2A is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

This register is part of CFSR.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The UFSR bit assignments are:

0123457

RES0

891015

RES0

DIVBYZERO
UNALIGNED

STKOF
NOCP

UNDEFINSTR
INVSTATE
INVPC

Bits [15:10]
Reserved, RES0.

DIVBYZERO, bit [9]
Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1897

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

UNALIGNED, bit [8]
Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

Bits [7:5]
Reserved, RES0.

STKOF, bit [4]
Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

NOCP, bit [3]
No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVPC, bit [2]
Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVSTATE, bit [1]
Invalid state flag. Sticky flag indicating whether an EPSR.B, EPSR.T, EPSR.IT, or FPSCR.LTPSIZE validity
error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1898

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to zero on a Warm reset.

UNDEFINSTR, bit [0]
UNDEFINED instruction flag. Sticky flag indicating whether an UNDEFINED instruction error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This includes attempting to execute an UNDEFINED instruction associated with an enable coprocessor.

This bit resets to zero on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1899

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.271 VPR, Vector Predication Status and Control Register

The VPR characteristics are:

Purpose
Holds the per element predication flags.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if version Armv8.1 of the architecture and MVE are implemented.

This register is RES0 if MVE is not implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The VPR bit assignments are:

015

P0

1619

MASK01

2023

MASK23

2431

RES0

Bits [31:24]
Reserved, RES0.

MASK23, bits [23:20]
The VPT mask bits for beat 2 and 3.

The possible values of this field are:

0b0000
Not in a VPT block.

0b1000
In a VPT block which is valid for one more instruction. The predicate flags are not inverted.

0bx100
In a VPT block which is valid for two more instructions. If set, the x bit causes the predicate flags for
beat 2 and 3 to be inverted between the corresponding instructions in the VPT block.

0bxx10
In a VPT block which is valid for three more instructions. If set, the x bits cause the predicate flags for
beat 2 and 3 to be inverted between the corresponding instructions in the VPT block.

0bxxx1
In a VPT block which is valid for four more instructions. If set, the x bits cause the predicate flags for
beat 2 and 3 to be inverted between the corresponding instructions in the VPT block.

If the PE executes a single beat per architecture tick, this field and the associated predicate flags are updated
after beat 3 completes.

This field resets to an UNKNOWN value on a Warm reset.

MASK01, bits [19:16]
The VPT mask bits for beat 0 and 1.

The possible values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1900

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0000
Not in a VPT block.

0b1000
VPT predication valid for one more instruction. The predicate flags are not inverted.

0bx100
In a VPT block which is valid for two more instructions. If set, the x bit causes the predicate flags for
beat 0 and 1 to be inverted between the corresponding instructions in the VPT block.

0bxx10
In a VPT block which is valid for three more instructions. If set, the x bits cause the predicate flags for
beat 0 and 1 to be inverted between the corresponding instructions in the VPT block.

0bxxx1
In a VPT block which is valid for four more instructions. If set, the x bits cause the predicate flags for
beat 0 and 1 to be inverted between the corresponding instructions in the VPT block.

If the PE executes a single beat per architecture tick, this field and the associated predicate flags are updated
after beat 1 completes.

This field resets to an UNKNOWN value on a Warm reset.

P0, bits [15:0]
Predication bits. Each group of 4 bits determines the predication of each of the 4 bytes within the
corresponding beat, regardless of instruction data type. See the relevant instruction descriptions and
pseudocode for information on how the predication affects execution.

The possible values of this field are:

0
The corresponding vector lane will be masked.

1
The corresponding vector lane will be active.

Unprivileged access to this field is permitted, see VMRS and VMSR instructions.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1901

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.272 VTOR, Vector Table Offset Register

The VTOR characteristics are:

Purpose
Holds the vector table address for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED08.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via VTOR_NS located at 0xE002ED08.
The location 0xE002ED08 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The VTOR bit assignments are:

06

RES0

731

TBLOFF

TBLOFF, bits [31:7]
Table offset. Bits [31:7] of the vector table address for the selected Security state.

It is IMPLEMENTATION DEFINED whether any of the TBLOFF bits are WI

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [6:0]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1902

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.273 XPSR, Combined Program Status Registers

The XPSR characteristics are:

Purpose
Provides access to a combination of the APSR, EPSR and IPSR.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The XPSR bit assignments are:

When {XPSR[26:25], XPSR[11:10]} != 0:

08

Exception

9

(0)

1015

IT

1619

GE

20

(0)

21

B

2223

RES0

24

T

2526

IT

27

Q

28

V

29

C

30

Z

31

N

When {XPSR[26:25], XPSR[11:10]} == 0, and a multi-cycle load or store instruction is in progress:

08

Exception

9

(0)

1015

ICI

1619

GE

20

(0)

21

B

2223

RES0

24

T

2526

ICI

27

Q

28

V

29

C

30

Z

31

N

When {XPSR[26:25], XPSR[11:10]} == 0, and more than one beat-wise vector instruction is in progress:

08

Exception

9

(0)

1011

ECI

1215

ECI

1619

GE

20

(0)

21

B

2223

RES0

24

T

2526

ECI

27

Q

28

V

29

C

30

Z

31

N

N, bit [31]
Negative flag. Reads or writes the current value of APSR.N.

Z, bit [30]
Zero flag. Reads or writes the current value of APSR.Z.

C, bit [29]
Carry flag. Reads or writes the current value of APSR.C.

V, bit [28]
Overflow flag. Reads or writes the current value of APSR.V.

Q, bit [27]
Saturate flag. Reads or writes the current value of APSR.Q.

T, bit [24]
T32 state. Reads or writes the current value of EPSR.T.

Bits [23:22]
Reserved, RES0.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1903

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

B, bit [21]
Branch target identification active. Reads or writes the current value of EPSR.B.

Bit [20]
Reserved, RES0.

GE, bits [19:16]
Greater-than or equal flag. Reads or writes the current value of APSR.GE.

IT, bits [15:10,26:25] , when [{XPSR[26:25], XPSR[11:10]} != 0]
If-then flags. Reads or writes the current value of EPSR.IT.

ICI, bits [26:25,15:10] , when [{XPSR[26:25], XPSR[11:10]} == 0, and a multi-cycle load or store instruction is
in progress]
Interrupt continuation flags. Reads or writes the current value of EPSR.ICI.

ECI, bits [26:25, 11:10, 15:12] , when [{XPSR[26:25], XPSR[11:10]} == 0, and more than one beat-wise vector
instruction is in progress]
Exception continuation flags for beat-wise vector instructions. Reads or writes the current value of EPSR.ECI.

Bit [9]
Reserved, RES0.

Exception, bits [8:0]
Exception number. Reads or writes the current value of IPSR.Exception.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1904

Part E
Armv8-M Pseudocode

Chapter E1
Arm Pseudocode Definition

This chapter provides a definition of the pseudocode that this manual uses, and defines some built-in functions that
the pseudocode uses. It contains the following sections:

E1.1 About the Arm pseudocode.

E1.2 Data types.

E1.3 Operators.

E1.4 Statements and control structures.

E1.5 Built in functions.

E1.6 Arm pseudocode definition index.

E1.7 Additional functions.

Note

This chapter is not a formal language definition for the pseudocode. It is a guide to help understand the
use of Arm pseudocode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1906

Chapter E1. Arm Pseudocode Definition
E1.1. About the Arm pseudocode

E1.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description
of the decoding and operation of all valid instructions.

The following sections describe the Arm pseudocode in detail:

E1.2 Data types.

E1.3 Operators.

E1.4 Statements and control structures.

E1.5 Built in functions describes some built-in functions that the pseudocode functions use that this manual
describes elsewhere.

E1.6 Arm pseudocode definition index contains the indexes to the pseudocode.

E1.1.1 General limitations of Arm pseudocode

Because of the limitations inherent in all pseudocode, the Arm pseudocode and pseudocode comments describe
only one particular implementation of the architecture. There are several instances where a rule relaxes the behavior
that a particular piece of pseudocode describes.

The pseudocode statements EndOfInstruction(), SEE, UNDEFINED, CONSTRAINED_UNPREDICTABLE, and
UNPREDICTABLE indicate behavior that differs from that indicated by the pseudocode being executed. If one of the
statements is encountered:

• CONSTRAINED_UNPREDICTABLE, and UNPREDICTABLE mean earlier behavior indicated by the pseudocode is
only specified as occurring to the extent required to determine that the statement is executed. No subsequent
behavior that the pseudocode indicates occurs.

• EndOfInstruction(),SEE, and UNDEFINED mean that the pseudocode will terminate execution of the
current instruction and pseudocode execution continues from the exception catch.

For more information, see E1.4.5 Special statements.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1907

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

E1.2 Data types

This section describes:

E1.2.1 General data type rules.

E1.2.2 Bitstrings.

E1.2.3 Integers.

E1.2.4 Reals.

E1.2.5 Booleans.

E1.2.6 Enumerations.

E1.2.7 Structures.

E1.2.8 Tuples.

E1.2.9 Arrays.

E1.2.1 General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following
types:

• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• Tuple.
• Struct.
• Array.

The syntax of a literal determines its type. A variable can be assigned to without an explicit declaration. The
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare
the variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

1 x = 1;
2 y = '1';
3 z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

E1.2.2 Bitstrings

This section describes the bitstring data type.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1908

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Syntax

bits(N)

The type name of a bitstring of length ‘N‘.

bit

A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 0.

Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order
matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That
is, the leftmost bit of a bitstring of length N is bit (N-1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are
manipulated in registers, memory locations, and instructions. All other data types are abstract.

E1.2.3 Integers

This section describes the data type for integer numbers.

Syntax

integer

The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to
interpret those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they
have a preceding minus sign. For example, 0x80000000 is the integer +231. If −231 needs to be written in
hexadecimal, it must be written as -0x80000000.

E1.2.4 Reals

This section describes the data type for real numbers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1909

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Syntax

real

The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal,
but 0.0 is a real constant literal.

E1.2.5 Booleans

This section describes the boolean data type.

Syntax

boolean

The type name for the boolean data type.

TRUE,FALSE

The two values a boolean variable can take.

Description

A boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A boolean can only take on one of two
values: TRUE or FALSE.

E1.2.6 Enumerations

This section describes the enumeration data type.

Syntax and examples

enumeration

Keyword to define a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration that is called Example, which can take on the values Example_One,
Example_Two, Example_Three.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1910

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its
possible values.

E1.2.7 Structures

This section describes the structure data type.

Syntax and examples

type

The keyword that is used to declare the structure data type.

type ShiftSpec is (bits(2)shift, integer amount):

An example definition for a new structure that is called ‘ShiftSpec‘ that contains a bitstring member that
is called ‘shift‘ and an integer member called ‘amount‘. Structure definitions must not be terminated
with a semicolon.

ShiftSpec abc;

A declaration of a variable that is named ‘abc‘ of type ‘ShiftSpec‘.

abc.shift

Syntax to refer to the individual members within the structure variable.

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data
types. This can include compound data types. The data items of a structure are called its members and are named.

In the syntax section, the example defines a structure that is called ShiftSpec with two members. The first is a
bitstring of length 2 named shift and the second is an integer that is named amount. After declaring a variable of
that type that is named abc, the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical.
For example:

type ShiftSpec1 is (bits(2)shift, integer amount)

type ShiftSpec2 is (bits(2)shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value
in a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

E1.2.7.1 _Type and _Type

This subsection describes the data structure types for a particular register or payload.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1911

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Example

RETPSR_Type

The data structure of type RETPSR.

Description

By convention _Type declares a structure data type for a specific register or payload.

See the individual register descriptions for the fields that apply to a particular data structure.

E1.2.8 Tuples

This section describes the tuple data type.

Examples

(bits(32)shifter_result, bit shifter_carry_out)

An example of the tuple syntax.

(shift_t, shift_n)= ('00',0);

An example of assigning values to a tuple.

Description

A tuple is an ordered set of data items, which are separated by commas and enclosed in parentheses. The items can
be of different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax
section, the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift
or rotation. Its return type is a tuple containing two data items, with the first of type, and bits(32) the second of
type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of
ordered data types between parentheses. This means that the example tuple at the start of this section is of type
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type
of the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).
• shift_n to be of type integer.
• (shift_t, shift_n) to be a tuple of type (bits(2), integer).

E1.2.9 Arrays

This section describes the array data type.

Syntax

array

The type name for the array data type.

array data_type array_name[A..B];

array [A..B] of data_type array_name

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1912

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Declaration of an array of type ‘data_type‘, which might be compound data type. It is named
‘array_name‘ and is indexed with an integer range from ‘A‘ to ‘B‘.

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data
types. Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by
the lower inclusive end of the range, then.., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0-30.

1 array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.
• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that
enumeration type. An array declared with an integer range type as the index must be accessed using integer values
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Pseudocode can also contain array-like functions such as R[i], MemU[address, size], or Elem[vector, i, size

↪→]. These functions package up and abstract additional operations that are normally performed on accesses to the
underlying arrays, such as register banking, memory protection, endian-dependent byte ordering, exclusive-access
housekeeping and Advanced SIMD element processing. See E1.4.2 Function and procedure calls.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1913

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

E1.3 Operators

This section describes:

E1.3.1 Relational operators.

E1.3.2 Boolean operators.

E1.3.3 Bitstring operators.

E1.3.4 Arithmetic operators.

E1.3.5 The assignment operator.

E1.3.6 Precedence rules.

E1.3.7 Conditional expressions.

E1.3.8 Operator polymorphism.

E1.3.1 Relational operators

The following operations yield results of type boolean.

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y

and for non-equality by using the expression x != y. In both cases, the result is of type boolean.

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an
enumeration can only be compared if they are both from the same enumeration. An exception is that a bitstring
can be tested for equality with an integer to allow a d == 15 test.

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any
bit with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring,
the expression opcode == '1x0x' matches the values 1000, 1100, 1001, and 1101. This is known as a bitmask.

Note

This special form is permitted in the implied equality comparisons in the when parts of case ... of ...

structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater
than, and greater than or equal comparisons between them, producing boolean results.

E1.3.1.1 Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set>
must be a list of expressions that are separated by commas.

E1.3.2 Boolean operators

If x is a boolean expression, then!x is its logical inverse.

If x and y are boolean expressions, then x &&y is the result of ANDing them together. As in the C language, if x is
FALSE, the result is determined to be FALSE without evaluating y.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1914

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Note

This is known as short circuit evaluation.

If x and y are booleans, then x ||y is the result of ORing them together. As in the C language, if x is TRUE, the
result is determined to be TRUE without evaluating y.

Note

If x and y are booleans or boolean expressions, then the result of x != y is the same as the result of
exclusive-ORing x and y together. The operator EOR only accepts bitstring arguments.

E1.3.3 Bitstring operators

The following operations can be applied only to bitstrings.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length that is obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length
that is obtained by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N + M constructed by
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from
extracted bits or to set the value of specific bits. Its syntax isx [integer_list], where x is the integer or bitstring
being sliced, and [integer_list] is a comma-separated list of integers that are enclosed in square brackets. The
length of the resulting bitstring is equal to the number of integers in [integer_list]. In x[integer_list], each
of the integers in [integer_list] must be:

• ≥0.
• < Len(x) if x is a bitstring.

The definition of x[integer_list] depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x[i,j,k,...,n] is defined to be the concatenation:

1 x[i]: x[j]: x[k]:...: x[n]

• If integer_list consists of just one integer i, x[i] is defined to be:

– If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

– If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x[i] is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j,
with both end values included. For example, instr[31:28] represents instr[31, 30, 29, 28].

x[integer_list] is assignable provided x is an assignable bitstring and no integer appears more than once in
[integer_list]. In particular, x[i] is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the APSR shows its bit[31] as N. In such cases, the syntax APSR.N is used as a more readable synonym
for APSR[31] as named bits can be referred to with the same syntax as referring to members of a struct. A

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1915

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

comma-separated list of named bits enclosed in square brackets following the register name allows multiple bits to
be addressed simultaneously.

For example, APSR.[N, C, Q] is synonymous with APSR [31, 29, 27].

E1.3.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from
bitstrings and results that are converted back to bitstrings. As these data types are the unbounded mathematical
types, no issues arise about overflow or similar errors.

Unary plus and minus

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x + y and x - y are their sum and difference. Both are of type integer if x and y

are both of type integer, and real otherwise.

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2.

If x and y are bitstrings of the same length N, so that N = Len(x)= Len(y), then x + y and x - y are the least
significant N bits of the results of converting x and y to integers and adding or subtracting them. Signed and
unsigned conversions produce the same result:

1 x + y = (SInt(x) + SInt(y))[N-1:0]
2 = (UInt(x) + UInt(y))[N-1:0]
3 x - y = (SInt(x) - SInt(y))[N-1:0]
4 = (UInt(x) - UInt(y))[N-1:0]

If x is a bitstring of length N and y is an integer, x + y and x - y are the bitstrings of length N defined by x + y =

↪→ x + y[N-1:0] and x - y = x - y[N-1:0]. Similarly, if x is an integer and y is a bitstring of length M, x + y

and x - y are the bitstrings of length M defined by x + y = x[M-1:0] + y and x - y = x[M-1:0] - y.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of
type integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

1 x DIV y = RoundDown(x/y)
2 x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(-n)).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1916

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer then x^n is of type integer.
• If x is of type real then x^n is of type real.

E1.3.5 The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax.

General expression syntax

An expression is one of the following:

• A literal.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register that is defined in an Arm architecture specification defines a correspondingly named pseudocode
bitstring variable, and that variable has the stated behavior of the register. For example, if a bit of a register is
defined as RAZ/WI, then the corresponding bit of its variable reads as ‘0’ and ignore writes.

An expression like bits(32)UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire
architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed
on the left-hand side of an assignment:

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1917

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment
destination can be written as - to indicate that the corresponding item of the assigned tuple value is
discarded. For example:

(shifted, -)= LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y)= (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

– An optional preceding data type name.
– A data type the variable was given earlier in the pseudocode by recursive application of this rule.
– A data type the variable is being given by assignment, either by direct assignment to the variable, or by

assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.

E1.3.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables, and function invocations are evaluated with higher priority than any operators using their
results, but see E1.3.2 Boolean operators.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but do not
need to be if all permitted precedence orders under the type rules necessarily lead to the same result. For
example, if i, j and k are integer variables, i > 0 &&j > 0 &&k > 0 is acceptable, but i > 0 &&j > 0 ||k

↪→ > 0 is not.

E1.3.7 Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an
expression of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

E1.3.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types.
Each resulting form of an operator has a different prototype definition. For example, the operator + has forms that
act on various combinations of integers, reals and bitstrings.

Table E1-1 summarizes the operand types valid for each unary operator and the result type. Table E1-2 summarizes
the operand types valid for each binary operator and the result type.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1918

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Table E1-1, Result and operand types that are permitted for unary operators.

Operator Operand Type Result Type
- integer interger

real real
NOT bits(N) bits(N)
! boolean boolean

Table E1-2, Result and operand types that are permitted for binary operators.

Operator First operand type Second operand type Result type
bits(N) integer
bits(N) bits(N)

== integer integer boolean
real real
enumeration enumeration
boolean boolean
bits(N) bits(N)

!= integer integer boolean
real real

<, > integer integer boolean
<=, >= real real

integer integer integer
+, - real real real

bits(N) bits(N) bits(N)
bits(N) integer

«,» integer interger integer
integer integer integer

* real real real
bits(N) bits(N) bits(N)

/ real real real
DIV integer integer integer
MOD integer integer integer

bits(N) integer
&&, || boolean boolean boolean
AND, OR, EOR bits(N) bits(N) bits(N)
ˆ integer integer integer

real integer real

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1919

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

E1.4 Statements and control structures

This section describes the statements and program structures available in the pseudocode.

E1.4.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated
with a semicolon.

Indentation normally indicates the structure in compound statements. The statements that are contained in
structures such as if... then... else... or procedure and function definitions are indented more deeply than
the statement structure itself. The end of a compound statement structure and their end is indicated by returning to
the original indentation level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of
indent.

E1.4.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.

Procedure and function definitions

A procedure definition has the form:

1 <procedure name>(<argument prototypes>)
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

where <argument prototypes> consists of zero or more argument definitions, which are separated by commas.
Each argument definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

1 <return type> <function name>(<argument prototypes>)
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist
because reading from and writing to an array element require different functions. They are frequently used in
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For
example:

1 <return type> <function name>[<argument prototypes>]
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1920

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

1 <function name>[<argument prototypes>] =<value prototype>
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share
the same name, but the value prototype and return type can be different.

Procedure calls

A procedure call has the form:

1 <procedure_name>(<arguments>);

Return statements

A procedure return has the form:

1 return;

A function return has the form:

1 return <expression>;

where <expression> is of the type declared in the function prototype line.

E1.4.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

if...then...else...

In addition to being a ternary operator, a multi-line if...then...else... structure can act as a control
structure and has the form:

1 if <boolean_expression> then
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;
6
7 elsif <boolean_expression> then
8 <statement a>;
9 <statement b>;

10 ...
11 <statement z>;
12 else
13 <statement A>;
14 <statement B>;
15 ...
16 <statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be
used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only
simple statements such as:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1921

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

1 if <boolean_expression> then <statement 1>;
2 if <boolean_expression> then <statement 1>; else <statement A>;
3 if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note

In these forms, <statement 1>, <statement> 2>, and <statement A> must be terminated by
semicolons. This and > the fact that the else part is optional distinguish its use as a > control structure
from its use as a ternary operator.

case...of...

A case...of... structure has the form:

1 case <expression> of
2 when <literal values1>
3 <statement 1>;
4 <statement 2>;
5 ...
6 <statement n>;
7
8 when <literal values2>
9 <statement 1>;

10 <statement 2>;
11 ...
12 <statement n>;
13
14 ...more "when" groups if required...
15
16 otherwise
17 <statement A>;
18 <statement B>;
19 ...
20 <statement Z>;

In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <

↪→expression>, separated by commas. There can be additional when groups in the structure. Abbreviated one line
forms of when and otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known
as bitmasks. For details, see Equality and non-equality.

E1.4.4 Loop control structures

This section describes the three loop control structures that are used in the pseudocode.

repeat...until...

A repeat...until... structure has the form:

1 repeat
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;
6 until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE.
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside
the loop body.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1922

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

while...do

A while...do structure has the form:
1 while <boolean_expression> do
2 <statement 1>;
3 <statement 2>;
4 ...
5 statement n>;

It begins executing the statement block only if the boolean expression is true. The loop then runs until the
expression is false.

for...

A for... structure has the form:
1 for <assignable_expression> = <integer_expr1> to <integer_expr2>
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <

↪→integer_expr1> is less than <integer_expr2>, the loop body is executed and the <assignable_expression>

↪→incremented by one. This repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable

↪→expression> is less than or equal than <integer_expr2>.

Try...Catch

A try...catch structure has the following form:
1 try
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;
6
7 catch <exception>
8 <statement a>;
9 <statement b>;

10 ...
11 <statement z>;

The purpose of this structure is to catch exceptions that are generated by the try statements.

E1.4.5 Special statements

This section describes statements with particular architecturally defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a pseudocode exception that will be caught by the try...catch block. When caught, this
might result in an UNDEFINSTR UsageFault, NOP or NOCP UsageFault.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1923

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior that is defined by the current pseudocode,
apart from behavior that is required to determine that the special case applies. The replacement behavior is
UNPREDICTABLE.

CONSTRAINED_UNPREDICTABLE

This subsection describes the statement:

CONSTRAINED_UNPREDICTABLE;

This statement indicates a special case that replaces the behavior that is defined by the current pseudocode,
apart from behavior that is required to determine that the special case applies. The replacement behavior is
CONSTRAINED UNPREDICTABLE within the limits defined for each particular case, and might vary.

SEE...

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior that is defined by the current instruction
pseudocode, apart from behavior that is required to determine that the special case applies.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPDEF {"<text>"};

This statement indicates a special case that provides an IMPLEMENTATION DEFINED value or behavior. An optional
<text> field can give more information.

E1.4.6 Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */ .

/**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1924

Chapter E1. Arm Pseudocode Definition
E1.5. Built in functions

E1.5 Built in functions

Bitstring length

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose twos complement representation is x.

UInt() is the integer whose unsigned representation is x.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1925

Chapter E1. Arm Pseudocode Definition
E1.6. Arm pseudocode definition index

E1.6 Arm pseudocode definition index

This section contains the following tables:

Table E1-3 which contains the pseudocode data types.

Table E1-4 which contains the pseudocode operators.

Table E1-5 which contains the pseudocode keywords and control structures.

Table E1-6 which contains the statements with special behaviors.

Table E1-3 Index of pseudocode data types

Keyword Meaning
array Type name for the array type
bit Keyword equivalent to bits(1)
bits(N) Type name for the bitstring of length N data type
boolean Type name for the boolean data type
enumeration Keyword to define a new enumeration type
integer Type name for the integer data type
real Type name for the real data type
type Keyword to define a new structure

Table E1-4 Index of pseudocode operators

Operator Meaning
- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings
Used in the left-hand side of an assignment or a tuple to discard the result

+ Unary plus on integers or reals
Addition of integers, reals, and bitstrings

. Extract named member from a list
Integer in bitstring extraction operator

: Bitstring concatenation
Integer range in bitstring extraction operator

! Boolean NOT
!= Comparison for inequality
(...) Around arguments of procedure or function
[...] Around array index

Around arguments of array-like function
∗ Multiplication of integers, reals and bitstrings
/ Divsion of integers and reals (real result)
&& Boolean AND
< Less than comparison of integers and reals
[...] Slicing of specified bits or bitstring or integer
<< Multiply integer by power of 2 (with rounding towards infinity)
<= Less than or equal comparison of integers and reals
= Assignment operator
== Comparison for equality
> Greater than comparison of integers and reals
>= Greater than or equal comparison of integers and reals
>> Divide integer by power of 2
|| Boolean OR

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1926

Chapter E1. Arm Pseudocode Definition
E1.6. Arm pseudocode definition index

∧ Exponential operator
AND Bitwise AND of bitstrings
DIV Quotient from integer division
EOR Bitwise EOR of bitstrings
IN Test membership of a certain expression in a set of values
MOD Remainder from integer division
NOT Bitwise inversion of bitstrings
OR Bitwise OR of bitstrings

Table E1-5 Index of pseudocode keywords and control structures

Operator Meaning
/∗...∗/ Comment delimiters
// Introduces comment terminated by end of line
case...of... Control structure
FALSE One of two values a boolean can take (other than TRUE)
for...=...to... Loop control structure, counting up from the

initial value to the upper limit
for...=...downto... Loop control structure, counting down from

the initial value to the lower limit
if...then...else... Condition expression selecting between two values
if...then...else... Conditional control structure
otherwise Introduces default in case...of... control structure
repeat...until... Loop control structure that runs at

least once until the termination condition is satisfied
return Procedure or function return
TRUE One of two values a boolean can take (other than FALSE)
try...catch Control structure
when Introduces a specific case in case...of... control structure
while...do... Loop control structure that runs until the

termination condition is satisfied

Table E1-6 Index of special statements

Keyword Meaning
IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior.
SEE Points to other pseudocode to use instead
UNDEFINED Cause Undefined Instruction exception
UNKNOWN Unspecified value
CONSTRAINED_UNPREDICTABLE Unspecified behavior within limits
UNPREDICTABLE Unspecified behavior

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1927

Chapter E1. Arm Pseudocode Definition
E1.7. Additional functions

E1.7 Additional functions

The following functions are not listed in E2 Pseudocode specification, and are only described in this section.

E1.7.1 IsSee()

IsSee()returns TRUE if the exception variable that is passed to it was created because all the encodings that
matched the instruction that was being decoded called SEE.

See SEE....

E1.7.2 IsUndefined()

IsUndefined() returns TRUE if the exception variable that is passed to it was created because either the instruction
that was being decoded did not match any known encoding, or because one of the encodings that was matched
called the special statement UNDEFINED.

See UNDEFINED.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1928

Chapter E2
Pseudocode Specification

This chapter specifies the Armv8-M pseudocode. It contains the following section:

Alphabetical Pseudocode List

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1929

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1 Alphabetical Pseudocode List

E2.1.1 _AdvanceVPTState

1 // Advances VPT state
2
3 boolean _AdvanceVPTState;

E2.1.2 _CommitState

1 // _CommitState()
2 // ==============
3
4 boolean _CommitState;

E2.1.3 _ITStateChanged

1 // Indicates a write to ITSTATE
2
3 boolean _ITStateChanged;

E2.1.4 _Mem

1 // _Mem[] - non-assignment (read) form
2 // ===================================
3 // Perform single-copy atomic, aligned, little-endian read from physical memory.
4
5 (boolean, bits(8*size)) _Mem(AddressDescriptor memaddrdesc, integer size);
6
7 // _Mem[] - assignment (write) form
8 // ================================
9 // Perform single-copy atomic, aligned, little-endian write to physical memory.

10
11 boolean _Mem(AddressDescriptor memaddrdesc, integer size, bits(8*size) value);

E2.1.5 _NextInstrAddr

1 // Address of next instruction to be fetched in case of branch type operation
2
3 bits(32) _NextInstrAddr;

E2.1.6 _NextInstrITState

1 // Updated ITSTATE for next instruction
2
3 ITSTATEType _NextInstrITState;

E2.1.7 _PCChanged

1 // Indicates a change in instruction fetch address due to branch type operations
2
3 boolean _PCChanged;

E2.1.8 _PendingFetchFault

1 // Indicates a pending fetch fault
2
3 boolean _PendingFetchFault;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1930

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.9 _PendingReturnOperation

1 // Indicate any pending exception returns
2
3 boolean _PendingReturnOperation;

E2.1.10 _RName

1 // The physical array of core registers.
2 // _R[RName_PC] is defined to be the address of the current instruction.
3 // The offset of 4 bytes is applied to it by the register access functions.
4
5 array bits(32) _RName[RNames];

E2.1.11 _S

1 // The 32-bit extension register bank for the Floating-point extension.
2
3 array bits(32) _S[0..31];

E2.1.12 _SP

1 // _SP()
2 // =====
3
4 // Non-assignment form
5
6 bits(32) _SP(RNames spreg)
7 assert ((spreg == RNamesSP_Main_NonSecure) ||
8 ((spreg == RNamesSP_Main_Secure) && HaveSecurityExt()) ||
9 (spreg == RNamesSP_Process_NonSecure) ||

10 ((spreg == RNamesSP_Process_Secure) && HaveSecurityExt()));
11
12 return _RName[spreg][31:2]:'00';
13
14 // Assignment form
15
16 ExcInfo _SP(RNames spreg, boolean excEntry, boolean skipLimitCheck, bits(32) value)
17 assert ((spreg == RNamesSP_Main_NonSecure) ||
18 ((spreg == RNamesSP_Main_Secure) && HaveSecurityExt()) ||
19 (spreg == RNamesSP_Process_NonSecure) ||
20 ((spreg == RNamesSP_Process_Secure) && HaveSecurityExt()));
21
22 excInfo = DefaultExcInfo();
23 if !skipLimitCheck && ViolatesSPLim(spreg, value) then
24 isSecure = ((spreg == RNamesSP_Main_Secure) ||
25 (spreg == RNamesSP_Process_Secure));
26 // If the stack limit is violated during exception entry then the stack
27 // pointer is set to the limit value. This both prevents violations and
28 // ensures that the stack pointer is 8 byte aligned.
29 if excEntry then
30 _RName[spreg] = LookUpSPLim(spreg);
31
32 // Raise the appropriate exception and syndrome information.
33 if isSecure then
34 UFSR_S.STKOF = '1';
35 else
36 UFSR_NS.STKOF = '1';
37 // Create the exception. NOTE: If Main Extension is not implemented the fault always
38 // escalates to HardFault.
39 excInfo = CreateException(UsageFault, TRUE, isSecure);
40 if !excEntry then
41 HandleException(excInfo);
42 else
43 // Stack pointer only updated normally if limit not violated.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1931

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

44 _RName[spreg] = value[31:2]:'00';
45 return excInfo;

E2.1.13 Abs

1 // Abs()
2 // =====
3
4 integer Abs(integer x)
5 return if x >= 0 then x else -x;
6
7 real Abs(real x)
8 return if x >= 0.0 then x else -x;

E2.1.14 AccessAttributes

1 // Memory access attributes
2
3 type AccessAttributes is (
4 boolean iswrite, // TRUE for memory stores, FALSE for load accesses.
5 boolean ispriv, // TRUE if the access is privileged, FALSE if unprivileged.
6 AccType acctype
7)

E2.1.15 AccType

1 // Memory reference access type
2
3 enumeration AccType { AccType_NORMAL, // Normal loads and stores.
4 AccType_MVE, // Loads and stores generated by MVE
5 // instructions.
6 AccType_ORDERED, // Load-Acquire and Store-Release.
7 AccType_STACK, // HW generated stacking or unstacking
8 // operation.
9 AccType_LAZYFP, // HW generated stacking due to lazy

10 // floating-point state preservation.
11 AccType_IFETCH, // Instruction fetch.
12 AccType_DBG, // Loads and Stores generated by the Debugger.
13 AccType_VECTABLE // Vector table fetch.
14 };

E2.1.16 ActivateException

1 // ActivateException()
2 // ===================
3
4 ActivateException(integer exceptionNumber, boolean excIsSecure)
5 // If the exception is Secure, directly entry the Secure state.
6 CurrentState = if excIsSecure
7 then SecurityState_Secure else SecurityState_NonSecure;
8 IPSR.Exception = exceptionNumber[8:0]; // Update IPSR to this exception.
9 // This also causes a transition to

10 // privileged handler
11 // mode as IPSR.Exception != 0.
12 if HaveMainExt() then
13 EPSR.IT = Zeros(8); // IT/ICI/ECI bits cleared.
14 if HavePACBTIExt() then
15 EPSR.B = '0'; // Clear BTI state.
16 // PRIMASK, FAULTMASK, BASEPRI unchanged on exception entry.
17 if HaveMveOrFPExt() then
18 CONTROL.FPCA = '0'; // Floating-point Extension only
19 CONTROL_S.SFPA = '0';
20 CONTROL.SPSEL = '0'; // CONTROL.SPSEL is updated to indicate
21 // the selection of the Main stack pointer

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1932

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

22 // (SP_main), CONTROL.nPRIV unchanged.
23 // Transition exception from pending to active.
24 SetPending(exceptionNumber, excIsSecure, FALSE);
25 SetActive(exceptionNumber, excIsSecure, TRUE);

E2.1.17 ActiveFPState

1 // ActiveFPState()
2 // ===============
3
4 boolean ActiveFPState()
5 // Is the floating-point state accessible
6 (active, -) = IsCPEnabled(10);
7
8 // Is floating-point lazy state preservation active.
9 if active then

10 if FPCCR_S.S == '1' then
11 lspact = FPCCR_S.LSPACT;
12 else
13 lspact = FPCCR_NS.LSPACT;
14 active = lspact == '0';
15
16 // Check ASPEN to determine if the PE or software is managing the
17 // floating-point state.
18 if active && FPCCR.ASPEN == '1' then
19 // If the PE is managing the floating-point state then FPCA can be used
20 // to indicate if the current context has an active floating-point state.
21 // Similarly SFPA is also checked to determine if the floating-point state
22 // is active for the Secure state.
23 active = CONTROL.FPCA == '1' && (!IsSecure() || CONTROL_S.SFPA == '1');
24 return active;

E2.1.18 AddressDescriptor

1 // Descriptor used to access the underlying memory array
2
3 type AddressDescriptor is (
4 MemoryAttributes memattrs,
5 bits(32) paddress, // Physical Address.
6 AccessAttributes accattrs
7)

E2.1.19 AddrType

1 // Indicates address type
2
3 enumeration AddrType { AddrType_NORMAL,
4 AddrType_EXC_RETURN,
5 AddrType_FNC_RETURN
6 };

E2.1.20 AddWithCarry

1 // AddWithCarry()
2 // ==============
3
4 (bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
5 unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
6 signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
7 result = unsigned_sum[N-1:0]; // same value as signed_sum[N-1:0].
8 carry_out = if UInt(result) == unsigned_sum then '0' else '1';
9 overflow = if SInt(result) == signed_sum then '0' else '1';

10 return (result, carry_out, overflow);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1933

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.21 AdvSIMDExpandImm

1 // AdvSIMDExpandImm()
2 // ==================
3
4 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
5
6 case cmode[3:1] of
7 when '000'
8 imm64 = Replicate(Zeros(24):imm8, 2);
9 when '001'

10 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
11 when '010'
12 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
13 when '011'
14 imm64 = Replicate(imm8:Zeros(24), 2);
15 when '100'
16 imm64 = Replicate(Zeros(8):imm8, 4);
17 when '101'
18 imm64 = Replicate(imm8:Zeros(8), 4);
19 when '110'
20 if cmode[0] == '0' then
21 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
22 else
23 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
24 when '111'
25 if cmode[0] == '0' && op == '0' then
26 imm64 = Replicate(imm8, 8);
27 if cmode[0] == '0' && op == '1' then
28 imm8a = Replicate(imm8[7], 8); imm8b = Replicate(imm8[6], 8);
29 imm8c = Replicate(imm8[5], 8); imm8d = Replicate(imm8[4], 8);
30 imm8e = Replicate(imm8[3], 8); imm8f = Replicate(imm8[2], 8);
31 imm8g = Replicate(imm8[1], 8); imm8h = Replicate(imm8[0], 8);
32 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
33 if cmode[0] == '1' && op == '0' then
34 imm32 = imm8[7]:NOT(imm8[6]):Replicate(imm8[6],5):imm8[5:0]:Zeros(19);
35 imm64 = Replicate(imm32, 2);
36 if cmode[0] == '1' && op == '1' then
37 UNDEFINED;
38
39 return imm64;

E2.1.22 AlgorithmPAC

1 // Algorithm used for computing PAC
2
3 enumeration AlgorithmPAC {AlgorithmPAC_None, // PACBTI not implemented.
4 AlgorithmPAC_QARMA3,// QARMA3 algorithm implemented.
5 AlgorithmPAC_QARMA5,// QARMA5 algorithm implemented.
6 AlgorithmPAC_IMPDEF // IMPLEMENTATION DEFINED algorithm
7 // implemented.
8 };

E2.1.23 Align

1 // Align()
2 // =======
3
4 integer Align(integer x, integer y)
5 return y * (x DIV y);
6
7 bits(N) Align(bits(N) x, integer y)
8 return Align(UInt(x), y)[N-1:0];

E2.1.24 ArchVersion

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1934

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // Indicates architecture version
2
3 enumeration ArchVersion {
4 Armv8p0,
5 Armv8p1
6 };

E2.1.25 ASR

1 // ASR()
2 // =====
3
4 bits(N) ASR(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = ASR_C(x, shift);

10 return result;

E2.1.26 ASR_C

1 // ASR_C()
2 // =======
3
4 (bits(N), bit) ASR_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = SignExtend(x, shift+N);
7 result = extended_x[shift+N-1:shift];
8 carry_out = extended_x[shift-1];
9 return (result, carry_out);

E2.1.27 BeatComplete

1 // BeatComplete
2 // ============
3
4 // The BeatComplete value indicates whether the 4 beats from 2 instructions have
5 // been performed. The flags are packed into an 8 bit value as follows:
6 // bit 0: beat 0 of instruction 0
7 // bit 1: beat 1 of instruction 0
8 // ...
9 // bit 4: beat 0 of instruction 1

10 // bit 5: beat 1 of instruction 1
11 // ...
12 //
13 // NOTE: The beat execution rules mean that only a few flag combinations are
14 // valid.
15
16 // Non-assignment form
17 bits(8) BeatComplete
18 bits(8) beatComplete;
19 case EPSR.ECI of
20 when '00000000' beatComplete = '0000 0000';
21 when '00000001' beatComplete = '0000 0001';
22 when '00000010' beatComplete = '0000 0011';
23 when '00000100' beatComplete = '0000 0111';
24 when '00000101' beatComplete = '0001 0111';
25 otherwise
26 assert(FALSE);
27 return beatComplete;
28
29
30 // Assignment form
31 BeatComplete = bits(8) value

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1935

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

32 case value of
33 when '0000 0000' EPSR.ECI = 0[7:0];
34 when '0000 0001' EPSR.ECI = 1[7:0];
35 when '0000 0011' EPSR.ECI = 2[7:0];
36 when '0000 0111' EPSR.ECI = 4[7:0];
37 when '0001 0111' EPSR.ECI = 5[7:0];
38 otherwise
39 assert(FALSE);

E2.1.28 BeatSchedule

1 // BeatSchedule()
2 // ==============
3
4 type InstInfoType is (
5 bits(32) Opcode,
6 integer Length,
7 boolean Valid,
8 InstrType Type
9)

10
11 array [0..MAX_OVERLAPPING_INSTRS-1] of InstInfoType _InstInfo;
12 integer _InstID;
13 integer _BeatID;

E2.1.29 BigEndian

1 // BigEndian()
2 // ===========
3
4 boolean BigEndian(bits(32) startAddress, integer size)
5 // If AIRCR.ENDINANESS is 0 then the PE is in little endian mode.
6 if AIRCR.ENDIANNESS == '0' then
7 return FALSE;
8 // ...otherwise the PE is in big endian mode, however; the PPB
9 // space (0xE0000000 to 0xE00FFFFF) is always little endian.

10 endAddress = startAddress + size;
11 startPpbAccess = IsPPB(startAddress);
12 endPpbAccess = IsPPB(endAddress);
13 // If an access crosses the PPB boundary then it is
14 // CONSTRAINED_UNPREDICTABLE if the PE is in big endian mode.
15 if startPpbAccess != endPpbAccess then
16 CONSTRAINED_UNPREDICTABLE;
17 return !startPpbAccess;

E2.1.30 BigEndianReverse

1 // BigEndianReverse()
2 // ==================
3
4 bits(8*N) BigEndianReverse (bits(8*N) value, integer N)
5 assert N == 1 || N == 2 || N == 4;
6 bits(8*N) result;
7 case N of
8 when 1
9 result[7:0] = value[7:0];

10 when 2
11 result[15:8] = value[7:0];
12 result[7:0] = value[15:8];
13 when 4
14 result[31:24] = value[7:0];
15 result[23:16] = value[15:8];
16 result[15:8] = value[23:16];
17 result[7:0] = value[31:24];
18 return result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1936

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.31 BitCount

1 // BitCount()
2 // ==========
3
4 integer BitCount(bits(N) x)
5 integer result = 0;
6 for i = 0 to N-1
7 if x[i] == '1' then
8 result = result + 1;
9 return result;

E2.1.32 BitReverseShiftRight

1 // BitReverseShiftRight()
2 // ======================
3
4 bits(N) BitReverseShiftRight(bits(N) x, integer R)
5 reversed = Zeros(N);
6 if R > N then
7 R = N;
8 for i = 0 to R-1
9 reversed[R-i-1] = x[i];

10 return reversed;

E2.1.33 BranchCall

1 // BranchCall()
2 // ============
3
4 BranchCall(bits(32) address, boolean allowNonSecure, boolean setBti)
5 // If in the Secure state and transitions to the Non-secure state are allowed
6 // then the target state is specified by the LSB of the target address.
7 if HaveSecurityExt() && allowNonSecure && IsSecure() then
8 EPSR.T = '1';
9 if address[0] == '0' then

10 CurrentState = SecurityState_NonSecure;
11 if HaveMveOrFPExt() then CONTROL_S.SFPA = '0';
12 if HaveLOBExt() then
13 LO_BRANCH_INFO.VALID = '0';
14 else
15 EPSR.T = address[0];
16 // If EPSR.T == 0 then an exception is taken on the next
17 // instruction: UsageFault('Invalid State') if the Main Extension is
18 // implemented; HardFault otherwise.
19
20 BranchTo(address[31:1]:'0', FALSE, setBti);

E2.1.34 BranchReturn

1 // BranchReturn()
2 // ==============
3
4 ExcInfo BranchReturn(bits(32) address, boolean allowNonSecure, boolean setBti)
5 exc = DefaultExcInfo();
6
7 case IsReturn(address) of
8 when AddrType_NORMAL
9 BranchCall(address, allowNonSecure, setBti);

10 when AddrType_FNC_RETURN
11 // Unlike exception return, any faults raised during a FNC_RETURN
12 // unstacking are raised synchronously with the instruction that triggered
13 // the unstacking.
14 exc = FunctionReturn();
15 when AddrType_EXC_RETURN

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1937

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

16 // If enabled, the IESB contains asynchronous RAS / BusFault errors to the
17 // exception context.
18 if AIRCR.IESB == '1' then
19 exc = SynchronizeBusFault();
20 // The actual exception return is performed when the
21 // current instruction completes. This is because faults that occur
22 // during the exception return are handled differently from faults
23 // raised during the instruction execution.
24 if exc.fault == NoFault then
25 PendReturnOperation(address);
26
27 return exc;
28
29 ExcInfo BranchReturn(bits(32) address, boolean allowNonSecure)
30 return BranchReturn(address, allowNonSecure, FALSE);

E2.1.35 BranchTo

1 // BranchTo()
2 // ==========
3
4 BranchTo(bits(32) address, boolean commit, boolean setBti)
5 if HaveLOBExt() then
6 // Any branch between a branch future instruction and the associated
7 // branch point invalidates the branch info cache.
8 if LO_BRANCH_INFO.VALID == '1' && LO_BRANCH_INFO.BF == '1' then
9 LO_BRANCH_INFO.VALID = '0';

10
11 // EPSR.B is set to ensure that the target of the branch is either a BTI clearing
12 // instruction or a BTI agnostic instruction.
13 if setBti then
14 EPSR.B = '1';
15
16 // Sets the address to fetch the next instruction from. NOTE: The current PC
17 // is not changed directly as this would modify the result of
18 // ThisInstrAddr(), which would cause the wrong return addresses to be used
19 // for some types of exception. The actual update of the PC is done in the
20 // InstructionAdvance() function after the instruction finishes executing.
21 _NextInstrAddr = address[31:1]:'0';
22 _PCChanged = TRUE;
23 // Clear any pending exception returns
24 _PendingReturnOperation = FALSE;
25
26 if commit then
27 // This directly commits the change to the PC, so ThisInstrAddr()
28 // and NextInstrAddr() both point to the target address. Used for exception
29 // returns and resets so the state is consistent before the next instruction
30 // (or exception) is taken.
31 _RName[RNamesPC] = _NextInstrAddr;
32
33 BranchTo(bits(32) address)
34 BranchTo(address, FALSE, FALSE);

E2.1.36 BTIEnabled

1 // BTIEnabled()
2 // ============
3 // Check whether BTI is enabled.
4
5 boolean BTIEnabled(boolean isSecure)
6 enabled = FALSE;
7 // The PACBTI Extension must be implemented in order to use BTI functionality.
8 if HavePACBTIExt() then
9 control = if isSecure then CONTROL_S else CONTROL_NS;

10 if CurrentModeIsPrivileged(isSecure) then
11 enabled = control.BTI_EN == '1'; // Privileged BTI enabled
12 else

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1938

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

13 enabled = control.UBTI_EN == '1'; // Unprivileged BTI enabled
14 return enabled;
15
16
17 boolean BTIEnabled()
18 return BTIEnabled(IsSecure());

E2.1.37 BusFaultBarrier

1 // BusFaultBarrier()
2 // =================
3
4 // Forces any latent BusFault (both RAS and non-RAS) to be recognised.
5 // This function returns TRUE if a previously unrecognised BusFault was detected.
6 boolean BusFaultBarrier();

E2.1.38 CallSupervisor

1 // CallSupervisor()
2 // ================
3
4 CallSupervisor()
5 // Clear the LOB cache so that the return address in the SVC exception stack frame is
6 // guaranteed to be the instruction directly after the SVC.
7 if HaveLOBExt() then
8 LO_BRANCH_INFO.VALID = '0';
9 excInfo = CreateException(SVCall);

10 HandleException(excInfo);

E2.1.39 CanDebugAccessFP

1 // CanDebugAccessFP()
2 // ==================
3
4 boolean CanDebugAccessFP()
5 canAccessFP = (!HaveSecurityExt() || DHCSR.S_SDE == '1' ||
6 (FPCCR_S.S == '0' && NSACR.CP10 == '1'));
7
8 // Unprivileged-only debug for the state associated with the floating-point
9 // context restricts access through CPACR checking and if a lazy context is active.

10 if HaveUDE() then
11 if FPCCR_S.S == '1' && DHCSR.S_SUIDE == '1' then
12 canAccessFP = canAccessFP && CPACR_S.CP10 == '11' && FPCCR_S.LSPACT != '1';
13 elsif FPCCR_S.S == '0' && DHCSR.S_NSUIDE == '1' then
14 canAccessFP = canAccessFP && CPACR_NS.CP10 == '11' && FPCCR_NS.LSPACT != '1';
15 return canAccessFP;

E2.1.40 CanHaltOnEvent

1 // CanHaltOnEvent()
2 // ================
3
4 boolean CanHaltOnEvent(boolean is_secure, boolean isPriv)
5 if !HaveSecurityExt() then assert !is_secure;
6
7 if !HaveHaltingDebug() || Halted || DHCSR.C_DEBUGEN == '0' then return FALSE;
8
9 if is_secure then

10 if DHCSR.S_SDE == '1' && (!HaveUDE() || DHCSR.S_SUIDE == '0') then return TRUE;
11 else
12 if HaltingDebugAllowed() then return TRUE;
13
14 return (!isPriv && UnprivHaltingDebugEnabled(is_secure));

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1939

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.41 CanPendMonitorOnEvent

1 // CanPendMonitorOnEvent()
2 // =======================
3
4 boolean CanPendMonitorOnEvent(boolean isSecure, boolean checkPri, boolean checkEn,
5 boolean isPriv, boolean checkSecure)
6 if !HaveSecurityExt() then assert !isSecure;
7
8 result = HaveDebugMonitor() && !CanHaltOnEvent(isSecure, isPriv) && !Halted;
9

10 if checkEn then
11 if HaveUDE() && !isPriv then
12 result = result && (DEMCR.MON_EN == '1' || DEMCR.UMON_EN == '1');
13 else
14 result = result && DEMCR.MON_EN == '1';
15
16 if checkSecure then
17 result = result && (!isSecure || DEMCR.SDME == '1');
18
19 if checkPri then
20 result = result && MonitorCanPreempt();
21
22 return result;

E2.1.42 CdeImpDefValue

1 // CdeImpDefValue()
2 // ================
3 // IMPLEMENTATION DEFINED value functions for the Custom Datapath Extension.
4
5 bits(size) CdeImpDefValue(bits(N) instr);
6 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa);
7 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb);
8 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, bits(K) opc);
9

10 bits(size) CdeImpDefValue(bits(N) instr, integer curBeat, bits(4) elmtMask);
11 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, integer curBeat, bits(4) elmtMask);
12 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, integer curBeat,
13 bits(4) elmtMask);
14 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, bits(K) opc,
15 integer curBeat, bits(4) elmtMask);

E2.1.43 CheckCDEDecodeFaults

1 // CheckCDEDecodeFaults()
2 // ======================
3 // Check whether the coprocessors and features required by CDE are implemented and enabled.
4
5 CheckCDEDecodeFaults(integer cp, boolean isMve)
6 // Check whether access to the CDE coprocessor is enabled.
7 CheckCPDecodeFaults(cp);
8
9 // Check whether access to CP10 is enabled

10 CheckCPDecodeFaults(10);
11
12 if isMve then
13 // MVE extension is required.
14 if MVFR1.MVE == '0000' then UNDEFINED;
15 else
16 // Either MVE or the Floating-point extension are required.
17 if MVFR1.MVE == '0000' && MVFR0.FPSP == '0000' then UNDEFINED;

E2.1.44 CheckCPDecodeFaults

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1940

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // CheckCPDecodeFaults()
2 // ===============
3
4 CheckCPDecodeFaults(integer cp)
5 // Is the co-processer enabled, this may raise a NOCP UsageFault
6 excInfo = CheckCPEnabled(cp);
7 HandleException(excInfo);

E2.1.45 CheckCPEnabled

1 // CheckCPEnabled()
2 // ================
3
4 ExcInfo CheckCPEnabled(integer cp, boolean privileged, boolean secure)
5 (enabled, toSecure) = IsCPEnabled(cp, privileged, secure);
6 if !enabled then
7 if toSecure then
8 UFSR_S.NOCP = '1';
9 else

10 UFSR_NS.NOCP = '1';
11 excInfo = CreateException(UsageFault, TRUE, toSecure);
12 else
13 excInfo = DefaultExcInfo();
14 return excInfo;
15
16 ExcInfo CheckCPEnabled(integer cp)
17 return CheckCPEnabled(cp, CurrentModeIsPrivileged(), IsSecure());

E2.1.46 CheckDecodeFaults

1 // CheckDecodeFaults()
2 // ===================
3 // Check and raise faults in the correct order for MVE and floating-point instructions.
4
5 CheckDecodeFaults(ExtType extType)
6 // Is the instruction in the co-processer space
7 (isCP, cpNumber) = IsCPInstruction(ThisInstr());
8 assert(isCP);
9

10 // Is the co-processer enabled, this may raise a NOCP UsageFault
11 CheckCPDecodeFaults(cpNumber);
12
13 // Check if the type of instruction is supported.
14 case extType of
15 when ExtType_HpFp if MVFR1.FP16 == '0000' then UNDEFINED;
16 when ExtType_SpFp if MVFR0.FPSP == '0000' then UNDEFINED;
17 when ExtType_DpFp if MVFR0.FPDP == '0000' then UNDEFINED;
18 when ExtType_Mve if MVFR1.MVE == '0000' then UNDEFINED;
19 when ExtType_MveFp if MVFR1.MVE != '0010' then UNDEFINED;
20 when ExtType_MveOrFp
21 // Raises an UNDEFINED fault if MVE and the Floating-point extension are
22 // not implemented.
23 if MVFR1.MVE == '0000' && MVFR0.FPSP == '0000' then UNDEFINED;
24 when ExtType_MveOrDpFp
25 if MVFR1.MVE == '0000' && MVFR0.FPDP == '0000' then UNDEFINED;
26 when ExtType_Unknown UNDEFINED;
27 otherwise assert(FALSE);

E2.1.47 CheckFPDecodeFaults

1 // CheckFPDecodeFaults()
2 // ===================
3
4 CheckFPDecodeFaults(bits(2) size)
5 // Checks the size field and identifies the correct ExtType.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1941

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6 case size of
7 when '00' CheckDecodeFaults(ExtType_Unknown);
8 when '01' CheckDecodeFaults(ExtType_HpFp);
9 when '10' CheckDecodeFaults(ExtType_SpFp);

10 when '11' CheckDecodeFaults(ExtType_DpFp);

E2.1.48 CheckPermission

1 // CheckPermission()
2 // =================
3
4 ExcInfo CheckPermission(Permissions perms, bits(32) address, AccType acctype,
5 boolean iswrite, boolean ispriv, boolean isSecure)
6 if !perms.apValid then
7 fault = TRUE;
8 elsif (perms.xn == '1') && (acctype == AccType_IFETCH) then
9 fault = TRUE;

10 else
11 case perms.ap of
12 when '00' fault = !ispriv;
13 when '01' fault = FALSE;
14 when '10' fault = !ispriv || iswrite;
15 when '11' fault = iswrite;
16 otherwise UNPREDICTABLE;
17
18 // If a fault occurred generate the syndrome info and create the exception.
19 if fault then
20 // Create and write out the syndrome information on implementations with
21 // the Main Extension.
22 if HaveMainExt() then
23 MMFSR_Type fsr = Zeros(8);
24 case acctype of
25 when AccType_IFETCH
26 fsr.IACCVIOL = '1';
27 when AccType_STACK
28 if iswrite then
29 fsr.MSTKERR = '1';
30 else
31 fsr.MUNSTKERR = '1';
32 when AccType_LAZYFP
33 fsr.MLSPERR = '1';
34 when AccType_NORMAL, AccType_MVE, AccType_ORDERED
35 fsr.MMFARVALID = '1';
36 fsr.DACCVIOL = '1';
37 when AccType_DBG
38 // DAP errors do not set syndrome
39 otherwise
40 assert(FALSE);
41
42 // Write the syndrome information to the correct instance of banked
43 // registers.
44 if isSecure then
45 MMFSR_S = MMFSR_S OR fsr;
46 if fsr.MMFARVALID == '1' then
47 MMFAR_S = address;
48 else
49 MMFSR_NS = MMFSR_NS OR fsr;
50 if fsr.MMFARVALID == '1' then
51 MMFAR_NS = address;
52
53 // Create the exception. NOTE: If Main Extension is not implemented the fault
54 // escalates to a HardFault.
55 excInfo = CreateException(MemManage, TRUE, isSecure);
56 else
57 excInfo = DefaultExcInfo();
58 return excInfo;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1942

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.49 ClearEventRegister

1 // ClearEventRegister
2 // ==================
3 // Clears the Event register.
4
5 ClearEventRegister();

E2.1.50 ClearExclusiveByAddress

1 // ClearExclusiveByAddress
2 // =======================
3 // Clear the global exclusive monitor for all PEs, except for the PE specified
4 // by processorid for which an address region including any of size bytes
5 // starting from address has had a request for an exclusive access.
6
7 ClearExclusiveByAddress(bits(32) address, integer exclprocessorid, integer size);

E2.1.51 ClearExclusiveLocal

1 // ClearExclusiveLocal()
2 // =====================
3 // Clear local exclusive monitor records for the PE.
4
5 ClearExclusiveLocal(integer processorid);

E2.1.52 ClearInFlightInstructions

1 // ClearInFlightInstructions()
2 // ===========================
3
4 ClearInFlightInstructions()
5 for i = 0 to MAX_OVERLAPPING_INSTRS-1
6 _InstInfo[i].Valid = FALSE;

E2.1.53 ComparePriorities

1 // ComparePriorities()
2 // ===================
3
4 boolean ComparePriorities(integer exc0Pri, integer exc0Number, boolean exc0IsSecure,
5 integer exc1Pri, integer exc1Number, boolean exc1IsSecure)
6 if exc0Pri != exc1Pri then
7 takeE0 = exc0Pri < exc1Pri;
8 elsif exc0Number != exc1Number then
9 takeE0 = exc0Number < exc1Number;

10 elsif exc0IsSecure != exc1IsSecure then
11 takeE0 = exc0IsSecure;
12 else
13 // The two exceptions have exactly the same priority, so exception 0
14 // cannot be taken in preference to exception 1.
15 takeE0 = FALSE;
16 return takeE0;
17
18
19 boolean ComparePriorities(ExcInfo exc0Info, boolean groupPri,
20 integer exc1Pri, integer exc1Number, boolean exc1IsSecure)
21 exc0Pri = ExceptionPriority(exc0Info.fault, exc0Info.isSecure, groupPri);
22 return ComparePriorities(exc0Pri, exc0Info.fault, exc0Info.isSecure,
23 exc1Pri, exc1Number, exc1IsSecure);

E2.1.54 ComputePAC

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1943

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // ComputePAC()
2 // ============
3 // QARMA cryptographic algorithm.
4 // When an IMPLEMENTATION DEFINED cryptographic algorithm is used, the
5 // input arguments must match the input arguments of this function.
6
7 array bits(64) RC[0..4];
8
9 bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1)

10 bits(64) workingval;
11 bits(64) runningmod;
12 bits(64) roundkey;
13 bits(64) modk0;
14 constant bits(64) Alpha = 0xC0AC29B7C97C50DD[63:0];
15
16 RC[0] = 0x0000000000000000[63:0];
17 RC[1] = 0x13198A2E03707344[63:0];
18 RC[2] = 0xA4093822299F31D0[63:0];
19 RC[3] = 0x082EFA98EC4E6C89[63:0];
20 RC[4] = 0x452821E638D01377[63:0];
21
22 // The QARMA algorithm is available in two configurations:
23 // 1. QARMA5 - Performs 5 iterations.
24 // 2. QARMA3 - Performs 3 iterations.
25 integer MAX_ITER = if (HaveAlgorithmPAC() == AlgorithmPAC_QARMA5) then 4 else 2;
26
27 modk0 = key0[0]:key0[63:2]:(key0[63] EOR key0[1]);
28 runningmod = modifier;
29 workingval = data EOR key0;
30 for i = 0 to MAX_ITER
31 roundkey = key1 EOR runningmod;
32 workingval = workingval EOR roundkey;
33 workingval = workingval EOR RC[i];
34 if i > 0 then
35 workingval = PACCellShuffle(workingval);
36 workingval = PACMult(workingval);
37 if (HaveAlgorithmPAC() == AlgorithmPAC_QARMA5) then
38 workingval = PACSubQ5(workingval);
39 else
40 workingval = PACSubQ3(workingval);
41 runningmod = TweakShuffle(runningmod[63:0]);
42 roundkey = modk0 EOR runningmod;
43 workingval = workingval EOR roundkey;
44 workingval = PACCellShuffle(workingval);
45 workingval = PACMult(workingval);
46 if (HaveAlgorithmPAC() == AlgorithmPAC_QARMA5) then
47 workingval = PACSubQ5(workingval);
48 else
49 workingval = PACSubQ3(workingval);
50 workingval = PACCellShuffle(workingval);
51 workingval = PACMult(workingval);
52 workingval = key1 EOR workingval;
53 workingval = PACCellInvShuffle(workingval);
54 if (HaveAlgorithmPAC() == AlgorithmPAC_QARMA5) then
55 workingval = PACInvSub(workingval);
56 else
57 workingval = PACSubQ3(workingval);
58 workingval = PACMult(workingval);
59 workingval = PACCellInvShuffle(workingval);
60 workingval = workingval EOR key0;
61 workingval = workingval EOR runningmod;
62 for i = 0 to MAX_ITER
63 if (HaveAlgorithmPAC() == AlgorithmPAC_QARMA5) then
64 workingval = PACInvSub(workingval);
65 else
66 workingval = PACSubQ3(workingval);
67 if i < MAX_ITER then
68 workingval = PACMult(workingval);
69 workingval = PACCellInvShuffle(workingval);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1944

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

70 runningmod = TweakInvShuffle(runningmod[63:0]);
71 roundkey = key1 EOR runningmod;
72 workingval = workingval EOR RC[MAX_ITER-i];
73 workingval = workingval EOR roundkey;
74 workingval = workingval EOR Alpha;
75 workingval = workingval EOR modk0;
76
77 return workingval;

E2.1.55 Cond

1 // Condition code definitions
2 // ===========================
3
4 constant bits(4) CondEQ = 0x0[3:0];
5 constant bits(4) CondNE = 0x1[3:0];
6 constant bits(4) CondCS = 0x2[3:0];
7 constant bits(4) CondCC = 0x3[3:0];
8 constant bits(4) CondMI = 0x4[3:0];
9 constant bits(4) CondPL = 0x5[3:0];

10 constant bits(4) CondVS = 0x6[3:0];
11 constant bits(4) CondVC = 0x7[3:0];
12 constant bits(4) CondHI = 0x8[3:0];
13 constant bits(4) CondLS = 0x9[3:0];
14 constant bits(4) CondGE = 0xA[3:0];
15 constant bits(4) CondLT = 0xB[3:0];
16 constant bits(4) CondGT = 0xC[3:0];
17 constant bits(4) CondLE = 0xD[3:0];
18 constant bits(4) CondAL = 0xE[3:0];
19 constant bits(4) CondNV = 0xF[3:0];

E2.1.56 ConditionHolds

1 // ConditionHolds()
2 // ================
3
4 boolean ConditionHolds(bits(3) shortCond, bit n, bit z, bit c, bit v)
5 // Expand the short condition to the standard 4 bit representation.
6 case shortCond of
7 when '000' cond = CondEQ;
8 when '001' cond = CondNE;
9 when '010' cond = CondCS;

10 when '011' cond = CondHI;
11 when '100' cond = CondGE;
12 when '101' cond = CondLT;
13 when '110' cond = CondGT;
14 when '111' cond = CondLE;
15 return ConditionHolds(cond, n, z, c, v, TRUE);
16
17 boolean ConditionHolds(bits(4) cond)
18 return ConditionHolds(cond, APSR.N, APSR.Z, APSR.C, APSR.V, FALSE);
19
20 boolean ConditionHolds(bits(4) cond, bit n, bit z, bit c, bit v, boolean allowNV)
21 // Evaluate base condition.
22 case cond[3:1] of
23 when '000' result = (z == '1'); // EQ or NE
24 when '001' result = (c == '1'); // CS or CC
25 when '010' result = (n == '1'); // MI or PL
26 when '011' result = (v == '1'); // VS or VC
27 when '100' result = (c == '1') && (z == '0'); // HI or LS
28 when '101' result = (n == v); // GE or LT
29 when '110' result = (n == v) && (z == '0'); // GT or LE
30 when '111' result = TRUE; // AL or possibly NV
31
32 // The LSB of the condition code is an invert flag. Some situations prohibit
33 // execute-never, and treat it the same as execute always. This applies the
34 // invert taking into account whether the inverse of always is allowed.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1945

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

35 if cond[0] == '1' && (cond != CondNV || allowNV)then
36 result = !result;
37 return result;

E2.1.57 ConditionPassed

1 // ConditionPassed()
2 // =================
3
4 boolean ConditionPassed()
5 return ConditionPassed(CurrentCond());
6
7 boolean ConditionPassed(bits(4) cond)
8 passed = ConditionHolds(cond);
9 return passed;

E2.1.58 ConstrainUnpredictable

1 // ConstrainUnpredictable()
2 // ========================
3 // Return the appropriate Constraint result to control the caller's behavior.
4 // The return value is IMPLEMENTATION DEFINED within a permitted list for
5 // each UNPREDICTABLE case.
6 // (The permitted list is determined by an assert or case statement at the call site).
7
8 Constraint ConstrainUnpredictable(Unpredictable which);

E2.1.59 ConstrainUnpredictableBits

1 // ConstrainUnpredictableBits()
2 // ============================
3 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
4 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
5 // value is always an allocated value; that is, one for which the behavior is not itself
6 // CONSTRAINED.
7
8 (Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which);

E2.1.60 ConstrainUnpredictableBool

1 // ConstrainUnpredictableBool()
2 // ============================
3 // This is a wrapper for UNPREDICTABLE cases where the constrained result is
4 // either TRUE or FALSE.
5
6 boolean ConstrainUnpredictableBool(Unpredictable which);

E2.1.61 ConstrainUnpredictableInteger

1 // ConstrainUnpredictableInteger()
2 // ===============================
3 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
4 // If the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in
5 // the range low to high, inclusive.
6
7 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high,
8 Unpredictable which);

E2.1.62 ConsumeExcStackFrame

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1946

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // ConsumeExcStackFrame()
2 // ======================
3
4 ConsumeExcStackFrame(EXC_RETURN_Type excReturn, bit fourByteAlign)
5 // Calculate the size of the integer part of the stack frame.
6 toSecure = HaveSecurityExt() && excReturn.S == '1';
7 if toSecure && (excReturn.ES == '0' ||
8 excReturn.DCRS == '0') then
9 framesize = 0x48;

10 else
11 framesize = 0x20;
12 // Add on the size of the floating-point part of the stack frame if present
13 if HaveMveOrFPExt() && excReturn.FType == '0' then
14 if toSecure && FPCCR_S.TS == '1' then
15 framesize = framesize + 0x88;
16 else
17 framesize = framesize + 0x48;
18
19 // Update stack pointer. NOTE: Stack pointer limit not checked on exception
20 // return as stack pointer guaranteed to be ascending not descending.
21 mode = if excReturn.Mode == '1' then PEMode_Thread else PEMode_Handler;
22 spName = LookUpSP_with_security_mode(toSecure, mode);
23 exc = _SP(spName, FALSE, TRUE, (_SP(spName) + framesize) OR
24 ZeroExtend(fourByteAlign:'00',32));
25 assert exc.fault == NoFault;

E2.1.63 ConsumptionOfSpeculativeDataBarrier

1 // Consumption of Speculative Data Barrier
2 // =======================================
3 // Perform a Consumption of Speculative Data Barrier operation.
4
5 ConsumptionOfSpeculativeDataBarrier();

E2.1.64 Coproc_Accepted

1 // Coproc_Accepted
2 // ================
3 // Check whether a coprocessor accepts an instruction.
4
5 boolean Coproc_Accepted(integer cp_num, bits(32) instr);

E2.1.65 Coproc_DoneLoading

1 // Coproc_DoneLoading
2 // ==================
3 // Check whether enough 32-bit words have been loaded for an LDC instruction.
4
5 boolean Coproc_DoneLoading(integer cp_num, bits(32) instr);

E2.1.66 Coproc_DoneStoring

1 // Coproc_DoneStoring
2 // ==================
3 // Check whether enough 32-bit words have been stored for a STC instruction.
4
5 boolean Coproc_DoneStoring(integer cp_num, bits(32) instr);

E2.1.67 Coproc_GetOneWord

1 // Coproc_GetOneWord
2 // =================
3 // Gets the 32-bit word for an MRC instruction from the coprocessor.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1947

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4
5 bits(32) Coproc_GetOneWord(integer cp_num, bits(32) instr);

E2.1.68 Coproc_GetTwoWords

1 // Coproc_GetTwoWords
2 // ==================
3 // Get two 32-bit words for an MRRC instruction from the coprocessor.
4
5 (bits(32), bits(32)) Coproc_GetTwoWords(integer cp_num, bits(32) instr);

E2.1.69 Coproc_GetWordToStore

1 // Coproc_GetWordToStore
2 // =====================
3 // Gets the next 32-bit word to store for an STC instruction from the coprocessor.
4
5 bits(32) Coproc_GetWordToStore(integer cp_num, bits(32) instr);

E2.1.70 Coproc_InternalOperation

1 // Coproc_InternalOperation
2 // ========================
3 // Instructs a coprocessor to perform the internal operation requested
4 // by a CDP instruction.
5
6 Coproc_InternalOperation(integer cp_num, bits(32) instr);

E2.1.71 Coproc_SendLoadedWord

1 // Coproc_SendLoadedWord
2 // =====================
3 // Sends a loaded 32-bit word for an LDC instruction to the coprocessor.
4
5 Coproc_SendLoadedWord(bits(32) word, integer cp_num, bits(32) instr);

E2.1.72 Coproc_SendOneWord

1 // Coproc_SendOneWord
2 // ==================
3 // Sends the 32-bit word for an MCR instruction to the coprocessor.
4
5 Coproc_SendOneWord(bits(32) word, integer cp_num, bits(32) instr);

E2.1.73 Coproc_SendTwoWords

1 // Coproc_SendTwoWords
2 // ===================
3 // Send two 32-bit words for an MCRR instruction to the coprocessor.
4
5 Coproc_SendTwoWords(bits(32) word2, bits(32) word1, integer cp_num, bits(32) instr);

E2.1.74 CoprocType

1 // CoprocType
2 // ==========
3 // Returns the architecture defined enumeration of the instruction set
4 // supported by the given coprocessor space.
5
6 CPDef CoprocType(integer coproc)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1948

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 // The CDE extension defines two encoding patterns:
8 // - CP_GCP : The architected coprocessor encodings for MRC, MCR,
9 // CDP and other coprocessor instructions.

10 // - CP_CDEv1 : Version 1 of the Custom Datapath Extension.
11 coprocType = CP_GCP;
12 if coproc >= 0 && coproc <= 7 then
13 if boolean IMPLEMENTATION_DEFINED "CDE enabled coprocessor" then
14 coprocType = CP_CDEv1;
15 return coprocType;

E2.1.75 CountLeadingSignBits

1 // CountLeadingSignBits()
2 // ======================
3
4 integer CountLeadingSignBits(bits(N) x)
5 return CountLeadingZeroBits(x[N-1:1] EOR x[N-2:0]);

E2.1.76 CountLeadingZeroBits

1 // CountLeadingZeroBits()
2 // ======================
3
4 integer CountLeadingZeroBits(bits(N) x)
5 return N - 1 - HighestSetBit(x);

E2.1.77 CPDef

1 // CPDef
2 // =====
3 // The CDE extension defines two encoding patterns
4
5 enumeration CPDef { CP_GCP, // The architected coprocessor encodings for MRC, MCR, CDP and
6 // other coprocessor instructions.
7 CP_CDEv1 // Version 1 of the Custom Datapath Extension.
8 };

E2.1.78 CreateException

1 // CreateException()
2 // =================
3
4 ExcInfo CreateException(integer exception, boolean forceSecurity,
5 boolean isSecure, boolean isSynchronous)
6
7 // Work out the effective target Security state of the exception.
8 if HaveSecurityExt() then
9 if !forceSecurity then

10 isSecure = ExceptionTargetsSecure(exception, isSecure);
11 else
12 isSecure = FALSE;
13
14 // An implementation without Security Extensions cannot cause a fault targetting
15 // Secure state.
16 assert HaveSecurityExt() || !isSecure;
17
18 // Get the remaining exception details.
19 (escalateToHf, termInst) = ExceptionDetails(exception, isSecure, isSynchronous);
20
21 // Fill in the default exception info
22 info = DefaultExcInfo();
23 info.fault = exception;
24 info.termInst = termInst;
25 info.origFault = exception;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1949

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

26 info.origFaultIsSecure = isSecure;
27
28 // Check for HardFault escalation
29 // In some cases (for example faults during lazy floating-point state preservation)
30 // the decision to escalate below is ignored and instead based on the info.origFault*
31 // fields and other factors.
32 if escalateToHf && info.fault != HardFault then
33 // Update the exception info with the escalation details, including
34 // whether there's a change in destination Security state.
35 info.fault = HardFault;
36 isSecure = ExceptionTargetsSecure(HardFault, isSecure);
37 (escalateToHf, -) = ExceptionDetails(HardFault, isSecure, isSynchronous);
38
39 // If the requested exception was already a HardFault then the PE cannot escalate
40 // to a HardFault, so lockup. NOTE: Asynchronous BusFaults never cause
41 // lockups, if the BusFault is disabled it escalates to a HardFault that is
42 // pended.
43 if escalateToHf && isSynchronous && info.fault == HardFault then
44 info.lockup = TRUE;
45
46 // Fill in the remaining exception info.
47 info.isSecure = isSecure;
48 return info;
49
50 ExcInfo CreateException(integer exception, boolean forceSecurity, boolean isSecure)
51 return CreateException(exception, forceSecurity, isSecure, TRUE);
52
53 ExcInfo CreateException(integer exception)
54 return CreateException(exception, FALSE, IsSecure(), TRUE);

E2.1.79 CreatePAC

1 // CreatePAC()
2 // ===========
3 // Returns a 32-bit value containing the pointer authentication code, where the pointer
4 // authentication code is derived using a cryptographic algorithm as a combination of
5 // x, y and the cryptographic key. The cryptographic key is selected on the basis of the
6 // current Security state and privilege level.
7
8 bits(32) CreatePAC(bits(32) x, bits(32) y)
9 // Where <x> is the pointer and <y> is the modifier. Both are zero extended to 64 bits.

10 bits(64) extPtr = Zeros(32) : x;
11 bits(64) modifier = Zeros(32) : y;
12
13 // Get the key to use. The top 64bits are the whitening key.
14 key = PACKey[IsSecure(), CurrentModeIsPrivileged()];
15 // Return the 32 least significant bits of the computed PAC value.
16 return ComputePAC(extPtr, modifier, key[127:64], key[63:0])[31:0];

E2.1.80 CurrentCond

1 // CurrentCond()
2 // =============
3 // Returns condition specifier of current instruction.
4
5 bits(4) CurrentCond();

E2.1.81 CurrentMode

1 // CurrentMode()
2 // =============
3
4 PEMode CurrentMode()
5 return if IPSR.Exception == NoFault[8:0] then PEMode_Thread else PEMode_Handler;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1950

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.82 CurrentModeIsPrivileged

1 // CurrentModeIsPrivileged()
2 // =========================
3
4 boolean CurrentModeIsPrivileged()
5 return CurrentModeIsPrivileged(IsSecure());
6
7 boolean CurrentModeIsPrivileged(boolean isSecure)
8 nPriv = if isSecure then CONTROL_S.nPRIV else CONTROL_NS.nPRIV;
9 return (CurrentMode() == PEMode_Handler || nPriv == '0');

E2.1.83 CX_op0

1 // CX_op0
2 // ======
3
4 bits(size) CX_op0(bits(32) instr, integer size)
5 assert size IN {32, 64};
6
7 // Custom data path returning IMPLEMENTATION DEFINED value based on
8 // instruction opcode only.
9 return CdeImpDefValue(instr);

E2.1.84 CX_op1

1 // CX_op1
2 // ======
3
4 bits(size) CX_op1(bits(32) instr, bits(N) opa, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on
9 // instruction opcode and single 32-bit or 64-bit operand, opa, only.

10 return CdeImpDefValue(instr, opa);

E2.1.85 CX_op2

1 // CX_op2
2 // ======
3
4 bits(size) CX_op2(bits(32) instr, bits(N) opa, bits(32) opb, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
9 // opcode and two 32-bit or 64-bit operands, opa and opb, only.

10 return CdeImpDefValue(instr, opa, opb);

E2.1.86 CX_op3

1 // CX_op3
2 // ======
3
4 bits(size) CX_op3(bits(32) instr, bits(N) opa, bits(32) opb, bits(32) opc, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
9 // opcode and three 32-bit or 64-bit operands, opa, opb and opc, only.

10 return CdeImpDefValue(instr, opa, opb, opc);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1951

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.87 D

1 // D[]
2 // ===
3
4 // Non-assignment form
5
6 bits(64) D[integer n]
7 assert n >= 0 && n <= 31;
8 return _S[(n*2)+1]:_S[n*2];
9

10 // Assignment form
11
12 D[integer n] = bits(64) value
13 assert n >= 0 && n <= 31;
14 _S[(n*2)+1] = value[63:32];
15 _S[n*2] = value[31:0];
16 return;

E2.1.88 DAPCheck

1 // DAPCheck()
2 // ==========
3
4 (boolean, boolean, boolean) DAPCheck(bits(32) address, boolean reqPriv, boolean reqSecure)
5
6 assert(HaveSecurityExt() || !reqSecure);
7
8 // DAP accesses to SCS registers select the bank to access based on DSCSR.SBRSEL*, and
9 // not the security attribute of the DAP access itself.

10 // If DHCSR.S_SDE is 0 then DSCSR.SBRSELEN reads as 1 and DSCSR.SBRSEL reads as 0. This
11 // forces the Non-secure bank of the registers to be read if Secure debug is not
12 // permitted.
13 if IsSCS(address) then
14 if DSCSR.SBRSELEN == '0' then
15 isSecure = IsSecure();
16 else
17 isSecure = DSCSR.SBRSEL == '1';
18 else
19 // DAP access falls back to Nonsecure when secure debug disabled.
20 isSecure = reqSecure && DHCSR.S_SDE == '1';
21
22 udeEn = (isSecure && DHCSR.S_SUIDE == '1') || (!isSecure && DHCSR.S_NSUIDE == '1');
23 isPriv = reqPriv && !udeEn;
24 err = TRUE; // Deny-default policy, with exemptions below.
25
26 // Allow access if halting debug or UDE permissions are available, and let the
27 // target handle access based on privilege/security.
28 if HaltingDebugAllowed() || udeEn then
29 err = FALSE;
30
31 elsif IsPPB(address) then
32 // Handle accesses based on NonInvasiveDebugAllowed or
33 // region-specific rules.
34 niden = !NoninvasiveDebugAllowed(TRUE);
35 case address of
36 when '1110 0000 0000 xxxx xxxx 1111 1011 0xxx'
37 err = niden; // CoreSight software lock
38 when '1110 0000 0000 xxxx xxxx 1111 1101 xxxx'
39 err = FALSE; // All ID registers RO
40 when '1110 0000 0000 xxxx xxxx 1111 111x xxxx'
41 err = FALSE; // All ID registers RO
42 when '1110 0000 0000 0000 0000 xxxx xxxx xxxx'
43 err = niden; // ITM
44 when '1110 0000 0000 0000 0001 xxxx xxxx xxxx'
45 err = niden; // DWT
46 when '1110 0000 0000 0000 0011 xxxx xxxx xxxx'

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1952

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

47 err = niden; // PMU
48 when '1110 0000 0000 0100 0000 xxxx xxxx xxxx'
49 err = FALSE; // TPIU
50 when '1110 0000 0000 0100 0001 xxxx xxxx xxxx'
51 err = FALSE; // ETM
52 when '1110 0000 0000 1111 1111 xxxx xxxx xxxx'
53 err = FALSE; // ROM Table
54 otherwise
55 address_uint = UInt(address);
56 if address_uint >= 0xE0042000 && address_uint <= 0xE00FEFFF then
57 err = boolean IMPLEMENTATION_DEFINED "IMPDEF DAP region";
58
59 if DAUTHCTRL_S.UIDAPEN == '1' || DAUTHCTRL_NS.UIDAPEN == '1' then
60 err = FALSE;
61 isPriv = FALSE;
62
63 else // NOT PPB
64 if UInt(address) >= 0xE0100000 then
65 err = !NoninvasiveDebugAllowed(TRUE);
66
67 if DAUTHCTRL_S.UIDAPEN == '1' || DAUTHCTRL_NS.UIDAPEN == '1' then
68 err = TRUE;
69 isPriv = FALSE;
70
71 return (isSecure, isPriv, err);

E2.1.89 DataMemoryBarrier

1 // DataMemoryBarrier()
2 // ===================
3 // Perform a Data Memory Barrier operation.
4
5 DataMemoryBarrier(bits(4) option);

E2.1.90 DataSynchronizationBarrier

1 // DataSynchronizationBarrier
2 // ==========================
3 // Perform a data synchronization barrier operation.
4
5 DataSynchronizationBarrier(bits(4) option);

E2.1.91 DeActivate

1 // DeActivate()
2 // ============
3
4 DeActivate(integer returningExceptionNumber, boolean targetDomainSecure)
5 // To prevent the execution priority remaining negative (and therefore
6 // masking HardFault) when returning from NMI or HardFault with a corrupted
7 // IPSR value, the active bits corresponding to the execution priority are
8 // cleared if the raw execution priority (in other words the priority before
9 // FAULTMASK and other priority boosting is considered) is negative.

10 rawPri = RawExecutionPriority();
11 if rawPri == -1 then
12 SetActive(HardFault, AIRCR.BFHFNMINS == '0', FALSE);
13 elsif rawPri == -2 then
14 SetActive(NMI, AIRCR.BFHFNMINS == '0', FALSE);
15 elsif rawPri == -3 then
16 SetActive(HardFault, TRUE, FALSE);
17 else
18 secure = HaveSecurityExt() && targetDomainSecure;
19 SetActive(returningExceptionNumber, secure, FALSE);
20
21 /* PRIMASK and BASEPRI unchanged on exception exit */

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1953

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

22 if HaveMainExt() && rawPri >= 0 then
23 // Clear FAULTMASK for exception Security domain on any return except
24 // NMI and HardFault.
25 if HaveSecurityExt() && targetDomainSecure then
26 FAULTMASK_S.FM = '0';
27 else
28 FAULTMASK_NS.FM = '0';
29 return;

E2.1.92 Debug_authentication

1 // In the recommended CoreSight interface, there are four signals for external debug
2 // authentication, DBGEN, SPIDEN, NIDEN and SPNIDEN. Each signal is active-HIGH.
3
4 signal DBGEN;
5 signal SPIDEN;
6 signal NIDEN;
7 signal SPNIDEN;

E2.1.93 DebugCanMaskInts

1 // DebugCanMaskInts()
2 // ==================
3
4 boolean DebugCanMaskInts(boolean secure)
5 if !HaltingDebugAllowed() || DHCSR.C_DEBUGEN == '0' then
6 return FALSE;
7 elsif secure && DHCSR.S_SDE == '0' then
8 return FALSE;
9 elsif HaveUDE() && secure && DHCSR.S_SUIDE == '1' then

10 return FALSE;
11 elsif HaveUDE() && DHCSR.S_NSUIDE == '1' then
12 return FALSE;
13 else
14 return DHCSR.C_MASKINTS == '1';

E2.1.94 DebugEventCause

1 // Causes for debug event generation.
2
3 enumeration DebugEventCause {DebugEventCause_BKPT, DebugEventCause_FPB, DebugEventCause_EXT};

E2.1.95 DebugRegisterTransfer

1 // DebugRegisterTransfer()
2 // =======================
3
4 DebugRegisterTransfer(bits(8) reg, boolean isWrite)
5 isSecure = IsSecure();
6 unprivDbgS = HaveUDE() && DHCSR.S_SUIDE == '1';
7 unprivDbgNS = HaveUDE() && DHCSR.S_NSUIDE == '1';
8 unprivDbg = if isSecure then unprivDbgS else unprivDbgNS;
9

10 if ((UInt(reg) >= UInt(DCRSR_REGSEL_R_LOW) && UInt(reg) <= UInt(DCRSR_REGSEL_R_HIGH)) ||
11 reg == DCRSR_REGSEL_LR) then
12 if isWrite then
13 R[UInt(reg)] = DCRDR;
14 else
15 DCRDR = R[UInt(reg)];
16
17 elsif reg == DCRSR_REGSEL_SP then
18 if isWrite then
19 // This requires skipping stack limit checking,
20 // hence a direct _RName access is used.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1954

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

21 _RName[LookUpRName(UInt(reg))] = DCRDR[31:2]:'00';
22 else
23 DCRDR = _RName[LookUpRName(UInt(reg))];
24
25 elsif reg == DCRSR_REGSEL_DBGRETADDR then
26 if isWrite then
27 BranchTo(DCRDR, TRUE, FALSE);
28 else
29 DCRDR = _RName[RNamesPC];
30
31 elsif reg == DCRSR_REGSEL_XPSR then
32 if isWrite then
33 EAPSR = DCRDR[31:0];
34 else
35 DCRDR[31:0] = XPSR; // When accessed in unprivileged state the value
36 // of IPSR is 0.
37
38 elsif reg == DCRSR_REGSEL_SP_MAIN then
39 if isSecure then
40 spName = RNamesSP_Main_Secure;
41 else
42 spName = RNamesSP_Main_NonSecure;
43 if isWrite then
44 if !unprivDbg then
45 - = _SP(spName, FALSE, TRUE, DCRDR);
46 else
47 if !unprivDbg then
48 DCRDR = _SP(spName);
49 else
50 DCRDR = Zeros();
51
52 elsif reg == DCRSR_REGSEL_SP_PROCESS then
53 if isSecure then
54 spName = RNamesSP_Process_Secure;
55 else
56 spName = RNamesSP_Process_NonSecure;
57 if isWrite then
58 - = _SP(spName, FALSE, TRUE, DCRDR);
59 else
60 DCRDR = _SP(spName);
61
62 elsif reg == DCRSR_REGSEL_STATE then
63 if isWrite then
64 if !unprivDbg then
65 CONTROL[7:0] = DCRDR[31:24];
66 if HaveMainExt() then
67 FAULTMASK[7:0] = DCRDR[23:16];
68 BASEPRI[7:0] = DCRDR[15:8];
69 PRIMASK[7:0] = DCRDR[7:0];
70 else
71 CONTROL.SFPA = DCRDR[27]; // NOTE: SFPA is RAZ/WI when PE is in NS state.
72 CONTROL.FPCA = DCRDR[26];
73 if HavePACBTIExt() then
74 CONTROL.UPAC_EN = DCRDR[31];
75 CONTROL.UBTI_EN = DCRDR[29];
76 else
77 if !unprivDbg then
78 DCRDR[31:24] = CONTROL[7:0];
79 if HaveMainExt() then
80 DCRDR[23:16] = FAULTMASK[7:0];
81 DCRDR[15:8] = BASEPRI[7:0];
82 else
83 DCRDR[23:8] = Zeros(16);
84 DCRDR[7:0] = PRIMASK[7:0];
85 else
86 CONTROL_Type control = Zeros(32);
87 control.SFPA = CONTROL.SFPA; // NOTE: SFPA is RAZ/WI when PE is in NS state.
88 control.FPCA = CONTROL.FPCA;
89 if HavePACBTIExt() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1955

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

90 control.UPAC_EN = CONTROL.UPAC_EN;
91 control.UBTI_EN = CONTROL.UBTI_EN;
92 DCRDR = control[7:0] : Zeros(24);
93
94 elsif reg == DCRSR_REGSEL_MSP_NS && HaveSecurityExt() then
95 if isWrite then
96 // Unprivileged-only debug is restricted even if MSP is being used by
97 // unprivileged execution, a safe restriction that removes the
98 // requirement to check other conditions here.
99 if !unprivDbgNS then

100 - = _SP(RNamesSP_Main_NonSecure, FALSE, TRUE, DCRDR);
101 else
102 if !unprivDbgNS then
103 DCRDR = _SP(RNamesSP_Main_NonSecure);
104 else
105 DCRDR[31:0] = Zeros();
106
107 elsif reg == DCRSR_REGSEL_PSP_NS && HaveSecurityExt() then
108 if isWrite then
109 - = _SP(RNamesSP_Process_NonSecure, FALSE, TRUE, DCRDR);
110 else
111 DCRDR = _SP(RNamesSP_Process_NonSecure);
112
113 elsif reg == DCRSR_REGSEL_MSP_S && HaveSecurityExt() then
114 if isWrite then
115 // Unprivileged-only debug is restricted even if MSP is being used by
116 // unprivileged execution, a safe restriction that removes the
117 // requirement to check other conditions here.
118 if DHCSR.S_SDE == '1' && !unprivDbgS then
119 - = _SP(RNamesSP_Main_Secure, FALSE, TRUE, DCRDR);
120 else
121 if DHCSR.S_SDE == '1' && !unprivDbgS then
122 DCRDR = _SP(RNamesSP_Main_Secure);
123 else
124 DCRDR = Zeros(32);
125
126 elsif reg == DCRSR_REGSEL_PSP_S && HaveSecurityExt() then
127 if isWrite then
128 if DHCSR.S_SDE == '1' then
129 - = _SP(RNamesSP_Process_Secure, FALSE, TRUE, DCRDR);
130 else
131 if DHCSR.S_SDE == '1' then
132 DCRDR = _SP(RNamesSP_Process_Secure);
133 else
134 DCRDR = Zeros(32);
135
136 elsif reg == DCRSR_REGSEL_MSPLIM_S && HaveSecurityExt() then
137 if isWrite then
138 if DHCSR.S_SDE == '1' && !unprivDbgS then
139 MSPLIM_S = DCRDR[31:0];
140 else
141 if DHCSR.S_SDE == '1' && !unprivDbgS then
142 DCRDR[31:0] = MSPLIM_S;
143 else
144 DCRDR = Zeros(32);
145
146 elsif reg == DCRSR_REGSEL_PSPLIM_S && HaveSecurityExt() then
147 if isWrite then
148 if DHCSR.S_SDE == '1' then
149 PSPLIM_S = DCRDR[31:0];
150 else
151 if DHCSR.S_SDE == '1' then
152 DCRDR[31:0] = PSPLIM_S;
153 else
154 DCRDR = Zeros(32);
155
156 elsif reg == DCRSR_REGSEL_MSPLIM_NS && HaveMainExt() then
157 if isWrite then
158 if !unprivDbgNS then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1956

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

159 MSPLIM_NS = DCRDR[31:0];
160 else
161 if !unprivDbgNS then
162 DCRDR[31:0] = MSPLIM_NS;
163 else
164 DCRDR[31:0] = Zeros();
165
166 elsif reg == DCRSR_REGSEL_PSPLIM_NS && HaveMainExt() then
167 if isWrite then
168 PSPLIM_NS = DCRDR[31:0];
169 else
170 DCRDR[31:0] = PSPLIM_NS;
171
172 elsif reg == DCRSR_REGSEL_FPSCR && (HaveFPExt() || HaveMve()) then
173 if isWrite then
174 if CanDebugAccessFP() then
175 FPSCR = DCRDR[31:0];
176 else
177 if CanDebugAccessFP() then
178 DCRDR[31:0] = FPSCR;
179 else
180 DCRDR = Zeros(32);
181
182 elsif reg == DCRSR_REGSEL_STATE_S && HaveSecurityExt() then
183 if isWrite then
184 if DHCSR.S_SDE == '1' then
185 if !unprivDbgS then
186 CONTROL_S[7:0] = DCRDR[31:24];
187 if HaveMainExt() then
188 FAULTMASK_S[7:0] = DCRDR[23:16];
189 BASEPRI_S[7:0] = DCRDR[15:8];
190 PRIMASK_S[7:0] = DCRDR[7:0];
191 else
192 CONTROL_S.SFPA = DCRDR[27];
193 CONTROL_S.FPCA = DCRDR[26];
194 if HavePACBTIExt() then
195 CONTROL_S.UPAC_EN = DCRDR[31];
196 CONTROL_S.UBTI_EN = DCRDR[29];
197 else
198 if DHCSR.S_SDE == '1' then
199 if !unprivDbgS then
200 DCRDR[31:24] = CONTROL_S[7:0];
201 if HaveMainExt() then
202 DCRDR[23:16] = FAULTMASK_S[7:0];
203 DCRDR[15:8] = BASEPRI_S[7:0];
204 else
205 DCRDR[23:8] = Zeros(16);
206 DCRDR[7:0] = PRIMASK_S[7:0];
207 else
208 CONTROL_Type control = Zeros(32);
209 control.SFPA = CONTROL_S.SFPA;
210 control.FPCA = CONTROL_S.FPCA;
211 if HavePACBTIExt() then
212 control.UPAC_EN = CONTROL_S.UPAC_EN;
213 control.UBTI_EN = CONTROL_S.UBTI_EN;
214 DCRDR = control[7:0] : Zeros(24);
215 else
216 DCRDR = Zeros(32);
217
218 elsif reg == DCRSR_REGSEL_STATE_NS && HaveSecurityExt() then
219 if isWrite then
220 if !unprivDbgNS then
221 CONTROL_NS[7:0] = DCRDR[31:24]; // NOTE: SFPA is RAZ/WI.
222 if HaveMainExt() then
223 FAULTMASK_NS[7:0] = DCRDR[23:16];
224 BASEPRI_NS[7:0] = DCRDR[15:8];
225 PRIMASK_NS[7:0] = DCRDR[7:0];
226 else
227 CONTROL_NS.FPCA = DCRDR[26];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1957

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

228 if HavePACBTIExt() then
229 CONTROL_NS.UPAC_EN = DCRDR[31];
230 CONTROL_NS.UBTI_EN = DCRDR[29];
231 else
232 if !unprivDbgNS then
233 DCRDR[31:24] = CONTROL_NS[7:0]; // NOTE: SFPA is RAZ/WI.
234 if HaveMainExt() then
235 DCRDR[23:16] = FAULTMASK_NS[7:0];
236 DCRDR[15:8] = BASEPRI_NS[7:0];
237 else
238 DCRDR[23:8] = Zeros(16);
239 DCRDR[7:0] = PRIMASK_NS[7:0];
240 else
241 CONTROL_Type control = Zeros(32);
242 control.FPCA = CONTROL_NS.FPCA;
243 if HavePACBTIExt() then
244 control.UPAC_EN = CONTROL_NS.UPAC_EN;
245 control.UBTI_EN = CONTROL_NS.UBTI_EN;
246 DCRDR = control[7:0] : Zeros(24);
247
248 elsif reg == DCRSR_REGSEL_VPR && HaveMve() then
249 if isWrite then
250 if CanDebugAccessFP() then
251 VPR = DCRDR[31:0];
252 else
253 if CanDebugAccessFP() then
254 DCRDR = VPR[31:0];
255 else
256 DCRDR = Zeros(32);
257
258 elsif (UInt(reg) >= UInt(DCRSR_REGSEL_S_LOW) &&
259 UInt(reg) <= UInt(DCRSR_REGSEL_S_HIGH) && (HaveFPExt() || HaveMve())) then
260 if isWrite then
261 if CanDebugAccessFP() then
262 _S[UInt(reg[5:0])] = DCRDR;
263 else
264 if CanDebugAccessFP() then
265 DCRDR = _S[UInt(reg[5:0])];
266 else
267 DCRDR = Zeros(32);
268
269 elsif (UInt(reg) >= UInt(DCRSR_REGSEL_PAC_KEY_P_LOW) &&
270 UInt(reg) <= UInt(DCRSR_REGSEL_PAC_KEY_U_HIGH) && HavePACBTIExt()) then
271 if isWrite then
272 if !unprivDbg then
273 PACKeyReg[reg[2:0], isSecure] = DCRDR;
274 else
275 if !unprivDbg then
276 DCRDR = PACKeyReg[reg[2:0], isSecure];
277 else
278 DCRDR = Zeros();
279
280 elsif (UInt(reg) >= UInt(DCRSR_REGSEL_PAC_KEY_P_S_LOW) &&
281 UInt(reg) <= UInt(DCRSR_REGSEL_PAC_KEY_U_S_HIGH) &&
282 HavePACBTIExt() && HaveSecurityExt()) then
283 if isWrite then
284 if DHCSR.S_SDE == '1' && !unprivDbgS then
285 PACKeyReg[reg[2:0], TRUE] = DCRDR;
286 else
287 if DHCSR.S_SDE == '1' && !unprivDbgS then
288 DCRDR = PACKeyReg[reg[2:0], TRUE];
289 else
290 DCRDR = Zeros();
291
292 elsif (UInt(reg) >= UInt(DCRSR_REGSEL_PAC_KEY_P_NS_LOW) &&
293 UInt(reg) <= UInt(DCRSR_REGSEL_PAC_KEY_U_NS_HIGH) &&
294 HavePACBTIExt() && HaveSecurityExt()) then
295 if isWrite then
296 if !unprivDbgNS then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1958

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

297 PACKeyReg[reg[2:0], FALSE] = DCRDR;
298 else
299 if !unprivDbgNS then
300 DCRDR = PACKeyReg[reg[2:0], FALSE];
301 else
302 DCRDR = Zeros();
303
304 else
305 DCRDR = bits(32) UNKNOWN;

E2.1.96 DecodeExecute

1 // DecodeExecute
2 // =============
3 // Decode instruction and execute.
4
5 DecodeExecute(bits(32) instr, bits(32) pc, boolean isT16, bits(4) defaultCond);

E2.1.97 DecodeImmShift

1 // DecodeImmShift()
2 // ================
3
4 (SRType, integer) DecodeImmShift(bits(2) sr_type, bits(5) imm5)
5
6 case sr_type of
7 when '00'
8 shift_t = SRType_LSL; shift_n = UInt(imm5);
9 when '01'

10 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
11 when '10'
12 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
13 when '11'
14 if imm5 == '00000' then
15 shift_t = SRType_RRX; shift_n = 1;
16 else
17 shift_t = SRType_ROR; shift_n = UInt(imm5);
18
19 return (shift_t, shift_n);

E2.1.98 DecodeRegShift

1 // DecodeRegShift()
2 // ================
3
4 SRType DecodeRegShift(bits(2) sr_type)
5 case sr_type of
6 when '00' shift_t = SRType_LSL;
7 when '01' shift_t = SRType_LSR;
8 when '10' shift_t = SRType_ASR;
9 when '11' shift_t = SRType_ROR;

10 return shift_t;

E2.1.99 DefaultCond

1 // DefaultCond()
2 // =============
3
4 bits(4) DefaultCond()
5 // If in an IT block use the IT condition, otherwise set the condition to
6 // always (in other words 0xE).
7 // NOTE: This is only the default condition, as it may be overridden by an
8 // explicit condition code in the instruction itself.
9 if ITSTATE[3:0] == Zeros(4) then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1959

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

10 cond = 0xE[3:0];
11 else
12 cond = ITSTATE[7:4];
13 return cond;

E2.1.100 DefaultExcInfo

1 // DefaultExcInfo()
2 // ================
3
4 ExcInfo DefaultExcInfo()
5 ExcInfo exc;
6
7 exc.fault = NoFault;
8 exc.origFault = NoFault;
9 exc.derivedFrom = NoFault;

10 exc.isSecure = boolean UNKNOWN;
11 exc.origFaultIsSecure = boolean UNKNOWN;
12 exc.derivedFromIsSecure = boolean UNKNOWN;
13 exc.isTerminal = FALSE;
14 exc.inExcTaken = FALSE;
15 exc.lockup = FALSE;
16 exc.termInst = TRUE;
17 return exc;

E2.1.101 DefaultMemoryAttributes

1 // DefaultMemoryAttributes()
2 // =========================
3
4 MemoryAttributes DefaultMemoryAttributes(bits(32) address)
5
6 MemoryAttributes memattrs;
7
8 case address[31:29] of
9 when '000'

10 memattrs.memtype = MemType_Normal;
11 memattrs.device = DeviceType UNKNOWN;
12 memattrs.innerattrs = '10';
13 memattrs.innerhints = '10';
14 memattrs.shareable = FALSE;
15 when '001'
16 memattrs.memtype = MemType_Normal;
17 memattrs.device = DeviceType UNKNOWN;
18 memattrs.innerattrs = '11';
19 memattrs.innerhints = '11';
20 memattrs.shareable = FALSE;
21 when '010'
22 memattrs.memtype = MemType_Device;
23 memattrs.device = DeviceType_nGnRE;
24 memattrs.innerattrs = '00';
25 memattrs.innerhints = '00';
26 memattrs.shareable = TRUE;
27 when '011'
28 memattrs.memtype = MemType_Normal;
29 memattrs.device = DeviceType UNKNOWN;
30 memattrs.innerattrs = '11';
31 memattrs.innerhints = '11';
32 memattrs.shareable = FALSE;
33 when '100'
34 memattrs.memtype = MemType_Normal;
35 memattrs.device = DeviceType UNKNOWN;
36 memattrs.innerattrs = '10';
37 memattrs.innerhints = '10';
38 memattrs.shareable = FALSE;
39 when '101'
40 memattrs.memtype = MemType_Device;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1960

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

41 memattrs.device = DeviceType_nGnRE;
42 memattrs.innerattrs = '00';
43 memattrs.innerhints = '00';
44 memattrs.shareable = TRUE;
45 when '110'
46 memattrs.memtype = MemType_Device;
47 memattrs.device = DeviceType_nGnRE;
48 memattrs.innerattrs = '00';
49 memattrs.innerhints = '00';
50 memattrs.shareable = TRUE;
51 when '111'
52 if address[28:20] == '000000000' then
53 memattrs.memtype = MemType_Device;
54 memattrs.device = DeviceType_nGnRnE;
55 memattrs.innerattrs = '00';
56 memattrs.innerhints = '00';
57 memattrs.shareable = TRUE;
58 else
59 memattrs.memtype = MemType_Device;
60 memattrs.device = DeviceType_nGnRE;
61 memattrs.innerattrs = '00';
62 memattrs.innerhints = '00';
63 memattrs.shareable = TRUE;
64
65 // Outer attributes are the same as the inner attributes in all cases.
66 memattrs.outerattrs = memattrs.innerattrs;
67 memattrs.outerhints = memattrs.innerhints;
68 memattrs.outershareable = memattrs.shareable;
69 memattrs.innertransient = FALSE;
70 memattrs.outertransient = FALSE;
71
72 // Setting as UNKNOWN by default. This flag will be overwritten based on
73 // SAU and IDAU checking in SecurityCheck().
74 memattrs.NS = boolean UNKNOWN;
75 return memattrs;

E2.1.102 DefaultPermissions

1 // DefaultPermissions()
2 // ====================
3
4 Permissions DefaultPermissions(bits(32) address)
5
6 Permissions perms;
7
8 perms.ap = '01';
9 perms.apValid = TRUE;

10 perms.region = Zeros(8);
11 perms.regionValid = FALSE;
12
13 case address[31:29] of
14 when '000'
15 perms.xn = '0';
16 when '001'
17 perms.xn = '0';
18 when '010'
19 perms.xn = '1';
20 when '011'
21 perms.xn = '0';
22 when '100'
23 perms.xn = '0';
24 when '101'
25 perms.xn = '1';
26 when '110'
27 perms.xn = '1';
28 when '111'
29 perms.xn = '1';
30

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1961

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

31 return perms;

E2.1.103 DerivedLateArrival

1 // DerivedLateArrival()
2 // ====================
3
4 DerivedLateArrival(integer pePriority, integer peNumber, boolean peIsSecure, ExcInfo deInfo,
5 integer oeNumber, boolean oeIsSecure, EXC_RETURN_Type excReturn)
6 // PE: the pre-empted exception - before exception entry.
7 // OE: the original exception - exception entry.
8 // DE: the derived exception - fault on exception entry.
9

10 // Get the priorities of the exceptions
11 // xePriority: the lower the value, the higher the priority.
12 oePriority = ExceptionPriority(oeNumber, oeIsSecure, FALSE);
13 // NOTE: Comparison of dePriority against PE priority and possible
14 // escalation to HardFault has already occurred. See CreateException().
15
16 // Work out which fault to take, and what the target Security state is.
17 if deInfo.isTerminal then
18 // Derived exception is terminal and prevents the original exception
19 // being taken (for example fault on vector fetch). As a result the
20 // derived exception is treated as a HardFault.
21 targetIsSecure = deInfo.isSecure;
22 targetFault = deInfo.fault;
23 // If the derived fault does not have sufficient priority to pre-empt
24 // lockup instead of taking it.
25 if !ComparePriorities(deInfo, FALSE, oePriority, oeNumber, oeIsSecure) then
26 _ = ExceptionTaken(oeNumber, deInfo.inExcTaken, oeIsSecure,
27 IgnoreFaults_ALL, excReturn);
28 // Since execution of original exception cannot be started, lockup
29 // at the current priority level. That is the priority of the original
30 // exception.
31 Lockup(TRUE);
32 elsif ComparePriorities(deInfo, FALSE, oePriority, oeNumber, oeIsSecure) then
33 // Derive exception has a higher priority (that is a lower value) than the
34 // original exception, so the derived exception first. Tail-chaining is
35 // IMPLEMENTATION DEFINED.
36 targetFault = deInfo.fault;
37 targetIsSecure = deInfo.isSecure;
38 else
39 // If the derived exception caused a lockup then this must be handled
40 // now as the lockup cannot be pended until the original exception
41 // returns.
42 if deInfo.lockup then
43 // Lockup at the priority of the original exception being entered.
44 _ = ExceptionTaken(oeNumber, deInfo.inExcTaken, oeIsSecure,
45 IgnoreFaults_ALL, excReturn);
46 Lockup(TRUE);
47 else
48 // DE will be pended below, start execution of the OE.
49 targetFault = oeNumber;
50 targetIsSecure = oeIsSecure;
51
52 // If none of the tests above have triggered a lockup (which would have
53 // terminated execution of the pseudocode) then the derived exception
54 // must be pended and any escalation syndrome info generated.
55 if HaveMainExt() &&
56 (deInfo.fault == HardFault) &&
57 (deInfo.origFault != HardFault) then
58 HFSR.FORCED = '1';
59 SetPending(deInfo.fault, deInfo.isSecure, TRUE);
60
61 // Take the target exception. NOTE: None terminal faults are ignored when
62 // handling the derived exception, allowing forward progress to be made.
63 (excInfo, excReturn) = ExceptionTaken(targetFault, deInfo.inExcTaken,
64 targetIsSecure, IgnoreFaults_STACK, excReturn);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1962

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

65 // If trying to take the resulting exception results in another fault, then handle
66 // the derived derived fault.
67 if excInfo.fault != NoFault then
68 DerivedLateArrival(pePriority, peNumber, peIsSecure, excInfo, targetFault,
69 targetIsSecure, excReturn);

E2.1.104 DeviceType

1 // Types of memory
2
3 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE,
4 DeviceType_nGnRE, DeviceType_nGnRnE};

E2.1.105 DWT_AddressCompare

1 // DWT_AddressCompare()
2 // ====================
3 // Returns a pair of values. The first result is whether the (masked) addresses are equal,
4 // where the access address (addr) is masked according to DWT_FUNCTION[n].DATAVSIZE and the
5 // comparator address (compaddr) is masked according to the access size. The second result
6 // is whether the (unmasked) addr is greater than the (unmasked) compaddr.
7
8 (boolean,boolean) DWT_AddressCompare(bits(32) addr, bits(32) compaddr, integer size,
9 integer compsize)

10 // addr must be a multiple of size. Unaligned accesses are split into smaller accesses.
11 assert Align(addr, size) == addr;
12
13 // compaddr must be a multiple of compsize
14 if Align(compaddr, compsize) != compaddr then UNPREDICTABLE;
15
16 addrmatch = (Align(addr, compsize) == Align(compaddr, size));
17 addrgreater = (UInt(addr) > UInt(compaddr));
18 return (addrmatch,addrgreater);

E2.1.106 DWT_CycCountMatch

1 // DWT_CycCountMatch
2 // =================
3 // Check for DWT cycle count match. This is called for each increment of
4 // DWT_CYCCNT.
5
6 DWT_CycCountMatch()
7 boolean trigger_debug_event = FALSE;
8 boolean debug_event = FALSE;
9 N = UInt(DWT_CTRL.NUMCOMP);

10 if N == 0 then return; // No comparator support
11 secure_match = IsSecure() && DWT_CTRL.CYCDISS == '1';
12 for i = 0 to N-1
13 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
14 if DWT_FUNCTION[i].MATCH == '0001' && DWT_ValidMatch(i, secure_match, FindPriv())
15 && DWT_CYCCNT == DWT_COMP[i] then
16 DWT_FUNCTION[i].MATCHED = '1';
17 debug_event = DWT_FUNCTION[i].ACTION == '01';
18 trigger_debug_event = trigger_debug_event || debug_event;
19
20 // Setting the debug event if at least one comparator matches.
21 if trigger_debug_event then
22 // There is no special behaviour required for a cycle count match,
23 // so treat it as if it were a normal memory access.
24 debug_event = SetDWTDebugEvent(secure_match, FindPriv(), AccType_NORMAL);
25 return;

E2.1.107 DWT_DataAddressMatch

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1963

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // DWT_DataAddressMatch()
2 // ======================
3 // Check for match of access at "daddr". "dsize", "read", "NSreq", and "privilege" are the
4 // attributes for the access. Note that for a load or store instruction, "NSreq" is the
5 // current Security state of the PE, but this is not necessarily true for a hardware stack
6 // push/pop or vector table access. "NSreq" might not be the same as the "NSattr"
7 // attribute the PE finally uses to make the access.
8 // If comparators 'm' and 'm+1' form an Data Address Range comparator, then this function
9 // returns the range match result when N=m+1.

10
11 boolean DWT_DataAddressMatch(integer N, bits(32) daddr, integer dsize, boolean read,
12 boolean NSreq, boolean priv_match)
13 assert N < UInt(DWT_CTRL.NUMCOMP) && dsize IN {1,2,4} && Align(daddr, dsize) == daddr;
14
15 valid_match = DWT_ValidMatch(N, !NSreq, priv_match);
16 valid_addr = DWT_FUNCTION[N].MATCH == 'x1xx';
17
18 if valid_match && valid_addr then
19 if N != UInt(DWT_CTRL.NUMCOMP)-1 then
20 linked_to_addr = DWT_FUNCTION[N+1].MATCH == '0111'; // Data Address Limit
21 else
22 linked_to_addr = FALSE;
23
24 case DWT_FUNCTION[N].MATCH[1:0] of
25 when '00' match_lsc = TRUE; linked = FALSE;
26 when '01' match_lsc = !read; linked = FALSE;
27 when '10' match_lsc = read; linked = FALSE;
28 when '11'
29
30 case DWT_FUNCTION[N-1].MATCH[1:0] of
31 when '00' match_lsc = TRUE; linked = TRUE;
32 when '01' match_lsc = !read; linked = TRUE;
33 when '10' match_lsc = read; linked = TRUE;
34
35 if !linked_to_addr then
36 vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
37 (match_eq,match_gt) = DWT_AddressCompare(daddr, DWT_COMP[N], dsize, vsize);
38
39 if linked then
40 valid_match = DWT_ValidMatch(N-1, !NSreq, priv_match);
41 (lower_eq,lower_gt) = DWT_AddressCompare(daddr, DWT_COMP[N-1], dsize, 1);
42 match_addr = valid_match && (lower_eq || lower_gt) && !match_gt;
43 else
44 match_addr = match_eq;
45 else
46 match_addr = FALSE;
47
48 match = match_addr && match_lsc;
49 else
50 match = FALSE;
51
52 return match;

E2.1.108 DWT_DataMatch

1 // DWT_DataMatch()
2 // ===============
3 // Perform varioius Data match checks for DWT.
4
5 DWT_DataMatch(bits(32) daddr, integer dsize, bits(32) dvalue, boolean read, boolean NSreq,
6 boolean priv_match, AccType acctype)
7
8 boolean trigger_debug_event = FALSE;
9 boolean debug_event = FALSE;

10
11 if !HaveDWT() || IsZero(DWT_CTRL.NUMCOMP) then return; // No comparator support
12
13 for i = 0 to UInt(DWT_CTRL.NUMCOMP) - 1

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1964

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

14 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
15 daddr_match = DWT_DataAddressMatch(i, daddr, dsize, read, NSreq, priv_match);
16 dvalue_match = DWT_DataValueMatch(i, daddr, dvalue, dsize, read, NSreq, priv_match);
17
18 // Data Address and Data Address Limit.
19 if daddr_match && DWT_FUNCTION[i].MATCH == '01xx' then
20 // Data Address.
21 if DWT_FUNCTION[i].MATCH != '0111' then
22 DWT_FUNCTION[i].MATCHED = '1';
23 debug_event = DWT_FUNCTION[i].ACTION == '01';
24
25 // Data Address with Data Address Limit.
26 else
27 //ith comparator.
28 DWT_FUNCTION[i].MATCHED = bit UNKNOWN;
29 // (i-1)th comparator.
30 DWT_FUNCTION[i-1].MATCHED = '1';
31 debug_event = DWT_FUNCTION[i-1].ACTION == '01';
32
33 // Data Value and Linked Data Value.
34 if dvalue_match && DWT_FUNCTION[i].MATCH == '10xx' then
35 // Data Value.
36 if DWT_FUNCTION[i].MATCH != '1011' then
37 DWT_FUNCTION[i].MATCHED = '1';
38 debug_event = DWT_FUNCTION[i].ACTION == '01';
39
40 // For Linked Data Value, daddr_match will be TRUE for [i-1].
41 else
42 DWT_FUNCTION[i].MATCHED = '1';
43 debug_event = DWT_FUNCTION[i].ACTION == '01';
44
45 // Data Address with Value.
46 if daddr_match && DWT_FUNCTION[i].MATCH == '11xx' then
47 DWT_FUNCTION[i].MATCHED = '1';
48 // No debug_event generated in the case of Data Address with Value.
49
50 trigger_debug_event = trigger_debug_event || debug_event;
51
52 // Setting the debug event if at least one comparator matches.
53 if trigger_debug_event then
54 debug_event = SetDWTDebugEvent(!NSreq, priv_match, acctype);
55
56 return;

E2.1.109 DWT_DataValueMatch

1 // DWT_DataValueMatch()
2 // ====================
3 // Check for match of access of "dvalue" at "daddr". "dsize", "read" and "NSreq"
4 // and "priv_match" are the attributes for the access. Note that for a load or store
5 // instruction, "NSreq" is the current Security state of the PE, but this is not
6 // necessarily true for a hardware stack push/pop or vector table access. "NSreq"
7 // might not be the same as the "NSattr" attribute the PE finally uses to make the access.
8
9 boolean DWT_DataValueMatch(integer N, bits(32) daddr, bits(32) dvalue, integer dsize,

10 boolean read, boolean NSreq, boolean priv_match)
11 assert N < UInt(DWT_CTRL.NUMCOMP) && dsize IN {1,2,4} && Align(daddr,dsize) == daddr;
12
13 valid_match = DWT_ValidMatch(N, !NSreq, priv_match);
14 valid_data = DWT_FUNCTION[N].MATCH[3:2] == '10';
15
16 if valid_match && valid_data then
17 case DWT_FUNCTION[N].MATCH[1:0] of
18 when '00' match_lsc = TRUE; linked = FALSE;
19 when '01' match_lsc = !read; linked = FALSE;
20 when '10' match_lsc = read; linked = FALSE;
21 when '11'
22 case DWT_FUNCTION[N-1].MATCH[1:0] of

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1965

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

23 when '00' match_lsc = TRUE; linked = TRUE;
24 when '01' match_lsc = !read; linked = TRUE;
25 when '10' match_lsc = read; linked = TRUE;
26
27 vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
28
29 // Determine which bytes of dvalue to look at in the comparison.
30 if linked then
31 byte_mask = '0000'; // Filled in below if there is an address match
32 if DWT_DataAddressMatch(N-1, daddr, dsize, read, NSreq, priv_match) then
33 case (vsize,dsize) of
34 when (1,1) byte_mask[0] = '1';
35 when (1,2) byte_mask[UInt(DWT_COMP[N-1][0])] = '1';
36 when (1,4) byte_mask[UInt(DWT_COMP[N-1][1:0])] = '1';
37 when (2,2) byte_mask[1:0] = '11';
38 when (2,4)
39 byte_mask[UInt(DWT_COMP[N-1][1:0])+1:UInt(DWT_COMP[N-1][1:0])]='11';
40 when (4,4) byte_mask = '1111';
41 otherwise byte_mask = '0000'; // vsize > dsize: no match
42 else
43 case dsize of
44 when 1 byte_mask = '0001';
45 when 2 byte_mask = '0011';
46 when 4 byte_mask = '1111';
47
48 // Perform bitwise mask on the candidate data value.
49 bit_mask = (if HasArchVersion(Armv8p1) then DWT_VMASK[N] else Zeros(32));
50 dvalue = (dvalue AND NOT bit_mask);
51
52 // Split both values into byte lanes: DCBA and dcba.
53 // This function relies on the values being correctly replicated across DWT_COMP[N].
54 D = dvalue[31:24]; C = dvalue[23:16]; B = dvalue[15:8]; A = dvalue[7:0];
55 d = DWT_COMP[N][31:24]; c = DWT_COMP[N][23:16];
56 b = DWT_COMP[N][15:8]; a = DWT_COMP[N][7:0];
57
58 // Partial results.
59 D_d = byte_mask[3] == '1' && D == d;
60 C_c = byte_mask[2] == '1' && C == c;
61 B_b = byte_mask[1] == '1' && B == b;
62 A_a = byte_mask[0] == '1' && A == a;
63
64 // Combined partial results.
65 BA_ba = B_b && A_a;
66 DC_dc = D_d && C_c;
67 DCBA_dcba = D_d && C_c && B_b && A_a;
68
69 // Generate full results.
70 case (vsize,dsize) of
71 when (1,-) match_data = D_d || C_c || B_b || A_a;
72 when (2,2), (2,4) match_data = DC_dc || BA_ba;
73 when (4,4) match_data = DCBA_dcba;
74 otherwise match_data = FALSE; // vsize > dsize: no match
75
76 match = match_data && match_lsc;
77 else
78 match = FALSE;
79
80 return match;

E2.1.110 DWT_InstructionAddressMatch

1 // DWT_InstructionAddressMatch()
2 // =============================
3 // Check for match of instruction access at "Iaddr".
4 // If comparators 'm' and 'm+1' form an Instruction Address Range comparator, then this
5 // function returns the range match when N=m+1.
6
7 boolean DWT_InstructionAddressMatch(integer N, bits(32) Iaddr, boolean isSecure,

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1966

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 boolean isPriv)
9 assert N < UInt(DWT_CTRL.NUMCOMP) && Align(Iaddr, 2) == Iaddr;

10
11 valid_match = DWT_ValidMatch(N, isSecure, isPriv);
12 valid_instr = DWT_FUNCTION[N].MATCH == '001x';
13
14 if valid_match && valid_instr then
15 if N != UInt(DWT_CTRL.NUMCOMP)-1 then
16 linked_to_instr = DWT_FUNCTION[N+1].MATCH == '0011';
17 else
18 linked_to_instr = FALSE;
19
20 if DWT_FUNCTION[N].MATCH == '0011' then
21 linked = TRUE;
22 else
23 linked = FALSE;
24
25 if !linked_to_instr then
26 (match_eq,match_gt) = DWT_AddressCompare(Iaddr, DWT_COMP[N], 2, 2);
27 if linked then
28 valid_match = DWT_ValidMatch(N-1, isSecure, isPriv);
29 (lower_eq,lower_gt) = DWT_AddressCompare(Iaddr, DWT_COMP[N-1], 2, 2);
30 match_addr = valid_match && (lower_eq || lower_gt) && !match_gt;
31 else
32 match_addr = match_eq;
33 else
34 match_addr = FALSE;
35 match = match_addr;
36 else
37 match = FALSE;
38
39 return match;

E2.1.111 DWT_InstructionMatch

1 // DWT_InstructionMatch()
2 // =====================
3 // Perform various Instruction Address checks for DWT.
4
5 DWT_InstructionMatch(bits(32) Iaddr, boolean isSecure, boolean isPriv, integer size)
6
7 boolean trigger_debug_event = FALSE;
8 boolean debug_event = FALSE;
9

10 if !HaveDWT() || IsZero(DWT_CTRL.NUMCOMP) then return; // No comparator support.
11
12 for i = 0 to UInt(DWT_CTRL.NUMCOMP) - 1
13 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
14 instr_addr_match = DWT_InstructionAddressMatch(i, Iaddr, isSecure, isPriv);
15 if instr_addr_match then
16 // Instruction Address.
17 if DWT_FUNCTION[i].MATCH == '0010' then
18 DWT_FUNCTION[i].MATCHED = '1';
19 debug_event = DWT_FUNCTION[i].ACTION == '01';
20
21 // Instruction Address Limit.
22 elsif DWT_FUNCTION[i].MATCH == '0011' then
23 DWT_FUNCTION[i].MATCHED = bit UNKNOWN;
24 DWT_FUNCTION[i-1].MATCHED = '1';
25 debug_event = DWT_FUNCTION[i-1].ACTION == '01';
26
27 trigger_debug_event = trigger_debug_event || debug_event;
28
29 // If address A matches but if A+2 does not match for a 4-byte instruction, it
30 // is CONSTRAINED UNPREDICTABLE whether a match is generated.
31 elsif size == 4 && DWT_InstructionAddressMatch(i, Iaddr + 2, isSecure, isPriv) then
32 trigger_debug_event = ConstrainUnpredictableBool(Unpredictable_DWTBreakpoint);
33

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1967

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

34 if trigger_debug_event then
35 debug_event = SetDWTDebugEvent(isSecure, isPriv, AccType_IFETCH);
36 return;

E2.1.112 DWT_ValidMatch

1 // DWT_ValidMatch()
2 // ================
3 // Returns TRUE if this match is permitted by the current authentication controls,
4 // FALSE otherwise.
5
6 boolean DWT_ValidMatch(integer N, boolean secure_match, boolean priv_match)
7 if !HaveSecurityExt() then assert !secure_match;
8
9 // Check for disabled.

10 if (((secure_match && !SecureNoninvasiveDebugAllowed(priv_match)) ||
11 !NoninvasiveDebugAllowed(priv_match)) ||
12 DEMCR.TRCENA == '0' ||
13 DWT_FUNCTION[N].MATCH == '0000') then
14 return FALSE;
15
16 // Check for Debug event.
17 if DWT_FUNCTION[N].ACTION == '01' then
18 hlt_en = CanHaltOnEvent(secure_match, priv_match);
19 // Ignore priority when checking whether DebugMonitor activates DWT matches.
20 mon_en = (HaveDebugMonitor() && CanPendMonitorOnEvent(secure_match, FALSE, TRUE,
21 priv_match, TRUE));
22 return (hlt_en || mon_en);
23 else
24 // Otherwise trace or trigger event.
25 return !secure_match || SecureNoninvasiveDebugAllowed(priv_match);

E2.1.113 Elem

1 // Elem[]
2 // ======
3
4 // Non-assignment form
5
6 bits(size) Elem[bits(N) vector, integer e, integer size]
7 assert e >= 0 && (e+1)*size <= N;
8 return vector[(e+1)*size-1:e*size];
9

10 bits(size) Elem[bits(N) vector, integer e]
11 return Elem[vector, e, size];
12
13 // Assignment form
14
15 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
16 assert e >= 0 && (e+1)*size <= N;
17 vector[(e+1)*size-1:e*size] = value;
18 return;
19
20 Elem[bits(N) &vector, integer e] = bits(size) value
21 Elem[vector, e, size] = value;
22 return;

E2.1.114 EndOfInstruction

1 // EndOfInstruction
2 // ================
3 // Terminates the processing of current instruction.
4
5 EndOfInstruction();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1968

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.115 EventRegistered

1 // EventRegistered
2 // ===============
3 // Returns TRUE if PE Event Register is set to 1 and FALSE otherwise.
4
5 boolean EventRegistered();

E2.1.116 ExceptionActiveBitCount

1 // ExceptionActiveBitCount()
2 // =========================
3
4 integer ExceptionActiveBitCount()
5 integer count = 0;
6 for i = 0 to MaxExceptionNum()
7 for j = 0 to 1
8 if IsActiveForState(i, j == 0) then
9 count = count + 1;

10 return count;

E2.1.117 ExceptionDetails

1 // ExceptionDetails()
2 // ==================
3
4 (boolean, boolean) ExceptionDetails(integer exception, boolean isSecure,
5 boolean isSynchronous)
6 // Is the exception subject to escalation.
7 case exception of
8 when HardFault
9 termInst = TRUE;

10 canPend = TRUE;
11 canEscalate = TRUE;
12 when MemManage
13 termInst = TRUE;
14 if HaveMainExt() then
15 val = if isSecure then SHCSR_S else SHCSR_NS;
16 canPend = val.MEMFAULTENA == '1';
17 else
18 canPend = FALSE;
19 canEscalate = TRUE;
20 when BusFault
21 termInst = isSynchronous;
22 canPend = if HaveMainExt()
23 then SHCSR_S.BUSFAULTENA == '1' else FALSE;
24 // Async BusFaults only escalate if they are disabled.
25 canEscalate = termInst || !canPend;
26 when UsageFault
27 termInst = TRUE;
28 if HaveMainExt() then
29 val = if isSecure then SHCSR_S else SHCSR_NS;
30 canPend = val.USGFAULTENA == '1';
31 else
32 canPend = FALSE;
33 canEscalate = TRUE;
34 when SecureFault
35 termInst = TRUE;
36 canPend = if HaveMainExt()
37 then SHCSR_S.SECUREFAULTENA == '1' else FALSE;
38 canEscalate = TRUE;
39 when SVCall
40 termInst = FALSE;
41 canPend = TRUE;
42 canEscalate = TRUE;
43 when DebugMonitor

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1969

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

44 termInst = TRUE;
45 // Only used by a BKPT or FPB event.
46 canPend = (HaveMainExt() && CanPendMonitorOnEvent(isSecure, TRUE, TRUE,
47 FindPriv(), TRUE));
48 canEscalate = TRUE; // HardFault escalation for a BKPT
49 otherwise
50 termInst = FALSE;
51 canEscalate = FALSE;
52
53 // If the fault can escalate then check if exception can be taken immediately, or whether
54 // it should escalate.
55 // NOTE: In some cases (for example faults during lazy floating-point state preservation)
56 // the priority comparison below is ignored and the decision to escalate or not is
57 // based on other factors.
58 escalateToHf = FALSE;
59 if canEscalate then
60 execPri = ExecutionPriority();
61 excePri = ExceptionPriority(exception, isSecure, TRUE);
62 if (excePri >= execPri) || !canPend then
63 escalateToHf = TRUE;
64
65 return (escalateToHf, termInst);

E2.1.118 ExceptionEnabled

1 // ExceptionEnabled()
2 // ==================
3
4 boolean ExceptionEnabled(integer exception, boolean secure)
5 assert 1 <= exception && exception < NUMEXN;
6 if secure && !HaveSecurityExt() then
7 enabled = FALSE;
8 elsif exception < 16 then
9 val = if secure then _SHCSR_S else _SHCSR_NS;

10 case exception of
11 when Reset
12 enabled = TRUE;
13 when NMI
14 enabled = secure == (AIRCR_S.BFHFNMINS == '0');
15 when HardFault
16 enabled = secure || AIRCR_S.BFHFNMINS == '1';
17 when MemManage
18 enabled = val.MEMFAULTENA == '1';
19 when BusFault
20 enabled = ((_SHCSR_S.BUSFAULTENA == '1') &&
21 (secure == (AIRCR_S.BFHFNMINS == '0')));
22 when UsageFault
23 enabled = val.USGFAULTENA == '1';
24 when SecureFault
25 enabled = secure && _SHCSR_S.SECUREFAULTENA == '1';
26 when SVCall
27 enabled = TRUE;
28 when DebugMonitor
29 enabled = ((secure == (DEMCR.SDME == '1')) &&
30 !InstructionsInFlight());
31 when PendSV
32 enabled = !DebugCanMaskInts(secure);
33 when SysTick
34 enabled = ((!IsExceptionTargetConfigurable(SysTick) ||
35 (secure == (_ICSR_S.STTNS == '0'))) &&
36 !DebugCanMaskInts(secure));
37 otherwise
38 enabled = FALSE;
39 else
40 enabled = (IrqEnabled[exception-16] && !DebugCanMaskInts(secure) &&
41 ((NVIC_ITNS[exception-16] == '0') == secure));
42
43 return enabled;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1970

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.119 ExceptionEntry

1 // ExceptionEntry()
2 // ================
3 // Exception entry is modified according to the behavior of a derived
4 // exception, see DerivedLateArrival() also.
5
6 (ExcInfo, EXC_RETURN_Type) ExceptionEntry(integer exceptionType, boolean toSecure)
7
8 // PushStack() can abandon memory accesses if a fault occurs during the stacking
9 // sequence.

10 (exc, partialExcReturn) = PushStack();
11 if exc.fault == NoFault then
12 (exc, partialExcReturn) = ExceptionTaken(exceptionType, FALSE, toSecure,
13 IgnoreFaults_NONE, partialExcReturn);
14 return (exc, partialExcReturn);

E2.1.120 ExceptionPriority

1 // ExceptionPriority()
2 // ===================
3
4 integer ExceptionPriority(integer n, boolean isSecure, boolean groupPri)
5 if HaveMainExt() then
6 assert 1 <= n && n < 512;
7 else
8 assert 1 <= n && n < 48;
9

10 if n == Reset then // Reset.
11 result = -4;
12 elsif n == NMI then // NMI.
13 result = -2;
14 elsif n == HardFault then // HardFault.
15 if isSecure && AIRCR.BFHFNMINS == '1' then
16 result = -3;
17 else
18 result = -1;
19 elsif HaveMainExt() && n == MemManage then // MemManage.
20 result = UInt(if isSecure then SHPR1_S.PRI_4 else SHPR1_NS.PRI_4);
21 elsif HaveMainExt() && n == BusFault then // BusFault.
22 result = UInt(SHPR1_S.PRI_5);
23 elsif HaveMainExt() && n == UsageFault then // UsageFault.
24 result = UInt(if isSecure then SHPR1_S.PRI_6 else SHPR1_NS.PRI_6);
25 elsif HaveMainExt() && n == SecureFault then // SecureFault.
26 result = UInt(SHPR1_S.PRI_7);
27 elsif n == SVCall then // SVCall.
28 result = UInt(if isSecure then SHPR2_S.PRI_11 else SHPR2_NS.PRI_11);
29 elsif HaveMainExt() && n == DebugMonitor then // DebugMonitor.
30 result = UInt(SHPR3_S.PRI_12);
31 elsif n == PendSV then // PendSV.
32 result = UInt(if isSecure then SHPR3_S.PRI_14 else SHPR3_NS.PRI_14);
33 elsif n == SysTick // SysTick.
34 && ((HaveSysTick() == 2) ||
35 (HaveSysTick() == 1 && ((_ICSR_S.STTNS == '0') == isSecure))) then
36 result = UInt(if isSecure then SHPR3_S.PRI_15 else SHPR3_NS.PRI_15);
37 elsif n >= 16 then // External interrupt (n-16).
38 r = (n - 16) DIV 4;
39 v = n MOD 4;
40 result = UInt(NVIC_IPR[r][v*8+7:v*8]);
41 else // Reserved exceptions.
42 result = 256;
43
44 assert result IN {-4 .. 256};
45
46 // Negative priorities (in other words Reset, NMI, and HardFault)
47 // are not affected by PRIGROUP or PRIS.
48 if result >= 0 then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1971

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

49 // Include the PRIGROUP effect.
50 if HaveMainExt() && groupPri then
51 integer subgroupshift;
52 if isSecure then
53 subgroupshift = UInt(AIRCR_S.PRIGROUP);
54 else
55 subgroupshift = UInt(AIRCR_NS.PRIGROUP);
56 integer groupvalue = 2 << subgroupshift;
57 integer subgroupvalue = result MOD groupvalue;
58 result = result - subgroupvalue;
59
60 PriSNsPri = RestrictedNSPri();
61 if (AIRCR_S.PRIS == '1') && !isSecure then
62 result = (result >> 1) + PriSNsPri;
63
64 assert result IN {-4 .. 256};
65 return result;

E2.1.121 ExceptionReturn

1 // ExceptionReturn()
2 // =================
3
4 (ExcInfo, EXC_RETURN_Type, boolean) ExceptionReturn(EXC_RETURN_Type excReturn)
5 integer returningExceptionNumber = UInt(IPSR.Exception);
6
7 (exc, excReturn) = ValidateExceptionReturn(excReturn, returningExceptionNumber);
8 if exc.fault != NoFault then
9 return (exc, excReturn, FALSE);

10
11 if HaveSecurityExt() then
12 excSecure = excReturn.ES == '1';
13 retToSecure = excReturn.S == '1';
14 else
15 excSecure = FALSE;
16 retToSecure = FALSE;
17
18 // Restore SPSEL for the Security state we are returning from.
19 if excSecure then
20 CONTROL_S.SPSEL = excReturn.SPSEL;
21 else
22 CONTROL_NS.SPSEL = excReturn.SPSEL;
23
24 returningExcIsSecure = excReturn.ES == '1';
25 DeActivate(returningExceptionNumber, returningExcIsSecure);
26
27 // If requested, clear the scratch floating-point values left in the
28 // Floating-point context before returning or tail-chaining.
29 if HaveMveOrFPExt() && FPCCR.CLRONRET == '1' && CONTROL.FPCA == '1' then
30 if FPCCR_S.LSPACT == '1' then
31 SFSR.LSERR = '1';
32 exc = CreateException(SecureFault);
33 return (exc, excReturn, FALSE);
34 else
35 // Check if we have permission to clear the registers.
36 if HasArchVersion(Armv8p1) then
37 exc = CheckCPEnabled(10, TRUE, returningExcIsSecure);
38 if exc.fault != NoFault then
39 return (exc, excReturn, FALSE);
40
41 // Clear the floating-point / MVE registers
42 InvalidateFPRegs(TRUE, FALSE);
43
44 // If tail-chaining is supported, check if there is a pending exception with
45 // sufficient priority to be taken now. This check is done after the
46 // previous exception is deactivated so the priority of the previous
47 // exception does not mask any pending exceptions.
48 // The position of TailChain() within this function is the earliest point

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1972

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

49 // at which a tailchain is architecturally visible. Unless otherwise
50 // stated, tail-chaining from a later point is permissible.
51 if boolean IMPLEMENTATION_DEFINED "Tail chaining supported" then
52 (takeException, exception, excIsSecure) = PendingExceptionDetails();
53 if takeException then
54 (exc, excReturn) = TailChain(exception, excIsSecure, excReturn);
55 return (exc, excReturn, TRUE);
56
57 // Return to the background Security state
58 if HaveSecurityExt() then
59 CurrentState = if retToSecure
60 then SecurityState_Secure else SecurityState_NonSecure;
61
62 // Sleep-on-exit performs equivalent behavior to the WFI instruction.
63 // The position of SleepOnExit() within this function is the earliest point
64 // at which it can be performed. Performing SleepOnExit from a later point
65 // is permissible.
66 if (excReturn.Mode == '1' && SCR.SLEEPONEXIT == '1' &&
67 ExceptionActiveBitCount() == 0) then
68 SleepOnExit(); // IMPLEMENTATION DEFINED
69
70 // Pop the stack and raise any exceptions that are generated.
71 exc = PopStack(excReturn);
72 if exc.fault == NoFault then
73 ClearExclusiveLocal(ProcessorID());
74 ClearInFlightInstructions();
75 SetEventRegister(); // See WFE instruction for more details
76 InstructionSynchronizationBarrier('1111');
77
78 return (exc, excReturn, FALSE);

E2.1.122 ExceptionTaken

1 // ExceptionTaken()
2 // ================
3
4 (ExcInfo, EXC_RETURN_Type) ExceptionTaken(integer exceptionNumber, boolean doTailChain,
5 boolean excIsSecure, IgnoreFaultsType ignoreFaults,
6 EXC_RETURN_Type excReturn)
7 assert(HaveSecurityExt() || !excIsSecure);
8
9 // If the background code was running in the Secure state there are some

10 // additional steps that might need to be taken to protect the Additional state
11 // context registers.
12 exc = DefaultExcInfo();
13 if HaveSecurityExt() && excReturn.S == '1' then
14 if excIsSecure then // Transitioning to Secure state
15 // If tail-chaining is from Non-secure to Secure, then the Additional
16 // state context registers are already on stack. Set excReturn.DCRS
17 // accordingly
18 if doTailChain && excReturn.ES == '0' then
19 excReturn.DCRS = '0';
20 else // Transitioning to Non-secure state.
21 // If the Additional state context registers are not already on the stack,
22 // push them now.
23 if excReturn.DCRS == '1' && !(doTailChain && excReturn.ES == '0') then
24 exc = PushCalleeStack(doTailChain, excReturn);
25 // Going to Non-secure exception. Set excReturn.DCRS to default
26 // value
27 excReturn.DCRS = '1';
28
29 // Finalise excReturn value
30 if excIsSecure then
31 excReturn.SPSEL = CONTROL_S.SPSEL;
32 excReturn.ES = '1';
33 else
34 excReturn.SPSEL = CONTROL_NS.SPSEL;
35 excReturn.ES = '0';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1973

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

36 LR = excReturn;
37
38 // Register clearing
39 // State context registers: These registers are cleared if exception
40 // targets the Non-secure state, otherwise they are UNKNOWN. As of Armv8.1 the
41 // registers are always cleared if the Security extension is implemented.
42 // NOTE: The original values were pushed to the stack.
43 if HaveSecurityExt() && (!excIsSecure || HasArchVersion(Armv8p1)) then
44 callerRegValue = Zeros(32);
45 else
46 callerRegValue = bits(32) UNKNOWN;
47 for n = 0 to 3
48 R[n] = callerRegValue;
49 R[12] = callerRegValue;
50 EAPSR = callerRegValue;
51 // Additional state context registers: If the background code was in the Secure
52 // state these registers are cleared if the exception targets the Non-secure state,
53 // and UNKNOWN if it targets the Secure state and the registers have been
54 // pushed to the stack (as indicated by EXC_RETURN.DCRS).
55 //
56 // NOTE: Additional state context registers are preserved if the background code is
57 // Non-secure, or when the exception is Secure and the values have not
58 // been pushed to the stack.
59 if HaveSecurityExt() && excReturn.S == '1' then
60 if excIsSecure then
61 if excReturn.DCRS == '0' then
62 for n = 4 to 11
63 R[n] = bits(32) UNKNOWN;
64 else
65 for n = 4 to 11
66 R[n] = Zeros();
67
68 // If enabled, the IESB contains asynchronous RAS or BusFault errors to the background
69 // context. This is conditional on there being no stacking faults - if there are, the
70 // errors will be synchronized when the subsequent exception is raised.
71 if AIRCR.IESB == '1' then
72 exc = MergeExcInfo(exc, SynchronizeBusFault());
73
74 // If no errors so far (or errors that can be ignored) load the vector address.
75 if exc.fault == NoFault || ignoreFaults != IgnoreFaults_NONE then
76 (exc, start) = Vector[exceptionNumber, excIsSecure];
77
78 // The state or mode of processor is not updated if an exception is raised
79 // during the entry sequence.
80 if exc.fault == NoFault || ignoreFaults == IgnoreFaults_ALL then
81 ActivateException(exceptionNumber, excIsSecure);
82 SCS_UpdateStatusRegs();
83 ClearExclusiveLocal(ProcessorID());
84 ClearInFlightInstructions();
85 SetEventRegister(); // See WFE instruction for details.
86 InstructionSynchronizationBarrier('1111');
87 // Start execution of handler
88 EPSR.T = start[0];
89 // If EPSR.T == 0 then an exception is taken on the next
90 // instruction: UsageFault('Invalid State') if the Main Extension is
91 // implemented; HardFault otherwise.
92 BranchTo(start[31:1]:'0', TRUE, FALSE);
93
94 if exc.fault != NoFault then
95 exc.inExcTaken = TRUE;
96 exc.derivedFrom = exceptionNumber;
97 exc.derivedFromIsSecure = excIsSecure;
98
99 return (exc, excReturn);

E2.1.123 ExceptionTargetsSecure

1 // ExceptionTargetsSecure()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1974

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

2 // ========================
3
4 // Determine the default Security state an exception is expected to target if the
5 // exception is not forced to a specific domain.
6
7 boolean ExceptionTargetsSecure(integer exceptionNumber, boolean isSecure)
8 if !HaveSecurityExt() then
9 return FALSE;

10
11 boolean targetSecure = FALSE;
12 case exceptionNumber of
13 when NMI
14 targetSecure = AIRCR.BFHFNMINS == '0';
15
16 when HardFault
17 targetSecure = AIRCR.BFHFNMINS == '0' || isSecure;
18
19 when MemManage
20 targetSecure = isSecure;
21
22 when BusFault
23 targetSecure = AIRCR.BFHFNMINS == '0';
24
25 when UsageFault
26 targetSecure = isSecure;
27
28 when SecureFault
29 // SecureFault always targets Secure state.
30 targetSecure = TRUE;
31
32 when SVCall
33 targetSecure = isSecure;
34
35 when DebugMonitor
36 targetSecure = DEMCR.SDME == '1';
37
38 when PendSV
39 // This state should be unreachable as PendSV is a banked interrupt
40 // and it is directly pended for the correct Security state, so this
41 // function is not called for this exception.
42 assert FALSE;
43
44 when SysTick
45 if HaveSysTick() != 1 then
46 // If there is a SysTick for each Security state, then the exception
47 // targets the Security state associated with the SysTick instance
48 // that raised the exception.
49 // This state should be unreachable as SysTick exception is banked
50 // and it is directly pended for the correct Security state. This
51 // function can only be called when 1 SysTick is implemented.
52 assert FALSE;
53 else
54 // SysTick target Security state is configurable.
55 targetSecure = _ICSR_S.STTNS == '0';
56
57 otherwise
58 if exceptionNumber >= 16 then
59 // Interrupts target the state defined by the NVIC_ITNS register.
60 targetSecure = NVIC_ITNS[exceptionNumber - 16] == '0';
61
62 return targetSecure;

E2.1.124 ExcInfo

1 // Exception information
2
3 type ExcInfo is (
4 integer fault, // The ID of the resulting fault, or NoFault (or 0)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1975

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 // if no fault occurred.
6 integer origFault, // The ID of the original fault raised before
7 // escalation is considered.
8 integer derivedFrom, // If origFault is a derived exception this field indicates
9 // the ID of the exception that triggered this derived

10 // fault. This field is only valid if inExcTaken is TRUE.
11 boolean isSecure, // TRUE if the fault targets the Secure state.
12 boolean origFaultIsSecure, // TRUE if the original fault raised targeted
13 // Secure state.
14 boolean derivedFromIsSecure, // True if the exception this fault was derived from
15 // targeted the Secure state.
16 boolean isTerminal, // Set to TRUE for derived faults (for example an
17 // exception on exception entry) that prevent the
18 // original exception being entered (for example a
19 // BusFault whilst fetching the exception vector address).
20 boolean inExcTaken, // TRUE if the exception occurred during ExceptionTaken().
21 // This is used to determine if the LR update and the
22 // Additional state context stacking operations have
23 // been performed, and therefore whether the derived
24 // exception should be treated as a tail-chain.
25 boolean lockup, // Set to TRUE if the exception should cause a lockup.
26 boolean termInst // Set to TRUE if the exception should cause the
27 // instruction to be terminated.
28)

E2.1.125 ExclusiveMonitorsPass

1 // ExclusiveMonitorsPass()
2 // =======================
3
4 boolean ExclusiveMonitorsPass(bits(32) address, integer size)
5
6 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
7 // before or after the check on the local Exclusive Monitor. As a result a failure
8 // of the local monitor can occur on some implementations even if the memory
9 // access would give a memory abort.

10
11 if address != Align(address, size) then
12 UFSR.UNALIGNED = '1';
13 excInfo = CreateException(UsageFault);
14 else
15 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_NORMAL,
16 FindPriv(), IsSecure(), TRUE, TRUE);
17 HandleException(excInfo);
18
19 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
20 if memaddrdesc.memattrs.shareable then
21 passed = passed && IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
22 // Local monitor remains in, or transitions to the Open Access state.
23 ClearExclusiveLocal(ProcessorID());
24 return passed;

E2.1.126 ExecBeats

1 // ExecBeats()
2 // ===========
3
4 ExecBeats()
5 // PEs are not constrained to following the beat execution pattern shown in
6 // this function. Any pattern is permitted providing it meets the following
7 // requirements:
8 // 1) The new pattern of completed beats in representable as a valid ECI
9 // value.

10 // 2) The beat execution rules are not violated (see specification).
11 // 3) All ECI encodings are accepted an inputs, even if the PE cannot
12 // generate that ECI value.
13 newBeatComplete = BeatComplete;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1976

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

14 beatInstIdx = 0;
15 for instId = 0 to MAX_OVERLAPPING_INSTRS-1
16 if _InstInfo[instId].Valid then
17 _InstID = instId;
18 _CurrentInstrExecState = GetInstrExecState(instId);
19 InstStateCheck(ThisInstr());
20 // Find the first ticks worth of beats that is not complete
21 beatBits = Elem[newBeatComplete, beatInstIdx, MAX_BEATS];
22 baseBeatId = 0;
23 beatIndex = 0;
24 while Elem[beatBits, beatIndex, BEATS_PER_TICK] == Ones(BEATS_PER_TICK) do
25 beatIndex = beatIndex + 1;
26 baseBeatId = baseBeatId + BEATS_PER_TICK;
27
28 // Perform all the beats in this tick for the current instruction.
29 for beatInTick = 0 to BEATS_PER_TICK-1
30 beatId = baseBeatId + beatInTick;
31 // Only perform the beat if it has not already been completed.
32 beatFlagIdx = (beatInstIdx * MAX_BEATS) + beatId;
33 if newBeatComplete[beatFlagIdx] == '0' then
34 _BeatID = beatId;
35 _AdvanceVPTState = TRUE;
36 cond = DefaultCond();
37 DecodeExecute(ThisInstr(), ThisInstrAddr(),
38 ThisInstrLength() == 2, cond);
39 // Advance the VPT state for the current beat if the instruction
40 // did not update the mask directly (indicated by the instruction
41 // clearing _AdvanceVPTState).
42 if _AdvanceVPTState then
43 VPTAdvance(beatId);
44
45 // Update the beat complete state. If the instruction is now complete
46 // advance the beat complete flags.
47 newBeatComplete[beatFlagIdx] = '1';
48 if newBeatComplete[MAX_BEATS-1:0] == Ones(MAX_BEATS) then
49 // A whole instruction has been completed, set the flag to indicate
50 // that the PC etc must be advanced. Only one instruction should
51 // ever be committed per tick, so assert that an instruction has
52 // not already been committed.
53 assert(!_CommitState);
54 _CommitState = TRUE;
55 // Remove the beat bits for the newly completed instruction and
56 // adjust the index used for the newBeatComplete bit vector
57 // accordingly.
58 newBeatComplete = LSR(newBeatComplete, MAX_BEATS);
59 beatInstIdx = beatInstIdx - 1;
60 // Update the beat complete flags. This is done after each beat in the
61 // tick, so that if an exception occurs it correctly indicates which
62 // beats of which instruction have been executed before the exception
63 // occured.
64 BeatComplete = newBeatComplete;
65
66 // Increment the index of the group of beat bits to point to the next instruction to
67 // be processed.
68 beatInstIdx = beatInstIdx + 1;

E2.1.127 ExecuteFPCheck

1 // ExecuteFPCheck()
2 // ================
3
4 ExecuteFPCheck()
5 // Preserve any lazy floating-point state.
6 PreserveFPState();
7 // It is an IMPLEMETATION_DEFINED choice on whether an interrupt can
8 // be taken after triggering lazy floating-point state preservation by
9 // an instruction, but before updating the ownership of the

10 // floating-point registers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1977

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11
12 // Update the ownership of the floating-point context.
13 FPCCR_S.S = if IsSecure() then '1' else '0';
14
15 // Update CONTROL.FPCA, and create new floating-point context
16 // if this has been enabled by setting FPCCR.ASPEN to 1.
17 if FPCCR.ASPEN == '1' &&
18 (CONTROL.FPCA == '0' || (IsSecure() && CONTROL_S.SFPA == '0')) then
19 CONTROL.FPCA = '1';
20 if IsSecure() then
21 CONTROL_S.SFPA = '1';
22 FPSCR = FPDSCR[31:0];
23 VPR = Zeros();
24 // If the instruction is abandoned due to an exception, then it is an
25 // IMPLEMETATION_DEFINED choice whether the floating-point context
26 // created by that instruction is preserved or not.
27
28 return;

E2.1.128 ExecutionPriority

1 // ExecutionPriority()
2 // ===================
3 // Determine the current execution priority.
4
5 integer ExecutionPriority()
6
7 boostedpri = HighestPri(); // Priority influence of BASEPRI, PRIMASK and FAULTMASK.
8
9 // Calculate boosted priority effect due to BASEPRI for both Security states.

10 PriSNsPri = RestrictedNSPri();
11 if HaveMainExt() then
12 if UInt(BASEPRI_NS.BASEPRI) != 0 then
13 basepri = UInt(BASEPRI_NS[7:0]);
14 // Include the PRIGROUP effect
15 subgroupshift = UInt(AIRCR_NS.PRIGROUP);
16 groupvalue = 2 << subgroupshift;
17 subgroupvalue = basepri MOD groupvalue;
18 boostedpri = basepri - subgroupvalue;
19 if AIRCR_S.PRIS == '1' then
20 boostedpri = (boostedpri >> 1) + PriSNsPri;
21
22 if UInt(BASEPRI_S.BASEPRI) != 0 then
23 basepri = UInt(BASEPRI_S.BASEPRI);
24 // Include the PRIGROUP effect
25 subgroupshift = UInt(AIRCR_S.PRIGROUP);
26 groupvalue = 2 << subgroupshift;
27 subgroupvalue = basepri MOD groupvalue;
28 basepri = basepri - subgroupvalue;
29 if boostedpri > basepri then
30 boostedpri = basepri;
31
32 // Calculate boosted priority effect due to PRIMASK for both Security states.
33 if PRIMASK_NS.PM == '1' then
34 if AIRCR_S.PRIS == '0' then
35 boostedpri = 0;
36 else
37 if boostedpri > PriSNsPri then
38 boostedpri = PriSNsPri;
39
40 if PRIMASK_S.PM == '1' then
41 boostedpri = 0;
42
43 // Calculate boosted priority effect due to FAULTMASK for both Security states.
44 if HaveMainExt() then
45 if FAULTMASK_NS.FM == '1' then
46 if AIRCR.BFHFNMINS == '0' then
47 if AIRCR_S.PRIS == '0' then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1978

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

48 boostedpri = 0;
49 else
50 if boostedpri > PriSNsPri then
51 boostedpri = PriSNsPri;
52 else
53 boostedpri = -1;
54
55 if FAULTMASK_S.FM == '1' then
56 boostedpri = if AIRCR.BFHFNMINS == '0' then -1 else -3;
57
58 // Finally calculate the resultant priority after boosting.
59 rawExecPri = RawExecutionPriority();
60 if boostedpri < rawExecPri then
61 priority = boostedpri;
62 else
63 priority = rawExecPri;
64
65 assert priority IN {-4 .. 256};
66 return priority;

E2.1.129 Extend

1 // Extend()
2 // ========
3
4 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
5 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);
6
7 bits(N) Extend(bits(M) x, boolean unsigned)
8 return Extend(x, N, unsigned);

E2.1.130 ExternalInvasiveDebugEnabled

1 // ExternalInvasiveDebugEnabled()
2 // ==============================
3 // Return TRUE if Halting debug is enabled by the
4 // IMPLEMENTATION DEFINED authentication interface.
5
6 boolean ExternalInvasiveDebugEnabled()
7 // In the recommended interface, ExternalInvasiveDebugEnabled returns the state of
8 // the DBGEN signal.
9 return DBGEN == HIGH;

E2.1.131 ExternalNoninvasiveDebugEnabled

1 // ExternalNoninvasiveDebugEnabled()
2 // =================================
3 // Return TRUE if non-invasive debug is enabled by the IMPLEMENTATION DEFINED authentication
4 // interface.
5
6 boolean ExternalNoninvasiveDebugEnabled()
7 // In the recommended interface, ExternalNoninvasiveDebugEnabled() returns the state
8 // of the (DBGEN OR NIDEN) signal.
9 return ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

E2.1.132 ExternalSecureInvasiveDebugEnabled

1 // ExternalSecureInvasiveDebugEnabled()
2 // ====================================
3 // Return TRUE if Secure Halting debug is enabled by the IMPLEMENTATION DEFINED
4 // authentication interface.
5
6 boolean ExternalSecureInvasiveDebugEnabled()
7 // In the recommended interface, ExternalSecureInvasiveDebugEnabled() returns the

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1979

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 // state of the (DBGEN AND SPIDEN) signal.
9 return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

E2.1.133 ExternalSecureNoninvasiveDebugEnabled

1 // ExternalSecureNoninvasiveDebugEnabled()
2 // =======================================
3 // Return TRUE if Secure non-invasive debug is enabled by the IMPLEMENTATION DEFINED
4 // authentication interface.
5
6 boolean ExternalSecureNoninvasiveDebugEnabled()
7 // In the recommended interface, ExternalSecureNoninvasiveDebugEnabled() returns
8 // the state of the (DBGEN OR NIDEN) AND (SPIDEN OR SPNIDEN) signal.
9 return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);

E2.1.134 ExternalSecureSelfHostedDebugEnabled

1 // ExternalSecureSelfHostedDebugEnabled()
2 // ======================================
3 // Return TRUE if Secure self-hosted debug is enabled by the IMPLEMENTATION DEFINED
4 // authentication interface.
5
6 boolean ExternalSecureSelfHostedDebugEnabled()
7 // In the recommended interface, ExternalSecureSelfHostedDebugEnabled() returns the
8 // state of the (DBGEN AND SPIDEN) signal.
9 return DBGEN == HIGH && SPIDEN == HIGH;

E2.1.135 ExtType

1 // Types of ISA extension
2
3 enumeration ExtType {ExtType_Mve,
4 ExtType_MveFp,
5 ExtType_MveOrFp,
6 ExtType_MveOrDpFp,
7 ExtType_Unknown,
8 ExtType_HpFp,
9 ExtType_SpFp,

10 ExtType_DpFp};

E2.1.136 FaultNumbers

1 // Fault Numbers
2 // =============
3
4 // The fault numbers are a subset of ExceptionNumber and can be one of the
5 // following values:
6 constant integer NoFault = 0;
7 constant integer Reset = 1;
8 constant integer NMI = 2;
9 constant integer HardFault = 3;

10 constant integer MemManage = 4;
11 constant integer BusFault = 5;
12 constant integer UsageFault = 6;
13 constant integer SecureFault = 7;
14 constant integer SVCall = 11;
15 constant integer DebugMonitor = 12;
16 constant integer PendSV = 14;
17 constant integer SysTick = 15;

E2.1.137 FetchInstr

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1980

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // FetchInstr()
2 // ============
3
4 (bits(32), boolean) FetchInstr(bits(32) addr)
5 // NOTE: It is CONSTRAINED UNPREDICTABLE whether otherwise valid sequential
6 // instruction fetches that cross from Non-secure to Secure memory
7 // generate a INVEP SecureFault, or transition normally.
8 sgOpcode = 0xE97FE97F[31:0];
9

10 // Assume we have a fetch fault so that if we end a cycle early the next
11 // cycle will capture this fact.
12 _PendingFetchFault = TRUE;
13
14 hw1Attr = SecurityCheck(addr, TRUE, IsSecure());
15 // Fetch the 16-bit T32 instruction, or the first half of a T32.
16 hw1Instr = MemI[addr];
17
18 isT16 = UInt(hw1Instr[15:11]) < UInt('11101');
19 len = if isT16 then 2 else 4;
20
21 // Checking for FPB Breakpoint on instructions.
22 if HaveFPB() && FPB_CheckBreakPoint(addr, len, TRUE, IsSecure()) then
23 GenerateDebugEventResponse(DebugEventCause_FPB);
24
25 // If the T bit is clear then the instruction cannot be decoded.
26 if EPSR.T == '0' then
27 // Attempted NS->S domain crossings with the T bit clear raise an INVEP
28 // SecureFault
29 if !IsSecure() && !hw1Attr.ns then
30 SFSR.INVEP = '1';
31 excInfo = CreateException(SecureFault);
32 else
33 UFSR.INVSTATE = '1';
34 excInfo = CreateException(UsageFault);
35 HandleException(excInfo);
36
37 // Implementations are permitted to terminate the fetch process early if a
38 // domain crossing is being attempted and the first 16bits of the opcode
39 // is not the first part of the SG instruction.
40 if boolean IMPLEMENTATION_DEFINED "Early SG check" then
41 if !IsSecure() && !hw1Attr.ns && (hw1Instr != sgOpcode[31:16]) then
42 SFSR.INVEP = '1';
43 excInfo = CreateException(SecureFault);
44 HandleException(excInfo);
45
46 // NOTE: Implementations are also permitted to terminate the fetch process
47 // at this point with an UNDEFINSTR UsageFault if the first 16bit is
48 // an undefined T32 prefix.
49
50 // If the data fetched is the top half of a T32 instruction fetch the bottom
51 // 16 bits.
52 if isT16 then
53 instr = Zeros(16) : hw1Instr;
54 else
55 hw2Attr = SecurityCheck(addr+2, TRUE, IsSecure());
56 // The following test covers 2 possible fault conditions:-
57 // 1) NS code branching to a T32 instruction where the first half is in
58 // NS memory, and the second half is in S memory.
59 // 2) NS code branching to a T32 instruction in S & NSC memory, but
60 // where the second half of the instruction is in NS memory.
61 if !IsSecure() && (hw1Attr.ns != hw2Attr.ns) then
62 SFSR.INVEP = '1';
63 excInfo = CreateException(SecureFault);
64 HandleException(excInfo);
65
66 // Fetch the second half of T32 instruction.
67 instr = hw1Instr : MemI[addr+2];
68
69 // Raise a fault if an otherwise valid NS->S transition that does not land on

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1981

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

70 // an SG instruction.
71 if !IsSecure() && !hw1Attr.ns && (instr != sgOpcode) then
72 SFSR.INVEP = '1';
73 excInfo = CreateException(SecureFault);
74 HandleException(excInfo);
75
76 if EPSR.B == '1' then
77 // BTI clearing instruction masks.
78 // When BTI is set, these instructions do not cause an INVSTATE UsageFault.
79 btiClearing = instr IN {sgOpcode, // SG.
80 '111100111010xxxx10x0x00000001111', // BTI.
81 '111100111010xxxx10x0x00000001101'}; // PACBTI.
82 bkptIgnore = hw1Instr == '10111110xxxxxxxx'; // BKPT.
83 // A BKPT instruction ignores the EPSR.B bit.
84 if !btiClearing && !bkptIgnore then
85 // Generate a fault due to a BTI error.
86 UFSR.INVSTATE = '1';
87 excInfo = CreateException(UsageFault);
88 HandleException(excInfo);
89
90 // If we get to here we have no fetch fault.
91 _PendingFetchFault = FALSE;
92
93 return (instr, isT16);

E2.1.138 FindMemPriv

1 // FindMemPriv()
2 // =============
3
4 Privilege FindMemPriv()
5 return FindMemPriv(FindPriv());
6
7 Privilege FindMemPriv(boolean privileged)
8 return if privileged then Privilege_Priv else Privilege_Unpriv;

E2.1.139 FindPriv

1 // FindPriv()
2 // ==========
3
4 boolean FindPriv()
5 return CurrentModeIsPrivileged();

E2.1.140 FixedToFP

1 // FixedToFP()
2 // ===========
3
4 bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
5 boolean round_to_nearest, boolean fpscr_controlled)
6 return FixedToFP(operand, N, fraction_bits, unsigned, round_to_nearest,
7 fpscr_controlled, FALSE);
8
9 bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,

10 boolean round_to_nearest, boolean fpscr_controlled, boolean predicated)
11 assert N IN {16,32,64};
12 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
13 if round_to_nearest then fpscr_val.RMode = FPSCR_RMode_RN;
14 int_operand = if unsigned then UInt(operand) else SInt(operand);
15 real_operand = Real(int_operand) / 2.0^fraction_bits;
16 if real_operand == 0.0 then
17 result = FPZero('0', N);
18 else
19 result = FPRound(real_operand, N, fpscr_val, predicated);
20 return result;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1982

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.141 FPAbs

1 // FPAbs()
2 // =======
3
4 bits(N) FPAbs(bits(N) operand)
5 assert N IN {16,32,64};
6 return '0' : operand[N-2:0];

E2.1.142 FPAdd

1 // FPAdd()
2 // =======
3
4 bits(N) FPAdd(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPAdd(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPAdd(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
15 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
16 if inf1 && inf2 && sign1 == NOT(sign2) then
17 result = FPDefaultNaN(N);
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
20 result = FPInfinity('0', N);
21 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
22 result = FPInfinity('1', N);
23 elsif zero1 && zero2 && sign1 == sign2 then
24 result = FPZero(sign1, N);
25 else
26 result_value = value1 + value2;
27 if result_value == 0.0 then // Sign of exact zero result depends
28 // on rounding mode
29 result_sign = if fpscr_val.RMode == FPSCR_RMode_RM then '1' else '0';
30 result = FPZero(result_sign, N);
31 else
32 result = FPRound(result_value, N, fpscr_val, predicated);
33 return result;

E2.1.143 FPB_CheckBreakPoint

1 // FPB_CheckBreakPoint
2 // ===================
3 // Check for Flash Patch Break point.
4
5 boolean FPB_CheckBreakPoint(bits(32) iaddr, integer size,
6 boolean is_ifetch, boolean is_secure)
7
8 match = FPB_CheckMatchAddress(iaddr);
9 if !match && size == 4 && FPB_CheckMatchAddress(iaddr + 2) then

10 match = ConstrainUnpredictableBool(Unpredictable_FPBreakpoint);
11 return match;

E2.1.144 FPB_CheckMatchAddress

1 // FPB_CheckMatchAddress
2 // =====================
3 // Flash Patch breakpoint instruction address comparison.
4

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1983

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 boolean FPB_CheckMatchAddress(bits(32) iaddr)
6
7 if FP_CTRL.ENABLE == '0' then return FALSE; // FPB not enabled.
8
9 // Instruction Comparator.

10 num_addr_cmp = UInt(FP_CTRL.NUM_CODE);
11 if num_addr_cmp == 0 then return FALSE; // No comparator support.
12
13 for N = 0 to (num_addr_cmp - 1)
14 if FP_COMP[N].BE == '1' then // Breakpoint enabled.
15 if iaddr[31:1] == FP_COMP[N].BPADDR then
16 return TRUE;
17
18 return FALSE;

E2.1.145 FPCompare

1 // FPCompare()
2 // ===========
3
4 (bit, bit, bit, bit) FPCompare(bits(N) op1, bits(N) op2, boolean quiet_nan_exc,
5 boolean fpscr_controlled)
6 return FPCompare(op1, op2, quiet_nan_exc, fpscr_controlled, FALSE);
7
8 (bit, bit, bit, bit) FPCompare(bits(N) op1, bits(N) op2, boolean quiet_nan_exc,
9 boolean fpscr_controlled, boolean predicated)

10 assert N IN {16,32,64};
11 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
12 (type1,-,value1) = FPUnpack(op1, fpscr_val, predicated);
13 (type2,-,value2) = FPUnpack(op2, fpscr_val, predicated);
14 if type1 == FPType_SNaN || type1 == FPType_QNaN ||
15 type2 == FPType_SNaN || type2 == FPType_QNaN then
16 result = ('0','0','1','1');
17 if type1==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 else
20 // All non-NaN cases can be evaluated on the values produced by FPUnpack().
21 if value1 == value2 then
22 result = ('0','1','1','0');
23 elsif value1 < value2 then
24 result = ('1','0','0','0');
25 else // value1 > value2
26 result = ('0','0','1','0');
27 return result;

E2.1.146 FPConvertNaN

1 // FPConvertNaN()
2 // ==============
3 //
4 // For half-precision data it ignores AHP, and observes FZ16.
5 // Calls FPConvertNaNBase() which demotes any input SNaN to a QNaN.
6
7 bits(N) FPConvertNaN(bits(N) fpval, boolean fpscr_controlled)
8 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
9 fpscr_val.AHP = '0';

10 return FPConvertNaNBase(fpval, fpscr_val);

E2.1.147 FPConvertNaNBase

1 // FPConvertNaNBase()
2 // ==============
3 //
4 // Demotes any input SNaN to a QNaN and ensures that any comparison between a number and
5 // a NaN, always returns the number and not the NaN.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1984

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6
7 bits(N) FPConvertNaNBase(bits(N) fpval, FPSCR_Type fpscr_val)
8 assert N IN {16,32,64};
9

10 if N == 16 then
11 exp16 = fpval[14:10];
12 frac16 = fpval[9:0];
13 if IsOnes(exp16) && fpscr_val.AHP == '0' then // Infinity or NaN in IEEE format.
14 if !IsZero(frac16) then // NaN in IEEE format
15 if frac16[9] == '0' then // if the value is an SNaN.
16 fpval[9] = '1'; // Convert the value to a QNaN.
17 FPProcessException(FPExc_InvalidOp, fpscr_val);
18
19 elsif N == 32 then
20 exp32 = fpval[30:23];
21 frac32 = fpval[22:0];
22 if IsOnes(exp32) && !IsZero(frac32) then // NaN in IEEE format
23 if frac32[22] == '0' then // if the value is an SNaN.
24 fpval[22] = '1'; // Convert the value to a QNaN.
25 FPProcessException(FPExc_InvalidOp, fpscr_val);
26
27 else // N == 64
28 exp64 = fpval[62:52];
29 frac64 = fpval[51:0];
30 if IsOnes(exp64) && !IsZero(frac64) then // NaN in IEEE format
31 if frac64[51] == '0' then // if the value is an SNaN.
32 fpval[51] = '1'; // Convert the value to a QNaN.
33 FPProcessException(FPExc_InvalidOp, fpscr_val);
34
35 return fpval;

E2.1.148 FPDefaultNaN

1 // FPDefaultNaN()
2 // ==============
3
4 bits(N) FPDefaultNaN(integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 sign = '0';
11 exp = Ones(E);
12 frac = '1':Zeros(F-1);
13 return sign : exp : frac;

E2.1.149 FPDiv

1 // FPDiv()
2 // =======
3
4 bits(N) FPDiv(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 assert N IN {16,32,64};
6 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
7 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val);
8 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val);
9 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val);

10 if !done then
11 inf1 = (fp_type1 == FPType_Infinity); inf2 = (fp_type2 == FPType_Infinity);
12 zero1 = (fp_type1 == FPType_Zero); zero2 = (fp_type2 == FPType_Zero);
13 if (inf1 && inf2) || (zero1 && zero2) then
14 result = FPDefaultNaN(N);
15 FPProcessException(FPExc_InvalidOp, fpscr_val);
16 elsif inf1 || zero2 then
17 result_sign = if sign1 == sign2 then '0' else '1';
18 result = FPInfinity(result_sign, N);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1985

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

19 if !inf1 then FPProcessException(FPExc_DivideByZero, fpscr_val);
20 elsif zero1 || inf2 then
21 result_sign = if sign1 == sign2 then '0' else '1';
22 result = FPZero(result_sign, N);
23 else
24 result = FPRound(value1/value2, N, fpscr_val);
25 return result;

E2.1.150 FPDoubleToHalf

1 // FPDoubleToHalf()
2 // ================
3
4 bits(16) FPDoubleToHalf(bits(64) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.AHP == '1' then
9 result = FPZero(sign, 16);

10 elsif fpscr_val.DN == '1' then
11 result = FPDefaultNaN(16);
12 else
13 result = sign : '11111 1' : operand[50:42];
14 if fp_type == FPType_SNaN || fpscr_val.AHP == '1' then
15 FPProcessException(FPExc_InvalidOp, fpscr_val);
16 elsif fp_type == FPType_Infinity then
17 if fpscr_val.AHP == '1' then
18 result = sign : Ones(15);
19 FPProcessException(FPExc_InvalidOp, fpscr_val);
20 else
21 result = FPInfinity(sign, 16);
22 elsif fp_type == FPType_Zero then
23 result = FPZero(sign, 16);
24 else
25 result = FPRoundCV(value, 16, fpscr_val);
26 return result;

E2.1.151 FPDoubleToSingle

1 // FPDoubleToSingle()
2 // ==================
3
4 bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.DN == '1' then
9 result = FPDefaultNaN(32);

10 else
11 result = sign : '11111111 1' : operand[50:29];
12 if fp_type == FPType_SNaN then
13 FPProcessException(FPExc_InvalidOp, fpscr_val);
14 elsif fp_type == FPType_Infinity then
15 result = FPInfinity(sign, 32);
16 elsif fp_type == FPType_Zero then
17 result = FPZero(sign, 32);
18 else
19 result = FPRoundCV(value, 32, fpscr_val);
20 return result;

E2.1.152 FPExc

1 // Floating-point exceptions
2 // ==========================
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1986

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
5 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

E2.1.153 FPHalfToDouble

1 // FPHalfToDouble()
2 // ================
3
4 bits(64) FPHalfToDouble(bits(16) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.DN == '1' then
9 result = FPDefaultNaN(64);

10 else
11 result = sign : '11111111111 1' : operand[8:0] : Zeros(42);
12 if fp_type == FPType_SNaN then
13 FPProcessException(FPExc_InvalidOp, fpscr_val);
14 elsif fp_type == FPType_Infinity then
15 result = FPInfinity(sign, 64);
16 elsif fp_type == FPType_Zero then
17 result = FPZero(sign, 64);
18 else
19 result = FPRoundCV(value, 64, fpscr_val); // Rounding will be exact
20 return result;

E2.1.154 FPHalfToSingle

1 // FPHalfToSingle()
2 // ================
3
4 bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
5 return FPHalfToSingle(operand, fpscr_controlled, FALSE);
6
7 bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled, boolean predicated)
8 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
9 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val, predicated);

10 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
11 if fpscr_val.DN == '1' then
12 result = FPDefaultNaN(32);
13 else
14 result = sign : '11111111 1' : operand[8:0] : Zeros(13);
15 if fp_type == FPType_SNaN then
16 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
17 elsif fp_type == FPType_Infinity then
18 result = FPInfinity(sign, 32);
19 elsif fp_type == FPType_Zero then
20 result = FPZero(sign, 32);
21 else
22 result = FPRoundCV(value, 32, fpscr_val, predicated); // Rounding will be exact
23 return result;

E2.1.155 FPInfinity

1 // FPInfinity()
2 // ============
3
4 bits(N) FPInfinity(bit sign, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 exp = Ones(E);
11 frac = Zeros(F);
12 return sign : exp : frac;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1987

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.156 FPMax

1 // FPMax()
2 // =======
3
4 bits(N) FPMax(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMax(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMax(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 if value1 > value2 then
15 (fp_type,sign,value) = (fp_type1,sign1,value1);
16 else
17 (fp_type,sign,value) = (fp_type2,sign2,value2);
18 if fp_type == FPType_Infinity then
19 result = FPInfinity(sign, N);
20 elsif fp_type == FPType_Zero then
21 sign = sign1 AND sign2; // Use most positive sign
22 result = FPZero(sign, N);
23 else
24 result = FPRound(value, N, fpscr_val, predicated);
25 return result;

E2.1.157 FPMaxNormal

1 // FPMaxNormal()
2 // =============
3
4 bits(N) FPMaxNormal(bit sign, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 exp = Ones(E-1):'0';
11 frac = Ones(F);
12 return sign : exp : frac;

E2.1.158 FPMaxNum

1 // FPMaxNum()
2 // ==========
3
4 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMaxNum(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9

10 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
11 (type1,-,-) = FPUnpack(op1, fpscr_val, predicated);
12 (type2,-,-) = FPUnpack(op2, fpscr_val, predicated);
13
14 // Treat a single quiet-NaN as -Infinity
15 if type1 == FPType_QNaN && type2 != FPType_QNaN then
16 op1 = FPInfinity('1', N);
17 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
18 op2 = FPInfinity('1', N);
19
20 return FPMax(op1, op2, fpscr_controlled, predicated);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1988

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.159 FPMin

1 // FPMin()
2 // =======
3
4 bits(N) FPMin(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMin(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMin(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 if value1 < value2 then
15 (fp_type,sign,value) = (fp_type1,sign1,value1);
16 else
17 (fp_type,sign,value) = (fp_type2,sign2,value2);
18 if fp_type == FPType_Infinity then
19 result = FPInfinity(sign, N);
20 elsif fp_type == FPType_Zero then
21 sign = sign1 OR sign2; // Use most negative sign
22 result = FPZero(sign, N);
23 else
24 result = FPRound(value, N, fpscr_val, predicated);
25 return result;

E2.1.160 FPMinNum

1 // FPMinNum()
2 // ==========
3
4 bits(N) FPMinNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMinNum(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMinNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9

10 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
11 (fp_type1,-,-) = FPUnpack(op1, fpscr_val, predicated);
12 (fp_type2,-,-) = FPUnpack(op2, fpscr_val, predicated);
13
14 // Treat a single quiet-NaN as +Infinity
15 if fp_type1 == FPType_QNaN && fp_type2 != FPType_QNaN then
16 op1 = FPInfinity('0', N);
17 elsif fp_type1 != FPType_QNaN && fp_type2 == FPType_QNaN then
18 op2 = FPInfinity('0', N);
19
20 return FPMin(op1, op2, fpscr_controlled, predicated);

E2.1.161 FPMul

1 // FPMul()
2 // =======
3
4 bits(N) FPMul(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMul(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMul(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val, predicated);
13 if !done then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1989

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

14 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
15 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
16 if (inf1 && zero2) || (zero1 && inf2) then
17 result = FPDefaultNaN(N);
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif inf1 || inf2 then
20 result_sign = if sign1 == sign2 then '0' else '1';
21 result = FPInfinity(result_sign, N);
22 elsif zero1 || zero2 then
23 result_sign = if sign1 == sign2 then '0' else '1';
24 result = FPZero(result_sign, N);
25 else
26 result = FPRound(value1*value2, N, fpscr_val, predicated);
27 return result;

E2.1.162 FPMulAdd

1 // FPMulAdd()
2 // ==========
3 // Calculates addend + op1*op2 with a single rounding.
4
5 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean fpscr_controlled)
6 return FPMulAdd(addend, op1, op2, fpscr_controlled, FALSE);
7
8 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean fpscr_controlled,
9 boolean predicated)

10 assert N IN {16,32,64};
11 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
12 (typeA,signA,valueA) = FPUnpack(addend, fpscr_val, predicated);
13 (type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
14 (type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
15 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
16 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
17 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpscr_val,
18 predicated);
19
20 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
21 result = FPDefaultNaN(N);
22 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
23
24 if !done then
25 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);
26
27 // Determine sign and type product will have if it does not cause an Invalid
28 // Operation.
29 signP = if sign1 == sign2 then '0' else '1';
30 infP = inf1 || inf2;
31 zeroP = zero1 || zero2;
32
33 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
34 // additions of opposite-signed infinities.
35 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA == NOT(signP)) then
36 result = FPDefaultNaN(N);
37 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
38
39 // Other cases involving infinities produce an infinity of the same sign.
40 elsif (infA && signA == '0') || (infP && signP == '0') then
41 result = FPInfinity('0', N);
42 elsif (infA && signA == '1') || (infP && signP == '1') then
43 result = FPInfinity('1', N);
44
45 // Cases where the result is exactly zero and its sign is not determined by the
46 // rounding mode are additions of same-signed zeros.
47 elsif zeroA && zeroP && signA == signP then
48 result = FPZero(signA, N);
49
50 // Otherwise calculate numerical result and round it.
51 else

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1990

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

52 result_value = valueA + (value1 * value2);
53 if result_value == 0.0 then // Sign of exact zero result depends
54 // on rounding mode
55 result_sign = if fpscr_val.RMode == FPSCR_RMode_RM then '1' else '0';
56 result = FPZero(result_sign, N);
57 else
58 result = FPRound(result_value, N, fpscr_val, predicated);
59
60 return result;

E2.1.163 FPNeg

1 // FPNeg()
2 // =======
3
4 bits(N) FPNeg(bits(N) operand)
5 assert N IN {16,32,64};
6 return NOT(operand[N-1]) : operand[N-2:0];

E2.1.164 FPProcessException

1 // FPProcessException()
2 // ====================
3 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
4 // updated directly in FPSCR where appropriate.
5
6 FPProcessException(FPExc exception, FPSCR_Type fpscr_val)
7 FPProcessException(exception, fpscr_val, FALSE);
8 return;
9

10 FPProcessException(FPExc exception, FPSCR_Type fpscr_val, boolean predicated)
11 // Get appropriate FPSCR bit numbers.
12 if !predicated then
13 case exception of
14 when FPExc_InvalidOp enable = 8; cumul = 0;
15 when FPExc_DivideByZero enable = 9; cumul = 1;
16 when FPExc_Overflow enable = 10; cumul = 2;
17 when FPExc_Underflow enable = 11; cumul = 3;
18 when FPExc_Inexact enable = 12; cumul = 4;
19 when FPExc_InputDenorm enable = 15; cumul = 7;
20 if fpscr_val[enable] == '1' then
21 IMPLEMENTATION_DEFINED "floating-point trap handling";
22 else
23 FPSCR[cumul] = '1';
24 return;

E2.1.165 FPProcessNaN

1 // FPProcessNaN()
2 // ==============
3 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
4 // updated directly in FPSCR where appropriate.
5
6 bits(N) FPProcessNaN(FPType fp_type, bits(N) operand, FPSCR_Type fpscr_val)
7 return FPProcessNaN(fp_type, operand, fpscr_val, FALSE);
8
9 bits(N) FPProcessNaN(FPType fp_type, bits(N) operand, FPSCR_Type fpscr_val,

10 boolean predicated)
11 assert N IN {16,32,64};
12 if N == 16 then topfrac = 9;
13 elsif N == 32 then topfrac = 22;
14 else topfrac = 51;
15 result = operand;
16 if fp_type == FPType_SNaN then
17 result[topfrac] = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1991

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 if fpscr_val.DN == '1' then // DefaultNaN requested
20 result = FPDefaultNaN(N);
21 return result;

E2.1.166 FPProcessNaNs

1 // FPProcessNaNs()
2 // ===============
3 // The boolean part of the return value says whether a NaN has been found and
4 // processed. The bits(N) part is only relevant if it has and supplies the
5 // result of the operation.
6 //
7 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
8 // updated directly in FPSCR where appropriate.
9

10 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
11 bits(32) fpscr_val)
12 return FPProcessNaNs(type1, type2, op1, op2, fpscr_val, FALSE);
13
14 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
15 bits(32) fpscr_val, boolean predicated)
16 assert N IN {16,32,64};
17 if type1 == FPType_SNaN then
18 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
19 elsif type2 == FPType_SNaN then
20 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
21 elsif type1 == FPType_QNaN then
22 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
23 elsif type2 == FPType_QNaN then
24 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
25 else
26 done = FALSE; result = Zeros(N); // 'Don't care' result
27 return (done, result);

E2.1.167 FPProcessNaNs3

1 // FPProcessNaNs3()
2 // ================
3 // The boolean part of the return value says whether a NaN has been found and
4 // processed. The bits(N) part is only relevant if it has and supplies the
5 // result of the operation.
6 //
7 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
8 // updated directly in FPSCR where appropriate.
9

10 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
11 bits(N) op1, bits(N) op2, bits(N) op3,
12 bits(32) fpscr_val)
13 return FPProcessNaNs3(type1, type2, type3, op1, op2, op3, fpscr_val, FALSE);
14
15 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
16 bits(N) op1, bits(N) op2, bits(N) op3,
17 bits(32) fpscr_val, boolean predicated)
18 assert N IN {16,32,64};
19 if type1 == FPType_SNaN then
20 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
21 elsif type2 == FPType_SNaN then
22 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
23 elsif type3 == FPType_SNaN then
24 done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val, predicated);
25 elsif type1 == FPType_QNaN then
26 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
27 elsif type2 == FPType_QNaN then
28 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
29 elsif type3 == FPType_QNaN then
30 done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val, predicated);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1992

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

31 else
32 done = FALSE; result = Zeros(N); // 'Do not care' result
33 return (done, result);

E2.1.168 FPRound

1 // FPRound()
2 // =========
3 // Used by data processing and int/fixed <-> floating-point conversion instructions.
4 // For half-precision data it ignores AHP, and observes FZ16.
5
6 bits(N) FPRound(real value, integer N, FPSCR_Type fpscr_val)
7 return FPRound(value, N, fpscr_val, FALSE);
8
9 bits(N) FPRound(real value, integer N, FPSCR_Type fpscr_val, boolean predicated)

10 fpscr_val.AHP = '0';
11 return FPRoundBase(value, N, fpscr_val, predicated);

E2.1.169 FPRoundBase

1 // FPRoundBase()
2 // =============
3 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
4 // updated directly in FPSCR where appropriate.
5
6 bits(N) FPRoundBase(real value, integer N, FPSCR_Type fpscr_val, boolean predicated)
7 assert N IN {16,32,64};
8 assert value != 0.0;
9

10 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
11 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
12 minimum_exp = 2 - 2^(E-1);
13 constant integer F = N - E - 1;
14
15 // Split value into sign, unrounded mantissa and exponent.
16 if value < 0.0 then
17 sign = '1'; mantissa = -value;
18 else
19 sign = '0'; mantissa = value;
20 exponent = 0;
21 while mantissa < 1.0 do
22 mantissa = mantissa * 2.0; exponent = exponent - 1;
23 while mantissa >= 2.0 do
24 mantissa = mantissa / 2.0; exponent = exponent + 1;
25
26 // Deal with flush-to-zero.
27 if ((N != 16 && fpscr_val.FZ == '1') || (N == 16 && fpscr_val.FZ16 == '1')) &&
28 exponent < minimum_exp then
29 result = FPZero(sign, N);
30 if !predicated then FPSCR.UFC = '1'; // Flush-to-zero never generates a trapped
31 // exception.
32 else
33
34 // Start creating the exponent value for the result. Start by biasing the actual
35 // exponent so that the minimum exponent becomes 1, lower values 0 (indicating
36 // possible underflow).
37 biased_exp = Max(exponent - minimum_exp + 1, 0);
38 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);
39
40 // Get the unrounded mantissa as an integer, and the "units in last place"
41 // rounding error.
42 int_mant = RoundDown(mantissa * 2.0^F); // if biased_exp == 0, < 2.0^F
43 // otherwise >= 2.0^F
44 error = mantissa * 2.0^F - Real(int_mant);
45
46 // Underflow occurs if exponent is too small before rounding, and result is inexact
47 // or the Underflow exception is trapped.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1993

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

48 if biased_exp == 0 && error != 0.0 then
49 FPProcessException(FPExc_Underflow, fpscr_val, predicated);
50
51 // Round result according to rounding mode.
52 case fpscr_val.RMode of
53 when FPSCR_RMode_RN // Round to Nearest (rounding to even if exactly halfway)
54 round_up = (error > 0.5 || (error == 0.5 && int_mant[0] == '1'));
55 overflow_to_inf = TRUE;
56 when FPSCR_RMode_RP // Round towards Plus Infinity
57 round_up = (error != 0.0 && sign == '0');
58 overflow_to_inf = (sign == '0');
59 when FPSCR_RMode_RM // Round towards Minus Infinity
60 round_up = (error != 0.0 && sign == '1');
61 overflow_to_inf = (sign == '1');
62 when FPSCR_RMode_RZ // Round towards Zero
63 round_up = FALSE;
64 overflow_to_inf = FALSE;
65 if round_up then
66 int_mant = int_mant + 1;
67 if int_mant == 2^F then // Rounded up from denormalized to normalized
68 biased_exp = 1;
69 if int_mant == 2^(F+1) then // Rounded up to next exponent
70 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;
71
72 // Deal with overflow and generate result.
73 if N != 16 || fpscr_val.AHP == '0' then // Single, double or IEEE half precision
74 if biased_exp >= 2^E - 1 then
75 result = if overflow_to_inf then FPInfinity(sign,N) else FPMaxNormal(sign,N);
76 FPProcessException(FPExc_Overflow, fpscr_val, predicated);
77 error = 1.0; // Ensure that an Inexact exception occurs
78 else
79 result = sign : biased_exp[E-1:0] : int_mant[F-1:0];
80 else // Alternative half precision
81 if biased_exp >= 2^E then
82 result = sign : Ones(N-1);
83 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
84 error = 0.0; // Ensure that an Inexact exception does not occur
85 else
86 result = sign : biased_exp[E-1:0] : int_mant[F-1:0];
87
88 // Deal with Inexact exception.
89 if error != 0.0 then
90 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
91
92 return result;

E2.1.170 FPRoundCV

1 // FPRoundCV()
2 // ===========
3 // Used for floating-point <-> floating-point conversion instructions.
4 // For half-precision data processing operations the FZ16 bit
5 // is ignored and the AHP bit is observed.
6
7 bits(N) FPRoundCV(real value, integer N, FPSCR_Type fpscr_val)
8 return FPRoundCV(value, N, fpscr_val, FALSE);
9

10 bits(N) FPRoundCV(real value, integer N, FPSCR_Type fpscr_val, boolean predicated)
11 fpscr_val.FZ16 = '0';
12 return FPRoundBase(value, N, fpscr_val, predicated);

E2.1.171 FPRoundInt

1 // FPRoundInt()
2 // ============
3 // Round floating-point value to nearest integral floating-point value
4 // using given rounding mode. If exact is TRUE, set inexact flag if result

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1994

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 // is not numerically equal to given value.
6
7 bits(N) FPRoundInt(bits(N) op, bits(2) rmode, boolean away, boolean exact,
8 boolean fpscr_controlled)
9 return FPRoundInt(op, rmode, away, exact, fpscr_controlled, FALSE);

10
11 bits(N) FPRoundInt(bits(N) op, bits(2) rmode, boolean away, boolean exact,
12 boolean fpscr_controlled, boolean predicated)
13 assert N IN {16,32,64};
14 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
15
16 // Unpack using FPSCR to determine if subnormals are flushed-to-zero.
17 (fp_type,sign,value) = FPUnpack(op, fpscr_val, predicated);
18
19 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
20 result = FPProcessNaN(fp_type, op, fpscr_val, predicated);
21 elsif fp_type == FPType_Infinity then
22 result = FPInfinity(sign, N);
23 elsif fp_type == FPType_Zero then
24 result = FPZero(sign, N);
25 else
26 // extract integer component
27 int_result = RoundDown(value);
28 error = value - Real(int_result);
29
30 // Determine whether supplied rounding mode requires an increment.
31 case rmode of
32 when '00' // Round to nearest, ties to even
33 round_up = (error > 0.5 || (error == 0.5 && int_result[0] == '1'));
34 when '01' // Round towards Plus Infinity
35 round_up = (error != 0.0);
36 when '10' // Round towards Minus Infinity
37 round_up = FALSE;
38 when '11' // Round towards Zero
39 round_up = (error != 0.0 && int_result < 0);
40
41 if away then // Round towards Zero, ties away.
42 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
43
44 if round_up then int_result = int_result + 1;
45
46 // Convert integer value into an equivalent real value.
47 real_result = Real(int_result);
48
49 // Re-encode as a floating-point value, result is always exact.
50 if real_result == 0.0 then
51 result = FPZero(sign, N);
52 else
53 result = FPRound(real_result, N, fpscr_val, predicated);
54
55 // Generate inexact exceptions.
56 if error != 0.0 && exact then
57 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
58
59 return result;

E2.1.172 FPSingleToDouble

1 // FPSingleToDouble()
2 // ==================
3
4 bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.DN == '1' then
9 result = FPDefaultNaN(64);

10 else

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1995

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11 result = sign : '11111111111 1' : operand[21:0] : Zeros(29);
12 if fp_type == FPType_SNaN then
13 FPProcessException(FPExc_InvalidOp, fpscr_val);
14 elsif fp_type == FPType_Infinity then
15 result = FPInfinity(sign, 64);
16 elsif fp_type == FPType_Zero then
17 result = FPZero(sign, 64);
18 else
19 result = FPRoundCV(value, 64, fpscr_val); // Rounding will be exact
20 return result;

E2.1.173 FPSingleToHalf

1 // FPSingleToHalf()
2 // ================
3
4 bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
5 return FPSingleToHalf(operand, fpscr_controlled, FALSE);
6
7 bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled, boolean predicated)
8 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
9 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val, predicated);

10 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
11 if fpscr_val.AHP == '1' then
12 result = FPZero(sign, 16);
13 elsif fpscr_val.DN == '1' then
14 result = FPDefaultNaN(16);
15 else
16 result = sign : '11111 1' : operand[21:13];
17 if fp_type == FPType_SNaN || fpscr_val.AHP == '1' then
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif fp_type == FPType_Infinity then
20 if fpscr_val.AHP == '1' then
21 result = sign : Ones(15);
22 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
23 else
24 result = FPInfinity(sign, 16);
25 elsif fp_type == FPType_Zero then
26 result = FPZero(sign, 16);
27 else
28 result = FPRoundCV(value, 16, fpscr_val, predicated);
29 return result;

E2.1.174 FPSqrt

1 // FPSqrt()
2 // ========
3
4 bits(N) FPSqrt(bits(N) operand)
5 assert N IN {16,32,64};
6 (fp_type,sign,value) = FPUnpack(operand, FPSCR);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 result = FPProcessNaN(fp_type, operand, FPSCR);
9 elsif fp_type == FPType_Zero then

10 result = FPZero(sign, N);
11 elsif fp_type == FPType_Infinity && sign == '0' then
12 result = FPInfinity(sign, N);
13 elsif sign == '1' then
14 result = FPDefaultNaN(N);
15 FPProcessException(FPExc_InvalidOp, FPSCR);
16 else
17 result = FPRound(Sqrt(value), N, FPSCR);
18 return result;

E2.1.175 FPSub

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1996

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // FPSub()
2 // =======
3
4 bits(N) FPSub(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPSub(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPSub(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 inf1 = (fp_type1 == FPType_Infinity); inf2 = (fp_type2 == FPType_Infinity);
15 zero1 = (fp_type1 == FPType_Zero); zero2 = (fp_type2 == FPType_Zero);
16 if inf1 && inf2 && sign1 == sign2 then
17 result = FPDefaultNaN(N);
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
20 result = FPInfinity('0', N);
21 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
22 result = FPInfinity('1', N);
23 elsif zero1 && zero2 && sign1 == NOT(sign2) then
24 result = FPZero(sign1, N);
25 else
26 result_value = value1 - value2;
27 if result_value == 0.0 then // Sign of exact zero result depends
28 // on rounding mode
29 result_sign = if fpscr_val.RMode == FPSCR_RMode_RM then '1' else '0';
30 result = FPZero(result_sign, N);
31 else
32 result = FPRound(result_value, N, fpscr_val, predicated);
33 return result;

E2.1.176 FPToFixed

1 // FPToFixed()
2 // ===========
3
4 bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
5 boolean round_towards_zero, boolean fpscr_controlled)
6 return FPToFixed(operand, M, fraction_bits, unsigned, round_towards_zero,
7 fpscr_controlled, FALSE);
8
9 bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,

10 boolean round_towards_zero, boolean fpscr_controlled,
11 boolean predicated)
12 assert N IN {16,32,64};
13 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
14 if round_towards_zero then fpscr_val.RMode = FPSCR_RMode_RZ;
15 (fp_type,-,value) = FPUnpack(operand, fpscr_val, predicated);
16
17 // For NaNs and infinities, FPUnpack() has produced a value that will round to the
18 // required result of the conversion. Also, the value produced for infinities will
19 // cause the conversion to overflow and signal an Invalid Operation floating-point
20 // exception as required. NaNs must also generate such a floating-point exception.
21 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
22 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
23
24 // Scale value by specified number of fraction bits, then start rounding to an integer
25 // and determine the rounding error.
26 value = value * 2.0^fraction_bits;
27 int_result = RoundDown(value);
28 error = value - Real(int_result);
29
30 // Apply the specified rounding mode.
31 case fpscr_val.RMode of
32 when FPSCR_RMode_RN // Round to Nearest (rounding to even if exactly halfway)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1997

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

33 round_up = (error > 0.5 || (error == 0.5 && int_result[0] == '1'));
34 when FPSCR_RMode_RP // Round towards Plus Infinity
35 round_up = (error != 0.0);
36 when FPSCR_RMode_RM // Round towards Minus Infinity
37 round_up = FALSE;
38 when FPSCR_RMode_RZ // Round towards Zero
39 round_up = (error != 0.0 && int_result < 0);
40 if round_up then int_result = int_result + 1;
41
42 // Bitstring result is the integer result saturated to the destination size, with
43 // saturation indicating overflow of the conversion (signaled as an Invalid
44 // Operation floating-point exception).
45 (result, overflow) = SatQ(int_result, M, unsigned);
46 if overflow then
47 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
48 elsif error != 0.0 then
49 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
50
51 return result;

E2.1.177 FPToFixedDirected

1 // FPToFixedDirected()
2 // ===================
3
4 bits(M) FPToFixedDirected(bits(N) op, integer fbits, boolean unsigned, bits(2) round_mode,
5 boolean fpscr_controlled)
6 return FPToFixedDirected(op, fbits, unsigned, round_mode, fpscr_controlled, FALSE);
7
8 bits(M) FPToFixedDirected(bits(N) op, integer fbits, boolean unsigned, bits(2) round_mode,
9 boolean fpscr_controlled, boolean predicated)

10 assert N IN {16,32,64};
11
12 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
13
14 // Unpack using FPSCR to determine if subnormals are flushed-to-zero.
15 (fp_type,-,value) = FPUnpack(op, fpscr_val, predicated);
16
17 // If NaN, set cumulative flag or take exception
18 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
19 FPProcessException(FPExc_InvalidOp, FPSCR, predicated);
20
21 // Scale by fractional bits and produce integer rounded towards
22 // minus-infinity.
23 value = value * 2.0^fbits;
24 int_result = RoundDown(value);
25 error = value - Real(int_result);
26
27 // Determine whether supplied rounding mode requires an increment.
28 case round_mode of
29 when '00' // ties away
30 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
31 when '01' // nearest even
32 round_up = (error > 0.5 || (error == 0.5 && int_result[0] == '1'));
33 when '10' // plus infinity
34 round_up = (error != 0.0);
35 when '11' // neg infinity
36 round_up = FALSE;
37
38 if round_up then int_result = int_result + 1;
39
40 // Generate saturated result and exceptions.
41 (result, overflow) = SatQ(int_result, M, unsigned);
42
43 if overflow then
44 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
45 elsif error != 0.0 then
46 FPProcessException(FPExc_Inexact, fpscr_val, predicated);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1998

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

47 return result;

E2.1.178 FPType

1 // FPType
2 // ======
3
4 // Type of floating-point value. Floating-point values are categorized into one
5 // of the following type during unpacking.
6
7 enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

E2.1.179 FPUnpack

1 // FPUnpack()
2 // ==========
3 //
4 // Used by data processing and int/fixed <-> floating-point conversion instructions.
5 // For half-precision data it ignores AHP, and observes FZ16.
6
7 (FPType, bit, real) FPUnpack(bits(N) fpval, FPSCR_Type fpscr_val)
8 return FPUnpack(fpval, fpscr_val, FALSE);
9

10 (FPType, bit, real) FPUnpack(bits(N) fpval, FPSCR_Type fpscr_val, boolean predicated)
11 fpscr_val.AHP = '0';
12 return FPUnpackBase(fpval, fpscr_val, predicated);

E2.1.180 FPUnpackBase

1 // FPUnpackBase()
2 // ==============
3 //
4 // Unpack a floating-point number into its type, sign bit and the real number
5 // that it represents. The real number result has the correct sign for numbers
6 // and infinities, is very large in magnitude for infinities, and is 0.0 for
7 // NaNs. (These values are chosen to simplify the description of comparisons
8 // and conversions).
9 //

10 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
11 // updated directly in FPSCR where appropriate.
12
13 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPSCR_Type fpscr_val, boolean predicated)
14 assert N IN {16,32,64};
15
16 if N == 16 then
17 sign = fpval[15];
18 exp16 = fpval[14:10];
19 frac16 = fpval[9:0];
20 if IsZero(exp16) then
21 // Produce zero if value is zero or flush-to-zero is selected.
22 if IsZero(frac16) || fpscr_val.FZ16 == '1' then
23 fp_type = FPType_Zero; value = 0.0;
24 else
25 fp_type = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
26 elsif IsOnes(exp16) && fpscr_val.AHP == '0' then // Infinity or NaN in IEEE format
27 if IsZero(frac16) then
28 fp_type = FPType_Infinity; value = 2.0^1000000;
29 else
30 fp_type = if frac16[9] == '1' then FPType_QNaN else FPType_SNaN;
31 value = 0.0;
32 else
33 fp_type = FPType_Nonzero;
34 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);
35
36 elsif N == 32 then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1999

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

37
38 sign = fpval[31];
39 exp32 = fpval[30:23];
40 frac32 = fpval[22:0];
41 if IsZero(exp32) then
42 // Produce zero if value is zero or flush-to-zero is selected.
43 if IsZero(frac32) || fpscr_val.FZ == '1' then
44 fp_type = FPType_Zero; value = 0.0;
45 if !IsZero(frac32) then // Denormalized input flushed to zero
46 FPProcessException(FPExc_InputDenorm, fpscr_val, predicated);
47 else
48 fp_type = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
49 elsif IsOnes(exp32) then
50 if IsZero(frac32) then
51 fp_type = FPType_Infinity; value = 2.0^1000000;
52 else
53 fp_type = if frac32[22] == '1' then FPType_QNaN else FPType_SNaN;
54 value = 0.0;
55 else
56 fp_type = FPType_Nonzero;
57 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);
58
59 else // N == 64.
60
61 sign = fpval[63];
62 exp64 = fpval[62:52];
63 frac64 = fpval[51:0];
64 if IsZero(exp64) then
65 // Produce zero if value is zero or flush-to-zero is selected.
66 if IsZero(frac64) || fpscr_val.FZ == '1' then
67 fp_type = FPType_Zero; value = 0.0;
68 if !IsZero(frac64) then // Denormalized input flushed to zero
69 FPProcessException(FPExc_InputDenorm, fpscr_val, predicated);
70 else
71 fp_type = FPType_Nonzero;
72 value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
73 elsif IsOnes(exp64) then
74 if IsZero(frac64) then
75 fp_type = FPType_Infinity;
76 value = 2.0^1000000;
77 else
78 fp_type = if frac64[51] == '1' then FPType_QNaN else FPType_SNaN;
79 value = 0.0;
80 else
81 fp_type = FPType_Nonzero;
82 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);
83
84 if sign == '1' then value = -value;
85 return (fp_type, sign, value);

E2.1.181 FPUnpackCV

1 // FPUnpackCV()
2 // ============
3 //
4 // Used for floating-point <-> floating-point conversion instructions.
5 // For half-precision data ignores FZ16 and observes AHP.
6
7 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPSCR_Type fpscr_val)
8 return FPUnpackCV(fpval, fpscr_val, FALSE);
9

10 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPSCR_Type fpscr_val, boolean predicated)
11 fpscr_val.FZ16 = '0';
12 return FPUnpackBase(fpval, fpscr_val, predicated);

E2.1.182 FPZero

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2000

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // FPZero()
2 // ========
3
4 bits(N) FPZero(bit sign, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 exp = Zeros(E);
11 frac = Zeros(F);
12 return sign : exp : frac;

E2.1.183 FunctionReturn

1 // FunctionReturn()
2 // ================
3
4 ExcInfo FunctionReturn()
5 exc = DefaultExcInfo();
6
7 // Pull the return address and IPSR off the Secure stack.
8 mode = CurrentMode();
9 spName = LookUpSP_with_security_mode(TRUE, mode);

10 framePtr = _SP(spName);
11 if !IsAligned(framePtr, 8) then UNPREDICTABLE;
12 // Only stack locations, not the load order are architected
13 RETPSR_Type newPSR;
14 if exc.fault == NoFault then (exc, newPSR) = Stack(framePtr, 4, spName, mode);
15 if exc.fault == NoFault then (exc, newPC) = Stack(framePtr, 0, spName, mode);
16
17 // Check the IPSR value that has been unstacked is consistent with the current
18 // mode, and being originally called from the Secure state.
19 // NOTE: It is IMPLEMENTATION DEFINED whether this check is performed before
20 // or after the load of the return address above.
21 if (exc.fault == NoFault) &&
22 !(((IPSR.Exception == 0[8:0]) && (newPSR.Exception == 0[8:0])) ||
23 ((IPSR.Exception == 1[8:0]) && (newPSR.Exception != 0[8:0]))) then
24 if HaveMainExt() then
25 UFSR_S.INVPC = '1';
26 // Create the exception. NOTE: If the Main Extension is not implemented
27 // then the fault always escalates to a HardFault.
28 exc = CreateException(UsageFault, TRUE, TRUE);
29 // The IPSR value is set as UNKNOWN if the IPSR value is not supported by the PE.
30 excNum = UInt(newPSR.Exception);
31 validIPSR = excNum IN {0, 1, NMI, HardFault, SVCall, PendSV, SysTick};
32 if !validIPSR && HaveMainExt() then
33 validIPSR = excNum IN {MemManage, BusFault, UsageFault, SecureFault, DebugMonitor};
34 if !validIPSR && !IsIrqValid(excNum) then
35 newPSR.Exception = bits(9) UNKNOWN;
36
37 // Only consume the function return stack frame and update the XPSR and PC
38 // if no faults occured.
39 if exc.fault == NoFault then
40 // Transition to the Secure state.
41 CurrentState = SecurityState_Secure;
42 // Update stack pointer. NOTE: Stack pointer limit not checked on function
43 // return as stack pointer guaranteed to be ascending not descending.
44 exc = _SP(spName, FALSE, TRUE, framePtr + 8);
45 assert exc.fault == NoFault;
46
47 IPSR.Exception = newPSR.Exception;
48 CONTROL_S.SFPA = newPSR.SFPA;
49 // IT/ICI/ECI/LOB data cleared to prevent Non-secure code interfering with
50 // Secure execution.
51 if HaveMainExt() then
52 ITSTATE = Zeros(8);
53 if HaveLOBExt() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2001

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

54 LO_BRANCH_INFO.VALID = '0';
55 // If EPSR.T == 0, a UsageFault('Invalid State') or a HardFault is taken
56 // on the next instruction depending on whether the Main Extension is
57 // is implemented or not.
58 EPSR.T = newPC[0];
59 BranchTo(newPC[31:1]:'0');
60 return exc;

E2.1.184 GenerateCoprocessorException

1 // GenerateCoprocessorException()
2 // ==============================
3
4 GenerateCoprocessorException()
5 UFSR.UNDEFINSTR = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);

E2.1.185 GenerateDebugEventResponse

1 // GenerateDebugEventResponse()
2 // ============================
3 // Generate a debug event response based on the PE configuration.
4
5 GenerateDebugEventResponse(DebugEventCause cause)
6 if CanHaltOnEvent(IsSecure(), FindPriv()) then
7 DHCSR.C_HALT = '1';
8 if cause != DebugEventCause_EXT then
9 DFSR.BKPT = '1';

10 // Internally generated debug events halt synchronously and terminate
11 // the current instruction. Halt() will be called following completion
12 // of in flight instructions.
13 EndOfInstruction();
14 else
15 DFSR.EXTERNAL = '1';
16
17 elsif cause == DebugEventCause_BKPT then
18 // The Breakpoint debug event is set unconditionally.
19 DFSR.BKPT = '1';
20 // A DebugMonitor exception is generated. This exception can be escalated to
21 // a HardFault when evaluated in ExceptionDetails().
22 exceptionSecurity = IsSecure() || DEMCR.SDME == '1';
23 excInfo = CreateException(DebugMonitor, TRUE, exceptionSecurity);
24 HandleException(excInfo);
25
26 elsif CanPendMonitorOnEvent(IsSecure(), TRUE, TRUE, FindPriv(), FALSE) then
27 if cause != DebugEventCause_EXT then
28 DFSR.BKPT = '1';
29 else
30 DFSR.EXTERNAL = '1';
31 DEMCR.MON_PEND = '1';
32 if cause == DebugEventCause_FPB then
33 EndOfInstruction();

E2.1.186 GenerateIntegerZeroDivide

1 // GenerateIntegerZeroDivide()
2 // ===========================
3
4 GenerateIntegerZeroDivide()
5 UFSR.DIVBYZERO = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);

E2.1.187 GetActiveChains

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2002

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // GetActiveChains()
2 // ==================
3
4 integer GetActiveChains()
5 count = 0;
6 if HaveMve() then
7 for i = 0 to MAX_OVERLAPPING_INSTRS-1
8 if _InstInfo[i].Valid then
9 count = count + 1;

10 return count;

E2.1.188 GetCurInstrBeat

1 // GetCurInstrBeat()
2 // =================
3
4 (integer, bits(4)) GetCurInstrBeat()
5 assert HaveMve();
6 // By default assume all lanes are active.
7 elmtMask = Ones(4);
8
9 // If VPT active apply the predicate flags in VPR.P0.

10 if VPTActive() then
11 elmtMask = elmtMask AND Elem[VPR.P0, _BeatID, 4];
12
13 // LOB truncation may override the flags on the last iteration of a loop
14 // LTPSIZE < 4 is a proxy for knowing if loop and tail predication is active.
15 ltpsize = if _CurrentInstrExecState.ResetLTPSize then 4 else LTPSIZE;
16 if ltpsize < 4 && IsLastLowOverheadLoop() then
17 loopCount = _CurrentInstrExecState.LoopCount;
18 predSize = ltpsize;
19 fullMask = ZeroExtend(Ones(UInt(loopCount[4-predSize:0] : Zeros(predSize))), 16);
20 elmtMask = elmtMask AND Elem[fullMask, _BeatID, 4];
21 return (_BeatID, elmtMask);

E2.1.189 GetInstrExecState

1 // GetInstrExecState()
2 // ===================
3
4 INSTR_EXEC_STATE_Type GetInstrExecState(integer next)
5 // next = 0: returns current (committed) state.
6 // next > 0: returns n-th state from now.
7 assert (next >= 0 && next < MAX_BEATS);
8 INSTR_EXEC_STATE_Type state;
9

10 // 1) Next == 0: current committed state
11 state.FetchAddr = _RName[RNamesPC];
12 state.ITState = EPSR.IT;
13 state.L = '0';
14 state.T16IND = '0';
15 state.BTI = '0';
16 state.LoopCount = LR;
17 state.LOBranchInfoValid = LO_BRANCH_INFO.VALID;
18 state.ResetLTPSize = FALSE;
19
20 // 2) Determine speculative future.
21 for i = 1 to next
22 // Handle normal PC changes BEFORE LOB handling.
23 if _PCChanged && i == 1 then
24 state.FetchAddr = _NextInstrAddr;
25 else
26 state.FetchAddr = state.FetchAddr + ThisInstrLength(i-1);
27
28 // If the IT state has been directly modified return that value as the
29 // next state, otherwise advance the IT state normally.
30 if _ITStateChanged && i == 1 then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2003

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

31 state.ITState = _NextInstrITState;
32 elsif InITBlock(state.ITState) then
33 state.ITState = ITAdvance(state.ITState);
34 // When an ICI compatible instruction that is outside of an IT block completes, the
35 // ICI bits are cleared. Since the EPSR.ICI and EPSR.IT fields overlap, clearing the
36 // ICI bits is accomplished by setting ITState to zero.
37 elsif HasArchVersion(Armv8p1) && IsLoadStoreClearMultInstruction(ThisInstr(i-1)) then
38 state.ITState = Zeros(8);
39
40 // Check if loop or branch triggers PC change (unless normal PC change).
41 if (!_PCChanged) && HaveLOBExt() then
42 state = HandleLO(state);
43
44 return state;

E2.1.190 GetMveScalarReadRegs

1 bits(16) GetMveScalarReadRegs(bits(32) instr)
2 assert(IsMveBeatWiseInstruction(instr));
3 regs = Zeros(16);
4 if (instr == '111x1110100xxxx0xxxx1111x0x0xxx1' ||
5 instr == '111x11101010xxx0xxxx1111x0x0xxx1') then // VABAV-R.QQ-T1
6 Elem[regs, UInt(instr[15:12]), 1] = '1';
7 elsif (instr == '111011100x0xxxx1xxx01111x100xxxx' ||
8 instr == '111011100x10xxx1xxx01111x100xxxx') then // VADD-Q.Qx-T2
9 Elem[regs, UInt(instr[3:0]), 1] = '1';

10 elsif (instr == '111x11101110xx01xxxx111100x0xxx0' ||
11 instr == '111x1110110xxx01xxxx111100x0xxx0' ||
12 instr == '111x111010xxxx01xxxx111100x0xxx0') then // VADDLV-RR.Q-T1
13 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
14 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
15 elsif (instr == '111x111011110x01xxxx111100x0xxx0' ||
16 instr == '111x111011111001xxxx111100x0xxx0') then // VADDV-R.Q-T1
17 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
18 elsif (instr == '111x11100x11xxx0xxx01111x100xxxx') then // VADD_af-Q.Qx-T2
19 Elem[regs, UInt(instr[3:0]), 1] = '1';
20 elsif (instr == '111111100x10xxx1xxx11110x110xxxx' ||
21 instr == '111111100x0xxxx1xxx11110x110xxxx') then // VBRSR-Q.Qx-T1
22 Elem[regs, UInt(instr[3:0]), 1] = '1';
23 elsif (instr == '111x11100011xxx1000x1111x1x010xx' ||
24 instr == '111x11100011xxx1000x1111x1x00xxx' ||
25 instr == '111x11100011xxx1000x1111x1x011x0' ||
26 instr == '111x11100011xxx1000x1111x1x01x1x') then // VCMP_f-P.Qx-T2
27 Elem[regs, UInt(instr[3:0]), 1] = '1';
28 elsif (instr == '11111110000xxxx100001111x100xxxx' ||
29 instr == '111111100010xxx100001111x100xxxx') then // VCMP_i-P.Qx-T4
30 Elem[regs, UInt(instr[3:0]), 1] = '1';
31 elsif (instr == '111111100010xxx100001111x110xxxx' ||
32 instr == '11111110000xxxx100001111x110xxxx') then // VCMP_i-P.Qx-T5
33 Elem[regs, UInt(instr[3:0]), 1] = '1';
34 elsif (instr == '11111110000xxxx100011111x1x0xxxx' ||
35 instr == '111111100010xxx100011111x1x0xxxx') then // VCMP_i-P.Qx-T6
36 Elem[regs, UInt(instr[3:0]), 1] = '1';
37 elsif (instr == '1111000000xx0xxx11101xxxxxxxxxx1' ||
38 instr == '1111000000xx111011101xxxxxxxxxx1' ||
39 instr == '1111000000xx110x11101xxxxxxxxxx1' ||
40 instr == '1111000000xx10xx11101xxxxxxxxxx1') then // VCTP-R-T1
41 Elem[regs, UInt(instr[19:16]), 1] = '1';
42 elsif (instr == '111011100x10xxx1xxx11111x110111x' ||
43 instr == '111011100x0xxxx1xxx11111x110111x') then // VDDUP-Q.RI-T2
44 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
45 elsif (instr == '111011100x10xxx1xxx11111x1100xxx' ||
46 instr == '111011100x0xxxx1xxx11111x11010xx' ||
47 instr == '111011100x0xxxx1xxx11111x1100xxx' ||
48 instr == '111011100x10xxx1xxx11111x110110x' ||
49 instr == '111011100x0xxxx1xxx11111x110110x' ||
50 instr == '111011100x10xxx1xxx11111x11010xx') then // VDDUP-Q.RRI-T1
51 Elem[regs, UInt(instr[3:1]:'1'), 1] = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2004

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

52 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
53 elsif (instr == '111011101x10xxx0xxxx1011x0x1xxxx') then // VDUP-Q.R-T1
54 Elem[regs, UInt(instr[15:12]), 1] = '1';
55 elsif (instr == '111x11100x11xxx1xxx11110x100xxxx') then // VFMAS_fs-Q.QR-T1
56 Elem[regs, UInt(instr[3:0]), 1] = '1';
57 elsif (instr == '111x11100x11xxx1xxx01110x100xxxx') then // VFMA_sf-Q.QR-T1
58 Elem[regs, UInt(instr[3:0]), 1] = '1';
59 elsif (instr == '111x11100x10xxx0xxx01111x100xxxx' ||
60 instr == '111x11100x0xxxx0xxx01111x100xxxx') then // VHADD-Q.QR-T2
61 Elem[regs, UInt(instr[3:0]), 1] = '1';
62 elsif (instr == '111x11100x10xxx0xxx11111x100xxxx' ||
63 instr == '111x11100x0xxxx0xxx11111x100xxxx') then // VHSUB-Q.QR-T2
64 Elem[regs, UInt(instr[3:0]), 1] = '1';
65 elsif (instr == '111011100x10xxx1xxx01111x110111x' ||
66 instr == '111011100x0xxxx1xxx01111x110111x') then // VIDUP-Q.RI-T2
67 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
68 elsif (instr == '111011100x0xxxx1xxx01111x1100xxx' ||
69 instr == '111011100x10xxx1xxx01111x11010xx' ||
70 instr == '111011100x0xxxx1xxx01111x11010xx' ||
71 instr == '111011100x0xxxx1xxx01111x110110x' ||
72 instr == '111011100x10xxx1xxx01111x110110x' ||
73 instr == '111011100x10xxx1xxx01111x1100xxx') then // VIDUP-Q.RRI-T1
74 Elem[regs, UInt(instr[3:1]:'1'), 1] = '1';
75 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
76 elsif (instr == '111111001xx1xxxxxxx11110xxxxxxx0' ||
77 instr == '111111001xx1xxxxxxx111110xxxxxx0') then // VLD2-Q.RI-T1
78 Elem[regs, UInt(instr[19:16]), 1] = '1';
79 elsif (instr == '111111001xx1xxxxxxx111110xxxxxx1' ||
80 instr == '111111001xx1xxxxxxx11110xxxxxxx1') then // VLD4-Q.RI-T1
81 Elem[regs, UInt(instr[19:16]), 1] = '1';
82 elsif (instr == '111x110xx0110xxxxxx01110xxxxxxxx' ||
83 instr == '111x110xx0110xxxxxx011110xxxxxxx' ||
84 instr == '111x1101x0x10xxxxxx01110xxxxxxxx' ||
85 instr == '111x1101x0x10xxxxxx011110xxxxxxx') then // VLDR-Q.RI-T1
86 Elem[regs, UInt(instr[18:16]), 1] = '1';
87 elsif (instr == '111x1101x0x11xxxxxx011110xxxxxxx' ||
88 instr == '111x110xx0111xxxxxx011110xxxxxxx' ||
89 instr == '111x110xx0111xxxxxx01110xxxxxxxx' ||
90 instr == '111x1101x0x11xxxxxx01110xxxxxxxx') then // VLDR-Q.RI-T2
91 Elem[regs, UInt(instr[18:16]), 1] = '1';
92 elsif (instr == '1110110xxx11xxxxxxx111100xxxxxxx' ||
93 instr == '11101101xxx1xxxxxxx111100xxxxxxx') then // VLDR-Q.RI-T5
94 Elem[regs, UInt(instr[19:16]), 1] = '1';
95 elsif (instr == '1110110xxx11xxxxxxx111101xxxxxxx' ||
96 instr == '11101101xxx1xxxxxxx111101xxxxxxx') then // VLDR-Q.RI-T6
97 Elem[regs, UInt(instr[19:16]), 1] = '1';
98 elsif (instr == '11101101xxx1xxxxxxx111110xxxxxxx' ||
99 instr == '1110110xxx11xxxxxxx111110xxxxxxx') then // VLDR-Q.RI-T7

100 Elem[regs, UInt(instr[19:16]), 1] = '1';
101 elsif (instr == '111x11001x01xxxxxxx0111xx0x0xxxx') then // VLDR_v-Q.xx-T1
102 Elem[regs, UInt(instr[19:16]), 1] = '1';
103 elsif (instr == '111x11001x01xxxxxxx0111xx0x1xxxx') then // VLDR_v-Q.xx-T2
104 Elem[regs, UInt(instr[19:16]), 1] = '1';
105 elsif (instr == '111x11001x01xxxxxxx0111xx1x0xxxx') then // VLDR_v-Q.xx-T3
106 Elem[regs, UInt(instr[19:16]), 1] = '1';
107 elsif (instr == '111x11001x01xxxxxxx0111xx1x1xxxx') then // VLDR_v-Q.xx-T4
108 Elem[regs, UInt(instr[19:16]), 1] = '1';
109 elsif (instr == '111x111011101110xxxx111100x0xxx0') then // VMAXNMV_f-R.Q-T1
110 Elem[regs, UInt(instr[15:12]), 1] = '1';
111 elsif (instr == '111x111011101100xxxx111100x0xxx0') then // VMAXNMV_f-R.Q-T2
112 Elem[regs, UInt(instr[15:12]), 1] = '1';
113 elsif (instr == '111x111011100x10xxxx111100x0xxx0' ||
114 instr == '111x111011101010xxxx111100x0xxx0') then // VMAXV-R.Q-T1
115 Elem[regs, UInt(instr[15:12]), 1] = '1';
116 elsif (instr == '111x111011100x00xxxx111100x0xxx0' ||
117 instr == '111x111011101000xxxx111100x0xxx0') then // VMAXV-R.Q-T2
118 Elem[regs, UInt(instr[15:12]), 1] = '1';
119 elsif (instr == '111x111011101110xxxx111110x0xxx0') then // VMINNMV_f-R.Q-T1
120 Elem[regs, UInt(instr[15:12]), 1] = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2005

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

121 elsif (instr == '111x111011101100xxxx111110x0xxx0') then // VMINNMV_f-R.Q-T2
122 Elem[regs, UInt(instr[15:12]), 1] = '1';
123 elsif (instr == '111x111011100x10xxxx111110x0xxx0' ||
124 instr == '111x111011101010xxxx111110x0xxx0') then // VMINV-R.Q-T1
125 Elem[regs, UInt(instr[15:12]), 1] = '1';
126 elsif (instr == '111x111011100x00xxxx111110x0xxx0' ||
127 instr == '111x111011101000xxxx111110x0xxx0') then // VMINV-R.Q-T2
128 Elem[regs, UInt(instr[15:12]), 1] = '1';
129 elsif (instr == '111x11100x0xxxx1xxx01110x100xxxx' ||
130 instr == '111x11100x10xxx1xxx01110x100xxxx') then // VMLA-Q.QR-T1
131 Elem[regs, UInt(instr[3:0]), 1] = '1';
132 elsif (instr == '111x11101111xxxxxxxx1110x0x0xxx0') then // VMLADAV-R.QQ-T1
133 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
134 elsif (instr == '111x11101111xxx0xxxx1111x0x0xxx0') then // VMLADAV-R.QQ-T2
135 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
136 elsif (instr == '111x111010xxxxxxxxxx1110x0x0xxx0' ||
137 instr == '111x11101110xxxxxxxx1110x0x0xxx0' ||
138 instr == '111x1110110xxxxxxxxx1110x0x0xxx0') then // VMLALDAV-RR.QQ-T1
139 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
140 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
141 elsif (instr == '111x11100x0xxxx1xxx11110x100xxxx' ||
142 instr == '111x11100x10xxx1xxx11110x100xxxx') then // VMLAS-Q.QR-T1
143 Elem[regs, UInt(instr[3:0]), 1] = '1';
144 elsif (instr == '111011101111xxxxxxxx1110x0x0xxx1') then // VMLSDAV-R.QQ-T1
145 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
146 elsif (instr == '111111101111xxx0xxxx1110x0x0xxx1') then // VMLSDAV-R.QQ-T2
147 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
148 elsif (instr == '111011101110xxxxxxxx1110x0x0xxx1' ||
149 instr == '11101110110xxxxxxxxx1110x0x0xxx1' ||
150 instr == '1110111010xxxxxxxxxx1110x0x0xxx1') then // VMLSLDAV-RR.QQ-T1
151 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
152 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
153 elsif (instr == '111011100xx0xxxxxxxx1011xxx1xxxx') then // VMOV_rs-Q.R-T1
154 Elem[regs, UInt(instr[15:12]), 1] = '1';
155 elsif (instr == '111011000x01xxxxxxx01111xxxxxxxx') then // VMOV_vrr-Q.RR-T1
156 Elem[regs, UInt(instr[3:0]), 1] = '1';
157 Elem[regs, UInt(instr[19:16]), 1] = '1';
158 elsif (instr == '111011100x10xxx1xxx11110x110xxxx' ||
159 instr == '111011100x0xxxx1xxx11110x110xxxx') then // VMUL-Q.Qx-T2
160 Elem[regs, UInt(instr[3:0]), 1] = '1';
161 elsif (instr == '111x11100x11xxx1xxx01110x110xxxx') then // VMUL_af-Q.QR-T2
162 Elem[regs, UInt(instr[3:0]), 1] = '1';
163 elsif (instr == '111111100110xxx1xxx01111x100xxxx' ||
164 instr == '11111110000xxxx100101111x100xxxx' ||
165 instr == '111111100010xxx11xx01111x100xxxx' ||
166 instr == '111111100010xxx100101111x100xxxx' ||
167 instr == '11111110010xxxx1xxx01111x100xxxx' ||
168 instr == '111111100010xxx101x01111x100xxxx' ||
169 instr == '11111110000xxxx101x01111x100xxxx' ||
170 instr == '11111110000xxxx11xx01111x100xxxx') then // VPT-P.Qx-T4
171 Elem[regs, UInt(instr[3:0]), 1] = '1';
172 elsif (instr == '11111110000xxxx101x01111x110xxxx' ||
173 instr == '111111100010xxx11xx01111x110xxxx' ||
174 instr == '11111110000xxxx11xx01111x110xxxx' ||
175 instr == '111111100010xxx100101111x110xxxx' ||
176 instr == '111111100110xxx1xxx01111x110xxxx' ||
177 instr == '11111110000xxxx100101111x110xxxx' ||
178 instr == '11111110010xxxx1xxx01111x110xxxx' ||
179 instr == '111111100010xxx101x01111x110xxxx') then // VPT-P.Qx-T5
180 Elem[regs, UInt(instr[3:0]), 1] = '1';
181 elsif (instr == '111111100010xxx100111111x1x0xxxx' ||
182 instr == '11111110000xxxx101x11111x1x0xxxx' ||
183 instr == '11111110000xxxx11xx11111x1x0xxxx' ||
184 instr == '111111100110xxx1xxx11111x1x0xxxx' ||
185 instr == '11111110000xxxx100111111x1x0xxxx' ||
186 instr == '11111110010xxxx1xxx11111x1x0xxxx' ||
187 instr == '111111100010xxx101x11111x1x0xxxx' ||
188 instr == '111111100010xxx11xx11111x1x0xxxx') then // VPT-P.Qx-T6
189 Elem[regs, UInt(instr[3:0]), 1] = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2006

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

190 elsif (instr == '111x11100011xxx101xx1111x1x00xxx' ||
191 instr == '111x11100111xxx1xxxx1111x1x01x1x' ||
192 instr == '111x11100011xxx11xxx1111x1x011x0' ||
193 instr == '111x11100011xxx101xx1111x1x010xx' ||
194 instr == '111x11100011xxx11xxx1111x1x010xx' ||
195 instr == '111x11100011xxx11xxx1111x1x00xxx' ||
196 instr == '111x11100111xxx1xxxx1111x1x011x0' ||
197 instr == '111x11100011xxx1001x1111x1x01x1x' ||
198 instr == '111x11100111xxx1xxxx1111x1x010xx' ||
199 instr == '111x11100011xxx1001x1111x1x011x0' ||
200 instr == '111x11100011xxx101xx1111x1x01x1x' ||
201 instr == '111x11100111xxx1xxxx1111x1x00xxx' ||
202 instr == '111x11100011xxx101xx1111x1x011x0' ||
203 instr == '111x11100011xxx1001x1111x1x010xx' ||
204 instr == '111x11100011xxx1001x1111x1x00xxx' ||
205 instr == '111x11100011xxx11xxx1111x1x01x1x') then // VPT_f-P.Qx-T2
206 Elem[regs, UInt(instr[3:0]), 1] = '1';
207 elsif (instr == '111x11100x10xxx0xxx01111x110xxxx' ||
208 instr == '111x11100x0xxxx0xxx01111x110xxxx') then // VQADD-Q.Qx-T2
209 Elem[regs, UInt(instr[3:0]), 1] = '1';
210 elsif (instr == '111x11100x0xxxx0xxx01110x110xxxx' ||
211 instr == '111x11100x10xxx0xxx01110x110xxxx') then // VQDMLAH-Q.QR-T1
212 Elem[regs, UInt(instr[3:0]), 1] = '1';
213 elsif (instr == '111x11100x10xxx0xxx01110x100xxxx' ||
214 instr == '111x11100x0xxxx0xxx01110x100xxxx') then // VQDMLAH-Q.QR-T2
215 Elem[regs, UInt(instr[3:0]), 1] = '1';
216 elsif (instr == '111x11100x10xxx0xxx11110x110xxxx' ||
217 instr == '111x11100x0xxxx0xxx11110x110xxxx') then // VQDMLASH-Q.QR-T1
218 Elem[regs, UInt(instr[3:0]), 1] = '1';
219 elsif (instr == '111x11100x0xxxx0xxx11110x100xxxx' ||
220 instr == '111x11100x10xxx0xxx11110x100xxxx') then // VQDMLASH-Q.QR-T2
221 Elem[regs, UInt(instr[3:0]), 1] = '1';
222 elsif (instr == '111011100x10xxx1xxx01110x110xxxx' ||
223 instr == '111011100x0xxxx1xxx01110x110xxxx') then // VQDMULH-Q.QR-T3
224 Elem[regs, UInt(instr[3:0]), 1] = '1';
225 elsif (instr == '111111100x10xxx1xxx01110x110xxxx' ||
226 instr == '111111100x0xxxx1xxx01110x110xxxx') then // VQDMULH-Q.QR-T4
227 Elem[regs, UInt(instr[3:0]), 1] = '1';
228 elsif (instr == '111x11100x11xxx0xxxx1111x110xxxx') then // VQDMULL-Q.Qx-T2
229 Elem[regs, UInt(instr[3:0]), 1] = '1';
230 elsif (instr == '111x11100x111011xxx111101110xxxx' ||
231 instr == '111x11100x110x11xxx111101110xxxx') then // VQRSHL-Q.Qx-T2
232 Elem[regs, UInt(instr[3:0]), 1] = '1';
233 elsif (instr == '111x11100x111001xxx111101110xxxx' ||
234 instr == '111x11100x110x01xxx111101110xxxx') then // VQSHL-Q.Qx-T1
235 Elem[regs, UInt(instr[3:0]), 1] = '1';
236 elsif (instr == '111x11100x0xxxx0xxx11111x110xxxx' ||
237 instr == '111x11100x10xxx0xxx11111x110xxxx') then // VQSUB-Q.Qx-T2
238 Elem[regs, UInt(instr[3:0]), 1] = '1';
239 elsif (instr == '111x111010xxxxx0xxxx1111x0x0xxx0' ||
240 instr == '111x1110110xxxx0xxxx1111x0x0xxx0') then // VRMLALDAVH-RR.QQ-T1
241 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
242 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
243 elsif (instr == '111111101110xxx0xxxx1110x0x0xxx1' ||
244 instr == '11111110110xxxx0xxxx1110x0x0xxx1' ||
245 instr == '1111111010xxxxx0xxxx1110x0x0xxx1') then // VRMLSLDAVH-RR.QQ-T1
246 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
247 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
248 elsif (instr == '111x11100x111011xxx111100110xxxx' ||
249 instr == '111x11100x110x11xxx111100110xxxx') then // VRSHL-Q.Qx-T2
250 Elem[regs, UInt(instr[3:0]), 1] = '1';
251 elsif (instr == '111x11100x110x01xxx111100110xxxx' ||
252 instr == '111x11100x111001xxx111100110xxxx') then // VSHL-Q.Qx-T2
253 Elem[regs, UInt(instr[3:0]), 1] = '1';
254 elsif (instr == '111011101x1xxxxxxxx011111100xxxx') then // VSHLC-Q.RI-T1
255 Elem[regs, UInt(instr[3:0]), 1] = '1';
256 elsif (instr == '111111001xx0xxxxxxx11110xxxxxxx0' ||
257 instr == '111111001xx0xxxxxxx111110xxxxxx0') then // VST2-Q.RI-T1
258 Elem[regs, UInt(instr[19:16]), 1] = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2007

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

259 elsif (instr == '111111001xx0xxxxxxx111110xxxxxx1' ||
260 instr == '111111001xx0xxxxxxx11110xxxxxxx1') then // VST4-Q.RI-T1
261 Elem[regs, UInt(instr[19:16]), 1] = '1';
262 elsif (instr == '111x1101x0x00xxxxxx01110xxxxxxxx' ||
263 instr == '111x1101x0x00xxxxxx011110xxxxxxx' ||
264 instr == '111x110xx0100xxxxxx011110xxxxxxx' ||
265 instr == '111x110xx0100xxxxxx01110xxxxxxxx') then // VSTR-Q.RI-T1
266 Elem[regs, UInt(instr[18:16]), 1] = '1';
267 elsif (instr == '111x110xx0101xxxxxx011110xxxxxxx' ||
268 instr == '111x1101x0x01xxxxxx01110xxxxxxxx' ||
269 instr == '111x1101x0x01xxxxxx011110xxxxxxx' ||
270 instr == '111x110xx0101xxxxxx01110xxxxxxxx') then // VSTR-Q.RI-T2
271 Elem[regs, UInt(instr[18:16]), 1] = '1';
272 elsif (instr == '11101101xxx0xxxxxxx111100xxxxxxx' ||
273 instr == '1110110xxx10xxxxxxx111100xxxxxxx') then // VSTR-Q.RI-T5
274 Elem[regs, UInt(instr[19:16]), 1] = '1';
275 elsif (instr == '11101101xxx0xxxxxxx111101xxxxxxx' ||
276 instr == '1110110xxx10xxxxxxx111101xxxxxxx') then // VSTR-Q.RI-T6
277 Elem[regs, UInt(instr[19:16]), 1] = '1';
278 elsif (instr == '11101101xxx0xxxxxxx111110xxxxxxx' ||
279 instr == '1110110xxx10xxxxxxx111110xxxxxxx') then // VSTR-Q.RI-T7
280 Elem[regs, UInt(instr[19:16]), 1] = '1';
281 elsif (instr == '111x11001x00xxxxxxx0111xx0x0xxxx') then // VSTR_v-Q.xx-T1
282 Elem[regs, UInt(instr[19:16]), 1] = '1';
283 elsif (instr == '111x11001x00xxxxxxx0111xx0x1xxxx') then // VSTR_v-Q.xx-T2
284 Elem[regs, UInt(instr[19:16]), 1] = '1';
285 elsif (instr == '111x11001x00xxxxxxx0111xx1x0xxxx') then // VSTR_v-Q.xx-T3
286 Elem[regs, UInt(instr[19:16]), 1] = '1';
287 elsif (instr == '111x11001x00xxxxxxx0111xx1x1xxxx') then // VSTR_v-Q.xx-T4
288 Elem[regs, UInt(instr[19:16]), 1] = '1';
289 elsif (instr == '111011100x0xxxx1xxx11111x100xxxx' ||
290 instr == '111011100x10xxx1xxx11111x100xxxx') then // VSUB-Q.Qx-T2
291 Elem[regs, UInt(instr[3:0]), 1] = '1';
292 elsif (instr == '111x11100x11xxx0xxx11111x100xxxx') then // VSUB_af-Q.Qx-T2
293 Elem[regs, UInt(instr[3:0]), 1] = '1';
294 elsif (instr == '111x1110110xxxxxxxx01110x0x0xxx0' ||
295 instr == '111x111010xxxxxxxxx01110x0x0xxx0' ||
296 instr == '111x11101110xxxxxxx01110x0x0xxx0') then // alias VMLALV-RR.QQ-T1
297 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
298 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
299 elsif (instr == '111x11101111xxxxxxx01110x0x0xxx0') then // alias VMLAV-R.QQ-T1
300 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
301 elsif (instr == '111x1110110xxxx0xxx01111x0x0xxx0' ||
302 instr == '111x111010xxxxx0xxx01111x0x0xxx0') then // alias VRMLALVH-RR.QQ-T1
303 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
304 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
305 return regs;

E2.1.191 GetMveScalarWriteRegs

1 bits(16) GetMveScalarWriteRegs(bits(32) instr)
2 assert(IsMveBeatWiseInstruction(instr));
3 regs = Zeros(16);
4 if (instr == '111x1110100xxxx0xxxx1111x0x0xxx1' ||
5 instr == '111x11101010xxx0xxxx1111x0x0xxx1') then // VABAV-R.QQ-T1
6 Elem[regs, UInt(instr[15:12]), 1] = '1';
7 elsif (instr == '111x11101110xx01xxxx111100x0xxx0' ||
8 instr == '111x1110110xxx01xxxx111100x0xxx0' ||
9 instr == '111x111010xxxx01xxxx111100x0xxx0') then // VADDLV-RR.Q-T1

10 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
11 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
12 elsif (instr == '111x111011110x01xxxx111100x0xxx0' ||
13 instr == '111x111011111001xxxx111100x0xxx0') then // VADDV-R.Q-T1
14 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
15 elsif (instr == '111011100x10xxx1xxx11111x110111x' ||
16 instr == '111011100x0xxxx1xxx11111x110111x') then // VDDUP-Q.RI-T2
17 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
18 elsif (instr == '111011100x10xxx1xxx11111x1100xxx' ||

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2008

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

19 instr == '111011100x0xxxx1xxx11111x11010xx' ||
20 instr == '111011100x0xxxx1xxx11111x1100xxx' ||
21 instr == '111011100x10xxx1xxx11111x110110x' ||
22 instr == '111011100x0xxxx1xxx11111x110110x' ||
23 instr == '111011100x10xxx1xxx11111x11010xx') then // VDDUP-Q.RRI-T1
24 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
25 elsif (instr == '111011100x10xxx1xxx01111x110111x' ||
26 instr == '111011100x0xxxx1xxx01111x110111x') then // VIDUP-Q.RI-T2
27 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
28 elsif (instr == '111011100x0xxxx1xxx01111x1100xxx' ||
29 instr == '111011100x10xxx1xxx01111x11010xx' ||
30 instr == '111011100x0xxxx1xxx01111x11010xx' ||
31 instr == '111011100x0xxxx1xxx01111x110110x' ||
32 instr == '111011100x10xxx1xxx01111x110110x' ||
33 instr == '111011100x10xxx1xxx01111x1100xxx') then // VIDUP-Q.RRI-T1
34 Elem[regs, UInt(instr[19:17]:'0'), 1] = '1';
35 elsif (instr == '111111001xx1xxxxxxx11110xxxxxxx0' ||
36 instr == '111111001xx1xxxxxxx111110xxxxxx0') then // VLD2-Q.RI-T1
37 Elem[regs, UInt(instr[19:16]), 1] = '1';
38 elsif (instr == '111111001xx1xxxxxxx111110xxxxxx1' ||
39 instr == '111111001xx1xxxxxxx11110xxxxxxx1') then // VLD4-Q.RI-T1
40 Elem[regs, UInt(instr[19:16]), 1] = '1';
41 elsif (instr == '111x110xx0110xxxxxx01110xxxxxxxx' ||
42 instr == '111x110xx0110xxxxxx011110xxxxxxx' ||
43 instr == '111x1101x0x10xxxxxx01110xxxxxxxx' ||
44 instr == '111x1101x0x10xxxxxx011110xxxxxxx') then // VLDR-Q.RI-T1
45 Elem[regs, UInt(instr[18:16]), 1] = '1';
46 elsif (instr == '111x1101x0x11xxxxxx011110xxxxxxx' ||
47 instr == '111x110xx0111xxxxxx011110xxxxxxx' ||
48 instr == '111x110xx0111xxxxxx01110xxxxxxxx' ||
49 instr == '111x1101x0x11xxxxxx01110xxxxxxxx') then // VLDR-Q.RI-T2
50 Elem[regs, UInt(instr[18:16]), 1] = '1';
51 elsif (instr == '1110110xxx11xxxxxxx111100xxxxxxx' ||
52 instr == '11101101xxx1xxxxxxx111100xxxxxxx') then // VLDR-Q.RI-T5
53 Elem[regs, UInt(instr[19:16]), 1] = '1';
54 elsif (instr == '1110110xxx11xxxxxxx111101xxxxxxx' ||
55 instr == '11101101xxx1xxxxxxx111101xxxxxxx') then // VLDR-Q.RI-T6
56 Elem[regs, UInt(instr[19:16]), 1] = '1';
57 elsif (instr == '11101101xxx1xxxxxxx111110xxxxxxx' ||
58 instr == '1110110xxx11xxxxxxx111110xxxxxxx') then // VLDR-Q.RI-T7
59 Elem[regs, UInt(instr[19:16]), 1] = '1';
60 elsif (instr == '111x111011101110xxxx111100x0xxx0') then // VMAXNMV_f-R.Q-T1
61 Elem[regs, UInt(instr[15:12]), 1] = '1';
62 elsif (instr == '111x111011101100xxxx111100x0xxx0') then // VMAXNMV_f-R.Q-T2
63 Elem[regs, UInt(instr[15:12]), 1] = '1';
64 elsif (instr == '111x111011100x10xxxx111100x0xxx0' ||
65 instr == '111x111011101010xxxx111100x0xxx0') then // VMAXV-R.Q-T1
66 Elem[regs, UInt(instr[15:12]), 1] = '1';
67 elsif (instr == '111x111011100x00xxxx111100x0xxx0' ||
68 instr == '111x111011101000xxxx111100x0xxx0') then // VMAXV-R.Q-T2
69 Elem[regs, UInt(instr[15:12]), 1] = '1';
70 elsif (instr == '111x111011101110xxxx111110x0xxx0') then // VMINNMV_f-R.Q-T1
71 Elem[regs, UInt(instr[15:12]), 1] = '1';
72 elsif (instr == '111x111011101100xxxx111110x0xxx0') then // VMINNMV_f-R.Q-T2
73 Elem[regs, UInt(instr[15:12]), 1] = '1';
74 elsif (instr == '111x111011100x10xxxx111110x0xxx0' ||
75 instr == '111x111011101010xxxx111110x0xxx0') then // VMINV-R.Q-T1
76 Elem[regs, UInt(instr[15:12]), 1] = '1';
77 elsif (instr == '111x111011100x00xxxx111110x0xxx0' ||
78 instr == '111x111011101000xxxx111110x0xxx0') then // VMINV-R.Q-T2
79 Elem[regs, UInt(instr[15:12]), 1] = '1';
80 elsif (instr == '111x11101111xxxxxxxx1110x0x0xxx0') then // VMLADAV-R.QQ-T1
81 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
82 elsif (instr == '111x11101111xxx0xxxx1111x0x0xxx0') then // VMLADAV-R.QQ-T2
83 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
84 elsif (instr == '111x111010xxxxxxxxxx1110x0x0xxx0' ||
85 instr == '111x11101110xxxxxxxx1110x0x0xxx0' ||
86 instr == '111x1110110xxxxxxxxx1110x0x0xxx0') then // VMLALDAV-RR.QQ-T1
87 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2009

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

88 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
89 elsif (instr == '111011101111xxxxxxxx1110x0x0xxx1') then // VMLSDAV-R.QQ-T1
90 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
91 elsif (instr == '111111101111xxx0xxxx1110x0x0xxx1') then // VMLSDAV-R.QQ-T2
92 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
93 elsif (instr == '111011101110xxxxxxxx1110x0x0xxx1' ||
94 instr == '11101110110xxxxxxxxx1110x0x0xxx1' ||
95 instr == '1110111010xxxxxxxxxx1110x0x0xxx1') then // VMLSLDAV-RR.QQ-T1
96 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
97 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
98 elsif (instr == '111011000x00xxxxxxx01111xxxxxxxx') then // VMOV_rrv-RR.Q-T1
99 Elem[regs, UInt(instr[3:0]), 1] = '1';

100 Elem[regs, UInt(instr[19:16]), 1] = '1';
101 elsif (instr == '11101110xxx1xxxxxxxx1011xxx1xxxx') then // VMOV_sr-Q.R-T1
102 Elem[regs, UInt(instr[15:12]), 1] = '1';
103 elsif (instr == '111x111010xxxxx0xxxx1111x0x0xxx0' ||
104 instr == '111x1110110xxxx0xxxx1111x0x0xxx0') then // VRMLALDAVH-RR.QQ-T1
105 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
106 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
107 elsif (instr == '111111101110xxx0xxxx1110x0x0xxx1' ||
108 instr == '11111110110xxxx0xxxx1110x0x0xxx1' ||
109 instr == '1111111010xxxxx0xxxx1110x0x0xxx1') then // VRMLSLDAVH-RR.QQ-T1
110 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
111 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
112 elsif (instr == '111011101x1xxxxxxxx011111100xxxx') then // VSHLC-Q.RI-T1
113 Elem[regs, UInt(instr[3:0]), 1] = '1';
114 elsif (instr == '111111001xx0xxxxxxx11110xxxxxxx0' ||
115 instr == '111111001xx0xxxxxxx111110xxxxxx0') then // VST2-Q.RI-T1
116 Elem[regs, UInt(instr[19:16]), 1] = '1';
117 elsif (instr == '111111001xx0xxxxxxx111110xxxxxx1' ||
118 instr == '111111001xx0xxxxxxx11110xxxxxxx1') then // VST4-Q.RI-T1
119 Elem[regs, UInt(instr[19:16]), 1] = '1';
120 elsif (instr == '111x1101x0x00xxxxxx01110xxxxxxxx' ||
121 instr == '111x1101x0x00xxxxxx011110xxxxxxx' ||
122 instr == '111x110xx0100xxxxxx011110xxxxxxx' ||
123 instr == '111x110xx0100xxxxxx01110xxxxxxxx') then // VSTR-Q.RI-T1
124 Elem[regs, UInt(instr[18:16]), 1] = '1';
125 elsif (instr == '111x110xx0101xxxxxx011110xxxxxxx' ||
126 instr == '111x1101x0x01xxxxxx01110xxxxxxxx' ||
127 instr == '111x1101x0x01xxxxxx011110xxxxxxx' ||
128 instr == '111x110xx0101xxxxxx01110xxxxxxxx') then // VSTR-Q.RI-T2
129 Elem[regs, UInt(instr[18:16]), 1] = '1';
130 elsif (instr == '11101101xxx0xxxxxxx111100xxxxxxx' ||
131 instr == '1110110xxx10xxxxxxx111100xxxxxxx') then // VSTR-Q.RI-T5
132 Elem[regs, UInt(instr[19:16]), 1] = '1';
133 elsif (instr == '11101101xxx0xxxxxxx111101xxxxxxx' ||
134 instr == '1110110xxx10xxxxxxx111101xxxxxxx') then // VSTR-Q.RI-T6
135 Elem[regs, UInt(instr[19:16]), 1] = '1';
136 elsif (instr == '11101101xxx0xxxxxxx111110xxxxxxx' ||
137 instr == '1110110xxx10xxxxxxx111110xxxxxxx') then // VSTR-Q.RI-T7
138 Elem[regs, UInt(instr[19:16]), 1] = '1';
139 elsif (instr == '111x1110110xxxxxxxx01110x0x0xxx0' ||
140 instr == '111x111010xxxxxxxxx01110x0x0xxx0' ||
141 instr == '111x11101110xxxxxxx01110x0x0xxx0') then // alias VMLALV-RR.QQ-T1
142 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
143 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
144 elsif (instr == '111x11101111xxxxxxx01110x0x0xxx0') then // alias VMLAV-R.QQ-T1
145 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
146 elsif (instr == '111x1110110xxxx0xxx01111x0x0xxx0' ||
147 instr == '111x111010xxxxx0xxx01111x0x0xxx0') then // alias VRMLALVH-RR.QQ-T1
148 Elem[regs, UInt(instr[22:20]:'1'), 1] = '1';
149 Elem[regs, UInt(instr[15:13]:'0'), 1] = '1';
150 return regs;

E2.1.192 Halt

1 // Halt()
2 // ======

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2010

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 Halt()
5 // Halt
6 Halted = TRUE;
7
8 // Clear lockup state.
9 LockedUp = FALSE;

10
11 // Upon entering debug state, S_REGRDY becomes valid hence must be set to '1'.
12 DHCSR.S_REGRDY = '1';
13
14 // Any pending return operation is cleared and can be re-pended on
15 // exit from Debug State.
16 _PendingReturnOperation = FALSE;
17
18 // Clear all remaining in flight instructions.
19 ClearInFlightInstructions();

E2.1.193 Halted

1 // Indicates the PE is in Debug State
2
3 boolean Halted;

E2.1.194 HaltingDebugAllowed

1 // HaltingDebugAllowed()
2 // =====================
3
4 boolean HaltingDebugAllowed()
5 return ExternalInvasiveDebugEnabled() || Halted;

E2.1.195 HandleException

1 // HandleException()
2 // =================
3
4 HandleException(ExcInfo excInfo)
5 if excInfo.fault != NoFault then
6 if excInfo.lockup then
7 Lockup(excInfo.termInst);
8 else
9 // If the fault escalated to a HardFault update the syndrome info.

10 if HaveMainExt() && excInfo.fault == HardFault then
11 if excInfo.origFault == DebugMonitor then
12 HFSR.DEBUGEVT = '1';
13 elsif excInfo.origFault != HardFault then
14 HFSR.FORCED = '1';
15
16 // If the exception does not cause a lockup set the exception pending
17 // and potentially terminate execution of the current instruction.
18 SetPending(excInfo.fault, excInfo.isSecure, TRUE);
19 if excInfo.termInst then
20 EndOfInstruction();

E2.1.196 HandleExceptionTransitions

1 // HandleExceptionTransitions()
2 // ============================
3
4 boolean HandleExceptionTransitions()
5 // Check for, and process any exception returns that were requested. This
6 // must be done after the instruction has completed so any exceptions
7 // raised during the exception return do not interfere with the execution of

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2011

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 // the instruction that cause the exception return (for example a POP
9 // causing an excReturn value to be written to the PC must adjust SP

10 // even if the exception return caused by the POP raises a fault).
11 excStackFramePresent = FALSE;
12 tailChainedException = FALSE;
13 EXC_RETURN_Type excReturn = NextInstrAddr();
14 if _PendingReturnOperation then
15 _PendingReturnOperation = FALSE;
16 (excInfo, excReturn, tailChainedException) = ExceptionReturn(excReturn);
17 // Handle any faults raised during exception return.
18 if excInfo.fault != NoFault then
19 // If the fault occured during exception return then the previous
20 // exception stack frame will not have been consumed.
21 excStackFramePresent = TRUE;
22 // Either lockup, or pend the fault if it can be taken.
23 if excInfo.lockup then
24 // Check if the fault occurred on exception return, or whether it
25 // occurred during a tail-chained exception entry. This is
26 // because Lockups on exception return have to be handled
27 // differently.
28 if excInfo.inExcTaken then
29 // Fault occured whilst tail-chaining into a new exception,
30 // lockup at the priority of the exception that we attempted
31 // to enter by transitioning it to being active.
32 SetPending(excInfo.derivedFrom, excInfo.derivedFromIsSecure, FALSE);
33 SetActive(excInfo.derivedFrom, excInfo.derivedFromIsSecure, TRUE);
34 else
35 // If the fault occurred during exception return then the
36 // register state is UNKNOWN. This is due to the fact that
37 // an unknown amount of the exception stack frame might have
38 // been restored.
39 for n = 0 to 12
40 R[n] = bits(32) UNKNOWN;
41 LR = bits(32) UNKNOWN;
42 XPSR = bits(32) UNKNOWN;
43 if HaveMveOrFPExt() then
44 InvalidateFPRegs(FALSE, TRUE);
45 // If lockup is entered as a result of an exception return
46 // fault the original exception is deactivated. Therefore
47 // the stack pointer must be updated to consume the
48 // exception stack frame to keep the stack depth consistent
49 // with the number of active exceptions. NOTE: The XPSR SP
50 // alignment flag is UNKNOWN, assume it was zero.
51 ConsumeExcStackFrame(excReturn, '0');
52 excStackFramePresent = FALSE;
53 // IPSR from stack is UNKNOWN, set IPSR based on mode
54 // specified in EXC_RETURN.
55 IPSR.Exception = (if excReturn.Mode == '1' then NoFault
56 else HardFault)[8:0];
57 if HaveMveOrFPExt() then
58 CONTROL.FPCA = NOT(excReturn.FType);
59 CONTROL_S.SFPA = bit UNKNOWN;
60 Lockup(FALSE);
61 else
62 // Set syndrome if fault escalated to a HardFault.
63 if HaveMainExt() &&
64 (excInfo.fault == HardFault) &&
65 (excInfo.origFault != HardFault) then
66 HFSR.FORCED = '1';
67 SetPending(excInfo.fault, excInfo.isSecure, TRUE);
68
69 // If there is a pending exception with sufficient priority take it now.
70 // This is done before committing PC and ITSTATE changes caused by the
71 // previous instruction so that the committed architecture state reflects
72 // the context the instruction was executed in.
73 (takeException, exception, excIsSecure) = PendingExceptionDetails();
74 if takeException then
75 // If a fault occurred during an exception return then the exception
76 // stack frame will already be on the stack, as a result entry to the

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2012

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

77 // next exception is treated as if it were a tail-chain.
78 pePriority = ExecutionPriority();
79 peException = UInt(IPSR.Exception);
80 peIsSecure = IsSecure();
81 if excStackFramePresent then
82 // If the fault occurred during ExceptionTaken() then LR will have
83 // been updated with the new exception return value. To keep excReturn
84 // consistent with the state of the exception stack frame we need to
85 // use the updated version in this case. If no updates have occurred
86 // then the excReturn value from the previous exception return is
87 // used.
88 if excInfo.inExcTaken then
89 excReturn = LR;
90 (excInfo, excReturn) = TailChain(exception, excIsSecure, excReturn);
91 else
92 (excInfo, excReturn) = ExceptionEntry(exception, excIsSecure);
93 // Handle any derived faults that have occurred.
94 if excInfo.fault != NoFault then
95 DerivedLateArrival(pePriority, peException, peIsSecure, excInfo,
96 exception, excIsSecure, excReturn);
97
98 return takeException || tailChainedException;

E2.1.197 HandleLO

1 // HandleLO()
2 // ===========
3
4 INSTR_EXEC_STATE_Type HandleLO(INSTR_EXEC_STATE_Type state)
5 // The default state for the link and BTI bits is FALSE.
6 state.L = '0';
7 state.BTI = '0';
8
9 // If valid branch info matches the fetch address update the LOB state and

10 // fetch address accordingly.
11 if state.LOBranchInfoValid == '1' then
12 if LO_BRANCH_INFO.END_ADDR == state.FetchAddr[31:1] then
13 state.L = LO_BRANCH_INFO.BF AND LO_BRANCH_INFO.LF;
14 state.T16IND = LO_BRANCH_INFO.T16IND;
15 state.BTI = LO_BRANCH_INFO.BTI;
16 // Conditions for LOB handling in an IT block.
17 if InITBlock(state.ITState) then
18 // The BF b_label is allowed to be the last instruction in an IT block.
19 // As the BF branch occurs before this instruction is executed, the ITSTATE
20 // needs to be updated as if the end of the IT block had been reached.
21 if LO_BRANCH_INFO.BF == '1' then
22 state.ITState = Zeros(8);
23 else
24 // If LO_BRANCH_INFO is valid and a low overhead branch is handled,
25 // then the behavior is CONSTRAINED UNPREDICTABLE.
26 CONSTRAINED_UNPREDICTABLE;
27 // Branch cache address matched, branch to offset specified.
28 if LO_BRANCH_INFO.BF == '1' ||
29 (LO_BRANCH_INFO.BF == '0' && LO_BRANCH_INFO.LF == '1') ||
30 !IsLastLowOverheadLoop(state) then
31 state.FetchAddr = LO_BRANCH_INFO.JUMP_ADDR:'0';
32 // If the branch is due to a BF instruction invalidate the branch
33 // info so spurious branches do not occur.
34 if LO_BRANCH_INFO.BF == '1' then
35 // Clear the branch cache.
36 state.LOBranchInfoValid = '0';
37 elsif LO_BRANCH_INFO.LF == '0' then
38 // Looping mode: Decrement the loop counter unless this is the
39 // last iteration, in which case looping mode is exited.
40 if !IsLastLowOverheadLoop(state) then
41 state.LoopCount = state.LoopCount - (1 << (4 - LTPSIZE))[31:0];
42 else
43 // LO_BRANCH_INFO.VALID does not need to be cleared at the end

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2013

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

44 // of the loop.
45 //
46 // Skip over LE at the end of the loop.
47 state.FetchAddr = state.FetchAddr + 4;
48 // Reset LTPSIZE if it is accessible, which will be the case
49 // for all predicated loops as the LETP instruction will
50 // have forced the state to be accessible and all operations
51 // that can cause the state to be inaccessible require a CSE
52 // which will invalidate LO_BRANCH_INFO.
53 if ActiveFPState() then
54 state.ResetLTPSize = TRUE;
55 return state;

E2.1.198 HasArchVersion

1 // HasArchVersion()
2 // ================
3
4 // Return TRUE if the implemented architecture includes the extensions defined in the
5 // specified architecture version.
6
7 boolean HasArchVersion(ArchVersion version)
8 return version == Armv8p0 || boolean IMPLEMENTATION_DEFINED "Architecture version";

E2.1.199 HaveAlgorithmPAC

1 // HaveAlgorithmPAC
2 // ================
3 // Checks which PAC algorithm is implemented by quereing ID_ISAR5.PACBTI.
4
5 AlgorithmPAC HaveAlgorithmPAC();

E2.1.200 HaveDebugMonitor

1 // HaveDebugMonitor()
2 //===================
3
4 boolean HaveDebugMonitor()
5 return HaveMainExt();

E2.1.201 HaveDSPExt

1 // HaveDSPExt()
2 // ===========
3 // Check whether DSP Extension is implemented.
4
5 boolean HaveDSPExt();

E2.1.202 HaveDWT

1 // HaveDWT()
2 // =========
3 // Check whether Data Watchpoint and Trace unit is implemented.
4
5 boolean HaveDWT();

E2.1.203 HaveFPB

1 // HaveFPB()
2 // =========
3 // Check whether Flash Patch and Breakpoint unit is implemented.
4
5 boolean HaveFPB();

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2014

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.204 HaveFPExt

1 // HaveFPExt()
2 // ===========
3 // Check whether Floating Point Extension is implemented.
4
5 boolean HaveFPExt();

E2.1.205 HaveHaltingDebug

1 // HaveHaltingDebug()
2 // ==================
3 // Check whether Halting debug implemented.
4
5 boolean HaveHaltingDebug();

E2.1.206 HaveITM

1 // HaveITM()
2 // =========
3 // Check whether Instrumentation Trace Macrocell is implemented.
4
5 boolean HaveITM();

E2.1.207 HaveLOBExt

1 // HaveLOBExt()
2 // ============
3 // Check whether the Low Overhead Loops and Branch Future Extension is implemented.
4
5 boolean HaveLOBExt();

E2.1.208 HaveMainExt

1 // HaveMainExt()
2 // =============
3 // Check whether the Main Extension is implemented.
4
5 boolean HaveMainExt();

E2.1.209 HaveMve

1 // HaveMve()
2 // =========
3 // Check whether the M-profile Vector Extension is implemented.
4
5 boolean HaveMve();

E2.1.210 HaveMveOrFPExt

1 // HaveMveOrFPExt()
2 // ================
3
4 boolean HaveMveOrFPExt()
5 return HaveFPExt() || HaveMve();

E2.1.211 HavePACBTIExt

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2015

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // HavePACBTIExt()
2 // ===============
3 // Checks whether the PACBTI Extension is implemented.
4
5 boolean HavePACBTIExt()
6 return (HaveMainExt() &&
7 HaveAlgorithmPAC() IN {AlgorithmPAC_QARMA3,
8 AlgorithmPAC_QARMA5,
9 AlgorithmPAC_IMPDEF});

E2.1.212 HaveSecurityExt

1 // HaveSecurityExt()
2 // =================
3 // Check whether the implementation has the Security Extension.
4
5 boolean HaveSecurityExt();

E2.1.213 HaveSysTick

1 // HaveSysTick()
2 // =============
3 // Returns the number of SysTick instances (0, 1 or 2).
4
5 integer HaveSysTick();

E2.1.214 HaveUDE

1 // HaveUDE()
2 // =========
3 // Check whether the Unprivileged Debug Extension is implemented.
4
5 boolean HaveUDE()

E2.1.215 HighestPri

1 // HighestPri()
2 // ============
3 // Priority of Thread mode with no active exceptions.
4
5 integer HighestPri()
6 // The value is PriorityMax + 1 = 256 (configurable priority maximum
7 // bit field is 8 bits).
8 return 256;

E2.1.216 HighestSetBit

1 // HighestSetBit()
2 // ===============
3
4 integer HighestSetBit(bits(N) x)
5 for i = N-1 downto 0
6 if x[i] == '1' then return i;
7 return -1;

E2.1.217 Hint_Debug

1 // Hint_Debug
2 // ==========
3 // Generate a hint to the debug system.
4
5 Hint_Debug(bits(4) option);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2016

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.218 Hint_PreloadData

1 // Hint_PreloadData
2 // ================
3 // Performs a preload data hint.
4
5 Hint_PreloadData(bits(32) address);

E2.1.219 Hint_PreloadDataForWrite

1 // Hint_PreloadDataForWrite
2 // ========================
3 // Performs a preload data hint for write.
4
5 Hint_PreloadDataForWrite(bits(32) address);

E2.1.220 Hint_PreloadInstr

1 // Hint_PreloadInstr
2 // =================
3 // Performs a preload instructions hint.
4
5 Hint_PreloadInstr(bits(32) address);

E2.1.221 Hint_Yield

1 // Hint_Yield
2 // ==========
3 // Performs a Yield hint.
4
5 Hint_Yield();

E2.1.222 IDAUCheck

1 // IDAUCheck
2 // =========
3 // Query IDAU(Implementation Defined Attribution Unit) for attribution information.
4
5 (boolean, boolean, boolean, bits(8), boolean) IDAUCheck(bits(32) address);

E2.1.223 IgnoreFaultsType

1 // Indicates Ignore Faults Types
2 // =============================
3
4 enumeration IgnoreFaultsType { IgnoreFaults_NONE,
5 IgnoreFaults_STACK,
6 IgnoreFaults_ALL };

E2.1.224 InITBlock

1 // InITBlock()
2 // ===========
3
4 boolean InITBlock(ITSTATEType itState)
5 return (itState[3:0] != '0000');
6
7 boolean InITBlock()
8 return InITBlock(ITSTATE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2017

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.225 InstrCanChain

1 // InstrCanChain()
2 // ===============
3
4 boolean InstrCanChain(bits(32) instr)
5 // Check if the instruction is a chainable instruction, and if it
6 // is a chained memory operation.
7 isChainMem = IsMveLoadStoreInstruction(instr);
8 // Get a list of registers read and written by this instruction
9 // (these are bitstring where the index of each set bit indicates a used register).

10 isMve = IsMveBeatWiseInstruction(instr);
11 isCde = IsCdeBeatWiseInstruction(instr);
12 canChain = (isMve || isCde) && !InITBlock();
13
14 // Calculate the scalar reg access masks for beatwise instructions. There are no CDE
15 // instructions that access scalar registers so the default values of 0 are valid.
16 instrScalarReads = 0[15:0];
17 instrScalarWrites = 0[15:0];
18 if isMve then
19 instrScalarReads = GetMveScalarReadRegs(instr);
20 instrScalarWrites = GetMveScalarWriteRegs(instr);
21
22 // If an instruction attempts to modify its own tail predication mask it is
23 // CONSTRAINED_UNPREDICTABLE whether an UNDEFINSTR UsageFault is raised, or whether
24 // the instruction executes with an UNKNOWN predication value.
25 if LO_BRANCH_INFO.VALID == '1' && LO_BRANCH_INFO.BF == '0' &&
26 instrScalarWrites[14] == '1' && LTPSIZE < 4 &&
27 ConstrainUnpredictable(Unpredictable_MVETailPredMod) == Constraint_UNDEF then
28 UFSR.UNDEFINSTR = '1';
29 HandleException(CreateException(UsageFault));
30
31 // Memory operations cannot chain with other memory operations.
32 if canChain && isChainMem then
33 for i = 0 to MAX_OVERLAPPING_INSTRS-1
34 if _InstInfo[i].Valid && IsMveLoadStoreInstruction(ThisInstr(i)) then
35 canChain = FALSE;
36
37 // Scalar dependencies must be tracked.
38 if canChain then
39 // Get a list of all registers read or written by other in-flight instructions.
40 otherScalarReads = 0[15:0];
41 otherScalarWrites = 0[15:0];
42 for i = 0 to MAX_OVERLAPPING_INSTRS-1
43 if _InstInfo[i].Valid && _InstInfo[i].Type == InstrType_BEATWISE_MVE then
44 // Only MVE beatwise instructions access scalar registers
45 otherScalarReads = (otherScalarReads OR
46 GetMveScalarReadRegs(_InstInfo[i].Opcode));
47 otherScalarWrites = (otherScalarWrites OR
48 GetMveScalarWriteRegs(_InstInfo[i].Opcode));
49 // Determine if there is any overlap between the registers read and written,
50 // if so chaining is impossible.
51 if ((instrScalarReads AND otherScalarWrites) != 0[15:0]) ||
52 ((instrScalarWrites AND otherScalarReads) != 0[15:0]) then
53 canChain = FALSE;
54
55 // LR chaining restrictions
56 if (canChain &&
57 _InstInfo[0].Valid &&
58 LO_BRANCH_INFO.VALID == '1' &&
59 LO_BRANCH_INFO.BF == '0') then
60 // Check if any instruction in the chain writes to LR, and get the index
61 // of the last instruction in the chain.
62 lastValidId = 0;
63 lrWrite = FALSE;
64 for i = 0 to MAX_OVERLAPPING_INSTRS-1
65 if _InstInfo[i].Valid then
66 lastValidId = i;
67 if _InstInfo[i].Type == InstrType_BEATWISE_MVE then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2018

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

68 lrWrite = (lrWrite ||
69 GetMveScalarWriteRegs(_InstInfo[i].Opcode)[14] == '1');
70
71 // Do not chain the next instruction if the end of the loop body has been
72 // reached and either one of the existing chained instructions writes to
73 // LR, or the new instruction reads or writes to LR.
74 instState = GetInstrExecState(lastValidId);
75 nextSeqAddr = instState.FetchAddr + _InstInfo[lastValidId].Length[31:0];
76 if LO_BRANCH_INFO.END_ADDR == nextSeqAddr[31:1] then
77 canChain = !(lrWrite ||
78 instrScalarReads[14] == '1' ||
79 instrScalarWrites[14] == '1');
80
81 // Two instructions reading/writing FPSCR carry bit should not chain with each other.
82 // Only MVE beatwise instructions access FPSCR.
83 if isMve && canChain && IsMveAccessFPSCR_C(instr) then
84 for i = 0 to MAX_OVERLAPPING_INSTRS-1
85 if _InstInfo[i].Valid && _InstInfo[i].Type == InstrType_BEATWISE_MVE then
86 if IsMveAccessFPSCR_C(_InstInfo[i].Opcode) then
87 canChain = FALSE;
88
89 // Branch future chaining restrictions.
90 if (canChain &&
91 _InstInfo[0].Valid &&
92 LO_BRANCH_INFO.VALID == '1' &&
93 LO_BRANCH_INFO.BF == '1') then
94 // Get the index of the last instruction in the chain.
95 lastValidId = 0;
96 for i = 0 to MAX_OVERLAPPING_INSTRS-1
97 if _InstInfo[i].Valid then
98 lastValidId = i;
99 // Do not chain the next instruction if execution has reached a BF branch

100 // point.
101 instState = GetInstrExecState(lastValidId);
102 nextSeqAddr = instState.FetchAddr + _InstInfo[lastValidId].Length[31:0];
103 canChain = LO_BRANCH_INFO.END_ADDR != nextSeqAddr[31:1];
104
105 // Implementations can choose not to chain an instruction.
106 if canChain then
107 canChain = boolean IMPLEMENTATION_DEFINED "Chain instruction";
108
109 return canChain;

E2.1.226 InstrExecState

1 // Indicates instruction execution state
2 // =====================================
3
4 type INSTR_EXEC_STATE_Type is (
5 bits(32) FetchAddr,
6 ITSTATEType ITState,
7 bit L,
8 bit T16IND,
9 bit BTI,

10 bits(32) LoopCount,
11 bit LOBranchInfoValid,
12 boolean ResetLTPSize
13)
14 INSTR_EXEC_STATE_Type _CurrentInstrExecState;

E2.1.227 InstrType

1 // Beatwise or not instruction type
2
3 enumeration InstrType { InstrType_NON_BEATWISE, // Non Beatwise.
4 InstrType_BEATWISE_MVE, // Beatwise MVE instruction type.
5 InstrType_BEATWISE_CDE // Beatwise CDE instruction type.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2019

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6 };

E2.1.228 InstructionAdvance

1 // InstructionAdvance()
2 // ====================
3
4 InstructionAdvance()
5 // Instruction getting old (or scalar instruction).
6 // Commit next state back to the registers.
7 INSTR_EXEC_STATE_Type next = GetInstrExecState(1);
8 if HaveLOBExt() then
9 if next.LOBranchInfoValid == '1' then

10 LR = next.LoopCount;
11 else
12 LO_BRANCH_INFO.VALID = '0';
13 if next.L == '1' then
14 // Set LR to return to the return address. The offset of the
15 // return address depends on whether the originating BF
16 // instruction assumed there would be a T32 or a 16-bit T32
17 // instruction after the branch point. See BF documentation for
18 // details.
19 retAddr = ThisInstrAddr() + ThisInstrLength();
20 retAddr = retAddr + (if next.T16IND == '1' then 2 else 4);
21 LR = retAddr[31:1] : '1';
22 if BTIEnabled() && next.BTI == '1' then
23 // When BTI is enabled and LO_BRANCH_INFO.BTI was set by BFX (!= LR) or BFLX
24 // then the EPSR.B bit is set to one, requiring a BTI clearing instruction at
25 // the target address of the branch.
26 EPSR.B = '1';
27 if HaveMve() && next.ResetLTPSize then
28 FPSCR.LTPSIZE = 4[2:0];
29 _RName[RNamesPC] = next.FetchAddr;
30 if HaveMainExt() then
31 EPSR.IT = next.ITState;
32
33 // Mark an instruction as having retired.
34 DHCSR.S_RETIRE_ST = '1';
35
36 // Advance the instruction FIFO.
37 for i = 0 to MAX_OVERLAPPING_INSTRS-1
38 if i == MAX_OVERLAPPING_INSTRS-1 then
39 _InstInfo[i].Valid = FALSE;
40 else
41 _InstInfo[i] = _InstInfo[i+1];

E2.1.229 InstructionExecute

1 // InstructionExecute()
2 // ====================
3
4 // If fetchNew is set then fetch and execute new instructions, otherwise only
5 // continue execution of inflight beats.
6 boolean InstructionExecute(boolean fetchNew)
7 try
8 // Attempt to execute the next instruction. Start by setting up the state.
9 _InstID = 0;

10 _BeatID = 0;
11 execFault = FALSE;
12 activeChains = GetActiveChains();
13 _CurrentInstrExecState = GetInstrExecState(activeChains);
14 // Fetch the instruction
15 pc = ThisInstrAddr();
16 if fetchNew then
17 (instr, is16bit) = FetchInstr(pc);
18 len = if is16bit then 2 else 4;
19 // Capture security and privilege

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2020

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 isSecure = IsSecure();
21 isPriv = FindPriv();
22
23 // Assume we have an execution fault until we know otherwise, so that we
24 // know whether to override any pending fetch fault we may have.
25 execFault = TRUE;
26
27 // If a chain is being executed then the current instruction can be
28 // added to the chain if it is chainable. If the instruction is not
29 // chainable (for example because its a scaler instruction) then
30 // it is not executed, and the next beat(s) of the flight chained
31 // instructions are executed. This process is repeated on the next
32 // architecture tick, and when the chain has completed the non-chainable
33 // instruction can be executed.
34 // NOTE: Chainable instructions are not allowed to chain if inside
35 // an IT block.
36 if fetchNew then
37 chainableInst = (IsMveBeatWiseInstruction(instr) ||
38 IsCdeBeatWiseInstruction(instr)) && !InITBlock();
39 else
40 chainableInst = FALSE;
41 if HaveMve() && (chainableInst || activeChains > 0) then
42 // A new instruction can only be chained if a power of 2 number
43 // of beats have completed. Also allow an instruction to be
44 // started if the ECI information indicates that an instruction
45 // is in progress, but the corresponding slot in the instruction
46 // queue is empty, which can occur on exception return.
47 chainableExecPoint = (EPSR.ECI == 0[7:0]) || (EPSR.ECI == 2[7:0]);
48 if !chainableExecPoint then
49 beatStatus = BeatComplete;
50 for instId = 0 to MAX_OVERLAPPING_INSTRS-1
51 if ((Elem[beatStatus, instId, MAX_BEATS] != Zeros(MAX_BEATS)) &&
52 !_InstInfo[instId].Valid) then
53 chainableExecPoint = TRUE;
54 if chainableExecPoint && fetchNew then
55 if InstrCanChain(instr) then
56 SetThisInstrDetails(instr, len);
57 // In beatwise execution, updating _CommitState is done inside ExecBeats.
58 ExecBeats();
59
60 elsif fetchNew then
61 // Scalar instruction, execute instructions normally.
62 SetThisInstrDetails(instr, len);
63 InstStateCheck(instr);
64 DecodeExecute(instr, pc, is16bit, DefaultCond());
65 // Scalar instructions, and MVE instructions in IT blocks do not
66 // have beat behavior so commit straight away
67 _CommitState = TRUE;
68
69 // Check for DWT match.
70 if fetchNew && IsDWTEnabled(isSecure, isPriv) then
71 DWT_InstructionMatch(pc, isSecure, isPriv, len);
72
73 // If we get to here we have no execution fault.
74 execFault = FALSE;
75
76 catch exn
77 // Do not catch UNPREDICTABLE or internal errors.
78 when IsSEE(exn) || IsUNDEFINED(exn)
79 // Unallocated instructions in the NOP hint space and instructions
80 // that fail their condition tests are treated like NOPs.
81 nopHint16 = instr == '000000000000000010111111xxxx0000';
82 nopHint32 = (instr == '111100111010111110000000xxxxxxxx') && HaveMainExt();
83 if ConditionHolds(CurrentCond()) && !(nopHint16 || nopHint32) then
84 _CommitState = FALSE;
85 toSecure = IsSecure();
86 // Unallocated instructions in the coprocessor space behave as NOCP
87 // if the coprocessor is disabled.
88 (isCp, cpNum) = IsCPInstruction(instr);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2021

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

89 if isCp then
90 (cpEnabled, cpFaultState) = IsCPEnabled(cpNum);
91 // In v8.0 the PE is permitted to not decode the CP space if it is
92 // disabled or not implemented. This behaviour is required from v8.1 onwards.
93 // From v8.1, some instructions are not considered to be part of the
94 // CP encoding space for the purposes of this check.
95 skipable = ((HasArchVersion(Armv8p1) ||
96 boolean IMPLEMENTATION_DEFINED "Skip CP space decode") &&
97 !(HasArchVersion(Armv8p1) &&
98 IsCpInstructionSecureOnly(instr)));
99 if isCp && !cpEnabled && skipable then

100 toSecure = cpFaultState;
101 if toSecure then
102 UFSR_S.NOCP = '1';
103 else
104 UFSR_NS.NOCP = '1';
105 else
106 UFSR.UNDEFINSTR = '1';
107
108 // If Main Extension is not implemented the fault will escalate
109 // to a HardFault.
110 excInfo = CreateException(UsageFault, TRUE, toSecure);
111 // Prevent EndOfInstruction() being called in
112 // HandleException() as the instruction has already been
113 // terminated so there is no need to throw the exception
114 // again.
115 excInfo.termInst = FALSE;
116 HandleException(excInfo);
117 else
118 // If the instruction condition does not pass then this
119 // behaves as a NOP, as such PC must be advanced. Since
120 // vector instructions are not chained (so only one
121 // instruction is in flight) when inside an IT
122 // block, they are also committed here.
123 _CommitState = TRUE;
124 when IsExceptionTaken(exn)
125 // If an exception is thrown then it was before _CommitState was
126 // set to true, so no additional actions are required in this
127 // catch block.
128
129 return execFault;

E2.1.230 InstructionsInFlight

1 // InstructionsInFlight()
2 // ======================
3
4 boolean InstructionsInFlight()
5 // If there is more than one active chain and it is not just a single active
6 // scalar instruction then there are instructions in flight.
7 return GetActiveChains() != 0 && (GetActiveChains() != 1 ||
8 _InstInfo[0].Type == InstrType_BEATWISE_MVE ||
9 _InstInfo[0].Type == InstrType_BEATWISE_CDE);

E2.1.231 InstructionSynchronizationBarrier

1 // InstructionSynchronizationBarrier()
2 // ===================================
3 // Perform an instruction synchronization barrier operation.
4
5 InstructionSynchronizationBarrier(bits(4) option);

E2.1.232 InstStateCheck

1 // InstStateCheck()

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2022

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

2 // ================
3
4 InstStateCheck(bits(32) instr)
5 // Check for IT,ICI,ECI bits that are not permitted for the current
6 // instruction. NOTE EPSR.ICI and EPSR.ECI overlap with EPSR.IT.
7 isLE = IsLEInstruction(instr);
8 validICI = (EPSR.ICI[7:6] == Zeros(2) && EPSR.ICI[1:0] == Zeros(2));
9 validECI = UInt(EPSR.ECI) < 6 && EPSR.ECI[3:0] != '0011';

10 valid = (InITBlock() ||
11 EPSR.IT == Zeros(8) ||
12 IsBKPTInstruction(instr) ||
13 (validICI && IsLoadStoreClearMultInstruction(instr)) ||
14 (validECI && HaveMve() && (IsMveBeatWiseInstruction(instr) ||
15 IsCdeBeatWiseInstruction(instr) ||
16 isLE))
17);
18 if !valid then
19 UFSR.INVSTATE = '1';
20 excInfo = CreateException(UsageFault);
21 HandleException(excInfo);

E2.1.233 Int

1 // Int()
2 // =====
3
4 integer Int(bits(N) x, boolean unsigned)
5 result = if unsigned then UInt(x) else SInt(x);
6 return result;

E2.1.234 IntegerZeroDivideTrappingEnabled

1 // IntegerZeroDivideTrappingEnabled()
2 // ==================================
3
4 boolean IntegerZeroDivideTrappingEnabled()
5 // DIV_0_TRP bit in CCR is RAZ/WI if Main Extension is not implemented
6 return CCR.DIV_0_TRP == '1';

E2.1.235 InvalidateFPRegs

1 // InvalidateFPRegs()
2 // ==================
3
4 InvalidateFPRegs(boolean shouldClear, boolean doCallee)
5 clearValue = if shouldClear then Zeros(32) else bits(32) UNKNOWN;
6
7 for i = 0 to 15
8 S[i] = clearValue;
9 if doCallee then S[i+16] = clearValue;

10 FPSCR = clearValue;
11 VPR = clearValue;

E2.1.236 InVPTBlock

1 // InVPTBlock()
2 // ===========
3
4 boolean InVPTBlock()
5 if _BeatID IN {0, 1} then
6 return VPR.MASK01 != '0000';
7 else
8 return VPR.MASK23 != '0000';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2023

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.237 IsAccessible

1 // IsAccessible()
2 // ==============
3
4 (bit, bit, bits(8), boolean) IsAccessible(bits(32) address, boolean forceunpriv,
5 boolean isSecure)
6 bit write;
7 bit read;
8
9 // Work out which privilege level the current mode in the Non-secure state

10 // is subject to.
11 if forceunpriv then
12 isPrivileged = FALSE;
13 else
14 isPrivileged = CurrentModeIsPrivileged(isSecure);
15 (-, perms) = MPUCheck(address, AccType_NORMAL, isPrivileged, isSecure);
16 if !perms.apValid then
17 write = '0';
18 read = '0';
19 else
20 case perms.ap of
21 when '00' (write, read) = if isPrivileged then ('1','1') else ('0','0');
22 when '01' (write, read) = ('1','1') ;
23 when '10' (write, read) = if isPrivileged then ('0','1') else ('0','0');
24 when '11' (write, read) = ('0','1');
25 return (write, read, perms.region, perms.regionValid);

E2.1.238 IsActiveForState

1 // IsActiveForState()
2 // ==================
3
4 boolean IsActiveForState(integer exception, boolean isSecure)
5 if !HaveSecurityExt() then
6 isSecure = FALSE;
7 // If the exception is configurable then check which domain it
8 // currently targets. If it is not configurable then the active flags can be
9 // used directly.

10 if IsExceptionTargetConfigurable(exception) then
11 // The active bit for exceptions that are not banked between the Security
12 // states are modelled as two bits to be compatible with the other exceptions
13 // that have a bit for each Security state.
14 assert ExceptionActive[exception][0] == ExceptionActive[exception][1];
15 active = ((ExceptionActive[exception][0] == '1') &&
16 (ExceptionTargetsSecure(exception, isSecure) == isSecure));
17 else
18 idx = if isSecure then 0 else 1;
19 active = ExceptionActive[exception][idx] == '1';
20 return active;

E2.1.239 IsAligned

1 // IsAligned()
2 // ===========
3
4 boolean IsAligned(bits(32) address, integer size)
5 assert size IN {1,2,4,8};
6 mask = (size-1)[31:0]; // Integer to bit string conversion.
7 return IsZero(address AND mask);

E2.1.240 IsBKPTInstruction

1 // IsBKPTInstruction()
2 // ===================

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2024

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3 // Checks whether the instruction is a breakpoint.
4
5 boolean IsBKPTInstruction(bits(32) instr)
6 return instr == '0000 0000 0000 0000 1011 1110 xxxxxxxx';

E2.1.241 IsCdeBeatWiseInstruction

1 // IsCdeBeatWiseInstruction()
2 // ==========================
3 // Checks whether the instruction is a CDE Beatwise instruction.
4
5 boolean IsCdeBeatWiseInstruction(bits(32) instr)
6 // Quick check if the instruction is NOT a beatwise CDE instruction.
7 if (instr AND 0xee000840[31:0]) != 0xec000040[31:0] then return FALSE;
8 // Merge VCX1_vector and VCX2_vector
9 if instr == '111x110x0x1xxxxxxxxx0xxxx1xxxxxx' then return TRUE;

10 // VCX3_vector
11 if instr == '111x110x1xxxxxxxxxxx0xxxx1xxxxxx' then return TRUE;
12 return FALSE;

E2.1.242 IsCPEnabled

1 // IsCPEnabled()
2 // ================
3
4 (boolean, boolean) IsCPEnabled(integer cp, boolean privileged, boolean secure)
5 // Check Coprocessor Access Control Register for permission to use coprocessor.
6 boolean enabled;
7 boolean forceToSecure = FALSE;
8
9 cpacr = if secure then CPACR_S else CPACR_NS;

10 case cpacr[(cp*2)+1:cp*2] of
11 when '00'
12 enabled = FALSE;
13 when '01'
14 enabled = privileged;
15 when '10'
16 UNPREDICTABLE;
17 when '11' // Access permitted by CPACR.
18 enabled = TRUE;
19
20 if enabled && HaveSecurityExt() then
21 // Check if access is forbidden by NSACR.
22 if !secure && NSACR[cp] == '0' then
23 enabled = FALSE;
24 forceToSecure = TRUE;
25
26 // Check if the coprocessor state unknown flag.
27 if enabled && CPPWR_S[cp*2] == '1' then
28 enabled = FALSE;
29 // Check SUS bit to determine the target state of any fault.
30 forceToSecure = CPPWR_S[(cp*2)+1] == '1';
31
32 return (enabled, secure || forceToSecure);
33
34 (boolean, boolean) IsCPEnabled(integer cp)
35 return IsCPEnabled(cp, CurrentModeIsPrivileged(), IsSecure());

E2.1.243 IsCPInstruction

1 // IsCPInstruction()
2 // =================
3
4 (boolean, integer) IsCPInstruction(bits(32) instr)
5 isCp = instr IN { '111x1110xxxxxxxxxxxxxxxxxxxxxxxx',

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2025

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6 '111x110xxxxxxxxxxxxxxxxxxxxxxxxx' };
7 cpNum = if isCp then UInt(instr[11:8]) else integer UNKNOWN;
8 // CP 11 controlled by CP10 enables.
9 // As of v8.1 CP8, 9, 14 and 15 are also controlled by CP10 enables.

10 if (cpNum IN {11} ||
11 (cpNum IN {8, 9, 14, 15} && HasArchVersion(Armv8p1))) then
12 cpNum = 10;
13 // From v8.1 the encoding space outside the CDP space used by MVE instructions
14 // is also classed as coprocessor space and is associated with CP10.
15 if instr IN { '111x1111xxxxxxxxxxxxxxxxxxxxxxxx'} && HasArchVersion(Armv8p1) then
16 isCp = TRUE;
17 cpNum = 10;
18 return (isCp, cpNum);

E2.1.244 IsCpInstructionSecureOnly

1 // IsCpInstructionSecureOnly()
2 // ==========
3
4 boolean IsCpInstructionSecureOnly(bits(32) instr)
5 // For VLLDM, VLSTM, and VSCCLRM instructions
6 // UNDEFINSTR UsageFault takes precedence over NOCP.
7 isCp = instr IN { '111011000011xxxx00001010x0000000', // VLLDM
8 '111011000010xxxx00001010x0000000', // VLSTM
9 '111011001x011111xxxx1011xxxxxxx0', // VSCCLRM T1

10 '111011001x011111xxxx1010xxxxxxxx', // VSCCLRM T2
11 '1110110xx1x1xxxx11x011111xxxxxxx', // VLDR accessing FPCXT_*
12 '1110110xx1x0xxxx11x011111xxxxxxx', // VSTR accessing FPCXT_*
13 '111011101111111xxxxx101000010000', // VMRS accessing FPCXT_*
14 '111011101110111xxxxx101000010000' }; // VMSR accessing FPCXT_*
15 return isCp;

E2.1.245 IsDebugState

1 // IsDebugState
2 // =============
3
4 boolean IsDebugState()
5 return Halted;

E2.1.246 IsDWTConfigUnpredictable

1 // IsDWTConfigUnpredictable()
2 // =========================
3 // Checks for some of the UNPREDICTABLE cases for various combination of MATCH and
4 // ACTION for each comparator.
5
6 boolean IsDWTConfigUnpredictable(integer N)
7
8 no_trace = (!HaveMainExt() || DWT_CTRL.NOTRCPKT == '1' || !HaveITM());
9

10 // First pass check of MATCH field - coarse checks
11 case DWT_FUNCTION[N].MATCH of
12 when '0000' // Disabled.
13 return FALSE;
14 when '0001' // Cycle counter match.
15 if (!HaveMainExt() ||
16 DWT_CTRL.NOCYCCNT == '1' ||
17 DWT_FUNCTION[N].ID[0] == '0') then
18 return TRUE;
19 when '001x' // Instruction address.
20 if (DWT_FUNCTION[N].ID[1] == '0' ||
21 DWT_FUNCTION[N].DATAVSIZE != '01' ||
22 DWT_COMP[N][0] == '1') then
23 return TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2026

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

24 when '01xx' // Data address.
25 mask = (1 << UInt(DWT_FUNCTION[N].DATAVSIZE)) -1;
26 if (DWT_FUNCTION[N].ID[3] == '0' ||
27 ((DWT_COMP[N][3:0] AND mask[3:0]) != '0000')) then
28 return TRUE;
29 when '1100', '1101', '1110' // Data address with value.
30 if no_trace then return TRUE;
31 mask = (1 << UInt(DWT_FUNCTION[N].DATAVSIZE)) -1;
32 if (DWT_FUNCTION[N].ID[3] == '0' ||
33 ((DWT_COMP[N][3:0] AND mask[3:0]) != '0000')) then
34 return TRUE;
35 when '10xx' // Data value.
36 Vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
37 if (!HaveMainExt() || DWT_FUNCTION[N].ID[2] == '0' ||
38 (Vsize != 4 && DWT_COMP[N][31:16] != DWT_COMP[N][15:0]) ||
39 (Vsize == 1 && DWT_COMP[N][15:8] != DWT_COMP[N][7:0])) then
40 return TRUE;
41 if (HasArchVersion(Armv8p1) &&
42 (!IsZero(DWT_VMASK[N] AND DWT_COMP[N]) ||
43 (Vsize != 4 && DWT_VMASK[N][31:16] != DWT_VMASK[N][15:0]) ||
44 (Vsize == 1 && DWT_VMASK[N][15:8] != DWT_VMASK[N][7:0]))) then
45 return TRUE;
46 otherwise
47 return TRUE;
48
49 // Second pass MATCH check - linked and limit comparators.
50 case DWT_FUNCTION[N].MATCH of
51 when '0011' // Instruction address limit.
52 if N == 0 then return TRUE;
53 elsif (DWT_FUNCTION[N].ID[4] == '0' ||
54 DWT_FUNCTION[N-1].MATCH IN {'0001','0011','01xx','1xxx'} ||
55 UInt(DWT_COMP[N]) <= UInt(DWT_COMP[N-1])) then
56 return TRUE;
57 if DWT_FUNCTION[N-1].MATCH == '0000' then return FALSE;
58 when '0111' // Data address limit.
59 if N == 0 then return TRUE;
60 elsif (DWT_FUNCTION[N].ID[4] == '0' ||
61 DWT_FUNCTION[N-1].MATCH IN {'0001','001x','0111','10xx'} ||
62 (!HaveMainExt() && DWT_FUNCTION[N-1].MATCH == '11xx') ||
63 DWT_FUNCTION[N].DATAVSIZE != '00' ||
64 DWT_FUNCTION[N-1].DATAVSIZE != '00' ||
65 UInt(DWT_COMP[N]) <= UInt(DWT_COMP[N-1])) then
66 return TRUE;
67 if DWT_FUNCTION[N-1].MATCH == '0000' then return FALSE;
68 when '1011' // Linked data value.
69 if N == 0 then return TRUE;
70 elsif (DWT_FUNCTION[N].ID[4] == '0' ||
71 DWT_FUNCTION[N-1].MATCH IN {'0001','001x','0111','10xx'} ||
72 DWT_FUNCTION[N].DATAVSIZE != DWT_FUNCTION[N-1].DATAVSIZE) then
73 return TRUE;
74 if DWT_FUNCTION[N-1].MATCH == '0000' then return FALSE;
75 otherwise
76 // No limitations in second pass.
77
78 // Check if DATAVSIZE is permitted.
79 if DWT_FUNCTION[N].DATAVSIZE == '11' then return TRUE;
80
81 // Check the ACTION is allowed for the MATCH type.
82 case DWT_FUNCTION[N].ACTION of
83 when '00' // CMPMATCH trigger only.
84 if DWT_FUNCTION[N].MATCH IN {'1100', '1101', '1110'} then
85 return TRUE;
86 if N > 0 && !HaveMainExt() then
87 if (DWT_FUNCTION[N].MATCH == '0011' &&
88 DWT_FUNCTION[N-1].MATCH == '0010' &&
89 DWT_FUNCTION[N-1].ACTION == '10') then
90 return TRUE;
91 if (DWT_FUNCTION[N].MATCH == '0111' &&
92 DWT_FUNCTION[N-1].MATCH == '01xx' &&

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2027

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

93 DWT_FUNCTION[N-1].ACTION == '1x') then
94 return TRUE;
95 when '01' // Debug event.
96 if DWT_FUNCTION[N].MATCH IN {'0011', '0111', '1100', '1101', '1110'} then
97 return TRUE;
98 if N > 0 then
99 if (DWT_FUNCTION[N].MATCH == '1011' &&

100 DWT_FUNCTION[N-1].MATCH == '01xx' &&
101 DWT_FUNCTION[N-1].ACTION == '01') then
102 return TRUE;
103 when '10' // Data Trace Match or Data Value packet.
104 if no_trace || DWT_FUNCTION[N].MATCH IN {'0011', '0111'} then
105 return TRUE;
106 if N > 0 then
107 if (DWT_FUNCTION[N].MATCH == '1011' &&
108 DWT_FUNCTION[N-1].MATCH == '01xx' &&
109 DWT_FUNCTION[N-1].ACTION == '10') then
110 return TRUE;
111 when '11' // Other Data Trace packet.
112 if (no_trace ||
113 DWT_FUNCTION[N].MATCH IN {'0010', '1000', '1001', '1010', '1011'}) then
114 return TRUE;
115 if N > 0 then
116 if (DWT_FUNCTION[N].MATCH == '0011' &&
117 DWT_FUNCTION[N-1].MATCH == '0010' &&
118 (DWT_FUNCTION[N-1].ACTION != '00' || !HaveMainExt())) then
119 return TRUE;
120 if (DWT_FUNCTION[N].MATCH == '0111' &&
121 DWT_FUNCTION[N-1].MATCH == '01xx' &&
122 (DWT_FUNCTION[N-1].ACTION IN {'01', '10'} ||
123 (DWT_FUNCTION[N-1].ACTION != '00' && !HaveMainExt()))) then
124 return TRUE;
125
126 return FALSE; // Passes checks.

E2.1.247 IsDWTEnabled

1 // IsDWTEnabled()
2 // ==============
3 // Check whether DWT is enabled.
4
5 boolean IsDWTEnabled(boolean isSecure, boolean isPriv)
6 return (HaveDWT() && DEMCR.TRCENA == '1' &&
7 ((!isSecure && NoninvasiveDebugAllowed(isPriv)) ||
8 SecureNoninvasiveDebugAllowed(isPriv)));

E2.1.248 IsExceptionTargetConfigurable

1 // IsExceptionTargetConfigurable()
2 // ===============================
3
4 boolean IsExceptionTargetConfigurable(integer e)
5 if HaveSecurityExt() then
6 case e of
7 when NMI
8 configurable = TRUE;
9 when BusFault

10 configurable = TRUE;
11 when DebugMonitor
12 configurable = TRUE;
13 when SysTick
14 // If there is only 1 SysTick instance then the target domain is
15 // configurable.
16 configurable = HaveSysTick() == 1;
17 otherwise
18 // Exceptions numbers lower than 16 that are not listed in this
19 // function are not configurable in this context.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2028

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 configurable = e >= 16;
21 else
22 configurable = FALSE;
23 return configurable;

E2.1.249 IsExclusiveGlobal

1 // IsExclusiveGlobal
2 // =================
3 // Checks if PE has marked in a global record an address range as "exclusive access
4 // requested" that covers at least the size bytes from address.
5
6 boolean IsExclusiveGlobal(bits(32) address, integer processorid, integer size);

E2.1.250 IsExclusiveLocal

1 // IsExclusiveLocal
2 // ================
3 // Checks if PE has marked in a local record an address range as "exclusive access
4 // requested" that covers at least the size bytes from address.
5
6 boolean IsExclusiveLocal(bits(32) address, integer processorid, integer size);

E2.1.251 IsFirstBeat

1 // IsFirstBeat()
2 // ============
3
4 boolean IsFirstBeat()
5 return _BeatID == 0;

E2.1.252 IsIrqValid

1 // IsIrqValid()
2 // ============
3 // Check whether given exception number denotes a valid external interrupt
4 // implemented by PE.
5
6 boolean IsIrqValid(integer e);

E2.1.253 IsLastBeat

1 // IsLastBeat()
2 // ============
3
4 boolean IsLastBeat()
5 return _BeatID >= (MAX_BEATS - 1);

E2.1.254 IsLastLowOverheadLoop

1 // IsLastLowOverheadLoop()
2 // =======================
3
4 boolean IsLastLowOverheadLoop()
5 return IsLastLowOverheadLoop(_CurrentInstrExecState);
6
7 boolean IsLastLowOverheadLoop(INSTR_EXEC_STATE_Type state)
8 // This does not check whether a loop is currently active.
9 // If the PE were in a loop, would this be the last one?

10 return UInt(state.LoopCount) <= (1 << (4 - LTPSIZE));

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2029

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.255 IsLEInstruction

1 // IsLEInstruction()
2 // =================
3 // Checks whether the instruction is a loop end instruction.
4
5 boolean IsLEInstruction(bits(32) instr)
6 return instr IN {'1111000000xx11111100xxxxxxxxxxx1'};

E2.1.256 IsLoadStoreClearMultInstruction

1 // IsLoadStoreClearMultInstruction()
2 // =================================
3 // Checks whether the instruction is a clear multiple or a load/store multiple.
4
5 boolean IsLoadStoreClearMultInstruction(bits(32) instr)
6 isLSCM = instr IN {'00000000000000001100xxxxxxxxxxxx', // LDM_T1,STM_T1.
7 '00000000000000001011x10xxxxxxxxx', // LDM_T3,STM_T2, and aliases.
8 '1110100xx0xxxxxxxxxxxxxxxxxxxxxx', // Load/store/clear mul Scalar.
9 '1110110xxxxxxxxxxxxx101xxxxxxxxx'}; // Load/store/clear mul

10 // Floating-point.
11 // False positives due to the masks used in isLSCM.
12 notLSCM = instr IN {'1110100000xxxxxxxxxxxxxxxxxxxxxx', // UNALLOCATED.
13 '1110100110xxxxxxxxxxxxxxxxxxxxxx', // UNALLOCATED.
14 '11101100010xxxxxxxxx101x00x1xxxx', // UNALLOCATED.
15 '11101100010xxxxxxxxx101xxxx0xxxx', // UNALLOCATED.
16 '11101100000xxxxxxxxx101xxxxxxxxx', // UNALLOCATED.
17 '111011000011xxxx00001010x0000000', // VLLDM.
18 '111011000010xxxx00001010x0000000', // VLSTM.
19 '11101101xx01xxxxxxxx101xxxxxxxxx', // VLDR.
20 '11101101xx00xxxxxxxx101xxxxxxxxx', // VSTR.
21 '111011011x1xxxxxxxxx101xxxxxxxxx'}; // VMOV.
22 return (isLSCM && !notLSCM);

E2.1.257 IsMveAccessFPSCR_C

1 boolean IsMveAccessFPSCR_C(bits(32) instr)
2 assert(IsMveBeatWiseInstruction(instr));
3 if (instr == '111011100x11xxx0xxxx1111x0x0xxx0') then // VADC-Q.QQ-T1
4 return TRUE;
5 if (instr == '111111100x11xxx0xxxx1111x0x0xxx0') then // VSBC-Q.QQ-T1
6 return TRUE;
7 return FALSE;

E2.1.258 IsMveBeatWiseInstruction

1 boolean IsMveBeatWiseInstruction(bits(32) instr)
2 if (instr AND 0xe0000000[31:0]) != 0xe0000000[31:0] then return FALSE;
3
4 if instr == '1111000000xx111011101xxxxxxxxxx1' then return TRUE;
5 if instr == '111x1110110xxx01xxxx111100x0xxx0' then return TRUE;
6 if instr == '111x11101010xxx0xxxx1111x0x0xxx1' then return TRUE;
7 if instr == '111111100x0xxxx1xxxx1111xxx0xxxx' then return TRUE;
8 if instr == '111x11100x11xxx1xxxx1111x1x01x1x' then return TRUE;
9 if instr == '111x1110xxxxxxx0xxxx1111x0x0xxx0' then return TRUE;

10 if instr == '111x11101x11000xxxxx111101x0xxx0' then return TRUE;
11 if instr == '111x11110xxxxxx0xxx000x0x1xxxxx0' then return TRUE;
12 if instr == '111111111x11xx00xxx00x00x1x0xxx0' then return TRUE;
13 if instr == '111x1110100xxxx0xxxx1111x0x0xxx1' then return TRUE;
14 if instr == '111x11100x11xxx1xxxx1111x1x010xx' then return TRUE;
15 if instr == '111x11100x11xxx1xxx11111x0x0xxxx' then return TRUE;
16 if instr == '111x11100x11xxx1xxxx1111x1x00xxx' then return TRUE;
17 if instr == '111111110xxxxxx0xxx01011x1x0xxx0' then return TRUE;
18 if instr == '111111110xxxxxx0xxx01000x1x0xxx0' then return TRUE;
19 if instr == '111111001xxxxxxxxxx11110xxxxxxxx' then return TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2030

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 if instr == '111x11101x0xxxxxxxxx1111x1x0xxxx' then return TRUE;
21 if instr == '111x11111x01xxxxxxx011xx01x1xxx0' then return TRUE;
22 if instr == '111111111x11xx11xxx000xxx1x0xxx0' then return TRUE;
23 if instr == '111x11100x11xxx1xxx01110x1x0xxxx' then return TRUE;
24 if instr == '111111110x1xxxx0xxx01111x1x1xxx0' then return TRUE;
25 if instr == '111111100x10xxx0xxxx1110x0x0xxxx' then return TRUE;
26 if instr == '111x11100x0xxxx1xxxx1110x1x0xxxx' then return TRUE;
27 if instr == '111011111xxxxxxxxxx0010101x1xxx0' then return TRUE;
28 if instr == '111111100x11xxx1xxxx1111x1x01101' then return TRUE;
29 if instr == '111111111x11xx11xxx0011xx1x0xxx0' then return TRUE;
30 if instr == '11101101xxxxxxxxxxx11110xxxxxxxx' then return TRUE;
31 if instr == '111x11111x000xxxxxx00x1001x1xxxx' then return TRUE;
32 if instr == '111x11101x111001xxxx111101x0xxx0' then return TRUE;
33 if instr == '111x11111x001xxxxxx011xx01x1xxx0' then return TRUE;
34 if instr == '111x11111x000xxxxxx0x11101x1xxxx' then return TRUE;
35 if instr == '111x11101x1xx001xxxx111101x0xxx0' then return TRUE;
36 if instr == '111011110x1xxxx0xxx01100x1x1xxx0' then return TRUE;
37 if instr == '111x11100x10xxx0xxxx111xx1x0xxxx' then return TRUE;
38 if instr == '1111000000xx110x11101xxxxxxxxxx1' then return TRUE;
39 if instr == '111011110x0xxxx0xxx01101x1x0xxx0' then return TRUE;
40 if instr == '111x11111x1xxxxxxxx011xx01x1xxx0' then return TRUE;
41 if instr == '111111111xxxxxxxxxx0011001x1xxx0' then return TRUE;
42 if instr == '111x11100x111001xxxx111010x0xxx1' then return TRUE;
43 if instr == '111x1101x0xxxxxxxxx011110xxxxxxx' then return TRUE;
44 if instr == '111x11111xxxxxxxxxx000x001x1xxx0' then return TRUE;
45 if instr == '111111111x11xx00xxx00111x1x0xxx0' then return TRUE;
46 if instr == '1111110x1x0xxxx0xxx01000x1x0xxx0' then return TRUE;
47 if instr == '111011110x1xxxx0xxx00001x1x1xxx0' then return TRUE;
48 if instr == '111x11110x10xxx0xxx00110x1xxxxx0' then return TRUE;
49 if instr == '111x110xx01xxxxxxxx01110xxxxxxxx' then return TRUE;
50 if instr == '111111110x0xxxx0xxx011x1x1x1xxx0' then return TRUE;
51 if instr == '111011110xxxxxx0xxx01000x1x0xxx0' then return TRUE;
52 if instr == '111111111xxxxxxxxxx0010x01x1xxx0' then return TRUE;
53 if instr == '111111110x00xxx0xxx00001x1x1xxx0' then return TRUE;
54 if instr == '111x11101x1xx1xxxxxx111101x0xxx0' then return TRUE;
55 if instr == '111011110xxxxxx0xxx01011x1x0xxx0' then return TRUE;
56 if instr == '111011000x0xxxxxxxx0111xxxxxxxxx' then return TRUE;
57 if instr == '111x11100x1110x1xxx11110x110xxxx' then return TRUE;
58 if instr == '111x11100x11xxx0xxxx1110x0x0xxxx' then return TRUE;
59 if instr == '111x11101x1xxxxxxxxx111101x0xxx0' then return TRUE;
60 if instr == '111x11110xxxxxx0xxx00001x1x0xxx0' then return TRUE;
61 if instr == '111011101x1xxxxxxxx011111100xxxx' then return TRUE;
62 if instr == '111011100xx0xxxxxxxx1011xxx1xxxx' then return TRUE;
63 if instr == '111011110xxxxxx0xxx01001x1x1xxx0' then return TRUE;
64 if instr == '111x11100x111x11xxxx1110x0x0xxx1' then return TRUE;
65 if instr == '111x110xx01xxxxxxxx011110xxxxxxx' then return TRUE;
66 if instr == '111011100x10xxx0xxxx1110x0x0xxxx' then return TRUE;
67 if instr == '111x11100x0xxxx0xxxx111xx1x0xxxx' then return TRUE;
68 if instr == '111x11100x11xxx1xxxx1111x1x011x0' then return TRUE;
69 if instr == '111x11100x110xx1xxx11110x110xxxx' then return TRUE;
70 if instr == '111011110x0xxxx0xxx01100x1x1xxx0' then return TRUE;
71 if instr == '111111101xxxxxx0xxxx1110x0x0xxx1' then return TRUE;
72 if instr == '111111001xxxxxxxxxx111110xxxxxxx' then return TRUE;
73 if instr == '111111100x11xxx1xxx01111x0x0xxx1' then return TRUE;
74 if instr == '111111111x11xx00xxx0000101x0xxx0' then return TRUE;
75 if instr == '111x11111x000xxxxxx0xxxx0111xxxx' then return TRUE;
76 if instr == '111x111010xxxx01xxxx111100x0xxx0' then return TRUE;
77 if instr == '1111110xxx1xxxx0xxx01000x1x0xxx0' then return TRUE;
78 if instr == '11101101xxxxxxxxxxx111110xxxxxxx' then return TRUE;
79 if instr == '111x11111x000xxxxxx0xxxx01x1xxxx' then return TRUE;
80 if instr == '111x111011111001xxxx111100x0xxx0' then return TRUE;
81 if instr == '111011110x0xxxx0xxx00001x1x1xxx0' then return TRUE;
82 if instr == '111x11100x11xxx0xxxx1111x0x0xxx1' then return TRUE;
83 if instr == '111111111x110000xxx0010111x0xxx0' then return TRUE;
84 if instr == '111x11110x0xxxx0xxx00110x1xxxxx0' then return TRUE;
85 if instr == '111x11110xxxxxx0xxx00111x1x0xxx0' then return TRUE;
86 if instr == '111x11100x1110x1xxxx111000x0xxx1' then return TRUE;
87 if instr == '111x11110x1xxxx0xxx01101x1x0xxx0' then return TRUE;
88 if instr == '1111000000xx10xx11101xxxxxxxxxx1' then return TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2031

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

89 if instr == '111111111x11xx10xxx001xxx1x0xxx0' then return TRUE;
90 if instr == '111x11100x11xxx1xxxx111xx0x0xxx0' then return TRUE;
91 if instr == '111011101x10xxx0xxxx1011x0x1xxxx' then return TRUE;
92 if instr == '111x11100x110xx1xxxx1110x0x0xxx1' then return TRUE;
93 if instr == '111x11100x11xxx1xxx11110x100xxxx' then return TRUE;
94 if instr == '111011100x10xxx1xxxx1111x1x0xxxx' then return TRUE;
95 if instr == '111x11110x10xxx0xxx0010xx1xxxxx0' then return TRUE;
96 if instr == '111x111011110x01xxxx111100x0xxx0' then return TRUE;
97 if instr == '111x11001x0xxxxxxxx0111xxxxxxxxx' then return TRUE;
98 if instr == '111x11101xxxxxxxxxxx1110x0x0xxx0' then return TRUE;
99 if instr == '1110110xxx1xxxxxxxx111110xxxxxxx' then return TRUE;

100 if instr == '111x11111xxxxxxxxxx0011101x1xxx0' then return TRUE;
101 if instr == '111011100x0xxxx1xxxx1111x1x0xxxx' then return TRUE;
102 if instr == '111x11110x0xxxx0xxx0010xx1xxxxx0' then return TRUE;
103 if instr == '1111000000xx0xxx11101xxxxxxxxxx1' then return TRUE;
104 if instr == '111x11100x11xxx0xxxx1111x1x0xxxx' then return TRUE;
105 if instr == '111x11100x0xxxxxxxxx1110x0x0xxxx' then return TRUE;
106 if instr == '111x11100x10xxx1xxxx1110xxx0xxxx' then return TRUE;
107 if instr == '11111101xxxxxxxxxxx1111xxxxxxxxx' then return TRUE;
108 if instr == '11101110xxx1xxxxxxxx1011xxx1xxxx' then return TRUE;
109 if instr == '111x1101x0xxxxxxxxx01110xxxxxxxx' then return TRUE;
110 if instr == '111x11101110xx01xxxx111100x0xxx0' then return TRUE;
111 if instr == '1110110xxx1xxxxxxxx11110xxxxxxxx' then return TRUE;
112 if instr == '111011101xxxxxxxxxxx1110x0x0xxx1' then return TRUE;
113 if instr == '111011000x0xxxxxxxx11110xxxxxxxx' then return TRUE;
114 if instr == '111111111x11xx01xxx00x11x1x0xxx0' then return TRUE;
115 if instr == '111111100x10xxx1xxxx1111xxx0xxxx' then return TRUE;
116 return FALSE;

E2.1.259 IsMveLoadStoreInstruction

1 boolean IsMveLoadStoreInstruction(bits(32) instr)
2 if instr == '111x1101x0xxxxxxxxx011110xxxxxxx' then return TRUE;
3 if instr == '111x110xx01xxxxxxxx01110xxxxxxxx' then return TRUE;
4 if instr == '11111101xxxxxxxxxxx1111xxxxxxxxx' then return TRUE;
5 if instr == '111111001xxxxxxxxxx11110xxxxxxxx' then return TRUE;
6 if instr == '11101101xxxxxxxxxxx111110xxxxxxx' then return TRUE;
7 if instr == '111x110xx01xxxxxxxx011110xxxxxxx' then return TRUE;
8 if instr == '111x11001x0xxxxxxxx0111xxxxxxxxx' then return TRUE;
9 if instr == '111x1101x0xxxxxxxxx01110xxxxxxxx' then return TRUE;

10 if instr == '1110110xxx1xxxxxxxx11110xxxxxxxx' then return TRUE;
11 if instr == '1110110xxx1xxxxxxxx111110xxxxxxx' then return TRUE;
12 if instr == '111111001xxxxxxxxxx111110xxxxxxx' then return TRUE;
13 if instr == '11101101xxxxxxxxxxx11110xxxxxxxx' then return TRUE;
14 return FALSE;

E2.1.260 IsOnes

1 // IsOnes()
2 // ========
3
4 boolean IsOnes(bits(N) x)
5 return x == Ones(N);

E2.1.261 IsPPB

1 // IsPPB()
2 // =======
3
4 boolean IsPPB(bits(32) address)
5 return address[31:20] == 0xE00[11:0];

E2.1.262 IsReqExcPriNeg

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2032

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // IsReqExcPriNeg()
2 // ================
3
4 boolean IsReqExcPriNeg(boolean secure)
5 // This function checks if the requested execution priority is negative for
6 // the specified security domain. That is, NMI or HardFault is active, or
7 // FAULTMASK is set. It does not take account of AIRCR.PRIS so returns TRUE
8 // if FAULTMASK_NS is set even if PRIS is set to restrict Non-secure priorities
9 // to the range 0x80-0x7E.

10 neg = IsActiveForState(NMI, secure) || IsActiveForState(HardFault, secure);
11 if HaveMainExt() then
12 faultmask = if secure then FAULTMASK_S else FAULTMASK_NS;
13 if faultmask.FM == '1' then
14 neg = TRUE;
15 return neg;
16
17
18 boolean IsReqExcPriNeg(boolean secure, AccType acctype)
19 // If the access is due to lazy floating-point state preservation the FPCCR flag
20 // indicating whether a HardFault could be taken is used to determine if the
21 // priority should be considered to be negative rather than the current
22 // execution priority.
23 if acctype == AccType_LAZYFP then
24 neg = FPCCR_S.HFRDY == '0';
25 else
26 neg = IsReqExcPriNeg(secure);
27 return neg;

E2.1.263 IsReturn

1 // IsReturn()
2 // ==========
3
4 AddrType IsReturn(bits(32) address)
5 addrtype = AddrType_NORMAL;
6
7 if (HaveSecurityExt() && address=='1111 1110 1111 1111 1111 1111 1111 111x') then
8 addrtype = AddrType_FNC_RETURN;
9

10 elsif CurrentMode() == PEMode_Handler && address[31:24] == '11111111' then
11 addrtype = AddrType_EXC_RETURN;
12 return addrtype;

E2.1.264 IsSCS

1 // IsSCS()
2 // =======
3
4 boolean IsSCS(bits(32) address)
5 return ((address[31:12] == 0xE000E[19:0]) ||
6 (address[31:12] == 0xE002E[19:0]));

E2.1.265 IsSecure

1 // IsSecure()
2 // ==========
3
4 boolean IsSecure()
5 return HaveSecurityExt() && CurrentState == SecurityState_Secure;

E2.1.266 IsZero

1 // IsZero()
2 // ========

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2033

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 boolean IsZero(bits(N) x)
5 return x == Zeros(N);

E2.1.267 IsZeroBit

1 // IsZeroBit()
2 // ===========
3
4 bit IsZeroBit(bits(N) x)
5 return if IsZero(x) then '1' else '0';

E2.1.268 ITAdvance

1 // ITAdvance()
2 // ===========
3
4 ITSTATEType ITAdvance(ITSTATEType itState)
5 // If the mask field (in other words the bottom 4 bits) are zero then the ITSTATE bits
6 // hold ECI information and therefore the normal state advancement should
7 // not take place.
8 if itState[3:0] == '1000' then
9 itState = '00000000';

10 elsif itState[3:0] != '0000' then
11 itState[4:0] = LSL(itState[4:0], 1);
12 return itState;

E2.1.269 ITSTATE

1 // ITSTATE
2 // =======
3
4 ITSTATEType ITSTATE
5 return ThisInstrITState();
6
7 ITSTATE = ITSTATEType value
8 // Writes to ITSTATE do not take effect immediately, instead they change the
9 // value returned by NextInstrITState().

10 _NextInstrITState = value;
11 _ITStateChanged = TRUE;

E2.1.270 ITSTATEType

1 // If-Then execution state bits for the T32 IT instruction.
2
3 type ITSTATEType = bits(8);

E2.1.271 LastInITBlock

1 // LastInITBlock()
2 // ===============
3
4 boolean LastInITBlock()
5 return (ITSTATE[3:0] == '1000');

E2.1.272 LoadWritePC

1 // LoadWritePC()
2 // =============
3
4 LoadWritePC(bits(32) address, integer baseReg, bits(32) baseRegVal, boolean baseRegUpdate,

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2034

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 boolean spLimCheck, boolean setBti)
6
7 if baseRegUpdate then
8 oldBaseVal = R[baseReg];
9 if spLimCheck then

10 RSPCheck[baseReg] = baseRegVal;
11 else
12 R[baseReg] = baseRegVal;
13
14 // Attempt to update the PC, which may result in a fault.
15 excInfo = BranchReturn(address, FALSE, setBti);
16
17 if baseRegUpdate && excInfo.fault != NoFault then
18 // Restore the previous base reg value, SP limit checking is not performed
19 if baseReg == 13 then
20 exc = _SP(LookUpRName(baseReg), FALSE, TRUE, oldBaseVal);
21 assert exc.fault == NoFault;
22 else
23 R[baseReg] = oldBaseVal;
24
25 HandleException(excInfo);
26
27 LoadWritePC(bits(32) address, integer baseReg, bits(32) baseRegVal, boolean baseRegUpdate,
28 boolean spLimCheck)
29 LoadWritePC(address, baseReg, baseRegVal, baseRegUpdate, spLimCheck, FALSE);

E2.1.273 LockedUp

1 // Indicates the PE is locked up
2
3 boolean LockedUp;

E2.1.274 Lockup

1 // Lockup()
2 // ========
3
4 Lockup(boolean termInst)
5 LockedUp = TRUE;
6 // Branch to the lockup address.
7 BranchTo(0xEFFFFFFE[31:0], TRUE, FALSE);
8 // Invalidate the instruction buffer and set the length of the current
9 // instruction to zero so NextInstrAddr() reports the correct lockup

10 // address.
11 ClearInFlightInstructions();
12 // If requested, terminate execution of the pseudo code for this
13 // instruction.
14 if termInst then
15 EndOfInstruction();

E2.1.275 LookUpRName

1 // LookUpRName()
2 // =============
3
4 RNames LookUpRName(integer n)
5 case n of
6 when 0 result = RNames0;
7 when 1 result = RNames1;
8 when 2 result = RNames2;
9 when 3 result = RNames3;

10 when 4 result = RNames4;
11 when 5 result = RNames5;
12 when 6 result = RNames6;
13 when 7 result = RNames7;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2035

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

14 when 8 result = RNames8;
15 when 9 result = RNames9;
16 when 10 result = RNames10;
17 when 11 result = RNames11;
18 when 12 result = RNames12;
19 when 13 result = LookUpSP();
20 when 14 result = RNamesLR;
21 when 15 result = RNamesPC;
22 otherwise assert(FALSE);
23 return result;

E2.1.276 LookUpSP

1 // LookUpSP()
2 // ==========
3
4 RNames LookUpSP()
5 return LookUpSP_with_security_mode(IsSecure(), CurrentMode());

E2.1.277 LookUpSP_with_security_mode

1 // LookUpSP_with_security_mode()
2 // =============================
3
4 RNames LookUpSP_with_security_mode(boolean isSecure, PEMode mode)
5 RNames sp;
6 bit spSel;
7
8 // Get the SPSEL bit corresponding to the Security state requested.
9 if isSecure then

10 spSel = CONTROL_S.SPSEL;
11 else
12 spSel = CONTROL_NS.SPSEL;
13
14 // Determine which stack pointer should be used.
15 if spSel == '1' && mode == PEMode_Thread then
16 if isSecure then
17 sp = RNamesSP_Process_Secure;
18 else
19 sp = RNamesSP_Process_NonSecure;
20 else
21 if isSecure then
22 sp = RNamesSP_Main_Secure;
23 else
24 sp = RNamesSP_Main_NonSecure;
25 return sp;

E2.1.278 LookUpSPLim

1 // LookUpSPLim()
2 // =============
3
4 bits(32) LookUpSPLim(RNames spreg)
5 case spreg of
6 when RNamesSP_Main_Secure limit = MSPLIM_S.LIMIT:'000';
7 when RNamesSP_Process_Secure limit = PSPLIM_S.LIMIT:'000';
8 when RNamesSP_Main_NonSecure
9 limit = if HaveMainExt() then MSPLIM_NS.LIMIT:'000' else Zeros(32);

10 when RNamesSP_Process_NonSecure
11 limit = if HaveMainExt() then PSPLIM_NS.LIMIT:'000' else Zeros(32);
12 otherwise
13 assert (FALSE);
14
15 return limit;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2036

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.279 LowestSetBit

1 // LowestSetBit()
2 // ==============
3
4 integer LowestSetBit(bits(N) x)
5 for i = 0 to N-1
6 if x[i] == '1' then return i;
7 return N;

E2.1.280 LR

1 // LR
2 // ==
3
4 // Non-assignment form
5 bits(32) LR
6 return RName[RNamesLR];
7
8 // Assignment form
9

10 LR = bits(32) value
11 RName[RNamesLR] = value;

E2.1.281 LSL

1 // LSL()
2 // =====
3
4 bits(N) LSL(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = LSL_C(x, shift);

10 return result;

E2.1.282 LSL_C

1 // LSL_C()
2 // =======
3
4 (bits(N), bit) LSL_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = x : Zeros(shift);
7 result = extended_x[N-1:0];
8 carry_out = extended_x[N];
9 return (result, carry_out);

10
11 (bits(N), bits(M)) LSL_C(bits(N) x, bits(M) carry_in, integer shift)
12 assert shift > 0 && shift <= M;
13 cin = LSL(carry_in, M - shift);
14 extended_x = LSL(Zeros(M) : x : cin, shift);
15 result = extended_x[N+ M-1:M];
16 carry_out = extended_x[N+2*M-1:N+M];
17 return (result, carry_out);

E2.1.283 LSR

1 // LSR()
2 // =====
3
4 bits(N) LSR(bits(N) x, integer shift)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2037

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = LSR_C(x, shift);

10 return result;

E2.1.284 LSR_C

1 // LSR_C()
2 // =======
3
4 (bits(N), bit) LSR_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = ZeroExtend(x, shift+N);
7 result = extended_x[shift+N-1:shift];
8 carry_out = extended_x[shift-1];
9 return (result, carry_out);

E2.1.285 LTPSIZE

1 // LTPSIZE - non-assignment form
2 // ===============================
3
4 integer LTPSIZE
5 if HaveMve() && ActiveFPState() then
6 size = UInt(FPSCR.LTPSIZE);
7 else
8 // Full vector length, so no loop tail predication.
9 size = 4;

10 return size;

E2.1.286 MAIRDecode

1 // MAIRDecode()
2 // ============
3
4 MemoryAttributes MAIRDecode(bits(8) attrfield, bits(2) sh)
5 // Converts the MAIR attributes to orthogonal attribute and
6 // hint fields.
7 MemoryAttributes memattrs;
8 // Decoding MAIR0 or MAIR1 Registers.
9 if attrfield[7:4] == '0000' then

10 unpackinner = FALSE;
11 memattrs.memtype = MemType_Device;
12 memattrs.shareable = TRUE;
13 memattrs.outershareable = TRUE;
14 memattrs.innerattrs = bits(2) UNKNOWN;
15 memattrs.outerattrs = bits(2) UNKNOWN;
16 memattrs.innerhints = bits(2) UNKNOWN;
17 memattrs.outerhints = bits(2) UNKNOWN;
18 memattrs.innertransient = boolean UNKNOWN;
19 memattrs.outertransient = boolean UNKNOWN;
20 case attrfield[3:0] of
21 when '0000' memattrs.device = DeviceType_nGnRnE;
22 when '0100' memattrs.device = DeviceType_nGnRE;
23 when '1000' memattrs.device = DeviceType_nGRE;
24 when '1100' memattrs.device = DeviceType_GRE;
25 otherwise UNPREDICTABLE;
26 else
27 unpackinner = TRUE;
28 memattrs.memtype = MemType_Normal;
29 memattrs.device = DeviceType UNKNOWN;
30 memattrs.outerhints = attrfield[5:4];
31 memattrs.shareable = sh[1] == '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2038

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

32 memattrs.outershareable = sh == '10';
33 if sh == '01' then UNPREDICTABLE;
34
35 if attrfield[7:6] =='00' then
36 memattrs.outerattrs = '10';
37 memattrs.outertransient = TRUE;
38 elsif attrfield[7:6] =='01' then
39 if attrfield[5:4] == '00' then
40 memattrs.outerattrs = '00';
41 memattrs.outertransient = FALSE;
42 else
43 memattrs.outerattrs = '11';
44 memattrs.outertransient = TRUE;
45 else
46 memattrs.outerattrs = attrfield[7:6];
47 memattrs.outertransient = FALSE;
48 if unpackinner then
49 if attrfield[3:0] == '0000' then UNPREDICTABLE;
50 else
51 if attrfield[3:2] =='00' then
52 memattrs.innerattrs = '10';
53 memattrs.innerhints = attrfield[1:0];
54 memattrs.innertransient = TRUE;
55 elsif attrfield[3:2] =='01' then
56 memattrs.innerhints = attrfield[1:0];
57 if attrfield[1:0] == '00' then
58 memattrs.innerattrs = '00';
59 memattrs.innertransient = FALSE;
60 else
61 memattrs.innerattrs = '11';
62 memattrs.innertransient = TRUE;
63 elsif attrfield[3:2] =='10' then
64 memattrs.innerhints = attrfield[1:0];
65 memattrs.innerattrs = '10';
66 memattrs.innertransient = FALSE;
67 elsif attrfield[3:2] =='11' then
68 memattrs.innerhints = attrfield[1:0];
69 memattrs.innerattrs = '11';
70 memattrs.innertransient = FALSE;
71 else UNPREDICTABLE;
72 return memattrs;

E2.1.287 MarkExclusiveGlobal

1 // MarkExclusiveGlobal
2 // ===================
3 // Records in a global record that PE has requested "exclusive access" covering
4 // at least size bytes from the address.
5
6 MarkExclusiveGlobal(bits(32) address, integer processorid, integer size);

E2.1.288 MarkExclusiveLocal

1 // MarkExclusiveLocal
2 // ==================
3 // Records in a local record that PE has requested "exclusive access" covering
4 // at least size bytes from the address.
5
6 MarkExclusiveLocal(bits(32) address, integer processorid, integer size);

E2.1.289 Max

1 // Max()
2 // =====
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2039

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 integer Max(integer a, integer b)
5 return if a >= b then a else b;
6
7 real Max(real a, real b)
8 return if a >= b then a else b;

E2.1.290 MaxExceptionNum

1 // MaxExceptionNum()
2 // =================
3 // Returns the maximum exception number supported.
4
5 integer MaxExceptionNum()
6 if HaveMainExt() then
7 return 511;
8 else
9 return 47;

E2.1.291 MemA

1 // MemA[]
2 // ======
3
4 bits(8*size) MemA[bits(32) address, integer size]
5 return MemA_with_priv[address, size, FindMemPriv(), TRUE];
6
7 MemA[bits(32) address, integer size] = bits(8*size) value
8 MemA_with_priv[address, size, FindMemPriv(), TRUE] = value;
9 return;

E2.1.292 MemA_MVE

1 // MemA_MVE[]
2 // ==========
3
4 // Non-assignment form
5
6 bits(8*size) MemA_MVE[bits(32) address, integer size]
7 (excInfo, value) = MemA_with_priv_security(address, size, AccType_MVE,
8 FindMemPriv(), IsSecure(), TRUE);
9 HandleException(excInfo);

10 return value;
11
12
13 // Assignment form
14
15 MemA_MVE[bits(32) address, integer size] = bits(8*size) value
16 excInfo = MemA_with_priv_security(address, size, AccType_MVE, FindMemPriv(),
17 IsSecure(), TRUE, value);
18 HandleException(excInfo);

E2.1.293 MemA_with_priv

1 // MemA_with_priv[]
2 // ================
3
4 // Non-assignment form
5
6 bits(8*size) MemA_with_priv[bits(32) address, integer size, Privilege privileged,
7 boolean aligned]
8 (excInfo, value) = MemA_with_priv_security(address, size, AccType_NORMAL,
9 privileged, IsSecure(), aligned);

10 HandleException(excInfo);
11 return value;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2040

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

12
13 // Assignment form
14
15 MemA_with_priv[bits(32) address, integer size, Privilege privileged,
16 boolean aligned] = bits(8*size) value
17 excInfo = MemA_with_priv_security(address, size, AccType_NORMAL, privileged,
18 IsSecure(), aligned, value);
19 HandleException(excInfo);

E2.1.294 MemA_with_priv_security

1 // MemA_with_priv_security()
2 // =========================
3
4 // Non-assignment form
5
6 (ExcInfo, bits(8*size)) MemA_with_priv_security(bits(32) address, integer size,
7 AccType acctype, Privilege privileged,
8 boolean secure, boolean aligned)
9 // Check alignment.

10 excInfo = DefaultExcInfo();
11 if !IsAligned(address, size) then
12 if HaveMainExt() then
13 if secure then
14 UFSR_S.UNALIGNED = '1';
15 else
16 UFSR_NS.UNALIGNED = '1';
17 // Create the exception. NOTE: If Main Extension is not implemented the fault
18 // always escalates to a HardFault.
19 excInfo = CreateException(UsageFault, TRUE, secure);
20
21 // Check permissions and get attributes
22 if excInfo.fault == NoFault then
23 (excInfo, memaddrdesc) = ValidateAddress(address, acctype,
24 privileged == Privilege_Priv, secure,
25 FALSE, aligned);
26
27 if excInfo.fault == NoFault then
28 // Memory array access, and sort out endianness.
29 (error, value) = _Mem(memaddrdesc, size);
30
31 if privileged == Privilege_ForcedUnpriv then
32 dwtPriv = CurrentModeIsPrivileged(secure);
33 else
34 dwtPriv = privileged == Privilege_Priv;
35
36 // Check if a synchronous BusFault occurred. NOTE: Asynchronous BusFaults are handled
37 // in RaiseAsyncBusFault().
38 if error then
39 value = bits(8*size) UNKNOWN;
40 if HaveMainExt() then
41 case acctype of
42 when AccType_VECTABLE
43 HFSR.VECTTBL = '1';
44 excInfo = CreateException(HardFault, TRUE, AIRCR.BFHFNMINS == '0');
45 when AccType_STACK
46 BFSR.UNSTKERR = '1';
47 excInfo = CreateException(BusFault, FALSE, secure);
48 when AccType_NORMAL, AccType_MVE, AccType_ORDERED
49 BFAR.ADDRESS = address;
50 BFSR.BFARVALID = '1';
51 BFSR.PRECISERR = '1';
52 // Generate BusFault exception if it cannot be ignored.
53 if !IsReqExcPriNeg(secure) || (CCR.BFHFNMIGN == '0') then
54 excInfo = CreateException(BusFault, FALSE, secure);
55 otherwise
56 // Some access types do not call this function
57 assert(FALSE);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2041

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

58
59 // Check for Watchpoint Match.
60 elsif (IsDWTEnabled(secure, dwtPriv) &&
61 (acctype != AccType_VECTABLE ||
62 !boolean IMPLEMENTATION_DEFINED "Ignore Vector table fetch")) then
63 // Instructions with the access type unprivileged access the DWT with the current
64 // privilege mode, for other accesses the access type specifies the privilege.
65 bits(32) dvalue = ZeroExtend(value);
66 DWT_DataMatch(address, size, dvalue, TRUE, !secure, dwtPriv, acctype);
67
68 if BigEndian(address, size) then
69 value = BigEndianReverse(value, size);
70
71 return (excInfo, value);
72
73 // Assignment form
74
75 ExcInfo MemA_with_priv_security(bits(32) address, integer size, AccType acctype,
76 Privilege privileged, boolean secure, boolean aligned,
77 bits(8*size) value)
78 // Check alignment.
79 excInfo = DefaultExcInfo();
80 if !IsAligned(address, size) then
81 if HaveMainExt() then
82 if secure then
83 UFSR_S.UNALIGNED = '1';
84 else
85 UFSR_NS.UNALIGNED = '1';
86 // Create the exception. NOTE: If Main Extension is not implemented the fault
87 // always escalates to a HardFault.
88 excInfo = CreateException(UsageFault, TRUE, secure);
89
90 // Check permissions and get attributes
91 if excInfo.fault == NoFault then
92 (excInfo, memaddrdesc) = ValidateAddress(address, acctype,
93 privileged == Privilege_Priv, secure,
94 TRUE, aligned);
95
96 if excInfo.fault == NoFault then
97 // Effect on exclusives.
98 if memaddrdesc.memattrs.shareable then
99 ClearExclusiveByAddress(memaddrdesc.paddress,

100 ProcessorID(), size); // see Note
101
102 // Sort out endianness, then memory array access.
103 if BigEndian(address, size) then
104 value = BigEndianReverse(value, size);
105
106 // Check for Watchpoint Match.
107 if privileged == Privilege_ForcedUnpriv then
108 dwtPriv = CurrentModeIsPrivileged(secure);
109 else
110 dwtPriv = privileged == Privilege_Priv;
111 if IsDWTEnabled(secure, dwtPriv) then
112 // Instructions with the access type unprivileged access the DWT with the current
113 // privilege mode, for other accesses the access type specifies the privilege.
114 bits(32) dvalue = ZeroExtend(value);
115 DWT_DataMatch(address, size, dvalue, FALSE, !secure, dwtPriv, acctype);
116
117 if _Mem(memaddrdesc, size, value) then
118 // Synchronous BusFault occurred. NOTE: Asynchronous BusFaults are handled
119 // in RaiseAsyncBusFault().
120 if HaveMainExt() then
121 case acctype of
122 when AccType_STACK
123 BFSR.STKERR = '1';
124 excInfo = CreateException(BusFault, FALSE, secure);
125 when AccType_LAZYFP
126 BFSR.LSPERR = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2042

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

127 excInfo = CreateException(BusFault, FALSE, secure);
128 when AccType_NORMAL, AccType_MVE, AccType_ORDERED
129 BFAR.ADDRESS = address;
130 BFSR.BFARVALID = '1';
131 BFSR.PRECISERR = '1';
132 // Generate BusFault exception if it cannot be ignored.
133 if !IsReqExcPriNeg(secure) || (CCR.BFHFNMIGN == '0') then
134 excInfo = CreateException(BusFault, FALSE, secure);
135 otherwise
136 // Some access types do not call this function.
137 assert(FALSE);
138 return excInfo;

E2.1.295 MemD_with_priv_security

1 // MemD_with_priv_security()
2 // =========================
3
4 // Non-assignment form
5 (boolean, bits(8*size)) MemD_with_priv_security(AddressDescriptor attr, integer size)
6 // Debugger accesses always specify their required privilege level or Security states,
7 // but can be demoted.
8 (secure, privileged, error) = DAPCheck(attr.paddress, attr.accattrs.ispriv,
9 !attr.memattrs.NS);

10
11 if !error then
12 (excInfo, memaddrdesc) = ValidateAddress(attr.paddress, AccType_DBG,
13 privileged, secure,
14 attr.accattrs.iswrite,
15 IsAligned(attr.paddress, size));
16
17 if (secure && DHCSR.S_SUIDE == '0') || (!secure && DHCSR.S_NSUIDE == '0') then
18 // Inherit memory attributes from IMPDEF debugger interface if not
19 // accessed via UDE. The debugger-specified security attributes (NS-Req) is
20 // replaced by the NS-Attr obtained from the SAU/IDAU.
21 memNS = memaddrdesc.memattrs.NS;
22 memaddrdesc.memattrs = attr.memattrs;
23 memaddrdesc.accattrs.acctype = attr.accattrs.acctype;
24 memaddrdesc.memattrs.NS = memNS;
25
26 error = (excInfo.fault != NoFault);
27 if !error then
28 (error, value) = _Mem(memaddrdesc, size);
29 if error then
30 value = bits(8*size) UNKNOWN;
31
32 // No exception is generated here since the debugger should not be able to cause
33 // exceptions in the PE. Instead, the caller should check against NoFault and return
34 // that information to the debugger.
35 return (error, value);
36
37
38 // Assignment form
39 boolean MemD_with_priv_security(AddressDescriptor attr, integer size, bits(8*size) value)
40 // Debugger accesses always specify their required privilege level or Security states,
41 // but can be demoted.
42 (secure, privileged, error) = DAPCheck(attr.paddress,
43 attr.accattrs.ispriv,
44 !attr.memattrs.NS);
45
46 if !error then
47 (excInfo, memaddrdesc) = ValidateAddress(attr.paddress,
48 AccType_DBG,
49 privileged,
50 secure,
51 attr.accattrs.iswrite,
52 IsAligned(attr.paddress, size));
53

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2043

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

54 if (secure && DHCSR.S_SUIDE == '0') || (!secure && DHCSR.S_NSUIDE == '0') then
55 // Inherit memory attributes from IMPDEF debugger interface if not
56 // accessed through the UDE. The debugger-specified security attributes
57 // (NS-Req) is replaced by the NS-Attr obtained from the SAU/IDAU.
58 memNS = memaddrdesc.memattrs.NS;
59 memaddrdesc.memattrs = attr.memattrs;
60 memaddrdesc.accattrs.acctype = attr.accattrs.acctype;
61 memaddrdesc.memattrs.NS = memNS;
62
63 error = (excInfo.fault != NoFault);
64 if !error then
65 error = _Mem(memaddrdesc, size, value);
66
67 // No exception is generated here since the debugger should not be able to cause
68 // exceptions in the PE. Instead, the caller should check against NoFault and return
69 // that information to the debugger.
70 return error;

E2.1.296 MemI

1 // MemI()
2 // ======
3
4 bits(16) MemI[bits(32) address]
5 // Check permissions and get attributes
6 // NOTE: The privilege flag passed to ValidateAddress may be overriden if
7 // the Security of the memory is different from the current Security
8 // state, for example when performing a Non-secure to Secure function call.
9 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_IFETCH, FindPriv(),

10 IsSecure(), FALSE, TRUE);
11 if excInfo.fault == NoFault then
12 (error, value) = _Mem(memaddrdesc, 2);
13 if error then
14 value = bits(16) UNKNOWN;
15 BFSR.IBUSERR = '1';
16 // Create the exception. NOTE: If the Main Extension is not implemented the fault
17 // always escalates to a HardFault.
18 excInfo = CreateException(BusFault);
19 HandleException(excInfo);
20 return value;

E2.1.297 MemO

1 // MemO[] - non-assignment form
2 // ============================
3
4 bits(8*size) MemO[bits(32) address, integer size]
5 (excInfo, value) = MemA_with_priv_security(address, size, AccType_ORDERED,
6 FindMemPriv(), IsSecure(), TRUE);
7 HandleException(excInfo);
8 return value;
9

10
11 // MemO[] - assignment form
12 // ========================
13
14 MemO[bits(32) address, integer size] = bits(8*size) value
15 excInfo = MemA_with_priv_security(address, size, AccType_ORDERED, FindMemPriv(),
16 IsSecure(), TRUE, value);
17 HandleException(excInfo);

E2.1.298 MemoryAttributes

1 // v8-M Memory Attributes
2 type MemoryAttributes is (

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2044

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3 MemType memtype,
4 DeviceType device, // For Device memory.
5 bits(2) innerattrs, // The possible encodings for each attributes field are:
6 bits(2) outerattrs, // '00' = Non-cacheable, '01' = RESERVED,
7 // '10' = Write-Through, '11' = Write-Back.
8 bits(2) innerhints, // The possible encodings for the hints are as follows
9 bits(2) outerhints, // '00' = No-Allocate, '01' = Write-Allocate,

10 // '10' = Read-Allocate, '11' = Read-Allocate and Write-Allocate.
11 boolean NS, // TRUE if Non-secure, else FALSE.
12 boolean innertransient,
13 boolean outertransient,
14 boolean shareable,
15 boolean outershareable
16)

E2.1.299 MemType

1 // Types of memory
2
3 enumeration MemType {MemType_Normal, MemType_Device};

E2.1.300 MemU

1 // MemU[]
2 // ======
3
4 // Non-assignment form, used for memory reads
5 // ==
6
7 bits(8*size) MemU[bits(32) address, integer size]
8 if HaveMainExt() then
9 return MemU_with_priv[address, size, FindMemPriv()];

10 else
11 return MemA[address, size];
12
13
14 // Assignment form, used for memory writes
15 // =======================================
16
17 MemU[bits(32) address, integer size] = bits(8*size) value
18 if HaveMainExt() then
19 MemU_with_priv[address, size, FindMemPriv()] = value;
20 else
21 MemA[address, size] = value;
22 return;

E2.1.301 MemU_unpriv

1 // MemU_unpriv[]
2 // =============
3
4 // Non-assignment form
5
6 bits(8*size) MemU_unpriv[bits(32) address, integer size]
7 return MemU_with_priv[address, size, Privilege_ForcedUnpriv];
8
9 // Assignment form

10
11 MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
12 MemU_with_priv[address, size, Privilege_ForcedUnpriv] = value;
13 return;

E2.1.302 MemU_with_priv

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2045

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // MemU_with_priv[]
2 // ================
3 // Due to single-copy atomicity constraints, the aligned accesses are distinguished from
4 // the unaligned accesses:
5 // * Aligned accesses are performed at their size.
6 // * Unaligned accesses are expressed as a set of bytes.
7
8 // Non-assignment form
9

10 bits(8*size) MemU_with_priv[bits(32) address, integer size, Privilege privileged]
11
12 bits(8*size) value;
13 // Do aligned access, take alignment fault, or do sequence of bytes.
14 if address == Align(address, size) then
15 value = MemA_with_priv[address, size, privileged, TRUE];
16 elsif CCR.UNALIGN_TRP == '1' then
17 UFSR.UNALIGNED = '1';
18 excInfo = CreateException(UsageFault);
19 HandleException(excInfo);
20 else // If unaligned access.
21 for i = 0 to size-1
22 value[8*i+7:8*i] = MemA_with_priv[address+i, 1, privileged, FALSE];
23 if BigEndian(address, size) then
24 value = BigEndianReverse(value, size);
25
26 return value;
27
28 // Assignment form
29
30 MemU_with_priv[bits(32) address, integer size, Privilege privileged] = bits(8*size) value
31
32 // Do aligned access, take alignment fault, or do sequence of bytes.
33 if address == Align(address, size) then
34 MemA_with_priv[address, size, privileged, TRUE] = value;
35 elsif CCR.UNALIGN_TRP == '1' then
36 UFSR.UNALIGNED = '1';
37 excInfo = CreateException(UsageFault);
38 HandleException(excInfo);
39 else // If unaligned access.
40 if BigEndian(address, size) then
41 value = BigEndianReverse(value, size);
42 for i = 0 to size-1
43 MemA_with_priv[address+i, 1, privileged, FALSE] = value[8*i+7:8*i];
44
45 return;

E2.1.303 MergeExcInfo

1 // MergeExcInfo()
2 // ==============
3
4 ExcInfo MergeExcInfo(ExcInfo a, ExcInfo b)
5 // The ExcInfo structure is used to determine which exception should be
6 // taken, and how it should be handled (mainly in the case of derived
7 // exceptions).
8 if (b.fault == NoFault) || (a.isTerminal && !b.isTerminal) then
9 exc = a;

10 elsif (a.fault == NoFault) || (b.isTerminal && !a.isTerminal) then
11 exc = b;
12 elsif (a.fault == b.fault) && (a.isSecure == b.isSecure) then
13 exc = a;
14 else
15 // Propagate the fault with the highest priority (lowest numerical
16 // value).
17 aPri = ExceptionPriority(a.fault, a.isSecure, FALSE);
18 bPri = ExceptionPriority(b.fault, b.isSecure, FALSE);
19
20 // Compare the exception priority values. Exception with the highest priority, which

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2046

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

21 // is the lowest numerical value, is taken and the other exception may be pended.
22 if aPri < bPri then
23 exc = a;
24 pend = b;
25 elsif bPri < aPri then
26 exc = b;
27 pend = a;
28 // If both priority values are equal, the exception numbers are compared.
29 // The exception with the lowest exception number is taken and the other
30 // exception may be pended.
31 elsif a.fault < b.fault then
32 exc = a;
33 pend = b;
34 elsif b.fault < a.fault then
35 exc = b;
36 pend = a;
37 // If the two exception numbers are equal, the Secure exception is taken and the
38 // Non-secure exception may be pended.
39 elsif a.isSecure && !b.isSecure then
40 exc = a;
41 pend = b;
42 // In any other case exception (b) is taken and exception (a) is pended.
43 else
44 exc = b;
45 pend = a;
46
47 // It is IMPLEMENTATION_DEFINED whether all exceptions generated are visible or not.
48 // If visible, the highest priority exception will become active and lower priority
49 // exceptions will get pended.
50 if boolean IMPLEMENTATION_DEFINED "Overridden exceptions pended" then
51 SetPending(pend.fault, pend.isSecure, TRUE);
52 return exc;

E2.1.304 Min

1 // Min()
2 // =====
3
4 integer Min(integer a, integer b)
5 return if a <= b then a else b;
6
7 real Min(real a, real b)
8 return if a <= b then a else b;

E2.1.305 MonitorCanPreempt

1 // MonitorCanPreempt()
2 // ==================
3
4 boolean MonitorCanPreempt()
5 monSecure = HaveSecurityExt() && DEMCR.SDME == '1';
6 return ExceptionPriority(DebugMonitor, monSecure, TRUE) < ExecutionPriority();

E2.1.306 MPUCheck

1 // MPUCheck()
2 // ==========
3
4 (MemoryAttributes, Permissions) MPUCheck(bits(32) address, AccType acctype,
5 boolean ispriv, boolean secure)
6
7 assert(HaveSecurityExt() || !secure);
8 MemoryAttributes attributes;
9 Permissions perms;

10 attributes = DefaultMemoryAttributes(address);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2047

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11 perms = DefaultPermissions(address);
12 // Assume no valid MPU region and not using system address map.
13 hit = FALSE;
14 mpuCtrl = if secure then MPU_CTRL_S else MPU_CTRL_NS;
15
16 // Determine what MPU permissions should apply based on access type and MPU
17 // configuration.
18 if acctype == AccType_VECTABLE || IsPPB(address) then
19 hit = TRUE; // Use system address map for PPB and vector table lookups.
20 elsif acctype == AccType_DBG && secure && DHCSR.S_SUIDE == '0' then
21 hit = TRUE; // Use the debugger-provided memory attributes.
22 elsif acctype == AccType_DBG && !secure && DHCSR.S_NSUIDE == '0' then
23 hit = TRUE; // Use the debugger-provided memory attributes.
24 elsif mpuCtrl.ENABLE == '0' then
25 if mpuCtrl.HFNMIENA == '1' then UNPREDICTABLE;
26 else hit = TRUE; // Always use system address map if MPU disabled.
27 elsif mpuCtrl.HFNMIENA == '0' && IsReqExcPriNeg(secure, acctype) then
28 hit = TRUE; // Optionally use default for HardFault, NMI and FAULTMASK.
29 else // MPU is enabled so check each individual region.
30 if (mpuCtrl.PRIVDEFENA == '1') && ispriv then
31 hit = TRUE; // Optional default as background for Privileged accesses.
32
33 regionMatched = FALSE;
34 mpuType = if secure then MPU_TYPE_S else MPU_TYPE_NS;
35 for r = 0 to (UInt(mpuType.DREGION) - 1)
36 if secure then
37 rbar = __MPU_RBAR_S[r];
38 rlar = __MPU_RLAR_S[r];
39 else
40 rbar = __MPU_RBAR_NS[r];
41 rlar = __MPU_RLAR_NS[r];
42
43 // MPU region enabled so perform checks.
44 if rlar.EN == '1' then
45 if ((UInt(address) >= UInt(rbar.BASE : '00000')) &&
46 (UInt(address) <= UInt(rlar.LIMIT : '11111'))) then
47 // Flag error if multiple regions match.
48 if regionMatched then
49 perms.regionValid = FALSE;
50 perms.region = Zeros(8);
51 hit = FALSE;
52 else
53 regionMatched = TRUE;
54 perms.ap = rbar.AP;
55 if (rbar.XN == '1') || (ispriv && (rlar.PXN == '1')) then
56 perms.xn = '1';
57 else
58 perms.xn = '0';
59 perms.region = r[7:0];
60 perms.regionValid = TRUE;
61 hit = TRUE;
62 sh = rbar.SH;
63
64 // Parsing MAIR0/1 Register fields.
65 index = UInt(rlar.AttrIndx);
66 mair = (if secure then MPU_MAIR1_S : MPU_MAIR0_S else
67 MPU_MAIR1_NS : MPU_MAIR0_NS);
68 attrfield = mair[8*index+7:8*index];
69 // Decoding MAIR0/1 field and populating memory attributes.
70 attributes = MAIRDecode(attrfield, sh);
71
72 // MVE accesses to device memory are relaxed to GRE.
73 if acctype == AccType_MVE && attributes.memtype == MemType_Device then
74 attributes.device = DeviceType_GRE;
75 if address[31:29] == '111' then // Enforce System space execute-never.
76 perms.xn = '1';
77 if !hit then // Access not allowed if there is no MPU match and use
78 // of the system address map is disabled.
79 perms.apValid = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2048

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

80 return (attributes, perms);

E2.1.307 NextInstrAddr

1 // NextInstrAddr()
2 // ===============
3
4 bits(32) NextInstrAddr()
5 return GetInstrExecState(1).FetchAddr;

E2.1.308 NextInstrITState

1 // NextInstrITState()
2 // ==================
3
4 ITSTATEType NextInstrITState()
5 if HaveMainExt() then
6 nextState = GetInstrExecState(1).ITState;
7 else
8 nextState = Zeros(8);
9 return nextState;

E2.1.309 NoninvasiveDebugAllowed

1 // NoninvasiveDebugAllowed()
2 // =========================
3
4 boolean NoninvasiveDebugAllowed(boolean isPriv)
5 if ExternalNoninvasiveDebugEnabled() then
6 return TRUE;
7 elsif (!isPriv && UnprivHaltingDebugEnabled(FALSE)) then
8 return TRUE;
9 elsif HaltingDebugAllowed() then

10 return TRUE;
11 else
12 return FALSE;
13
14
15 boolean NoninvasiveDebugAllowed()
16 return NoninvasiveDebugAllowed(CurrentModeIsPrivileged());

E2.1.310 Ones

1 // Ones()
2 // ======
3
4 bits(N) Ones(integer N)
5 return Replicate('1',N);
6
7 bits(N) Ones()
8 return Ones(N);

E2.1.311 PACCellInvShuffle

1 // PACCellInvShuffle()
2 // ===================
3
4 bits(64) PACCellInvShuffle(bits(64) inData)
5 bits(64) outData;
6 outData[3:0] = inData[15:12];
7 outData[7:4] = inData[27:24];
8 outData[11:8] = inData[51:48];
9 outData[15:12] = inData[39:36];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2049

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

10 outData[19:16] = inData[59:56];
11 outData[23:20] = inData[47:44];
12 outData[27:24] = inData[7:4];
13 outData[31:28] = inData[19:16];
14 outData[35:32] = inData[35:32];
15 outData[39:36] = inData[55:52];
16 outData[43:40] = inData[31:28];
17 outData[47:44] = inData[11:8];
18 outData[51:48] = inData[23:20];
19 outData[55:52] = inData[3:0];
20 outData[59:56] = inData[43:40];
21 outData[63:60] = inData[63:60];
22 return outData;

E2.1.312 PACCellShuffle

1 // PACCellShuffle()
2 // ================
3
4 bits(64) PACCellShuffle(bits(64) inData)
5 bits(64) outData;
6 outData[3:0] = inData[55:52];
7 outData[7:4] = inData[27:24];
8 outData[11:8] = inData[47:44];
9 outData[15:12] = inData[3:0];

10 outData[19:16] = inData[31:28];
11 outData[23:20] = inData[51:48];
12 outData[27:24] = inData[7:4];
13 outData[31:28] = inData[43:40];
14 outData[35:32] = inData[35:32];
15 outData[39:36] = inData[15:12];
16 outData[43:40] = inData[59:56];
17 outData[47:44] = inData[23:20];
18 outData[51:48] = inData[11:8];
19 outData[55:52] = inData[39:36];
20 outData[59:56] = inData[19:16];
21 outData[63:60] = inData[63:60];
22 return outData;

E2.1.313 PACEnabled

1 // PACEnabled()
2 // ============
3 // Check whether PAC is enabled.
4
5 boolean PACEnabled()
6 enabled = FALSE;
7 // The PACBTI Extension must be implemented in order to use PAC functionality.
8 if HavePACBTIExt() then
9 if CurrentModeIsPrivileged() then

10 pacEn = CONTROL.PAC_EN; // Current Security state privileged PAC enabled.
11 else
12 pacEn = CONTROL.UPAC_EN; // Current Security state unprivileged PAC enabled.
13
14 if pacEn == '1' then enabled = TRUE;
15
16 return enabled;

E2.1.314 PACInvSub

1 // PACInvSub()
2 // ===========
3
4 bits(64) PACInvSub(bits(64) Tinput)
5 // This is a 4-bit substitution from the PRINCE-family cipher.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2050

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6
7 bits(64) Toutput;
8 for i = 0 to 15
9 case Tinput[4*i+3:4*i] of

10 when '0000' Toutput[4*i+3:4*i] = '0101';
11 when '0001' Toutput[4*i+3:4*i] = '1110';
12 when '0010' Toutput[4*i+3:4*i] = '1101';
13 when '0011' Toutput[4*i+3:4*i] = '1000';
14 when '0100' Toutput[4*i+3:4*i] = '1010';
15 when '0101' Toutput[4*i+3:4*i] = '1011';
16 when '0110' Toutput[4*i+3:4*i] = '0001';
17 when '0111' Toutput[4*i+3:4*i] = '1001';
18 when '1000' Toutput[4*i+3:4*i] = '0010';
19 when '1001' Toutput[4*i+3:4*i] = '0110';
20 when '1010' Toutput[4*i+3:4*i] = '1111';
21 when '1011' Toutput[4*i+3:4*i] = '0000';
22 when '1100' Toutput[4*i+3:4*i] = '0100';
23 when '1101' Toutput[4*i+3:4*i] = '1100';
24 when '1110' Toutput[4*i+3:4*i] = '0111';
25 when '1111' Toutput[4*i+3:4*i] = '0011';
26 return Toutput;

E2.1.315 PACKey

1 // PACKey[]
2 // ========
3
4 // Non-assignment forms
5
6 bits(128) PACKey[boolean isSecure, boolean isPriv]
7 if isSecure then
8 key = if isPriv then PAC_KEY_P_S else PAC_KEY_U_S;
9 else

10 key = if isPriv then PAC_KEY_P_NS else PAC_KEY_U_NS;
11 return key;
12
13 bits(32) PACKeyReg[bits(3) index, boolean isSecure]
14 // Access PAC_KEY_U if index[2] is 0, otherwise PAC_KEY_P.
15 return Elem[PACKey[isSecure, index[2] == '0'], UInt(index[1:0]), 32];
16
17
18 // Assignment forms
19
20 PACKey[boolean isSecure, boolean isPriv] = bits(128) value
21 if isSecure then
22 if isPriv then
23 PAC_KEY_P_S = value;
24 else
25 PAC_KEY_U_S = value;
26 else
27 if isPriv then
28 PAC_KEY_P_NS = value;
29 else
30 PAC_KEY_U_NS = value;
31
32 PACKeyReg[bits(3) index, boolean isSecure] = bits(32) value
33 // Access PAC_KEY_U if index[2] is 0, otherwise PAC_KEY_P.
34 Elem[PACKey[isSecure, index[2] == '0'], UInt(index[1:0]), 32] = value;

E2.1.316 PACKeys

1 // Pointer authentication keys
2
3 bits(128) PAC_KEY_P_S;
4 bits(128) PAC_KEY_P_NS;
5 bits(128) PAC_KEY_U_S;
6 bits(128) PAC_KEY_U_NS;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2051

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.317 PACMult

1 // PACMult()
2 // =========
3
4 bits(64) PACMult(bits(64) Sinput)
5 bits(4) t0;
6 bits(4) t1;
7 bits(4) t2;
8 bits(4) t3;
9 bits(64) Soutput;

10
11 for i = 0 to 3
12 t0[3:0] = (RotCell(Sinput[4*(i+8)+3:4*(i+8)], 1) EOR
13 RotCell(Sinput[4*(i+4)+3:4*(i+4)], 2));
14 t0[3:0] = t0[3:0] EOR RotCell(Sinput[4*(i)+3:4*(i)], 1);
15 t1[3:0] = (RotCell(Sinput[4*(i+12)+3:4*(i+12)], 1) EOR
16 RotCell(Sinput[4*(i+4)+3:4*(i+4)], 1));
17 t1[3:0] = t1[3:0] EOR RotCell(Sinput[4*(i)+3:4*(i)], 2);
18 t2[3:0] = (RotCell(Sinput[4*(i+12)+3:4*(i+12)], 2) EOR
19 RotCell(Sinput[4*(i+8)+3:4*(i+8)], 1));
20 t2[3:0] = t2[3:0] EOR RotCell(Sinput[4*(i)+3:4*(i)], 1);
21 t3[3:0] = (RotCell(Sinput[4*(i+12)+3:4*(i+12)], 1) EOR
22 RotCell(Sinput[4*(i+8)+3:4*(i+8)], 2));
23 t3[3:0] = t3[3:0] EOR RotCell(Sinput[4*(i+4)+3:4*(i+4)], 1);
24 Soutput[4*i+3:4*i] = t3[3:0];
25 Soutput[4*(i+4)+3:4*(i+4)] = t2[3:0];
26 Soutput[4*(i+8)+3:4*(i+8)] = t1[3:0];
27 Soutput[4*(i+12)+3:4*(i+12)] = t0[3:0];
28 return Soutput;

E2.1.318 PACSubQ3

1 // PACSubQ3()
2 // ========
3
4 bits(64) PACSubQ3(bits(64) Tinput)
5 // This is a 4-bit substitution from the PRINCE-family cipher.
6 bits(64) Toutput;
7 for i = 0 to 15
8 case Tinput[4*i+3:4*i] of
9 when '0000' Toutput[4*i+3:4*i] = '1010';

10 when '0001' Toutput[4*i+3:4*i] = '1101';
11 when '0010' Toutput[4*i+3:4*i] = '1110';
12 when '0011' Toutput[4*i+3:4*i] = '0110';
13 when '0100' Toutput[4*i+3:4*i] = '1111';
14 when '0101' Toutput[4*i+3:4*i] = '0111';
15 when '0110' Toutput[4*i+3:4*i] = '0011';
16 when '0111' Toutput[4*i+3:4*i] = '0101';
17 when '1000' Toutput[4*i+3:4*i] = '1001';
18 when '1001' Toutput[4*i+3:4*i] = '1000';
19 when '1010' Toutput[4*i+3:4*i] = '0000';
20 when '1011' Toutput[4*i+3:4*i] = '1100';
21 when '1100' Toutput[4*i+3:4*i] = '1011';
22 when '1101' Toutput[4*i+3:4*i] = '0001';
23 when '1110' Toutput[4*i+3:4*i] = '0010';
24 when '1111' Toutput[4*i+3:4*i] = '0100';
25 return Toutput;

E2.1.319 PACSubQ5

1 // PACSubQ5()
2 // ========
3
4 bits(64) PACSubQ5(bits(64) Tinput)
5 // This is a 4-bit substitution from the PRINCE-family cipher.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2052

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6 bits(64) Toutput;
7 for i = 0 to 15
8 case Tinput[4*i+3:4*i] of
9 when '0000' Toutput[4*i+3:4*i] = '1011';

10 when '0001' Toutput[4*i+3:4*i] = '0110';
11 when '0010' Toutput[4*i+3:4*i] = '1000';
12 when '0011' Toutput[4*i+3:4*i] = '1111';
13 when '0100' Toutput[4*i+3:4*i] = '1100';
14 when '0101' Toutput[4*i+3:4*i] = '0000';
15 when '0110' Toutput[4*i+3:4*i] = '1001';
16 when '0111' Toutput[4*i+3:4*i] = '1110';
17 when '1000' Toutput[4*i+3:4*i] = '0011';
18 when '1001' Toutput[4*i+3:4*i] = '0111';
19 when '1010' Toutput[4*i+3:4*i] = '0100';
20 when '1011' Toutput[4*i+3:4*i] = '0101';
21 when '1100' Toutput[4*i+3:4*i] = '1101';
22 when '1101' Toutput[4*i+3:4*i] = '0010';
23 when '1110' Toutput[4*i+3:4*i] = '0001';
24 when '1111' Toutput[4*i+3:4*i] = '1010';
25 return Toutput;

E2.1.320 PC

1 // PC - non-assignment form
2 // ========================
3 bits(32) PC
4 return RName[RNamesPC];

E2.1.321 PEMode

1 // The PE execution modes.
2
3 enumeration PEMode {PEMode_Thread, PEMode_Handler};

E2.1.322 PendingDebugHalt

1 // PendingDebugHalt()
2 // ==================
3
4 boolean PendingDebugHalt()
5 return CanHaltOnEvent(IsSecure(), FindPriv()) && DHCSR.C_HALT == '1';

E2.1.323 PendingDebugMonitor

1 // PendingDebugMonitor()
2 // =====================
3
4 boolean PendingDebugMonitor()
5 // If the current execution priority is below DebugMonitor and generating a DebugMonitor
6 // exception is allowed, and MON_PEND is set, then return TRUE. Otherwise return FALSE.
7 if DEMCR.MON_PEND == '0' then
8 return FALSE;
9 elsif !CanPendMonitorOnEvent(IsSecure(), TRUE, FALSE, FindPriv(), FALSE) then

10 return FALSE;
11 else
12 return TRUE;

E2.1.324 PendingExceptionDetails

1 // PendingExceptionDetails
2 // =======================
3 // Determines whether to take a pending exception or not. This is done based
4 // on current execution priority and the priority of pending exceptions that

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2053

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 // are not masked by DHCSR.C_MASKINTS.
6 // Returns whether any pending exception is to be taken, and, if so, the
7 // exception number for the highest priority unmasked exception, and
8 // whether this exception is Secure.
9

10 (boolean, integer, boolean) PendingExceptionDetails();

E2.1.325 PendReturnOperation

1 // PendReturnOperation()
2 // =====================
3
4 PendReturnOperation(bits(32) returnValue)
5 _NextInstrAddr = returnValue;
6 _PCChanged = TRUE;
7 _PendingReturnOperation = TRUE;
8 return;

E2.1.326 Permissions

1 // Access permissions descriptor
2
3 type Permissions is (
4 boolean apValid, // TRUE when ap is valid, else FALSE.
5 bits(2) ap, // Access Permission bits, if valid.
6 bit xn, // Execute Never bit.
7 boolean regionValid, // TRUE if the region number is valid, else FALSE.
8 bits(8) region // The MPU region number, if valid.
9)

E2.1.327 PMU_CounterIncrement

1 // PMU_CounterIncrement()
2 // ======================
3 // Increments PMU counters associated with the specified event as needed.
4
5 constant integer CYCLE_COUNTER_ID = 31;
6
7 PMU_CounterIncrement(PmuEventType eventId, integer counterId)
8 // If the counter is disabled it does not need incrementing. Early-exit.
9 if PMU_CTRL.E == '0' || DEMCR.TRCENA == '0' then

10 return;
11
12 // Frozen, event counters do not increment. The cycle counter continues to increment.
13 if IsDebugState() ||
14 (counterId != 31 && !IsZero(PMU_OVSSET.Pn) && PMU_CTRL.FZO == '1') then
15 return;
16
17 pmuAllowedState = (((!IsSecure() && NoninvasiveDebugAllowed(FindPriv())) ||
18 SecureNoninvasiveDebugAllowed(FindPriv())) ||
19 eventId == PmuEventType_SW_INCR);
20
21 // If the PMU_CTRL.DP bit is not set, the dedicated cycle counter is
22 // enabled in Secure state.
23 if (counterId == CYCLE_COUNTER_ID && eventId == PmuEventType_CPU_CYCLES) then
24 if (!IsSecure() || PMU_CTRL.DP == '0') then
25 pmuAllowedState = TRUE;
26 else
27 pmuAllowedState = FALSE;
28
29 // Prohibited, counters do not increment
30 if !pmuAllowedState then
31 return;
32
33 // The cycle counter will increment whenever it is enabled and there is a

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2054

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

34 // CPU_CYCLE event.
35 if counterId == CYCLE_COUNTER_ID then
36 if PMU_CNTENSET.C == '1' && eventId == PmuEventType_CPU_CYCLES then
37 newValue = UInt(PMU_CCNTR) + 1;
38 PMU_CCNTR = newValue[31:0];
39 - = PMU_HandleOverflow(counterId, newValue, 32);
40
41 // Other counters will increment if they are enabled,
42 // are configured to respond to that event.
43 elsif (PMU_CNTENSET.Pn[counterId] == '1' &&
44 PMU_EVTYPER[counterId] == PmuEvent(eventId)) then
45 newValue = UInt(PMU_EVCNTR[counterId]) + 1;
46 PMU_EVCNTR[counterId].Counter = newValue[15:0];
47 if PMU_HandleOverflow(counterId, newValue, 16) then
48 // If this is an EVEN counter, look at possible chaining.
49 if counterId[0] == '0' &&
50 PMU_CNTENSET.Pn[counterId + 1] == '1' &&
51 PMU_EVTYPER[counterId + 1] == PmuEvent(PmuEventType_CHAIN) then
52 // Configured as chaining counter, increment
53 newValueChain = UInt(PMU_EVCNTR[counterId + 1]) + 1;
54 PMU_EVCNTR[counterId + 1].Counter = newValueChain[15:0];
55 - = PMU_HandleOverflow(counterId + 1, newValueChain, 16);
56
57 PMU_CounterIncrement(PmuEventType eventId)
58 // If all counters are globally disabled,
59 // they do not need incrementing. Early-exit.
60 if PMU_CTRL.E == '0' || DEMCR.TRCENA == '0' then
61 return;
62 for i = 0 to UInt(PMU_TYPE.N) - 1
63 PMU_CounterIncrement(eventId, i);
64 PMU_CounterIncrement(eventId, CYCLE_COUNTER_ID);

E2.1.328 PMU_HandleOverflow

1 // PMU_HandleOverflow()
2 // ======================
3 // Handles the overflow of a specified counter.
4
5 boolean PMU_HandleOverflow(integer counterId, integer newValue, integer overflowBit)
6 // Handle trace-on-overflow if the lower 8-bits of any of the first 8 counters
7 // overflows. This only occurs if trace-on-overflow is enabled.
8 // If multiple trace packets are waiting to be issued, their contents can be
9 // merged into a single packet.

10 if counterId < 8 && PMU_CTRL.TRO == '1' && newValue[8] != (newValue - 1)[8] then
11 PMU_EmitTrace(counterId);
12
13 // Has the counter actually overflowed?
14 if newValue[overflowBit] == '1' then
15 PMU_OVSSET[counterId] = '1';
16 // If enabled, generate a debug event with 'PMU' syndrome.
17 if PMU_INTENSET[counterId] == '1' then
18 isSecure = FALSE;
19 isPriv = CurrentModeIsPrivileged(isSecure);
20 if DHCSR.C_PMOV == '1' && CanHaltOnEvent(isSecure, isPriv) then
21 DHCSR.C_HALT = '1';
22 DFSR.PMU = '1';
23 elsif CanPendMonitorOnEvent(isSecure, FALSE, TRUE, isPriv, TRUE) then
24 DEMCR.MON_PEND = '1';
25 DFSR.PMU = '1';
26 return TRUE;
27 return FALSE;

E2.1.329 PolynomialMult

1 // PolynomialMult()
2 // ================
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2055

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
5 result = Zeros(M+N);
6 extended_op2 = Zeros(M) : op2;
7 for i=0 to M-1
8 if op1[i] == '1' then
9 result = result EOR LSL(extended_op2, i);

10 return result;

E2.1.330 PopStack

1 // PopStack()
2 // ==========
3
4 ExcInfo PopStack(EXC_RETURN_Type excReturn)
5 constant integer intCallerFrameSize = 0x20;
6 constant integer intCalleeFrameSize = 0x28;
7 constant integer fpCallerFrameSize = 0x48;
8
9 // NOTE: All stack accesses are performed as Unprivileged accesses if

10 // returning to Thread mode and CONTROL.nPRIV is 1 for the destination
11 // Security state.
12 mode = if excReturn.Mode == '1' then PEMode_Thread else PEMode_Handler;
13 toSecure = HaveSecurityExt() && excReturn.S == '1';
14 spName = LookUpSP_with_security_mode(toSecure, mode);
15 frameptr = _SP(spName);
16 if !IsAligned(frameptr, 8) then UNPREDICTABLE;
17
18 // only stack locations, not the load order, are architected
19
20 // Pop the Additional state context registers, when returning from a Non-secure
21 // exception or a Secure exception that followed a Non-secure exception and
22 // therefore still has the Additional state context register state on the stack.
23 exc = DefaultExcInfo();
24 if toSecure && (excReturn.ES == '0' ||
25 excReturn.DCRS == '0') then
26 // Check the integrity signature, and if so is it correct.
27 expectedSig = 0xFEFA125B[31:0];
28 if HaveMveOrFPExt() then
29 expectedSig[0] = excReturn.FType;
30 (exc, integritySig) = Stack(frameptr, 0x0, spName, mode);
31 if exc.fault == NoFault && integritySig != expectedSig then
32 if HaveMainExt() then
33 SFSR.INVIS = '1';
34 // Create the exception. NOTE: If Main Extension is not implemented the fault
35 // always escalates to a HardFault.
36 return CreateException(SecureFault);
37
38 if exc.fault == NoFault then (exc, R[4]) = Stack(frameptr, 0x8, spName, mode);
39 if exc.fault == NoFault then (exc, R[5]) = Stack(frameptr, 0xC, spName, mode);
40 if exc.fault == NoFault then (exc, R[6]) = Stack(frameptr, 0x10, spName, mode);
41 if exc.fault == NoFault then (exc, R[7]) = Stack(frameptr, 0x14, spName, mode);
42 if exc.fault == NoFault then (exc, R[8]) = Stack(frameptr, 0x18, spName, mode);
43 if exc.fault == NoFault then (exc, R[9]) = Stack(frameptr, 0x1C, spName, mode);
44 if exc.fault == NoFault then (exc, R[10]) = Stack(frameptr, 0x20, spName, mode);
45 if exc.fault == NoFault then (exc, R[11]) = Stack(frameptr, 0x24, spName, mode);
46 frameptr = frameptr + intCalleeFrameSize;
47
48 // Unstack the State context saved registers, possibly including
49 // the floating-point registers.
50 RETPSR_Type psr;
51 if exc.fault == NoFault then (exc, R[0]) = Stack(frameptr, 0x0, spName, mode);
52 if exc.fault == NoFault then (exc, R[1]) = Stack(frameptr, 0x4, spName, mode);
53 if exc.fault == NoFault then (exc, R[2]) = Stack(frameptr, 0x8, spName, mode);
54 if exc.fault == NoFault then (exc, R[3]) = Stack(frameptr, 0xC, spName, mode);
55 if exc.fault == NoFault then (exc, R[12]) = Stack(frameptr, 0x10, spName, mode);
56 if exc.fault == NoFault then (exc, LR) = Stack(frameptr, 0x14, spName, mode);
57 if exc.fault == NoFault then (exc, pc) = Stack(frameptr, 0x18, spName, mode);
58 if exc.fault == NoFault then (exc, psr) = Stack(frameptr, 0x1C, spName, mode);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2056

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

59 frameOffset = intCallerFrameSize;
60 BranchTo(pc, TRUE, psr.B == '1');
61
62 // Check the XPSR value that has been unstacked is consistent with the mode
63 // being returned to.
64 excNum = UInt(psr.Exception);
65 if (exc.fault == NoFault) &&
66 ((mode == PEMode_Handler) == (excNum == 0)) then
67 if HaveMainExt() then
68 UFSR.INVPC = '1';
69 // Create the exception. NOTE: If Main Extension is not implemented the fault
70 // always escalates to a HardFault.
71 return CreateException(UsageFault);
72
73 // The IPSR value is set as UNKNOWN if the unstacked IPSR value is not
74 // supported by the PE.
75 validIPSR = excNum IN {0, 1, NMI, HardFault, SVCall, PendSV, SysTick};
76 if !validIPSR && HaveMainExt() then
77 validIPSR = excNum IN {MemManage, BusFault, UsageFault, SecureFault, DebugMonitor};
78
79 // Check also whether excNum is an external interupt supported by PE.
80 if !validIPSR && !IsIrqValid(excNum) then
81 psr.Exception = bits(9) UNKNOWN;
82
83 if HaveMveOrFPExt() then
84 if excReturn.FType == '0' then
85 // Raise a fault and skip Floating-point operations if requested to expose
86 // Secure Floating-point state to the Non-secure code.
87 if !toSecure && FPCCR_S.LSPACT == '1' then
88 SFSR.LSERR = '1';
89 newExc = CreateException(SecureFault);
90 // It is IMPLEMENTATION DEFINED whether a MemManage fault is dropped if
91 // a SecureFault is generated subsequently. If the MemManage fault is
92 // not dropped the exceptions will be taken based on exception
93 // priority as described in MergeExcInfo().
94 if boolean IMPLEMENTATION_DEFINED "Drop previously generated exceptions" then
95 exc = newExc;
96 else
97 exc = MergeExcInfo(exc, newExc);
98 else
99 lspact = if toSecure then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;

100 if lspact == '1' then // State in floating-point is still valid.
101 if exc.fault == NoFault then
102 if toSecure then
103 FPCCR_S.LSPACT = '0';
104 else
105 FPCCR_NS.LSPACT = '0';
106 // Tail-chaining during an exception return after this point where
107 // LSPACT is cleared is not permissible.
108 else
109 if exc.fault == NoFault then
110 nPriv = if toSecure then CONTROL_S.nPRIV else CONTROL_NS.nPRIV;
111 isPriv = mode == PEMode_Handler || nPriv == '0';
112 exc = CheckCPEnabled(10, isPriv, toSecure);
113
114 // If an implementation abandons the unstacking of the Floating-point
115 // Extension registers to tail-chain into a fault or late arriving
116 // interrupt it must clear any Floating-point registers that
117 // would have been unstacked.
118 // NOTE: The requirment to clear the registers only applies
119 // to implementations that include the Security Extension.
120 // The Floating-point Extension registers that would have been
121 // unstacked become UNKNOWN in implementations that do not include the
122 // Security Extension.
123 if exc.fault == NoFault then
124 for i = 0 to 15
125 if exc.fault == NoFault then
126 (exc, S[i]) = Stack(frameptr, frameOffset + (4*i),
127 spName, mode);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2057

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

128 if exc.fault == NoFault then
129 (exc, FPSCR) = Stack(frameptr, frameOffset + 0x40,
130 spName, mode);
131 if exc.fault == NoFault then
132 if HaveMve() then
133 (exc, VPR) = Stack(frameptr, frameOffset + 0x44,
134 spName, mode);
135 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
136 (exc, -) = Stack(frameptr, frameOffset + 0x44,
137 spName, mode);
138 frameOffset = frameOffset + fpCallerFrameSize;
139
140 pushFPCalleeRegs = toSecure && FPCCR_S.TS == '1';
141 if pushFPCalleeRegs then
142 for i = 0 to 15
143 if exc.fault == NoFault then
144 (exc, S[i+16]) = Stack(frameptr, frameOffset + (4*i),
145 spName, mode);
146
147 if exc.fault != NoFault then
148 InvalidateFPRegs(HaveSecurityExt(), pushFPCalleeRegs);
149
150 CONTROL.FPCA = NOT(excReturn.FType);
151
152 // If there was not a fault then move the stack pointer to consume the
153 // exception stack frame. NOTE: If a exception return fault occurs and
154 // results in a lockup the stack pointer is updated. This special case is
155 // handled at the point lockup is entered and not here.
156 if exc.fault == NoFault then
157 ConsumeExcStackFrame(excReturn, psr.SPREALIGN);
158
159 if HaveDSPExt() then
160 APSR.GE = psr.GE;
161 if IsSecure() then
162 CONTROL_S.SFPA = psr.SFPA;
163 IPSR.Exception = psr.Exception; // Load valid IPSR bits from memory.
164 EPSR.T = psr.T; // Load valid EPSR bits from memory.
165 if HaveMainExt() then
166 APSR[31:27] = psr[31:27]; // Load valid APSR bits from memory.
167 SetITSTATEAndCommit(psr.IT); // Load valid ITSTATE from memory
168 // (also handles ICI and ECI).
169 else
170 APSR[31:28] = psr[31:28]; // Load valid APSR bits from memory.
171 return exc;

E2.1.331 PreserveFPState

1 // PreserveFPState()
2 // =================
3
4 PreserveFPState()
5 // Check if there is any lazy floating-point state to be preserved.
6 isSecure = FPCCR_S.S == '1';
7 lspact = if isSecure then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
8
9 if lspact == '1' then

10 // Preserve floating-point state using address, privilege
11 // and relative priorities recorded during original stacking.
12 // Derived exceptions are handled by TakePreserveFPException().
13
14 // The checks usually performed for stacking using ValidateAddress()
15 // are performed, with the value of ExecutionPriority()
16 // overridden by -1 if FPCCR.HFRDY == '0'.
17
18 if isSecure then
19 ispriv = FPCCR_S.USER == '0';
20 splimviol = FPCCR_S.SPLIMVIOL == '1';
21 fpcar = FPCAR_S;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2058

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

22 else
23 ispriv = FPCCR_NS.USER == '0';
24 splimviol = FPCCR_NS.SPLIMVIOL == '1';
25 fpcar = FPCAR_NS;
26 Privilege memPriv = FindMemPriv(ispriv);
27
28 // Check if the background context had access to the FPU.
29 excInfo = CheckCPEnabled(10, ispriv, isSecure);
30
31 // Only perform the memory accesses if the stack limit has not been violated
32 bfExcInfo = DefaultExcInfo();
33 if !splimviol && excInfo.fault == NoFault then
34 // RAS or BusFault errors rasied before lazy floating-point stacking are
35 // barriered if IESB is enabled. Errors that are Synchronized at this point
36 // belong to the current context (the context that executed the instruction
37 // that triggered the lazystacking), are handled normally and not by
38 // TakePreserveFPException.
39 if AIRCR.IESB == '1' then
40 HandleException(SynchronizeBusFault());
41
42 // Whether these stores are interruptible is IMPLEMENTATION DEFINED.
43 // Only the stack locations, not the store order, are architected.
44 for i = 0 to 15
45 if excInfo.fault == NoFault then
46 addr = fpcar + (4*i);
47 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, memPriv,
48 isSecure, TRUE, S[i]);
49
50 if excInfo.fault == NoFault then
51 addr = fpcar + 0x40;
52 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, memPriv,
53 isSecure, TRUE, FPSCR);
54 addr = fpcar + 0x44;
55 if excInfo.fault == NoFault && HaveMve() then
56 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, memPriv,
57 isSecure, TRUE, VPR);
58 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
59 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, memPriv,
60 isSecure, TRUE, bits(32) UNKNOWN);
61
62 if isSecure && FPCCR_S.TS == '1' then
63 for i = 0 to 15
64 if excInfo.fault == NoFault then
65 addr = fpcar + (4*i) + 0x48;
66 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, memPriv,
67 TRUE, TRUE, S[i+16]);
68
69 // If IESB is enabled, barrier RAS or BusFault errors raised during lazy
70 // floating-point stacking to the original context. If errors do occur,
71 // BFSR.LSPERR is set.
72 if AIRCR.IESB == '1' then
73 bfExcInfo = SynchronizeBusFault(AccType_LAZYFP);
74
75 // Handle any faults that have occured.
76 termInst = FALSE;
77 if excInfo.fault != NoFault then
78 termInst = termInst || TakePreserveFPException(excInfo);
79 if bfExcInfo.fault != NoFault then
80 termInst = termInst || TakePreserveFPException(bfExcInfo);
81
82 // If exception with sufficient priority to pre-empt current instruction execution is
83 // raised during floating-point state preserve, then termInst will be true and
84 // execution of the current instruction should be terminated by calling
85 // EndOfInstruction(). If the exception results in a lockup state, termInst
86 // will also be true.
87 if termInst then
88 EndOfInstruction();
89 else
90 // If the floating-point state is being treated as Secure then the registers

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2059

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

91 // are zeroed.
92 InvalidateFPRegs(isSecure && FPCCR_S.TS == '1', isSecure && FPCCR_S.TS == '1');
93
94 // In case of NoFault or, on successful return from TakePreserveFPException(),
95 // the current instruction execution continues and FPCCR.LSPACT will be cleared.
96 // If the stores are interrupted, the register content and LSPACT remain unchanged.
97 if (HasArchVersion(Armv8p1) &&
98 boolean IMPLEMENTATION_DEFINED "Clear both LSPACTs") then
99 FPCCR_S.LSPACT = '0';

100 FPCCR_NS.LSPACT = '0';
101 else
102 if isSecure then
103 FPCCR_S.LSPACT = '0';
104 else
105 FPCCR_NS.LSPACT = '0';

E2.1.332 Privilege

1 // Memory privilege type
2
3 enumeration Privilege {
4 Privilege_Priv, // Privileged memory request.
5 Privilege_ForcedUnpriv, // Deprivileged memory request.
6 Privilege_Unpriv // Unprivileged memory request.
7 };

E2.1.333 ProcessorID

1 // ProcessorID
2 // ===========
3 // Returns an integer that uniquely identifies the executing PE in the system.
4
5 integer ProcessorID();

E2.1.334 PushCalleeStack

1 // PushCalleeStack()
2 // =================
3
4 ExcInfo PushCalleeStack(boolean doTailChain, EXC_RETURN_Type excReturn)
5 // Allocate space of the correct stack. NOTE: If the PE is tail-chaining the PE should
6 // check excReturn instead of CONTROL.SPSEL to determine which stack to use,
7 // as SPSEL can report the wrong stack in tail-chaining cases.
8 if doTailChain then
9 if excReturn.Mode == '0' then

10 mode = PEMode_Handler;
11 spName = RNamesSP_Main_Secure;
12 else
13 mode = PEMode_Thread;
14 if excReturn.SPSEL == '1' then
15 spName = RNamesSP_Process_Secure;
16 else
17 spName = RNamesSP_Main_Secure;
18 else
19 spName = LookUpSP();
20 mode = CurrentMode();
21
22 // Calculate the address of the base of the Additional state context frame.
23 bits(32) frameptr = _SP(spName) - 0x28;
24
25 /* only the stack locations, not the store order, are architected */
26 // Write out integrity signature.
27 if HaveMveOrFPExt() then
28 integritySig = 0xFEFA125A[31:1] : excReturn.FType;
29 else

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2060

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

30 integritySig = 0xFEFA125B[31:0];
31 exc = Stack(frameptr, 0x0, spName, mode, integritySig);
32 // Stack Additional state context registers
33 if exc.fault == NoFault then exc = Stack(frameptr, 0x8, spName, mode, R[4]);
34 if exc.fault == NoFault then exc = Stack(frameptr, 0xC, spName, mode, R[5]);
35 if exc.fault == NoFault then exc = Stack(frameptr, 0x10, spName, mode, R[6]);
36 if exc.fault == NoFault then exc = Stack(frameptr, 0x14, spName, mode, R[7]);
37 if exc.fault == NoFault then exc = Stack(frameptr, 0x18, spName, mode, R[8]);
38 if exc.fault == NoFault then exc = Stack(frameptr, 0x1C, spName, mode, R[9]);
39 if exc.fault == NoFault then exc = Stack(frameptr, 0x20, spName, mode, R[10]);
40 if exc.fault == NoFault then exc = Stack(frameptr, 0x24, spName, mode, R[11]);
41
42 // Update the stack pointer.
43 spExc = _SP(spName, TRUE, FALSE, frameptr);
44 return MergeExcInfo(exc, spExc);

E2.1.335 PushStack

1 // PushStack()
2 // ===========
3
4 (ExcInfo, EXC_RETURN_Type) PushStack()
5 constant integer intFrameSize = 0x20;
6 constant integer fpCallerFrameSize = 0x48;
7 constant integer fpCalleeFrameSize = 0x40;
8
9 boolean pushFPCallerFrame = HaveMveOrFPExt() && CONTROL.FPCA == '1';

10 boolean pushFPCalleeFrame = pushFPCallerFrame && IsSecure() && FPCCR_S.TS == '1';
11
12 integer framesize = intFrameSize;
13 // In the case where a NOCP usage fault is generated, floating-point stack space
14 // is not allocated.
15 if IsSecure() || NSACR.CP10 == '1' then
16 if pushFPCallerFrame then framesize = framesize + fpCallerFrameSize;
17 if pushFPCalleeFrame then framesize = framesize + fpCalleeFrameSize;
18
19 /* allocate space on the correct stack */
20 bits(1) frameptralign;
21 frameptralign = SP[2];
22 frameptr = (SP - framesize) AND NOT(ZeroExtend('100',32));
23 spName = LookUpSP();
24
25 // Prepare architecture state for stacking
26 RETPSR_Type retpsr = XPSR[31:0];
27 retpsr.SPREALIGN = frameptralign;
28 retpsr.SFPA = if IsSecure() then CONTROL_S.SFPA else '0';
29 mode = CurrentMode();
30
31 /* only the stack locations, not the store order, are architected */
32 exc = Stack(frameptr, 0x0, spName, mode, R[0]);
33 if exc.fault == NoFault then exc = Stack(frameptr, 0x4, spName, mode, R[1]);
34 if exc.fault == NoFault then exc = Stack(frameptr, 0x8, spName, mode, R[2]);
35 if exc.fault == NoFault then exc = Stack(frameptr, 0xC, spName, mode, R[3]);
36 if exc.fault == NoFault then exc = Stack(frameptr, 0x10, spName, mode, R[12]);
37 if exc.fault == NoFault then exc = Stack(frameptr, 0x14, spName, mode, LR);
38 // Push the address of the next instruction, this is the raw PC value, without
39 // the +4 that is observed when reading PC from within instructions.
40 if exc.fault == NoFault then exc = Stack(frameptr, 0x18, spName, mode, _RName[RNamesPC]);
41 if exc.fault == NoFault then exc = Stack(frameptr, 0x1C, spName, mode, retpsr);
42 frameOffset = intFrameSize;
43
44 if pushFPCallerFrame then
45 newExc = DefaultExcInfo();
46 // LSPACT should not be active at the same time as CONTROL.FPCA. This
47 // is a possible attack scenario so raise a SecureFault.
48 lspact = if FPCCR_S.S == '1' then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
49 if HaveSecurityExt() && lspact == '1' then
50 SFSR.LSERR = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2061

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

51 newExc = CreateException(SecureFault);
52 elsif !IsSecure() && NSACR.CP10 == '0' then
53 UFSR_S.NOCP = '1';
54 newExc = CreateException(UsageFault, TRUE, TRUE);
55 elsif FPCCR.LSPEN == '0' then
56 if exc.fault == NoFault then
57 exc = CheckCPEnabled(10);
58
59 if exc.fault == NoFault then
60 for i = 0 to 15
61 if exc.fault == NoFault then
62 exc = Stack(frameptr, frameOffset + (4*i), spName, mode, S[i]);
63 if exc.fault == NoFault then
64 exc = Stack(frameptr, frameOffset + 0x40, spName, mode, FPSCR);
65 if exc.fault == NoFault then
66 if HaveMve() then
67 exc = Stack(frameptr, frameOffset + 0x44, spName, mode, VPR);
68 elsif boolean IMPLEMENTATION_DEFINED "No MVE VPR mem access" then
69 exc = Stack(frameptr, frameOffset + 0x44, spName, mode,
70 bits(32) UNKNOWN);
71 frameOffset = frameOffset + fpCallerFrameSize;
72
73 if pushFPCalleeFrame then
74 for i = 0 to 15
75 if exc.fault == NoFault then
76 exc = Stack(frameptr, frameOffset+(4*i), spName, mode, S[i+16]);
77
78 (cpEnabled, -) = IsCPEnabled(10);
79 if cpEnabled then
80 InvalidateFPRegs(pushFPCalleeFrame, pushFPCalleeFrame);
81 else
82 UpdateFPCCR(frameptr + frameOffset, TRUE);
83
84 if newExc.fault != NoFault then
85 // It is IMPLEMENTATION_DEFINED whether to drop the earlier MemFault
86 // if the Secure fault or NOCP fault is also generated subsequently.
87 // If MemFault is not dropped, it will be merged with the Secure or NOCP fault
88 // based on exception priority as per MergeExcInfo().
89 if boolean IMPLEMENTATION_DEFINED "Drop previously generated exceptions" then
90 exc = newExc;
91 else
92 exc = MergeExcInfo(exc, newExc);
93
94 // Set the stack pointer to be at the bottom of the new stack frame.
95 spExc = _SP(spName, TRUE, FALSE, frameptr);
96 exc = MergeExcInfo(exc, spExc);
97
98 // Some excReturn bits (for example ES, SPSEL) are set by ExceptionTaken.
99 EXC_RETURN_Type partialExcReturn = 0xFFFFFFF8[31:0];

100 partialExcReturn.S = if IsSecure() then '1' else '0';
101 partialExcReturn.FType = if HaveMveOrFPExt() then NOT(CONTROL.FPCA) else '1';
102 partialExcReturn.Mode = if mode == PEMode_Thread then '1' else '0';
103 return (exc, partialExcReturn);

E2.1.336 Q

1 // Q[] - non-assignment forms
2 // ==========================
3
4 bits(32) Q[integer idx, integer beat]
5 assert idx >= 0 && idx <= 7;
6 assert beat >= 0 && beat <= 3;
7 return S[(idx * 4) + beat];
8
9

10 // Q[] - assignment forms
11 // ======================
12

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2062

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

13 Q[integer idx, integer beat] = bits(32) value
14 assert idx >= 0 && idx <= 7;
15 assert beat >= 0 && beat <= 3;
16 S[(idx * 4) + beat] = value;

E2.1.337 R

1 // R[]
2 // ===
3
4 // Non-assignment form
5
6 bits(32) R[integer n]
7 return RName[LookUpRName(n)];
8
9 // Assignment form

10
11 R[integer n] = bits(32) value
12 assert n != 15;
13 RName[LookUpRName(n)] = value;
14 return;

E2.1.338 RaiseAsyncBusFault

1 // RaiseAsyncBusFault()
2 // ====================
3
4 RaiseAsyncBusFault()
5 if HaveMainExt() then
6 BFSR.IMPRECISERR = '1';
7
8 // On asynchronous bus faults, implementations might choose to populate RFSR with
9 // corresponding syndrome, and are required to do so for RAS faults. It is recommended

10 // these are marked as contained where reasonable, and only marked as uncontained when
11 // no guarantees can be made with respect to IESB containment, for example in the case
12 // of a latent error in dirty cache lines that is only uncovered on eviction.
13 if HasArchVersion(Armv8p1) && boolean IMPLEMENTATION_DEFINED "RFSR populated" then
14 RFSR.V = '1';
15 RFSR.IS = RasImpDefValue(15);
16 RFSR.UET = RasImpDefValue(2);
17
18 // To ensure errors are containable asynchronous BusFaults escalate as if they were
19 // synchronous if implicit error synchronization barriers are enabled.
20 handleSynchronously = AIRCR.IESB == '1';
21 excInfo = CreateException(BusFault, FALSE, IsSecure(), handleSynchronously);
22 HandleException(excInfo);

E2.1.339 RasImpDefValue

1 // RasImpDefValue()
2 // ================
3 // IMPLEMENTATION_DEFINED value functions used to populate RAS-related syndrome.
4
5 bits(size) RasImpDefValue(integer size);

E2.1.340 RawExecutionPriority

1 // RawExecutionPriority()
2 // ======================
3 // Determine the current execution priority without the effect of priority boosting.
4
5 integer RawExecutionPriority()
6 execPri = HighestPri();
7 for i = 2 to MaxExceptionNum() // IPSR values of the exception handlers.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2063

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 for j = 0 to 1 // Check both Non-secure and Secure exceptions.
9 secure = (j == 0);

10 if IsActiveForState(i, secure) then
11 // PRIGROUP effect applied in ExceptionPriority.
12 effectivePriority = ExceptionPriority(i, secure, TRUE);
13 if effectivePriority < execPri then
14 execPri = effectivePriority;
15 assert execPri IN {-4 .. 256};
16 return execPri;

E2.1.341 Replicate

1 // Replicate()
2 // ===========
3
4 bits(M*N) Replicate(bits(M) x, integer N);
5
6 bits(N) Replicate(bits(M) x)
7 assert N MOD M == 0;
8 return Replicate(x, N DIV M);

E2.1.342 ResetRegs

1 // ResetRegs
2 // ============
3 // Sets all registers that have architecturally-defined reset
4 // values to those values.
5
6 ResetRegs();

E2.1.343 RestrictedNSPri

1 // RestrictedNSPri()
2 // =================
3 // The priority to which Non-secure exceptions are restricted if AIRCR.PRIS is set.
4
5 integer RestrictedNSPri()
6 return 0x80;

E2.1.344 RF

1 // RF[] - non-assignment form
2 // ==========================
3
4 bits(32) RF[integer n]
5 assert n >= 0 && n <= 15;
6
7 // Returns the selected general-purpose register for indices less than 15,
8 // or the APSR Condition flags for the index 15.
9

10 if n < 15 then
11 result = R[n];
12 else
13 result = APSR[31:28] : Zeros(28);
14
15 return result;
16
17 // RF[] - assignment form
18 // ======================
19
20 RF[integer n] = bits(32) value
21 assert n >= 0 && n <= 15;
22
23 // Assigns a value to the selected general-purpose register for indices

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2064

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

24 // less than 15, or the APSR Condition flags for the index 15.
25
26 if n < 15 then
27 R[n] = value;
28 else
29 APSR.N = value[31];
30 APSR.Z = value[30];
31 APSR.C = value[29];
32 APSR.V = value[28];

E2.1.345 RFD

1 // RFD[] - non-assignment form
2 // ===========================
3
4 bits(64) RFD[integer n]
5 assert n >= 0 && n <= 14;
6 assert n[0] == '0';
7
8 // Returns the selected general-purpose register pair
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if n > 10 then UNPREDICTABLE;
11
12 result = R[n+1]:R[n];
13 return result;
14
15 // RFD[] - assignment form
16 // ======================
17
18 RFD[integer n] = bits(64) value
19 assert n >= 0 && n <= 14;
20 assert n[0] == '0';
21
22 // Assigns a value to the selected general-purpose register pair
23 // Register pairs containing SP or PC are UNPREDICTABLE.
24 if n > 10 then UNPREDICTABLE;
25
26 R[n+1] = value[63:32];
27 R[n] = value[31:0];

E2.1.346 RName

1 // RName[] - assignment form
2 // =========================
3
4 RName[RNames reg] = bits(32) value
5 case reg of
6 when {RNamesSP_Main_NonSecure, RNamesSP_Process_NonSecure,
7 RNamesSP_Main_Secure, RNamesSP_Process_Secure}
8 // It is IMPLEMENTATION DEFINED whether stack pointer limit checking
9 // is performed for instructions that were previously UNPREDICTABLE

10 // when modifying the stack pointer.
11 applyLimit = boolean IMPLEMENTATION_DEFINED "SPLim check UNPRED instructions";
12 exc = _SP(reg, FALSE, !applyLimit, value);
13 assert applyLimit || exc.fault == NoFault;
14 when RNamesPC
15 // Direct PC writes not supported, PC updates must go through
16 // LoadWritePC(), BranchReturn() or similar function.
17 assert FALSE;
18 otherwise
19 _RName[reg] = value;
20 return;
21
22 // RName[] - non-assignment form
23 // =============================
24
25 bits(32) RName[RNames reg]

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2065

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

26 bits(32) result;
27 case reg of
28 when {RNamesSP_Main_NonSecure, RNamesSP_Process_NonSecure,
29 RNamesSP_Main_Secure, RNamesSP_Process_Secure}
30 result = _RName[reg][31:2]:'00';
31 when RNamesPC
32 result = _RName[RNamesPC] + 4;
33 otherwise
34 result = _RName[reg];
35 return result;

E2.1.347 RNames

1 // The names of the core registers. SP is a Banked register.
2
3 enumeration RNames {RNames0, RNames1, RNames2, RNames3, RNames4, RNames5, RNames6,
4 RNames7, RNames8, RNames9, RNames10, RNames11, RNames12,
5 RNamesSP_Main_Secure, RNamesSP_Main_NonSecure,
6 RNamesLR, RNamesPC,
7 RNamesSP_Process_NonSecure, RNamesSP_Process_Secure};

E2.1.348 ROR

1 // ROR()
2 // =====
3
4 bits(N) ROR(bits(N) x, integer shift)
5 if shift == 0 then
6 result = x;
7 else
8 (result, -) = ROR_C(x, shift);
9 return result;

E2.1.349 ROR_C

1 // ROR_C()
2 // =======
3
4 (bits(N), bit) ROR_C(bits(N) x, integer shift)
5 assert shift != 0;
6 m = shift MOD N;
7 result = LSR(x,m) OR LSL(x,N-m);
8 carry_out = result[N-1];
9 return (result, carry_out);

E2.1.350 RotCell

1 // RotCell()
2 // =========
3
4 bits(4) RotCell(bits(4) inCell, integer amount)
5 bits(8) tmp;
6 bits(4) outCell;
7
8 assert amount<4 && amount>0;
9 tmp[7:0] = inCell[3:0]:inCell[3:0];

10 outCell = tmp[7-amount:4-amount];
11 return outCell;

E2.1.351 RoundDown

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2066

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // RoundDown()
2 // ===========
3
4 integer RoundDown(real x);

E2.1.352 RoundTowardsZero

1 // RoundTowardsZero()
2 // ==================
3
4 integer RoundTowardsZero(real x)
5 return if x == 0.0 then 0 else if x > 0.0 then RoundDown(x) else RoundUp(x);

E2.1.353 RoundUp

1 // RoundUp()
2 // =========
3
4 integer RoundUp(real x);

E2.1.354 RRX

1 // RRX()
2 // =====
3
4 bits(N) RRX(bits(N) x, bit carry_in)
5 (result, -) = RRX_C(x, carry_in);
6 return result;

E2.1.355 RRX_C

1 // RRX_C()
2 // =======
3
4 (bits(N), bit) RRX_C(bits(N) x, bit carry_in)
5 result = carry_in : x[N-1:1];
6 carry_out = x[0];
7 return (result, carry_out);

E2.1.356 RSPCheck

1 // RSPCheck[] - assignment form
2 // ============================
3
4 RSPCheck[integer n] = bits(32) value
5 if n == 13 then
6 - = _SP(LookUpSP(), FALSE, FALSE, value);
7 else
8 R[n] = value;
9 return;

E2.1.357 RZ

1 // RZ[] -- Read R15 as zero
2 // ========================
3
4 bits(32) RZ[integer n]
5 assert n >= 0 && n <= 15;
6 if n == 15 then
7 return Zeros(32);
8 else
9 return R[n];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2067

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.358 S

1 // S[]
2 // ===
3
4 // Non-assignment form
5
6 bits(32) S[integer n]
7 assert n >= 0 && n <= 31;
8 return _S[n];
9

10 // Assignment form
11
12 S[integer n] = bits(32) value
13 assert n >= 0 && n <= 31;
14 _S[n] = value;
15 return;

E2.1.359 Sat

1 // Sat()
2 // =====
3
4 bits(N) Sat(integer i, integer N, boolean unsigned)
5 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
6 return result;

E2.1.360 SatQ

1 // SatQ()
2 // ======
3
4 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
5 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
6 return (result, sat);

E2.1.361 SAttributes

1 // Security attributes associated with an address
2
3 type SAttributes is (
4 boolean nsc, // Non-secure callability of an address. FALSE = not
5 // callable from the Non-secure state.
6 boolean ns, // Security of an address FALSE = Secure, TRUE = Non-secure.
7 bits(8) sregion, // The SAU region number.
8 boolean srvalid, // Set to TRUE if the SAU region number is valid.
9 bits(8) iregion, // The IDAU region number.

10 boolean irvalid // Set to TRUE if the IDAU region number is valid.
11)

E2.1.362 SCS_UpdateStatusRegs

1 // SCS_UpdateStatusRegs()
2 // ======================
3 // Update status registers in the System Control Space (SCS).
4
5 SCS_UpdateStatusRegs();

E2.1.363 SecureDebugMonitorAllowed

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2068

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SecureDebugMonitorAllowed()
2 // ===========================
3
4 boolean SecureDebugMonitorAllowed()
5 if DAUTHCTRL_S.FSDMA == '1' then
6 return TRUE;
7 elsif DAUTHCTRL_S.SPIDENSEL == '1' then
8 return DAUTHCTRL_S.INTSPIDEN == '1';
9 else

10 return ExternalSecureSelfHostedDebugEnabled();

E2.1.364 SecureHaltingDebugAllowed

1 // SecureHaltingDebugAllowed()
2 // ===========================
3
4 boolean SecureHaltingDebugAllowed()
5 if HaltingDebugAllowed() == FALSE then
6 return FALSE;
7 elsif DAUTHCTRL_S.SPIDENSEL == '1' then
8 return DAUTHCTRL_S.INTSPIDEN == '1';
9 else

10 return ExternalSecureInvasiveDebugEnabled();

E2.1.365 SecureNoninvasiveDebugAllowed

1 // SecureNoninvasiveDebugAllowed()
2 // ===============================
3
4 boolean SecureNoninvasiveDebugAllowed(boolean isPriv)
5 assert HaveSecurityExt();
6 if DHCSR.S_SDE == '1' && (!HaveUDE() || DHCSR.S_SUIDE == '0') then
7 return TRUE;
8 elsif !isPriv && UnprivHaltingDebugEnabled(TRUE) then
9 return TRUE;

10 elsif !NoninvasiveDebugAllowed(isPriv) then
11 return FALSE;
12 elsif DAUTHCTRL_S.SPNIDENSEL == '1' then
13 return DAUTHCTRL_S.INTSPNIDEN == '1';
14 else
15 return ExternalSecureNoninvasiveDebugEnabled();
16
17
18 boolean SecureNoninvasiveDebugAllowed()
19 return SecureNoninvasiveDebugAllowed(CurrentModeIsPrivileged());

E2.1.366 SecurityCheck

1 // SecurityCheck()
2 // ===============
3
4 SAttributes SecurityCheck(bits(32) address, boolean isinstrfetch, boolean isSecure)
5 SAttributes result;
6 addr = UInt(address);
7
8 // Setup default attributes
9 result.ns = !HaveSecurityExt();

10 result.nsc = FALSE;
11 result.sregion = Zeros(8);
12 result.srvalid = FALSE;
13 result.iregion = Zeros(8);
14 result.irvalid = FALSE;
15 idauExempt = FALSE;
16 idauNs = TRUE;
17 idauNsc = TRUE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2069

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

18
19 // If an IMPLEMENTATION DEFINED memory security attribution unit is present
20 // query it and override defaults set above. The IDAU is subject to the same
21 // 32byte minimum region granularity as the SAU or MPU.
22 // NOTE: The defaults above are set such that the IDAU has no effect on the
23 // SAU.
24 if boolean IMPLEMENTATION_DEFINED "IDAU present" then
25 (idauExempt,
26 idauNs,
27 idauNsc,
28 result.iregion,
29 result.irvalid) = IDAUCheck(address[31:5]:'00000');
30
31 // The 0xF0000000 -> 0xFFFFFFFF is always Secure for instruction fetches
32 if isinstrfetch && (address[31:28] == '1111') then
33 // Use default attributes defined above
34
35 // Check if the address is exempt from SAU/IDAU checking.
36 elsif idauExempt || // IDAU specified exemption.
37 (isinstrfetch && (address[31:28] == '1110')) || // Whole 0xExxxxxxx range
38 // exempt for IFetch.
39 ((addr >= 0xE0000000) && (addr <= 0xE0003FFF)) || // ITM, DWT, FPB, PMU.
40 ((addr >= 0xE0005000) && (addr <= 0xE0005FFF)) || // RAS error record registers.
41 ((addr >= 0xE000E000) && (addr <= 0xE000EFFF)) || // SCS.
42 ((addr >= 0xE002E000) && (addr <= 0xE002EFFF)) || // SCS NS alias.
43 ((addr >= 0xE0040000) && (addr <= 0xE0041FFF)) || // TPIU, ETM.
44 ((addr >= 0xE00FF000) && (addr <= 0xE00FFFFF)) then // ROM table.
45 // Memory security reported as NS-Req, and no region information is supplied.
46 result.ns = !isSecure;
47 result.irvalid = FALSE;
48
49 else
50 // If the SAU is enabled check its regions.
51 if SAU_CTRL.ENABLE == '1' then
52 boolean multiRegionHit = FALSE;
53 for r = 0 to (UInt(SAU_TYPE.SREGION) - 1)
54 if SAU_REGION[r].ENABLE == '1' then
55 // SAU region enabled so perform checks
56 bits(32) base_address = SAU_REGION[r].BADDR:'00000';
57 bits(32) limit_address = SAU_REGION[r].LADDR:'11111';
58 if ((UInt(base_address) <= addr) &&
59 (UInt(limit_address) >= addr)) then
60 if result.srvalid then
61 multiRegionHit = TRUE;
62 else
63 result.ns = SAU_REGION[r].NSC == '0';
64 result.nsc = SAU_REGION[r].NSC == '1';
65 result.srvalid = TRUE;
66 result.sregion = r[7:0];
67
68 // If multiple regions are hit then report memory as Secure and not
69 // Non-secure callable. Also do not report any region number
70 // information.
71 if multiRegionHit then
72 result.ns = FALSE;
73 result.nsc = FALSE;
74 result.sregion = Zeros(8);
75 result.srvalid = FALSE;
76
77 // SAU disabled, check if whole address space should be marked as
78 // Non-secure.
79 elsif SAU_CTRL.ALLNS == '1' then
80 result.ns = TRUE;
81
82 // Override the internal setting if the external attribution unit
83 // reports more restrictive attributes.
84 if !idauNs then
85 if result.ns || (!idauNsc && result.nsc) then
86 result.ns = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2070

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

87 result.nsc = idauNsc;
88
89 return result;

E2.1.367 SecurityState

1 // Type and definition of the current Security state of PE
2
3 enumeration SecurityState {SecurityState_NonSecure, SecurityState_Secure};
4 SecurityState CurrentState;

E2.1.368 SendEvent

1 // SendEvent
2 // =========
3 // Performs a send event by setting the Event Register of
4 // every PE in multiprocessor system.
5
6 SendEvent();

E2.1.369 SerializeVFP

1 // SerializeVFP
2 // ============
3 // Ensures that any exceptional conditions in previous floating-point
4 // instructions have been detected.
5
6 SerializeVFP();

E2.1.370 SetActive

1 // SetActive()
2 // ===========
3
4 SetActive(integer exception, boolean isSecure, boolean setNotClear)
5 if !HaveSecurityExt() then
6 isSecure = FALSE;
7 // If the exception target Security state is configurable there is only one active
8 // bit. To represent this the Non-secure and Secure instances of the active
9 // flags in the array are always set to the same value.

10 if IsExceptionTargetConfigurable(exception) then
11 if ExceptionTargetsSecure(exception, boolean UNKNOWN) == isSecure then
12 ExceptionActive[exception] = if setNotClear then '11' else '00';
13 else
14 idx = if isSecure then 0 else 1;
15 ExceptionActive[exception][idx] = if setNotClear then '1' else '0';

E2.1.371 SetDWTDebugEvent

1 // SetDWTDebugEvent()
2 // ==================
3 // Set a pending debug event to the PE.
4
5 boolean SetDWTDebugEvent(boolean secure_match, boolean priv_match, AccType acctype)
6 boolean isLAZYFP = acctype == AccType_LAZYFP;
7 if CanHaltOnEvent(secure_match, priv_match) then
8 DHCSR.C_HALT = '1';
9 DFSR.DWTTRAP = '1';

10 return TRUE;
11 elsif (HaveMainExt() &&
12 CanPendMonitorOnEvent(secure_match, !isLAZYFP, TRUE, priv_match, TRUE) &&
13 (!isLAZYFP || (isLAZYFP && FPCCR_S.MONRDY == '1'))) then
14 DEMCR.MON_PEND = '1';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2071

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

15 DFSR.DWTTRAP = '1';
16 return TRUE;
17 else
18 return FALSE;

E2.1.372 SetEventRegister

1 // SetEventRegister()
2 // ==================
3 // Set the Event Register of the current PE.
4
5 SetEventRegister();

E2.1.373 SetExclusiveMonitors

1 // SetExclusiveMonitors()
2 // ======================
3
4 SetExclusiveMonitors(bits(32) address, integer size)
5
6 boolean isSecure = CurrentState == SecurityState_Secure;
7 if address != Align(address, size) then
8 UFSR.UNALIGNED = '1';
9 excInfo = CreateException(UsageFault, FALSE, isSecure);

10 else
11 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_NORMAL, FindPriv(),
12 isSecure, FALSE, TRUE);
13 HandleException(excInfo);
14
15 if memaddrdesc.memattrs.shareable then
16 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
17
18 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

E2.1.374 SetITSTATEAndCommit

1 // SetITSTATEAndCommit()
2 // =====================
3
4 SetITSTATEAndCommit(ITSTATEType it)
5 // This function directly commits the change to the ITSTATE, so ThisInstrITSTATE()
6 // and NextInstrITSTATE() both point to the target address.
7 _NextInstrITState = it;
8 _ITStateChanged = TRUE;
9 EPSR.IT = it;

10 return;

E2.1.375 SetPending

1 // SetPending()
2 // ============
3
4 SetPending(integer exception, boolean isSecure, boolean setNotClear)
5 if !HaveSecurityExt() then
6 isSecure = FALSE;
7 // If the exception target Security state is configurable there is only one pending
8 // bit. To represent this, the Non-secure and Secure instances of the pending
9 // flags in the array are always set to the same value.

10 if IsExceptionTargetConfigurable(exception) then
11 ExceptionPending[exception] = if setNotClear then '11' else '00';
12 else
13 idx = if isSecure then 0 else 1;
14 ExceptionPending[exception][idx] = if setNotClear then '1' else '0';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2072

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.376 SetThisInstrDetails

1 // SetThisInstrDetails
2 // ===================
3
4 SetThisInstrDetails(bits(32) opcode, integer len)
5 // Insert the instruction into the queue at the first free slot. For an
6 // instruction with no beat behavior this should always be the first slot.
7 // NOTE: MVE instructions in IT blocks do not have beat-wise execution.
8 i = 0;
9 isMveInst = IsMveBeatWiseInstruction(opcode);

10 isCdeInst = IsCdeBeatWiseInstruction(opcode);
11 isBeatInst = (isMveInst || isCdeInst) && !InITBlock();
12 repeat
13 emptySlot = !_InstInfo[i].Valid;
14 if emptySlot && (isBeatInst || i == 0) then
15 _InstInfo[i].Valid = TRUE;
16 _InstInfo[i].Length = len;
17 _InstInfo[i].Opcode = opcode;
18 _InstInfo[i].Type = (if isMveInst then InstrType_BEATWISE_MVE else
19 if isCdeInst then InstrType_BEATWISE_CDE else
20 InstrType_NON_BEATWISE);
21 i = i + 1;
22 until emptySlot || (!isBeatInst && i > 0) || (i >= MAX_OVERLAPPING_INSTRS);

E2.1.377 SetVPTMask

1 // SetVPTMask()
2 // ============
3
4 SetVPTMask(integer beat, bits(4) mask)
5 // Only one mask field is available for each pair of beats.
6 assert beat[0] == '1';
7 Elem[VPR.[MASK23, MASK01], beat DIV 2, 4] = mask;
8 // Since the mask has been modified do not advance the VPT state after this
9 // instruction beat.

10 _AdvanceVPTState = FALSE;

E2.1.378 Shift

1 // Shift()
2 // =======
3
4 bits(N) Shift(bits(N) value, SRType sr_type, integer amount, bit carry_in)
5 (result, -) = Shift_C(value, sr_type, amount, carry_in);
6 return result;

E2.1.379 Shift_C

1 // Shift_C()
2 // =========
3
4 (bits(N), bit) Shift_C(bits(N) value, SRType sr_type, integer amount, bit carry_in)
5 assert !(sr_type == SRType_RRX && amount != 1);
6
7 if amount == 0 then
8 (result, carry_out) = (value, carry_in);
9 else

10 case sr_type of
11 when SRType_LSL
12 (result, carry_out) = LSL_C(value, amount);
13 when SRType_LSR
14 (result, carry_out) = LSR_C(value, amount);
15 when SRType_ASR
16 (result, carry_out) = ASR_C(value, amount);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2073

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

17 when SRType_ROR
18 (result, carry_out) = ROR_C(value, amount);
19 when SRType_RRX
20 (result, carry_out) = RRX_C(value, carry_in);
21
22 return (result, carry_out);

E2.1.380 SignedSat

1 // SignedSat()
2 // ===========
3
4 bits(N) SignedSat(integer i, integer N)
5 (result, -) = SignedSatQ(i, N);
6 return result;

E2.1.381 SignedSatQ

1 // SignedSatQ()
2 // ============
3
4 (bits(N), boolean) SignedSatQ(integer i, integer N)
5 if i > 2^(N-1) - 1 then
6 result = 2^(N-1) - 1; saturated = TRUE;
7 elsif i < -(2^(N-1)) then
8 result = -(2^(N-1)); saturated = TRUE;
9 else

10 result = i; saturated = FALSE;
11 return (result[N-1:0], saturated);

E2.1.382 SignExtend

1 // SignExtend()
2 // ============
3
4 bits(N) SignExtend(bits(M) x, integer N)
5 assert N >= M;
6 return Replicate(x[M-1], N-M) : x;
7
8 bits(N) SignExtend(bits(M) x)
9 return SignExtend(x, N);

E2.1.383 Sleeping

1 // Indicates the PE is sleeping
2
3 boolean Sleeping;

E2.1.384 SleepOnExit

1 // SleepOnExit()
2 // =============
3 // Optionally returns PE to a power-saving mode on return from the only
4 // active exception.
5
6 SleepOnExit();

E2.1.385 SP

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2074

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SP
2 // ==
3
4 // Non-assignment form
5
6 bits(32) SP
7 return R[13];
8
9 // Assignment form

10
11 SP = bits(32) value
12 RSPCheck[13] = value;

E2.1.386 SP_Main

1 // SP_Main
2 // =======
3
4 // Non-assignment form
5
6 bits(32) SP_Main
7 value = if IsSecure() then SP_Main_Secure else SP_Main_NonSecure;
8 return value;
9

10 // Assignment form
11
12 SP_Main = bits(32) value
13 if IsSecure() then
14 SP_Main_Secure = value;
15 else
16 SP_Main_NonSecure = value;

E2.1.387 SP_Main_NonSecure

1 // SP_Main_NonSecure
2 // =================
3
4 // Non-assignment form
5
6 bits(32) SP_Main_NonSecure
7 return _SP(RNamesSP_Main_NonSecure);
8
9 // Assignment form

10
11 SP_Main_NonSecure = bits(32) value
12 - = _SP(RNamesSP_Main_NonSecure, FALSE, FALSE, value);

E2.1.388 SP_Main_Secure

1 // SP_Main_Secure
2 // ==============
3
4 // Non-assignment form
5
6 bits(32) SP_Main_Secure
7 return _SP(RNamesSP_Main_Secure);
8
9 // Assignment form

10
11 SP_Main_Secure = bits(32) value
12 - = _SP(RNamesSP_Main_Secure, FALSE, FALSE, value);

E2.1.389 SP_Process

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2075

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SP_Process
2 // ==========
3
4 // Non-assignment form
5
6 bits(32) SP_Process
7 value = if IsSecure()
8 then SP_Process_Secure else SP_Process_NonSecure;
9 return value;

10
11 // Assignment form
12
13 SP_Process = bits(32) value
14 if IsSecure() then
15 SP_Process_Secure = value;
16 else
17 SP_Process_NonSecure = value;

E2.1.390 SP_Process_NonSecure

1 // SP_Process_NonSecure
2 // ====================
3
4 // Non-assignment form
5
6 bits(32) SP_Process_NonSecure
7 return _SP(RNamesSP_Process_NonSecure);
8
9 // Assignment form

10
11 SP_Process_NonSecure = bits(32) value
12 - = _SP(RNamesSP_Process_NonSecure, FALSE, FALSE, value);

E2.1.391 SP_Process_Secure

1 // SP_Process_Secure
2 // =================
3
4 // Non-assignment form
5
6 bits(32) SP_Process_Secure
7 return _SP(RNamesSP_Process_Secure);
8
9 // Assignment form

10
11 SP_Process_Secure = bits(32) value
12 - = _SP(RNamesSP_Process_Secure, FALSE, FALSE, value);

E2.1.392 SpeculativeSynchronizationBarrier

1 // Speculative Synchronisation Barrier
2 // ===================================
3 // Perform a Speculative Synchronization Barrier.
4
5 SpeculativeSynchronizationBarrier();

E2.1.393 SRType

1 // Different types of shift and rotate operations
2
3 enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

E2.1.394 Stack

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2076

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // Stack
2 // =====
3
4 // Assignment form
5
6 ExcInfo Stack(bits(32) frameptr, integer offset, RNames spreg, PEMode mode, bits(32) value)
7 // This function is used to perform register stacking operations that are
8 // done around exception handling. If the stack pointer is below the stack
9 // pointer limit but the access itself is above the limit it is

10 // IMPLEMENTATION DEFINED whether the write is performed. If the
11 // address of access is below the limit the access is not performed
12 // regardless of the stack pointer value.
13 if !ViolatesSPLim(spreg, frameptr) then
14 doAccess = TRUE;
15 else
16 doAccess = boolean IMPLEMENTATION_DEFINED "Push non-violating locations";
17
18 address = frameptr + offset;
19 if doAccess && !ViolatesSPLim(spreg, address) then
20 secure = ((spreg == RNamesSP_Main_Secure) ||
21 (spreg == RNamesSP_Process_Secure));
22 // Work out if the stack operations should be privileged or not.
23 if secure then
24 isPriv = CONTROL_S.nPRIV == '0';
25 else
26 isPriv = CONTROL_NS.nPRIV == '0';
27 isPriv = isPriv || (mode == PEMode_Handler);
28 // Finally perform the memory operations.
29 excInfo = MemA_with_priv_security(address, 4, AccType_STACK,
30 FindMemPriv(isPriv), secure, TRUE, value);
31 else
32 excInfo = DefaultExcInfo();
33 return excInfo;
34
35 // Non-assignment form
36
37 (ExcInfo, bits(32)) Stack(bits(32) frameptr, integer offset, RNames spreg, PEMode mode)
38 secure = ((spreg == RNamesSP_Main_Secure) ||
39 (spreg == RNamesSP_Process_Secure));
40 // Work out if the stack operations should be privileged or not.
41 if secure then
42 isPriv = CONTROL_S.nPRIV == '0';
43 else
44 isPriv = CONTROL_NS.nPRIV == '0';
45 isPriv = isPriv || (mode == PEMode_Handler);
46 // Finally perform the memory operations.
47 address = frameptr + offset;
48 (excInfo, value) = MemA_with_priv_security(address, 4, AccType_STACK,
49 FindMemPriv(isPriv), secure, TRUE);
50 return (excInfo, value);

E2.1.395 StandardFPSCRValue

1 // StandardFPSCRValue()
2 // ====================
3
4 FPSCR_Type StandardFPSCRValue()
5 return '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';

E2.1.396 SteppingDebug

1 // SteppingDebug()
2 // ===============
3
4 SteppingDebug(boolean isSecure, boolean isPriv, boolean haltAllowed, boolean monitorAllowed)
5 // Process step requests, stepping must be avoided if a pending event is
6 // already in flight.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2077

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 if (haltAllowed && CanHaltOnEvent(isSecure, isPriv) &&
8 DHCSR.C_STEP == '1' && DHCSR.C_HALT == '0') then
9 // If C_STEP is set then pend a debug halt for the next instruction.

10 DHCSR.C_HALT = '1';
11 DFSR.HALTED = '1';
12 elsif (monitorAllowed && CanPendMonitorOnEvent(isSecure, TRUE, TRUE, isPriv, TRUE) &&
13 DEMCR.MON_STEP == '1' && DEMCR.MON_PEND == '0') then
14 // If MON_STEP is set then pend the an exception for the next instruction.
15 DEMCR.MON_PEND = '1';
16 DFSR.HALTED = '1';

E2.1.397 SynchronizeBusFault

1 // SynchronizeBusFault()
2 // =====================
3
4 ExcInfo SynchronizeBusFault()
5 return SynchronizeBusFault(FALSE);
6
7 ExcInfo SynchronizeBusFault(AccType acctype)
8 return SynchronizeBusFault(acctype == AccType_LAZYFP);
9

10 ExcInfo SynchronizeBusFault(boolean isLazyStatePreservation)
11 // Force any latent BusFaults to be recognised.
12 faultDetected = BusFaultBarrier();
13 if faultDetected then
14 if isLazyStatePreservation then
15 BFSR.LSPERR = '1';
16 else
17 BFSR.IMPRECISERR = '1';
18 // To ensure errors are containable, asynchronous BusFaults escalate as if they were
19 // synchronous if Implicit Error Synchronization Barriers are enabled.
20 handleSync = AIRCR.IESB == '1';
21 excInfo = CreateException(BusFault, FALSE, IsSecure(), handleSync);
22 else
23 excInfo = DefaultExcInfo();
24 return excInfo;

E2.1.398 T32ExpandImm

1 // T32ExpandImm()
2 // ==============
3
4 bits(32) T32ExpandImm(bits(12) imm12)
5
6 // APSR.C argument to following function call does not affect the imm32 result.
7 (imm32, -) = T32ExpandImm_C(imm12, APSR.C);
8
9 return imm32;

E2.1.399 T32ExpandImm_C

1 // T32ExpandImm_C()
2 // ================
3
4 (bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)
5
6 if imm12[11:10] == '00' then
7
8 case imm12[9:8] of
9 when '00'

10 imm32 = ZeroExtend(imm12[7:0], 32);
11 when '01'
12 if imm12[7:0] == '00000000' then UNPREDICTABLE;
13 imm32 = '00000000' : imm12[7:0] : '00000000' : imm12[7:0];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2078

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

14 when '10'
15 if imm12[7:0] == '00000000' then UNPREDICTABLE;
16 imm32 = imm12[7:0] : '00000000' : imm12[7:0] : '00000000';
17 when '11'
18 if imm12[7:0] == '00000000' then UNPREDICTABLE;
19 imm32 = imm12[7:0] : imm12[7:0] : imm12[7:0] : imm12[7:0];
20 carry_out = carry_in;
21
22 else
23
24 unrotated_value = ZeroExtend('1':imm12[6:0], 32);
25 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12[11:7]));
26
27 return (imm32, carry_out);

E2.1.400 TailChain

1 // TailChain()
2 // ===========
3
4 (ExcInfo, EXC_RETURN_Type) TailChain(integer exceptionNumber,
5 boolean excIsSecure,
6 EXC_RETURN_Type excReturn)
7 // Refresh LR with the excReturn value, ready for the next exception.
8 if !HaveMveOrFPExt() then
9 excReturn.FType = '1';

10 excReturn.PREFIX = Ones(8);
11
12 return ExceptionTaken(exceptionNumber, TRUE, excIsSecure, IgnoreFaults_NONE, excReturn);

E2.1.401 TakePreserveFPException

1 // TakePreserveFPException()
2 // =========================
3
4 boolean TakePreserveFPException(ExcInfo excInfo)
5 assert HaveMveOrFPExt();
6 assert excInfo.origFault IN {DebugMonitor, SecureFault, MemManage, BusFault, UsageFault};
7
8 // Get the details of the original fault so that any escalation to HardFault or Lockup
9 // based on the current execution priority is ignored. Escalation is performed manually

10 // against the FPCCR.*RDY fields below.
11 exception = excInfo.origFault;
12 isSecure = excInfo.origFaultIsSecure;
13 fpccr = if isSecure then FPCCR_S else FPCCR_NS;
14
15 if FPCCR_S.MONRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
16 if FPCCR_S.BFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
17 if FPCCR_S.SFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
18 if fpccr.UFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
19 if fpccr.MMRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
20 if exception == DebugMonitor && FPCCR_S.MONRDY == '0' then
21 // ignore DebugMonitor exception
22 return FALSE;
23
24 // Handle exception specific details like escalation and syndrome information.
25 case exception of
26 when MemManage
27 escalate = fpccr.MMRDY == '0';
28 when UsageFault
29 escalate = fpccr.UFRDY == '0';
30 when BusFault
31 escalate = FPCCR_S.BFRDY == '0';
32 when SecureFault
33 escalate = FPCCR_S.SFRDY == '0';
34 otherwise
35 escalate = FALSE;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2079

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

36 if escalate then
37 exception = HardFault;
38 // Faults that originally targeted the Secure state still target the
39 // Secure state even if HardFault normally targets Non-secure.
40 isSecure = isSecure || ExceptionTargetsSecure(HardFault, isSecure);
41
42 // Check if the exception is enabled and has sufficient priority to
43 // preempt and be taken straight away.
44 termInst = FALSE;
45 if (ExceptionPriority(exception, isSecure, TRUE) < ExecutionPriority()) &&
46 ExceptionEnabled(exception, isSecure) then
47 if escalate then
48 HFSR.FORCED = '1';
49 // Set the exception pending and terminate the current instruction. This
50 // leaves Floating-point disabled (that is CONTROL.FPCA set to 0) and
51 // prevents the preempting exception entry reserving space for a redundant
52 // floating-point state.
53 SetPending(exception, isSecure, TRUE);
54 termInst = TRUE;
55 else
56 // If the reason the exception cannot preempt is because of the fact that
57 // HardFault could not be entered by the context the floating-point state
58 // belongs to then enter the lockup state.
59 if FPCCR_S.HFRDY == '0' then
60 Lockup(FALSE); // Lockup at current priority, lock-up address = 0xEFFFFFFE.
61 termInst = TRUE;
62 else
63 if escalate then
64 HFSR.FORCED = '1';
65 // Set the exception pending so it will be taken after the current
66 // handler returns.
67 SetPending(exception, isSecure, TRUE);
68 return termInst;

E2.1.402 TakeReset

1 // TakeReset()
2 // ===========
3
4 TakeReset()
5 // If the Security Extension is implemented the PE resets into Secure state.
6 // If the Security Extension is not implemented the PE resets into Non-secure state.
7 if HaveSecurityExt() then
8 CurrentState = SecurityState_Secure;
9 else

10 CurrentState = SecurityState_NonSecure;
11
12 ResetRegs(); // Catch-all function for System Control Space reset.
13 if HaveMainExt() then
14 LR = Ones(32); // Preset to an illegal exception return value.
15 SetITSTATEAndCommit(Zeros(8)); // IT/ICI bits cleared.
16 else
17 LR = bits(32) UNKNOWN; // Value must be initialised by software.
18
19 if HaveMve() then
20 VPR = bits(32) UNKNOWN;
21
22 // Reset internal run state
23 Halted = FALSE;
24 LockedUp = FALSE;
25
26 // Initialize the Floating-point Extension
27 if HaveMveOrFPExt() then
28 for i = 0 to 31
29 S[i] = bits(32) UNKNOWN;
30
31 for i = 0 to MaxExceptionNum() // All exceptions Inactive.
32 ExceptionActive[i] = '00';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2080

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

33 ClearExclusiveLocal(ProcessorID()); // Synchronization (LDREX* / STREX*) monitor support.
34 ClearEventRegister(); // See WFE instruction for more information.
35 ClearInFlightInstructions();
36 for i = 0 to 12
37 R[i] = bits(32) UNKNOWN;
38
39 // Clearing stack limit registers
40 if HaveMainExt() then
41 MSPLIM_NS = Zeros(32);
42 PSPLIM_NS = Zeros(32);
43 if HaveSecurityExt() then
44 MSPLIM_S = Zeros(32);
45 PSPLIM_S = Zeros(32);
46
47 // Load the initial value of the stack pointer and the reset value from the
48 // vector table. The order of the loads is IMPLEMENTATION DEFINED.
49 (excSp, sp) = Vector[0, HaveSecurityExt()];
50 (excRst, start) = Vector[Reset, HaveSecurityExt()];
51 if excSp.fault != NoFault || excRst.fault != NoFault then
52 SetActive(HardFault, HaveSecurityExt(), TRUE);
53 Lockup(TRUE);
54
55 // Initialize the stack pointers and start execution at the reset vector.
56 if HaveSecurityExt() then
57 SP_Main_Secure = sp;
58 SP_Main_NonSecure = ((bits(30) UNKNOWN):'00');
59 SP_Process_Secure = ((bits(30) UNKNOWN):'00');
60 else
61 SP_Main_NonSecure = sp;
62 SP_Process_NonSecure = ((bits(30) UNKNOWN):'00');
63 EPSR.T = start[0];
64 BranchTo(start, TRUE, FALSE);
65
66 // Trigger a debug event even if resetting into Secure state.
67 if DHCSR.C_DEBUGEN == '1' && DEMCR.VC_CORERESET == '1' &&
68 (HasArchVersion(Armv8p1) || CanHaltOnEvent(FALSE, TRUE)) then
69 DHCSR.C_HALT = '1';
70 DFSR.VCATCH = '1';

E2.1.403 ThisInstr

1 // ThisInstr()
2 // ===========
3
4 bits(32) ThisInstr()
5 return ThisInstr(if HaveMve() then _InstID else 0);
6
7 bits(32) ThisInstr(integer instID)
8 if !_InstInfo[instID].Valid then
9 return bits(32) UNKNOWN;

10 return _InstInfo[instID].Opcode;

E2.1.404 ThisInstrAddr

1 // ThisInstrAddr()
2 // ===============
3
4 bits(32) ThisInstrAddr()
5 return _CurrentInstrExecState.FetchAddr;

E2.1.405 ThisInstrITState

1 // ThisInstrITState()
2 // ==================
3

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2081

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 ITSTATEType ThisInstrITState()
5 if HaveMainExt() then
6 value = _CurrentInstrExecState.ITState;
7 else
8 value = Zeros(8);
9 return value;

E2.1.406 ThisInstrLength

1 // ThisInstrLength()
2 // =================
3
4 integer ThisInstrLength()
5 return ThisInstrLength(if HaveMve() then _InstID else 0);
6
7 integer ThisInstrLength(integer instID)
8 if !_InstInfo[instID].Valid then
9 return 0;

10 return _InstInfo[instID].Length;

E2.1.407 TopLevel

1 // TopLevel()
2 // ==========
3
4 // This function is called one time for each tick the PE is not in a sleep
5 // state. It handles all instruction processing, including fetching the opcode,
6 // decode and execute. It also handles pausing execution when in the lockup
7 // state.
8 TopLevel()
9 // Process any pending reset.

10 if AIRCR_S.SYSRESETREQ == '1' then
11 TakeReset();
12
13 UpdateDebugEnable();
14 isSecure = IsSecure();
15 isPriv = FindPriv();
16 execFault = FALSE;
17 haltSteppingAllowed = TRUE;
18 monitorSteppingAllowed = TRUE;
19
20 // Reset some globals so that PC/ITSTATE changes can be detected.
21 _ITStateChanged = FALSE;
22 _PCChanged = FALSE;
23 _CommitState = FALSE;
24
25 // If we have no instructions in flight then any pending fetch fault was
26 // handled in the previous cycle.
27 if !InstructionsInFlight() then
28 _PendingFetchFault = FALSE;
29
30 // If the PE is halted then do nothing, otherwise process the next
31 // instruction.
32 if !IsDebugState() then
33 // If not locked up, process the next instruction, or just the in flight
34 // beats if a halt or monitor exception is pending.
35 if !LockedUp then
36 // Debug can prevent new fetches if there a pending halt or DebugMonitor
37 // exception. However in-flight instructions need to be completed before we
38 // handle the debug event. In some corner cases (for example, if the debugger
39 // has modified ECI) this may require fetching new instructions to complete
40 // all outstanding beats (as indicated by ECI).
41 debugAllowsFetch = ((!PendingDebugHalt() && !PendingDebugMonitor()) ||
42 (EPSR.ECI[7:4] == Zeros(4) &&
43 EPSR.ECI[3:0] != Zeros(4) &&
44 !InstructionsInFlight()));
45 // Execute remaining in-flight instructions without fetching new ones if

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2082

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

46 // there is a pending fetch fault, or debug is preventing the fetch.
47 execFault = InstructionExecute(debugAllowsFetch && !_PendingFetchFault);
48 // Advance the PC and commit instruction state if not locked up, an
49 // exception return is not about to be performed, and the current
50 // instruction has not been terminated by a fault.
51 if _CommitState && !_PendingReturnOperation then
52 InstructionAdvance();
53
54 // If a debug halt was requested and there are no active vector chains
55 // then halt if allowed to do so.
56 if !InstructionsInFlight() && PendingDebugHalt() then
57 Halt();
58
59 // If the execution priority after executing the instruction, but before
60 // handling exception transitions, prevents the DebugMonitor exception preempting,
61 // then prevent monitor stepping. This makes sure that monitor stepping executes
62 // at least one instruction in a preemptable context before reentering the
63 // DebugMonitor.
64 if !MonitorCanPreempt() then
65 monitorSteppingAllowed = FALSE;
66
67 elsif DHCSR.C_HALT == '0' then
68 // Resume the PE if a resume from debug halt was requested.
69 Halted = FALSE;
70 DHCSR.S_RESTART_ST = '1';
71 // If the PE has only just exited debug state prevent stepping immediately
72 // re-entering without executing an instruction first.
73 haltSteppingAllowed = FALSE;
74
75 if !IsDebugState() then
76 try
77 // Process and take any pending exceptions. If there is a pending
78 // fetch fault, only process it if we either have no instructions in
79 // flight, or there is a execution fault.
80 if !_PendingFetchFault || !InstructionsInFlight() || execFault then
81 if HandleExceptionTransitions() then
82 // If an exception has been taken, process any step request now,
83 // not on the next instruction.
84 SteppingDebug(isSecure, isPriv, TRUE, TRUE);
85
86 // Pend vector catch debug state when needed.
87 VectorCatchDebug(IsSecure(), FindPriv());
88 else
89 SteppingDebug(isSecure, isPriv,
90 haltSteppingAllowed, monitorSteppingAllowed);
91
92 // If the PC has moved away from the lockup address (for example,
93 // because an NMI has been taken) leave the lockup state.
94 if LockedUp && NextInstrAddr() != 0xEFFFFFFE[31:0] then
95 LockedUp = FALSE;
96
97 catch exn
98 // Do not catch UNPREDICTABLE or internal errors.
99 when IsExceptionTaken(exn)

100 // The correct architectural behavior for any exceptions is
101 // performed inside HandleExceptionTransitions. So no
102 // additional actions are required in this catch block.

E2.1.408 TTResp

1 // TTResp()
2 // ========
3
4 bits(32) TTResp(bits(32) address, boolean alt, boolean forceunpriv)
5 TT_RESP_Type resp = Zeros();
6
7 // Only allow security checks if currently in Secure state.
8 if IsSecure() then

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2083

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

9 sAttributes = SecurityCheck(address, FALSE, IsSecure());
10 if sAttributes.srvalid then
11 resp.SREGION = sAttributes.sregion;
12 resp.SRVALID = '1';
13 if sAttributes.irvalid then
14 resp.IREGION = sAttributes.iregion;
15 resp.IRVALID = '1';
16 addrSecure = if sAttributes.ns then '0' else '1';
17 resp.S = addrSecure;
18
19 // MPU region information only available when privileged or when
20 // inspecting the other MPU state.
21 other_domain = (alt != IsSecure());
22 if CurrentModeIsPrivileged() || alt then
23 (write, read, region, hit) = IsAccessible(address, forceunpriv, other_domain);
24 if hit then
25 resp.MREGION = region;
26 resp.MRVALID = '1';
27 resp.R = read;
28 resp.RW = write;
29 if IsSecure() then
30 resp.NSR = read AND NOT addrSecure;
31 resp.NSRW = write AND NOT addrSecure;
32
33 return resp;

E2.1.409 TweakCellInvRot

1 // TweakCellInvRot()
2 // =================
3
4 bits(4) TweakCellInvRot(bits(4)inCell)
5 bits(4) outCell;
6 outCell[3] = inCell[2];
7 outCell[2] = inCell[1];
8 outCell[1] = inCell[0];
9 outCell[0] = inCell[0] EOR inCell[3];

10 return outCell;

E2.1.410 TweakCellRot

1 // TweakCellRot()
2 // ==============
3
4 bits(4) TweakCellRot(bits(4) inCell)
5 bits(4) outCell;
6 outCell[3] = inCell[0] EOR inCell[1];
7 outCell[2] = inCell[3];
8 outCell[1] = inCell[2];
9 outCell[0] = inCell[1];

10 return outCell;

E2.1.411 TweakInvShuffle

1 // TweakInvShuffle()
2 // =================
3
4 bits(64) TweakInvShuffle(bits(64)inData)
5 bits(64) outData;
6 outData[3:0] = TweakCellInvRot(inData[51:48]);
7 outData[7:4] = inData[55:52];
8 outData[11:8] = inData[23:20];
9 outData[15:12] = inData[27:24];

10 outData[19:16] = inData[3:0];
11 outData[23:20] = inData[7:4];

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2084

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

12 outData[27:24] = TweakCellInvRot(inData[11:8]);
13 outData[31:28] = inData[15:12];
14 outData[35:32] = TweakCellInvRot(inData[31:28]);
15 outData[39:36] = TweakCellInvRot(inData[63:60]);
16 outData[43:40] = TweakCellInvRot(inData[59:56]);
17 outData[47:44] = TweakCellInvRot(inData[19:16]);
18 outData[51:48] = inData[35:32];
19 outData[55:52] = inData[39:36];
20 outData[59:56] = inData[43:40];
21 outData[63:60] = TweakCellInvRot(inData[47:44]);
22 return outData;

E2.1.412 TweakShuffle

1 // TweakShuffle()
2 // ==============
3
4 bits(64) TweakShuffle(bits(64) inData)
5 bits(64) outData;
6 outData[3:0] = inData[19:16];
7 outData[7:4] = inData[23:20];
8 outData[11:8] = TweakCellRot(inData[27:24]);
9 outData[15:12] = inData[31:28];

10 outData[19:16] = TweakCellRot(inData[47:44]);
11 outData[23:20] = inData[11:8];
12 outData[27:24] = inData[15:12];
13 outData[31:28] = TweakCellRot(inData[35:32]);
14 outData[35:32] = inData[51:48];
15 outData[39:36] = inData[55:52];
16 outData[43:40] = inData[59:56];
17 outData[47:44] = TweakCellRot(inData[63:60]);
18 outData[51:48] = TweakCellRot(inData[3:0]);
19 outData[55:52] = inData[7:4];
20 outData[59:56] = TweakCellRot(inData[43:40]);
21 outData[63:60] = TweakCellRot(inData[39:36]);
22 return outData;

E2.1.413 UnprivHaltingDebugAllowed

1 // UnprivHaltingDebugAllowed()
2 // ===========================
3
4 boolean UnprivHaltingDebugAllowed(boolean isSecure)
5 return UnprivHaltingDebugEnabled(isSecure) && !CurrentModeIsPrivileged(isSecure);

E2.1.414 UnprivHaltingDebugEnabled

1 // UnprivHaltingDebugEnabled()
2 // ===========================
3 // Returns TRUE if unprivileged halting debug is enabled for the indicated
4 // Security state, FALSE otherwise.
5
6 boolean UnprivHaltingDebugEnabled(boolean isSecure)
7 if !HaveUDE() || (!HaveSecurityExt() && isSecure) then
8 return FALSE;
9 elsif HaveSecurityExt() then

10 uiden = DAUTHCTRL_S.UIDEN == '1';
11 // Secure unprivileged debug also grants Non-secure unprivileged debug.
12 if !isSecure then uiden = uiden || DAUTHCTRL_NS.UIDEN == '1';
13 return uiden;
14 else
15 return DAUTHCTRL.UIDEN == '1';

E2.1.415 UnsignedSat

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2085

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // UnsignedSat()
2 // =============
3
4 bits(N) UnsignedSat(integer i, integer N)
5 (result, -) = UnsignedSatQ(i, N);
6 return result;

E2.1.416 UnsignedSatQ

1 // UnsignedSatQ()
2 // ==============
3
4 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
5 if i > 2^N - 1 then
6 result = 2^N - 1; saturated = TRUE;
7 elsif i < 0 then
8 result = 0; saturated = TRUE;
9 else

10 result = i; saturated = FALSE;
11 return (result[N-1:0], saturated);

E2.1.417 UpdateDebugEnable

1 // UpdateDebugEnable()
2 // ===================
3 // Update DHCSR.S_SDE, DEMCR.SDME, and unprivileged debug enables for each instruction.
4
5 UpdateDebugEnable()
6 // DHCSR.S_SDE and unprivileged debug enables are frozen if the PE is in Debug state.
7 if !Halted then
8 nsUide = UnprivHaltingDebugAllowed(FALSE);
9 sUide = UnprivHaltingDebugAllowed(TRUE);

10 DHCSR.S_SDE = if sUide || SecureHaltingDebugAllowed() then '1' else '0';
11 DHCSR.S_SUIDE = if sUide && !SecureHaltingDebugAllowed() then '1' else '0';
12 DHCSR.S_NSUIDE = if nsUide && !HaltingDebugAllowed() then '1' else '0';
13
14 // DEMCR.SDME is frozen if DebugMonitor is active or pending.
15 if HaveDebugMonitor() &&
16 ExceptionActive[DebugMonitor] == '00' &&
17 DEMCR.MON_PEND == '0' then
18 DEMCR.SDME = if SecureDebugMonitorAllowed() then '1' else '0';

E2.1.418 UpdateFPCCR

1 // UpdateFPCCR()
2 // =============
3
4 UpdateFPCCR(bits(32) frameptr, boolean applySpLim)
5 assert(HaveMveOrFPExt());
6
7 FPCAR.ADDRESS = frameptr[31:3];
8 // Flag if the context address violates the stack pointer limit. If the
9 // limit has been violated PreserveFPState() will zero the registers if

10 // required, but will not save the context to the stack.
11 if applySpLim && ViolatesSPLim(LookUpSP(), frameptr) then
12 FPCCR.SPLIMVIOL = '1';
13 else
14 FPCCR.SPLIMVIOL = '0';
15 FPCCR.LSPACT = '1';
16
17 execPri = ExecutionPriority();
18 isSecure = IsSecure();
19 FPCCR_S.S = if isSecure then '1' else '0';
20 if CurrentModeIsPrivileged() then
21 FPCCR.USER = '0';

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2086

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

22 else
23 FPCCR.USER = '1';
24 if CurrentMode() == PEMode_Thread then
25 FPCCR.THREAD = '1';
26 else
27 FPCCR.THREAD = '0';
28 if execPri > -1 then
29 FPCCR_S.HFRDY = '1';
30 else
31 FPCCR_S.HFRDY = '0';
32 targetSecure = AIRCR.BFHFNMINS == '0';
33 busfaultpri = ExceptionPriority(BusFault, targetSecure, FALSE);
34 if SHCSR_S.BUSFAULTENA == '1' && execPri > busfaultpri then
35 FPCCR_S.BFRDY = '1';
36 else
37 FPCCR_S.BFRDY = '0';
38 memfaultpri = ExceptionPriority(MemManage, isSecure, FALSE);
39 if SHCSR.MEMFAULTENA == '1' && execPri > memfaultpri then
40 FPCCR.MMRDY = '1';
41 else
42 FPCCR.MMRDY = '0';
43 usagefaultpri = ExceptionPriority(UsageFault, FALSE, FALSE);
44 if SHCSR_NS.USGFAULTENA == '1' && execPri > usagefaultpri then
45 FPCCR_NS.UFRDY = '1';
46 else
47 FPCCR_NS.UFRDY = '0';
48 usagefaultpri = ExceptionPriority(UsageFault, TRUE, FALSE);
49 if SHCSR_S.USGFAULTENA == '1' && execPri > usagefaultpri then
50 FPCCR_S.UFRDY = '1';
51 else
52 FPCCR_S.UFRDY = '0';
53 if HaveSecurityExt() then
54 securefaultpri = ExceptionPriority(SecureFault, TRUE, FALSE);
55 if SHCSR_S.SECUREFAULTENA == '1' && execPri > securefaultpri then
56 FPCCR_S.SFRDY = '1';
57 else
58 FPCCR_S.SFRDY = '0';
59 if CanPendMonitorOnEvent(isSecure, TRUE, TRUE, FindPriv(), TRUE) then
60 FPCCR_S.MONRDY = '1';
61 else
62 FPCCR_S.MONRDY = '0';
63 return;

E2.1.419 ValidateAddress

1 // ValidateAddress()
2 // =================
3
4 (ExcInfo, AddressDescriptor) ValidateAddress(bits(32) address, AccType acctype,
5 boolean ispriv, boolean secure,
6 boolean iswrite, boolean aligned)
7 AddressDescriptor result;
8 Permissions perms;
9 ns = boolean UNKNOWN;

10 excInfo = DefaultExcInfo();
11
12 // Security checking and MPU bank selection if Security Extensions are present.
13 if HaveSecurityExt() then
14 // Check SAU and IDAU for given address.
15 isInstrfetch = acctype == AccType_IFETCH;
16 sAttrib = SecurityCheck(address, isInstrfetch, secure);
17 if isInstrfetch then
18 ns = sAttrib.ns;
19 secureMpu = !sAttrib.ns;
20 // Override the privilege flag supplied with the a value based on the
21 // privilege associated with the current mode and the Security state
22 // of the MPU being queried. This can be different from the value this
23 // function is called with, because CONTROL.nPRIV is banked between

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2087

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

24 // Security states.
25 ispriv = CurrentModeIsPrivileged(secureMpu);
26 else
27 ns = !secure || sAttrib.ns;
28 secureMpu = secure;
29 else
30 ns = TRUE;
31 secureMpu = FALSE;
32
33 // Get memory attribute information from MPU. Note that NS information
34 // in the memory attribute is set by SAU or IDAU and is updated after getting
35 // attribute values from MPU.
36 (result.memattrs, perms) = MPUCheck(address, acctype, ispriv, secureMpu);
37 // Updating NS information got from SAU or IDAU memory attributes.
38 result.memattrs.NS = ns;
39
40 // Generate UNALIGNED UsageFault exception if access to Device memory is unaligned.
41 if !aligned && result.memattrs.memtype == MemType_Device && perms.apValid == TRUE then
42 if acctype != AccType_DBG then
43 if secure then
44 UFSR_S.UNALIGNED = '1';
45 else
46 UFSR_NS.UNALIGNED = '1';
47 excInfo = CreateException(UsageFault, FALSE, secure);
48
49 if excInfo.fault == NoFault && HaveSecurityExt() then
50 // Check if there is a SAU or IDAU violation and, if so, update the fault syndrome.
51 case acctype of
52 when AccType_IFETCH
53 if secure then
54 if sAttrib.ns then
55 // Invalid exit from the Secure state
56 SFSR.INVTRAN = '1';
57 excInfo = CreateException(SecureFault);
58 else
59 if !sAttrib.ns && !sAttrib.nsc then
60 // Invalid entry to the Secure state
61 SFSR.INVEP = '1';
62 excInfo = CreateException(SecureFault);
63 when AccType_VECTABLE
64 if !secure && !sAttrib.ns then
65 HFSR.VECTTBL = '1';
66 // Vector fetch faults raise a HardFault directly, but because this
67 // fault is caused by an SAU or IDAU violation it always targets
68 // the Secure state.
69 excInfo = CreateException(HardFault, TRUE, TRUE);
70 when AccType_DBG
71 if !secure && !sAttrib.ns then
72 // DAP accesses result in a error being returned to the DAP without any
73 // syndrome being set.
74 excInfo = CreateException(SecureFault);
75 when AccType_NORMAL, AccType_MVE, AccType_ORDERED, AccType_STACK
76 if !secure && !sAttrib.ns then
77 SFSR.AUVIOL = '1';
78 SFSR.SFARVALID = '1';
79 SFAR = address;
80 excInfo = CreateException(SecureFault);
81 when AccType_LAZYFP
82 if !secure && !sAttrib.ns then
83 SFSR.LSPERR = '1';
84 SFSR.SFARVALID = '1';
85 SFAR = address;
86 excInfo = CreateException(SecureFault);
87 otherwise
88 assert(FALSE);
89
90 result.paddress = address;
91 result.accattrs.iswrite = iswrite;
92 result.accattrs.ispriv = ispriv;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2088

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

93 result.accattrs.acctype = acctype;
94
95 if excInfo.fault == NoFault then
96 excInfo = CheckPermission(perms, address, acctype, iswrite, ispriv, secureMpu);
97
98 return (excInfo, result);

E2.1.420 ValidateExceptionReturn

1 // ValidateExceptionReturn()
2 // =========================
3
4 (ExcInfo, EXC_RETURN_Type) ValidateExceptionReturn(EXC_RETURN_Type excReturn,
5 integer returningExceptionNumber)
6 boolean error = FALSE;
7 assert CurrentMode() == PEMode_Handler;
8 if !IsOnes(excReturn[23:7]) || excReturn[1] != '0' then
9 UNPREDICTABLE;

10 if !HaveMveOrFPExt() && excReturn.FType == '0' then
11 UNPREDICTABLE;
12 if !HaveSecurityExt() && (excReturn.S == '1' ||
13 excReturn.ES == '1' ||
14 excReturn.DCRS == '0') then
15 UNPREDICTABLE;
16
17 // Security specific validation
18 if HaveSecurityExt() then
19 // If exception return is an invalid attempt to return from Non-secure
20 // state with EXC_RETURN.ES set as '1', then a SecureFault is raised.
21 exceptionWasSecure = excReturn.ES == '1';
22 if CurrentState == SecurityState_NonSecure && excReturn.ES == '1' then
23 error = TRUE;
24 // excReturn.ES is used below to control which exception to
25 // deactivate, and which CONTROL.SPSEL to update. Force it to the
26 // correct value so the code below functions correctly even if the
27 // Non-secure state returned an invalid excReturn value.
28 // Similarly the exception to deactivate below is actually Non-secure.
29 excReturn.ES = '0';
30 exceptionWasSecure = FALSE;
31
32 // Check DCRS bit not used in for Non-secure exceptions.
33 if !exceptionWasSecure && excReturn.DCRS == '0' then
34 error = TRUE;
35
36 if error then
37 SFSR.INVER = '1';
38 exceptionNumber = SecureFault;
39 else
40 exceptionWasSecure = FALSE;
41
42 // Check returning from an inactive handler.
43 if !error then
44 if !IsActiveForState(returningExceptionNumber, exceptionWasSecure) then
45 error = TRUE;
46 if HaveMainExt() then
47 UFSR.INVPC = '1';
48 exceptionNumber = UsageFault;
49 else
50 exceptionNumber = HardFault;
51
52 if error then
53 DeActivate(returningExceptionNumber, exceptionWasSecure);
54 if HaveSecurityExt() && exceptionWasSecure then
55 CONTROL_S.SPSEL = excReturn.SPSEL;
56 else
57 CONTROL_NS.SPSEL = excReturn.SPSEL;
58 // Escalates to HardFault if requested fault is disabled, or has
59 // insufficient priority, or if Main Extension is not implemented.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2089

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

60 excInfo = CreateException(exceptionNumber, FALSE, IsSecure());
61 else
62 excInfo = DefaultExcInfo();
63 return (excInfo, excReturn);

E2.1.421 ValidatePAC

1 // ValidatePAC()
2 // =============
3 // Returns TRUE if the pointer authentication code in Z matches the pointer authentication
4 // code derived using a cryptographic algorithm as a combination of X, Y and the
5 // cryptographic key. The correct cryptographic key is selected in CreatePAC(), on the
6 // basis of the current Security state and privilege level.
7
8 boolean ValidatePAC(bits(32) X, bits(32) Y, bits(32) Z)
9 return Z == CreatePAC(X, Y);

E2.1.422 VCX_op0

1 // VCX_op0
2 // =======
3
4 bits(size) VCX_op0(bits(32) instr, integer size)
5 return VCX_op0(instr, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op0(bits(32) instr, integer size, boolean isBeatWise, integer curBeat,
8 bits(4) elmtMask)
9 assert size IN {32, 64};

10
11 // Custom data path returning IMPLEMENTATION DEFINED value based on
12 // instruction opcode only.
13 if isBeatWise then
14 return CdeImpDefValue(instr, curBeat, elmtMask);
15 else
16 return CdeImpDefValue(instr);

E2.1.423 VCX_op1

1 // VCX_op1
2 // =======
3
4 bits(size) VCX_op1(bits(32) instr, bits(N) opa, integer size)
5 return VCX_op1(instr, opa, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op1(bits(32) instr, bits(N) opa, integer size, boolean isBeatWise,
8 integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and single 32-bit, 64-bit, or 128-bit operand, opa, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa);

E2.1.424 VCX_op2

1 // VCX_op2
2 // ======
3
4 bits(size) VCX_op2(bits(32) instr, bits(N) opa, bits(N) opb, integer size)
5 return VCX_op2(instr, opa, opb, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2090

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 bits(size) VCX_op2(bits(32) instr, bits(N) opa, bits(N) opb, integer size,
8 boolean isBeatWise, integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and two 32-bit or 64-bit operands, opa and opb, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, opb, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa, opb);

E2.1.425 VCX_op3

1 // VCX_op3
2 // =======
3
4 bits(size) VCX_op3(bits(32) instr, bits(N) opa, bits(N) opb, bits(N) opc, integer size)
5 return VCX_op3(instr, opa, opb, opc, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op3(bits(32) instr, bits(N) opa, bits(N) opb, bits(N) opc, integer size,
8 boolean isBeatWise, integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and three 32-bit, 64-bit, or 128-bit operands, opa, opb and opc, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, opb, opc, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa, opb, opc);

E2.1.426 Vector

1 // Vector[]
2 // ========
3
4 (ExcInfo, bits(32)) Vector[integer exceptionNumber, boolean isSecure]
5 // Calculate the address of the entry in the vector table.
6 vtor = if isSecure then VTOR_S else VTOR_NS;
7 addr = (vtor.TBLOFF:'0000000') + 4 * exceptionNumber;
8 // Fetch the vector with the correct privilege and security
9 (exc, vector) = MemA_with_priv_security(addr, 4, AccType_VECTABLE,

10 Privilege_Priv, isSecure, TRUE);
11 // Faults that prevent the vector being fetched are terminal and prevent
12 // the exception handler from being entered.
13 if exc.fault != NoFault then
14 exc.isTerminal = TRUE;
15 return (exc, vector);

E2.1.427 VectorCatchDebug

1 // VectorCatchDebug()
2 // ==================
3
4 VectorCatchDebug(boolean isSecure, boolean isPriv)
5 vectorEvt = FALSE;
6
7 if CanHaltOnEvent(isSecure, isPriv) then
8 case UInt(IPSR.Exception) of
9 when HardFault

10 vectorEvt = ((DEMCR.VC_HARDERR == '1' && (HFSR.FORCED == '1' ||
11 HFSR.DEBUGEVT == '1')) ||
12 (DEMCR.VC_INTERR == '1' && (HFSR.VECTTBL == '1')));
13

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2091

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

14 when MemManage
15 vectorEvt = ((DEMCR.VC_MMERR == '1' && (MMFSR.IACCVIOL == '1' ||
16 MMFSR.DACCVIOL == '1')) ||
17 (DEMCR.VC_INTERR == '1' && (MMFSR.MSTKERR == '1' ||
18 MMFSR.MUNSTKERR == '1' ||
19 MMFSR.MLSPERR == '1')));
20
21 when BusFault
22 vectorEvt = ((DEMCR.VC_BUSERR == '1' && (BFSR.IBUSERR == '1' ||
23 BFSR.PRECISERR == '1' ||
24 BFSR.IMPRECISERR == '1')) ||
25 (DEMCR.VC_INTERR == '1' && (BFSR.STKERR == '1' ||
26 BFSR.UNSTKERR == '1' ||
27 BFSR.LSPERR == '1')));
28
29 when UsageFault
30 vectorEvt = ((DEMCR.VC_STATERR == '1' && (UFSR.UNDEFINSTR == '1' ||
31 UFSR.INVPC == '1' ||
32 UFSR.INVSTATE == '1')) ||
33 (DEMCR.VC_CHKERR == '1' && (UFSR.UNALIGNED == '1' ||
34 UFSR.DIVBYZERO == '1')) ||
35 (DEMCR.VC_INTERR == '1' && (UFSR.STKOF == '1')) ||
36 (DEMCR.VC_NOCPERR == '1' && (UFSR.NOCP == '1')));
37
38 when SecureFault
39 vectorEvt = ((DEMCR.VC_SFERR == '1' && (SFSR.INVEP == '1' ||
40 SFSR.INVIS == '1' ||
41 SFSR.INVER == '1' ||
42 SFSR.AUVIOL == '1' ||
43 SFSR.INVTRAN == '1' ||
44 SFSR.LSPERR == '1' ||
45 SFSR.LSERR == '1')));
46
47 otherwise
48 // No other exceptions trigger vector catch
49
50 if vectorEvt then
51 DHCSR.C_HALT = '1';
52 DFSR.VCATCH = '1';

E2.1.428 VFPExcBarrier

1 // VFPExcBarrier
2 // =============
3 // Ensures that all floating-point exception processing has completed.
4
5 VFPExcBarrier();

E2.1.429 VFPExpandImm

1 // VFPExpandImm()
2 // ==============
3
4 bits(N) VFPExpandImm(bits(8) imm8, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E-2) exp;
9 bits(F+2) frac;

10 sign = imm8[7];
11 exp = NOT(imm8[6]):Replicate(imm8[6],E-3);
12 frac = imm8[5:0]:Zeros(F-4);
13 return sign : exp : frac;

E2.1.430 VFPNegMul

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2092

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // Different types of floating-point multiply and negate operations
2
3 enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

E2.1.431 VFPSmallRegisterBank

1 // VFPSmallRegisterBank()
2 // ======================
3 // Returns TRUE because the floating-point implementation only provides access to
4 // 16 double-precision registers
5
6 boolean VFPSmallRegisterBank()
7 return TRUE;

E2.1.432 ViolatesSPLim

1 // ViolatesSPLim()
2 // ===============
3
4 boolean ViolatesSPLim(RNames spreg, bits(32) value)
5 isSecure = ((spreg == RNamesSP_Main_Secure) || (spreg == RNamesSP_Process_Secure));
6
7 // Check CCR.STKOFHFNMIGN to determine if the limit should actually be
8 // applied. When checking if CCR.STKOFHFNMIGN should apply the requested
9 // execution priority is considered, and AIRCR.PRIS is ignored.

10 assert (!isSecure || HaveSecurityExt());
11 if HaveMainExt() && IsReqExcPriNeg(isSecure) then
12 ignLimit = if isSecure then CCR_S.STKOFHFNMIGN else CCR_NS.STKOFHFNMIGN;
13 applylimit = (ignLimit == '0');
14 else
15 applylimit = TRUE;
16
17 return applylimit && (UInt(value) < UInt(LookUpSPLim(spreg)));

E2.1.433 VPTActive

1 // VPTActive()
2 // ===========
3
4 boolean VPTActive()
5 return VPTActive(_BeatID);
6
7 boolean VPTActive(integer beat)
8 return Elem[VPR[23:16], beat DIV 2, 4] != Zeros(4);

E2.1.434 VPTAdvance

1 // VPTAdvance()
2 // ============
3
4 VPTAdvance(integer beat)
5 maskID = beat DIV 2;
6 vptState = Elem[VPR[23:16], maskID, 4];
7 if vptState == '1000' then
8 vptState = Zeros(4);
9 elsif vptState != '0000' then

10 (vptState, inv) = LSL_C(vptState, 1);
11 // Invert the predicate flags for this beat if the bit shifted out of
12 // the VPT state was 1.
13 if inv == '1' then
14 Elem[VPR.P0, beat, 4] = NOT Elem[VPR.P0, beat, 4];
15 // Since the mask fields are grouped in pairs only update the mask on every
16 // odd numbered beat.
17 if beat[0] == '1' then
18 Elem[VPR[23:16], maskID, 4] = vptState;

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2093

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.435 WaitForEvent

1 // WaitForEvent
2 // ============
3 // Optionally suspends execution until a WFE wakeup event or reset occurs,
4 // or until some earlier time if the implementation chooses.
5
6 WaitForEvent();

E2.1.436 WaitForInterrupt

1 // WaitForInterrupt
2 // ================
3 // Optionally suspends execution until a WFI wakeup event or reset occurs, or
4 // until some earlier time if the implementation chooses.
5
6 WaitForInterrupt();

E2.1.437 ZeroExtend

1 // ZeroExtend()
2 // ============
3
4 bits(N) ZeroExtend(bits(M) x, integer N)
5 assert N >= M;
6 return Zeros(N-M) : x;
7
8 bits(N) ZeroExtend(bits(M) x)
9 return ZeroExtend(x, N);

E2.1.438 Zeros

1 // Zeros()
2 // =======
3
4 bits(N) Zeros(integer N)
5 return Replicate('0',N);
6
7 bits(N) Zeros()
8 return Zeros(N);

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2094

Part F
Debug Packet Protocols

Chapter F1
ITM and DWT Packet Protocol Specification

This chapter describes the protocol for packets that send the data generated by the ITM and DWT to an external
debugger. It contains the following sections:

• About the ITM and DWT packets.

• Alphabetical list of DWT and ITM packets.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2096

Chapter F1. ITM and DWT Packet Protocol Specification
F1.1. About the ITM and DWT packets

F1.1 About the ITM and DWT packets

The following sections give an overview of the ITM and DWT packets and how the TPIU transmits them:

• Uses of ITM and DWT packets

• ITM and DWT protocol packet headers

• Packet transmission by the trace sink

Note

This chapter describes packet transmission by a trace sink such as a TPIU. The ITM can send packets
to any suitable trace sink. Regardless of the actual trace sink used, the ITM formats the packets as
described in this chapter.

F1.1.1 Uses of ITM and DWT packets

The ITM sends a packet to the trace sink when:

• Software writes to a stimulus register. This generates a Instrumentation packet.

• The hardware generates a Protocol packet. Protocol packets include timestamps and synchronization packets.

• It receives a packet from the DWT, for forwarding to the trace sink.

The DWT sends a packet to the ITM for forwarding to the trace sink when:

• A DWT comparator matches and generates one or more Data Trace packets.

• It samples the PC.

• One of the performance profile counters wraps.

This chapter describes the packet protocol used.

F1.1.2 ITM and DWT protocol packet headers

[7] [6] [5] [4] [3] [2] [1] [0] Description
0 0 0 0 0 0 0 0 Synchronization packet
0 1 1 1 0 0 0 0 Overflow packet
0 6=0b000 0 0 0 0 Local Timestamp 2 packet

&& 6= 0b111
1 0 0 1 0 1 0 0 Global Timestamp 1 packet
1 0 1 1 0 1 0 0 Global Timestamp 2 packet
1 1 x x 0 0 0 0 Local Timestamp 1 packet
x x x x 1 x 0 0 Extension Packet
0 0 0 0 0 1 0 1 Event Counter Packet
0 1 x x 0 1 0 1 Date Trace Match Packet
0 0 0 0 1 1 1 0 Exception Trace Packet
0 1 x x 0 1 6=0b00 Data Trace PC Value packet
0 1 x x 1 1 6=0b00 Data Trace Data Address packet
1 0 x x x 1 6=0b00 Data Trace Data Value packet
x x x x x 0 6=0b00 Instrumentation packet
0 0 0 1 0 1 x 1 Periodic PC Sample packet
0 0 0 1 1 1 0 1 PMU Overflow packet

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2097

Chapter F1. ITM and DWT Packet Protocol Specification
F1.1. About the ITM and DWT packets

F1.1.3 Packet transmission by the trace sink

The trace sink either:

• Forms the packets into frames, as required by the Arm®CoreSightTM Architecture Specification.

• Transmits the packets over a serial port.

For each packet, the trace sink transmits:

• The header byte first, followed by any payload bytes.

• Each byte of the packet least significant bit (LSB) first.

Figures in this chapter show each packet as a sequence of bytes, with the LSB of each byte to the right and the
most significant bit (MSB) to the left. Convention for packet descriptions shows this convention, and how it relates
to data transmission for a packet with a header byte and two payload bytes.

01234567

LSBMSB Byte 0

Transmitted first

LSBMSB Byte 1

LSBMSB Byte 2

Transmitted last

Figure F1.1: Convention for packet descriptions

In some sections, the figures are split into separate figures for the header byte and payload bytes. For instance,
where the number of payload bytes varies according to a field in the header.

The ITM merges the packets from the ITM and DWT with the Local and Global timestamp, Synchronization, and
other Protocol packets, and forwards them to the trace sink as a single data stream. The trace sink then merges this
data stream with the data from the ETM, if implemented.

Arm reserves the right to add more trace packets in the future and makes no guarantees as to their format. When
encountering an unknown packet, trace decoders should wait for a Synchronization packet before restarting their
decode.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2098

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2 Alphabetical list of DWT and ITM packets

F1.2.1 Data Trace Data Address packet

The Data Trace Data Address packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the address that matched. Data Address
packets are only generated for Data Address range comparator pairs. The address might be
compressed. However, it is not required that Short and Medium packets are generated when the
address bits match.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

F1.2.1.1 Data Trace Data Address packet header

The Data Trace Data Address packet header bit assignments are:

01234567

≠ 0b00

SS

1

SH
0 1 1CMPN Byte 0

ID

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b01xx1 Data Trace Data Address packet.

This field reads as 0b01xx1.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match. Data Trace
Data Address packets can be compressed relative to the value in DWT_COMP<CMPN>. The number of
traced bits is indicated by the SS field. The remainder of the address bits comes from DWT_COMP<CMPN>.
Either comparator in a Data Address range comparator pair can be used.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Short Data Address packet.

0b10 Medium Data Address packet.

0b11 Long Data Address packet.

The value 0b00 encodes a Protocol packet.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2099

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.1.2 Data Trace Data Address packet payload

When Long Data Address packet, SS == 0b11, the Data Trace Data Address packet payload bit assignments are:

01234567

DADDR[7:0] Byte 1

DADDR[15:8] Byte 2

DADDR[23:16] Byte 3

DADDR[31:24] Byte 4

When Medium Data Address packet, SS == 0b10, the Data Trace Data Address packet payload bit assignments
are:

01234567

DADDR[7:0] Byte 1

DADDR[15:8] Byte 2

When Short Data Address packet, SS == 0b01, the Data Trace Data Address packet payload bit assignments are:

01234567

DADDR[7:0] Byte 1

DADDR[31:0], bytes <4:1>, when Long Data Address packet, SS == 0b11 Data address.

DADDR[15:0], bytes <2:1>, when Medium Data Address packet, SS == 0b10 Data address. DADDR[31:16]
== DWT_COMP<CMPN>[31:16].

DADDR[7:0], byte <1>, when Short Data Address packet, SS == 0b01 Data address. DADDR[31:8] ==
DWT_COMP<CMPN>[31:8].

F1.2.2 Data Trace Data Value packet

The Data Trace Data Value packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the value that matched.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2100

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.2.1 Data Trace Data Value packet header

The Data Trace Data Value packet header bit assignments are:

01234567

≠ 0b00

SS

1

SH
1 0 WnRCMPN Byte 0

ID

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b10xxx Data Trace Data Value packet.

This field reads as 0b10xxx.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match.

WnR, byte 0 bit [3] Write-not-read. The defined values of this bit are:

0 Read.

1 Write.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Byte Data Value packet.

0b10 Halfword Data Value packet.

0b11 Word Data Value packet.

The value 0b00 encodes a Protocol packet.

F1.2.2.2 Data Trace Data Value packet payload

When Byte Data Value packet, SS == 0b01, the Data Trace Data Value packet payload bit assignments are:

01234567

DVALUE[7:0] Byte 1

When Halfword Data Value packet, SS == 0b10, the Data Trace Data Value packet payload bit assignments are:

01234567

DVALUE[7:0] Byte 1

DVALUE[15:8] Byte 2

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2101

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

When Word Data Value packet, SS == 0b11, the Data Trace Data Value packet payload bit assignments are:

01234567

DVALUE[7:0] Byte 1

DVALUE[15:8] Byte 2

DVALUE[23:16] Byte 3

DVALUE[31:24] Byte 4

DVALUE[31:0], bytes <4:1>, when Word Data Value packet, SS == 0b11 Word data value.

DVALUE[15:0], byte 1 bits [15:0], when Halfword Data Value packet, SS == 0b10 Halfword data value.

DVALUE[7:0], byte <1>, when Byte Data Value packet, SS == 0b01 Byte data value.

F1.2.3 Data Trace Match packet

The Data Trace Match packet characteristics are:

Purpose Indicates a DWT comparator generated a match.

Attributes 16-bit Hardware source packet.

Field descriptions

The Data Trace Match packet bit assignments are:

01234567

0 1

SS

1

SH
0 1 0CMPN Byte 0

ID

1

MATCH
0 0 0 0 0 0 0 Byte 1

Byte 1 bits [7:1] This field reads as 0b0000000.

MATCH, byte 1 bit [0] Data Trace Match packet. Discriminates between the Data Trace PC Value packet and
the Data Trace Match packet. The defined values of this bit are:

1 Data Trace Match packet.

This bit reads as one.

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2102

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

0b01xx0 Data Trace PC Value packet or Data Trace Match packet.

Bit [0] of byte 1 discriminates between the Data Trace PC Value packet and the Data Trace Match
packet.

This field reads as 0b01xx0.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Source packet, 1-byte payload, 2-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved.

This field reads as 0b01.

F1.2.4 Data Trace PC Value packet

The Data Trace PC Value packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the address of the instruction that matched.
The address might be compressed. However, it is not required that Short and Medium packets are
generated when the address bits match.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

F1.2.4.1 Data Trace PC Value packet header

The Data Trace PC Value packet header bit assignments are:

01234567

≠ 0b00

SS

1

SH
0 1 0CMPN Byte 0

ID

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b01xx0 Data Trace PC Value packet or Data Trace Match packet.

Bit [0] of byte 1 discriminates between the Data Trace PC Value packet and the Data Trace Match
packet.

This field reads as 0b01xx0.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match. Data Trace PC
Value packets can be compressed relative to the value in DWT_COMP<CMPN>. The number of traced bits
is indicated by the SS field. The remainder of the address bits comes from DWT_COMP<CMPN>. Either
comparator in an Instruction Address range comparator pair can be used.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2103

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Short PC Value packet.

0b10 Medium PC Value packet.

0b11 Long PC Value packet.

The value 0b00 encodes a Protocol packet.

F1.2.4.2 Data Trace PC Value packet payload

When Long PC Value packet, SS == 0b11, the Data Trace PC Value packet payload bit assignments are:

01234567

0PC[7:1] Byte 1

PC[15:8] Byte 2

PC[23:16] Byte 3

PC[31:24] Byte 4

When Medium PC Value packet, SS == 0b10, the Data Trace PC Value packet payload bit assignments are:

01234567

0PC[7:1] Byte 1

PC[15:8] Byte 2

When Short PC Value packet, SS == 0b01, the Data Trace PC Value packet payload bit assignments are:

01234567

0

MATCH
PC[7:1] Byte 1

PC[31:1], bytes <4:2>, byte 1 bits [7:1], when Long PC Value packet, SS == 0b11 Instruction address.

PC[15:1], byte <2>, byte 1 bits [7:1], when Medium PC Value packet, SS == 0b10 Instruction address.
PC[31:16] == DWT_COMP<CMPN>[31:16].

PC[7:1], byte 1 bits [7:1], when Short PC Value packet, SS == 0b01 Instruction address. PC[31:8] ==
DWT_COMP<CMPN>[31:8].

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2104

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

MATCH, byte 1 bit [0] Data Trace Match packet. Discriminates between the Data Trace PC Value packet and
the Data Trace Match packet. The defined values of this bit are:

0 Data Trace PC Value packet.

This bit reads as zero.

F1.2.5 Event Counter packet

The Event Counter packet characteristics are:

Purpose Indicates one or more DWT counters wraps through zero.

Attributes 16-bit Hardware source packet.

Field descriptions

The Event Counter packet bit assignments are:

01234567

0 1

SS

1

SH

0 0 0 0 0

ID
Byte 0

CPIExcSleepLSUFoldCyc0 0 Byte 1

Byte 1 bits [7:6] This field reads-as-zero.

Cyc, byte 1 bit [5] POSTCNT timer decremented to zero. See DWT_CTRL for more information on the
POSTCNT timer.

Fold, byte 1 bit [4] DWT_FOLDCNT counter wrapped from 0xFF to zero.

LSU, byte 1 bit [3] DWT_LSUNCT counter wrapped from 0xFF to zero.

Sleep, byte 1 bit [2] DWT_SLEEPCNT counter wrapped from 0xFF to zero.

Exc, byte 1 bit [1] DWT_EXCCNT counter wrapped from 0xFF to zero.

CPI, byte 1 bit [0] DWT_CPICNT counter wrapped from 0xFF to zero.

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b00000 Event Counter packet.

This field reads as 0b00000.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Source packet, 1-byte payload, 2-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved.

This field reads as 0b01.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2105

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.6 Exception Trace packet

The Exception Trace packet characteristics are:

Purpose Indicates the PE has entered, exited or returned to an exception.

Attributes 24-bit Hardware source packet.

Field descriptions

The Exception Trace packet bit assignments are:

01234567

1 0

SS

1

SH

0 0 0 0 1

ID
Byte 0

ExceptionNumber[7:0] Byte 1

0 0 0FN0 0 Byte 2

ExceptionNumber[8]

Byte 2 bits [7:6,3:1] This field reads-as-zero.

FN, byte 2 bits [5:4] Function. The defined values of this field are:

0b01 Entered exception indicated by ExceptionNumber.

0b10 Exited exception indicated by ExceptionNumber.

0b11 Returned to exception indicated by ExceptionNumber.

All other values are reserved.

ExceptionNumber, byte 2 bit [0], byte <1> The exception number.

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b00001 Exception Trace packet.

This field reads as 0b00001.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b10 Source packet, 2-byte payload, 3-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved.

This field reads as 0b10.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2106

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.7 Extension packet

The Extension packet characteristics are:

Purpose An Extension packet provides additional information about the identified source. The amount
of information required determines the number of payload bytes, 0-4. The architecture only defines
one use of the Extension packet, to provide a Stimulus port page number. For this use, SH == 0,
and a single byte Extension packet is emitted.

Attributes 8, 16, 24, 32, or 40-bit Protocol packet.

Field descriptions

When 1-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]

0

C
Byte 0

ID

When 2-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]
0

C
Byte 1

When 3-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]1 Byte 1

EX[16:10]
0

C
Byte 2

When 4-byte packet, the Extension packet bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2107

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]1 Byte 1

EX[16:10]1 Byte 2

EX[23:17]
0

C
Byte 3

When 5-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]1 Byte 1

EX[16:10]1 Byte 2

EX[23:17]1 Byte 3

EX[31:24] Byte 4

EX, byte <4>, byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], byte 0 bits [6:4] Extension information. If
SH == 1, then EX defines PAGE, the Stimulus port page number.

This is a 32-bit field. If the Extension packet is shorter than 5 bytes, the most significant bits are zero.

C, byte 3 bit [7], byte 2 bit [7], byte 1 bit [7], byte 0 bit [7] Continuation bit. The defined values of this field
are:

0 Last byte of the packet.

1 Another byte follows.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0bxxx1x Extension packet.

This field reads as 0bxxx1x.

SH, byte 0 bit [2] Source. The defined values of this bit are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2108

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

0 Extension packet for Instrumentation packet.

1 Extension packet for Hardware source packet.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.8 Global Timestamp 1 packet

The Global Timestamp 1 packet characteristics are:

Purpose Contains the least significant bits of the global timestamp value. The ITM might compress this
value if it is not generating a full timestamp by omitting significant bits if they are unchanged from
the previous timestamp value.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 8, 16, 24, or 32-bit payload.

F1.2.8.1 Global Timestamp 1 packet header

The Global Timestamp 1 packet header bit assignments are:

01234567

0 0

SS

0 0 1 0 1

ID

1

C
Byte 0

C, byte 0 bit [7] Continuation bit. This bit reads as one.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b00101 Global Timestamp 1 packet.

This field reads as 0b00101.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.8.2 Global Timestamp 1 packet payload

When 7-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]
0

C
Byte 1

When 14-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2109

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

TS[6:0]1 Byte 1

TS[13:7]
0

C
Byte 2

When 21-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]
0

C
Byte 3

When 26-bit or full timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]1 Byte 3

TS[25:21]ClkChWrap
0

C
Byte 4

C, byte 4 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7] Continuation bit. The defined values of this field
are:

0 Last byte of the packet.

1 Another byte follows.

Wrap, byte 4 bit [6], when 26-bit or full timestamp Wrapped. The defined values of this bit are:

0 The value of global timestamp bits TS[47:26] or TS[63:26] have not changed since the last Global
Timestamp 2 packet output by the ITM.

1 The value of global timestamp bits TS[47:26] or TS[63:26] have changed since the last Global Timestamp
2 packet output by the ITM.

ClkCh, byte 4 bit [5], when 26-bit or full timestamp Clock change. The defined values of this bit are:

0 The system has not asserted the clock change input to the processor since the last time the ITM generated
a Global Timestamp packet.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2110

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

1 The system has asserted the clock change input to the processor since the last time the ITM generated a
Global Timestamp packet.

Note

When the clock change input to the processor is asserted, the ITM must output a full 48-bit or 64-bit
global timestamp value.

TS[25:0], byte 4 bits [4:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0] Global Timestamp. The
timestamp is 64 or 48 bits. If the Global Timestamp 1 packet is shorter than 5 bytes, the most-significant
bits of the timestamp have not changed since the last Global Timestamp 1 packet output by the ITM. If the
Global Timestamp 1 packet is 5 bytes, the Wrap bit defines whether most-significant bits have unchanged
since the last Global Timestamp 2 packet output by the ITM.

F1.2.9 Global Timestamp 2 packet

The Global Timestamp 2 packet characteristics are:

Purpose Provides the most significant bits of a full 48 or 64-bit timestamp.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 32 or 48-bit payload.

F1.2.9.1 Global Timestamp 2 packet header

The Global Timestamp 2 packet header bit assignments are:

01234567

0 0

SS

0 1 1 0 1

ID

1

C
Byte 0

C, byte 0 bit [7] Continuation bit. This bit reads as one.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b01101 Global Timestamp 2 packet.

This field reads as 0b01101.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.9.2 Global Timestamp 2 packet payload

When 48-bit Global Timestamp 2 packet, the Global Timestamp 2 packet payload bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2111

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

TS[32:26]1 Byte 1

TS[39:33]1 Byte 2

TS[46:40]1 Byte 3

TS[47]0 0 0 0 0 0
0

C
Byte 4

When 64-bit Global Timestamp 2 packet, the Global Timestamp 2 packet payload bit assignments are:

01234567

TS[32:26]1 Byte 1

TS[39:33]1 Byte 2

TS[46:40]1 Byte 3

TS[53:47]1 Byte 4

TS[60:54]1 Byte 5

TS[63:61]0 0 0 0
0

C
Byte 6

C, byte 6 bit [7], byte 5 bit [7], byte 4 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7] Continuation bit.
The defined values of this field are:

0 Last byte of the packet.

1 Another byte follows.

Byte 6 bits [6:3], when 64-bit Global Timestamp 2 packet This field reads-as-zero.

Byte 4 bits [6:1], when 48-bit Global Timestamp 2 packet This field reads-as-zero.

TS[47:26] , byte 4 bit [0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 48-bit Global Timestamp
2 packet

Most significant bits of the Global Timestamp.

TS[63:26] , byte 6 bits [2:0], byte 5 bits [6:0], byte 4 bits [6:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits
[6:0], when 64-bit Global Timestamp 2 packet

Most significant bits of the Global Timestamp.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2112

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.10 Instrumentation packet

The Instrumentation packet characteristics are:

Purpose A software write to an ITM stimulus port generates an Instrumentation packet.

Attributes Multi-part Software source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

F1.2.10.1 Instrumentation packet header

The Instrumentation packet header bit assignments are:

01234567

≠ 0b00

SS

0

SH
A Byte 0

A, byte 0 bits [7:3] Port number, 0-31.

SH, byte 0 bit [2] Source. The defined values of this bit are:

0 Instrumentation packet (Software source).

This bit reads as zero.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Byte Instrumentation packet.

0b10 Halfword Instrumentation packet.

0b11 Word Instrumentation packet.

The value 0b00 encodes a Protocol packet.

F1.2.10.2 Instrumentation packet payload

When Byte Instrumentation packet, SS == 0b01, the Instrumentation packet payload bit assignments are:

01234567

Payload[7:0] Byte 1

When Halfword Instrumentation packet, SS == 0b10, the Instrumentation packet payload bit assignments are:

01234567

Payload[7:0] Byte 1

Payload[15:8] Byte 2

When Word Instrumentation packet, SS == 0b11, the Instrumentation packet payload bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2113

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

Payload[7:0] Byte 1

Payload[15:8] Byte 2

Payload[23:16] Byte 3

Payload[31:24] Byte 4

Payload[31:0], bytes <4:1>, when Word Instrumentation packet, SS == 0b11 Payload value.

Payload[15:0], byte 1 bits [15:0], when Halfword Instrumentation packet, SS == 0b10 Payload value.

Payload[7:0], byte <1>, when Byte Instrumentation packet, SS == 0b01 Payload value.

F1.2.11 Local Timestamp 1 packet

The Local Timestamp 1 packet characteristics are:

Purpose A Local Timestamp 1 packet encodes timestamp information, for generic control and
synchronization, based on a timestamp counter in the ITM. To reduce the trace bandwidth:

• The local timestamping scheme uses delta timestamps. Whenever the ITM outputs a Local timestamp
packet, it clears its timestamp counter to zero, meaning each local timestamp value gives the interval
since the generation of the previous Local timestamp packet.

• The Local Timestamp 1 packet length, 1-5 bytes, depends on the timestamp value.

• If the ITM outputs the local timestamp synchronously to the corresponding ITM or DWT data, and the
timestamp value is in the range 1-6, the ITM uses the Local Timestamp 2 packet.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 8, 16, 24, or 32-bit payload.

F1.2.11.1 Local Timestamp 1 packet header

The Local Timestamp 1 packet header bit assignments are:

01234567

0 0

SS
1 0 0TC

1

C
Byte 0

ID

C, byte 0 bit [7] Continuation bit. This bit reads as one.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b1xx00 Local Timestamp 1 packet.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2114

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

This field reads as 0b1xx00.

TC, byte 0 bits [5:4] Indicates the relationship between the generation of the Local timestamp packet and the
corresponding ITM or DWT data packet. The defined values of this field are:

0b00 The local timestamp value is synchronous to the corresponding ITM or DWT data. The value in the
TS field is the timestamp counter value when the ITM or DWT packet is generated.

0b01 The local timestamp value is delayed relative to the ITM or DWT data. The value in the TS field is
the timestamp counter value when the Local timestamp packet is generated.

Note

The local timestamp value corresponding to the previous ITM or DWT packet is unknown, but
must be between the previous and current local timestamp values.

0b10 Output of the ITM or DWT packet corresponding to this Local timestamp packet is delayed relative
to the associated event. The value in the TS field is the timestamp counter value when the ITM or DWT
packets is generated.

This encoding indicates that the ITM or DWT packet was delayed relative to other trace output packets.

0b11 Output of the ITM or DWT packet corresponding to this Local timestamp packet is delayed relative
to the associated event, and this Local timestamp packet is delayed relative to the ITM or DWT data.
This is a combination of the conditions indicated by values 0b01 and 0b10.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.11.2 Local Timestamp 1 packet payload

When 7-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]
0

C
Byte 1

When 14-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]
0

C
Byte 2

When 21-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2115

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]
0

C
Byte 3

When 28-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]1 Byte 3

TS[25:21]0 0
0

C
Byte 4

C, byte 4 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7] Continuation bit. The defined values of this field
are:

0 Last byte of the packet.

1 Another byte follows.

Byte 4 bits [6:5], when 28-bit timestamp This field reads-as-zero.

TS, byte 4 bits [4:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0] Local Timestamp.

The timestamp is 28 bits. If the Local Timestamp 1 packet is shorter than 5 bytes, the most significant bits of
the timestamp are zero.

F1.2.12 Local Timestamp 2 packet

The Local Timestamp 2 packet characteristics are:

Purpose If the ITM outputs the Local Timestamp synchronously to the corresponding ITM or DWT
data, and the required timestamp value is in the range 1-6, it uses the Local Timestamp 2 packet.
For more information, see Local Timestamp 1 packet.

Attributes 8-bit Protocol packet.

Field descriptions

The Local Timestamp 2 packet bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2116

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

0 0

SS
0 0

≠ 0b000 && ≠ 0b111

TS

0

C
Byte 0

ID

C, byte 0 bit [7] Continuation bit. This bit reads as zero.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b00000 See Synchronization packet.

0bxxx00 For all other values of 0bxxx. Local Timestamp 2 packet.

0b11100 See Overflow packet.

This field reads as 0bxxx00.

TS, byte 0 bits [6:4] Local timestamp value, in the range 0b001 to 0b110.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.13 Overflow packet

The Overflow packet characteristics are:

Purpose The ITM outputs an Overflow packet if:

• Software writes to a Stimulus Port register when the stimulus port output buffer is full.

• The DWT attempts to generate a Hardware source packet when the DWT output buffer is full.

• The Local timestamp counter overflows.

The Overflow packet comprises a header with no payload.

Attributes 8-bit Protocol packet.

Field descriptions

The Overflow packet bit assignments are:

01234567

0 0

SS

1 1 1 0 0

ID

0

C
Byte 0

C, byte 0 bit [7] Continuation bit. This bit reads as zero.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b11100 Overflow packet.

This field reads as 0b11100.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2117

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.14 Periodic PC Sample packet

The Periodic PC Sample packet characteristics are:

Purpose The DWT unit generates PC samples at fixed time intervals, with an accuracy of one clock
cycle. The POSTCNT counter period determines the PC sampling interval. Software configures the
DWT_CTRL.CYCTAP and DWT_CTRL.POSTINIT fields to determine how POSTCNT relates to
DWT_CYCCNT. The DWT_CTRL.PCSAMPLENA bit enables PC sampling.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8 or 32-bit payload.

F1.2.14.1 Periodic PC Sample packet header

The Periodic PC Sample packet header bit assignments are:

01234567

1

SS

1

SH

0 0 0 1 0

ID
Byte 0

ID, byte 0 bits [7:3] Discriminator ID. The defined values of this field are:

0b00010 Periodic PC Sample packet.

This field reads as 0b00010.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Source packet, 1-byte payload, 2-byte packet.

0b11 Source packet, 4-byte payload, 5-byte packet.

SS == 0b10 is invalid for a Periodic PC Sample packet.

The value 0b00 encodes a Protocol packet.

This field reads as 0bx1.

F1.2.14.2 Periodic PC Sample packet payload

When Allowed and not sleeping, SS == 0b11, the Periodic PC Sample packet payload bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2118

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

PC[7:0] Byte 1

PC[15:8] Byte 2

PC[23:16] Byte 3

PC[31:24] Byte 4

When Allowed and sleeping, SS == 0b01, the Periodic PC Sample packet payload bit assignments are:

01234567

0 0 0 0 0 0 0 0 Byte 1

When Prohibited, SS == 0b01, the Periodic PC Sample packet payload bit assignments are:

01234567

1 1 1 1 1 1 1 1 Byte 1

PC, bytes <4:1>, when Allowed and not sleeping, SS == 0b11 Periodic PC sample value.

Byte <1>, when Allowed and sleeping, SS == 0b01 This field reads as 0b00000000.

Byte <1>, when Prohibited, SS == 0b01 This field reads as 0b11111111.

F1.2.15 PMU overflow packet

The PMU overflow packet characteristics are:

Purpose For each counter n, if the lower eight bits of that counter overflow, the associated OVn of the
PMU overflow packet is set. If multiple counters overflow in the same period, multiple bits might
be set. If there are fewer than 8 general-purpose counters, the associated PMU overflow packet bit
is always zero.

Attributes 8 bit protocol packet.

Field descriptions

The PMU overflow packet bit assignments are:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2119

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

OV7

01234567

0 1

SS

1

SH

0 0 0 1 1

ID

OV6 OV5 OV4 OV3 OV2 OV1 OV0

Byte 0

Byte 1

Byte 0 bits [7:0] Packet Header

Byte 1 bits [7:0] OVn

F1.2.16 Synchronization packet

The Synchronization packet characteristics are:

Purpose A Synchronization packet provides a unique pattern in the bit stream. Trace capture hardware
can identify this pattern and use it to identify the alignment of packet bytes in the bitstream.

Attributes 48-bit Protocol packet.

A Synchronization packet is at least forty-seven 0 bits followed by single 1 bit. This section describes the
smallest possible Synchronization packet.

Field descriptions

The Synchronization packet bit assignments are:

01234567

0 0 0 0 0 0 0 0 Byte 0

0 0 0 0 0 0 0 0 Byte 1

0 0 0 0 0 0 0 0 Byte 2

0 0 0 0 0 0 0 0 Byte 3

0 0 0 0 0 0 0 0 Byte 4

0 0 0 0 0 0 01 Byte 5

Byte 5 bit [7] Indicates the end of the Synchronization packet. This bit reads as one.

Byte 5 bits [6:0], bytes <4:1> This field reads-as-zero.

Byte <0> This field reads as 0b00000000.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2120

Part G
Glossary

AAPCS

Procedure Call Standard for the Arm Architecture.

Additional floating-point context registers

The Additional floating-point state context registers are as follows:

• S16 to S31.

See also: Floating-point context

Additional state context registers

The Additional state context registers are as follows:

• R4 to R11.
• The Integrity Signature.

See also: State context registers

Address dependency

An address dependency exists when the value that is returned by a read computes the address of a subsequent
access. An address dependency exists even if the value that is returned by the first read does not change the address
of the second read or write.

See B7.2.3 Ordering and observability

Addressing mode

Means a method for generating the memory address that is used by a load/store instruction.

Aligned

A data item that is stored at an address that is exactly divisible by the highest power of 2 that divides exactly into
its size in bytes. Aligned halfwords, words, and doublewords therefore have addresses that are divisible by 2, 4
and 8 respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

Application Program Status Register (APSR)

The register containing those bits that deliver status information about the results of instructions, the N, Z, C, and
V bits of the XPSR. In an implementation that includes the DSP extension, the APSR includes the GE bits that
provide status information from DSP operations.

See also B3.5 XPSR, APSR, IPSR, and EPSR.

APSR

See Application Program Status Register.

Architecturally executed

An instruction is architecturally executed only if it would be executed in a simple sequential execution of the
program. When such an instruction has been executed and retired it has been architecturally executed. Any
instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition
code check, is an architecturally executed instruction.

In a PE that performs Speculative execution, an instruction is not architecturally executed if the PE discards the
results of a Speculative execution.

See also Condition code check, Simple sequential execution.

Architecturally UNKNOWN

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2122

An Architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

Architecture tick

An atomic unit of execution. In the Armv8.0-M architecture, most instructions are considered atomic units for
execution (they are either performed or not performed). The most notable exceptions are instructions that support
ICI behavior.

Associativity

See Cache associativity

Asynchronous exception

An exception is described as asynchronous if any of the following apply:

• The exception is not generated as a result of direct execution or attempted execution of the instruction stream.
• The return address presented to the exception handler is not guaranteed to indicate the instruction that caused

the exception.
• The exception is imprecise.

See Imprecise exception, Synchronous exception.

Atomicity

Describes either single-copy atomicity or multi-copy atomicity. B7.2.1 Single-copy atomicity defines these forms
of atomicity for the Arm architecture.

See also Multi-copy atomicity, Single-copy atomicity.

Attributability

A PMU event that is caused by the PE counting the PMU event is Attributable. If an agent other than the PE that is
counting the PMU events causes a PMU event then that PMU event is Unattributable.

A PMU event is either Attributable or Unattributable. If the PMU event is Attributable, it is further defined whether
the PMU event is Attributable to:

• The current Security state of the PE.
• The privilege level.
• When the PE is in Debug state, operations issued to the PE by the Debugger through the external debug

interface.

Attribution Unit (AU)

The combination of the Secure Attribution Unit (SAU) and the Implementation Defined Attribution Unit (IDAU).

See also Chapter B10 The Armv8-M Protected Memory System Architecture.

AU

See Attribution unit.

Availability

Readiness for correct service.

Background state

The state of the PE before the last (previous) preemption occurred.

Banked register

A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2123

Base register

A register that is specified by a load/store instruction that is used as the base value for the address calculation for
the instruction. Depending on the instruction and its addressing mode, an offset can be added to or subtracted from
the base register value to form the address that is sent to memory.

Base register Write-Back

Describes writing back a modified value to the base register used in an address calculation.

Baseboard Management Controller

A PE dedicated to system control and monitoring.

Beat

The execution of a 1/4 of an MVE vector operation. Because the vector length is 128 bits, one beat of a vector add
instruction equates to computing 32 bits of result data. This is independent of lane width. For example, if a lane
width is 8 bits, then a single beat of a vector add instruction would perform four 8-bit additions.

See also B5.4 Beats.

Behaves as if

Where this manual indicates that a PE behaves as if a certain condition applies, all descriptions of the operation
of the PE must be re-evaluated taking account of that condition, together with any other conditions that affect
operation.

BF branch point

The gap between the two instructions. Specifically, the gap between the instruction that immediately precedes the
instruction at the <b_label> of a BF instruction and the instruction that is identified by the <b_label> of a BF
instruction..

See also B3.29 Branch future.

Big-endian memory

Means that, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also B7.5 Endianness, Little-endian memory.

Blocking

Describes an operation that does not permit following instructions to be executed before the operation completes.

A non-blocking operation can permit following instructions to be executed before the operation completes, and in
the event of encountering an exception does not signal an exception to the PE. This enables implementations to
retire following instructions while the non-blocking operation is executing, without the need to retain precise PE
state.

Branch prediction

Is where a PE selects a future execution path to fetch along. For example, after a branch instruction, the PE can
choose to speculatively fetch either the instruction following the branch or the instruction at the branch target.

See also Prefetching.

Breakpoint

A debug event that is triggered by the execution of a particular instruction, which is specified by one or both of the
address of the instruction and the state of the PE when the instruction is executed.

BTI

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2124

Branch Target Identification. The mechanism used for creating and identifying valid branch landing pads.

BTI clearing

Branch Target Identification clearing instruction. Any instruction that clears the EPSR.B bit to zero.

BTI setting

Branch Target Identification setting instruction. Any instruction that sets the EPSR.B bit to one.

Byte

An 8-bit data item.

Cache associativity

The number of locations in a cache set to which an address can be assigned. Each location is identified by its way
value.

Cache level

The position of a cache in the cache hierarchy. In the Arm architecture, the lower numbered levels are those closest
to the PE. For more information, see B7.19 Caches.

Cache line

The basic unit of storage in a cache. Its size in words is always a power of two, usually four or eight words. A
cache line must be aligned to a suitable memory boundary. A memory cache line is a block of memory locations
with the same size and alignment as a cache line. Memory cache lines are sometimes loosely called cache lines.

Cache sets

Areas of a cache, which is divided up to simplify and speed up the process of determining whether a cache hit
occurs. The number of cache sets is always a power of two. The term cache sets is a common convention for
describing cache memories, and this description must not be treated as defining a property of the cache.

Cache way

A cache way consists of one cache line from each cache set. The cache ways are indexed from 0 to (Associativity-1).
Each cache line in a cache way is chosen to have the same index as the cache way. For example, cache way n
consists of the cache line with index n from each cache set. The term cache way is a common convention for
describing cache memories, and this description must not be treated as defining a property of the cache.

Cache write-back granule

The maximum size of the memory that can be overwritten. In some implementations, the CTR identifies the Cache
Write-Back Granule.

Catastrophic failure

A failure with harmful consequences that are orders of magnitude, or even incommensurably, higher than the
benefit provided by correct service delivery.

Chained vector instruction

An instruction that is subject to beat-wise execution.

Coherence order

See Coherent

Coherent

Data accesses from a set of observers to a byte in memory are coherent if accesses to that byte in memory by the
members of that set of observers are consistent with there being a single total order of all writes to that byte in
memory by all members of the set of observers. This single total order of all to writes to that memory location is
the coherence order for that byte in memory.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2125

Completer

An agent in a computing system that responds to and completes a memory transaction that was initiated by a
Requester.

See also Requester

Condition code check

The process of determining whether a conditional instruction executes normally or is treated as a NOP. For an
instruction that includes a condition code field, that field is compared with the condition flags to determine whether
the instruction is executed normally. For a T32 instruction in an IT block, the value of EPSR.IT determines whether
the instruction is executed normally.

See also Condition code field, Condition flags, Conditional execution.

Condition code field

A 4-bit field in an instruction that specifies the condition under which the instruction executes.

See also Condition code check.

Condition flags

The N, Z, C, and V bits of APSR, or XPSR. See B3.5 XPSR, APSR, IPSR, and EPSR for more information.

See also Condition code check.

Conditional execution

When a conditional instruction starts executing, if the condition code check returns TRUE, the instruction executes
normally. Otherwise, it is treated as a NOP. See C1.3 Conditional execution.

See also Condition code check.

Configuration

Settings that are made on reset, or immediately after reset, and normally expected to remain static throughout
program execution.

CONSTRAINED UNPREDICTABLE

Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations
that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior within the
limits defined for each particular case, and this behavior might vary.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALLCAPS.

See also UNPREDICTABLE.

Containable

An error that is not uncontained. A Containable error is also referred to as a Contained error.

Context switch

The saving and restoring of computational state when switching between different threads or processes. In this
manual, the term context switch describes any situation where the context is switched by an operating system and
might or might not include changes to the address space.

Context synchronization event

A Context synchronization event guarantees visibility of any change to any register described in the architecture.
Following a Context synchronization event a completed write to a register is visible to an indirect read by an
instruction appearing in program order after the context synchronization event.

Control dependency

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2126

A control dependency exists when the data value that is returned by a read access determines the condition flags,
and the values of the flags determine the address of a subsequent read access. This address determination might be
through conditional execution, or through the evaluation of a branch.

Corrected

An error that is detected by hardware and that hardware can correct. This is also referred to as a Correctable error.

Countable error

An error that is detected and recorded by hardware by incrementing a counter.

Cross beat

An operation that requires operands from different beats to produce the output for a single beat. For example, a
vector widening operation would be cross beat, whereas a vector addition would not be.

Cross Trigger Interface

A debug component that is not part of the Armv8-M architecture.

CTI

See Cross Trigger Interface.

DAP

Debug Access Port.

Data independent timing

The time that it takes to execute a piece of code where the time is not a function of the data being operated on.

See also B3.34 Data independent timing.

Data Watchpoint and Trace (DWT)

The Data Watchpoint and Trace unit is a component of Armv8-M debug that optionally provides a number of trace,
sampling, and profiling functions.

See also B14.2 Data Watchpoint and Trace unit.

DCB

See Debug Control Block.

Debug Control Block (DCB)

A region in the System Control Space that is assigned to registers that support debug features.

See also System Control Space.

Debugger

In most of this manual, debugger refers to any agent that is performing debug. However, some parts of the manual
require a more rigorous definition, and define debugger locally. See Chapter B13 Debug.

Deferred

An error that has not been silently propagated but does not require immediate action at the producer. The error
might have passed from the producer to the consumer.

Deprecated

Something that is present in the Arm architecture for backwards compatibility. Whenever possible software
must avoid using deprecated features. Features that are deprecated but are not optional are present in current
implementations of the Arm architecture, but might not be present, or might be deprecated and OPTIONAL, in
future versions of the Arm architecture.

See also OPTIONAL.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2127

Detected

An error that has been detected and signaled to a consumer.

Detected Uncorrectable

A detected error that cannot be corrected and causes failure.

Digital signal processing (DSP)

Algorithms for processing signals that have been sampled and converted to digital form. DSP algorithms often use
saturated arithmetic.

Direct access

A read or write of a register.

DIT

See Data independent timing.

Domain

In the Arm architecture, domain is used in the following contexts.

Shareability domain Defines a set of observers for which the Shareability attributes make the data or unified
caches transparent for data accesses.

Power domain Defines a block of logic with a single, common, power supply.

Double-precision value

Consists of two consecutive 32-bit words that are interpreted as a basic double-precision floating-point number
according to the IEEE Standard for Floating-point Arithmetic.

Doubleword

A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned

Means that the address is divisible by 8.

DSP

See Digital signal processing.

DWT

See Data Watchpoint and Trace.

ECC

Error Correction Code

EDC

Error Detection Code

Effective Value

A register control field, meaning a field in a register that controls some aspect of the behavior, can be described as
having an Effective value:

• In some cases, the description of a particular control a specifies that when control a is active it causes a register
control field b to be treated as having a fixed value for all purposes other than direct reads, or direct reads and
direct writes, of the register containing control field b. When control a is active that fixed value is described as
the Effective value of register control field b.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2128

In other cases, a register control field b is not implemented or is not accessible, but behavior of the PE is as
if control field b was implemented and accessible, and had a particular value. In this case, that value is the
Effective value of register control field b.

Where a register control field is introduced in a particular version of the architecture, and is not implemented
in an earlier version of the architecture, typically it will have an Effective value in that earlier version of the
architecture.

• Otherwise, the Effective value of a register control field is the value of that field.

Element

The data that is put into a lane.

See also Lane.

Embedded Trace Macrocell (ETM)

A component of the Arm CoreSight debug and trace solution. An ETM provides non-invasive trace of PE operation.

See B14.3 Embedded Trace Macrocell.

Endianness

An aspect of the system memory mapping. For more information, see B7.5 Endianness.

See also Big-endian memory and Little-endian memory.

EPSR

See Execution Program Status Register.

Error

Deviation from correct service or a correct value.

Error propagation

Passing an error from a producer to a consumer.

Error record

Data recorded about an error, usually by hardware.

ETM

See Embedded Trace Macrocell

Exception

Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Exception vector

A fixed address that contains the address of the first instruction of the corresponding exception handler.

Exception-continuable instruction

Any instruction that can cause the PE to set the EPSR.ECI fields.

Execution Program Status Register (EPSR)

A register that contains the Execution state bits and is part of the XPSR.

See also B3.5 XPSR, APSR, IPSR, and EPSR.

Execution stream

The stream of instructions that would have been executed by sequential execution of the program.

Explicit access

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2129

A read from, or a write to memory or memory-mapped registers, generated by a load or store instruction that is
executed by the PE or an access by the debugger.

Failure

The event of deviation from correct service.

Fault

An exception that is generated because of some form of system error. A BusFault might be a RAS fault.

Fault injection

The deliberate injection of faults into a system for testing.

Fault prevention

Designing a system to avoid faults.

Fault removal

Logic or other mechanisms for detecting faults and correcting or bypassing their effect.

Field Replaceable Unit

The smallest unit that can be replaced without return to base.

Flash Patch and Breakpoint Unit

The Flash Patch and Breakpoint unit supports setting breakpoints on instruction fetches.

See also B14.5 Flash Patch and Breakpoint unit.

Floating-point context

The Floating-point context is as follows:

• S0-S15.
• FPSCR.
• VPR.

See also:Additional floating-point state context.

Flush-to-zero mode

A processing mode that optimizes the performance of some floating-point algorithms by replacing the denormalized
operands and Intermediate results with zeros, without significantly affecting the accuracy of their final results.

FPB

See Flash Patch and Breakpoint Unit.

FRU

See Field Replaceable Unit.

General-purpose registers

The registers that the base instructions use for processing:

• The general-purpose registers are R0-R12. R13-R14 are the SP and LR, respectively. For more information,
see B3.3 Registers.

See also High registers, Low registers.

Halfword

A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2130

Means that the address is divisible by 2.

Hardware fault

A fault that originates in or affects hardware.

High registers

The general-purpose registers R8-R14. Most 16-bit T32 instructions cannot access the high registers.

Note

In some contexts, high registers refers to R8-R15, meaning R8-R14 and the PC.

See also General-purpose registers, Low registers.

ICI

See Interrupt-continuable instruction.

If-Then block (IT block)

An IT block is a block of up to four instructions following an If-Then (IT) instruction. Each instruction in the block
is conditional. The conditions for the instructions are either all the same, or some are the inverse of others.

Immediate and offset fields

Are unsigned unless otherwise stated.

Immediate value

A value that is encoded directly in the instruction and used as numeric data when the instruction is executed. Many
T32 instructions can be used with an immediate argument.

IMP DEF

An abbreviation that is used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED

Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALLCAPS.

Implicit access

An access that is not an explicit access. For example:

• Instruction fetches.
• The setting of a syndrome flag in response to an exception being raised.

See also Explicit access.

Imprecise exception

An exception that is generated as the result of a system error. An imprecise exception is reported at the time that is
asynchronous to the instruction that caused it.

Index register

A register that is specified in some load and store instructions. The value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some instruction
forms permit the index register value to be shifted before the addition or subtraction.

Indirect access

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2131

A read or write of a register that is not a direct access.

For example, an indirect write to a register might occur as the side effect of executing an instruction that does not
perform a direct write to the register, or because of some operation that is performed by an external agent.

See also Direct access

Infected

Being in error.

Inline literals

These are constant addresses and other data items that are held in the same area as the software itself. They are
automatically generated by compilers, and can also appear in assembler code.

Instrumentation Trace Macrocell (ITM)

A component of the Arm CoreSight debug and trace solution. An ITM provides a memory-mapped register
interface that applications can use to write logging or event words to a trace sink.

See B14.1 Instrumentation Trace Macrocell.

Interrupt Program Status Register (IPSR)

The register that provides status information on whether an application thread or exception handler is executing on
the processor. If an exception handler is executing, the register provides information on the exception type. The
register is part of the XPSR.

See also B3.5 XPSR, APSR, IPSR, and EPSR.

Interrupt Service Routine

The procedure that handles an interrupt.

Interrupt-continuable instruction

Multicycle load or store instructions that can be interrupted part way through their execution. After the interrupt
service routine has completed, execution of the partially executed instruction can be resumed and the instruction
is not required to be restarted from the beginning. An interruption of a multicycle load or store instructions will
cause the PE to set the EPSR.ICI fields.

See also Exception-continuable instruction

Interworking

A method of working that permits branches between software using the A32 and T32 instruction sets in the
Armv8-A architecture. For Armv8-M, interworking is described in C1.4.7 Instruction set, interworking and
interstating support.

IPSR

See Interrupt Program Status Register.

Isolation

Limiting the impact of an error only to components that actually try to use corrupted data.

ISR

See Interrupt Service Routine.

ITM

See Instrumentation Trace Macrocell.

Landing pad

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2132

BTI landing pad instruction. A landing pad instruction is a BTI clearing instruction.

Not all operations that clear the EPSR.B bit to zero are landing pads. For example, the EPSR.B is cleared
automatically on exception entry but this operations is not a landing pad or a BTI clearing instruction.

The following instructions are valid BTI landing pads:

• BTI.
• SG.
• PACBTI.

Lane

A section of a vector register or operation.

Latent fault

An error that is present in a system but not yet detected.

Level

See Cache level.

Level of Coherence (LoC)

The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of coherency.

See also Cache level, Point of Coherency.

Level of Unification, Inner Shareable (LoUIS)

The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of unification
for the Inner Shareable Shareability domain.

See also Cache level, Point of Unification.

Level of Unification, uniprocessor (LoUU)

For a PE, the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of
unification for that PE.

See also Cache level, Point of Unification.

Line

See Cache line.

Little-endian memory

Means that, for example:

• A byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the least significant byte in the halfword at that address.

See also Big-endian memory, B7.5 Endianness.

Load/store architecture

An architecture where data-processing operations only operate on register contents, not directly on memory
contents.

LoC

See Level of Coherence.

Lockup

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2133

A PE state where the PE stops executing instructions in response to an error for which escalation to an appropriate
HardFault handler is not possible because of the current execution priority. For more information, see B3.33
Lockup.

LoUIS

See Level of Unification, Inner Shareable.

LoUU

See Level of Unification, uniprocessor.

Low registers

General-purpose registers R0-R7. Unlike the high registers, all T32 instructions can access the Low registers.

LR hazard

An LR hazard occurs when LR is written while another instruction, other than LE or LETP, is accessing LR.

M-Profile Vector Extension

An optional part of the Armv8.1-M architecture that supports both integer and floating-point data types.

Memory barriers

The term memory barrier is the general term that is applied to an instruction, or sequence of instructions, that
forces synchronization events by a PE regarding retiring Load/Store instructions. For more information, see B7.2.9
Memory barriers.

Memory coherency

The problem of ensuring that when a memory location is read, either by a data read or an instruction fetch, the
value that is actually obtained is always the value that was most recently written to the location. This can be
difficult when there are multiple possible physical locations, such as main memory and at least one of a write
buffer and one or more levels of cache.

Memory hint

A memory hint instruction provides advance information to memory systems about future memory accesses,
without actually loading or storing any data to or from the register file. PLD and PLI are the only memory hint
instructions that are defined in Armv8-M.

Memory Protection Unit (MPU)

A hardware unit whose registers provide simple control of a limited number of protection regions in memory, for
more information, see Chapter B10 The Armv8-M Protected Memory System Architecture.

Minor failure

A failure with harmful consequences that are of a similar cost to the benefits that are provided by correct service
delivery.

MPU

See Chapter B10 The Armv8-M Protected Memory System Architecture.

Multi-copy atomicity

The form of atomicity that is described in B7.2.2 Multi-copy atomicity.

See also Atomicity, Single-copy atomicity.

MVE

See M-Profile Vector Extension.

NaN

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2134

Not a Number. A floating-point value that can be used when neither a numeric value nor an infinity is appropriate.
A NaN can be a quiet NaN, that propagate through most floating-point operations, or a signaling NaN, that
causes an Invalid Operation floating-point exception when used. For more information, see the IEEE Standard for
Floating-point Arithmetic.

Node

A component that detects an error is called a node.

Non-Return-to-Zero (NRZ)

A physical layer signaling scheme that is used on asynchronous communication ports

NRZ

See Non-Return-to-Zero.

Obsolete

Obsolete indicates something that is no longer supported by Arm. When an architectural feature is described
as obsolete, this indicates that the architecture has no support for that feature, although an earlier version of the
architecture did support it.

Offset addressing

Means that the memory address is formed by adding or subtracting an offset to or from the base register value.

OPTIONAL

When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the Arm architecture:

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the
architecture. Arm expects such a feature to be included in a new implementation only if there is a known
backwards-compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the Arm architecture
after the initial release of that version of the architecture. Arm recommends that such features are included in
all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALLCAPS.

Note: Do not confuse these Arm-specific uses of OPTIONAL with other uses of OPTIONAL, where it has its usual
meaning. These include:

• Optional arguments in the syntax of many instructions.
• Behavior that is determined by an implementation choice.

See also Deprecated.

PAC

Pointer Authentication Code. The hash generated by the cryptographic algorithm. PAC also refers to the process
used for generating the hash.

PE

See Processing element.

Performance Monitoring Unit

An optional non-invasive debug component that allows events to be identified and counted. See Chapter B15 The
Performance Monitors Extension

Persistent fault

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2135

A fault that is not transient.

Physical address (PA)

An address that identifies a location in the physical memory map.

PMU

See Performing Monitoring Unit.

PoC

See Point of Coherency.

Point of coherency (PoC)

For a particular PA, the point at which all agents that can access memory are guaranteed to see the same copy of a
memory location.

Point of unification (PoU)

For a particular PE, the point by which the instruction and data caches of that PE are guaranteed to see the same
copy of a memory location.

Poisoned

State that has been marked as being in error so that subsequent consumption of the state signals a detected error to
a consumer.

Post-indexed addressing

Means that the memory address is the base register value, but an offset is added to or subtracted from the base
register value and the result is written back to the base register.

PoU

See Point of Unification.

PPB

Private Peripheral Bus

Pre-indexed addressing

Means that the memory address is formed in the same way as for offset addressing, but the memory address is also
written back to the base register.

Precise exception

An exception is described as precise when the exception handler receives the PE state and memory system state
that is consistent with the PE having executed all instructions up to, but not including, the point in the instruction
stream where the exception was taken and none afterwards.

Prefetching

Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple
sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

In this manual, references to instruction or data fetching apply also to prefetching, unless the context explicitly
indicates otherwise.

See also Simple sequential execution.

Privileged access

Memory systems typically differentiate between privileged and unprivileged accesses, and support more restrictive
permissions for unprivileged accesses. Some instructions can be used only by privileged software.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2136

Processing element (PE)

The abstract machine that is defined in the Arm architecture, as documented in an Arm Architecture Reference
Manual. A PE implementation compliant with the Arm architecture must conform with the behaviors described in
the corresponding Arm Architecture Reference Manual.

Program Status Registers (XPSR)

XPSR is the term that is used to describe the combination of the APSR, EPSR, and IPSR into a single 32-bit
Program Status Register.

See also B3.5 XPSR, APSR, IPSR, and EPSR.

Protection granule

A quantum of memory for which an EDC or ECC provides detection or correction.

Protection region

A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit

See Memory Protection Unit

Pseudo-instruction

UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a different
assembler syntax, and is described in this manual under that other syntax. For example, MOV<Rd>, <Rm>, LSL #<n>

is a pseudo-instruction that is expected to disassemble as LSL<Rd>, <Rm>, #<n>.

See also Chapter C1 Instruction Set Overview.

Quadword

A 128-bit data item. Quadwords are normally at least word-aligned in Arm systems.

Quadword-aligned

Means that the address is divisible by 16.

Quiet NaN

A NaN that propagates unchanged through most floating-point operations.

RAO

See Read-As-One.

RAO/SBOP

In versions of the Arm architecture before Armv8, Read-As-One, Should-Be-One-or-Preserved on writes.

In Armv8, RES1 replaces this description.

See also UNK/SBOP, Read-As-One, RES1, Should-Be-One-or-Preserved (SBOP).

RAO/WI

Read-As-One, Writes Ignored.

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software can rely on the field reading as all 1s, and on writes being ignored.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also Read-As-One.

RAS

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2137

Reliability, Availability, and Serviceability. See Chapter B16 Reliability, Availability, and Serviceability (RAS)
Extension

RAZ

See Read-As-Zero.

RAZ/SBZP

In versions of the Arm architecture before Armv8, Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

In Armv8, RES0 replaces this description.

See also UNK/SBZP, Read-As-Zero, RES0, Should-Be-Zero-or-Preserved (SBOP).

RAZ/WI

Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-As-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero.

Read, modify, write

In a read, modify, write instruction sequence, a value is read to a general-purpose register, the relevant fields that
are updated in that register, and the new value that is written back.

Read-allocate cache

A cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)

Hardware must implement the field as reading as all 1s.

Software:

• Can rely on the field reading as all 1s.
• Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s. It applies only to a bit or
field that is read-only.

See also RAO/SBOP, RAO/WI, RES1.

Read-As-Zero (RAZ)

Hardware must implement the field as reading as all 0s.

Software:

• Can rely on the field reading as all 0s
• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s. It applies only to a bit or
field that is read-only.

See also RAZ/SBZP, RAZ/WI, RES0.

Recoverable

A contained error that must be corrected to allow the correct operation of the system or smaller parts of the system
to continue.

See also B16.3 Generating error exceptions.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2138

Register data dependency

A register data dependency exists between a first data value and a second data value when either:

• The register that holds the first data value is used in the calculation of the second data value, and the calculation
between the first data value and the second data value does not consist of either:

– A conditional branch whose condition is determined by the first data value.
– A conditional selection, move, or computation whose condition is determined by the first data value,

where the input data values for the selection, move, or computation do not have a data dependency on the
first data value.

• There is a register data dependency between the first data value and a third data value, and between the third
data value and the second data value.

See B7.2.3 Ordering and observability

Reliability

Continuity of correct service.

Requester

An agent in a computing system that is capable of initiating memory transactions.

See also Completer

RES0

A reserved bit or field with Should-Be-Zero-or-Preserved behavior, or equivalent read-only or write-only behavior.
Used for fields in register descriptions, and for fields in architecturally defined data structures that are held in
memory.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.
• Has different defined behavior in a different architectural context.

Note

RES0 is not used in descriptions of instruction encodings.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.
• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value that is successfully written, by either a direct or an indirect write, to
the bit.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if
there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than determining the value read
back from the bit, unless this manual explicitly defines additional properties for the bit.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2139

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a bit-by-bit basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value last successfully written to the bit, by either a direct or an indirect
write, regardless of the use of the register when the bit was written.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is
one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must have no effect
on the operation of the PE, other than determining the value read back from that bit, unless this manual
explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a bit is defined
as RES0, another context in which the same bit is defined as RES1, and no context in which the bit is defined as a
functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
• The value of the bit can be written, and a read returns the last value that is written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.
• Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALLCAPS.

See also Read-As-Zero, RES1, Should-Be-Zero-or-Preserved, UNKNOWN.

RES0H

A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP). This behavior uses the Hardwired to 0 subset of
the RES0 definition.

RES1

A reserved bit or field with Should-Be-One-or-Preserved behavior, or equivalent read-only or write-only behavior.
Used for fields in register descriptions, and for fields in architecturally defined data structures that are held in
memory.

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.
• Has different defined behavior in a different architectural context.

Note

RES1 is not used in descriptions of instruction encodings.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2140

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.
• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value that is successfully written, by either a direct or an indirect write, to
the bit.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if
there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than determining the value read
back from the bit, unless this manual explicitly defines additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a bit-by-bit basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the use of the register
when the bit was written.

Note

As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is
one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must have no effect
on the operation of the PE, other than determining the value read back from that bit, unless this manual
explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a bit is defined
as RES0, another context in which the same bit is defined as RES1, and no context in which the bit is defined as a
functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
• The value of the bit can be written, and a read returns the last value that is written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2141

• Must not rely on the bit reading as 1.
• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALLCAPS.

See also Read-As-One, RES0, Should-Be-One-or-Preserved, UNKNOWN.

RES1H

A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. This behavior uses the Hardwired to 1
subset of the RES1 definition.

Reserved

Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions that are described as reserved are:

– In an RW or WO register, RES0.
– In an RO register, UNK.

See also CONSTRAINED UNPREDICTABLE, RES0, RES1, UNDEFINED, UNK, UNPREDICTABLE.

Restartable

A contained error that does not immediately impact correct operation. Usually this means correct operation of the
system, but it can also be used in other contexts to describe correct operation of a smaller part.

See also B16.3 Generating error exceptions.

Return Link

A value relating to the return address.

RISC

Reduced Instruction Set Computer.

Rounding error

The value of the rounded result of an arithmetic operation minus the exact result of the operation.

Rounding mode

Specifies how the exact result of a floating-point operation is rounded to a value that is representable in the
destination format. The rounding modes are defined by the IEEE Standard for Floating-point Arithmetic.

Saturated arithmetic

Integer arithmetic in which a result that would be greater than the largest representable number is set to the largest
representable number, and a result that would be less than the smallest representable number is set to the smallest
representable number. Signed saturated arithmetic is often used in DSP algorithms. It contrasts with the normal
signed integer arithmetic used in Arm processors, in which overflowing results wrap around from +231 − 1 to
−231 or the opposite way.

SBO

See Should-Be-One.

SBOP

See Should-Be-One-or-Preserved.

SBZ

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2142

See Should-Be-Zero.

SBZP

See Should-Be-Zero-or-Preserved

Security hole

A mechanism by which execution at the current level of privilege can achieve an outcome that cannot be achieved at
the current or a lower level of privilege using instructions that are not UNPREDICTABLE and are not CONSTRAINED
UNPREDICTABLE. The Arm architecture forbids security holes.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Self-modifying code

Code that writes one or more instructions to memory and then executes them. When using self-modifying code,
cache maintenance and barrier instructions must be used to ensure synchronization.

Serial Wire Output (SWO)

An asynchronous TPIU port supporting one or both of the NRZ and Manchester encodings.

Serial Wire Viewer (SWV)

The combination of an SWO and at least one of a DWT unit or an ITM, providing data tracing capability.

Service failure mode

A mode entered to reduce the severity of an error.

Serviceability

The ability to undergo modification and repairs.

Set

See Cache sets.

Should-Be-One (SBO)

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it
must expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One-or-Preserved (SBOP)

From the introduction of the Armv8 architecture, the description Should-Be-One-0r -Preserved is superseded by
RES1.

Hardware must ignore writes to the field.

If software has read the field since the PE implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
1s.

If software writes a value to the field that is not a value that is previously read for the field and is not all 1s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that
should be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero (SBZ)

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2143

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 0s. If software writes a value that is not all 0s, it
must expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero-or-Preserved (SBZP)

From the introduction of the Armv8 architecture, the description Should-Be-Zero -or-Preserved is superseded by
RES0.

Hardware must ignore writes to the field.

If software has read the field since the PE implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
0s.

If software writes a value to the field that is not a value that is previously read for the field and is not all 0s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that
should be written as its preserved value or as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Signaling NaNs

Cause an Invalid Operation exception whenever any floating-point operation receives a signaling NaN as an
operand. Signaling NaNs can be used in debugging, to track down some uses of uninitialized variables.

Signed data types

Represent an integer in the range −2N−1 to +2N−1 − 1, using two’s complement format.

Signed immediate and offset fields

Are encoded in two’s complement notation unless otherwise stated.

Silent data corruption

An error that is not detected by hardware or software.

Silently propagated

An error that is passed from place to place without being signaled as a detected error.

SIMD

Single-Instruction, Multiple-Data.

Simple sequential execution

The behavior of an implementation that fetches, decodes and completely executes each instruction before
proceeding to the next instruction. Such an implementation performs no Speculative accesses to memory, including
to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the
theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to
a realistic implementation of the architecture.

Single peripheral

A single peripheral is a region of memory of an IMPLEMENTATION DEFINED size that is defined by the peripheral.

Single-copy atomicity

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2144

The form of atomicity that is described in B7.2.1 Single-copy atomicity.

See also Atomicity, Multi-copy atomicity.

Single-precision value

A 32-bit word that is interpreted as a basic single-precision floating-point number according to the IEEE Standard
for Floating-point Arithmetic.

Software fault

A fault that originates in and affects software.

Spatial locality

The observed effect that after a program has accessed a memory location, it is likely to also access nearby memory
locations in the near future. Caches with multi-word cache lines exploit this effect to improve performance.

Special-purpose register

One of a specified set of registers for which all direct and indirect reads and writes to the register appear to
occur in program order relative to other instructions, without the need for any explicit synchronization. For more
information, see B3.3 Registers.

Speculative writes

All of the following are Speculative writes:

• Writes generated by store instructions that appear in the Execution stream after a branch that is not
architecturally resolved.

• Writes generated by store instructions that appear in the Execution stream after an instruction where a
synchronous exception condition has not been architecturally resolved.

• Writes generated by conditional store instructions for which the conditions for the instruction have not been
architecturally resolved.

• Writes generated by store instructions for which the data being written comes from a register that has not
been architecturally committed.

State context registers

The State context registers are as follows:

• R0 to R3.
• R12.
• LR.
• RETPSR.
• The ReturnAddress.

See also Additional state context registers

Synchronous exception

An exception is described as synchronous if all of the following apply:

• The exception generated as a result of direct execution or attempted execution of the instruction stream.
• The return addess presented to the exception handler is guaranteed to indicate the instruction that caused the

exception.
• The exception is precise.

See also Asynchronous exception, Precise exception.

System Control Block (SCB)

An address region in the System Control Space, which is used for key feature control and configuration that is
associated with the exception model.

See also System Control Space.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2145

System Control Space (SCS)

A region of the memory map that is reserved for system control and configuration registers.

See also Debug Control Block, B8.3 The System Control Space (SCS).

T32 instruction

One or two halfwords that specify an operation to be performed by a PE. T32 instructions must be halfword-aligned.
For more information, see Chapter C1 Instruction Set Overview.

T32 instructions were previously called Thumb instructions.

Tail-chaining

An optimization that removes unstacking and stacking operations. For more information, see B3.26 Tail-chaining.

Temporal locality

The observed effect that after a program has accesses a memory location, it is likely to access the same memory
location again in the near future. Caches exploit this effect to improve performance.

TPIU

See Trace Port Interface Unit.

Trace Port Interface Unit (TPIU)

A component of the Arm CoreSight debug and trace solution. A TPIU provides an external interface for one or
more trace sources in the processor implementation.

See B14.4 Trace Port Interface Unit.

Transient fault

A fault that is not persistent.

UAL

See Unified Assembler Language.

Unaligned

An unaligned access is an access where the address of the access is not aligned to the size of an element of the
access.

Unaligned memory accesses

Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

Unallocated

Except where otherwise stated in this manual, an instruction encoding is unallocated if the architecture does not
assign a specific function to the entire bit pattern of the instruction, but instead describes it as CONSTRAINED
UNPREDICTABLE, UNDEFINED, UNPREDICTABLE, or as an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, UNDEFINED.

Uncontainable

An error that has been, or might have been, silently propagated. This is also referred to as an Uncontained error.

See also B16.3 Generating error exceptions.

UNDEFINED

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2146

Indicates an instruction that generates an Undefined Instruction exception.

In body text, the term UNDEFINED is shown in SMALLCAPS.

See also Chapter C1 Instruction Set Overview.

Undetected fault

See Latent fault.

Unified Assembler Language

The assembler language that is introduced with Thumb-2 technology that is used in this manual. See Chapter C1
Instruction Set Overview for details.

Unified cache

Is a cache that is used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing

Means addressing in which the base register value is used directly as the address to send to memory, without
adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is performed by
using offset addressing with an immediate offset of 0.

In the M-Profile, the LDC, LDC2, STC, and STC2 instructions have an explicit unindexed addressing mode that
permits the offset field in the instruction to specify additional coprocessor options.

UNK

An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field
reading as zero.

See also UNKNOWN.

UNK/SBOP

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the
value as if it is UNKNOWN. Software must use an SBOP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that
should be written as its preserved value or as all 1s.

See also Read-as-One, Should-Be-One-or-Preserved, UNKNOWN.

UNK/SBZP

Hardware must implement the bit as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register must treat the value
as if it is UNKNOWN. Software must use an SBZP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that
should be written as its preserved value or as all 0s.

See also Read-as-Zero, Should-Be-Zero-or-Preserved, UNKNOWN.

UNKNOWN

An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information than cannot be accessed
at the current or lower level of privilege using instructions that are not UNPREDICTABLE, is not CONSTRAINED
UNPREDICTABLE, and do not return UNKNOWN values.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2147

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously
been assigned, other than at reset, to one of the following registers:

• Any of the general-purpose registers.
• Any of the Advanced SIMD and floating-point registers.
• Any of the APSR.{N, Z, C, V} flags.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALLCAPS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

UNPREDICTABLE

Means the behavior cannot be relied on. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege or security using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

In body text, the term UNPREDICTABLE is shown in SMALLCAPS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Unrecoverable

A contained error that is not recoverable. Continued correct operation is generally not possible. Usually this means
correct operation of the system, but it can also be used in other contexts to describe correct operation of a smaller
part. Systems might use high-level recovery techniques to work around an unrecoverable yet contained error in a
component so that the system recovers from the error.

See also B16.3 Generating error exceptions.

Unsigned data types

Represent a non-negative integer in the range 0 to +2N−1 − 1, using normal binary format.

Watchpoint

A debug event that is triggered by an access to memory, which is specified in terms of the address of the location
in memory being accessed.

Way

See Cache way.

WI

Writes Ignored. In a register that software can write to, a WI attribute that is applied to a bit or field indicates that
the bit or field ignores the value that is written by software and retains the value it had before that write.

See also RAO/WI, RAZ/WI, RES0, RES1.

Word

A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned

Means that the address is divisible by 4.

Write buffer

A block of high-speed memory that optimizes stores to main memory.

Write-Allocate cache

A cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2148

Write-back cache

A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or reallocated. Another common term for a write-back cache is a copy-back cache.

Write-one-to-clear

Writing 1 to the relevant bit clears it to 0. Writing 0 to the bit has no effect.

Write-one-to-set

Writing 1 to the relevant bit sets it to 1. Writing 0 to the bit has no effect.

Write-Through cache

A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main
memory. This is normally done using a write buffer, to avoid slowing down the PE.

XPSR

See Program Status Registers (XPSR).

DDI0553B.y
ID09082024

Copyright © 2015 - 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2149

	Release information
	Armv8-M Architecture Reference Manual
	Proprietary Notice
	Confidentiality Status
	Product Status
	Web Address
	Contents
	Preface
	About this manual
	Using this manual
	Conventions
	Typographical conventions
	Signals
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this manual
	Inclusive Terminology Commitment

	A Armv8-M Architecture Introduction and Overview
	A1 Introduction
	A1.1 Architecture refernce manual layout and terminology
	A1.1.1 Structure of the architecture reference manual
	A1.1.2 Scope of the architecture reference manual
	A1.1.3 Intended audience
	A1.1.4 Terminology, phrases
	A1.1.5 Terminology, Armv8-M specific terms

	A1.2 About the Armv8 architecture, and architecture profiles
	A1.3 The Armv8-M architecture profile
	A1.3.1 The Armv8-M instruction set
	A1.3.2 Baseline implementation
	A1.3.3 Nested Vectored Interrupt Controller

	A1.4 Optional Extensions
	A1.4.1 CDE - The Custom Datapath Extension
	A1.4.2 Debug
	A1.4.3 DSP - The Digital Signal Processing Extension.
	A1.4.4 The DSP Debug Extension
	A1.4.5 The Floating-point Extension
	A1.4.6 The Main Extension
	A1.4.7 MPU model
	A1.4.8 M-Profile Vector Extension, MVE
	A1.4.9 Pointer Authentication and Branch Target Identification Extension
	A1.4.10 Perfomance Monitors Extension
	A1.4.11 Reliability, Availability, and Serviceability
	A1.4.12 Security Extension
	A1.4.13 The System Timer Extension

	B Armv8-M Architecture Rules
	B1 Resets
	B1.1 Resets, Cold reset, and Warm reset

	B2 Power Management
	B2.1 Power management
	B2.1.1 The Wait for Event (WFE) instruction
	B2.1.2 The Wait for Interrupt (WFI) instruction

	B2.2 Sleep on exit

	B3 Programmers' Model
	B3.1 PE modes, Thread mode and Handler mode
	B3.2 Privileged and unprivileged execution
	B3.3 Registers
	B3.4 Special-purpose CONTROL register
	B3.5 XPSR, APSR, IPSR, and EPSR
	B3.5.1 Interrupt Program Status Register (IPSR)
	B3.5.2 Execution Program Status Register (EPSR)

	B3.6 Security states: Secure state, and Non-secure state
	B3.7 Security states and register banking between Security states
	B3.8 Stack pointer
	B3.9 Exception numbers and exception priority numbers
	B3.10 Exception enable, pending, and active bits
	B3.11 Security states, exception banking
	B3.12 Faults
	B3.13 Priority model
	B3.14 Secure address protection
	B3.15 Security state transitions
	B3.16 Function calls from Secure state to Non-secure state
	B3.17 Function returns from Non-secure state
	B3.18 Exception handling
	B3.19 Exception entry, context stacking
	B3.20 Exception entry, register clearing after context stacking
	B3.21 Stack limit checks
	B3.22 Exception return
	B3.23 Integrity signature
	B3.24 Exceptions during exception entry
	B3.25 Exceptions during exception return
	B3.26 Tail-chaining
	B3.27 Exceptions, instruction resume, or instruction restart
	B3.27.1 Basic definitions
	B3.27.2 Instruction restart behavior
	B3.27.3 Interrupt-continuable instructions
	B3.27.4 Behavior of interrupt-continuable instructions
	B3.27.5 Exceptions during interrupt-continuable instructions
	B3.27.6 Exception-continuable instruction behavior
	B3.27.7 Invalid ICI and ECI values

	B3.28 Low overhead loops
	B3.29 Branch future
	B3.30 Vector tables
	B3.31 Hardware-controlled priority escalation to HardFault
	B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting
	B3.33 Lockup
	B3.33.1 Lockup behavior
	Instruction execution

	B3.33.2 Exception-related lockup behavior
	Vector or stack pointer error on reset
	Errors on preemption and stacking for exception entry
	Vector read error on NMI or HardFault entry
	Lockup on exception return

	B3.34 Data independent timing
	B3.35 Context Synchronization Event
	B3.36 Coprocessor support
	B3.37 The Custom Datapath Extension
	B3.37.1 Overview of the Custom Datapath Extension
	B3.37.2 Enabling CDE instructions
	B3.37.3 Execution of CDE instructions

	B4 Floating-point Support
	B4.1 The optional Floating-point Extension, FPv5
	B4.2 About the Floating-point Status and Control Registers
	B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15
	B4.4 Floating-point standards and terminology
	B4.5 Floating-point data representable
	B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
	B4.7 The IEEE 754 Floating-point exceptions
	B4.8 The Flush-to-zero mode
	B4.8.1 The Flush to zero mode half-precision calculations

	B4.9 The Default NaN mode, and NaN handling
	B4.10 The Default NaN
	B4.11 Combinations of Floating-point exceptions
	B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions

	B5 Vector Extension
	B5.1 Vector Extension operation
	B5.2 Vector register file
	B5.3 Lanes
	B5.4 Beats
	B5.5 Predication/conditional execution
	B5.5.1 Loop tail predication
	B5.5.2 VPT predication
	B5.5.3 Effects of predication
	B5.5.4 IT block

	B5.6 MVE interleaving/de-interleaving loads and stores

	B6 Pointer authentication and branch target identification Extension
	B6.1 Implementing PAC and BTI
	B6.1.1 Pointer authentication
	B6.1.2 Branch target identification

	B7 Memory Model
	B7.1 Definition of the Armv8 memory model
	B7.1.1 Locations

	B7.2 Atomicity
	B7.2.1 Single-copy atomicity
	B7.2.2 Multi-copy atomicity
	B7.2.3 Ordering and observability
	B7.2.4 Ordering and observability at a Location
	B7.2.4.1 Ordering relations

	B7.2.5 Ordering constraints
	B7.2.6 Completion and endpoint ordering
	B7.2.7 External ordering constraints
	B7.2.8 Globally-completes-before order
	B7.2.9 Memory barriers
	B7.2.10 Instruction Synchronization Barrier
	B7.2.11 Data Memory Barrier
	B7.2.12 Data Synchronization Barrier
	B7.2.13 Consumption of Speculative Data Barrier
	B7.2.14 Physical Speculative Store Bypass Barrier
	B7.2.15 Speculative Store Bypass Barrier
	B7.2.16 Synchronization requirements for System Control Space

	B7.3 Memory accesses
	B7.4 Address space
	B7.5 Endianness
	B7.6 Alignment behavior
	B7.7 Concurrent modification and execution of instructions
	B7.8 Access rights
	B7.9 Normal memory
	B7.10 Cacheability attributes
	B7.11 Device memory
	B7.12 Device memory attributes
	B7.12.1 Gathering and non-Gathering Device memory attributes
	B7.12.2 Reordering and non-Reordering Device memory attributes
	B7.12.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes

	B7.13 Shareability attributes
	B7.14 Shareability domains
	B7.15 Memory access restrictions
	B7.16 Mismatched memory attributes
	B7.17 Load-Exclusive and Store-Exclusive accesses to Normal memory
	B7.18 Load-Acquire and Store-Release accesses to memory
	B7.19 Caches
	B7.20 Cache identification
	B7.21 Cache visibility
	B7.22 Cache coherency
	B7.23 Cache enabling and disabling
	B7.24 Cache behavior at reset
	B7.25 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches
	B7.26 Branch predictors
	B7.27 Cache maintenance operations
	B7.28 Ordering of cache maintenance operations
	B7.29 Branch predictor maintenance operations

	B8 The System Address Map
	B8.1 System address map
	B8.2 The System region of the system address map
	B8.3 The System Control Space (SCS)

	B9 Synchronization and Semaphores
	B9.1 Exclusive access instructions
	B9.2 The local monitors
	B9.3 The global monitor
	B9.3.1 Load-Exclusive and Store-Exclusive
	B9.3.2 Load-Exclusive and Store-Exclusive in Shareable memory

	B9.4 Exclusive access instructions and the monitors
	B9.5 Load-Exclusive and Store-Exclusive instruction constraints

	B10 The Armv8-M Protected Memory System Architecture
	B10.1 Memory Protection Unit
	B10.2 Security attribution
	B10.3 Security attribution unit (SAU)
	B10.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

	B11 The System Timer, SysTick
	B11.1 The system timer, SysTick

	B12 Nested Vectored Interrupt Controller
	B12.1 NVIC definition
	B12.2 NVIC operation

	B13 Debug
	B13.1 Debug feature overview
	B13.1.1 Debug mechanisms
	B13.1.2 Debug resources
	B13.1.3 Trace

	B13.2 Accessing debug features
	B13.2.1 ROM table
	B13.2.2 Debug System registers
	B13.2.3 CoreSight and identification registers

	B13.3 Debug authentication interface
	B13.3.1 Halting debug authentication
	B13.3.2 Non-invasive debug authentication
	B13.3.3 DebugMonitor exception authentication
	B13.3.4 DAP access permissions

	B13.4 Debug event behavior
	B13.4.1 About debug events
	B13.4.2 Debug stepping
	B13.4.3 Vector catch
	B13.4.4 Breakpoint instructions
	B13.4.5 External debug request

	B13.5 Debug state
	B13.6 Exiting Debug state
	B13.7 Multiprocessor support
	B13.7.1 Cross-halt event
	B13.7.2 External restart request

	B14 Debug and Trace Components
	B14.1 Instrumentation Trace Macrocell
	B14.1.1 About the ITM
	B14.1.2 ITM operation
	B14.1.3 Timestamp support
	Local timestamping
	Local timestamp clocking options
	Global timestamping

	B14.1.4 Synchronization support
	B14.1.5 Continuation bits

	B14.2 Data Watchpoint and Trace unit
	B14.2.1 About the DWT
	B14.2.2 DWT unit operation
	B14.2.3 Constraints on programming DWT comparators
	Instruction address range
	Data address range
	Data value at specific address

	B14.2.4 CMPMATCH trigger events
	B14.2.5 Matching in detail
	Instruction address matching in detail
	Data address matching in detail
	Data value matching in detail

	B14.2.6 DWT match restrictions and relaxations
	B14.2.7 DWT trace restrictions and relaxations
	B14.2.8 CYCCNT cycle counter and related timers
	B14.2.9 Profiling counter support
	Generating Overflow packets from Event counters

	B14.2.10 Program Counter sampling support

	B14.3 Embedded Trace Macrocell
	B14.4 Trace Port Interface Unit
	B14.5 Flash Patch and Breakpoint unit
	B14.5.1 About the FPB unit
	B14.5.2 FPB unit operation
	B14.5.3 Cache maintenance

	B15 The Performance Monitors Extension
	B15.1 Counters
	B15.2 Accuracy of the performance counters
	B15.3 Security, access, and modes
	B15.4 Attributability
	B15.5 Coexistence with the DWT Performance Monitors
	B15.6 Interrupts and Debug events
	B15.7 Performance Monitors and Debug state
	B15.8 List of supported architectural and microarchitectural events
	B15.9 Generic architectural and microarchitectural events
	B15.9.1 CTI_TRIGOUT (Cross-trigger Interface output trigger , for = 4 to 7)
	B15.9.2 TRCEXTOUT (PE Trace Unit external output , for = 0 to 3)
	B15.9.3 DWT_CMPMATCH (DWT comparator match, for = 0 to 7)
	B15.9.4 LI_CACHE_REFILL (Level instruction cache refill)
	B15.9.5 LD_CACHE_REFILL (Level data cache refill)
	B15.9.6 LD_CACHE_MISS_RD (Level data cache miss on read)
	B15.9.7 LD_CACHE_WB (Level data cache write-back)
	B15.9.8 LI_CACHE (Level instruction cache access)
	B15.9.9 LD_CACHE (Level data cache access)
	B15.9.10 LD_CACHE_RD (Level data cache access, read)

	B15.10 Common event descriptions
	B15.11 Required PMU events
	B15.12 IMPLEMENTATION DEFINED event numbers

	B16 Reliability, Availability, and Serviceability (RAS) Extension
	B16.1 Overview
	B16.2 Taxonomy of errors
	B16.2.1 Architectural error propagation
	B16.2.2 Architecturally infected, contained, and uncontained
	B16.2.3 Architecturally consumed errors
	B16.2.4 Other errors

	B16.3 Generating error exceptions
	B16.3.1 Error correction and deferment

	B16.4 Error Synchronization Barrier (ESB)
	B16.4.1 ESB and Unrecoverable errors
	B16.4.2 ESB and other containable errors
	B16.4.3 ESB and other errors

	B16.5 Implicit Error Synchronization (IESB)
	B16.6 Fault handling
	B16.7 RAS error records
	B16.8 Multiple BusFault exceptions
	B16.9 Minimal RAS implementation

	C Armv8-M Instruction Set
	C1 Instruction Set Overview
	C1.1 Instruction set
	C1.2 Format of instruction descriptions
	C1.2.1 The title
	C1.2.2 A short description
	C1.2.3 The instruction encoding or encodings
	C1.2.4 Any alias conditions, if applicable
	C1.2.5 Standard assembler syntax fields
	C1.2.6 Pseudocode describing how the instruction operates
	C1.2.7 Use of labels in UAL instruction syntax
	C1.2.8 Using syntax information

	C1.3 Conditional execution
	C1.3.1 Conditional instructions
	C1.3.2 Pseudocode details of conditional execution
	C1.3.3 Conditional execution of undefined instructions
	C1.3.4 Interaction of undefined instruction behavior with UNPREDICTABLE or CONSTRAINED_UNPREDICTABLE instruction behavior
	C1.3.5 ITSTATE
	C1.3.6 Pseudocode details of ITSTATE operation
	C1.3.7 SVC and ITSTATE
	C1.3.8 CONSTRAINED_UNPREDICTABLE behavior and IT blocks

	C1.4 Instruction set encoding information
	C1.4.1 UNDEFINED and UNPREDICTABLE instruction set space
	C1.4.2 Pseudocode descriptions of operations on general-purpose registers and the PC
	C1.4.3 Use of 0b1111 as a register specifier
	C1.4.4 Use of 0b1101 as a register specifier
	SP[1:0] definition
	32-bit T32 instruction support for SP

	C1.4.5 16-bit T32 instruction support for SP
	C1.4.6 Branching
	C1.4.7 Instruction set, interworking and interstating support

	C1.5 Modified immediate constants
	C1.5.1 Operation of modified immediate constants
	C1.5.2 Modified immediate values for MVE instructions
	C1.5.3 Modified immediate constants for floating-point instructions

	C1.6 NOP-compatible hint instructions

	C2 Instruction Specification
	C2.1 Top level T32 instruction set encoding
	C2.2 16-bit T32 instruction encoding
	C2.2.1 Shift (immediate), add, subtract, move, and compare
	C2.2.1.1 Add, subtract (three low registers)
	C2.2.1.2 Add, subtract (two low registers and immediate)
	C2.2.1.3 Add, subtract, compare, move (one low register and immediate)

	C2.2.2 Data-processing (two low registers)
	C2.2.3 Special data instructions and branch and exchange
	C2.2.3.1 Branch and exchange
	C2.2.3.2 Add, subtract, compare, move (two high registers)

	C2.2.4 Load/store (register offset)
	C2.2.5 Load/store word/byte (immediate offset)
	C2.2.6 Load/store halfword (immediate offset)
	C2.2.7 Load/store (SP-relative)
	C2.2.8 Add PC/SP (immediate)
	C2.2.9 Miscellaneous 16-bit instructions
	C2.2.9.1 Adjust SP (immediate)
	C2.2.9.2 Extend
	C2.2.9.3 Reverse bytes
	C2.2.9.4 Hints
	C2.2.9.5 Push and Pop

	C2.2.10 Load/store multiple
	C2.2.11 Conditional branch, and Supervisor Call
	C2.2.11.1 Exception generation

	C2.3 32-bit T32 instruction encoding
	C2.3.1 Coprocessor, floating-point, and vector instructions
	C2.3.1.1 Floating-point and vector miscellaneous instructions
	C2.3.1.1.1 Coprocessor data-processing instructions
	 Architected coprocessor data-processing instructions
	 Custom general-purpose register instructions

	C2.3.1.1.2 Vector move instructions
	C2.3.1.1.3 Floating-point data-processing, minNum/maxNum, and convert
	C2.3.1.1.4 Floating-point and vector move (register)
	 Move between Floating-point and vector registers
	 Move between general-purpose Register and Floating-point Special register

	C2.3.1.1.5 Architected coprocessor data-processing instructions
	C2.3.1.1.6 Vector immediate and register, and coprocessor data-processing instructions
	 Miscellaneous vector register instructions
	 Miscellaneous vector register and immediate instructions
	 Vector register, immediate, and predication instructions
	 Vector arithmetic, minimum, maximum, and shift instructions

	C2.3.1.2 Floating-point and vector load/store, move, and coprocessor instructions
	C2.3.1.2.1 Coprocessor load, store, and move instructions
	 Architected coprocessor load, store, and move instructions
	 Custom Floating-point and vector instructions

	C2.3.1.2.2 Floating-point and vector load/store and, complex arithmetic instructions
	 Floating-point and vector complex arithmetic instructions
	 Floating-point and vector load/store instructions

	C2.3.1.2.3 Coprocessor and Floating-point load/store, move, and security
	C2.3.1.2.4 Architected coprocessor load, store, and move instructions
	C2.3.1.2.5 Vector load instructions
	C2.3.1.2.6 Vector store instructions

	C2.3.1.3 Miscellaneous vector arithmetic instructions

	C2.3.2 Load/store (multiple, dual, exclusive, acquire-release)
	C2.3.2.1 Load/store multiple
	C2.3.2.2 Load/store exclusive, load-acquire/store-release
	C2.3.2.2.1 Load/store exclusive
	C2.3.2.2.2 Load/store exclusive byte/half/dual
	C2.3.2.2.3 Load-acquire / Store-release

	C2.3.2.3 Load/store dual (post-indexed)
	C2.3.2.4 Load/store dual (literal and immediate)
	C2.3.2.5 Load/store dual (pre-indexed), secure gateway

	C2.3.3 Data-processing (shifted register)
	C2.3.3.1 Wide shift, shift, and conditional instructions
	C2.3.3.2 Shifted register instructions

	C2.3.4 Branches and miscellaneous control
	C2.3.4.1 Hints
	C2.3.4.2 Miscellaneous system
	C2.3.4.3 Exception generation
	C2.3.4.4 Loop and branch instructions
	C2.3.4.4.1 Branch future instructions
	C2.3.4.4.2 Loop instructions

	C2.3.5 Data-processing (modified immediate)
	C2.3.6 Data-processing (plain binary immediate)
	C2.3.6.1 Data-processing (simple immediate)
	C2.3.6.2 Move Wide (16-bit immediate)
	C2.3.6.3 Saturate, bitfield

	C2.3.7 Load/store single
	C2.3.7.1 Load/store, unsigned (register offset)
	C2.3.7.2 Load/store, unsigned (immediate, post-indexed)
	C2.3.7.3 Load/store, unsigned (negative immediate)
	C2.3.7.4 Load/store, unsigned (unprivileged)
	C2.3.7.5 Load/store, unsigned (immediate, pre-indexed)
	C2.3.7.6 Load/store, unsigned (positive immediate)
	C2.3.7.7 Load, unsigned (literal)
	C2.3.7.8 Load/store, signed (register offset)
	C2.3.7.9 Load/store, signed (immediate, post-indexed)
	C2.3.7.10 Load/store, signed (negative immediate)
	C2.3.7.11 Load/store, signed (unprivileged)
	C2.3.7.12 Load/store, signed (immediate, pre-indexed)
	C2.3.7.13 Load/store, signed (positive immediate)
	C2.3.7.14 Load, signed (literal)

	C2.3.8 Data-processing (register)
	C2.3.8.1 Register extends
	C2.3.8.2 Parallel add-subtract
	C2.3.8.3 Data-processing (two source registers)

	C2.3.9 Multiply, multiply accumulate, and absolute difference
	C2.3.10 Long multiply and divide

	C2.4 Alphabetical list of instructions
	C2.4.1 ADC (immediate)
	C2.4.2 ADC (register)
	C2.4.3 ADD (SP plus immediate)
	C2.4.4 ADD (SP plus register)
	C2.4.5 ADD (immediate)
	C2.4.6 ADD (immediate, to PC)
	C2.4.7 ADD (register)
	C2.4.8 ADR
	C2.4.9 AND (immediate)
	C2.4.10 AND (register)
	C2.4.11 ASR (immediate)
	C2.4.12 ASR (register)
	C2.4.13 ASRL (immediate)
	C2.4.14 ASRL (register)
	C2.4.15 ASRS (immediate)
	C2.4.16 ASRS (register)
	C2.4.17 AUT
	C2.4.18 AUTG
	C2.4.19 B
	C2.4.20 BF, BFX, BFL, BFLX, BFCSEL
	C2.4.21 BFC
	C2.4.22 BFI
	C2.4.23 BIC (immediate)
	C2.4.24 BIC (register)
	C2.4.25 BKPT
	C2.4.26 BL
	C2.4.27 BLX, BLXNS
	C2.4.28 BTI
	C2.4.29 BX, BXNS
	C2.4.30 BXAUT
	C2.4.31 CBNZ, CBZ
	C2.4.32 CDP, CDP2
	C2.4.33 CINC
	C2.4.34 CINV
	C2.4.35 CLREX
	C2.4.36 CLRM
	C2.4.37 CLZ
	C2.4.38 CMN (immediate)
	C2.4.39 CMN (register)
	C2.4.40 CMP (immediate)
	C2.4.41 CMP (register)
	C2.4.42 CNEG
	C2.4.43 CPS
	C2.4.44 CSDB
	C2.4.45 CSEL
	C2.4.46 CSET
	C2.4.47 CSETM
	C2.4.48 CSINC
	C2.4.49 CSINV
	C2.4.50 CSNEG
	C2.4.51 CX1
	C2.4.52 CX1D
	C2.4.53 CX2
	C2.4.54 CX2D
	C2.4.55 CX3
	C2.4.56 CX3D
	C2.4.57 DBG
	C2.4.58 DMB
	C2.4.59 DSB
	C2.4.60 EOR (immediate)
	C2.4.61 EOR (register)
	C2.4.62 ESB
	C2.4.63 FLDMDBX, FLDMIAX
	C2.4.64 FSTMDBX, FSTMIAX
	C2.4.65 ISB
	C2.4.66 IT
	C2.4.67 LCTP
	C2.4.68 LDA
	C2.4.69 LDAB
	C2.4.70 LDAEX
	C2.4.71 LDAEXB
	C2.4.72 LDAEXH
	C2.4.73 LDAH
	C2.4.74 LDC, LDC2 (immediate)
	C2.4.75 LDC, LDC2 (literal)
	C2.4.76 LDM, LDMIA, LDMFD
	C2.4.77 LDMDB, LDMEA
	C2.4.78 LDR (immediate)
	C2.4.79 LDR (literal)
	C2.4.80 LDR (register)
	C2.4.81 LDRB (immediate)
	C2.4.82 LDRB (literal)
	C2.4.83 LDRB (register)
	C2.4.84 LDRBT
	C2.4.85 LDRD (immediate)
	C2.4.86 LDRD (literal)
	C2.4.87 LDREX
	C2.4.88 LDREXB
	C2.4.89 LDREXH
	C2.4.90 LDRH (immediate)
	C2.4.91 LDRH (literal)
	C2.4.92 LDRH (register)
	C2.4.93 LDRHT
	C2.4.94 LDRSB (immediate)
	C2.4.95 LDRSB (literal)
	C2.4.96 LDRSB (register)
	C2.4.97 LDRSBT
	C2.4.98 LDRSH (immediate)
	C2.4.99 LDRSH (literal)
	C2.4.100 LDRSH (register)
	C2.4.101 LDRSHT
	C2.4.102 LDRT
	C2.4.103 LE, LETP
	C2.4.104 LSL (immediate)
	C2.4.105 LSL (register)
	C2.4.106 LSLL (immediate)
	C2.4.107 LSLL (register)
	C2.4.108 LSLS (immediate)
	C2.4.109 LSLS (register)
	C2.4.110 LSR (immediate)
	C2.4.111 LSR (register)
	C2.4.112 LSRL (immediate)
	C2.4.113 LSRS (immediate)
	C2.4.114 LSRS (register)
	C2.4.115 MCR, MCR2
	C2.4.116 MCRR, MCRR2
	C2.4.117 MLA
	C2.4.118 MLS
	C2.4.119 MOV (immediate)
	C2.4.120 MOV (register)
	C2.4.121 MOV, MOVS (register-shifted register)
	C2.4.122 MOVT
	C2.4.123 MRC, MRC2
	C2.4.124 MRRC, MRRC2
	C2.4.125 MRS
	C2.4.126 MSR (register)
	C2.4.127 MUL
	C2.4.128 MVN (immediate)
	C2.4.129 MVN (register)
	C2.4.130 NOP
	C2.4.131 ORN (immediate)
	C2.4.132 ORN (register)
	C2.4.133 ORR (immediate)
	C2.4.134 ORR (register)
	C2.4.135 PAC
	C2.4.136 PACBTI
	C2.4.137 PACG
	C2.4.138 PKHBT, PKHTB
	C2.4.139 PLD (literal)
	C2.4.140 PLD, PLDW (immediate)
	C2.4.141 PLD, PLDW (register)
	C2.4.142 PLI (immediate, literal)
	C2.4.143 PLI (register)
	C2.4.144 POP (multiple registers)
	C2.4.145 POP (single register)
	C2.4.146 PSSBB
	C2.4.147 PUSH (multiple registers)
	C2.4.148 PUSH (single register)
	C2.4.149 QADD
	C2.4.150 QADD16
	C2.4.151 QADD8
	C2.4.152 QASX
	C2.4.153 QDADD
	C2.4.154 QDSUB
	C2.4.155 QSAX
	C2.4.156 QSUB
	C2.4.157 QSUB16
	C2.4.158 QSUB8
	C2.4.159 RBIT
	C2.4.160 REV
	C2.4.161 REV16
	C2.4.162 REVSH
	C2.4.163 ROR (immediate)
	C2.4.164 ROR (register)
	C2.4.165 RORS (immediate)
	C2.4.166 RORS (register)
	C2.4.167 RRX
	C2.4.168 RRXS
	C2.4.169 RSB (immediate)
	C2.4.170 RSB (register)
	C2.4.171 SADD16
	C2.4.172 SADD8
	C2.4.173 SASX
	C2.4.174 SBC (immediate)
	C2.4.175 SBC (register)
	C2.4.176 SBFX
	C2.4.177 SDIV
	C2.4.178 SEL
	C2.4.179 SEV
	C2.4.180 SG
	C2.4.181 SHADD16
	C2.4.182 SHADD8
	C2.4.183 SHASX
	C2.4.184 SHSAX
	C2.4.185 SHSUB16
	C2.4.186 SHSUB8
	C2.4.187 SMLABB, SMLABT, SMLATB, SMLATT
	C2.4.188 SMLAD, SMLADX
	C2.4.189 SMLAL
	C2.4.190 SMLALBB, SMLALBT, SMLALTB, SMLALTT
	C2.4.191 SMLALD, SMLALDX
	C2.4.192 SMLAWB, SMLAWT
	C2.4.193 SMLSD, SMLSDX
	C2.4.194 SMLSLD, SMLSLDX
	C2.4.195 SMMLA, SMMLAR
	C2.4.196 SMMLS, SMMLSR
	C2.4.197 SMMUL, SMMULR
	C2.4.198 SMUAD, SMUADX
	C2.4.199 SMULBB, SMULBT, SMULTB, SMULTT
	C2.4.200 SMULL
	C2.4.201 SMULWB, SMULWT
	C2.4.202 SMUSD, SMUSDX
	C2.4.203 SQRSHR (register)
	C2.4.204 SQRSHRL (register)
	C2.4.205 SQSHL (immediate)
	C2.4.206 SQSHLL (immediate)
	C2.4.207 SRSHR (immediate)
	C2.4.208 SRSHRL (immediate)
	C2.4.209 SSAT
	C2.4.210 SSAT16
	C2.4.211 SSAX
	C2.4.212 SSBB
	C2.4.213 SSUB16
	C2.4.214 SSUB8
	C2.4.215 STC, STC2
	C2.4.216 STL
	C2.4.217 STLB
	C2.4.218 STLEX
	C2.4.219 STLEXB
	C2.4.220 STLEXH
	C2.4.221 STLH
	C2.4.222 STM, STMIA, STMEA
	C2.4.223 STMDB, STMFD
	C2.4.224 STR (immediate)
	C2.4.225 STR (register)
	C2.4.226 STRB (immediate)
	C2.4.227 STRB (register)
	C2.4.228 STRBT
	C2.4.229 STRD (immediate)
	C2.4.230 STREX
	C2.4.231 STREXB
	C2.4.232 STREXH
	C2.4.233 STRH (immediate)
	C2.4.234 STRH (register)
	C2.4.235 STRHT
	C2.4.236 STRT
	C2.4.237 SUB (SP minus immediate)
	C2.4.238 SUB (SP minus register)
	C2.4.239 SUB (immediate)
	C2.4.240 SUB (immediate, from PC)
	C2.4.241 SUB (register)
	C2.4.242 SVC
	C2.4.243 SXTAB
	C2.4.244 SXTAB16
	C2.4.245 SXTAH
	C2.4.246 SXTB
	C2.4.247 SXTB16
	C2.4.248 SXTH
	C2.4.249 TBB, TBH
	C2.4.250 TEQ (immediate)
	C2.4.251 TEQ (register)
	C2.4.252 TST (immediate)
	C2.4.253 TST (register)
	C2.4.254 TT, TTT, TTA, TTAT
	C2.4.255 UADD16
	C2.4.256 UADD8
	C2.4.257 UASX
	C2.4.258 UBFX
	C2.4.259 UDF
	C2.4.260 UDIV
	C2.4.261 UHADD16
	C2.4.262 UHADD8
	C2.4.263 UHASX
	C2.4.264 UHSAX
	C2.4.265 UHSUB16
	C2.4.266 UHSUB8
	C2.4.267 UMAAL
	C2.4.268 UMLAL
	C2.4.269 UMULL
	C2.4.270 UQADD16
	C2.4.271 UQADD8
	C2.4.272 UQASX
	C2.4.273 UQRSHL (register)
	C2.4.274 UQRSHLL (register)
	C2.4.275 UQSAX
	C2.4.276 UQSHL (immediate)
	C2.4.277 UQSHLL (immediate)
	C2.4.278 UQSUB16
	C2.4.279 UQSUB8
	C2.4.280 URSHR (immediate)
	C2.4.281 URSHRL (immediate)
	C2.4.282 USAD8
	C2.4.283 USADA8
	C2.4.284 USAT
	C2.4.285 USAT16
	C2.4.286 USAX
	C2.4.287 USUB16
	C2.4.288 USUB8
	C2.4.289 UXTAB
	C2.4.290 UXTAB16
	C2.4.291 UXTAH
	C2.4.292 UXTB
	C2.4.293 UXTB16
	C2.4.294 UXTH
	C2.4.295 VABAV
	C2.4.296 VABD
	C2.4.297 VABD (floating-point)
	C2.4.298 VABS
	C2.4.299 VABS (floating-point)
	C2.4.300 VABS (vector)
	C2.4.301 VADC
	C2.4.302 VADD
	C2.4.303 VADD (floating-point)
	C2.4.304 VADD (vector)
	C2.4.305 VADDLV
	C2.4.306 VADDV
	C2.4.307 VAND
	C2.4.308 VAND (immediate)
	C2.4.309 VBIC (immediate)
	C2.4.310 VBIC (register)
	C2.4.311 VBRSR
	C2.4.312 VCADD
	C2.4.313 VCADD (floating-point)
	C2.4.314 VCLS
	C2.4.315 VCLZ
	C2.4.316 VCMLA (floating-point)
	C2.4.317 VCMP
	C2.4.318 VCMP (floating-point)
	C2.4.319 VCMP (vector)
	C2.4.320 VCMPE
	C2.4.321 VCMUL (floating-point)
	C2.4.322 VCTP
	C2.4.323 VCVT (between double-precision and single-precision)
	C2.4.324 VCVT (between floating-point and fixed-point)
	C2.4.325 VCVT (between floating-point and fixed-point) (vector)
	C2.4.326 VCVT (between floating-point and integer)
	C2.4.327 VCVT (between single and half-precision floating-point)
	C2.4.328 VCVT (floating-point to integer)
	C2.4.329 VCVT (from floating-point to integer)
	C2.4.330 VCVT (integer to floating-point)
	C2.4.331 VCVTA
	C2.4.332 VCVTB
	C2.4.333 VCVTM
	C2.4.334 VCVTN
	C2.4.335 VCVTP
	C2.4.336 VCVTR
	C2.4.337 VCVTT
	C2.4.338 VCX1
	C2.4.339 VCX1 (vector)
	C2.4.340 VCX2
	C2.4.341 VCX2 (vector)
	C2.4.342 VCX3
	C2.4.343 VCX3 (vector)
	C2.4.344 VDDUP, VDWDUP
	C2.4.345 VDIV
	C2.4.346 VDUP
	C2.4.347 VEOR
	C2.4.348 VFMA
	C2.4.349 VFMA (vector by scalar plus vector, floating-point)
	C2.4.350 VFMA, VFMS (floating-point)
	C2.4.351 VFMAS (vector by vector plus scalar, floating-point)
	C2.4.352 VFMS
	C2.4.353 VFNMA
	C2.4.354 VFNMS
	C2.4.355 VHADD
	C2.4.356 VHCADD
	C2.4.357 VHSUB
	C2.4.358 VIDUP, VIWDUP
	C2.4.359 VINS
	C2.4.360 VLD2
	C2.4.361 VLD4
	C2.4.362 VLDM
	C2.4.363 VLDR
	C2.4.364 VLDR (System Register)
	C2.4.365 VLDRB, VLDRH, VLDRW
	C2.4.366 VLDRB, VLDRH, VLDRW, VLDRD (vector)
	C2.4.367 VLLDM
	C2.4.368 VLSTM
	C2.4.369 VMAX, VMAXA
	C2.4.370 VMAXNM
	C2.4.371 VMAXNM, VMAXNMA (floating-point)
	C2.4.372 VMAXNMV, VMAXNMAV (floating-point)
	C2.4.373 VMAXV, VMAXAV
	C2.4.374 VMIN, VMINA
	C2.4.375 VMINNM
	C2.4.376 VMINNM, VMINNMA (floating-point)
	C2.4.377 VMINNMV, VMINNMAV (floating-point)
	C2.4.378 VMINV, VMINAV
	C2.4.379 VMLA
	C2.4.380 VMLA (vector by scalar plus vector)
	C2.4.381 VMLADAV
	C2.4.382 VMLALDAV
	C2.4.383 VMLALV
	C2.4.384 VMLAS (vector by vector plus scalar)
	C2.4.385 VMLAV
	C2.4.386 VMLS
	C2.4.387 VMLSDAV
	C2.4.388 VMLSLDAV
	C2.4.389 VMOV (between general-purpose register and half-precision register)
	C2.4.390 VMOV (between general-purpose register and single-precision register)
	C2.4.391 VMOV (between two general-purpose registers and a doubleword register)
	C2.4.392 VMOV (between two general-purpose registers and two single-precision registers)
	C2.4.393 VMOV (general-purpose register to vector lane)
	C2.4.394 VMOV (half of doubleword register to single general-purpose register)
	C2.4.395 VMOV (immediate)
	C2.4.396 VMOV (immediate) (vector)
	C2.4.397 VMOV (register)
	C2.4.398 VMOV (register) (vector)
	C2.4.399 VMOV (single general-purpose register to half of doubleword register)
	C2.4.400 VMOV (two 32-bit vector lanes to two general-purpose registers)
	C2.4.401 VMOV (two general-purpose registers to two 32-bit vector lanes)
	C2.4.402 VMOV (vector lane to general-purpose register)
	C2.4.403 VMOVL
	C2.4.404 VMOVN
	C2.4.405 VMOVX
	C2.4.406 VMRS
	C2.4.407 VMSR
	C2.4.408 VMUL
	C2.4.409 VMUL (floating-point)
	C2.4.410 VMUL (vector)
	C2.4.411 VMULH, VRMULH
	C2.4.412 VMULL (integer)
	C2.4.413 VMULL (polynomial)
	C2.4.414 VMVN (immediate)
	C2.4.415 VMVN (register)
	C2.4.416 VNEG
	C2.4.417 VNEG (floating-point)
	C2.4.418 VNEG (vector)
	C2.4.419 VNMLA
	C2.4.420 VNMLS
	C2.4.421 VNMUL
	C2.4.422 VORN
	C2.4.423 VORN (immediate)
	C2.4.424 VORR
	C2.4.425 VORR (immediate)
	C2.4.426 VPNOT
	C2.4.427 VPOP
	C2.4.428 VPSEL
	C2.4.429 VPST
	C2.4.430 VPT
	C2.4.431 VPT (floating-point)
	C2.4.432 VPUSH
	C2.4.433 VQABS
	C2.4.434 VQADD
	C2.4.435 VQDMLADH, VQRDMLADH
	C2.4.436 VQDMLAH, VQRDMLAH (vector by scalar plus vector)
	C2.4.437 VQDMLASH, VQRDMLASH (vector by vector plus scalar)
	C2.4.438 VQDMLSDH, VQRDMLSDH
	C2.4.439 VQDMULH, VQRDMULH
	C2.4.440 VQDMULL
	C2.4.441 VQMOVN
	C2.4.442 VQMOVUN
	C2.4.443 VQNEG
	C2.4.444 VQRSHL
	C2.4.445 VQRSHRN
	C2.4.446 VQRSHRUN
	C2.4.447 VQSHL, VQSHLU
	C2.4.448 VQSHRN
	C2.4.449 VQSHRUN
	C2.4.450 VQSUB
	C2.4.451 VREV16
	C2.4.452 VREV32
	C2.4.453 VREV64
	C2.4.454 VRHADD
	C2.4.455 VRINT (floating-point)
	C2.4.456 VRINTA
	C2.4.457 VRINTM
	C2.4.458 VRINTN
	C2.4.459 VRINTP
	C2.4.460 VRINTR
	C2.4.461 VRINTX
	C2.4.462 VRINTZ
	C2.4.463 VRMLALDAVH
	C2.4.464 VRMLALVH
	C2.4.465 VRMLSLDAVH
	C2.4.466 VRSHL
	C2.4.467 VRSHR
	C2.4.468 VRSHRN
	C2.4.469 VSBC
	C2.4.470 VSCCLRM
	C2.4.471 VSEL
	C2.4.472 VSHL
	C2.4.473 VSHLC
	C2.4.474 VSHLL
	C2.4.475 VSHR
	C2.4.476 VSHRN
	C2.4.477 VSLI
	C2.4.478 VSQRT
	C2.4.479 VSRI
	C2.4.480 VST2
	C2.4.481 VST4
	C2.4.482 VSTM
	C2.4.483 VSTR
	C2.4.484 VSTR (System Register)
	C2.4.485 VSTRB, VSTRH, VSTRW
	C2.4.486 VSTRB, VSTRH, VSTRW, VSTRD (vector)
	C2.4.487 VSUB
	C2.4.488 VSUB (floating-point)
	C2.4.489 VSUB (vector)
	C2.4.490 WFE
	C2.4.491 WFI
	C2.4.492 WLS, DLS, WLSTP, DLSTP
	C2.4.493 YIELD

	D Armv8-M Registers and Payload Specification
	D1 Register and Payload Specification
	D1.1 Register index
	D1.1.1 Special and general-purpose registers
	D1.1.2 Payloads
	D1.1.3 Instrumentation Macrocell
	D1.1.4 Data Watchpoint and Trace
	D1.1.5 Flash Patch and Breakpoint
	D1.1.6 Performance Monitoring Unit
	D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register
	D1.1.8 Implementation Control Block
	D1.1.9 SysTick Timer
	D1.1.10 Nested Vectored Interrupt Controller
	D1.1.11 System Control Block
	D1.1.12 Memory Protection Unit
	D1.1.13 Security Attribution Unit
	D1.1.14 Debug Control Block
	D1.1.15 Software Interrupt Generation
	D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register
	D1.1.17 Floating-Point Extension
	D1.1.18 Cache Maintenance Operations
	D1.1.19 Debug Identification Block
	D1.1.20 Implementation Control Block (NS alias)
	D1.1.21 SysTick Timer (NS alias)
	D1.1.22 Nested Vectored Interrupt Controller (NS alias)
	D1.1.23 System Control Block (NS alias)
	D1.1.24 Memory Protection Unit (NS alias)
	D1.1.25 Debug Control Block (NS alias)
	D1.1.26 Software Interrupt Generation (NS alias)
	D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register (NS Alias)
	D1.1.28 Floating-Point Extension (NS alias)
	D1.1.29 Cache Maintenance Operations (NS alias)
	D1.1.30 Debug Identification Block (NS alias)
	D1.1.31 Trace Port Interface Unit

	D1.2 Alphabetical list of registers
	D1.2.1 ACTLR, Auxiliary Control Register
	D1.2.2 AFSR, Auxiliary Fault Status Register
	D1.2.3 AIRCR, Application Interrupt and Reset Control Register
	D1.2.4 APSR, Application Program Status Register
	D1.2.5 BASEPRI, Base Priority Mask Register
	D1.2.6 BFAR, BusFault Address Register
	D1.2.7 BFSR, BusFault Status Register
	D1.2.8 BPIALL, Branch Predictor Invalidate All
	D1.2.9 CCR, Configuration and Control Register
	D1.2.10 CCSIDR, Current Cache Size ID register
	D1.2.11 CFSR, Configurable Fault Status Register
	D1.2.12 CLIDR, Cache Level ID Register
	D1.2.13 CONTROL, Control Register
	D1.2.14 CPACR, Coprocessor Access Control Register
	D1.2.15 CPPWR, Coprocessor Power Control Register
	D1.2.16 CPUID, CPUID Base Register
	D1.2.17 CSSELR, Cache Size Selection Register
	D1.2.18 CTR, Cache Type Register
	D1.2.19 Dn, Floating-point Double-precision register, n = 0 - 15
	D1.2.20 DAUTHCTRL, Debug Authentication Control Register
	D1.2.21 DAUTHSTATUS, Debug Authentication Status Register
	D1.2.22 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC
	D1.2.23 DCCISW, Data Cache line Clean and Invalidate by Set/Way
	D1.2.24 DCCMVAC, Data Cache line Clean by Address to PoC
	D1.2.25 DCCMVAU, Data Cache line Clean by address to PoU
	D1.2.26 DCCSW, Data Cache Clean line by Set/Way
	D1.2.27 DCIDR0, SCS Component Identification Register 0
	D1.2.28 DCIDR1, SCS Component Identification Register 1
	D1.2.29 DCIDR2, SCS Component Identification Register 2
	D1.2.30 DCIDR3, SCS Component Identification Register 3
	D1.2.31 DCIMVAC, Data Cache line Invalidate by Address to PoC
	D1.2.32 DCISW, Data Cache line Invalidate by Set/Way
	D1.2.33 DCRDR, Debug Core Register Data Register
	D1.2.34 DCRSR, Debug Core Register Select Register
	D1.2.35 DDEVARCH, SCS Device Architecture Register
	D1.2.36 DDEVTYPE, SCS Device Type Register
	D1.2.37 DEMCR, Debug Exception and Monitor Control Register
	D1.2.38 DFSR, Debug Fault Status Register
	D1.2.39 DHCSR, Debug Halting Control and Status Register
	D1.2.40 DLAR, SCS Software Lock Access Register
	D1.2.41 DLSR, SCS Software Lock Status Register
	D1.2.42 DPIDR0, SCS Peripheral Identification Register 0
	D1.2.43 DPIDR1, SCS Peripheral Identification Register 1
	D1.2.44 DPIDR2, SCS Peripheral Identification Register 2
	D1.2.45 DPIDR3, SCS Peripheral Identification Register 3
	D1.2.46 DPIDR4, SCS Peripheral Identification Register 4
	D1.2.47 DPIDR5, SCS Peripheral Identification Register 5
	D1.2.48 DPIDR6, SCS Peripheral Identification Register 6
	D1.2.49 DPIDR7, SCS Peripheral Identification Register 7
	D1.2.50 DSCEMCR, Debug Set Clear Exception and Monitor Control Register
	D1.2.51 DSCSR, Debug Security Control and Status Register
	D1.2.52 DWT_CIDR0, DWT Component Identification Register 0
	D1.2.53 DWT_CIDR1, DWT Component Identification Register 1
	D1.2.54 DWT_CIDR2, DWT Component Identification Register 2
	D1.2.55 DWT_CIDR3, DWT Component Identification Register 3
	D1.2.56 DWT_COMPn, DWT Comparator Register, n = 0 - 14
	D1.2.57 DWT_CPICNT, DWT CPI Count Register
	D1.2.58 DWT_CTRL, DWT Control Register
	D1.2.59 DWT_CYCCNT, DWT Cycle Count Register
	D1.2.60 DWT_DEVARCH, DWT Device Architecture Register
	D1.2.61 DWT_DEVTYPE, DWT Device Type Register
	D1.2.62 DWT_EXCCNT, DWT Exception Overhead Count Register
	D1.2.63 DWT_FOLDCNT, DWT Folded Instruction Count Register
	D1.2.64 DWT_FUNCTIONn, DWT Comparator Function Register, n = 0 - 14
	D1.2.65 DWT_LAR, DWT Software Lock Access Register
	D1.2.66 DWT_LSR, DWT Software Lock Status Register
	D1.2.67 DWT_LSUCNT, DWT LSU Count Register
	D1.2.68 DWT_PCSR, DWT Program Counter Sample Register
	D1.2.69 DWT_PIDR0, DWT Peripheral Identification Register 0
	D1.2.70 DWT_PIDR1, DWT Peripheral Identification Register 1
	D1.2.71 DWT_PIDR2, DWT Peripheral Identification Register 2
	D1.2.72 DWT_PIDR3, DWT Peripheral Identification Register 3
	D1.2.73 DWT_PIDR4, DWT Peripheral Identification Register 4
	D1.2.74 DWT_PIDR5, DWT Peripheral Identification Register 5
	D1.2.75 DWT_PIDR6, DWT Peripheral Identification Register 6
	D1.2.76 DWT_PIDR7, DWT Peripheral Identification Register 7
	D1.2.77 DWT_SLEEPCNT, DWT Sleep Count Register
	D1.2.78 DWT_VMASKn, DWT Comparator Value Mask Register, n = 0 - 14
	D1.2.79 EPSR, Execution Program Status Register
	D1.2.80 ERRADDRn, Error Record Address Register, n = 0 - 55
	D1.2.81 ERRADDR2n, Error Record Address 2 Register, n = 0 - 55
	D1.2.82 ERRCTRLn, Error Record Control Register, n = 0 - 55
	D1.2.83 ERRDEVID, Error Record Device ID Register
	D1.2.84 ERRFRn, Error Record Feature Register, n = 0 - 55
	D1.2.85 ERRGSRn, RAS Fault Group Status Register
	D1.2.86 ERRIIDR, Error Implementer ID Register
	D1.2.87 ERRMISC0n, Error Record Miscellaneous 0 Register, n = 0 - 55
	D1.2.88 ERRMISC1n, Error Record Miscellaneous 1 Register, n = 0 - 55
	D1.2.89 ERRMISC2n, Error Record Miscellaneous 2 Register, n = 0 - 55
	D1.2.90 ERRMISC3n, Error Record Miscellaneous 3 Register, n = 0 - 55
	D1.2.91 ERRMISC4n, Error Record Miscellaneous 4 Register, n = 0 - 55
	D1.2.92 ERRMISC5n, Error Record Miscellaneous 5 Register, n = 0 - 55
	D1.2.93 ERRMISC6n, Error Record Miscellaneous 6 Register, n = 0 - 55
	D1.2.94 ERRMISC7n, Error Record Miscellaneous 7 Register, n = 0 - 55
	D1.2.95 ERRSTATUSn, Error Record Primary Status Register, n = 0 - 55
	D1.2.96 EXC_RETURN, Exception Return Payload
	D1.2.97 FAULTMASK, Fault Mask Register
	D1.2.98 FNC_RETURN, Function Return Payload
	D1.2.99 FPCAR, Floating-Point Context Address Register
	D1.2.100 FPCCR, Floating-Point Context Control Register
	D1.2.101 FPCXT, Floating-point context payload
	D1.2.102 FPDSCR, Floating-Point Default Status Control Register
	D1.2.103 FPSCR, Floating-point Status and Control Register
	D1.2.104 FP_CIDR0, FP Component Identification Register 0
	D1.2.105 FP_CIDR1, FP Component Identification Register 1
	D1.2.106 FP_CIDR2, FP Component Identification Register 2
	D1.2.107 FP_CIDR3, FP Component Identification Register 3
	D1.2.108 FP_COMPn, Flash Patch Comparator Register, n = 0 - 125
	D1.2.109 FP_CTRL, Flash Patch Control Register
	D1.2.110 FP_DEVARCH, FPB Device Architecture Register
	D1.2.111 FP_DEVTYPE, FPB Device Type Register
	D1.2.112 FP_LAR, FPB Software Lock Access Register
	D1.2.113 FP_LSR, FPB Software Lock Status Register
	D1.2.114 FP_PIDR0, FP Peripheral Identification Register 0
	D1.2.115 FP_PIDR1, FP Peripheral Identification Register 1
	D1.2.116 FP_PIDR2, FP Peripheral Identification Register 2
	D1.2.117 FP_PIDR3, FP Peripheral Identification Register 3
	D1.2.118 FP_PIDR4, FP Peripheral Identification Register 4
	D1.2.119 FP_PIDR5, FP Peripheral Identification Register 5
	D1.2.120 FP_PIDR6, FP Peripheral Identification Register 6
	D1.2.121 FP_PIDR7, FP Peripheral Identification Register 7
	D1.2.122 FP_REMAP, Flash Patch Remap Register
	D1.2.123 HFSR, HardFault Status Register
	D1.2.124 ICIALLU, Instruction Cache Invalidate All to PoU
	D1.2.125 ICIMVAU, Instruction Cache line Invalidate by Address to PoU
	D1.2.126 ICSR, Interrupt Control and State Register
	D1.2.127 ICTR, Interrupt Controller Type Register
	D1.2.128 ID_AFR0, Auxiliary Feature Register 0
	D1.2.129 ID_DFR0, Debug Feature Register 0
	D1.2.130 ID_ISAR0, Instruction Set Attribute Register 0
	D1.2.131 ID_ISAR1, Instruction Set Attribute Register 1
	D1.2.132 ID_ISAR2, Instruction Set Attribute Register 2
	D1.2.133 ID_ISAR3, Instruction Set Attribute Register 3
	D1.2.134 ID_ISAR4, Instruction Set Attribute Register 4
	D1.2.135 ID_ISAR5, Instruction Set Attribute Register 5
	D1.2.136 ID_MMFR0, Memory Model Feature Register 0
	D1.2.137 ID_MMFR1, Memory Model Feature Register 1
	D1.2.138 ID_MMFR2, Memory Model Feature Register 2
	D1.2.139 ID_MMFR3, Memory Model Feature Register 3
	D1.2.140 ID_PFR0, Processor Feature Register 0
	D1.2.141 ID_PFR1, Processor Feature Register 1
	D1.2.142 IPSR, Interrupt Program Status Register
	D1.2.143 ITM_CIDR0, ITM Component Identification Register 0
	D1.2.144 ITM_CIDR1, ITM Component Identification Register 1
	D1.2.145 ITM_CIDR2, ITM Component Identification Register 2
	D1.2.146 ITM_CIDR3, ITM Component Identification Register 3
	D1.2.147 ITM_DEVARCH, ITM Device Architecture Register
	D1.2.148 ITM_DEVTYPE, ITM Device Type Register
	D1.2.149 ITM_LAR, ITM Software Lock Access Register
	D1.2.150 ITM_LSR, ITM Software Lock Status Register
	D1.2.151 ITM_PIDR0, ITM Peripheral Identification Register 0
	D1.2.152 ITM_PIDR1, ITM Peripheral Identification Register 1
	D1.2.153 ITM_PIDR2, ITM Peripheral Identification Register 2
	D1.2.154 ITM_PIDR3, ITM Peripheral Identification Register 3
	D1.2.155 ITM_PIDR4, ITM Peripheral Identification Register 4
	D1.2.156 ITM_PIDR5, ITM Peripheral Identification Register 5
	D1.2.157 ITM_PIDR6, ITM Peripheral Identification Register 6
	D1.2.158 ITM_PIDR7, ITM Peripheral Identification Register 7
	D1.2.159 ITM_STIMn, ITM Stimulus Port Register, n = 0 - 255
	D1.2.160 ITM_TCR, ITM Trace Control Register
	D1.2.161 ITM_TERn, ITM Trace Enable Register, n = 0 - 7
	D1.2.162 ITM_TPR, ITM Trace Privilege Register
	D1.2.163 LO_BRANCH_INFO, Loop and branch tracking information
	D1.2.164 LR, Link Register
	D1.2.165 MAIR_ATTR, Memory Attribute Indirection Register Attributes
	D1.2.166 MMFAR, MemManage Fault Address Register
	D1.2.167 MMFSR, MemManage Fault Status Register
	D1.2.168 MPU_CTRL, MPU Control Register
	D1.2.169 MPU_MAIR0, MPU Memory Attribute Indirection Register 0
	D1.2.170 MPU_MAIR1, MPU Memory Attribute Indirection Register 1
	D1.2.171 MPU_RBAR, MPU Region Base Address Register
	D1.2.172 MPU_RBAR_An, MPU Region Base Address Register Alias, n = 1 - 3
	D1.2.173 MPU_RLAR, MPU Region Limit Address Register
	D1.2.174 MPU_RLAR_An, MPU Region Limit Address Register Alias, n = 1 - 3
	D1.2.175 MPU_RNR, MPU Region Number Register
	D1.2.176 MPU_TYPE, MPU Type Register
	D1.2.177 MSPLIM, Main Stack Pointer Limit Register
	D1.2.178 MVFR0, Media and VFP Feature Register 0
	D1.2.179 MVFR1, Media and VFP Feature Register 1
	D1.2.180 MVFR2, Media and VFP Feature Register 2
	D1.2.181 NSACR, Non-secure Access Control Register
	D1.2.182 NVIC_IABRn, Interrupt Active Bit Register, n = 0 - 15
	D1.2.183 NVIC_ICERn, Interrupt Clear Enable Register, n = 0 - 15
	D1.2.184 NVIC_ICPRn, Interrupt Clear Pending Register, n = 0 - 15
	D1.2.185 NVIC_IPRn, Interrupt Priority Register, n = 0 - 123
	D1.2.186 NVIC_ISERn, Interrupt Set Enable Register, n = 0 - 15
	D1.2.187 NVIC_ISPRn, Interrupt Set Pending Register, n = 0 - 15
	D1.2.188 NVIC_ITNSn, Interrupt Target Non-secure Register, n = 0 - 15
	D1.2.189 PAC_KEY_P_n, Pointer Authentication Key Privileged, n = 0 - 3
	D1.2.190 PAC_KEY_U_n, Pointer Authentication Key Unprivileged, n = 0 - 3
	D1.2.191 PC, Program Counter
	D1.2.192 PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status Register
	D1.2.193 PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Register
	D1.2.194 PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register
	D1.2.195 PMU_CIDR0, Performance Monitoring Unit Component Identification Register 0
	D1.2.196 PMU_CIDR1, Performance Monitoring Unit Component Identification Register 1
	D1.2.197 PMU_CIDR2, Performance Monitoring Unit Component Identification Register 2
	D1.2.198 PMU_CIDR3, Performance Monitoring Unit Component Identification Register 3
	D1.2.199 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear Register
	D1.2.200 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Register
	D1.2.201 PMU_CTRL, Performance Monitoring Unit Control Register
	D1.2.202 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Register
	D1.2.203 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register
	D1.2.204 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register
	D1.2.205 PMU_EVTYPERn, Performance Monitoring Unit Event Type and Filter Register
	D1.2.206 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear Register
	D1.2.207 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set Register
	D1.2.208 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear Register
	D1.2.209 PMU_OVSSET, Performance Monitoring Unit Overflow Flag Status Set Register
	D1.2.210 PMU_PIDR0, Performance Monitoring Unit Peripheral Identification Register 0
	D1.2.211 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Register 1
	D1.2.212 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Register 2
	D1.2.213 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Register 3
	D1.2.214 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Register 4
	D1.2.215 PMU_SWINC, Performance Monitoring Unit Software Increment Register
	D1.2.216 PMU_TYPE, Performance Monitoring Unit Type Register
	D1.2.217 PRIMASK, Exception Mask Register
	D1.2.218 PSPLIM, Process Stack Pointer Limit Register
	D1.2.219 Qn, Vector register, n = 0 - 7
	D1.2.220 Rn, General-Purpose Register, n = 0 - 12
	D1.2.221 RETPSR, Combined Exception Return Program Status Registers
	D1.2.222 REVIDR, Revision ID Register
	D1.2.223 RFSR, RAS Fault Status Register
	D1.2.224 Sn, Floating-point Single-precision register, n = 0 - 31
	D1.2.225 SAU_CTRL, SAU Control Register
	D1.2.226 SAU_RBAR, SAU Region Base Address Register
	D1.2.227 SAU_RLAR, SAU Region Limit Address Register
	D1.2.228 SAU_RNR, SAU Region Number Register
	D1.2.229 SAU_TYPE, SAU Type Register
	D1.2.230 SCR, System Control Register
	D1.2.231 SFAR, Secure Fault Address Register
	D1.2.232 SFSR, Secure Fault Status Register
	D1.2.233 SHCSR, System Handler Control and State Register
	D1.2.234 SHPR1, System Handler Priority Register 1
	D1.2.235 SHPR2, System Handler Priority Register 2
	D1.2.236 SHPR3, System Handler Priority Register 3
	D1.2.237 SP, Current Stack Pointer Register
	D1.2.238 SP_NS, Current Stack Pointer register (Non-secure)
	D1.2.239 STIR, Software Triggered Interrupt Register
	D1.2.240 SYST_CALIB, SysTick Calibration Value Register
	D1.2.241 SYST_CSR, SysTick Control and Status Register
	D1.2.242 SYST_CVR, SysTick Current Value Register
	D1.2.243 SYST_RVR, SysTick Reload Value Register
	D1.2.244 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register
	D1.2.245 TPIU_CIDR0, TPIU Component Identification Register 0
	D1.2.246 TPIU_CIDR1, TPIU Component Identification Register 1
	D1.2.247 TPIU_CIDR2, TPIU Component Identification Register 2
	D1.2.248 TPIU_CIDR3, TPIU Component Identification Register 3
	D1.2.249 TPIU_CLAIMCLR, TPIU Claim Tag Clear Register
	D1.2.250 TPIU_CLAIMSET, TPIU Claim Tag Set Register
	D1.2.251 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register
	D1.2.252 TPIU_DEVID, TPIU Device Identifier Register
	D1.2.253 TPIU_DEVTYPE, TPIU Device Type Register
	D1.2.254 TPIU_FFCR, TPIU Formatter and Flush Control Register
	D1.2.255 TPIU_FFSR, TPIU Formatter and Flush Status Register
	D1.2.256 TPIU_LAR, TPIU Software Lock Access Register
	D1.2.257 TPIU_LSR, TPIU Software Lock Status Register
	D1.2.258 TPIU_PIDR0, TPIU Peripheral Identification Register 0
	D1.2.259 TPIU_PIDR1, TPIU Peripheral Identification Register 1
	D1.2.260 TPIU_PIDR2, TPIU Peripheral Identification Register 2
	D1.2.261 TPIU_PIDR3, TPIU Peripheral Identification Register 3
	D1.2.262 TPIU_PIDR4, TPIU Peripheral Identification Register 4
	D1.2.263 TPIU_PIDR5, TPIU Peripheral Identification Register 5
	D1.2.264 TPIU_PIDR6, TPIU Peripheral Identification Register 6
	D1.2.265 TPIU_PIDR7, TPIU Peripheral Identification Register 7
	D1.2.266 TPIU_PSCR, TPIU Periodic Synchronization Control Register
	D1.2.267 TPIU_SPPR, TPIU Selected Pin Protocol Register
	D1.2.268 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register
	D1.2.269 TT_RESP, Test Target Response Payload
	D1.2.270 UFSR, UsageFault Status Register
	D1.2.271 VPR, Vector Predication Status and Control Register
	D1.2.272 VTOR, Vector Table Offset Register
	D1.2.273 XPSR, Combined Program Status Registers

	E Armv8-M Pseudocode
	E1 Arm Pseudocode Definition
	E1.1 About the Arm pseudocode
	E1.1.1 General limitations of Arm pseudocode

	E1.2 Data types
	E1.2.1 General data type rules
	E1.2.2 Bitstrings
	Syntax
	Description

	E1.2.3 Integers
	Syntax
	Description

	E1.2.4 Reals
	Syntax
	Description

	E1.2.5 Booleans
	Syntax
	Description

	E1.2.6 Enumerations
	Syntax and examples
	Description

	E1.2.7 Structures
	Syntax and examples
	Description
	E1.2.7.1 _Type and _Type
	Example
	Description

	E1.2.8 Tuples
	Examples
	Description

	E1.2.9 Arrays
	Syntax
	Description

	E1.3 Operators
	E1.3.1 Relational operators
	Equality and non-equality
	Comparisons
	E1.3.1.1 Set membership with IN

	E1.3.2 Boolean operators
	E1.3.3 Bitstring operators
	Logical operations on bitstrings
	Bitstring concatenation and slicing

	E1.3.4 Arithmetic operators
	Unary plus and minus
	Addition and subtraction
	Multiplication
	Division and modulo
	Scaling
	Raising to a power

	E1.3.5 The assignment operator
	General expression syntax

	E1.3.6 Precedence rules
	E1.3.7 Conditional expressions
	E1.3.8 Operator polymorphism
	Table E1-1, Result and operand types that are permitted for unary operators.
	Table E1-2, Result and operand types that are permitted for binary operators.

	E1.4 Statements and control structures
	E1.4.1 Statements and Indentation
	E1.4.2 Function and procedure calls
	Procedure and function definitions
	Procedure calls
	Return statements

	E1.4.3 Conditional control structures
	if...then...else...
	case...of...

	E1.4.4 Loop control structures
	repeat...until...
	while...do
	for...
	Try...Catch

	E1.4.5 Special statements
	UNDEFINED
	UNPREDICTABLE
	CONSTRAINED_UNPREDICTABLE
	SEE...
	IMPLEMENTATION_DEFINED

	E1.4.6 Comments

	E1.5 Built in functions
	Bitstring length
	Converting bitstrings to integers

	E1.6 Arm pseudocode definition index
	Table E1-3 Index of pseudocode data types
	Table E1-4 Index of pseudocode operators
	Table E1-5 Index of pseudocode keywords and control structures
	Table E1-6 Index of special statements

	E1.7 Additional functions
	E1.7.1 IsSee()
	E1.7.2 IsUndefined()

	E2 Pseudocode Specification
	E2.1 Alphabetical Pseudocode List
	E2.1.1 _AdvanceVPTState
	E2.1.2 _CommitState
	E2.1.3 _ITStateChanged
	E2.1.4 _Mem
	E2.1.5 _NextInstrAddr
	E2.1.6 _NextInstrITState
	E2.1.7 _PCChanged
	E2.1.8 _PendingFetchFault
	E2.1.9 _PendingReturnOperation
	E2.1.10 _RName
	E2.1.11 _S
	E2.1.12 _SP
	E2.1.13 Abs
	E2.1.14 AccessAttributes
	E2.1.15 AccType
	E2.1.16 ActivateException
	E2.1.17 ActiveFPState
	E2.1.18 AddressDescriptor
	E2.1.19 AddrType
	E2.1.20 AddWithCarry
	E2.1.21 AdvSIMDExpandImm
	E2.1.22 AlgorithmPAC
	E2.1.23 Align
	E2.1.24 ArchVersion
	E2.1.25 ASR
	E2.1.26 ASR_C
	E2.1.27 BeatComplete
	E2.1.28 BeatSchedule
	E2.1.29 BigEndian
	E2.1.30 BigEndianReverse
	E2.1.31 BitCount
	E2.1.32 BitReverseShiftRight
	E2.1.33 BranchCall
	E2.1.34 BranchReturn
	E2.1.35 BranchTo
	E2.1.36 BTIEnabled
	E2.1.37 BusFaultBarrier
	E2.1.38 CallSupervisor
	E2.1.39 CanDebugAccessFP
	E2.1.40 CanHaltOnEvent
	E2.1.41 CanPendMonitorOnEvent
	E2.1.42 CdeImpDefValue
	E2.1.43 CheckCDEDecodeFaults
	E2.1.44 CheckCPDecodeFaults
	E2.1.45 CheckCPEnabled
	E2.1.46 CheckDecodeFaults
	E2.1.47 CheckFPDecodeFaults
	E2.1.48 CheckPermission
	E2.1.49 ClearEventRegister
	E2.1.50 ClearExclusiveByAddress
	E2.1.51 ClearExclusiveLocal
	E2.1.52 ClearInFlightInstructions
	E2.1.53 ComparePriorities
	E2.1.54 ComputePAC
	E2.1.55 Cond
	E2.1.56 ConditionHolds
	E2.1.57 ConditionPassed
	E2.1.58 ConstrainUnpredictable
	E2.1.59 ConstrainUnpredictableBits
	E2.1.60 ConstrainUnpredictableBool
	E2.1.61 ConstrainUnpredictableInteger
	E2.1.62 ConsumeExcStackFrame
	E2.1.63 ConsumptionOfSpeculativeDataBarrier
	E2.1.64 Coproc_Accepted
	E2.1.65 Coproc_DoneLoading
	E2.1.66 Coproc_DoneStoring
	E2.1.67 Coproc_GetOneWord
	E2.1.68 Coproc_GetTwoWords
	E2.1.69 Coproc_GetWordToStore
	E2.1.70 Coproc_InternalOperation
	E2.1.71 Coproc_SendLoadedWord
	E2.1.72 Coproc_SendOneWord
	E2.1.73 Coproc_SendTwoWords
	E2.1.74 CoprocType
	E2.1.75 CountLeadingSignBits
	E2.1.76 CountLeadingZeroBits
	E2.1.77 CPDef
	E2.1.78 CreateException
	E2.1.79 CreatePAC
	E2.1.80 CurrentCond
	E2.1.81 CurrentMode
	E2.1.82 CurrentModeIsPrivileged
	E2.1.83 CX_op0
	E2.1.84 CX_op1
	E2.1.85 CX_op2
	E2.1.86 CX_op3
	E2.1.87 D
	E2.1.88 DAPCheck
	E2.1.89 DataMemoryBarrier
	E2.1.90 DataSynchronizationBarrier
	E2.1.91 DeActivate
	E2.1.92 Debug_authentication
	E2.1.93 DebugCanMaskInts
	E2.1.94 DebugEventCause
	E2.1.95 DebugRegisterTransfer
	E2.1.96 DecodeExecute
	E2.1.97 DecodeImmShift
	E2.1.98 DecodeRegShift
	E2.1.99 DefaultCond
	E2.1.100 DefaultExcInfo
	E2.1.101 DefaultMemoryAttributes
	E2.1.102 DefaultPermissions
	E2.1.103 DerivedLateArrival
	E2.1.104 DeviceType
	E2.1.105 DWT_AddressCompare
	E2.1.106 DWT_CycCountMatch
	E2.1.107 DWT_DataAddressMatch
	E2.1.108 DWT_DataMatch
	E2.1.109 DWT_DataValueMatch
	E2.1.110 DWT_InstructionAddressMatch
	E2.1.111 DWT_InstructionMatch
	E2.1.112 DWT_ValidMatch
	E2.1.113 Elem
	E2.1.114 EndOfInstruction
	E2.1.115 EventRegistered
	E2.1.116 ExceptionActiveBitCount
	E2.1.117 ExceptionDetails
	E2.1.118 ExceptionEnabled
	E2.1.119 ExceptionEntry
	E2.1.120 ExceptionPriority
	E2.1.121 ExceptionReturn
	E2.1.122 ExceptionTaken
	E2.1.123 ExceptionTargetsSecure
	E2.1.124 ExcInfo
	E2.1.125 ExclusiveMonitorsPass
	E2.1.126 ExecBeats
	E2.1.127 ExecuteFPCheck
	E2.1.128 ExecutionPriority
	E2.1.129 Extend
	E2.1.130 ExternalInvasiveDebugEnabled
	E2.1.131 ExternalNoninvasiveDebugEnabled
	E2.1.132 ExternalSecureInvasiveDebugEnabled
	E2.1.133 ExternalSecureNoninvasiveDebugEnabled
	E2.1.134 ExternalSecureSelfHostedDebugEnabled
	E2.1.135 ExtType
	E2.1.136 FaultNumbers
	E2.1.137 FetchInstr
	E2.1.138 FindMemPriv
	E2.1.139 FindPriv
	E2.1.140 FixedToFP
	E2.1.141 FPAbs
	E2.1.142 FPAdd
	E2.1.143 FPB_CheckBreakPoint
	E2.1.144 FPB_CheckMatchAddress
	E2.1.145 FPCompare
	E2.1.146 FPConvertNaN
	E2.1.147 FPConvertNaNBase
	E2.1.148 FPDefaultNaN
	E2.1.149 FPDiv
	E2.1.150 FPDoubleToHalf
	E2.1.151 FPDoubleToSingle
	E2.1.152 FPExc
	E2.1.153 FPHalfToDouble
	E2.1.154 FPHalfToSingle
	E2.1.155 FPInfinity
	E2.1.156 FPMax
	E2.1.157 FPMaxNormal
	E2.1.158 FPMaxNum
	E2.1.159 FPMin
	E2.1.160 FPMinNum
	E2.1.161 FPMul
	E2.1.162 FPMulAdd
	E2.1.163 FPNeg
	E2.1.164 FPProcessException
	E2.1.165 FPProcessNaN
	E2.1.166 FPProcessNaNs
	E2.1.167 FPProcessNaNs3
	E2.1.168 FPRound
	E2.1.169 FPRoundBase
	E2.1.170 FPRoundCV
	E2.1.171 FPRoundInt
	E2.1.172 FPSingleToDouble
	E2.1.173 FPSingleToHalf
	E2.1.174 FPSqrt
	E2.1.175 FPSub
	E2.1.176 FPToFixed
	E2.1.177 FPToFixedDirected
	E2.1.178 FPType
	E2.1.179 FPUnpack
	E2.1.180 FPUnpackBase
	E2.1.181 FPUnpackCV
	E2.1.182 FPZero
	E2.1.183 FunctionReturn
	E2.1.184 GenerateCoprocessorException
	E2.1.185 GenerateDebugEventResponse
	E2.1.186 GenerateIntegerZeroDivide
	E2.1.187 GetActiveChains
	E2.1.188 GetCurInstrBeat
	E2.1.189 GetInstrExecState
	E2.1.190 GetMveScalarReadRegs
	E2.1.191 GetMveScalarWriteRegs
	E2.1.192 Halt
	E2.1.193 Halted
	E2.1.194 HaltingDebugAllowed
	E2.1.195 HandleException
	E2.1.196 HandleExceptionTransitions
	E2.1.197 HandleLO
	E2.1.198 HasArchVersion
	E2.1.199 HaveAlgorithmPAC
	E2.1.200 HaveDebugMonitor
	E2.1.201 HaveDSPExt
	E2.1.202 HaveDWT
	E2.1.203 HaveFPB
	E2.1.204 HaveFPExt
	E2.1.205 HaveHaltingDebug
	E2.1.206 HaveITM
	E2.1.207 HaveLOBExt
	E2.1.208 HaveMainExt
	E2.1.209 HaveMve
	E2.1.210 HaveMveOrFPExt
	E2.1.211 HavePACBTIExt
	E2.1.212 HaveSecurityExt
	E2.1.213 HaveSysTick
	E2.1.214 HaveUDE
	E2.1.215 HighestPri
	E2.1.216 HighestSetBit
	E2.1.217 Hint_Debug
	E2.1.218 Hint_PreloadData
	E2.1.219 Hint_PreloadDataForWrite
	E2.1.220 Hint_PreloadInstr
	E2.1.221 Hint_Yield
	E2.1.222 IDAUCheck
	E2.1.223 IgnoreFaultsType
	E2.1.224 InITBlock
	E2.1.225 InstrCanChain
	E2.1.226 InstrExecState
	E2.1.227 InstrType
	E2.1.228 InstructionAdvance
	E2.1.229 InstructionExecute
	E2.1.230 InstructionsInFlight
	E2.1.231 InstructionSynchronizationBarrier
	E2.1.232 InstStateCheck
	E2.1.233 Int
	E2.1.234 IntegerZeroDivideTrappingEnabled
	E2.1.235 InvalidateFPRegs
	E2.1.236 InVPTBlock
	E2.1.237 IsAccessible
	E2.1.238 IsActiveForState
	E2.1.239 IsAligned
	E2.1.240 IsBKPTInstruction
	E2.1.241 IsCdeBeatWiseInstruction
	E2.1.242 IsCPEnabled
	E2.1.243 IsCPInstruction
	E2.1.244 IsCpInstructionSecureOnly
	E2.1.245 IsDebugState
	E2.1.246 IsDWTConfigUnpredictable
	E2.1.247 IsDWTEnabled
	E2.1.248 IsExceptionTargetConfigurable
	E2.1.249 IsExclusiveGlobal
	E2.1.250 IsExclusiveLocal
	E2.1.251 IsFirstBeat
	E2.1.252 IsIrqValid
	E2.1.253 IsLastBeat
	E2.1.254 IsLastLowOverheadLoop
	E2.1.255 IsLEInstruction
	E2.1.256 IsLoadStoreClearMultInstruction
	E2.1.257 IsMveAccessFPSCR_C
	E2.1.258 IsMveBeatWiseInstruction
	E2.1.259 IsMveLoadStoreInstruction
	E2.1.260 IsOnes
	E2.1.261 IsPPB
	E2.1.262 IsReqExcPriNeg
	E2.1.263 IsReturn
	E2.1.264 IsSCS
	E2.1.265 IsSecure
	E2.1.266 IsZero
	E2.1.267 IsZeroBit
	E2.1.268 ITAdvance
	E2.1.269 ITSTATE
	E2.1.270 ITSTATEType
	E2.1.271 LastInITBlock
	E2.1.272 LoadWritePC
	E2.1.273 LockedUp
	E2.1.274 Lockup
	E2.1.275 LookUpRName
	E2.1.276 LookUpSP
	E2.1.277 LookUpSP_with_security_mode
	E2.1.278 LookUpSPLim
	E2.1.279 LowestSetBit
	E2.1.280 LR
	E2.1.281 LSL
	E2.1.282 LSL_C
	E2.1.283 LSR
	E2.1.284 LSR_C
	E2.1.285 LTPSIZE
	E2.1.286 MAIRDecode
	E2.1.287 MarkExclusiveGlobal
	E2.1.288 MarkExclusiveLocal
	E2.1.289 Max
	E2.1.290 MaxExceptionNum
	E2.1.291 MemA
	E2.1.292 MemA_MVE
	E2.1.293 MemA_with_priv
	E2.1.294 MemA_with_priv_security
	E2.1.295 MemD_with_priv_security
	E2.1.296 MemI
	E2.1.297 MemO
	E2.1.298 MemoryAttributes
	E2.1.299 MemType
	E2.1.300 MemU
	E2.1.301 MemU_unpriv
	E2.1.302 MemU_with_priv
	E2.1.303 MergeExcInfo
	E2.1.304 Min
	E2.1.305 MonitorCanPreempt
	E2.1.306 MPUCheck
	E2.1.307 NextInstrAddr
	E2.1.308 NextInstrITState
	E2.1.309 NoninvasiveDebugAllowed
	E2.1.310 Ones
	E2.1.311 PACCellInvShuffle
	E2.1.312 PACCellShuffle
	E2.1.313 PACEnabled
	E2.1.314 PACInvSub
	E2.1.315 PACKey
	E2.1.316 PACKeys
	E2.1.317 PACMult
	E2.1.318 PACSubQ3
	E2.1.319 PACSubQ5
	E2.1.320 PC
	E2.1.321 PEMode
	E2.1.322 PendingDebugHalt
	E2.1.323 PendingDebugMonitor
	E2.1.324 PendingExceptionDetails
	E2.1.325 PendReturnOperation
	E2.1.326 Permissions
	E2.1.327 PMU_CounterIncrement
	E2.1.328 PMU_HandleOverflow
	E2.1.329 PolynomialMult
	E2.1.330 PopStack
	E2.1.331 PreserveFPState
	E2.1.332 Privilege
	E2.1.333 ProcessorID
	E2.1.334 PushCalleeStack
	E2.1.335 PushStack
	E2.1.336 Q
	E2.1.337 R
	E2.1.338 RaiseAsyncBusFault
	E2.1.339 RasImpDefValue
	E2.1.340 RawExecutionPriority
	E2.1.341 Replicate
	E2.1.342 ResetRegs
	E2.1.343 RestrictedNSPri
	E2.1.344 RF
	E2.1.345 RFD
	E2.1.346 RName
	E2.1.347 RNames
	E2.1.348 ROR
	E2.1.349 ROR_C
	E2.1.350 RotCell
	E2.1.351 RoundDown
	E2.1.352 RoundTowardsZero
	E2.1.353 RoundUp
	E2.1.354 RRX
	E2.1.355 RRX_C
	E2.1.356 RSPCheck
	E2.1.357 RZ
	E2.1.358 S
	E2.1.359 Sat
	E2.1.360 SatQ
	E2.1.361 SAttributes
	E2.1.362 SCS_UpdateStatusRegs
	E2.1.363 SecureDebugMonitorAllowed
	E2.1.364 SecureHaltingDebugAllowed
	E2.1.365 SecureNoninvasiveDebugAllowed
	E2.1.366 SecurityCheck
	E2.1.367 SecurityState
	E2.1.368 SendEvent
	E2.1.369 SerializeVFP
	E2.1.370 SetActive
	E2.1.371 SetDWTDebugEvent
	E2.1.372 SetEventRegister
	E2.1.373 SetExclusiveMonitors
	E2.1.374 SetITSTATEAndCommit
	E2.1.375 SetPending
	E2.1.376 SetThisInstrDetails
	E2.1.377 SetVPTMask
	E2.1.378 Shift
	E2.1.379 Shift_C
	E2.1.380 SignedSat
	E2.1.381 SignedSatQ
	E2.1.382 SignExtend
	E2.1.383 Sleeping
	E2.1.384 SleepOnExit
	E2.1.385 SP
	E2.1.386 SP_Main
	E2.1.387 SP_Main_NonSecure
	E2.1.388 SP_Main_Secure
	E2.1.389 SP_Process
	E2.1.390 SP_Process_NonSecure
	E2.1.391 SP_Process_Secure
	E2.1.392 SpeculativeSynchronizationBarrier
	E2.1.393 SRType
	E2.1.394 Stack
	E2.1.395 StandardFPSCRValue
	E2.1.396 SteppingDebug
	E2.1.397 SynchronizeBusFault
	E2.1.398 T32ExpandImm
	E2.1.399 T32ExpandImm_C
	E2.1.400 TailChain
	E2.1.401 TakePreserveFPException
	E2.1.402 TakeReset
	E2.1.403 ThisInstr
	E2.1.404 ThisInstrAddr
	E2.1.405 ThisInstrITState
	E2.1.406 ThisInstrLength
	E2.1.407 TopLevel
	E2.1.408 TTResp
	E2.1.409 TweakCellInvRot
	E2.1.410 TweakCellRot
	E2.1.411 TweakInvShuffle
	E2.1.412 TweakShuffle
	E2.1.413 UnprivHaltingDebugAllowed
	E2.1.414 UnprivHaltingDebugEnabled
	E2.1.415 UnsignedSat
	E2.1.416 UnsignedSatQ
	E2.1.417 UpdateDebugEnable
	E2.1.418 UpdateFPCCR
	E2.1.419 ValidateAddress
	E2.1.420 ValidateExceptionReturn
	E2.1.421 ValidatePAC
	E2.1.422 VCX_op0
	E2.1.423 VCX_op1
	E2.1.424 VCX_op2
	E2.1.425 VCX_op3
	E2.1.426 Vector
	E2.1.427 VectorCatchDebug
	E2.1.428 VFPExcBarrier
	E2.1.429 VFPExpandImm
	E2.1.430 VFPNegMul
	E2.1.431 VFPSmallRegisterBank
	E2.1.432 ViolatesSPLim
	E2.1.433 VPTActive
	E2.1.434 VPTAdvance
	E2.1.435 WaitForEvent
	E2.1.436 WaitForInterrupt
	E2.1.437 ZeroExtend
	E2.1.438 Zeros

	F Debug Packet Protocols
	F1 ITM and DWT Packet Protocol Specification
	F1.1 About the ITM and DWT packets
	F1.1.1 Uses of ITM and DWT packets
	F1.1.2 ITM and DWT protocol packet headers
	F1.1.3 Packet transmission by the trace sink

	F1.2 Alphabetical list of DWT and ITM packets
	F1.2.1 Data Trace Data Address packet
	F1.2.1.1 Data Trace Data Address packet header
	F1.2.1.2 Data Trace Data Address packet payload

	F1.2.2 Data Trace Data Value packet
	F1.2.2.1 Data Trace Data Value packet header
	F1.2.2.2 Data Trace Data Value packet payload

	F1.2.3 Data Trace Match packet
	F1.2.4 Data Trace PC Value packet
	F1.2.4.1 Data Trace PC Value packet header
	F1.2.4.2 Data Trace PC Value packet payload

	F1.2.5 Event Counter packet
	F1.2.6 Exception Trace packet
	F1.2.7 Extension packet
	F1.2.8 Global Timestamp 1 packet
	F1.2.8.1 Global Timestamp 1 packet header
	F1.2.8.2 Global Timestamp 1 packet payload

	F1.2.9 Global Timestamp 2 packet
	F1.2.9.1 Global Timestamp 2 packet header
	F1.2.9.2 Global Timestamp 2 packet payload

	F1.2.10 Instrumentation packet
	F1.2.10.1 Instrumentation packet header
	F1.2.10.2 Instrumentation packet payload

	F1.2.11 Local Timestamp 1 packet
	F1.2.11.1 Local Timestamp 1 packet header
	F1.2.11.2 Local Timestamp 1 packet payload

	F1.2.12 Local Timestamp 2 packet
	F1.2.13 Overflow packet
	F1.2.14 Periodic PC Sample packet
	F1.2.14.1 Periodic PC Sample packet header
	F1.2.14.2 Periodic PC Sample packet payload

	F1.2.15 PMU overflow packet
	F1.2.16 Synchronization packet

	G Glossary

