
Arm Compiler for Embedded FuSa 6.16LTS
Defect Notification Report
Version July 2024

Non-Confidential
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

Issue
107987_2024-07_en

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Arm Compiler for Embedded FuSa 6.16LTS Defect Notification Report

This document is Non-Confidential.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.
Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary Notice found at the end of
this document.

This document (107987_2024-07_en) was issued on 2024-07-26. There might be a later issue at
http://developer.arm.com/documentation/107987

The product version is July 2024.

See also: Proprietary notice | Product and document information | Useful resources

Start reading
If you prefer, you can skip to the start of the content.

Intended audience
This document is intended for use by a software developer who has a valid license for Arm
Compiler for Embedded FuSa 6.16LTS, and is using an Arm Compiler for Embedded FuSa 6.16LTS
release to build a project with functional safety or long-term maintenance requirements. The
document includes descriptions of known safety-related defects that affect each release of Arm
Compiler for Embedded FuSa 6.16LTS.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 161

http://developer.arm.com/documentation/107987
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Contents

Contents

1. Introduction.. 5
1.1 Scope of the Defect Lists...5
1.2 Derivation of the Defect Lists...5
1.3 Documentation releases for documentation synchronization faults...6

2. Defects...7
2.1 Format of a Defect Entry... 7
2.1.1 Target environment... 8
2.2 Machine-readable defects list.. 9
2.3 Defects affecting qualified components... 10
2.3.1 Translation faults... 13
2.3.2 Missing diagnostic faults... 80
2.3.3 Determinism faults... 109
2.3.4 Documentation synchronization faults..110
2.4 Defects affecting unqualified components.. 114
2.4.1 Translation faults...115
2.4.2 Missing diagnostic faults...140
2.5 Defects affecting both qualified and unqualified components..146
2.5.1 Translation faults...147
2.5.2 Documentation synchronization faults..148

A. Changes since the Arm Compiler for Embedded FuSa 6.16.2 Qualification Kit Defect
Report...150
A.1 Defects added.. 150
A.2 Defects removed..152
A.3 Defects updated.. 153

Proprietary notice..156

Product and document information... 158
Product status...158
Revision history.. 158
Conventions...158

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Contents

Useful resources.. 161

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Introduction

1. Introduction
This document is intended for functional safety managers and software developers using Arm
Compiler for Embedded FuSa 6.16LTS for functional safety projects.

This document has been created based on information available to Arm as of 26 July 2024. It
provides an updated list of known safety-related defects that affect a release of Arm Compiler for
Embedded FuSa 6.16LTS, and has been published on a discretionary basis.

Functional safety managers can reference the known defects in Arm Compiler for Embedded
FuSa to address requirement 11.4.4 in ISO 26262-8, Planning of usage of a software tool, and the
equivalent requirement in IEC 61508-4 section 7.4.4.5.

Software developers can study the known defect list and apply appropriate safeguards and
workarounds if they think they are at risk.

For information on the referenced documents, see the Arm Compiler for Embedded FuSa 6.16LTS
Qualification Kit Safety Manual.

1.1 Scope of the Defect Lists
The defect lists within this document contain an entry for each known defect that is in a safety-
related fault category and, at the time this document was generated, identified as affecting the
following Arm Compiler for Embedded FuSa 6.16LTS releases: 6.16.1 or 6.16.2.

See The role of Arm Compiler for Embedded FuSa in Safety-related Development in the Arm Compiler
for Embedded FuSa 6.16LTS Qualification Kit Safety Manual for an explanation of the safety-related
fault categories.

See the Arm Compiler for Embedded FuSa 6.16LTS Qualification Kit Development Process
document for an explanation of how the Arm Compiler for Embedded FuSa development process
handles safety-related defects.

Defects are grouped according to whether they affect qualified or unqualified toolchain
components, the fault category, and are listed in descending order of the defect identifier number.

1.2 Derivation of the Defect Lists
This section describes how the information in the defect lists within this document are derived.

The information in the defect lists in this document is derived directly from the Arm defect tracking
system.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Introduction

All incoming Arm Compiler for Embedded FuSa defects are assessed for their impact on functional
safety. See the Arm Compiler for Embedded FuSa 6.16LTS Qualification Kit Development Process
document for more information.

The provided information might change in future versions of this document. Such changes may
include the removal of a defect from the document.

1.3 Documentation releases for documentation
synchronization faults

This section explains the relationship between documentation releases and toolchain releases in
the context of Documentation synchronization faults.

Documentation synchronization faults apply to specific releases of the documentation.

For each affected release specified in a documentation synchronization fault, use the References
section of the matching Arm Compiler for Embedded FuSa 6.16LTS Qualification Kit Safety Manual to
identify the specific release of the documentation to which the fault applies.

For example, if a documentation synchronization fault affects release 6.16.2 of the Arm Compiler
for Embedded FuSa tools, see the References section of release 6.16.2 of the Arm Compiler for
Embedded FuSa 6.16LTS Qualification Kit Safety Manual for the specific release of the documentation
to which the fault applies.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2. Defects
This chapter contains information about all known safety-related defects that affect releases of
Arm Compiler for Embedded FuSa 6.16LTS.

2.1 Format of a Defect Entry
This section describes the format of a defect entry in this document.

Each defect entry contains the following information:

Item Description

Defect
identifier

A unique identifier for the defect, of the form SDCOMP-<N>. This identifier is used as the title of the section describing the
defect. It should be used in all communication regarding the defect.

Components The Arm Compiler for Embedded FuSa components affected by the defect. The affected components might be one or more
of:

• Qualified toolchain components:

◦ Compiler and integrated assembler, armclang

◦ ELF processing utility, fromelf

◦ Librarian, armar

◦ Linker, armlink

• Unqualified toolchain components:

◦ Legacy assembler, armasm

◦ Libraries

Fault
category

Each defect in this documented is listed in a section based on its safety-related fault category classification:

• Translation fault

• Missing diagnostic fault

• Determinism fault

• Documentation synchronization fault

For more information about fault categories, see the Arm Compiler for Embedded FuSa 6.16LTS Qualification Kit Safety Manual.

Target
environment

Where feasible, describes the set of target Arm architectures or processor states that might be affected by the defect. The
default value is "Any", which means the issue could affect any supported target Arm architecture or processor state. For
more information, see the Target environment section.

Affected
releases

A list of the releases in scope that the defect is observable in.

Unaffected
releases

A list of the releases in scope that the defect is not observable in.

Description A summary of the defect and its impact.

Conditions A list of conditions that must hold to observe the defect.

The information describing the scope of a defect is included in a table in each defect entry in this
document. You can use the information in this table to determine if a defect is relevant to your
project without having to read the full details of the defect.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

To avoid a known defect, manually inspect the source code and command-line options to ensure
that at least one condition for the defect does not hold true. Arm Support might be able to help
you identify other workarounds for known defects, if a generic workaround is not suitable.

2.1.1 Target environment

This section describes the purpose and meaning of the target environment associated with each
defect entry included in this document.

Where feasible, the target environment is used to limit the scope of each defect.

The target environment specifies one of the following:

• One or more architectures

• One or more processor states

• The value "Any"

It does not specify any of the following:

• Architecture revisions, such as Armv8.1-M

• Architecture extensions, such as the M-profile Vector Extension (MVE)

Instead, the conditions of a defect may include statements that further limit the scope of the
defect. For example, for a defect with the target environment "Armv8-M with the Main Extension",
the conditions may include the following statement to limit the scope of the defect to only targets
that implement the M-profile Vector Extension (MVE):

• The program is compiled for a target with the M-profile Vector Extension (MVE).

The following target environments are included within the scope of this document:

Target
environment

Description

Any The scope defect is not limited to any specific target environments, and can affect any target Arm architecture or processor
subject only to the conditions under which the defect can occur.

A32 state An Arm architecture or processor in A32 state (formerly Arm state). Depending on the -mcpu or -march option used with
the compiler, A32 state may be the default. For example, it is the default when compiling with -mcpu=cortex-r52. For
more information, see the -march and -mcpu sections of the Arm Compiler for Embedded FuSa Reference Guide.

AArch32
state

An Arm architecture or processor in AArch32 state. This includes A32 state (formerly Arm state) and T32 state (formerly
Thumb state).

AArch64
state

An Arm architecture or processor in AArch64 state.

Armv6-M The Armv6-M architecture, or a processor based on the Armv6-M architecture. For example, Cortex-M0.

Armv7-A The Armv7-A architecture, or a processor based on the Armv7-A architecture. For example, Cortex-A9.

Armv7-M The Armv7-M architecture, or a processor based on the Armv7-M architecture. For example, Cortex-M3.

Armv7-R The Armv7-R architecture, or a processor based on the Armv7-R architecture. For example, Cortex-R5.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Target
environment

Description

Armv8-A Any version of the Armv8-A architecture, or a processor based on any version of the Armv8-A architecture. Unless
otherwise specified in the conditions of a defect, this includes both AArch64 state and AArch32 state. For example, Cortex-
A53.

Armv8-M Any version of the Armv8-M architecture, or a processor based on any version of the Armv8-M architecture. Unless
otherwise specified in the conditions of a defect, this includes both Armv8-M with the Main Extension and Armv8-M
without the Main Extension. For example, this includes projects that are compiled with -march=armv8-m.base, -
march=armv8.1-m.main, or -mcpu=cortex-m55.

Armv8-
M with
the Main
Extension

Any version of the Armv8-M architecture with the Main Extension, or a processor based on any version of the Armv8-
M architecture with the Main Extension. For example, this includes projects that are compiled with -march=armv8.1-
m.main or -mcpu=cortex-m33.

Armv8-M
without
the Main
Extension

Any version of the Armv8-M architecture without the Main Extension, or a processor based on any version of the Armv8-
M architecture without the Main Extension. For example, this includes projects that are compiled with -march=armv8-
m.base or -mcpu=cortex-m23.

Armv8-R The Armv8-R architecture, or a processor based on the Armv8-R architecture. This does not include the Armv8-R AArch64
architecture. For example, Cortex-R52.

Armv8-R
AArch64

The Armv8-R AArch64 architecture, or a processor based on the Armv8-R AArch64 architecture. For example, Cortex-
R82AE.

T32 state An Arm architecture or processor in T32 state (formerly Thumb state). For example, this always applies when compiling for
an M-profile target.

2.2 Machine-readable defects list
This section provides information about the JSON format defect lists included as an attachment
with this document.

The contents of the defects lists in this document are available in a machine-readable JSON format.
The file defects_as_JSON.zip attached to this document contains the following files that can be
used to programmatically analyze the defects listed within this document:

defects.json

A JSON file containing a list of all defects from this document, and information about the
scope of the list. The entry for each defect follows the same format as described in Format of
a Defect Entry. The defect description and conditions are provided as HTML markup.

schema.json

The JSON schema for the file defects.json. It includes descriptions of the contents of the
defects.json file.

Arm does not provide tools to analyze the JSON format defects list.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3 Defects affecting qualified components
This section contains details about known safety-related defects that affect the qualified toolchain
components of Arm Compiler for Embedded FuSa 6.16LTS.

The qualified toolchain components are:

• The compiler and integrated assembler, armclang.

• The ELF processing utility, fromelf.

• The librarian, armar.

• The linker, armlink.

The following defects are included in this section:

Identifier Fault category Affected components

SDCOMP-66632 Translation fault armclang

SDCOMP-66256 Translation fault armclang

SDCOMP-65517 Translation fault armlink

SDCOMP-65172 Translation fault armclang

SDCOMP-64999 Translation fault armlink

SDCOMP-64595 Translation fault armlink

SDCOMP-64591 Translation fault armclang

SDCOMP-64590 Translation fault armlink

SDCOMP-64165 Translation fault armclang

SDCOMP-64066 Translation fault armclang

SDCOMP-64059 Translation fault armclang

SDCOMP-63984 Translation fault armclang

SDCOMP-63952 Translation fault armclang

SDCOMP-63946 Translation fault armclang

SDCOMP-63913 Translation fault armclang

SDCOMP-63912 Translation fault armclang

SDCOMP-63911 Translation fault armclang

SDCOMP-63894 Translation fault armclang

SDCOMP-63761 Translation fault armclang

SDCOMP-63752 Translation fault armclang

SDCOMP-63738 Translation fault fromelf

SDCOMP-63688 Translation fault armclang

SDCOMP-63454 Translation fault armclang

SDCOMP-62791 Translation fault armclang

SDCOMP-62769 Translation fault armclang

SDCOMP-62725 Translation fault armclang

SDCOMP-62692 Translation fault armclang

SDCOMP-62661 Translation fault armclang

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Identifier Fault category Affected components
SDCOMP-62378 Translation fault armclang

SDCOMP-62352 Translation fault armclang

SDCOMP-62330 Translation fault armclang

SDCOMP-62251 Translation fault armlink

SDCOMP-62221 Translation fault armclang

SDCOMP-62217 Translation fault fromelf

SDCOMP-62176 Translation fault armclang

SDCOMP-62133 Translation fault armclang

SDCOMP-62123 Translation fault armclang

SDCOMP-62028 Translation fault armclang

SDCOMP-61514 Translation fault armclang

SDCOMP-61486 Translation fault armclang

SDCOMP-61299 Translation fault armclang

SDCOMP-61298 Translation fault armclang

SDCOMP-61150 Translation fault armlink

SDCOMP-61080 Translation fault armclang

SDCOMP-60897 Translation fault armclang

SDCOMP-60725 Translation fault fromelf

SDCOMP-60659 Translation fault armlink

SDCOMP-60632 Translation fault armclang

SDCOMP-60589 Translation fault armclang

SDCOMP-60443 Translation fault armclang

SDCOMP-60342 Translation fault armclang

SDCOMP-60326 Translation fault fromelf

SDCOMP-60117 Translation fault armlink

SDCOMP-59974 Translation fault armclang

SDCOMP-59938 Translation fault armlink

SDCOMP-59788 Translation fault armclang

SDCOMP-59656 Translation fault armclang

SDCOMP-59521 Translation fault armclang

SDCOMP-59074 Translation fault armclang

SDCOMP-59059 Translation fault armclang

SDCOMP-58780 Translation fault armclang

SDCOMP-58773 Translation fault armclang

SDCOMP-58738 Translation fault armclang

SDCOMP-58354 Translation fault armlink

SDCOMP-57884 Translation fault armclang

SDCOMP-57725 Translation fault armclang

SDCOMP-57674 Translation fault armclang

SDCOMP-57456 Translation fault fromelf

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Identifier Fault category Affected components
SDCOMP-57449 Translation fault fromelf

SDCOMP-57255 Translation fault armclang

SDCOMP-57229 Translation fault armclang

SDCOMP-57213 Translation fault armlink

SDCOMP-57200 Translation fault armclang

SDCOMP-56435 Translation fault armlink

SDCOMP-55460 Translation fault armclang

SDCOMP-55184 Translation fault fromelf

SDCOMP-54546 Translation fault fromelf

SDCOMP-50968 Translation fault fromelf

SDCOMP-50408 Translation fault armclang

SDCOMP-44980 Translation fault fromelf

SDCOMP-28728 Translation fault fromelf

SDCOMP-24899 Translation fault fromelf

SDCOMP-11947 Translation fault fromelf

SDCOMP-65264 Missing diagnostic fault armclang

SDCOMP-65243 Missing diagnostic fault armclang

SDCOMP-64683 Missing diagnostic fault armclang

SDCOMP-64255 Missing diagnostic fault armclang

SDCOMP-63917 Missing diagnostic fault armclang

SDCOMP-63697 Missing diagnostic fault armclang

SDCOMP-62234 Missing diagnostic fault armclang

SDCOMP-62201 Missing diagnostic fault armclang

SDCOMP-61489 Missing diagnostic fault fromelf

SDCOMP-61488 Missing diagnostic fault armlink

SDCOMP-61461 Missing diagnostic fault armclang

SDCOMP-61089 Missing diagnostic fault armclang

SDCOMP-59605 Missing diagnostic fault armclang

SDCOMP-59512 Missing diagnostic fault armclang

SDCOMP-59190 Missing diagnostic fault armclang

SDCOMP-58367 Missing diagnostic fault armclang

SDCOMP-57912 Missing diagnostic fault armclang

SDCOMP-57528 Missing diagnostic fault armclang

SDCOMP-57199 Missing diagnostic fault armlink

SDCOMP-56812 Missing diagnostic fault armclang

SDCOMP-56331 Missing diagnostic fault armclang

SDCOMP-56220 Missing diagnostic fault armclang

SDCOMP-56212 Missing diagnostic fault armclang

SDCOMP-55983 Missing diagnostic fault armclang

SDCOMP-55580 Missing diagnostic fault armclang

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Identifier Fault category Affected components
SDCOMP-55267 Missing diagnostic fault armclang

SDCOMP-53903 Missing diagnostic fault armclang

SDCOMP-52627 Missing diagnostic fault armclang

SDCOMP-51180 Missing diagnostic fault armclang

SDCOMP-50017 Missing diagnostic fault armclang

SDCOMP-49961 Missing diagnostic fault armclang

SDCOMP-49919 Missing diagnostic fault armclang

SDCOMP-49763 Missing diagnostic fault armclang

SDCOMP-46790 Missing diagnostic fault armclang

SDCOMP-25238 Missing diagnostic fault armclang

SDCOMP-18689 Missing diagnostic fault armlink

SDCOMP-17355 Missing diagnostic fault armlink

SDCOMP-57994 Determinism fault armlink

SDCOMP-65669 Documentation synchronization fault armclang

SDCOMP-61633 Documentation synchronization fault armclang

SDCOMP-61465 Documentation synchronization fault armclang

SDCOMP-61054 Documentation synchronization fault armlink

SDCOMP-60826 Documentation synchronization fault armlink

2.3.1 Translation faults

This section contains details about safety-related defects that have been classified as a translation
fault.

For more information about the definition of a translation fault, see the Arm Compiler for Embedded
FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.16LTS Qualification
Kit Safety Manual.

2.3.1.1 SDCOMP-66632

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66632.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The integrated assembler incorrectly fails to automatically set the minimum alignment requirement
for a user-defined executable section based on the target instruction set. Instead, it incorrectly
always sets the minimum alignment requirement to 1 byte.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the integrated assembly incorrectly sets the alignment to 1 byte .text.func in the
following:

.section .text.func, "ax"
nop

To avoid this issue, explicitly specify an alignment for each user-defined executable section using
the following directive:

.p2align 2

This defect is associated with the issue described in SDCOMP-57200.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a user-defined executable section S.

• S does not explicitly contain one of the following directives:

◦ .align

◦ .balign

◦ .p2align

2.3.1.2 SDCOMP-66256

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66256.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate code that incorrectly does not conform to the Procedure Call Standard
for the Arm 64-bit Architecture.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, when compiling the following code with -march=armv8.2-a+bf16 and at -O1, the
compiler can generate code that incorrectly splits the Homogenous Floating-point Aggregate (HFA)
parameter src between the register H7 and the stack:

#include <arm_neon.h>

volatile __bf16 dst;

typedef struct
{
 __bf16 x, y;
} hfa_t;

void func(double a, double b, double c, double d,
 double e, double f, double g, hfa_t src)
{
 dst = src.x;
 dst = src.y;
}

ldr h0, [sp]
adrp x8, dst
str h7, [x8, :lo12:dst]
str h0, [x8, :lo12:dst]
ret

The Procedure Call Standard for the Arm 64-bit Architecture does not permit a HFA parameter to be
split between registers and the stack.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a function F.

• F has M consecutive floating-point parameters, followed by a parameter of T type.

• T is a Homogenous Floating-point Aggregate type, which consists of N members of __bf16 type.

• 1 < N <= 4.

• M < 8.

• M + N > 8.

2.3.1.3 SDCOMP-65517

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65517.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
For two execution regions A and B, where A is at a lower address than B, the linker incorrectly
assumes that the name of A is always lexically earlier than the name of B. Subsequently, this can
result in the linker generating incorrect callgraph or stack usage information. The order in which A
and B are specified in the scatter file does not affect this behavior.

For example, when a program is linked for AArch32 state with a scatter file that contains the
following:

LR1 0x02000000
{
 ER_A +0
 {
 ...
 }
}

LR2 0x00004000
{
 ER_B +0
 {
 ...
 }
}

ER_B is at the lower address 0x00004000 and ER_A is at the higher address 0x02000000.
However, the name ER_B is not lexically earlier than the name ER_A. This can result in the linker
generating incorrect callgraph or stack usage information. The fact that ER_A is specified before
ER_B does not affect this behavior.

To avoid this issue, manually inspect the scatter file and ensure that all execution regions have
the same lexical order as their address order. For the execution regions in the above example, the
execution regions can be renamed as follows:

Original name New name

ER_A Y_ER_A

ER_B X_ER_B

Conditions
This defect can occur when all the following are true:

• The program is linked with a scatter file F.

• F contains two execution regions A and B.

• The address of A is lower than the address of B.

• The name of A is not lexically earlier than the name of B.

• The program is linked using one of the following options:

◦ --callgraph

◦ --info=stack

◦ --info=summarystack

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

The safety-related system is only at risk when the incorrect output causes you to manually make an
incorrect change to the safety-related system.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as
a lower limit. For more information, refer to the Linker maximum stack size calculation section of the
Safety Manual.

2.3.1.4 SDCOMP-65172

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65172.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect debug information for a bit-field.

For example, the compiler generates incorrect debug information for b in the following:

struct __attribute__((packed)) S
{
 unsigned char a: 7;
 unsigned char b: 4; /* Packing places bit0 of b
 in a different byte to bits1-3 */
};

This defect is associated with the issue described in SDCOMP-62330.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -gdwarf-2 or -gdwarf-3.

• The program contains a bit-field B.

• One of the following is annotated with attribute((packed)):

◦ B.

◦ The struct containing B.

• Packing affects the number of bytes that B spans.

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.5 SDCOMP-64999

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64999.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch32 state 6.16.1, 6.16.2 -

Description
The linker can generate an incorrect C++ exception-handling table. This can result in unexpected
run-time behavior.

For example, building a program containing the following code:

void __attribute__((naked)) F1()
{
}

void F2()
{
 throw 123;
}

can result in an output image with the following:

• F1, a zero-sized symbol of Code type

• F2, a non-zero-sized symbol of Code type

• F1 and F2 being placed at the same address, CODE_ADDR

• F1 and F2 being placed in the order F1 then F2

The C++ exception-handling table entries corresponding to these symbols must have the same
order as the symbols themselves. For example, when the symbols are placed in the order F1 then
F2, the C++ exception-handling table entries must also be placed in the order F1 then F2.

However, the output image can contain C++ exception-handling table entries in the incorrect order
F2 then F1. This can be observed by manually inspecting the output image using fromelf --text -e:

<start of exception-handling table>
...
 <entry for F2>: ... [<CODE_ADDR>]
 EHT Inline Personality Routine #0 (Su16)
 01 vsp = vsp + 0x8
 84 08 pop r7,r14 (0x8 bytes)
 <entry for F1>: ... [<CODE_ADDR>]
 EXIDX_CANTUNWIND
...
<end of exception-handling table>

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

The C++ exception unwinder uses the order of symbols to find the corresponding exception-
handling table entries. Subsequently, this can result in unexpected run-time behavior when the
entry for F1 is used to unwind F2.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program is compiled with C++ exceptions enabled.

• The program contains Code symbols F1 and F2.

• F1 is zero bytes in size.

• F2 is not zero bytes in size.

• F1 and F2 have the same address.

• F1 and F2 are placed in the order F1 then F2.

• An exception is thrown by, or is propagated through, F2.

2.3.1.6 SDCOMP-64595

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64595.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch64 state 6.16.1, 6.16.2 -

Description
The linker can generate incorrect stack usage information.

Conditions
This defect can occur when all the following are true:

• The program is compiled for a big-endian target.

• The program is linked using one of the following options:

◦ --callgraph

◦ --info=stack

◦ --info=summarystack

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

The safety-related system is only at risk when the incorrect stack usage information causes you to
manually make an incorrect change to the safety-related system.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as
a lower limit. For more information, refer to the Linker maximum stack size calculation section of the
Safety Manual.

2.3.1.7 SDCOMP-64591

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64591.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for Neon intrinsics defined in the <arm_neon.h> system
header.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a call Z to a Neon intrinsic I defined in the <arm_neon.h> system header.

• I is one of the following:

◦ vld2q_dup_bf16()

◦ vld2q_dup_f16()

◦ vld2q_dup_f32()

◦ vld2q_dup_p16()

◦ vld2q_dup_p8()

◦ vld2q_dup_s16()

◦ vld2q_dup_s32()

◦ vld2q_dup_s8()

◦ vld2q_dup_u16()

◦ vld2q_dup_u32()

◦ vld2q_dup_u8()

• The behavior of the program depends on Z.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.8 SDCOMP-64590

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64590.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker can generate incorrect stack usage information.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -fno-omit-frame-pointer.

• The program is linked using one of the following options:

◦ --callgraph

◦ --info=stack

◦ --info=summarystack

The safety-related system is only at risk when the incorrect stack usage information causes you to
manually make an incorrect change to the safety-related system.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as
a lower limit. For more information, refer to the Linker maximum stack size calculation section of the
Safety Manual.

2.3.1.9 SDCOMP-64165

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64165.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang A32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler can generate incorrect code for a PC-relative ADR
instruction or a load literal instruction.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the integrated assembler generates incorrect code for the PC-relative ADR instruction
in the following:

 .arm

 .section .data.src, "a", %progbits
 .balign 4
 .global src
src:
 .word 0x11223344

 .section .text.func, "ax"
 .balign 4
 .global func
 .type func, %function
func:
 adr r0, src
 bx lr

This defect is associated with the issues described in SDCOMP-63454 and SDCOMP-55580.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• One of the following is true:

◦ I is LDRD.

◦ The program is assembled for a big-endian target, and I is one of the following:

▪ ADR

▪ LDR

▪ LDRB

▪ LDRH

▪ LDRSB

▪ LDRSH

• I specifies a label operand L.

• I is in a section A.

• L is in a section B.

• A and B are different.

2.3.1.10 SDCOMP-64066

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64066.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The compiler can generate code that incorrectly uses the same register for both operands of the
__arm_sqrshr() and __arm_uqrshl() M-profile Vector Extension (MVE) intrinsics. Subsequently,
this can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program contains a call to an MVE intrinsic I defined in the <arm_mve.h> system header.

• I is one of the following:

◦ __arm_sqrshr()

◦ __arm_uqrshl()

• The behavior of the program depends on I.

2.3.1.11 SDCOMP-64059

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64059.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for an M-profile Vector Extension (MVE) intrinsic defined
in the <arm_mve.h> system header.

For example, for the call to the __arm_vhcaddq_rot270_s32() intrinsic in the following code:

#include <arm_mve.h>

int32x4_t func(void)
{
 int32x4_t a = __arm_vuninitializedq_s32();
 return __arm_vhcaddq_rot270_s32(a, a);
}

the compiler incorrectly generates a VHCADD.S32 instruction that uses the register Q0 for all
operands:

vhcadd.s32 q0, q0, q0, #270

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

vmov r0, r1, d0
vmov r2, r3, d1
bx lr

A VHCADD.S32 instruction which specifies the same register as both the destination and second
source operand is architecturally CONSTRAINED UNPREDICTABLE. Subsequently, this can result in
unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a call A to an MVE intrinsic of the form vuninitializedq() defined in the
<arm_mve.h> system header.

• A creates an uninitialized vector V.

• The program contains a call B to an MVE intrinsic defined in the <arm_mve.h> system header.

• B specifies V as an argument.

• The behavior of the program depends on B.

2.3.1.12 SDCOMP-63984

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63984.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang T32 state 6.16.1, 6.16.2 -

Description
The compiler can generate a code section that incorrectly contains a literal pool.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with -mexecute-only.

• The program contains a thread-local variable V.

• The behavior of the program depends on an access to V.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.13 SDCOMP-63952

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63952.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for an access to a union with a member of half-precision
floating-point type.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that do not enable the half-precision floating-point
feature (FEAT_FP16).

• The program contains a union U.

• U has a member of one of the following types:

◦ __fp16

◦ _Float16

• U has a member that is not of one of the following types:

◦ __fp16

◦ _Float16

• The behavior of the program depends on an access to U.

2.3.1.14 SDCOMP-63946

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63946.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The compiler can generate incorrect code for a call to a function.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built for a target with the Scalable Vector Extension (SVE).

• The program contains a call to a function F.

• F has a parameter P of type T.

• T is defined in the <arm_sve.h> system header.

• P must be passed using the stack.

• The behavior of the program depends on F.

2.3.1.15 SDCOMP-63913

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63913.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code when compiling with a -mharden-sls=<option> option
that enables the mitigation against Straight-Line Speculation (SLS) for RET and BR instructions.

Note: -mharden-sls=<option> is considered a [COMMUNITY] feature in Arm Compiler for
Embedded FuSa 6.16.1 and 6.16.2. For more information about this option, refer to the Straight-
Line Speculation (SLS) hardening supplement for Arm Compiler for Embedded FuSa 6.16LTS

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with -mharden-sls=all or -mharden-sls=retbr.

• One of the following is true:

◦ The program is compiled at -Oz and without -mno-outline.

◦ The program is compiled with -moutline.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 161

https://developer.arm.com/documentation/ka005806/latest
https://developer.arm.com/documentation/ka005806/latest

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.16 SDCOMP-63912

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63912.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for an access to a bit-field. Such incorrect code does not
conform to the Procedure Call Standard for the Arm Architecture.

For example, the compiler generates code that incorrectly uses the register R1 for the parameter b
in the following:

struct S
{
 int x : 64;
};

int func(int a, struct S b)
{
 return b.x;
}

To avoid this issue, compile with -Werror=bitfield-width to make the compiler report the
following error for potentially affected code:

• width of bit-field '<bit-field>' (<width_of_bit-field> bits) exceeds the width of its
type; value will be truncated to <width_of_type> bits.

Conditions
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a class, struct, or union type A.

• A has a bit-field member M of size S and type B.

• S is greater than the size of B.

• The program contains a function F.

• F has a parameter of type A.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• F accesses M.

The safety-related system is not at risk when F is compiled using the same toolchain that is used to
compile all code that calls F.

2.3.1.17 SDCOMP-63911

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63911.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture.

For example, the compiler generates code that incorrectly assumes that the register R0 is used for
the parameter b in the following:

struct S
{
};

int func(struct S a, int b)
{
 return b;
}

Conditions
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a class, struct, or union type T.

• The program contains a function F with a parameter of type T.

• T does not have any members.

The safety-related system is not at risk when F is compiled using the same toolchain that is used to
compile all code that calls F.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.18 SDCOMP-63894

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63894.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a program that contains a volatile variable V. Such
incorrect code can result in any of the following unexpected run-time behaviors:

• Initializing V incorrectly.

• Loading a byte from V from an incorrect offset.

• Storing a byte to V at an incorrect offset.

For example, if a variable V is expected to consist of the following sequence of bytes:

Address offset Byte value

+0x0 0x00

+0x1 0x11

+0x2 0x22

+0x3 0x33

+0x4 0x44

+0x5 0x55

+0x6 0x66

+0x7 0x77

+0x8 0x88

+0x9 0x99

+0xa 0xaa

+0xb 0xbb

+0xc 0xcc

+0xd 0xdd

+0xe 0xee

+0xf 0xff

the compiler can instead generate incorrect code that treats V as consisting of the following
incorrect sequence of bytes:

Address offset Byte value

+0x0 0x88

+0x1 0x99

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Address offset Byte value
+0x2 0xaa

+0x3 0xbb

+0x4 0xcc

+0x5 0xdd

+0x6 0xee

+0x7 0xff

+0x8 0x00

+0x9 0x11

+0xa 0x22

+0xb 0x33

+0xc 0x44

+0xd 0x55

+0xe 0x66

+0xf 0x77

Subsequently, at run-time, a load of V[0] would incorrectly return 0x88 instead of 0x00.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a big-endian target.

• The program contains a volatile variable V.

• The behavior of the program depends on V.

2.3.1.19 SDCOMP-63761

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63761.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a function that accesses a __thread or thread_local
variable.

Conditions
The safety-related system is at risk when all following are true:

• The program contains a __thread or thread_local variable V.

• The program contains a function F.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• F contains an access to V.

• One of the following is true:

◦ F is in a compilation unit that is compiled with -ftls-model=global-dynamic.

◦ V is annotated with attribute((tls_model("global-dynamic"))).

2.3.1.20 SDCOMP-63752

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63752.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a vfmlalq_laneq_high_f16() or
vfmlalq_laneq_low_f16() Neon intrinsic.

This defect is associated with the issue described in SDCOMP-63917.

Conditions
This defect can occur when all the following are true:

• The program is compiled for a target that supports the floating-point half-precision
multiplication instructions feature (FEAT_FHM).

• The program contains a call to a Neon intrinsic I defined in the <arm_neon.h> system header.

• I is one of the following:

◦ vfmlalq_laneq_high_f16()

◦ vfmlalq_laneq_low_f16()

To detect if the safety-related system is at risk, compile with -S and manually inspect the output.
The safety-related system is only at risk when one of the following is true:

• The output contains a FMLAL (by element) instruction with a second source register of the form
<Vd>.H[<index>], where <Vd> is outside the range V0-V15.

• The output contains a FMLAL2 (by element) instruction with a second source register of the form
<Vd>.H[<index>], where <Vd> is outside the range V0-V15.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.21 SDCOMP-63738

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63738.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The fromelf utility incorrectly disassembles the label operand of a WLS or WLSTP instruction as an
immediate offset instead of a PC-relative offset.

For example, the fromelf utility incorrectly disassembles the following WLSTP instruction:

wlstp.8 lr, r0, <label>

as:

wlstp.8 lr, r0, #<offset>

instead of:

wlstp.8 lr, r0, {pc}+<offset>

This defect is associated with the issue described in SDCOMP-62217.

Conditions
This defect occurs when all the following are true:

• The fromelf utility is used to disassemble an ELF format input file F.

• F is disassembled for an Armv8.1-M target with the Main Extension. For example, F is
disassembled with --cpu=8.1-M.Main.

• F contains a WLS or WLSTP instruction.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.1.22 SDCOMP-63688

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63688.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang Armv6-M, Armv8-M without the Main Extension 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code that corrupts register R4. This can result in unexpected
run-time behavior.

Conditions
The safety-related system is at risk when the program is compiled with one of the following
options:

• -fstack-protector

• -fstack-protector-all

• -fstack-protector-strong

2.3.1.23 SDCOMP-63454

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63454.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang T32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler can generate incorrect code for a PC-relative ADR
instruction or a load literal instruction.

For example, the integrated assembler generates incorrect code for the PC-relative ADR instruction
in the following:

 .thumb

 .section .data.src, "a", %progbits
 .balign 4
 .global src
src:
 .word 0x11223344

 .section .text.func, "ax"
 .balign 4
 .global func
 .type func, %function
func:
 adr r0, src
 bx lr

This defect is associated with the issues described in SDCOMP-64165 and SDCOMP-55580.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for a big-endian target.

• The program contains an instruction I.

• I is one of the following:

◦ ADR

◦ LDR

◦ LDRB

◦ LDRH

◦ LDRSB

◦ LDRSH

• I specifies a label operand L.

• I is in a section A.

• L is in a section B.

• A and B are different.

2.3.1.24 SDCOMP-62791

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62791.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate code that incorrectly does not preserve the half-precision floating-
point value V returned by one function when making a call to another function F. This can result in
unexpected run-time behavior if F corrupts the floating-point register containing V.

For example, when the following code is compiled with -mfloat-abi=hard -O1 for an Armv8.2-A
target with half-precision floating-point support:

extern __fp16 func1(void);
extern void func2(void);

__fp16 func3(void)
{
 __fp16 return_value = func1();
 func2();

 return return_value;
}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

the compiler incorrectly generates the following code where func2() could potentially corrupt the
value returned by func1() and cause func3() to return an invalid value:

func3:
 push {r11, lr}
 bl func1
 bl func2
 pop {r11, pc}

Instead, the compiler should preserve S0 before the call to func2() and restore S0 after the call to
func2(). For example:

func3:
 push {r11, lr}
 vpush {d8}
 bl func1
 vmov.f32 s16, s0
 bl func2
 vmov.f32 s0, s16
 vpop {d8}
 pop {r11, pc}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is compiled for a target with half-precision floating-point support.

• The program contains a function that returns a value of type T.

• T is one of the following:

◦ __bf16

◦ _Float16

◦ __fp16

2.3.1.25 SDCOMP-62769

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62769.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The compiler can incorrectly convert a half-precision floating-point signalling NaN value to a quiet
NaN value.

For example, the compiler incorrectly converts the compile-time constant 0x7c01, which
represents a signalling NaN value, to the quiet NaN value 0x7e01 for the following:

void func(__fp16 *ptr)
{
 union {
 unsigned short s;
 __fp16 f;
 } u;
 u.s = 0x7c01;
 *ptr = u.f;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target without half-precision floating-point support.

• The program is compiled with -ffp-mode=full.

• The program contains a variable A of __fp16 type.

• A signalling NaN value B is stored in A.

• B is a compile-time constant.

2.3.1.26 SDCOMP-62725

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62725.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture, when compiling for a target that supports integer MVE only.

For example, the compiler generates code that incorrectly uses the general-purpose register R0 for
the return value of func() in the following:

float func(float *ptr)
{
 return *ptr;
}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

The compiler should use the floating-point register S0 instead.

Conditions
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture when all the following are true:

• The program is compiled for a target with the M-profile Vector Extension (MVE).

• The program is compiled for a target that supports integer MVE.

• The program is compiled for a target that does not support floating-point MVE.

• The program is compiled for a target without hardware floating-point support.

• The program is compiled with -mfloat-abi=hard.

• The program contains a variable of floating-point type.

The safety-related system is only at risk when the entire program is not built using the same
toolchain.

2.3.1.27 SDCOMP-62692

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62692.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected
components

Target environment Affected
releases

Unaffected
releases

armclang Armv7-A, Armv7-M, Armv7-R, Armv8-A, Armv8-M with the Main Extension,
Armv8-R

6.16.1, 6.16.2 -

Description
The compiler can generate code that incorrectly performs an unaligned access using a LDRD or STRD
instruction for an access to a struct.

For example, the compiler incorrectly uses an STRD instruction to access dst.y in the following:

typedef struct __attribute__((packed)) {
 char x;
 volatile long long y;
} T;

T dst;

void func(long long y)

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

{
 dst.y = y;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for AArch32 state.

• The program contains X, where X is one of the following:

◦ A member of a volatile struct S.

◦ A volatile member of a struct S.

• S is greater than 8 bytes in size.

• The program accesses X.

2.3.1.28 SDCOMP-62661

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62661.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a call to a variadic function. Subsequently, this can
result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a call X to a function F.

• F accepts a variadic arguments list L.

• X specifies an argument A as part of L.

• A is a struct S.

• S is annotated with attribute((packed)).

• S has a member that is an aggregate type. For example, uint16x8_t.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.29 SDCOMP-62378

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62378.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler incorrectly generates a Neon load or store instruction that incorrectly has an
alignment specifier. Subsequently, at run-time, this can result in a Data Abort when the address
being accessed is not aligned to the alignment specified by the alignment specifier.

For example, the compiler incorrectly generates:

vld1.8 {d16, d17, d18, d19}, [r0:256]

instead of:

vld1.8 {d16, d17, d18, d19}, [r0]

for the following:

uint8x16x2_t vector = vld1q_u8_x2(address);

The alignment specifier :256 means that the vld1.8 instruction will result in a Data Abort if
address is not aligned to a 256-byte boundary.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a call to a Neon intrinsic I that is defined in the <arm_neon.h> system
header.

• I has one of the following forms:

◦ vld*_x2()

◦ vld*_x3()

◦ vld*_x4()

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ vst*_x2()

◦ vst*_x3()

◦ vst*_x4()

• I is used to access an address X.

• X is not aligned to a 256-byte boundary.

To avoid this issue, manually inspect the source code, and ensure each address that is accessed
using an affected Neon intrinsic is aligned to a 256-byte boundary.

2.3.1.30 SDCOMP-62352

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62352.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The compiler and integrated assembler can incorrectly generate a VMLA.U32 or VMLAS.U32
instruction in accordance with revision B.q of the Armv8-M Architecture. Instead, the compiler
and integrated assembler should generate a VMLA.I32 or VMLAS.I32 instruction in accordance with
revision B.r of the Armv8-M Architecture.

To detect this issue, disassemble the output ELF file with --cpu=8.1-M.Main.mve --text -c and
manually inspect the output for the following instructions:

• VMLA.U32

• VMLAS.U32

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target that supports the M-profile Vector Extension (MVE).

• The program is run on a target that implements revision B.r or later of the Armv8-M
Architecture.

2.3.1.31 SDCOMP-62330

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62330.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect debug information for a bit-field.

For example, the compiler generates incorrect debug information for b in the following:

struct __attribute__((packed)) S
{
 unsigned char a: 7;
 unsigned char b: 4; /* Packing places bit0 of b
 in a different byte to bits1-3 */
};

This defect is associated with the issue described in SDCOMP-65172.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -g or -gdwarf-4.

• The program contains a bit-field B.

• One of the following is annotated with attribute((packed)):

◦ B.

◦ The struct containing B.

• Packing affects the number of bytes that B spans.

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.32 SDCOMP-62251

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62251.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch64 state 6.16.1, 6.16.2 -

Description
The linker can incorrectly calculate too small a value for the p_memsz field of the ELF program
header describing a load region.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Subsequently, an ELF processing tool that creates the execution view directly from the ELF
program headers might not be able to process the ELF file correctly. For example, an ELF
processing tool might:

• Reject the ELF file as invalid.

• Not allocate enough memory for the program segment. This can result in unexpected run-time
behavior.

Conditions
This defect occurs when one of the following is true:

• All the following are true:

◦ The program is not linked with a scatter file.

◦ The program contains a section that has an alignment requirement greater than 4 bytes.

◦ The output image contains a non-contiguous execution region.

• All the following are true:

◦ The program is linked with a scatter file F.

◦ F contains a load region L.

◦ L contains two execution regions A and B.

◦ A and B are non-contiguous.

◦ B has an alignment requirement greater than 4 bytes.

To detect if the safety-related system is at risk, link with --map and manually inspect the output.
The safety-related system is only at risk when all the following are true:

• An ELF processing tool is used to directly create the execution view of the program from the
ELF program headers.

• The memory map shows a non-contiguous execution region.

2.3.1.33 SDCOMP-62221

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62221.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv6-M 6.16.1, 6.16.2 -

Description
The compiler can incorrectly generate a B.W instruction.

To detect this issue, disassemble the output ELF file without --cpu=<name>, with --text -c, and
manually inspect the output for the following instruction:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• B.W

Conditions
The safety-related system is at risk all the following are true:

• The program is compiled for an Armv6-M target.

• The program is run on an Armv6-M target.

Note: Arm has not observed this defect being triggered in a program built from C or C++ source
code with any of the affected releases. The underlying defect is fixed as of Arm Compiler for
Embedded FuSa 6.16.3.

2.3.1.34 SDCOMP-62217

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62217.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The fromelf utility incorrectly disassembles the label operand of a LE or LETP instruction as an
immediate offset instead of a PC-relative offset.

For example, the fromelf utility incorrectly disassembles the following LETP instruction:

letp lr, <label>

as:

letp lr, #<offset>

instead of:

letp lr, {pc}-<offset>

This defect is associated with the issue described in SDCOMP-63738.

Conditions
This defect occurs when all the following are true:

• The fromelf utility is used to disassemble an ELF format input file F.

• F is disassembled for an Armv8.1-M target with the Main Extension. For example, F is
disassembled with --cpu=8.1-M.Main.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• F contains a LE or LETP instruction.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.1.35 SDCOMP-62176

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62176.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a function which has a half-precision floating-point
parameter that is passed using the stack.

For example, the compiler can generate incorrect code for the following:

__fp16 func(int a, int b, int c, int d, __fp16 e)
{
 return e + 1.0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a big-endian target.

• The program is compiled for a target with half-precision floating-point support.

• The program contains a function F.

• F has a parameter P that is one of the following types:

◦ _Float16

◦ __fp16

• P is passed using the stack.

• The behavior of the program depends on P.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.36 SDCOMP-62133

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62133.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a function that contains an inline assembly statement
with a +&r constraint code.

For example, the compiler can generate incorrect code for the following:

int func(void)
{
 register int V __asm("x0") = 1;
 __asm volatile("add %w0, %w0, #1" : "+&r" (V));

 return V;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at -O0.

• The program contains a function F.

• The program contains a named register variable V that uses a 64-bit register.

• F contains an inline assembly statement S.

• S specifies an output operand K.

• K is associated with V.

• K has the constraint code +&r.

2.3.1.37 SDCOMP-62123

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62123.

The following table describes the scope of this defect:
Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 45 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a vdup_*f16() Neon intrinsic.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target with half-precision floating-point support.

• The program contains a call Z to a Neon intrinsic I that is defined in the <arm_neon.h> system
header.

• I is of the form vdup_*f16().

• The behavior of the program depends on Z.

2.3.1.38 SDCOMP-62028

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62028.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M without the Main Extension 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for an atomic compare exchange built-in or an atomic
compare exchange function.

Conditions
The safety-related system is at risk when the program contains a call to one of the following:

• An __atomic_compare_exchange*() built-in.

• An atomic_compare_exchange_*() function defined in the <stdatomic.h> Arm C library header.

• A compare_exchange_*() member function of the class template std::atomic<T>.

• A std::atomic_compare_exchange_*() function defined in the <atomic> Arm C++ library
header.

2.3.1.39 SDCOMP-61514

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61514.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The poly8_t, poly16_t, and poly64_t types are incorrectly defined as signed instead of unsigned in
the <arm_neon.h> system header. This can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a variable V of type A or type B, where:

◦ A is one of the following types defined in the <arm_neon.h> system header:

▪ poly8_t

▪ poly16_t

▪ poly64_t

◦ B is derived from A.

• The behavior of the program depends on V being unsigned.

2.3.1.40 SDCOMP-61486

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61486.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler generates incorrect code for the expression noexcept(typeid(V)).

For example, the compiler generates code that incorrectly evaluates noexcept(typeid(obj)) to
false in the following:

class C { virtual void func(void) {} };
C obj;
noexcept(typeid(obj)) ? puts("OK") : puts("Not OK");

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or later source language mode.

• The program is not compiled with -fno-rtti.

• The program contains a polymorphic class C.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program contains an expression E.

• E is of the form noexcept(typeid(V)).

• V is one of the following:

◦ A glvalue of type C.

◦ A reference to C.

• The behavior of the program depends on the result of E.

2.3.1.41 SDCOMP-61299

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61299.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can incorrectly set bit 3 of the __ARM_FP predefined macro when compiling with an -
march or -mcpu option that specifies +nofp.dp.

For example, the compiler incorrectly sets bit 3 of the __ARM_FP predefined macro when compiling
with -mcpu=cortex-m7+nofp.dp.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with an -march or -mcpu option X.

• X specifies +nofp.dp.

• The behavior of the program depends on bit 3 of __ARM_FP.

2.3.1.42 SDCOMP-61298

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61298.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to define the SOFTFP predefined macro.

This defect is associated with the issue described in SDCOMP-61465.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target without hardware floating-point support.

• One of the following is true:

◦ The program is compiled without -mfloat-abi=<value>.

◦ The program is compiled with -mfloat-abi=softfp.

• The behavior of the program depends on SOFTFP.

2.3.1.43 SDCOMP-61150

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61150.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch32 state 6.16.1, 6.16.2 -

Description
The linker can generate an image which decompresses an execution region that contains RW data
incorrectly.

To avoid this issue, use one of the following workarounds:

• Link with --datacompressor=off.

• Add the NOCOMPRESS attribute to each affected execution region.

• Add the NOCOMPRESS attribute to each load region that contains an affected execution region.

Conditions
This defect can occur when all the following are true:

• The program is not linked with --datacompressor=off.

• The program contains an execution region E.

• E contains RW data.

• E does not have any of the following attributes:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ NOCOMPRESS

◦ PI

◦ RELOC

To detect if the safety-related system is at risk, link with --diag_warning=6703, --map, and --
load_addr_map_info, and manually inspect the output. The safety-related system is only at risk
when all the following are true:

• The linker reports L6703W: Section <irrelevant> implicitly marked as non-compressible.

• The memory map shows an execution region for which all the following are true:

◦ The Load addr value is COMPRESSED.

◦ The Exec base and Load base values are the same.

2.3.1.44 SDCOMP-61080

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-61080.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for an expression that involves both the >> and <<
operators.

For example, the compiler can generate incorrect code for the following:

(var >> 8 | var << 8)

Conditions
The safety-related system is at risk when all the following are true:

• The program is not compiled for AArch64 state at -O0.

• The program contains an expression E.

• E involves both the >> and << operators.

• The result of E is cast to a 16-bit type.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.45 SDCOMP-60897

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60897.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv8-M 6.16.2 6.16.1

Description
The compiler incorrectly fails to define certain predefined macros when the toolchain is used with
user-based licensing.

Conditions
The safety-related system is at risk when all the following are true:

• The toolchain is used with user-based licensing.

• The program is compiled with -mcmse.

• The behavior of the program depends on one of the following predefined macros:

◦ ARM_ARCH_EXT_IDIV

◦ __ARM_FEATURE_DSP

◦ __ARM_FEATURE_FMA

◦ __ARM_FEATURE_FP16_SCALAR_ARITHMETIC

◦ __ARM_FEATURE_IDIV

◦ __ARM_FEATURE_LDREX

◦ __ARM_FEATURE_MVE

◦ __ARM_FEATURE_SIMD32

◦ __ARM_FP

◦ ARM_FPV5

◦ ARM_VFPV2

◦ ARM_VFPV3

◦ ARM_VFPV4

◦ VFP_FP

For more information about user-based licensing, refer to https://lm.arm.com.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 161

https://lm.arm.com

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.46 SDCOMP-60725

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60725.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The fromelf utility disassembles CLRM instructions incorrectly.

For example, the fromelf utility incorrectly disassembles the following valid CLRM instruction as an
invalid LDM instruction:

clrm {r0-r12}

Conditions
This defect occurs when all the following are true:

• The fromelf utility is used to disassemble an ELF format input file F.

• F is disassembled for an Armv8.1-M target with the Main Extension. For example, F is
disassembled with --cpu=8.1-M.Main.

• F contains a CLRM instruction.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.1.47 SDCOMP-60659

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60659.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker incorrectly places all thread-local variables at the same offset in a dynamic symbol table.

For example, the linker incorrectly places both var1 and var2 at offset 0 when creating a shared
library containing the following thread-local variables:

__thread int var1;

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

__thread int var2;

The incorrect offset value can be seen in the .dynsym section of the shared library:

Symbol table .dynsym (3 symbols, 0 local)

 # Symbol Name Value Bind Sec Type Vis Size
==

 1 var1 0x00000000 Gb 5 TLS De 0x4
 2 var2 0x00000000 Gb 5 TLS De 0x4

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with -fpic.

• The program contains multiple thread-local variables.

• The program is linked with --shared --sysv.

2.3.1.48 SDCOMP-60632

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60632.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler can incorrectly generate a FNMADD instruction instead
of a NOP instruction for a .align, .balign, or .p2align assembly directive.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with -mbig-endian.

• The program contains a .align, .balign, or .p2align directive D.

• D does not have a w or l width suffix.

• D does not specify a fill value.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.49 SDCOMP-60589

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60589.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture for a function with a prototype that has a struct containing a zero-length bit-
field.

For example, the compiler generates code that incorrectly does not conform to the Procedure Call
Standard for the Arm Architecture for the following:

struct S {
 float a;
 int : 0;
 float b;
};

struct S func(struct S x)
{
 x.b += 1.0f;

 return x;
}

Conditions
The compiler generates code that incorrectly does not conform to the Procedure Call Standard for
the Arm Architecture when all the following are true:

• The program is compiled in a C source language mode.

• The program is compiled for one of the following:

◦ AArch64 state.

◦ AArch32 state with -mfloat-abi=hard.

• The program contains a struct S.

• S contains a zero-length bit-field.

• All other members of S are of the same floating-point type and size.

• The program contains a function F.

• One of the following is true:

◦ F has a parameter of S type.

◦ F returns a value of S type.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

The safety-related system is only at risk when all the following are true:

• F is defined in a source file A.

• F is called from a source file B.

• One of the following is true:

◦ A is compiled in a C source language mode and B is not.

◦ B is compiled in a C source language mode and A is not.

◦ A and B are not built using the same toolchain.

2.3.1.50 SDCOMP-60443

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60443.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.2 6.16.1

Description
The compiler can generate incorrect debug information for a global variable that is const.

For example, when compiling with -frwpi, the compiler can generate incorrect debug information
for var in the following:

const int var = 5;

This defect is associated with the issue described in SDCOMP-59059.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -frwpi.

• The program is compiled with -g or -gdwarf-version.

• The program contains a global variable that is const.

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.51 SDCOMP-60342

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60342.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a call to a formatted input/output function declared
in the <stdio.h> header or a formatted wide character input/output function declared in the
<wchar.h> header, when the format string is a global variable.

For example, the compiler generates incorrect code for the call the printf() function in the
following:

#include <stdio.h>

char format_string[] = "%d\n";

int main(void)
{
 format_string[1] = 'f';

 printf(format_string, 1.5);

 return 0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• The program is compiled without -nostdlib.

• The program contains a call Z to one of the following:

◦ A formatted input/output function declared in the <stdio.h> header.

◦ A formatted wide character input/output function declared in the <wchar.h> header.

• The format string argument of Z is a global variable V.

• The value of V is modified at run-time.

• The behavior of the program depends on Z.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.52 SDCOMP-60326

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60326.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Description
The fromelf utility reports incorrect DW_CFA_def_cfa and DW_CFA_def_cfa_offset entries for stack
frame unwinding debug information.

Conditions
The fromelf utility reports incorrect information when all the following are true:

• An executable ELF format input file F contains debug information.

• The debugging information in F contains one of the following sections:

◦ .debug_frame

◦ .ehframe

• F is processed using the -g or --text -g options.

The output from the -g or --text -g options is not directly used by debugging tools.

The safety-related system is only at risk if incorrect information in the output from the -g or --text
-g options causes you to manually make an incorrect change to the safety-related system.

2.3.1.53 SDCOMP-60117

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60117.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker can generate incorrect stack usage information.

To avoid this issue, compile the input objects with -gdwarf-3.

Conditions
This defect can occur when all the following are true:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The input objects are compiled with -g or -gdwarf-version, where version is not 3.

• Stack usage information is obtained from the linker using any of the following options:

◦ --callgraph

◦ --info=stack

The safety-related system is only at risk when the incorrect stack usage information causes you to
manually make an incorrect change to the safety-related system.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as
a lower limit. For more information, refer to the Linker maximum stack size calculation section of the
Safety Manual.

2.3.1.54 SDCOMP-59974

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59974.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1 6.16.2

Description
The compiler can generate incorrect code for a nested loop.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0 and -O1.

• The program is compiled with -fwrapv.

• The program contains a nested loop A.

• A contains a nested loop B.

• The behavior of the program depends on A or B.

2.3.1.55 SDCOMP-59938

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59938.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch64 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The linker can incorrectly fail to account for calls to static functions when generating a callgraph
or stack usage information.

Conditions
This defect can occur when all the following are true:

• The program contains a static function.

• The program is linked using one of the following options:

◦ --callgraph

◦ --info=stack

◦ --info=summarystack

The safety-related system is only at risk when the incorrect output causes you to manually make an
incorrect change to the safety-related system.

Irrespective of this defect, you must treat any maximum stack size usage reported by the linker as
a lower limit. For more information, refer to the Linker maximum stack size calculation section of the
Safety Manual.

2.3.1.56 SDCOMP-59788

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59788.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Armv7-M, Armv8-M 6.16.1, 6.16.2 -

Description
The compiler can incorrectly generate one of the following instructions when accessing an element
of a char or short array:

• LDRBT

• LDRHT

• LDRSBT

• LDRSHT

• STRBT

• STRHT

Conditions
The safety-related system is at risk when all the following are true:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program is compiled at any optimization level except -O0.

• The program contains an access A to an element of a char or short array B.

• B is in a memory region that does not permit unprivileged access.

• One of the following is true when A is performed:

◦ The core is in Handler mode.

◦ The core is in Thread mode, and CONTROL.nPRIV is set to zero.

• The behavior of the program depends on A.

2.3.1.57 SDCOMP-59656

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59656.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1 6.16.2

Description
The compiler can generate incorrect code for an integer literal that can be represented by fewer
than 64 bits and is cast to a pointer type.

To avoid this issue, ensure that all integer literals which are cast to a pointer type have a suffix that
ends with L or l. For example, 0x8000L.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at -O0.

• The program contains a cast C from an integer literal I to a pointer type.

• I can be represented by fewer than 64 bits.

• I does not have a L, LL, l, or ll suffix.

• The behavior of the program depends on C.

2.3.1.58 SDCOMP-59521

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59521.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a call to an empty user-defined implementation of
operator delete.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program is compiled at any optimization level except -O0.

• The program contains a user-defined implementation I of operator delete.

• I is an empty function F.

• The behavior of the program depends on F returning.

2.3.1.59 SDCOMP-59074

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59074.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1 6.16.2

Description
The compiler can generate incorrect code for a comparison operation that always evaluates to
true.

Additionally, the compiler correctly reports the following warning:

• comparison of constant <constant> with expression of type <type> is always true

This warning can be upgraded to an error by compiling with -Werror=tautological-constant-out-
of-range-compare.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at -O0.

• The program is not compiled with -Werror=tautological-constant-out-of-range-compare.

• The program contains a comparison operation C.

• C compares A and B.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• A is a constant of type X.

• B is a variable of an integer type Y.

• The size of X is larger than the size of Y.

• C always evaluates to true.

• The behavior of the program depends on C.

2.3.1.60 SDCOMP-59059

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59059.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1 6.16.2

Description
The compiler can generate incorrect debug information for a global variable that is not const.

For example, when compiling with -frwpi, the compiler can generate incorrect debug information
for var in the following:

int var = 5;

This defect is associated with the issue described in SDCOMP-60443.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -frwpi.

• The program is compiled with -g or -gdwarf-version.

• The program contains a global variable that is not const.

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.61 SDCOMP-58780

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58780.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler generates code that incorrectly fails to raise a std::bad_array_new_length exception
for a new expression. Subsequently, this can result in unexpected run-time behavior.

For example, the compiler generates code that incorrectly fails to raise a
std::bad_array_new_length exception for the following:

void no_init_array(int len)
{
 (void)new char[len];
}

void test(void)
{
 try
 {
 no_init_array(-1);
 }
 catch (const std::bad_array_new_length &)
 {
 std::cout << "Exception caught" << std::endl;
 }
}

This defect is associated with the issue described in SDCOMP-57884.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++14 or later source language mode.

• The program is compiled with C++ exceptions enabled.

• The program contains a new expression E.

• E is not a constant expression.

• E specifies a negative array length.

• E allocates an array with elements of type T.

• The size of T is 1 byte.

• The behavior of the program depends on a std::bad_array_new_length exception being raised
for E.

2.3.1.62 SDCOMP-58773

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58773.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1 6.16.2

Description
The compiler generates incorrect code for a function that contains an inline assembly statement
with a single-copy atomic 64-byte load or store instruction.

For example, the compiler generates code that incorrectly fails to initialize data in the following:

typedef struct
{
 unsigned long long x[8];
} T;

void func(int *x, void *y)
{
 T data = { x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7] };
 __asm volatile("st64b %0,[%1]" : : "r" (data), "r" (y) : "memory");
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target with the Accelerator Support Extension.

• The program is compiled at any optimization level except -O0.

• The program contains a function F.

• F contains an inline assembly statement with one of the following instructions:

◦ LD64B

◦ ST64B

◦ ST64BV

◦ ST64BV0

• The behavior of the program depends on F.

2.3.1.63 SDCOMP-58738

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58738.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1 6.16.2

Description
The compiler can generate incorrect code for a loop that contains accesses to an array through
pointers that overlap each other.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target that supports SIMD instructions.

• The program is compiled at -O3, -Ofast, -Omax, or with -fvectorize.

• The program contains a loop L.

• L accesses an array through two pointers A and B.

• An iteration of L accesses an address X through A.

• A different iteration of L accesses X through B.

2.3.1.64 SDCOMP-58354

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58354.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker incorrectly reports an ELF section that is not Zero Initialized (ZI) as ZI in the --map
output.

For example, the linker incorrectly reports the ELF section for the execution region EXEC as Zero in
the --map output for the following:

LOAD 0x8000
{
 EXEC +0x0 FILL 0xFFFFFFFF 0x100 {}
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with --map.

• The program is linked with a scatter file that contains an execution region E.

• E has one of the following execution region attributes:

◦ PADVALUE

◦ ZEROPAD

◦ FILL

• The --map output causes you to manually make an incorrect change to the safety-related
system.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.65 SDCOMP-57884

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57884.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1 6.16.2

Description
The compiler generates code that incorrectly raises a std::bad_array_new_length exception for a
new nothrow expression. Subsequently, this can result in unexpected run-time behavior.

For example, the compiler generates code that incorrectly raises a std::bad_array_new_length
exception for the following:

void no_init_array(int len)
{
 (void)new (std::nothrow) int[len];
}

void init_array(int len)
{
 (void)new (std::nothrow) int[len]{1,2,3};
}

void test(void)
{
 try
 {
 no_init_array(-1); /* Test negative array length */
 }
 catch (const std::bad_array_new_length &)
 {
 std::cout << "Exception caught" << std::endl;
 }
 try
 {
 init_array(1); /* Test too many initializers */
 }
 catch (const std::bad_array_new_length &)
 {
 std::cout << "Exception caught" << std::endl;
 }
}

This defect is associated with the issue described in SDCOMP-58780.

Conditions
The safety-related system is at risk when all the following are true:

• The program is written in a C++ source language mode.

• The program is compiled with C++ exceptions enabled.

• The program contains a new (std::nothrow) expression E.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• One of the following is true:

◦ E specifies a negative array length.

◦ E specifies more initializers than the array length.

• The behavior of the program depends on a std::bad_array_new_length exception not being
raised for E.

2.3.1.66 SDCOMP-57725

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57725.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect debug location information for a static variable.

Conditions
This defect can occur when all the following are true:

• The program is compiled with -gdwarf-2 or -gdwarf-3.

• The program is compiled at any optimization level except -O0.

• The program contains a static variable of type T.

• The size of T is larger than 1 byte.

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.67 SDCOMP-57674

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57674.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can incorrectly fail to flush a denormal floating-point number to zero.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled at any optimization level except -O0.

• One of the following is true:

◦ The program is not compiled at -Ofast or -Omax.

◦ The program is compiled with one of the following:

▪ -ffast-math

▪ -ffp-mode=fast

▪ -ffp-mode=std

• The program contains a calculation that involves a denormal floating-point number N.

• The behavior of the program depends on N being flushed to zero.

2.3.1.68 SDCOMP-57456

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57456.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf AArch64 state 6.16.1, 6.16.2 -

Description
The fromelf utility disassembles MOVI and MVNI instructions incorrectly.

For example, the fromelf utility incorrectly disassembles the following valid instructions incorrectly:

movi v0.2s, #0x24, msl #16
mvni v0.2s, #0x24, msl #16

Conditions
This defect occurs when the program contains a MOVI or MVNI instruction.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.1.69 SDCOMP-57449

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57449.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

fromelf AArch64 state 6.16.1, 6.16.2 -

Description
The fromelf utility disassembles immediate variants of the SVE AND, BIC, EON, and EOR instructions
incorrectly.

For example, the fromelf utility incorrectly disassembles the following valid AND instruction as an
invalid AND instruction with an immediate operand of 0x10000 instead of 0x1:

and z9.h, z9.h, #0x1

Conditions
This defect occurs when the program contains an immediate variant of one of the following SVE
instructions:

• AND

• BIC

• EON

• EOR

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.1.70 SDCOMP-57255

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57255.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler generates incorrect debug information for a C++ tuple-like binding B. The incorrect
debug information associates an identifier I in B with the source code line on which B is declared
instead of the source code line on which I is used.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the compiler generates incorrect debug information that associates the identifier a
with the line on which a is bound to src in the following:

std::tuple<int,short> src(x,y);

void func(void)
{
 const auto [a,b] = src;

 if (a == 0)
 {
 std::cout << "a is zero" << std::endl;
 }
}

Conditions
This defect occurs when all the following are true:

• The program is compiled in a C++17 source language mode.

• The program is compiled with -g or -gdwarf-version.

• The program contains a tuple-like binding.

The safety-related system is only at risk if the incorrect debug information causes you to manually
make an incorrect change to the safety-related system.

2.3.1.71 SDCOMP-57229

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57229.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly generates debug information at the function scope for a static variable
defined in a lexical block within a function.

Subsequently, this can result in an affected variable incorrectly being displayed by a debugger as
being in scope at function scope.

Conditions
This defect occurs when all the following are true:

• The program contains a function F.

• F defines a static variable in a lexical block within F.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

The safety-related system is only at risk when the incorrect debug information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.72 SDCOMP-57213

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57213.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker can generate an incorrect address for a local symbol that is associated with an unused
merged string.

For example, the linker can generate an incorrect address for the symbol str2 in the following:

 .section strings, "aMS", %progbits, 1
str1:
 .asciz "Hello, world!"
str2:
 .asciz "Hello, world!"

Conditions
This defect can occur when all the following are true:

• The program is linked without --no_merge.

• The program contains an assembly language source file with an ELF section S.

• S has the SHF_MERGE and SHF_STRING flags set.

• S contains a null-terminated string A.

• S contains a null-terminated string B associated with the symbol X.

• B is identical to A, or is a suffix of A.

• X is a local symbol.

• X is not used.

The safety-related system is only at risk if the incorrect address for X causes you to manually make
an incorrect change to the safety-related system.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.73 SDCOMP-57200

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57200.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The integrated assembler incorrectly fails to automatically set the minimum alignment requirement
for a user-defined executable section based on the target instruction set. Instead, it incorrectly
always sets the minimum alignment requirement to 1 byte.

For example, the integrated assembly incorrectly sets the alignment to 1 byte for both .text.func1
and .text.func2 in the following:

.section .text.func1, "ax"

.arm
nop

.section .text.func2, "ax"

.thumb
nop

To avoid this issue, explicitly specify an alignment for each user-defined executable section as
follows:

State Alignment directive

A32 .p2align 2

T32 .p2align 1

This defect is associated with the issue described in SDCOMP-66632.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a user-defined executable section S.

• S does not explicitly contain one of the following directives:

◦ .align

◦ .balign

◦ .p2align

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.74 SDCOMP-56435

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-56435.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker incorrectly includes the size of uninitialized data in the p_memsz field of the ELF program
header for the execution region containing the uninitialized data.

Subsequently, an ELF processing tool that creates the execution view directly from the ELF
program headers can zero-initialize memory that was not intended to be zero-initialized. This can
result in unexpected run-time behavior.

To avoid this issue, use one of the following workarounds:

• Do not use the program headers to derive the execution view when loading the image onto the
target device. Instead, use the fromelf utility to generate a binary file for the image, and then
load that binary file.

• Do not use the EMPTY or UNINIT execution region attributes.

Conditions
The safety-related system is at risk when all the following are true:

• An ELF processing tool is used to directly create the execution view of the program from the
ELF program headers.

• The program is linked with a scatter file that contains an execution region E.

• One of the following is true:

◦ E has the EMPTY attribute.

◦ E has the UNINIT attribute and contains ZI data.

• The behavior of the program depends on the ELF processing tool not zero-initializing memory
that was not intended to be zero-initialized.

2.3.1.75 SDCOMP-55460

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-55460.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The compiler can generate code that incorrectly fails to ignore the partial specializations of a
member template when the primary member template is subsequently explicitly specialized.

For example, the compiler incorrectly uses the partial specialization of B for the variable obj in the
following:

#include <stdio.h>

// Template class A
template<class T> struct A
{
 // Member template B
 template<class T2> struct B
 {
 void f(void)
 {
 printf("Incorrect: Default\n");
 }
 };
 // Partial specialization of B
 template<class T2> struct B<T2*>
 {
 void f(void)
 {
 printf("Incorrect: Partial specialization\n");
 }
 };
};

// Explicit specialization of A::B
template<> template<class T2> struct A<short>::B
{
 void f(void)
 {
 printf("Correct: Explicit specialization\n");
 }
};

int main(void)
{
 A<short>::B<int*> obj;

 obj.f();

 return 0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program defines a template class A.

• A contains a member template B.

• The program defines a partial specialization of B.

• A::B is subsequently explicitly specialized.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.76 SDCOMP-55184

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-55184.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Description
When the linker removes unused sections from an image that contains debug information, the
auxiliary debug information sections in the resulting image can contain unused but valid padding
bytes between DWARF records. When processing such an image with -g or --text -g, the
fromelf utility can incorrectly fail to decode DWARF records that follow such padding bytes, and
subsequently report incorrect information about the correlation between the image and the original
source code.

Conditions
The fromelf utility can report incorrect information when all the following are true:

• An executable ELF format input file F contains debug information.

• The debugging information in F contains one the following:

◦ Line table entries for a function X in the .debug_line section.

◦ Variable location entries for a variable in a function X in the .debug_loc section.

• The code for X is not present in F.

• F is processed using the -g or --text -g options.

The output from the -g or --text -g options is not directly used by debugging tools.

The safety-related system is only at risk if incorrect information in the output from the -g or --text
-g options causes you to manually make an incorrect change to the safety-related system.

2.3.1.77 SDCOMP-54546

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-54546.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
When processing an image which contains debug information with -g, or --text -g, the fromelf
utility can report incorrect debug information.

Conditions
The fromelf utility can report incorrect debug information when all the following are true:

• An executable ELF format input file F contains debug information.

• F contains a .debug_loc section L.

• L contains a base address entry.

• F is processed using the -g or --text -g options.

The output from the -g or --text -g options is not directly used by debugging tools.

The safety-related system is only at risk if incorrect debug information in the output from the -g or
--text -g options causes you to manually make an incorrect change to the safety-related system.

2.3.1.78 SDCOMP-50968

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50968.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Description
When processing an image with -g or --text -g, the fromelf utility can report incorrect debug
information.

Conditions
The fromelf utility can report incorrect debug information when all the following are true:

• An executable ELF format input file F contains all the following:

◦ Debug information.

◦ A RELA relocation entry.

• F is processed using the -g or --text -g options.

The output from the -g or --text -g options is not directly used by debugging tools.

The safety-related system is only at risk if incorrect debug information in the output from the -g or
--text -g options causes you to manually make an incorrect change to the safety-related system.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.1.79 SDCOMP-50408

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50408.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect code for a function that has a parameter of vector type.

Such code does not conform to the Procedure Call Standard for the Arm Architecture.

Conditions
This defect can occur when all the following are true:

• The program is compiled for a big-endian target.

• The program is compiled for a target that includes the Advanced SIMD Extension.

• The program contains a function F.

• F has a parameter of vector type T.

• T is defined in the arm_neon.h system header.

The safety-related system is only at risk when the entire program is not built using the same
toolchain.

2.3.1.80 SDCOMP-44980

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-44980.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Description
The fromelf utility can report incorrect bit-field offsets when processing an ELF file that contains
bit-fields with -a or --text -a.

Conditions
This defect occurs when all the following are true:

• An ELF format input file F contains debug information.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• F contains a global or static variable V.

• V contains a bit-field.

• The global and static data addresses in F are printed using any of the following options:

◦ -a

◦ --text -a

The safety-related system is only at risk if the incorrect bit-field offset information causes you to
manually make an incorrect change to the safety-related system.

2.3.1.81 SDCOMP-28728

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-28728.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf AArch64 state 6.16.1, 6.16.2 -

Description
The fromelf utility incorrectly decodes certain UNDEFINED instructions as MRS or MSR instructions.

For example, the fromelf utility incorrectly disassembles the following UNDEFINED instruction as an
MRS instruction:

.inst 0xd5200000

Conditions
This defect can occur when all the following are true:

• An ELF format input file contains an instruction with a bit pattern P.

• P is within the A64 System Instruction Class encoding space.

• P is architecturally UNDEFINED.

The safety-related system is only at risk if the incorrect disassembly output causes you to manually
make an incorrect change to the safety-related system.

2.3.1.82 SDCOMP-24899

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-24899.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

fromelf T32 state 6.16.1, 6.16.2 -

Description
The fromelf utility can disassemble certain instructions incorrectly and associate symbols with an
incorrect address.

For example, for the following code:

 .section .text
 .p2align 2
 .type func1, %function
 .type func2, %function
 .global func1
 .global func2
func1:
 bx lr
 .inst.n 0xffff
func2:
 bx lr

the fromelf utility incorrectly disassembles the output as:

func1
 0x00000000: 4770 pG BX lr
func2
 0x00000002: ffff4770 ..pG VQSHL.U32 q10,q8,#31

Conditions
This defect can occur when all the following are true:

• An ELF format input file contains two consecutive 16-bit opcodes A and B.

• A is not a valid 16-bit instruction.

• A symbol is associated with the address of B.

The safety-related system is only at risk when the incorrect output from the fromelf utility causes
you to manually make an incorrect change to the safety-related system.

2.3.1.83 SDCOMP-11947

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-11947.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The fromelf utility incorrectly disassembles a 16-bit addend as an 8-bit addend.

Conditions
This defect can occur when all the following are true:

• An ELF format input file F contains a 16-bit data word D.

• F is processed using --disassemble.

• D is associated with a relocation R of type T.

• T is one of the following:

◦ R_AARCH64_ABS16

◦ R_ARM_ABS16

• R has an addend greater than 255.

The safety-related system is only at risk when the incorrect disassembly output causes you to
manually make an incorrect change to the safety-related system.

2.3.2 Missing diagnostic faults

This section contains details about safety-related defects that have been classified as a missing
diagnostic fault.

For more information about the definition of a missing diagnostic fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.16LTS
Qualification Kit Safety Manual.

2.3.2.1 SDCOMP-65264

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-65264.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler and integrated assembler incorrectly fail to report the following error for a 32-bit
element FMMLA instruction:

• instruction requires: f32mm

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Subsequently, this can result in unexpected run-time behavior when a 32-bit element FMMLA
instruction is executed on a target that does not support the Single-precision Matrix Multiplication
feature (FEAT_F32MM).

To avoid this issue, specify the +nof32mm feature modifier when building for an affected target that
does not support FEAT_F32MM.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built for an Armv8.6-A or later target with the Scalable Vector Extension (SVE).

• The program is built with an -march or -mcpu option that does not specify the +f32mm feature
modifier.

• The program contains a 32-bit element FMMLA instruction.

• The program is run on a target that does not support the FEAT_F32MM feature.

2.3.2.2 SDCOMP-65243

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-65243.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report the following error for a
Scalable Vector Extension (SVE) instruction that specifies an invalid predication pattern:

• invalid operand for instruction

Instead, the inline assembler and integrated assembler incorrectly generate code that does not
contain the instruction. Subsequently, this can result in unexpected run-time behavior.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for
each of the following instructions:

ptrue p0.d, #ALL
cntb x0, #ALL, mul #1

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an SVE instruction I.

• I has an invalid predication specifier operand.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The behavior of the system depends on I being executed.

2.3.2.3 SDCOMP-64683

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-64683.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected
components

Target environment Affected
releases

Unaffected
releases

armclang Armv7-A, Armv7-M, Armv7-R, Armv8-A, Armv8-M with the Main Extension,
Armv8-R

6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a PC-relative
load (literal) instruction. Subsequently, this can result in one or more of the following unexpected
run-time behaviors:

• A load from an incorrect address.

• An alignment fault.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
LDRD instruction in the following:

 .thumb

 .section .text.func, "ax"
 .balign 4
 .global func
 .type func, %function
func:
 ldrd r0, r1, src
 .byte 0xff
src:
 .word 0x11223344, 0x55667788

where the address of src is not aligned to a 4-byte boundary.

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for AArch32 state.

• The program contains an instruction I.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• I is one of the following:

◦ LDRD (literal)

◦ VLDR (literal)

• I specifies a label X as the label of the literal data item to be loaded.

• The address of X is not aligned to a 4-byte boundary.

• The behavior of the program depends on I.

2.3.2.4 SDCOMP-64255

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-64255.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report the following error for an
invalid DMB, DSB, or ISB instruction:

• invalid operand for instruction

Instead, the inline assembler and integrated assembler incorrectly generate code that does not
contain the instruction. Subsequently, this can result in unexpected run-time behavior.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
following:

dmb [r0]

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a DMB, DSB, or ISB instruction I.

• I has an invalid operand.

• The behavior of the system depends on I being executed.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.5 SDCOMP-63917

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-63917.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a FMLAL (by
element) or FMLAL2 (by element) instruction that specifies an invalid second source register of the
form <Vm>.H[<index>].

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
following instructions:

fmlal v0.4s, v1.4h, v24.h[0]
fmlal2 v0.4s, v1.4h, v24.h[0]

Instead, the inline assembler and integrated assembler generate instructions that use the register
V8 instead of V24:

fmlal v0.4s, v1.4h, v8.h[0]
fmlal2 v0.4s, v1.4h, v8.h[0]

This can result in unexpected run-time behavior.

This defect is associated with the issue described in SDCOMP-63752.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• I is one of the following:

◦ FMLAL

◦ FMLAL2

• The second source register operand of I is of the form <Vm>.H[<index>].

• <Vm> is outside the range V0-V15.

• The behavior of the program depends on I.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.6 SDCOMP-63697

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-63697.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can incorrectly generate an output file and exit with a return code of 0 despite
reporting an error. The return code is also referred to as the status code.

For example, when the following file example.c is compiled with --target=arm-arm-none-eabi -
mcpu=cortex-m4 -c example.c -o example.o:

int __attribute__((section("var"))) var;

the compiler correctly reports the following errors:

var changed binding to STB_GLOBAL
invalid symbol redefinition

However, it incorrectly generates an output file example.o and exits with a return code of 0.

Conditions
The safety-related system is at risk when the build system depends on one of the following:

• The compiler always deleting the output file when an error is reported.

• The compiler always exiting with a non-zero return code when an error is reported.

To avoid this issue, manually inspect the messages reported by the compiler and ensure that the
outputs of compiler invocations that report errors are not used.

2.3.2.7 SDCOMP-62234

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-62234.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The compiler incorrectly fails to report a warning for an invalid #undef preprocessor macro.

For example, the compiler incorrectly fails to report a warning for the following:

#undef __STDC__

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an #undef preprocessor macro which specifies a name N that is lexically
identical to a predefined macro name as listed in the Predefined macro names section of the
relevant C standard specification.

• The behavior of the program depends on N.

2.3.2.8 SDCOMP-62201

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-62201.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for an atomic read of a const 128-bit variable.
Instead, the compiler can generate code that incorrectly performs a write access to the variable.

For example, the compiler incorrectly fails to report an error, and subsequently generates an LDAXP
/ STLXP instruction pair to access src for the following:

volatile const __int128 _Atomic src = 1;

__int128 func(void)
{
 return src + 1;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a const 128-bit variable V.

• The program accesses V.

• The behavior of the safety-related system depends on V not being written to.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.9 SDCOMP-61489

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61489.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

fromelf Any 6.16.1, 6.16.2 -

Description
The fromelf utility can incorrectly fail to report an error for an invalid combination of the --
cpu=name and --fpu=name options.

Conditions
This defect can occur when all the following are true:

• The fromelf utility is used to disassemble an ELF format input file F with the --cpu=A and --
fpu=B options.

• A and B are incompatible.

• F contains an instruction I.

• I is not compatible with A.

The safety-related system is only at risk when the output from the fromelf utility prevents you
from detecting the presence of I.

2.3.2.10 SDCOMP-61488

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61488.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker can incorrectly fail to report an error for an invalid combination of the --cpu=name and --
fpu=name options.

For example, the linker incorrectly fails to report an error when linking with --cpu=Cortex-M3 and
--fpu=FPv5-D16.

Conditions
The safety-related system is at risk when all the following are true:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program is linked with --cpu=A and --fpu=B.

• A and B are incompatible.

2.3.2.11 SDCOMP-61461

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61461.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang A32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a conditional
Advanced SIMD element or structure load/store instruction. Advanced SIMD element or structure
load/store instructions must be unconditional.

For example, the inline assembler and integrated assembler incorrectly fail to report an error for the
following instructions:

vld1eq.32 {d0}, [r0]
vst1eq.32 {d0}, [r0]

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• I is one of the following:

◦ VLD1

◦ VLD2

◦ VLD3

◦ VLD4

◦ VST1

◦ VST2

◦ VST3

◦ VST4

• I is conditional.

• The behavior of the program depends on I being executed conditionally.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.12 SDCOMP-61089

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61089.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
When compiling with -mfloat-abi=hard, the compiler defines the predefined macro
__ARM_PCS_VFP.

The compiler incorrectly fails to report the following warning when compiling with -mfloat-
abi=hard for a target that does not support hardware floating-point instructions:

• '-mfloat-abi=hard': selected processor lacks floating point registers

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target that does not support hardware floating-point instructions.

• The program is compiled with -mfloat-abi=hard.

• The behavior of the program depends on __ARM_PCS_VFP.

2.3.2.13 SDCOMP-59605

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-59605.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1 6.16.2

Description
The compiler can incorrectly fail to report a warning for a C++ class or class data member that is
annotated with attribute((packed)) or #pragma pack.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program is compiled with -mno-unaligned-access.

• The program contains X, where X is one of the following:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ A class.

◦ A data member of a class.

• X is annotated with attribute((packed)) or #pragma pack.

• The behavior of the program depends on X being accessed using aligned accesses.

2.3.2.14 SDCOMP-59512

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-59512.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for an explicit template instantiation that is not in
the same namespace as the template definition.

For example, the compiler incorrectly fails to report an error for the explicit template instantiation
in the following:

// Template definition
template<class T>
int func(T x)
{
 return x;
}

namespace N
{
 // Explicit template instantiation
 template int func<int>(int);

 // An unrelated definition of a function named func()
 int func(double x)
 {
 return 2 * x;
 }
}

To avoid this issue, compile with -Werror=c++11-compat.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++98 or C++03 source language mode.

• The program is compiled without -Werror=c++11-compat.

• The program contains a template T in a namespace A.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program contains an explicit template instantiation of T in a namespace B.

• A and B are not the same.

• The behavior of the program depends on T being used.

2.3.2.15 SDCOMP-59190

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-59190.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can incorrectly fail to report the following error:

• reference to '<name>' is ambiguous

For example, the compiler incorrectly fails to report an error for the ambiguous reference to N()
from func() in the following:

namespace A {
 struct N {
 operator int() { return 0; }
 };
}
namespace B {
 int N() { return 1; }
}
namespace C {
 using A::N;
 using B::N;
}
namespace D {
 using A::N;
}
using namespace C;
using namespace D;

bool func(void) {
 return N() == 1;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains four namespaces, A, B, C, and D.

• A and B each declare a member with the same name, N.

• A::N and B::N declare different entities.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• C contains a using-declaration for A::N.

• D contains a using-declaration for B::N.

• The program contains using-directives for C and D.

• The program contains an unqualified reference to N.

• The behavior of the program depends on one of A::N or B::N.

2.3.2.16 SDCOMP-58367

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-58367.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang T32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for a T32
instruction with an invalid .n width specifier. Instead, the inline assembler and integrated assembler
assemble the instruction as a 32-bit instruction.

For example, the integrated assembler incorrectly fails to report an error for the following:

adc.n r0, r1, #1

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an assembly instruction I with the .n width specifier.

• I does not have a 16-bit instruction encoding.

• The behavior of the program depends on I being assembled as a 16-bit instruction.

2.3.2.17 SDCOMP-57912

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-57912.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The compiler can incorrectly fail to report the following error for a --target=<triple> option that
specifies an unsupported <triple>:

• '--target=<triple>' is not recognized. Supported values for this option are 'arm-arm-
none-eabi' or 'aarch64-arm-none-eabi'

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with --target=<triple>.

• <triple> is not one of the following:

◦ aarch64-arm-none-eabi

◦ arm-arm-none-eabi

• The behavior of the program depends on the program being built for a target supported by Arm
Compiler.

2.3.2.18 SDCOMP-57528

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-57528.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler can incorrectly fail to report an error for a
conditional branch instruction with an offset that is outside the range for the instruction.

For example, the integrated assembler incorrectly fails to report an error for the following:

b.ne . + 1048576 // An A64 B.cond instruction has the range
 // -1048576 to 1048572

Instead, the integrated assembler incorrectly encodes the instruction as:

b.ne . - 1048576

This defect is associated with the issue described in SDCOMP-55983.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a conditional branch instruction I with a destination D.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• D has one of the following forms:

◦ . + <offset>

◦ <label> + <offset>

• <offset> is an immediate value provided in the source code.

• <offset> is in the range [-2097152, -1048580] or [1048576, 2097148].

• The behavior of the program depends on I branching to D.

2.3.2.19 SDCOMP-57199

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-57199.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch32 state 6.16.1, 6.16.2 -

Description
The linker can incorrectly fail to report a warning for a program that contains a T32 BL instruction
which branches to an A32 instruction that is not aligned to a 4-byte boundary.

To avoid this issue, manually inspect assembly language source files, and ensure that all A32 code
symbols are aligned to a 4-byte boundary.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an A32 instruction I at address A.

• A is not a multiple of 4 bytes.

• The program contains a T32 BL instruction that branches to I.

You may be able to detect if the safety-related system is at risk using the following methods:

• Link with --diag_error=L6786W. The linker reports L6786W: Mapping symbol #<number>
'<symbol>' in <section>(<object>) defined at unaligned offset=<offset> for an affected
symbol that is not aligned to a 4-byte boundary.

• Disassemble the program with fromelf --text -c, and manually inspect the output. The
output from the fromelf utility may contain <N> bytes skipped because they could not be
disassembled for an affected ELF file.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.20 SDCOMP-56812

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56812.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for an invalid #define or #undef preprocessor
macro.

For example, the compiler incorrectly fails to report an error for both invalid preprocessor macros in
the following:

#undef noreturn
#define noreturn 1

This defect is associated with the issue described in SDCOMP-56212.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or later source language mode.

• The program is compiled with one of the following options:

◦ -pedantic

◦ -Weverything

◦ -Wkeyword-macro

◦ -Wpedantic

• One of the following is true:

◦ The program contains a #define preprocessor macro which specifies a name N that is
lexically identical to an attribute token.

◦ The program contains an #undef preprocessor macro which specifies a name N that is
lexically identical to one of the following:

▪ A keyword which is not an alternative operator representation.

▪ An identifier with a special meaning.

▪ An attribute token.

• The behavior of the program depends on N.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.21 SDCOMP-56331

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56331.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for an instruction
that specifies W31 or X31 as a general-purpose register operand.

For example, the integrated assembler incorrectly fails to report an error for the following:

mov w0, w31

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an instruction I.

• I specifies one of the following as a general-purpose register operand R:

◦ W31

◦ X31

• The behavior of the program depends on I accessing R as a general-purpose register instead of
as the zero register.

2.3.2.22 SDCOMP-56220

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56220.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for the redefinition of a variable originally declared
in the controlling expression of a range-based for statement.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the compiler incorrectly fails to report an error for the redeclaration of var in the
following:

void func(void)
{
 for (int var : {1, 2, 3})
 {
 extern int var();
 }
}

This defect is associated with the issue described in SDCOMP-50017.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a range-based for statement S.

• S has a controlling expression that defines a variable V.

• The outermost block of S contains a redeclaration of V as a function.

• The behavior of the program depends on V not being redeclared as a function.

2.3.2.23 SDCOMP-56212

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-56212.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for an invalid #define or #undef preprocessor
macro that redefines or undefines a name that is used in an Arm C++ standard library header.

For example, the compiler incorrectly fails to report an error for the invalid #define preprocessor
macro in the following:

#include <iostream>
#define cout cerr

int main(void)
{
 std::cout << "Hello, world!" << std::endl;

 return 0;
}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

This defect is associated with the issue described in SDCOMP-56812.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program includes an Arm C++ standard library header H.

• The program contains a #define or #undef preprocessor macro M.

• M specifies a name that is lexically identical to a name N that is used in H.

• The behavior of the program depends on M not changing N.

2.3.2.24 SDCOMP-55983

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-55983.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang A32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler can incorrectly fail to report an error for a branch
instruction with an offset that is outside the range for the instruction.

For example, the integrated assembler incorrectly fails to report an error for the following:

b . + 33554440 // An A32 B instruction has the range
 // -33554432 to 33554428

Instead, the integrated assembler incorrectly encodes the instruction as:

b . - 33554424

This defect is associated with the issue described in SDCOMP-57528.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a branch instruction I with a destination D.

• D has one of the following forms:

◦ . + <offset>

◦ <label> + <offset>

• <offset> is an immediate value provided in the source code.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The behavior of the program depends on I branching to D.

2.3.2.25 SDCOMP-55580

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-55580.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang A32 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report the following error for a
VLDR instruction that loads the address of a label that is not in the same section as the instruction:

• unsupported relocation type

For example, the integrated assembler incorrectly fails to report an error for the VLDR instruction in
the following:

 .arm

 .section .data.src, "a", %progbits
 .balign 4
 .global src
src:
 .word 0x11223344

 .section .text.func, "ax"
 .balign 4
 .global func
 .type func, %function
func:
 vldr s0, src
 bx lr

This defect is associated with the issues described in SDCOMP-64165 and SDCOMP-63454.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a VLDR instruction I.

• I specifies a label L as the source operand.

• I is in a section A.

• L is in a section B.

• A and B are not the same.

• The behavior of the program depends on I loading the address of L.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.2.26 SDCOMP-55267

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-55267.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly fail to report an error for an MSR
instruction that specifies PMMIR_EL1 as the system register to be accessed.

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for a target that supports the Armv8.4-A additions to the AArch64
Performance Monitors Extension.

• The program contains an MSR instruction that specifies PMMIR_EL1 as the system register to be
accessed.

2.3.2.27 SDCOMP-53903

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-53903.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler can incorrectly fail to report one of the following warnings:

• inline namespace reopened as a non-inline namespace

• non-inline namespace reopened as an inline namespace

For example, the compiler incorrectly fails to report a warning for the inline namespace being re-
opened as a non-inline namespace for the following:

namespace A {
 inline namespace {}
}
namespace {}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

and incorrectly fails to report a warning for the non-inline namespace being re-opened as an inline
namespace for the following:

namespace A {
 namespace {}
}
inline namespace {}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a namespace A.

• A contains a namespace B.

• One of the following is true:

◦ B is inline, and is re-opened as non-inline outside A.

◦ B is non-inline, and is re-opened as inline outside A.

• The behavior of the program depends on the visibility of the members of B remaining
unchanged.

2.3.2.28 SDCOMP-52627

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-52627.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error when a constexpr constructor of a class template
fails to initialize an anonymous union member.

For example, the compiler incorrectly fails to report an error for the invalid constexpr constructor
of Z, which does not initialize var, in the following:

template < class > struct Z {
 union {
 int var;
 };
 constexpr Z() {}
};

constexpr Z<int> z;

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++11 or later source language mode.

• The program contains a class template T.

• T contains an anonymous member M of union type.

• T contains a constexpr constructor Z.

• Z does not initialize any member of M.

• The program contains a constexpr variable instantiation I of T.

• The behavior of the program depends on I initializing M.

2.3.2.29 SDCOMP-51180

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-51180.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch64 state 6.16.1, 6.16.2 -

Description
The inline assembler and integrated assembler incorrectly ignore a .arch or .cpu target
selection directive that does not explicitly include or exclude an extension using +extension or
+noextension.

For example, the integrated assembler incorrectly ignores the .arch armv8-a target selection
directive in the following:

.arch armv8-a
esb // invalid without the RAS extension

Conditions
The safety-related system is at risk when all the following are true:

• One of the following is true:

◦ The program is assembled with an -march or -mcpu option A.

◦ The program contains a .arch or .cpu target selection directive A that explicitly includes or
excludes an extension using +extension or +noextension.

• A specifies a target with a set of features X.

• The program contains subsequent a .arch or .cpu target selection directive B.

• B does not explicitly include or exclude an extension using +extension or +noextension.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• B specifies a target with a set of features Y.

• Y is more restrictive than X.

2.3.2.30 SDCOMP-50017

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-50017.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for the redefinition of a variable originally declared
in the controlling expression of an if, for, switch, or while statement.

For example, the compiler incorrectly fails to report an error for the redeclaration of var in the
following:

void func(void)
{
 if (int var = 0)
 {
 extern int var();
 }
}

This defect is associated with the issue is described in SDCOMP-56220.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains an if, for, switch, or while statement S.

• S has a controlling expression that defines a variable V.

• The outermost block of S contains a redeclaration of V as a function.

• The behavior of the program depends on V not being redeclared as a function.

2.3.2.31 SDCOMP-49961

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-49961.

The following table describes the scope of this defect:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report a warning for a variadic function arguments list that contains
an argument of __fp16 or _Float16 type. Use of these types in a variadic function arguments list
has undefined behavior.

For example, the compiler incorrectly fails to report a warning for var in the following:

#include <stdarg.h>

void func(int a, ...)
{
 va_list vl;
 va_start(vl, a);
 __fp16 var = va_arg(vl, __fp16);
}

Conditions
The safety-related system is at risk when all the following are true:

• The program uses the va_arg macro with a variadic function arguments list L.

• The next parameter in L is P.

• P is of __fp16 or _Float16 type.

• The behavior of the program depends on P not being promoted to a different type.

2.3.2.32 SDCOMP-49919

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-49919.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for an ambiguous call to an extern "C" function
using a default argument.

For example, the compiler incorrectly fails to report an error for the ambiguous call to func1() in
the following:

namespace A
{
 extern "C" int func1 (int var = 1);
}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

namespace B
{
 extern "C" int func1 (int var = 2);
}

using A::func1;
using B::func1;

int func2(void)
{
 return func1();
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains two namespaces A and B.

• Both A and B declare an extern "C" function F.

• F has the same name in both A and B.

• F has a default argument.

• The program contains using-declarations or using-directives that make both A::F and B::F
accessible in a block X.

• X contains a call to F using a default argument.

2.3.2.33 SDCOMP-49763

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-49763.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for a base class destructor that is called using the
type name of a derived class.

For example, the compiler incorrectly fails to report an error for the call to Derived::~Base() in the
following:

struct Base
{
 ~Base() { }
};

struct Derived : Base {};

void func(void)

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

{
 Derived *ptr = new Derived;
 ptr-> Derived::~Base();
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a class Z.

• The program contains a class D that is derived from Z.

• The program contains an instance I of D.

• The program contains an expression that has one of the following forms:

◦ I.D::~Z()

◦ I->D::~Z()

2.3.2.34 SDCOMP-46790

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-46790.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error when compiling with -mfloat-abi=hard for a target
without a hardware floating-point unit.

For example, the compiler incorrectly fails to report an error when compiling with -mcpu=cortex-m3
-mfloat-abi=hard.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled for a target without a hardware floating-point unit using one of the
following options:

◦ -march with a target architecture that does not select a hardware floating-point unit by
default.

◦ -mcpu with a target CPU that does not select a hardware floating-point unit by default.

◦ -mfpu=none

• The program is compiled with -mfloat-abi=hard.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The behavior of the program depends on the generated code using hardware floating-point
instructions.

2.3.2.35 SDCOMP-25238

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-25238.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The compiler incorrectly fails to report an error for an uninitialized variable of union type that
contains a member of const type.

For example, the compiler incorrectly fails to report an error for the variable f in the following:

union U
{
 const short a;
 const int b;
} f;

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a union U.

• U has a member of const type.

• U does not have a user-defined default constructor.

• The program contains an uninitialized variable V of type U.

• The behavior of the program depends on V.

2.3.2.36 SDCOMP-18689

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-18689.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The linker incorrectly fails to report an error for a call to a linker execution address or load address
built-in function that uses an ambiguous execution region or load region name.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with a scatter file F.

• F contains an execution region with the name A.

• F contains a load region with the name B.

• A and B are the same name N.

• F contains a call Z to one of the following linker execution address or load address built-in
functions:

◦ ImageBase()

◦ ImageLength()

◦ ImageLimit()

◦ LoadBase()

◦ LoadLength()

◦ LoadLimit()

• Z uses N.

• The memory layout of the program depends on Z.

2.3.2.37 SDCOMP-17355

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-17355.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The linker incorrectly fails to report an error for an ARM_LIB_STACK or ARM_LIB_STACKHEAP execution
region that does not end at one of the following:

• A 16-byte boundary for AArch64 state.

• An 8-byte boundary for AArch32 state.

For example, the linker incorrectly fails to report an error for the following:

ARM_LIB_STACKHEAP 0xF000 EMPTY 0x1004 { }

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with a scatter file F.

• F contains an execution region E that has one of the following names:

◦ ARM_LIB_STACK

◦ ARM_LIB_STACKHEAP

• One of the following is true:

◦ The program is built for AArch64 state and E does not end at a 16-byte boundary.

◦ The program is built for AArch32 state and E does not end at an 8-byte boundary.

2.3.3 Determinism faults

This section contains details about safety-related defects that have been classified as a
determinism fault.

For more information about the definition of a determinism fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.16LTS
Qualification Kit Safety Manual.

2.3.3.1 SDCOMP-57994

This section describes the scope of the determinism fault defect with the unique identifier
SDCOMP-57994.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch32 state 6.16.1 6.16.2

Description
The linker can incorrectly select a different implementation of an Arm C library function for two
identical linker invocations. Specifically:

• The linker can incorrectly select a different but valid implementation of the Arm C library
strcmp() function.

• When linking an input object that has been compiled with -ffp-mode=full, the linker can
incorrectly select a variant of the Arm C library cbrtf() function that does not support
denormals. This can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program contains a call to an Arm C library implementation of a function F.

• One of the following is true:

◦ All the following are true:

▪ F is cbrtf().

▪ The program is compiled with -ffp-mode=full.

◦ All the following are true:

▪ F is strcmp().

▪ The program is compiled for an Armv8-A or Armv8-R target.

▪ The program that is deployed is not identical to the program that was verified and
validated during development.

• The behavior of the program depends on F.

2.3.4 Documentation synchronization faults

This section contains details about safety-related defects that have been classified as a
documentation synchronization fault.

For more information about the definition of a documentation synchronization fault, see the Arm
Compiler for Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded
FuSa 6.16LTS Qualification Kit Safety Manual.

2.3.4.1 SDCOMP-65669

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-65669.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The -march and -mcpu sections of the Reference Guide incorrectly state that a +<feature> modifier
can only be used with an -march or -mcpu option if the feature is supported by the target.

Instead, the documentation should state that the compiler and integrated assembler does not
prevent the use of +<feature> modifiers with an incompatible target.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the integrated assembler does report an error or a warning for the half-precision
floating-point FADD instruction in the following when assembling with -march=armv8-a+fp16:

 .section .text.func, "ax"
 .balign 8
 .global func
 .type func, %function
func:
 fadd v0.4h, v0.4h, v1.4h
 ret

+fp16 enables the Half-precision floating-point data-processing feature (FEAT_FP16) that is only
supported in Armv8.2-A and later.

Subsequently, this can result in unexpected run-time behavior when the FADD instruction is
executed on a target that does not support FEAT_FP16.

To avoid this issue, you must manually inspect all -march and -mcpu command-line options and
ensure that they do not include features that not supported by the target.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built for a target T with an -march or -mcpu option A.

• A specifies a feature F.

• T does not support F.

• The behavior of the program depends on F.

2.3.4.2 SDCOMP-61633

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-61633.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang Any 6.16.1, 6.16.2 -

Description
The example in the -fstack-protector, -fstack-protector-all, -fstack-protector-strong, -fno-stack-protector
section of the Reference Guide incorrectly uses an array that is 8 bytes in size to demonstrate stack
protection when compiling with -fstack-protector.

-fstack-protector is only required to enable stack protection for vulnerable functions that
contain:

• A character array larger than 8 bytes.

• An 8-bit integer array larger than 8 bytes.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• A call to alloca() with either a variable size or a constant size larger than 8 bytes.

To enable stack protection for other functions, consider using one of the following options:

• -fstack-protector-all

• -fstack-protector-strong

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled with -fstack-protector.

• The program contains an array A.

• A is 8 or less bytes in size.

• The behavior of the program depends on stack protection being applied to a function that uses
A.

2.3.4.3 SDCOMP-61465

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-61465.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang AArch32 state 6.16.1, 6.16.2 -

Description
The Predefined macros section of the Reference Guide provides incorrect information about the
SOFTFP predefined macro.

SOFTFP must be defined as follows:

-mfloat-abi=<value> Targets with hardware floating-point support Targets without hardware floating-point support

Default SOFTFP not defined SOFTFP defined and set to 1

hard SOFTFP not defined SOFTFP not defined

soft SOFTFP defined and set to 1 SOFTFP defined and set to 1

softfp SOFTFP not defined SOFTFP defined and set to 1

This defect is associated with the issue described in SDCOMP-61298.

Conditions
The safety-related system is at risk when the behavior of the program depends on SOFTFP.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.3.4.4 SDCOMP-61054

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-61054.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink Any 6.16.1, 6.16.2 -

Description
The documentation incorrectly does not state that using both automatic and manual overlays
within the same program is not supported.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with a scatter file F.

• F specifies an execution region or load region A.

• F specifies an execution region B.

• A has the OVERLAY attribute.

• B has the AUTO_OVERLAY attribute.

2.3.4.5 SDCOMP-60826

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-60826.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armlink AArch64 state 6.16.1, 6.16.2 -

Description
The --cpu=name (armlink) section of the Reference Guide incorrectly does not state that build
attribute compatibility checking is supported only for AArch32 state.

The linker cannot report the following error for an input object that is incompatible with the
specified AArch64 state --cpu=name option:

• L6366E: <object> attributes are not compatible with the provided attributes

For example, the linker cannot report an error when the following file is compiled with --
target=aarch64-arm-none-eabi -march=armv8.1-a and linked with --cpu=8-A.64:

void func(void)

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

{
 return;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with --cpu=name, where name specifies an a target in AArch64 state.

• An object K is specified as an input to the linker.

• K is incompatible with name.

2.4 Defects affecting unqualified components
This section contains details about known safety-related defects that affect the unqualified
toolchain components of Arm Compiler for Embedded FuSa 6.16LTS.

The unqualified toolchain components are:

• The legacy assembler, armasm.

• The libraries supplied with the toolchain.

Unqualified toolchain components are outside the scope of the Qualification Kit.
Defects related to unqualified toolchain components are provided in this document
for information only.

The following defects are included in this section:

Identifier Fault category Affected components

SDCOMP-66090 Translation fault Libraries

SDCOMP-65388 Translation fault Libraries

SDCOMP-64611 Translation fault Libraries

SDCOMP-64597 Translation fault Libraries

SDCOMP-64555 Translation fault Libraries

SDCOMP-64176 Translation fault Libraries

SDCOMP-64025 Translation fault Libraries

SDCOMP-62756 Translation fault Libraries

SDCOMP-60938 Translation fault Libraries

SDCOMP-60784 Translation fault Libraries

SDCOMP-60700 Translation fault Libraries

SDCOMP-60430 Translation fault Libraries

SDCOMP-60260 Translation fault Libraries

SDCOMP-60162 Translation fault Libraries

SDCOMP-60157 Translation fault Libraries

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Identifier Fault category Affected components
SDCOMP-59054 Translation fault Libraries

SDCOMP-58588 Translation fault Libraries

SDCOMP-58561 Translation fault Libraries

SDCOMP-58560 Translation fault Libraries

SDCOMP-58304 Translation fault Libraries

SDCOMP-58044 Translation fault Libraries

SDCOMP-57673 Translation fault Libraries

SDCOMP-53422 Translation fault Libraries

SDCOMP-53184 Translation fault Libraries

SDCOMP-52577 Translation fault Libraries

SDCOMP-50751 Translation fault Libraries

SDCOMP-50064 Translation fault Libraries

SDCOMP-49748 Translation fault Libraries

SDCOMP-47858 Translation fault armasm

SDCOMP-45879 Translation fault Libraries

SDCOMP-30903 Translation fault Libraries

SDCOMP-30359 Translation fault Libraries

SDCOMP-29077 Translation fault Libraries

SDCOMP-18016 Translation fault Libraries

SDCOMP-13831 Translation fault Libraries

SDCOMP-11974 Translation fault armasm

SDCOMP-61487 Missing diagnostic fault armasm

SDCOMP-55186 Missing diagnostic fault armasm

SDCOMP-54893 Missing diagnostic fault armasm

SDCOMP-30418 Missing diagnostic fault armasm

SDCOMP-22900 Missing diagnostic fault armasm

SDCOMP-22142 Missing diagnostic fault armasm

SDCOMP-17016 Missing diagnostic fault armasm

SDCOMP-11899 Missing diagnostic fault armasm

2.4.1 Translation faults

This section contains details about safety-related defects that have been classified as a translation
fault.

For more information about the definition of a translation fault, see the Arm Compiler for Embedded
FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.16LTS Qualification
Kit Safety Manual.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.1 SDCOMP-66090

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-66090.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The calloc(num, size) function can incorrectly fail to return a null pointer. This can result in
unexpected run-time behavior.

To avoid this issue, manually inspect the source code and ensure that the program explicitly checks
that num*size does not overflow (2**64)-1 before each call to calloc().

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the unqualified C libraries supplied with the toolchain.

• The program calls calloc(num, size).

• The value of num*size is greater than or equal to 2**64.

2.4.1.2 SDCOMP-65388

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-65388.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library is not thread-safe for a multithreaded program that contains C++ objects with
static storage duration. Subsequently, this can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program is linked with the C libraries supplied with Arm Compiler.

• The program is not linked with microlib.

• The program contains two threads X and Y.

• One of the following is true:

◦ X calls the Arm C library implementation of the atexit() function.

◦ X calls a function which contains a C++ object with static storage duration that must be
destroyed upon exit.

• One of the following is true:

◦ Y calls the Arm C library implementation of the atexit() function.

◦ Y calls a function which contains a C++ object with static storage duration that must be
destroyed upon exit.

2.4.1.3 SDCOMP-64611

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64611.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C and C++ libraries define the constant math_errhandling incorrectly. math_errhandling
incorrectly always includes MATH_ERREXCEPT.

math_errhandling should be defined as follows:

-ffp-mode=<value> math_errhandling value

fast MATH_ERRNO

full MATH_ERRNO | MATH_ERREXCEPT

std (Default) MATH_ERRNO

math_errhandling, MATH_ERREXCEPT, and MATH_ERRNO are defined in the following system headers:

• <cmath> for C++ source language modes.

• <math.h> for C source language modes.

Conditions
The safety-related system is at risk if the program uses the value of math_errhandling to
determine whether floating-point exception signalling is supported.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.4 SDCOMP-64597

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64597.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The <arm_neon.h> system header incorrectly defines certain Neon intrinsics with a signed return
type instead of an unsigned return type. Subsequently, this can result in unexpected run-time
behavior.

For example, the incorrect return type of vqrshrunh_n_s16() results in var2 being initialized to
0xffffffff instead of 0xff in the following:

int16_t var1 = 0x7fff;
uint32_t var2 = vqrshrunh_n_s16(var1, 1);

To avoid this issue, manually inspect the source code and explicitly cast the return value of each
affected intrinsic to the correct unsigned type as specified by the Arm C Language Extensions
(ACLE). For example:

int16_t var1 = 0x7fff;
uint32_t var2 = (uint8_t) vqrshrunh_n_s16(var1, 1);

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a call to a Neon intrinsic I defined the <arm_neon.h> system header.

• I is one of the following:

◦ vqrshrund_n_s64()

◦ vqrshrunh_n_s16()

◦ vqrshruns_n_s32()

◦ vqshrund_n_s64()

◦ vqshrunh_n_s16()

◦ vqshruns_n_s32()

• The behavior of the program depends on the value returned by I being unsigned.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.5 SDCOMP-64555

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64555.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch32 state 6.16.1, 6.16.2 -

Description
The Arm C library implementations of the __aeabi_ddiv() function for targets without hardware
floating-point support can incorrectly round up a result that is less than halfway between two
adjacent representable double-precision numbers.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built for a target without hardware floating-point support.

• The program is not linked with microlib.

• The program contains a division operation involving a double-precision value.

To detect if the safety-related system is at risk, disassemble the program with fromelf --text -c
and manually inspect the output. If the output does not contain a call to __aeabi_ddiv(), then the
safety-related system is not at risk.

2.4.1.6 SDCOMP-64176

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64176.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The Arm C library implementation of the nearbyint() function can return an incorrect result.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the nearbyint() function.

• The program is not compiled with -fno-builtin.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The parameter of Z has one of the following values:

◦ 2251799813685248.5, that is 2 51 + 0.5

◦ -2251799813685248.5, that is -(2 51 + 0.5)

2.4.1.7 SDCOMP-64025

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-64025.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Armv8-M with the Main Extension 6.16.1, 6.16.2 -

Description
The Arm C library variant for a target that supports integer MVE only has the following incorrect
behavior:

• longjmp(<env>) fails to restore callee-saved vector registers from <env>.

• setjmp(<env>) fails to save callee-saved vector registers to <env>.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built for a target with the M-profile Vector Extension (MVE).

• The program is built for a target that supports integer MVE.

• The program is built for a target that does not support floating-point MVE.

• The program is built for a target without hardware floating-point support.

• The program contains a call Z to one of the following functions:

◦ longjmp(<env>)

◦ setjmp(<env>)

• The behavior of the program depends on Z.

2.4.1.8 SDCOMP-62756

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-62756.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The Arm C library implementation of the memmove() function can incorrectly corrupt memory when
copying at least 4GB.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the memmove() function.

• Z specifies the following:

◦ A destination address, D.

◦ A source address, S.

◦ The number of bytes to copy, N.

• N is at least 4GB.

• D is lower than S.

• D+N is higher than S.

• The behavior of the program depends on Z.

2.4.1.9 SDCOMP-60938

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60938.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library implementations of the lround(), lroundf(), llround(), and llroundf()
functions can incorrectly fail to set errno to EDOM.

For example, the llround() function incorrectly fails to set errno to EDOM in the following:

double var = <value>;
llround(var);

where <value> is equivalent to 0x1.p+63.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program contains a call Z to one of the following functions, where the parameter value is
equivalent to the specified parameter value. The value does not need to be a constant literal
value specified at compile-time:

State Function Parameter Type Parameter Value

AArch64 lround() or llround() double 0x1.p+63

AArch64 lroundf() or llroundf() float 0x1.p+63F

AArch32 lroundf() float 0x1.p+31F

AArch32 llround() double 0x1.p+63

AArch32 llroundf() float 0x1.p+63F

• The behavior of the program depends on Z setting errno to EDOM.

2.4.1.10 SDCOMP-60784

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60784.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch32 state 6.16.1, 6.16.2 -

Description
The Arm C library implementations of the fma() and fmaf() functions incorrectly fail to set errno
to ERANGE upon an overflow or underflow. Additionally, upon an underflow, these functions can
return an incorrect sign of zero.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ fma()

◦ fmaf()

• The third parameter of Z is zero.

• The product of the the first two parameters of Z results in an overflow or underflow.

• The behavior of the program depends on one of the following:

◦ Z setting errno to ERANGE upon an overflow or underflow.

◦ Z returning the correct sign of zero upon an underflow.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.11 SDCOMP-60700

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60700.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library implementation of the fwrite() function incorrectly always returns zero when
an error occurs instead of returning the number of objects successfully written.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the fwrite() function.

• The behavior of the program depends on Z always returning the number of objects successfully
written.

2.4.1.12 SDCOMP-60430

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60430.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The Arm C++ library can allocate memory at a fallback address that is incorrectly not 8-byte
aligned. Subsequently, this can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program is linked with the C++ libraries supplied with Arm Compiler.

• The program throws a C++ exception E.

• The amount of free memory in the heap is not enough to allocate a C++ exception object when
E is thrown.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.13 SDCOMP-60260

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60260.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The Arm C library implementations of the fma() and fmaf() functions can incorrectly set errno to
ERANGE when the result is exactly equal to zero.

For example, the fma() function incorrectly sets errno to ERANGE in the following function:

double func(double x)
{
 return fma(x, -1.0, x);
}

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ fma()

◦ fmaf()

• The product of the first two parameters of Z is exactly equal to the negation of the third
parameter of Z.

• The behavior of the program depends on Z setting errno to ERANGE.

2.4.1.14 SDCOMP-60162

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60162.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The Arm C library implementations of functions that convert between multibyte characters and
wide characters can result in an alignment fault at run-time.

For example, the call to the printf() function in the following code results in an alignment fault
when run on an Armv8-A target with unaligned memory accesses disabled:

#include <stdio.h>
#include <wchar.h>

__asm(".global __use_utf8_ctype\n");

int main(void)
{
 const wchar_t *wstr = L"wide string";
 printf("%ls\n", wstr);

 return 0;
}

Conditions
The safety-related system is at risk when all the following are true:

• The program uses one of the following LC_TYPE locales:

◦ A user-defined locale that uses the LC_CTYPE_multibyte legacy assembler macro.

◦ Shift-JIS

◦ UTF-8

• The program contains a call to an Arm C library function that converts between multibyte
characters and wide characters. For example:

◦ mbtowc()

◦ printf() with a %ls format specifier.

◦ wctomb()

◦ wprintf() with a %s format specifier.

• The program is run on a target that has unaligned memory accesses disabled.

2.4.1.15 SDCOMP-60157

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-60157.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1 6.16.2

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The Arm C library implementation of the POSIX mbsnrtowcs() function can incorrectly update the
source pointer P when the destination pointer D is a null pointer. P should not be updated when D is
a null pointer.

This defect is associated with the issue described in SDCOMP-58588.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the POSIX mbsnrtowcs() function.

• The first (destination pointer) argument of Z is a null pointer.

• The third (input buffer size) argument of Z is less than than the length of the source string
pointed to by the second argument.

2.4.1.16 SDCOMP-59054

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-59054.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1 6.16.2

Description
The Arm C++ library implementation of the std::allocator<T>::allocate() function incorrectly
raises a std::length_error exception instead of std::bad_alloc or std::bad_array_new_length.

For example, the Arm C++ library implementation of the std::allocator<T>::allocate() function
incorrectly raises a std::length_error exception for the following:

std::allocator<int> f;
std::allocator<int>::size_type size = f.max_size();
int *p = f.allocate(size + 1, 0);

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program is compiled with C++ exceptions enabled.

• The program contains a call Z to the std::allocator<T>::allocate() function F.

• F is defined in the <allocator.h> Arm C++ library header file.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The size parameter of Z exceeds the maximum supported size,
numeric_limits<size_t>::max()/sizeof(T).

• The behavior of the program depends on a std::bad_alloc or std::bad_array_new_length
exception being raised for Z.

2.4.1.17 SDCOMP-58588

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58588.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1 6.16.2

Description
The Arm C library implementations of the mbsrtowcs() and wcsrtombs() functions incorrectly
update the pointer object P pointed to by the source pointer when the destination pointer D is a
null pointer. P should not be updated when D is a null pointer.

This defect is associated with the issue described in SDCOMP-60157.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ mbsrtowcs()

◦ wcsrtombs()

• The destination pointer argument of Z is a null pointer.

• The behavior of the program depends on the pointer object pointed to by the source pointer
remaining unchanged.

2.4.1.18 SDCOMP-58561

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58561.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1 6.16.2

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The Arm C library implementations of the snprintf(), swprintf(), vsnprintf(), and vswprintf()
functions can incorrectly write an empty string to the buffer but still return a non-negative result.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ snprintf()

◦ swprintf()

◦ vsnprintf()

◦ vswprintf()

• The first argument to Z specifies a pointer P to a buffer B.

• The second argument to Z specifies a buffer size S.

• Incrementing P by S-1 causes an integer overflow.

• The behavior of the program depends on Z writing the intended output string to B.

2.4.1.19 SDCOMP-58560

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58560.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1 6.16.2

Description
The Arm C library implementation of the scalblnf() function can return an incorrect result.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the scalblnf() function.

• The value of the exp argument of Z is outside the range of a 32-bit signed integer.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.20 SDCOMP-58304

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58304.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1 6.16.2

Description
The Arm C library implementations of the fgets() and fgetws() functions incorrectly return a null
pointer and incorrectly fail to set the read buffer to the terminating null character, '\0'.

For example, the fgets() function incorrectly sets p to null and incorrectly fails to set buffer to
'\0' in the following:

char *p = fgets(buffer, 1, file_to_read);

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to one of the following functions:

◦ fgets()

◦ fgetws()

• The read buffer size parameter of Z is 1.

• The behavior of the program depends on one of the following:

◦ Z returning a non-null pointer.

◦ Z setting the read buffer to the terminating null character, '\0'.

2.4.1.21 SDCOMP-58044

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-58044.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1 6.16.2

Description
The Arm C library implementations of functions declared in the <stdio.h> system header can
incorrectly result in a deadlock between threads in a multithreaded environment.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

To avoid this issue, do not use line-buffered or unbuffered input streams in a multithreaded
environment.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program is not linked with microlib.

• The program consists of multiple threads.

• More than one thread contains a call to a function declared in the <stdio.h> system header.

• The program contains a read from an input stream S.

• S is either line-buffered or unbuffered.

2.4.1.22 SDCOMP-57673

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-57673.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The Arm C library incorrectly fails to configure the floating-point unit as follows:

• Enable Default NaN propagation.

• Enable flushing denormalized numbers to zero.

Subsequently, a floating-point operation can generate an unexpected result at run-time.

To avoid this issue, ensure that your reset handler sets the DN and FZ bits of the FPCR register to 1.
For example:

mrs x0, FPCR
orr x0, #0x03000000
msr FPCR, x0
isb

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a floating-point operation F.

• The behavior of the program depends on one of the following for F:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ Default NaN propagation.

◦ Flushing denormalized numbers to zero.

2.4.1.23 SDCOMP-53422

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-53422.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library implementation of the pow() function can incorrectly fail to set errno to ERANGE
when the return value overflows to HUGE_VAL.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the pow() function.

• Z has arguments that result in an overflow to HUGE_VAL.

• The behavior of the program depends on Z setting errno to ERANGE.

2.4.1.24 SDCOMP-53184

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-53184.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library implementation of the fclose() function can incorrectly fail to disassociate the
stream it closes when the _sys_close() function returns a non-zero value.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

• The program contains an implementation of the _sys_close() function that can return a non-
zero value.

• The program contains a call Z to the fclose() function.

• Z closes a stream S that is used to access a file F.

• The behavior of the program depends on S being disassociated from F.

2.4.1.25 SDCOMP-52577

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-52577.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The default constructor of an instantiation of the Arm C++ library template std::forward_list<T,
X> incorrectly fails to call the default constructor of X, where X is an allocator for type T.

For example, the default constructor of Y incorrectly fails to call the default constructor of X in the
following:

struct X : public std::allocator<char> {
 X() { /* default constructor code */ };
};

std::forward_list<char, X> Y = {};

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program is linked with the C++ libraries supplied with Arm Compiler.

• The program contains an instantiation Y of the class template std::forward_list<T, X>, where
X is an allocator for type T.

• The program contains a call Z to the default constructor of Y.

• The behavior of the program depends on Z automatically calling the default constructor of X.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.26 SDCOMP-50751

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50751.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library implementation of the setlocale() function incorrectly fails to return a null
pointer for a locale selection that cannot be honored at run-time.

For example, the Arm C library implementation of the setlocale() function incorrectly fails to
return a null pointer for the following:

const char *retstr = setlocale(LC_ALL, "invalid");

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the setlocale() function with a locale string S.

• S specifies a locale selection that cannot be honored at run-time.

• The behavior of the program depends on Z returning a null pointer.

2.4.1.27 SDCOMP-50064

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-50064.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm implementation of the C++ regular expressions library can behave incorrectly for an
invalid regular expression, resulting in one of the following:

• A failure to call the abort() function.

• A failure to throw a std::regex_error exception.

• Throwing an incorrect std::regex_error exception.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the Arm implementation of the std::regex constructor incorrectly fails to call the
abort() function or throw a std::regex_error exception for the invalid regular expression [c-a] in
the following:

std::regex re("[c-a]", std::regex_constants::basic);

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program uses the C++ regular expressions library with a regular expression R.

• R is invalid.

• The behavior of the program depends on the use of R causing one of the following:

◦ A call to the abort() function

◦ A std::regex_error exception

2.4.1.28 SDCOMP-49748

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-49748.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C++ library implementation of the const version of the std::bitset<N> class template
operator[] incorrectly returns a value of std::bitset<N>::const_reference type instead of bool
type.

For example, var is incorrectly initialized as a variable of std::bitset<N>::const_reference type
instead of bool type in the following:

const std::bitset<8> obj;
auto var = obj[0];

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a const object C of type std::bitset<N>.

• The program uses operator[] to access a bit at a specific position in C.

• The behavior of the program depends on operator[] returning a value of bool type.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.29 SDCOMP-47858

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-47858.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Any 6.16.1, 6.16.2 -

Description
The legacy assembler incorrectly generates a Code type symbol instead of a Data type symbol for
an address associated with the contents of a file included using an INCBIN directive. The INCBIN
directive correctly always includes file contents as data.

For example, the legacy assembler incorrectly generates a Code type symbol for sym in the
following:

 AREA |.text|, CODE
 EXPORT sym
 ADDS r0, r0, #1
sym
 INCBIN src.bin
 END

Conditions
The safety-related system is at risk when all the following are true:

• An assembly language source file contains an exported symbol S.

• S is defined in a CODE section.

• S is immediately followed by an INCBIN directive.

• S is not immediately preceded by a data definition directive.

• The behavior of the program depends on S being used as a symbol of Data type instead of Code
type.

2.4.1.30 SDCOMP-45879

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-45879.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries AArch64 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The Arm C library implementation of the qsort() function can corrupt the stack when sorting an
array larger than 4GB. Subsequently, this can result in unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call Z to the qsort() function.

• Z specifies an array containing M members of size N each.

• M * N is larger than 4GB.

2.4.1.31 SDCOMP-30903

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-30903.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C++ library implementations of the assignment operators of the following classes can
return an incorrect result:

• std::gslice_array

• std::indirect_array

• std::mask_array

• std::slice_array

For example, the assignment expression A = B returns an incorrect result in the following:

std::valarray<int> V = { 0, 1, 2, 3, 4, 5, 6 };
const std::slice_array<int> A = V[std::slice(1, 3, 2)];
const std::slice_array<int> B = V[std::slice(0, 3, 1)];
A = B;

Conditions
The safety-related system is at risk when all the following are true:

• The program is compiled in a C++ source language mode.

• The program contains a variable V of std::valarray<T> type.

• The program contains two variables A and B.

• A and B both have one of the following types:
Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 136 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ std::gslice_array

◦ std::indirect_array

◦ std::mask_array

◦ std::slice_array

• A and B are each initialized with an expression of the form V[<index>].

• <index> is an expression that has one of the following types:

◦ std::gslice

◦ std::slice

◦ std::valarray<bool>

◦ std::valarray<size_t>

• The program contains an assignment expression A = B.

2.4.1.32 SDCOMP-30359

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-30359.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The constructors of the Arm C++ library implementation of std::locale incorrectly either call the
abort() function or throw a std::runtime_error exception.

For example, when compiling with -fno-exceptions, the constructor incorrectly calls the abort()
function for the following:

std::locale obj("C");

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C++ libraries supplied with Arm Compiler.

• The program contains a call to a std::locale constructor with a locale name N.

• N is a valid standard C locale name.

• The behavior of the program depends on the locale being successfully set to N.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.33 SDCOMP-29077

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-29077.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The constructors of the Arm C++ library implementations of certain
std::<facet_category>_byname locale-specific facet categories incorrectly always either call the
abort() function or throw a std::runtime_error exception.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C++ libraries supplied with Arm Compiler.

• The program contains a call Z to a constructor of one of the following locale-specific facet
categories:

◦ ctype_byname

◦ codecvt_byname

◦ collate_byname

◦ moneypunct_byname

◦ time_get_byname

◦ time_put_byname

• The behavior of the program depends on Z returning successfully.

2.4.1.34 SDCOMP-18016

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-18016.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Any 6.16.1, 6.16.2 -

Description
The Arm C library __heapstats() and __heapvalid() functions can result in unexpected run-time
behavior for a program that does not use the heap.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

To avoid this issue, include the following file-scope inline assembly statement in an affected
program:

__asm(".global __use_no_heap\n\t");

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program contains a call to one of the following functions:

◦ __heapstats()

◦ __heapvalid()

• The program does not use the heap.

2.4.1.35 SDCOMP-13831

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-13831.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

Libraries Armv7-M 6.16.1, 6.16.2 -

Description
The Arm C library implementation of strcmp() can incorrectly read up to 3 bytes past the end of a
string being compared. This can result in unexpected run-time behavior.

For example, for a string placed at the end of accessible memory, this can result in a memory
access fault.

Conditions
The safety-related system is at risk when all the following are true:

• The program is linked with the C libraries supplied with Arm Compiler.

• The program is not linked with microlib.

• The program contains a call Z to the strcmp() function.

• An argument to Z is a pointer P.

• P is not a multiple of 4 bytes.

• P points to a string S.

• The behavior of the program depends on strcmp() not accessing memory beyond the end of S.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.1.36 SDCOMP-11974

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-11974.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Any 6.16.1, 6.16.2 -

Description
The legacy assembler generates a dependency file that incorrectly does not contain files included
using the C preprocessor #include directive.

For example, the legacy assembler generates a dependency file that incorrectly does not contain
include.h for the following:

 AREA |.text|, CODE
#include "include.h"
 BX lr

 END

Conditions
This defect occurs when all the following are true:

• The program is assembled with all the following options:

◦ --cpreproc

◦ --cpreproc_opts=<option>[,<option>,...]

◦ --depend=D

• The program contains a C preprocessor #include directive.

The safety-related system is only at risk when D is used in the build process.

2.4.2 Missing diagnostic faults

This section contains details about safety-related defects that have been classified as a missing
diagnostic fault.

For more information about the definition of a missing diagnostic fault, see the Arm Compiler for
Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.16LTS
Qualification Kit Safety Manual.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.4.2.1 SDCOMP-61487

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-61487.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Any 6.16.1, 6.16.2 -

Description
The legacy assembler can incorrectly fail to report an error for an invalid combination of the --
cpu=name and --fpu=name options.

For example, the legacy assembler incorrectly fails to report an error when assembling with --
cpu=Cortex-A9 and --fpu=FPv5.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an assembly language source file F.

• F contains an instruction I.

• F is built with --cpu=A.

• F is built with --fpu=B.

• I is not compatible with A.

• A is not compatible with B.

• The behavior of the program depends on I being successfully executed.

2.4.2.2 SDCOMP-55186

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-55186.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm AArch64 state 6.16.1, 6.16.2 -

Description
The legacy assembler incorrectly fails to report an error for an UNPREDICTABLE LDRAA or LDRAB
instruction.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the legacy assembler incorrectly fails to report an error for each of the following:

LDRAA X0, [X0, #8]!
LDRAB X0, [X0, #8]!

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for an Armv8.3-A target.

• The program contains an instruction with one of the following forms:

◦ LDRAA <Xt>, [<Xn>{, #<simm>}]!

◦ LDRAB <Xt>, [<Xn>{, #<simm>}]!

• <Xt> and <Xn> are the same.

2.4.2.3 SDCOMP-54893

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-54893.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Armv8-A 6.16.1, 6.16.2 -

Description
The legacy assembler incorrectly fails to report an error for a half-precision floating-point scalar
instruction or a half-precision floating-point SIMD instruction that is in an IT block and uses a D
register.

For example, the legacy assembler incorrectly fails to report an error for the VADDNE.F16 instruction
in the following:

AREA |.text.func|, CODE

THUMB

IT NE
VADDNE.F16 d0, d1, d2

END

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for an Armv8.2-A or later target and T32 state.

• The program contains an instruction I in an IT block.

• I is one of the following:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ A half-precision floating-point scalar instruction.

◦ A half-precision floating-point SIMD instruction.

• I uses a D register.

• I is UNPREDICTABLE in an IT block.

2.4.2.4 SDCOMP-30418

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-30418.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Armv8-A 6.16.1, 6.16.2 -

Description
The legacy assembler incorrectly fails to report an error instead of a warning for a ThumbEE
instruction.

To avoid this issue, assemble with --diag_error=1929.

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled for AArch32 state.

• The program contains a ThumbEE instruction.

2.4.2.5 SDCOMP-22900

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-22900.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm AArch64 state 6.16.1, 6.16.2 -

Description
The legacy assembler incorrectly fails to report an error for an invalid MRS or MSR instruction.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

For example, the legacy assembler incorrectly fails to report an error for the following invalid MRS
instruction:

mrs x4, S3__C15_C2_

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an MRS or MSR instruction I.

• I accesses an implementation-defined register R.

• R must be specified using an operand K of the form S<op0><op1><Cn><Cm><op2>.

• Any of the following are missing from K:

◦ <op0>

◦ <op1>

◦ <Cn>

◦ <Cm>

◦ <op2>

• The behavior of the program depends on I accessing R.

2.4.2.6 SDCOMP-22142

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-22142.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Any 6.16.1, 6.16.2 -

Description
The legacy assembler incorrectly fails to report an error for an Advanced SIMD or an AArch64
floating-point instruction.

For example, when assembling with --cpu=8-A.64 --fpu=none, the legacy assembler incorrectly
fails to report an error for the following AArch64 floating-point instruction:

FADD s0, s1, s2

Conditions
The safety-related system is at risk when all the following are true:

• The program is assembled with --fpu=none.

• One of the following is true:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ The program contains an Advanced SIMD instruction, and the target does not support
Advanced SIMD instructions.

◦ The program contains an AArch64 floating-point instruction, and the target does not
support AArch64 floating-point instructions.

2.4.2.7 SDCOMP-17016

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-17016.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm Armv7-A, Armv7-R 6.16.1, 6.16.2 -

Description
The legacy assembler can incorrectly fail to report an error for an MRS or MSR instruction that
specifies a memory-mapped debug register that is not visible in the CP14 interface as the special
register to be accessed.

For example, the legacy assembler incorrectly fails to report errors for the following instructions
when assembling for a Cortex-A15 target:

MRS r0, DBGPID1
MSR DBGVIDSR, r0

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an MRS or MSR instruction I.

• I specifies a memory-mapped debug register D as the special register to be accessed.

• The Arm Architecture Reference Manual Armv7-A and Armv7-R edition describes D as not visible in
the CP14 interface.

2.4.2.8 SDCOMP-11899

This section describes the scope of the missing diagnostic fault defect with the unique identifier
SDCOMP-11899.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armasm AArch32 state 6.16.1, 6.16.2 -

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

Description
The legacy assembler incorrectly fails to report an error for a RELOC directive that has a second
operand containing an invalid expression of the form symbol+offset. Instead, the legacy assembler
incorrectly generates a relocation that ignores the specified offset.

Conditions
The safety-related system is at risk when all the following are true:

• The program contains a RELOC directive R.

• The second operand of R is an expression of the form symbol+offset.

• The behavior of the program depends on R.

2.5 Defects affecting both qualified and unqualified
components

This section contains details about known safety-related defects that affect both the qualified and
unqualified toolchain components of Arm Compiler for Embedded FuSa 6.16LTS.

The qualified toolchain components are:

• The compiler and integrated assembler, armclang.

• The ELF processing utility, fromelf.

• The librarian, armar.

• The linker, armlink.

The unqualified toolchain components are:

• The legacy assembler, armasm.

• The libraries supplied with the toolchain.

Unqualified toolchain components are outside the scope of the Qualification Kit.
Defects related to unqualified toolchain components are provided in this document
for information only.

The following defects are included in this section:

Identifier Fault category Affected components

SDCOMP-63948 Translation fault armclang, Libraries

SDCOMP-62359 Documentation synchronization fault armclang, Libraries

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.5.1 Translation faults

This section contains details about safety-related defects that have been classified as a translation
fault.

For more information about the definition of a translation fault, see the Arm Compiler for Embedded
FuSa tools and functional safety section of the Arm Compiler for Embedded FuSa 6.16LTS Qualification
Kit Safety Manual.

2.5.1.1 SDCOMP-63948

This section describes the scope of the translation fault defect with the unique identifier
SDCOMP-63948.

Arm has not yet fully investigated this defect. Therefore, the information in this
section is likely to change in future versions of this document.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang, Libraries AArch64 state 6.16.1, 6.16.2 -

Description
The compiler can generate incorrect C++ exception-handling code. Subsequently, this can result in
unexpected run-time behavior.

Conditions
The safety-related system is at risk when all the following are true:

• The program is built with target options that enable the Scalable Vector Extension feature
(FEAT_SVE).

• The program is compiled with C++ exceptions enabled.

• The program uses a type that is defined in the <arm_sve.h> system header.

• The program throws a C++ exception.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

2.5.2 Documentation synchronization faults

This section contains details about safety-related defects that have been classified as a
documentation synchronization fault.

For more information about the definition of a documentation synchronization fault, see the Arm
Compiler for Embedded FuSa tools and functional safety section of the Arm Compiler for Embedded
FuSa 6.16LTS Qualification Kit Safety Manual.

2.5.2.1 SDCOMP-62359

This section describes the scope of the documentation synchronization fault defect with the
unique identifier SDCOMP-62359.

The following table describes the scope of this defect:

Affected components Target environment Affected releases Unaffected releases

armclang, Libraries Any 6.16.1, 6.16.2 -

Description
The Integer division-by-zero errors in C code section of the User Guide incorrectly states that you
can trap and identify integer division-by-zero errors using the Arm C library helper function
__aeabi_idiv0().

Integer division-by-zero in C code is undefined behavior, and the compiler does not guarantee a
specific behavior for such code.

To trap and identify integer division-by-zero errors, you must manually test the denominator before
the division operation takes place. For example:

#include <signal.h>

int divide(const int numerator, const int denominator)
{
 if (denominator == 0)
 {
 return raise(SIGFPE);
 }
 else
 {
 return numerator / denominator;
 }
}

Conditions
The safety-related system is at risk when all the following are true:

• The program contains an integer division operation with a denominator D.

• The behavior of the program depends on one of the following when D is zero:

◦ The SIGFPE signal being raised.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Defects

◦ The __aeabi_idiv0() function being called.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Changes since the Arm Compiler for Embedded FuSa 6.16.2
Qualification Kit Defect Report

Appendix A Changes since the Arm
Compiler for Embedded FuSa
6.16.2 Qualification Kit Defect
Report

This appendix provides information about changes made to the defect lists compared to the
Qualification Kit Defect Report included in the release of Arm Compiler for Embedded FuSa 6.16.2
in May 2022.

A.1 Defects added
This section contains a list of defects that have been added to this document compared to the
Qualification Kit Defect Report included in the release of Arm Compiler for Embedded FuSa 6.16.2
in May 2022.

Identifier Fault category Affected
components

Target environment

SDCOMP-66632 Translation fault armclang AArch64 state

SDCOMP-66256 Translation fault armclang AArch64 state

SDCOMP-66090 Translation fault Libraries AArch64 state

SDCOMP-65669 Documentation
synchronization fault

armclang Any

SDCOMP-65517 Translation fault armlink Any

SDCOMP-65388 Translation fault Libraries Any

SDCOMP-65264 Missing diagnostic fault armclang AArch64 state

SDCOMP-65243 Missing diagnostic fault armclang AArch64 state

SDCOMP-65172 Translation fault armclang Any

SDCOMP-64999 Translation fault armlink AArch32 state

SDCOMP-64683 Missing diagnostic fault armclang Armv7-A, Armv7-M, Armv7-R, Armv8-A, Armv8-M with the Main
Extension, Armv8-R

SDCOMP-64611 Translation fault Libraries Any

SDCOMP-64597 Translation fault Libraries AArch64 state

SDCOMP-64595 Translation fault armlink AArch64 state

SDCOMP-64591 Translation fault armclang AArch32 state

SDCOMP-64590 Translation fault armlink Any

SDCOMP-64555 Translation fault Libraries AArch32 state

SDCOMP-64255 Missing diagnostic fault armclang AArch32 state

SDCOMP-64176 Translation fault Libraries AArch64 state

SDCOMP-64165 Translation fault armclang A32 state

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Changes since the Arm Compiler for Embedded FuSa 6.16.2
Qualification Kit Defect Report

Identifier Fault category Affected
components

Target environment

SDCOMP-64066 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-64059 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-64025 Translation fault Libraries Armv8-M with the Main Extension

SDCOMP-63984 Translation fault armclang T32 state

SDCOMP-63952 Translation fault armclang AArch32 state

SDCOMP-63948 Translation fault armclang,
Libraries

AArch64 state

SDCOMP-63946 Translation fault armclang AArch64 state

SDCOMP-63917 Missing diagnostic fault armclang AArch64 state

SDCOMP-63913 Translation fault armclang AArch64 state

SDCOMP-63912 Translation fault armclang AArch32 state

SDCOMP-63911 Translation fault armclang AArch32 state

SDCOMP-63894 Translation fault armclang AArch64 state

SDCOMP-63761 Translation fault armclang AArch64 state

SDCOMP-63752 Translation fault armclang AArch64 state

SDCOMP-63738 Translation fault fromelf Armv8-M with the Main Extension

SDCOMP-63697 Missing diagnostic fault armclang Any

SDCOMP-63688 Translation fault armclang Armv6-M, Armv8-M without the Main Extension

SDCOMP-63454 Translation fault armclang T32 state

SDCOMP-62791 Translation fault armclang AArch32 state

SDCOMP-62769 Translation fault armclang AArch32 state

SDCOMP-62756 Translation fault Libraries AArch64 state

SDCOMP-62725 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-62692 Translation fault armclang Armv7-A, Armv7-M, Armv7-R, Armv8-A, Armv8-M with the Main
Extension, Armv8-R

SDCOMP-62661 Translation fault armclang AArch64 state

SDCOMP-62378 Translation fault armclang AArch32 state

SDCOMP-62359 Documentation
synchronization fault

armclang,
Libraries

Any

SDCOMP-62352 Translation fault armclang Armv8-M with the Main Extension

SDCOMP-62330 Translation fault armclang Any

SDCOMP-62251 Translation fault armlink AArch64 state

SDCOMP-62234 Missing diagnostic fault armclang Any

SDCOMP-62221 Translation fault armclang Armv6-M

SDCOMP-62217 Translation fault fromelf Armv8-M with the Main Extension

SDCOMP-62201 Missing diagnostic fault armclang AArch64 state

SDCOMP-62176 Translation fault armclang AArch32 state

SDCOMP-62133 Translation fault armclang AArch64 state

SDCOMP-62123 Translation fault armclang AArch32 state

SDCOMP-62028 Translation fault armclang Armv8-M without the Main Extension

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Changes since the Arm Compiler for Embedded FuSa 6.16.2
Qualification Kit Defect Report

Identifier Fault category Affected
components

Target environment

SDCOMP-61633 Documentation
synchronization fault

armclang Any

SDCOMP-61514 Translation fault armclang AArch32 state

SDCOMP-61489 Missing diagnostic fault fromelf Any

SDCOMP-61488 Missing diagnostic fault armlink Any

SDCOMP-61487 Missing diagnostic fault armasm Any

SDCOMP-61486 Translation fault armclang Any

SDCOMP-61465 Documentation
synchronization fault

armclang AArch32 state

SDCOMP-61461 Missing diagnostic fault armclang A32 state

SDCOMP-61299 Translation fault armclang AArch32 state

SDCOMP-61298 Translation fault armclang AArch32 state

SDCOMP-61150 Translation fault armlink AArch32 state

SDCOMP-61089 Missing diagnostic fault armclang AArch32 state

SDCOMP-61080 Translation fault armclang Any

SDCOMP-61054 Documentation
synchronization fault

armlink Any

SDCOMP-60938 Translation fault Libraries Any

SDCOMP-60897 Translation fault armclang Armv8-M

SDCOMP-60826 Documentation
synchronization fault

armlink AArch64 state

SDCOMP-60784 Translation fault Libraries AArch32 state

SDCOMP-60725 Translation fault fromelf Armv8-M with the Main Extension

SDCOMP-60700 Translation fault Libraries Any

SDCOMP-60659 Translation fault armlink Any

SDCOMP-60632 Translation fault armclang AArch64 state

SDCOMP-60589 Translation fault armclang Any

SDCOMP-60443 Translation fault armclang AArch32 state

SDCOMP-59938 Translation fault armlink AArch64 state

A.2 Defects removed
This section contains a list of defects that have been removed from this document compared to the
Qualification Kit Defect Report included in the release of Arm Compiler for Embedded FuSa 6.16.2
in May 2022.

Any defect may be removed from future versions of this document without prior notice. For the
details about a specific removed defect, see the Qualification Kit Defect Report included in the
release of Arm Compiler for Embedded FuSa 6.16.2 or contact Arm support.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 161

https://developer.arm.com/support

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Changes since the Arm Compiler for Embedded FuSa 6.16.2
Qualification Kit Defect Report

Identifier Fault category Affected components Target environment

SDCOMP-56990 Translation fault armclang AArch64 state

SDCOMP-51624 Translation fault armclang AArch64 state

SDCOMP-30395 Missing diagnostic fault armlink AArch64 state

SDCOMP-25815 Translation fault fromelf Any

SDCOMP-25192 Missing diagnostic fault armasm, armlink Any

SDCOMP-17692 Translation fault Libraries Any

SDCOMP-15257 Translation fault Libraries Any

A.3 Defects updated
This section contains a list of defects that have been updated in this document compared to the
Qualification Kit Defect Report included in the release of Arm Compiler for Embedded FuSa 6.16.2
in May 2022.

Identifier Fault category Affected components Target environment

SDCOMP-60430 Translation fault Libraries AArch64 state

SDCOMP-60342 Translation fault armclang Any

SDCOMP-60326 Translation fault fromelf Any

SDCOMP-60260 Translation fault Libraries AArch64 state

SDCOMP-60162 Translation fault Libraries AArch64 state

SDCOMP-60157 Translation fault Libraries Any

SDCOMP-60117 Translation fault armlink Any

SDCOMP-59974 Translation fault armclang AArch64 state

SDCOMP-59788 Translation fault armclang Armv7-M, Armv8-M

SDCOMP-59656 Translation fault armclang AArch64 state

SDCOMP-59605 Missing diagnostic fault armclang Any

SDCOMP-59521 Translation fault armclang Any

SDCOMP-59512 Missing diagnostic fault armclang Any

SDCOMP-59190 Missing diagnostic fault armclang Any

SDCOMP-59074 Translation fault armclang AArch64 state

SDCOMP-59059 Translation fault armclang AArch32 state

SDCOMP-59054 Translation fault Libraries Any

SDCOMP-58780 Translation fault armclang Any

SDCOMP-58773 Translation fault armclang AArch64 state

SDCOMP-58738 Translation fault armclang Any

SDCOMP-58588 Translation fault Libraries Any

SDCOMP-58561 Translation fault Libraries Any

SDCOMP-58560 Translation fault Libraries AArch64 state

SDCOMP-58367 Missing diagnostic fault armclang T32 state

SDCOMP-58354 Translation fault armlink Any

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Changes since the Arm Compiler for Embedded FuSa 6.16.2
Qualification Kit Defect Report

Identifier Fault category Affected components Target environment
SDCOMP-58304 Translation fault Libraries Any

SDCOMP-58044 Translation fault Libraries Any

SDCOMP-57994 Determinism fault armlink AArch32 state

SDCOMP-57912 Missing diagnostic fault armclang Any

SDCOMP-57884 Translation fault armclang Any

SDCOMP-57725 Translation fault armclang Any

SDCOMP-57674 Translation fault armclang Any

SDCOMP-57673 Translation fault Libraries AArch64 state

SDCOMP-57528 Missing diagnostic fault armclang AArch64 state

SDCOMP-57456 Translation fault fromelf AArch64 state

SDCOMP-57449 Translation fault fromelf AArch64 state

SDCOMP-57255 Translation fault armclang Any

SDCOMP-57229 Translation fault armclang Any

SDCOMP-57213 Translation fault armlink Any

SDCOMP-57200 Translation fault armclang AArch32 state

SDCOMP-57199 Missing diagnostic fault armlink AArch32 state

SDCOMP-56812 Missing diagnostic fault armclang Any

SDCOMP-56435 Translation fault armlink Any

SDCOMP-56331 Missing diagnostic fault armclang AArch64 state

SDCOMP-56220 Missing diagnostic fault armclang Any

SDCOMP-56212 Missing diagnostic fault armclang Any

SDCOMP-55983 Missing diagnostic fault armclang A32 state

SDCOMP-55580 Missing diagnostic fault armclang A32 state

SDCOMP-55460 Translation fault armclang Any

SDCOMP-55267 Missing diagnostic fault armclang AArch64 state

SDCOMP-55186 Missing diagnostic fault armasm AArch64 state

SDCOMP-55184 Translation fault fromelf Any

SDCOMP-54893 Missing diagnostic fault armasm Armv8-A

SDCOMP-54546 Translation fault fromelf Any

SDCOMP-53903 Missing diagnostic fault armclang Any

SDCOMP-53422 Translation fault Libraries Any

SDCOMP-53184 Translation fault Libraries Any

SDCOMP-52627 Missing diagnostic fault armclang Any

SDCOMP-52577 Translation fault Libraries Any

SDCOMP-51180 Missing diagnostic fault armclang AArch64 state

SDCOMP-50968 Translation fault fromelf Any

SDCOMP-50751 Translation fault Libraries Any

SDCOMP-50408 Translation fault armclang AArch32 state

SDCOMP-50064 Translation fault Libraries Any

SDCOMP-50017 Missing diagnostic fault armclang Any

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Changes since the Arm Compiler for Embedded FuSa 6.16.2
Qualification Kit Defect Report

Identifier Fault category Affected components Target environment
SDCOMP-49961 Missing diagnostic fault armclang Any

SDCOMP-49919 Missing diagnostic fault armclang Any

SDCOMP-49763 Missing diagnostic fault armclang Any

SDCOMP-49748 Translation fault Libraries Any

SDCOMP-47858 Translation fault armasm Any

SDCOMP-46790 Missing diagnostic fault armclang AArch32 state

SDCOMP-45879 Translation fault Libraries AArch64 state

SDCOMP-44980 Translation fault fromelf Any

SDCOMP-30903 Translation fault Libraries Any

SDCOMP-30418 Missing diagnostic fault armasm Armv8-A

SDCOMP-30359 Translation fault Libraries Any

SDCOMP-29077 Translation fault Libraries Any

SDCOMP-28728 Translation fault fromelf AArch64 state

SDCOMP-25238 Missing diagnostic fault armclang Any

SDCOMP-24899 Translation fault fromelf T32 state

SDCOMP-22900 Missing diagnostic fault armasm AArch64 state

SDCOMP-22142 Missing diagnostic fault armasm Any

SDCOMP-18689 Missing diagnostic fault armlink Any

SDCOMP-18016 Translation fault Libraries Any

SDCOMP-17355 Missing diagnostic fault armlink Any

SDCOMP-17016 Missing diagnostic fault armasm Armv7-A, Armv7-R

SDCOMP-13831 Translation fault Libraries Armv7-M

SDCOMP-11974 Translation fault armasm Any

SDCOMP-11947 Translation fault fromelf Any

SDCOMP-11899 Missing diagnostic fault armasm AArch32 state

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Proprietary Notice
This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 161

https://www.arm.com/company/policies/trademarks

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Product and document information
Read the information in these sections to understand the release status of the product and
documentation, and the conventions used in Arm documents.

Product status
All products and services provided by Arm require deliverables to be prepared and made available
at different levels of completeness. The information in this document indicates the appropriate
level of completeness for the associated deliverables.

Product completeness status
The information in this document is Final, that is for a developed product.

Revision history
These sections can help you understand how the document has changed over time.

Document release information
The Document history table gives the issue number and the released date for each released issue
of this document.

Document history

Issue Date Confidentiality Change

0 26 July 2024 Non-Confidential Initial release

Change history
To be completed later. For a list of technical changes to this document, refer to the Arm Developer
website.

Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 161

https://developer.arm.com/glossary

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 161

Arm Compiler for Embedded FuSa 6.16LTS Defect
Notification Report

Document ID: 107987_2024-07_en
Issue

Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm Compiler for Embedded FuSa 6.16LTS documentation index KA005062 Non-Confidential

Arm Compiler for Embedded FuSa 6.16LTS Qualification Kit Safety Manual 102288 Confidential

Does Arm document all known issues that affect each Arm Compiler release? KA005052 Non-Confidential

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 161

http://developer.arm.com/documentation
https://developer.arm.com/documentation/ka005062/latest
https://developer.arm.com/documentation/ka005052/latest

	Arm Compiler for Embedded FuSa 6.16LTS Defect Notification Report
	Contents
	1. Introduction
	1.1 Scope of the Defect Lists
	1.2 Derivation of the Defect Lists
	1.3 Documentation releases for documentation synchronization faults

	2. Defects
	2.1 Format of a Defect Entry
	2.1.1 Target environment

	2.2 Machine-readable defects list
	2.3 Defects affecting qualified components
	2.3.1 Translation faults
	2.3.1.1 SDCOMP-66632
	2.3.1.2 SDCOMP-66256
	2.3.1.3 SDCOMP-65517
	2.3.1.4 SDCOMP-65172
	2.3.1.5 SDCOMP-64999
	2.3.1.6 SDCOMP-64595
	2.3.1.7 SDCOMP-64591
	2.3.1.8 SDCOMP-64590
	2.3.1.9 SDCOMP-64165
	2.3.1.10 SDCOMP-64066
	2.3.1.11 SDCOMP-64059
	2.3.1.12 SDCOMP-63984
	2.3.1.13 SDCOMP-63952
	2.3.1.14 SDCOMP-63946
	2.3.1.15 SDCOMP-63913
	2.3.1.16 SDCOMP-63912
	2.3.1.17 SDCOMP-63911
	2.3.1.18 SDCOMP-63894
	2.3.1.19 SDCOMP-63761
	2.3.1.20 SDCOMP-63752
	2.3.1.21 SDCOMP-63738
	2.3.1.22 SDCOMP-63688
	2.3.1.23 SDCOMP-63454
	2.3.1.24 SDCOMP-62791
	2.3.1.25 SDCOMP-62769
	2.3.1.26 SDCOMP-62725
	2.3.1.27 SDCOMP-62692
	2.3.1.28 SDCOMP-62661
	2.3.1.29 SDCOMP-62378
	2.3.1.30 SDCOMP-62352
	2.3.1.31 SDCOMP-62330
	2.3.1.32 SDCOMP-62251
	2.3.1.33 SDCOMP-62221
	2.3.1.34 SDCOMP-62217
	2.3.1.35 SDCOMP-62176
	2.3.1.36 SDCOMP-62133
	2.3.1.37 SDCOMP-62123
	2.3.1.38 SDCOMP-62028
	2.3.1.39 SDCOMP-61514
	2.3.1.40 SDCOMP-61486
	2.3.1.41 SDCOMP-61299
	2.3.1.42 SDCOMP-61298
	2.3.1.43 SDCOMP-61150
	2.3.1.44 SDCOMP-61080
	2.3.1.45 SDCOMP-60897
	2.3.1.46 SDCOMP-60725
	2.3.1.47 SDCOMP-60659
	2.3.1.48 SDCOMP-60632
	2.3.1.49 SDCOMP-60589
	2.3.1.50 SDCOMP-60443
	2.3.1.51 SDCOMP-60342
	2.3.1.52 SDCOMP-60326
	2.3.1.53 SDCOMP-60117
	2.3.1.54 SDCOMP-59974
	2.3.1.55 SDCOMP-59938
	2.3.1.56 SDCOMP-59788
	2.3.1.57 SDCOMP-59656
	2.3.1.58 SDCOMP-59521
	2.3.1.59 SDCOMP-59074
	2.3.1.60 SDCOMP-59059
	2.3.1.61 SDCOMP-58780
	2.3.1.62 SDCOMP-58773
	2.3.1.63 SDCOMP-58738
	2.3.1.64 SDCOMP-58354
	2.3.1.65 SDCOMP-57884
	2.3.1.66 SDCOMP-57725
	2.3.1.67 SDCOMP-57674
	2.3.1.68 SDCOMP-57456
	2.3.1.69 SDCOMP-57449
	2.3.1.70 SDCOMP-57255
	2.3.1.71 SDCOMP-57229
	2.3.1.72 SDCOMP-57213
	2.3.1.73 SDCOMP-57200
	2.3.1.74 SDCOMP-56435
	2.3.1.75 SDCOMP-55460
	2.3.1.76 SDCOMP-55184
	2.3.1.77 SDCOMP-54546
	2.3.1.78 SDCOMP-50968
	2.3.1.79 SDCOMP-50408
	2.3.1.80 SDCOMP-44980
	2.3.1.81 SDCOMP-28728
	2.3.1.82 SDCOMP-24899
	2.3.1.83 SDCOMP-11947

	2.3.2 Missing diagnostic faults
	2.3.2.1 SDCOMP-65264
	2.3.2.2 SDCOMP-65243
	2.3.2.3 SDCOMP-64683
	2.3.2.4 SDCOMP-64255
	2.3.2.5 SDCOMP-63917
	2.3.2.6 SDCOMP-63697
	2.3.2.7 SDCOMP-62234
	2.3.2.8 SDCOMP-62201
	2.3.2.9 SDCOMP-61489
	2.3.2.10 SDCOMP-61488
	2.3.2.11 SDCOMP-61461
	2.3.2.12 SDCOMP-61089
	2.3.2.13 SDCOMP-59605
	2.3.2.14 SDCOMP-59512
	2.3.2.15 SDCOMP-59190
	2.3.2.16 SDCOMP-58367
	2.3.2.17 SDCOMP-57912
	2.3.2.18 SDCOMP-57528
	2.3.2.19 SDCOMP-57199
	2.3.2.20 SDCOMP-56812
	2.3.2.21 SDCOMP-56331
	2.3.2.22 SDCOMP-56220
	2.3.2.23 SDCOMP-56212
	2.3.2.24 SDCOMP-55983
	2.3.2.25 SDCOMP-55580
	2.3.2.26 SDCOMP-55267
	2.3.2.27 SDCOMP-53903
	2.3.2.28 SDCOMP-52627
	2.3.2.29 SDCOMP-51180
	2.3.2.30 SDCOMP-50017
	2.3.2.31 SDCOMP-49961
	2.3.2.32 SDCOMP-49919
	2.3.2.33 SDCOMP-49763
	2.3.2.34 SDCOMP-46790
	2.3.2.35 SDCOMP-25238
	2.3.2.36 SDCOMP-18689
	2.3.2.37 SDCOMP-17355

	2.3.3 Determinism faults
	2.3.3.1 SDCOMP-57994

	2.3.4 Documentation synchronization faults
	2.3.4.1 SDCOMP-65669
	2.3.4.2 SDCOMP-61633
	2.3.4.3 SDCOMP-61465
	2.3.4.4 SDCOMP-61054
	2.3.4.5 SDCOMP-60826

	2.4 Defects affecting unqualified components
	2.4.1 Translation faults
	2.4.1.1 SDCOMP-66090
	2.4.1.2 SDCOMP-65388
	2.4.1.3 SDCOMP-64611
	2.4.1.4 SDCOMP-64597
	2.4.1.5 SDCOMP-64555
	2.4.1.6 SDCOMP-64176
	2.4.1.7 SDCOMP-64025
	2.4.1.8 SDCOMP-62756
	2.4.1.9 SDCOMP-60938
	2.4.1.10 SDCOMP-60784
	2.4.1.11 SDCOMP-60700
	2.4.1.12 SDCOMP-60430
	2.4.1.13 SDCOMP-60260
	2.4.1.14 SDCOMP-60162
	2.4.1.15 SDCOMP-60157
	2.4.1.16 SDCOMP-59054
	2.4.1.17 SDCOMP-58588
	2.4.1.18 SDCOMP-58561
	2.4.1.19 SDCOMP-58560
	2.4.1.20 SDCOMP-58304
	2.4.1.21 SDCOMP-58044
	2.4.1.22 SDCOMP-57673
	2.4.1.23 SDCOMP-53422
	2.4.1.24 SDCOMP-53184
	2.4.1.25 SDCOMP-52577
	2.4.1.26 SDCOMP-50751
	2.4.1.27 SDCOMP-50064
	2.4.1.28 SDCOMP-49748
	2.4.1.29 SDCOMP-47858
	2.4.1.30 SDCOMP-45879
	2.4.1.31 SDCOMP-30903
	2.4.1.32 SDCOMP-30359
	2.4.1.33 SDCOMP-29077
	2.4.1.34 SDCOMP-18016
	2.4.1.35 SDCOMP-13831
	2.4.1.36 SDCOMP-11974

	2.4.2 Missing diagnostic faults
	2.4.2.1 SDCOMP-61487
	2.4.2.2 SDCOMP-55186
	2.4.2.3 SDCOMP-54893
	2.4.2.4 SDCOMP-30418
	2.4.2.5 SDCOMP-22900
	2.4.2.6 SDCOMP-22142
	2.4.2.7 SDCOMP-17016
	2.4.2.8 SDCOMP-11899

	2.5 Defects affecting both qualified and unqualified components
	2.5.1 Translation faults
	2.5.1.1 SDCOMP-63948

	2.5.2 Documentation synchronization faults
	2.5.2.1 SDCOMP-62359

	A. Changes since the Arm Compiler for Embedded FuSa 6.16.2 Qualification Kit Defect Report
	A.1 Defects added
	A.2 Defects removed
	A.3 Defects updated

	 Proprietary Notice
	 Product and document information
	 Product status
	 Revision history
	 Conventions

	 Useful resources

