
Arm® RAN Acceleration Library
Version 24.07

Reference Guide

Non-Confidential
Copyright © 2020–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
102249_24.07_00_en

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Arm® RAN Acceleration Library
Reference Guide

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

2407-
00

18 July 2024 Non-
Confidential

Update for Arm RAN Acceleration Library v24.07

2404-
00

19 April 2024 Non-
Confidential

Update for Arm RAN Acceleration Library v24.04

2401-
00

19 January
2024

Non-
Confidential

Update for Arm RAN Acceleration Library v24.01

2310-
00

6 October 2023 Non-
Confidential

Update for Arm RAN Acceleration Library v23.10

2307-
00

7 July 2023 Non-
Confidential

Update for Arm RAN Acceleration Library v23.07

2304-
00

21 April 2023 Non-
Confidential

Update for Arm RAN Acceleration Library v23.04

2301-
00

27 January
2023

Non-
Confidential

Update for Arm RAN Acceleration Library v23.01

2210-
00

7 October 2022 Non-
Confidential

Update for Arm RAN Acceleration Library v22.10

2207-
00

15 July 2022 Non-
Confidential

Update for Arm RAN Acceleration Library v22.07

2204-
00

8 April 2022 Non-
Confidential

Update for Arm RAN Acceleration Library v22.04

2201-
00

14 January
2022

Non-
Confidential

Update for Arm RAN Acceleration Library v22.01

2110-
00

8 October 2021 Non-
Confidential

Update for Arm RAN Acceleration Library v21.10

2107-
00

9 July 2021 Non-
Confidential

Update for Arm RAN Acceleration Library v21.07

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Issue Date Confidentiality Change

2104-
00

9 April 2021 Non-
Confidential

Update for Arm RAN Acceleration Library v21.04

2101-
00

8 January 2021 Non-
Confidential

Update for Arm RAN Acceleration Library v21.01

2010-
00

2 October 2020 Non-
Confidential

New document for Arm RAN Acceleration Library
v20.10

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. In addition, you are responsible for any applications which are used in conjunction
with any Arm technology described in this document, and to minimize risks, adequate design and
operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 181

https://www.arm.com/company/policies/trademarks

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 181

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Contents

Contents

1. Introduction.. 8
1.1 Conventions..8
1.2 Other information... 9

2. Tutorials...10
2.1 Get started with Arm RAN Acceleration Library (ArmRAL)..10
2.2 Get started with ArmRAL noisy channel simulation.. 17
2.3 Use Arm RAN Acceleration Library (ArmRAL)...23

3. Functions...28
3.1 Vector functions... 28
3.1.1 Vector Multiply.. 28
3.1.2 Vector Dot Product.. 34
3.2 Matrix functions..40
3.2.1 Complex Matrix-Vector Multiplication... 40
3.2.2 General Complex Matrix-Matrix Multiplication..53
3.2.3 Specific-Sized Complex Matrix-Matrix Multiplication... 58
3.2.4 Channel Matrix-Matrix Multiplication...62
3.2.5 Complex Matrix Inversion... 72
3.2.6 Complex Matrix Pseudo-Inverse... 78
3.2.7 SVD of a Single Complex Matrix.. 81
3.3 Lower PHY support functions...84
3.3.1 Sequence Generator.. 85
3.3.2 Correlation Coefficient...86
3.3.3 FIR Filter..87
3.3.4 Fast Fourier Transforms (FFT)..91
3.3.5 Scrambling...96
3.4 Upper PHY support functions...97
3.4.1 Modulation..97
3.4.2 Cyclic Redundancy Check (CRC).. 100
3.4.3 Polar Encoding...108
3.4.4 Low-Density Parity Check (LDPC)..122
3.4.5 LTE Turbo... 138

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Contents

3.4.6 LTE Convolutional Coding.. 150
3.5 DU-RU IF support functions...155
3.5.1 Mu-Law Compression..155
3.5.2 Block Scaling Compression...160
3.5.3 Block Floating Point...165

4. Data Structures...174
4.1 armral_cmplx_f32_t..174
4.2 armral_cmplx_int16_t...174
4.3 armral_compressed_data_12bit...174
4.4 armral_compressed_data_14bit...175
4.5 armral_compressed_data_8bit... 175
4.6 armral_compressed_data_9bit... 175
4.7 armral_ldpc_base_graph_t...176

5. Macros.. 177
5.1 ARMRAL_NUM_COMPLEX_SAMPLES...177
5.2 ARMRAL_LDPC_NO_CRC... 177

6. Enumerations...178
6.1 armral_status... 178
6.2 armral_modulation_type..178
6.3 armral_fixed_point_index.. 178
6.4 armral_polar_frozen_bit_type...179
6.5 armral_polar_ibil_type..180
6.6 armral_fft_direction_t...180
6.7 armral_ldpc_graph_t...180

7. Type Aliases...181
7.1 armral_fft_plan_t... 181

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Introduction

1. Introduction
This book contains reference documentation for Arm RAN Acceleration Library (ArmRAL). The
book was generated from the source code using Doxygen.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

We recommend the following. If you do not follow these recommendations your
system might not work.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 181

https://developer.arm.com/glossary

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Introduction

Your system requires the following. If you do not follow these requirements your
system will not work.

You are at risk of causing permanent damage to your system or your equipment, or
harming yourself.

This information is important and needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 181

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

2. Tutorials
This section contains tutorials to help you use Arm RAN Acceleration Library.

2.1 Get started with Arm RAN Acceleration Library
(ArmRAL)

This document describes how to build, install, run tests and benchmarks, and uninstall Arm RAN
Acceleration Library (ArmRAL).

Introducing Arm RAN Acceleration Library
Arm RAN Acceleration Library provides optimized signal processing and related maths functions
for enabling 5G Radio Access Network (RAN) deployments. It leverages the efficient vector units
available on Arm cores that support the Armv8-a architecture to accelerate 5G NR and LTE signal
processing workloads, including:

• Matrix and vector arithmetic, such as matrix multiplication.

• Fast Fourier Transforms (FFTs).

• Digital modulation and demodulation.

• Cyclic Redundancy Check (CRC).

• Encoding and decoding schemes, including Polar, Low-Density Parity Check (LDPC), and Turbo.

• Compression and decompression.

Before you begin
• Ensure you have installed all the tools listed in the Tools section of the RELEASE_NOTES.md file.

• To use the Cyclic Redundancy Check (CRC) functions, you must run the library on a core that
supports the AArch64 PMULL extension. If your machine supports the PMULL extension, pmull
is listed under the Features list given in the /proc/cpuinfo file.

Build Arm RAN Acceleration Library (ArmRAL)
1. Configure your environment. If you have multiple compilers installed on your machine, you can

set the CC and CXX environment variables to the path to the C compiler and C++ compiler that
you want to use.

If you are compiling natively on an AArch64-based machine, you must set suitable AArch64
native compilers. If you are cross-compiling for AArch64 on a machine that is based on a
different architecture, you must set suitable AArch64 cross-compilers.

Alternatively, your C and C++ compilers can be defined at build time using the -
DCMAKE_C_COMPILER and -DCMAKE_CXX_COMPILER CMake options. You can read more about these
options in the following section.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Note: If you are building the SVE or SVE2 version of the library, you must compile with GCC
11.1.0 or newer.

2. Build Arm RAN Acceleration Library. Navigate to the unpacked product directory and use the
following commands:

mkdir <build>
cd <build>
cmake {options} -DBUILD_TESTING=On -DBUILD_EXAMPLES=On -
DCMAKE_INSTALL_PREFIX=<install-dir> <path>
make

Substituting:

• <build> with a build directory name. The library builds in the specified directory.

• {options} with the CMake options to use to build the library.

• (Optional) <install-dir> with an installation directory name. When you install Arm RAN
Acceleration Library (see Install Arm RAN Acceleration Library), the library installs to the
specified directory. If <install-dir> is not specified, the default is /usr/local.

• <path> with the path to the root directory of the library source.

Notes:

• The -DBUILD_TESTING=On and -DBUILD_EXAMPLES=On options are required if you want to run
the library tests and benchmarks (-DBUILD_TESTING) and examples (-DBUILD_EXAMPLES).

• The -DCMAKE_INSTALL_PREFIX=<install-dir> option specifies the base directory used to
install the library. The library archive is installed to <install-dir>/lib and headers are
installed to <install-dir>/include. The default location is /usr/local.

• By default, a static library is built. To build a dynamic or a static library use the -
DBUILD_SHARED_LIBS={On|Off} option.

• By default, a Neon-optimized library is built. To specify which type of optimized library to
build (Neon, SVE, or SVE2), use the -DARMRAL_ARCH={NEON|SVE|SVE2} option.

Other common CMake {options} include:

• -DCMAKE_BUILD_TYPE={Debug|Release}

Specifies the set of flags used to build the library. The default is Release which gives the
optimal performance, however Debug might give a superior debugging experience. To
optimize the performance of Release builds, assertions are disabled. Assertions are enabled
in Debug builds.

Default is Release.

• -DCMAKE_C_COMPILER=<name>

Specifies the executable to use as the C compiler. If a compiler is not specified, the compiler
used defaults to the contents of the CC environment variable. If neither are set, CMake
attempts to use the generic system compiler cc. If <name> is not an absolute path, it must be
findable in your current environment PATH.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

• -DCMAKE_CXX_COMPILER=<name>

Specifies the executable to use as the C++ compiler. If a compiler is not specified, the
compiler used defaults to the contents of the CXX environment variable. If neither are set,
CMake attempts to use the generic system compiler c++. If <name> is not an absolute path,
it must be findable in your current environment PATH.

• -DBUILD_TESTING={On|Off}

Specifies whether to build (On), or not build (Off), the correctness tests and benchmarking
code for the library. -DBUILD_TESTING=On enables the check and bench targets described
later. If after you build the library, you want to run the included tests and benchmarks, you
must build your library with -DBUILD_TESTING=On.

Default is Off.

• -DARMRAL_TEST_RUNNER=<command>

Specifies a command that is used as a prefix before each test executable, such as where an
emulator might be required. To see an example where -DARMRAL_TEST_RUNNER is used, see
the Run the tests section.

• -DSTATIC_TESTING={On|Off}

Most C/C++ toolchains dynamically link to system libraries like libc.so , however this
dynamic link is unsuitable or unsupported in some use cases. Setting -DSTATIC_TESTING=On
forces the compiler to link the tests statically by appending the -static flag to the link line.

Default is Off.

• -DBUILD_EXAMPLES={On|Off}

Specifies whether to build (On), or not build (Off), the examples in the examples folder.
The example programs are simpler than the tests, and show how different parts of the
library can be used. -DBUILD_EXAMPLES=On enables the examples and run_examples targets
described later. If after you build the library, you want to run the included examples, you
must build your library with -DBUILD_EXAMPLES=On.

Default is Off.

• -DBUILD_SHARED_LIBS={On|Off}

Specifies whether to generate a shared library (On) or a static library (Off). To generate
libarmral.so, use -DBUILD_SHARED_LIBS=On. To generate libarmral.a, use -
DBUILD_SHARED_LIBS=Off.

Default is Off.

• -DARMRAL_ENABLE_WEXTRA={On|Off}

Use (On), or do not use (Off), -Wextra to build the library and tests. -Wextra enables
additional compiler warnings over the default -Wall. Disabled by default to aid compatibility
with untested and future compiler releases.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Default is Off.

• -DARMRAL_ENABLE_WERROR={On|Off}

Use (On), or do not use (Off), -Werror to build the library and tests. -Werror converts any
compiler warnings into errors. Disabled by default to aid compatibility with untested and
future compiler releases.

Default is Off.

• -DARMRAL_ENABLE_ASAN={On|Off}

Enable AddressSanitizer when building the library and tests. AddressSanitizer adds extra
runtime checks to enable you to catch memory errors, such as reading or writing past the
end of an array. -DARMRAL_ENABLE_ASAN=On incurs some reduction in runtime performance.

Default is Off.

• -DARMRAL_ENABLE_EFENCE={On|Off}

Enable Electric Fence when building the library and tests. Electric Fence will cause tests to
segmentation fault in the presence of memory errors, such as reading or writing past the
end of an array. This option allows you to test executables running under a test runner such
as QEMU.

Default is Off.

• -DARMRAL_ENABLE_COVERAGE={On|Off}

Enable (On), or disable (Off), code coverage instrumentation when building the library and
tests. When analyzing code coverage, it can be useful to enable debug information (-
DCMAKE_BUILD_TYPE=Debug) to ensure that compiler-optimized lines of code are not missed.
For more information, see the Code coverage section.

Default is Off.

• -DARMRAL_ARCH={NEON|SVE|SVE2}

Enable code that is optimized for a specific architecture: NEON, SVE, or SVE2. To use -
DARMRAL_ARCH=SVE, you must use a compiler that supports -march=armv8-a+sve. To use -
DARMRAL_ARCH=SVE2, you must use a compiler that supports -march=armv8-a+sve2.

Default is NEON.

• -DARMRAL_SEMIHOSTING={On|Off}

Enable (On), or disable (Off), building Arm RAN Acceleration library with semihosting
support enabled. When semihosting support is enabled, --specs=rdimon.specs is passed as
an additional flag during compilation and -lrdimon is added to the link line for testing and
benchmarking.

Note: If you use -DARMRAL_SEMIHOSTING=On you must also use a compiler with the aarch64-
none-elf target triple.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Default is Off.

• -DBUILD_SIMULATION={On|Off}

Enable (On), or disable (Off), building channel simulation programs. This allows you to
simulate Additive White Gaussian Noise (AWGN) channels in order to quantify the quality
of the forward error correction for a given encoding scheme and modulation scheme. For
more information, please see the section called Run the simulations.

Default is On.

Install Arm RAN Acceleration Library (ArmRAL)
After you have built Arm RAN Acceleration Library, you can install the library.

1. Ensure you have write access for the installation directories:

• For a default installation, you must have write access for /usr/local/lib/, for the library,
and /usr/local/include/, for the header files.

• For a custom installation, you must have write access for <install-dir>/lib/, for the
library, and <install-dir>/include/, for the header files.

2. Install the library. Run:

make install

An install creates an install_manifest.txt file in the library build directory.
install_manifest.txt lists the installation locations for the library and the header files.

Run the tests
The Arm RAN Acceleration Library package includes tests for the available functions in the library.

Note: To run the library tests, you must have built Arm RAN Acceleration Library with the -
DBUILD_TESTING=On CMake option.

To build and run the tests, use:

make check

If you are not developing on an AArch64 machine, or if you want to test the SVE or SVE2 version
of the library on an AArch64 machine that does not support the extension, you can use the -
DARMRAL_TEST_RUNNER option to prefix each test executable invocation with a wrapper. Example
wrappers include QEMU and Arm Instruction Emulator. For example, for QEMU you could
configure the library to prefix the tests with qemu-aarch64 using:

cmake .. -DBUILD_TESTING=On -DARMRAL_TEST_RUNNER=qemu-aarch64
make check

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Run the benchmarks
All the functions in Arm RAN Acceleration Library contain benchmarking code that contains preset
problem sizes.

Note: To run the benchmark tests, you must have built Arm RAN Acceleration Library with the
-DBUILD_TESTING=On CMake option. You must also have the executable perf available on your
system. This can be installed via your package manager.

To build and run the benchmarks, use:

make bench

Benchmark results print as JSON objects. To further process the results, you can collect the results
to a file or pipe the results into other scripts. Alternatively, the Makefile target:

make bench_excel_summary

will run the benchmarks and produce an Excel spreadsheet of the results, in addition to printing
them as JSON objects. To install the required Python packages for this target, use:

pip install -r <path>/python/requirements.txt

where <path> is the path to the root directory of the library source.

Run the examples
The source for the example programs is available in the examples directory, found in the ArmRAL
root directory.

Note: To compile and execute the example programs, you must have built Arm RAN Acceleration
Library with the -DBUILD_EXAMPLES=On CMake option.

• To both build and run the example programs, use:

make run_examples

• To only build the example programs so that, for example, you can later choose which example
programs to specifically run, use:

make examples

The built binaries can be found in the examples subdirectory of the build directory.

More information about the examples that are available in Arm RAN Acceleration Library, and how
to use the library in general, is available in Use Arm RAN Acceleration Library (ArmRAL), see docs/
examples.md.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Run the simulations
You can evaluate the quality of the error correction of the different encoding schemes against
the signal-to-noise ratio using a set of noisy channel simulation programs. ArmRAL currently only
supports zero-mean Additive White Gaussian Noise (AWGN) channel simulation.

Note: The simulation programs do not simulate a full codec, and are intended to be used to
evaluate just the forward error correction properties of the encoding and decoding of a single
code block. We do not consider channel properties. The source code for the simulations and
documentation for their use are available in the simulation directory, found in the ArmRAL root
directory.

Note: To compile and execute the simulation programs, you must have built Arm RAN Acceleration
Library with the -DBUILD_SIMULATION=On CMake option. This option is set to On by default.

The following assumes that you are running commands from the build directory.

• To build all the simulation programs, use:

make simulation

The built binaries can be found in the simulation subdirectory of the build directory.

More information about the simulation programs that are available in Arm RAN Acceleration Library
is available in simulation/README.md.

Code coverage
You can generate information that describes how much of the library is used by your application,
or is covered by the included tests. To collect code coverage information, you must have built Arm
RAN Acceleration Library with -DARMRAL_ENABLE_COVERAGE=On.

An example workflow could be:

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Debug -DBUILD_TESTING=On -DARMRAL_ENABLE_COVERAGE=On
make check
gcovr --html-details index.html -r ..

Here, the -r .. flag points gcovr to the ArmRAL source tree, rather than attempting to find the
source in the build directory. The gcovr command generates a series of HTML pages, viewable with
a web browser, that give information on the lines of code executed by the test suite.

To generate a plain-text summary about the lines of code executed by the test suite, use:

gcovr -r ..

If you run into an issue when running the gcovr command, you might need to update to a newer
version of gcovr. To find out what versions of gcovr have been tested with ArmRAL, see the Tools
section of the RELEASE_NOTES.md file.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Documentation
The Arm RAN Acceleration Library Reference Guide is available online at:

https://developer.arm.com/documentation/102249/2407

If you have Doxygen installed on your system, you can build a local HTML version of the Arm RAN
Acceleration Library documentation using CMake.

To build the documentation, run:

make docs

The HTML builds and is output to docs/html/. To view the documentation, open the index.html
file in a browser.

Uninstall Arm RAN Acceleration Library
To uninstall Arm RAN Acceleration Library:

1. Navigate to the library build directory (where you previously ran make install)

2. Run:

make uninstall

make uninstall removes all the files listed in install_manifest.txt and any empty directories.
make uninstall also attempts to remove any directories which might have been created.

Note: To only remove the installed files (but not any directories), instead run:

cat install_manifest.txt | xargs rm

2.2 Get started with ArmRAL noisy channel simulation

Introduction
This directory contains utilities and programs that you can use to evaluate the error-correction
performance of the coding schemes provided in Arm RAN Acceleration Library (ArmRAL). ArmRAL
supports three different coding schemes: Polar, Turbo, and Low-Density Parity Check (LDPC) codes.
In the presence of noise on a channel, it is expected that some messages may not be decoded
perfectly. In the utilities provided we consider that noise on a channel is zero-mean Additive White
Gaussian Noise (AWGN).

The remainder of this document is structured as follows. To start with you will find a mathematical
description of the AWGN which is simulated. The definition of what is meant by bit and block error

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

rates is then given, and we conclude with instructions for how to use the utilities contained in this
folder.

Additive White Gaussian Noise (AWGN) Simulation
Noisy channels are simulated by adding noise to the symbols generated by the modulation routine.
This simulates that a signal is sent over a noisy network. These noisy symbols are demodulated by
the demodulation routine. In zero-mean AWGN simulations a zero-mean white Gaussian noise with
prescribed standard deviation r is added to the symbols.

The simulation programs supplied as part of the ArmRAL package provide control over the Signal-
to-Noise Ratio (SNR) expressed in decibels (dB), which is

SNR = 10 * log10(S / R)

where R is the noise power and S is the signal power. S=1 is assumed.

The simulator samples noise with power (or mean squared amplitude) R from a normal distribution
with zero-mean and standard deviation r equal to

r = sqrt(R / 2)

The simulator generates a Gaussian noise with standard deviation r and zero-mean using a linear
congruential pseudo-random number generator. It is then converted to 16-bit fixed-point (Q2.13)
format, with saturation. The noise is then applied to the amplitude and phase of the symbols
generated by the modulation scheme (QAM-type). We then attempt to decode the noisy symbols.

The simulator runs a total of 10^7 trials in parallel over a maximum of 100 threads. During each
trial the SNR starts at 0dB, which means S=R=1, and increases in steps of 0.5dB until convergence
is reached. Convergence means that for all trials the bit error rate is lower than a hard coded
threshold. This tolerance is 0 for polar and 1e-5 for ldpc and turbo codes.

The x-axis of the graphs which are plotted shows values of Eb / N0, which is the noise spectral
density per energy per bit. This can be directly calculated from the SNR as

SNR = rho * Eb / N0

for spectral efficiency rho. To calculate the spectral efficiency, the modulation scheme and
bandwidth of the channel must be known, and passed to the simulation program.

The simulation programs follow the description of coding and modulation schemes provided in
3GPP Technical Specification (TS) 36.12, Section 5.1.3 (for Turbo coding) and 3GPP TS 38.212,
Section 5.3 (for Low-Density Parity Check (LDPC) and Polar coding). We make the following further
assumptions:

1. There is no distinction of Uplink/Downlink when it comes to selecting the values for the
parameters.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

2. A transport block contains a single code block. Encoding and decoding is performed for a single
code block only.

3. No Cyclic Redundancy Check (CRC) is performed.

The simulator computes the error rates in terms of bits or blocks by comparing the input bits
of encoding and the output decoded bits. The input bits are generated randomly using a linear
congruential generator.

The bit error rate is computed as the ratio of the number of incorrect bits nb and the product of the
number of information bits per block k and the number of blocks.

ber = nb / (k * number_of_blocks)

The block error rate is computed as the ratio of the number of incorrectly decode blocks nbl and
the number of blocks. An incorrectly decoded block is a block with at least one incorrectly decoded
bit.

bler = nbl / number_of_blocks

Get started with simulation programs
Note: To compile and execute the simulation programs, you must have built ArmRAL with the -
DBUILD_SIMULATION=On CMake option.

The following assumes that you are running commands from the build directory.

• To build all the simulation programs, use:

make simulation

The built binaries can be found in the simulation subdirectory of the build directory.

In the following, <code> can be one of the supported coding schemes (convolutional, ldpc, polar
or turbo). Set <code> to modulation for simulation without a coding scheme.

• To build the AWGN channel simulation for a given coding scheme <code>, use:

make <code>_awgn

• To run the AWGN channel simulation for <code> with arguments <args>, use:

./simulation/<code>_awgn <args>

• To get a list of possible input arguments and associated documentation, use the same command
without arguments:

./simulation/<code>_awgn

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

• Executing a simulation will write JSON output to stdout. The output contains information on
the observed bit and block error rates for the input parameters, and varying Eb / N0 ratios. This
data can be plotted by making use of the Python scripts described in the section on drawing
performance charts.

Modulation schemes
All simulators use modulation and demodulation, respectively, before and after adding noise to the
channel.

The modulation scheme is not specific to the coding scheme. You can select the modulation
scheme using the -m option associated with the <mod_type> parameter.

Valid <mod_type> parameters are:

0: QPSK
1: 16QAM
2: 64QAM
3: 256QAM

In order to get best error correction performance out of a simulation, the programs allow users to
pass a scaling parameter to the simulator called <demod_ulp>. The simulator uses this parameter
during demodulation to control the range of the generated log-likelihood ratios (LLRs). A default
value for <demod_ulp> of 128 is used in the case that it is not specified. You will find that the best
performance of decoding relies on a good choice of <demod_ulp>, and you are encouraged to
provide a value for this parameter.

Simulation program for modulation
The program modulation_awgn simulates the transmission of data without performing any forward
error correction. Data is modulated, then has additive white Gaussian noise (AWGN) added to
it, before demodulation makes a hard decision. Errors in bits and blocks are counted from the
hard decision made in demodulation. This output can be used to validate that the forward error
correction schemes are working as expected.

You can run the modulation AWGN simulation with the following parameters:

modulation_awgn -k num_info_bits -m mod_type [-u demod_ulp]

For each value of the Eb/N0 ratio used, a JSON record is written to stdout. The JSON record
contains the following fields:

{
 "k": <num_info_bits>,
 "mod_type": <mod_type>,
 "ulp": <demod_ulp>,
 "Eb/N0": <eb_n0>,
 "snr": <snr>,
 "bler": <bler>,
 "ber": <ber>
}

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Simulation programs for individual coding schemes
In this section, we give the definition of some parameters used in the programs associated with
each coding scheme.

You can find more information in the help text of each program. To show the help text use

<sim_name> --help

where <sim_name> is one of polar_awgn, turbo_awgn, ldpc_awgn , or convolutional_awgn. The help
text of the programs gives more detailed descriptions on the parameters than you will find in the
sections below. The information below helps you to run the simulation programs and understand
their output.

You can run the polar coding Additive White Gaussian Noise (AWGN) simulation with the
following parameters:

polar_awgn -k num_info_bits -e num_trans_bits
 -m mod_type -i i_bil [-u demod_ulp] [-l list_size]

For each value of the Eb / N0 ratio used, a JSON record is written to stdout. The JSON record
contains the following fields:

{
 "len": <codeword_length>,
 "e": <num_trans_bits>,
 "k": <num_info_bits>,
 "l": <list_size>,
 "mod_type": <mod_type>,
 "i_bil": <i_bil_type>
 "ulp": <demod_ulp>,
 "Eb/N0": <eb_n0>,
 "snr": <snr>,
 "bler": <bler>,
 "ber": <ber>
}

You can run the turbo coding Additive White Gaussian Noise (AWGN) simulation with the
following parameters:

turbo_awgn -k num_bits -m mod_type -e num_matched_bits
 [-r rv] [-u demod_ulp] [-i iter_max]

For each value of the Eb / N0 ratio used, a JSON record is written to stdout. The JSON record
contains the following fields:

{
 "k": <num_bits>,
 "e": <num_matched_bits>,
 "mod_type": <mod_type>,
 "ulp": <demod_ulp>,
 "Eb/N0": <eb_n0>,
 "snr": <snr>,
 "bler": <bler>,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

 "ber": <ber>
}

You can run the LDPC coding Additive White Gaussian Noise (AWGN) simulation with the following
parameters:

ldpc_awgn -z lifting_size -b base_graph -m mod_type
 [-r redundancy_version] [-u demod_ulp] [-f len_filler_bits]

For each value of the Eb / N0 ratio used, a JSON record is written to stdout. The JSON record
contains the following fields:

{
 "n": <input_length>,
 "bg": <base_graph>,
 "mod_type": <mod_type>,
 "rv ": <redundancy_version>,
 "Eb/N0": <eb_n0>,
 "snr": <snr>,
 "ulp": <demod_ulp>,
 "len_filler_bits": <len_filler_bits>,
 "bler": <bler>,
 "ber": <ber>
}

You can run the convolutional coding Additive White Gaussian Noise (AWGN) simulation with the
following parameters:

convolutional_awgn -k num_bits -m mod_type [-u demod_ulp] [-i iter_max]

For each value of the Eb/N0 ratio used, a JSON record is written to stdout. The JSON record
contains the following fields:

{
 "k": <num_bits>,
 "mod_type": <mod_type>,
 "iter_max": <iter_max>,
 "ulp": <demod_ulp>,
 "Eb/N0": <eb_n0>,
 "snr": <snr>,
 "bler": <bler>,
 "ber": <ber>
}

Drawing performance charts
The simulator allows users to evaluate the performance of a coding scheme. In the context of noisy
channels, performance is evaluated in terms of output error rates for a given input Eb / N0 ratio or
signal-to-noise ratio SNR.

The simulation programs return both bit and block error rates in JSON-format along with other
quantities of interest, like the modulation scheme or other code-specific parameters.

The performance is usually represented as a graph of error rates against the Eb / N0 ratio.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Note: To plot the results of the simulation program, you may use a provided Python script (see the
description below for example usage). Running these scripts requires a recent version of Python.
ArmRAL has been tested with Python 3.8.5.

• To parse the output of the simulation programs and plot error rates against the Eb / N0 ratio
with arguments <args>, use:

./simulation/<code>_awgn/<code>_error_rate.py <args>

• To plot error rates against the SNR with arguments <args>, use:

./simulation/<code>_awgn/<code>_error_rate.py --x-unit snr <args>

• To get a list of possible input arguments and associated documentation for the Python script,
use:

./simulation/<code>_awgn/<code>_error_rate.py --help

Drawing capacity charts
The simulator allows users to draw the data rates of each modulation and compare them to the
capacity of the AWGN channel (the Shannon limit).

• To plot the rates against the Eb / N0 ratio, use:

./simulation/capacity/capacity.py <args>

• To get a list of possible input arguments and associated documentation for the Python script,
use:

./simulation/capacity/capacity.py --help

2.3 Use Arm RAN Acceleration Library (ArmRAL)
This topic describes how to compile and link your application code to Arm RAN Acceleration
Library (ArmRAL).

Before you begin
• Ensure you have a recent version of a C/C++ compiler, such as GCC. See the Release Notes for

a full list of supported GCC versions.

If required, configure your environment. If you have multiple compilers installed on your
machine, you can set the CC and CXX environment variables to the path to the C compiler and C
++ compiler that you want to use.

• You must build Arm RAN Acceleration Library before you can use it in your application
development, or to run the example programs.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

To build the library, use:

git clone -b armral-24.07 https://git.gitlab.arm.com/networking/ral.git
mkdir ral/build
cd ral/build
cmake ..
make -j

• To use the Arm RAN Acceleration Library functions in your application development, include
the armral.h header file in your C or C++ source code.

#include "armral.h"

Procedure
1. Build and link your program with Arm RAN Acceleration Library. For GCC, use:

gcc -c -o <code-filename>.o <code-filename>.c -I <path/to/armral/source>/include
 -O2
gcc -o <binary-filename> <code-filename>.o <path/to/armral/build>/libarmral.a -lm

Substituting:

• <code-filename> with the name of your own source code file

• <path/to/armral/source> with the path to your copy of the Arm RAN Acceleration Library
source code

• <path/to/armral/build> with the path to your build of Arm RAN Acceleration Library, as
appropriate

2. Run your binary:

./<binary-filename>

Example: Run 'fft_cf32_example.c'
In this example, we use Arm RAN Acceleration Library to compute and solve a simple Fast Fourier
Transform (FFT) problem.

The following source file can be found in the ArmRAL source directory under examples/
fft_cf32_example.c:

/*
 Arm RAN Acceleration Library
 SPDX-FileCopyrightText: Copyright 2020-2024 Arm Limited and/or its affiliates
 <open-source-office@arm.com>
*/
#include "armral.h"

#include <stdio.h>
#include <stdlib.h>

// This function shows how to create a plan and execute an FFT using the ArmRAL
// library
static void example_fft_plan_and_execute(int n) {

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

 armral_fft_plan_t *p;
 printf("Planning FFT of length %d\n", n);
 // In the planning, the direction of the FFT is indicated by the last
 // parameter, which is either -1 (for forwards) or 1 (for backwards)
 armral_fft_create_plan_cf32(&p, n, -1);

 // Create the data that is to be used in FFTs. The input array (x) needs to
 // be initialized. The output array (y) does not.
 armral_cmplx_f32_t *x =
 (armral_cmplx_f32_t *)malloc(n * sizeof(armral_cmplx_f32_t));
 armral_cmplx_f32_t *y =
 (armral_cmplx_f32_t *)malloc(n * sizeof(armral_cmplx_f32_t));
 for (int i = 0; i < n; ++i) {
 x[i] = (armral_cmplx_f32_t){(float)i, (float)-i};
 y[i] = (armral_cmplx_f32_t){0.F, 0.F};
 }

 printf("Input Data:\n");
 for (int i = 0; i < n; ++i) {
 printf(" (%f + %fi)\n", x[i].re, x[i].im);
 }
 printf("\n");

 // The FFTs are executed with different input and output data. The length
 // of the input and output arrays needs to be at least the same as that of
 // the length parameter with which the plan was created. No checks are
 // performed that this is the case in the library.
 printf("Performing FFT of length %d\n", n);
 armral_fft_execute_cf32(p, x, y);

 // A plan can be re-used to solve other FFTs, but once a plan is no longer
 // needed, it needs to be destroyed to avoid leaking memory.
 printf("Destroying plan for FFT of length %d\n", n);
 armral_fft_destroy_plan_cf32(&p);

 printf("Result:\n");
 for (int i = 0; i < n; ++i) {
 printf(" (%f + %fi)\n", y[i].re, y[i].im);
 }
 printf("\n");

 // Need to free the pointers to data. These are not owned by the FFT plan,
 // and it is the user's responsibility to manage the memory.
 free(x);
 free(y);
}

int main(int argc, char **argv) {
 if (argc < 2) {
 printf("Usage: %s len\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 int n = atoi(argv[1]);
 if (n < 1) {
 printf("Length parameter must be positive and non-zero\n");
 exit(EXIT_FAILURE);
 }

 example_fft_plan_and_execute(n);
}

1. To build and link the example program with GCC, use:

gcc -c -o fft_cf32_example.o fft_cf32_example.c -I <path/to/armral/source>/
include -O2
gcc -o fft_cf32_example fft_cf32_example.o <path/to/armral/build>/libarmral.a -lm

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

Substituting:

• <path/to/armral/source> with the path to your copy of the Arm RAN Acceleration Library
source code

• <path/to/armral/build> with the path to your build of Arm RAN Acceleration Library, as
appropriate

Note: For this example, there is a requirement to link against libm (-lm). libm is used in several
functions in Arm RAN Acceleration Library, and so might be required for your own programs.

An executable called fft_cf32_example is built.

2. Run the fft_cf32_example executable. To input the length of FFT to compute, the example
program takes the length as an argument. To run with the length of FFT set to 5, use:

./fft_cf32_example 5

which gives:

Planning FFT of length 5
Input Data:
 (0.000000 + 0.000000i)
 (1.000000 + -1.000000i)
 (2.000000 + -2.000000i)
 (3.000000 + -3.000000i)
 (4.000000 + -4.000000i)

Performing FFT of length 5
Destroying plan for FFT of length 5
Result:
 (10.000000 + -10.000000i)
 (0.940955 + 5.940955i)
 (-1.687701 + 3.312299i)
 (-3.312299 + 1.687701i)
 (-5.940955 + -0.940955i)

Other examples: block-float, modulation, and polar examples
Arm RAN Acceleration Library also includes block-float, modulation, and polar examples. These
example files can also be found in the /examples/ directory.

In addition to the fft_cf32_example.c FFT example, the following examples are included:

• block_float_9b_example.c

Fills a single Resource Block (RB) with a set of random numbers and uses the block
floating-point compression API to compress the numbers into a 9-bit compressed format.
block_float_9b_example.c then uses the decompression function to convert the numbers to
their original format, then returns the numbers side-by-side for comparison.

The example binary does not take an argument. For example, to run a compiled binary of the
block_float_9b_example.c, called, block_float_9b_example, use:

./block_float_9b_example

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Tutorials

• modulation_example.c

Uses the modulation and demodulation API to simulate applying 256QAM modulation to an
array of random input bits. To show that taking a hard-decision with no noise applied gives the
original input, modulation_example.c then demodulates the data, before returning the values.

The example binary does not take an argument. For example, to run a compiled binary of the
modulation_example.c, called, modulation_example, use:

./modulation_example

• polar_example.cpp

Uses the polar coding and modulation APIs to simulate a complete flow from an original input
codeword to the final polar-decoded output. In particular, the Polar encoder and decoder
are used, as well as the subchannel interleaving functionality. Example implementations of
other parts of the coding process, such as sub-block interleaving and rate-matching, are also
provided.

The example binary takes three arguments, in the following order:

1. The polar code size (N)

2. The rate-matched codeword length (E)

3. The number of information bits (K)

For example, to run a compiled binary of the polar_example.cpp, called, polar_example, with
an input array of N = 128, E = 100, and K = 35, use:

./polar_example 128 100 35

Each example can be run according to the Procedure described above, as demonstrated in the
Example: Run 'fft_cf32_example.c' section.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3. Functions
This section describes the functions that are available in Arm RAN Acceleration Library.

3.1 Vector functions
Functions for working with vectors.

Functions are provided for working with arrays of 16-bit integers (Q15 format) and 32-bit floating-
point numbers. In particular:

• Vector element-wise multiplication (vector multiply)

• Vector dot product

3.1.1 Vector Multiply

Multiplies a complex vector by another complex vector and generates a complex result.

The complex arrays have a total of 2*n real values.

The vector multiplication algorithm is:

for (n = 0; n < numSamples; n++) {
 pDst[2n+0] = pSrcA[2n+0] * pSrcB[2n+0] - pSrcA[2n+1] * pSrcB[2n+1];
 pDst[2n+1] = pSrcA[2n+0] * pSrcB[2n+1] + pSrcA[2n+1] * pSrcB[2n+0];
}

3.1.1.1 armral_cmplx_vecmul_i16

This function performs the element-wise complex multiplication between two complex input
sequences, A and B, of the same length, (N).

The implementation uses saturating arithmetic. Intermediate operations are performed on 32-bit
variables in Q31 format. To convert the final result back into Q15 format, the final result is right-
shifted and narrowed to 16 bits.

C[n] = A[n] * B[n], where 0 ≤ n < N-1

where:

Re{C[n]} = Re{A[n]}*Re{B[n]} - Im{A[n]}*Im{B[n]}
Im{C[n]} = Re{A[n]}*Im{B[n]} + Im{A[n]}*Re{B[n]}

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Both input and output arrays populate with int16_t elements in Q15 format, with interleaved real
and imaginary components:

x = {x[0], x[1], ..., x[N-1]}

where:

x[i] = (Re(x[i]), Im(x[i])), 0 ≤ i < N

Syntax
Defined in armral.h on line 306:

armral_status armral_cmplx_vecmul_i16(uint32_t n, const armral_cmplx_int16_t *a,
 const armral_cmplx_int16_t *b,
 armral_cmplx_int16_t *c);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the first input vector.

b

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the second input vector.

c

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output vector.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.1.1.2 armral_cmplx_vecmul_i16_2

This function performs the element-wise complex multiplication between two complex [I and Q
separated] input sequences, A and B, of the same length (N).

The implementation uses saturating arithmetic. Intermediate operations are performed on 32-bit
variables in Q31 format. To convert the final result back into Q15 format, the final result is right-
shifted and narrowed to 16 bits.

C[n] = A[n] * B[n], where 0 ≤ n < N-1

where:

Re{C[n]} = Re{A[n]}*Re{B[n]} - Im{A[n]}*Im{B[n]}
Im{C[n]} = Re{A[n]}*Im{B[n]} + Im{A[n]}*Re{B[n]}

Both input and output arrays populate with int16_t elements in Q15 format, with separate arrays
for real and imaginary components:

Re(x) = {Re(x[0]), Re(x[1]), ..., Re(x[N-1])}
Im(x) = {Im(x[0]), Im(x[1]), ..., Im(x[N-1])}

Syntax
Defined in armral.h on line 347:

armral_status armral_cmplx_vecmul_i16_2(uint32_t n, const int16_t *a_re,
 const int16_t *a_im,
 const int16_t *b_re,
 const int16_t *b_im, int16_t *c_re,
 int16_t *c_im);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

a_re

A read-only parameter of type const int16_t *.

Points to the real part of the first input vector.

a_im

A read-only parameter of type const int16_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the imaginary part of the first input vector.

b_re

A read-only parameter of type const int16_t *.

Points to the real part of the second input vector.

b_im

A read-only parameter of type const int16_t *.

Points to the imaginary part of the second input vector.

c_re

A write-only parameter of type int16_t *.

Points to the real part of the output result.

c_im

A write-only parameter of type int16_t *.

Points to the imaginary part of the output result.

3.1.1.3 armral_cmplx_vecmul_f32

This function performs the element-wise complex multiplication between two complex input
sequences, A and B, of the same length (N).

C[n] = A[n] * B[n], where 0 ≤ n < N-1

where:

Re{C[n]} = Re{A[n]}*Re{B[n]} - Im{A[n]}*Im{B[n]}
Im{C[n]} = Re{A[n]}*Im{B[n]} + Im{A[n]}*Re{B[n]}

Both input and output arrays populate with 32-bit float elements, with interleaved real and
imaginary components:

x = {x[0], x[1], ..., x[N-1]}

where:

x[i] = (Re(x[i]), Im(x[i])), 0 ≤ i < N

Syntax
Defined in armral.h on line 387:

armral_status armral_cmplx_vecmul_f32(uint32_t n, const armral_cmplx_f32_t *a,
 const armral_cmplx_f32_t *b,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 armral_cmplx_f32_t *c);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the first input vector.

b

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the second input vector.

c

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output vector.

3.1.1.4 armral_cmplx_vecmul_f32_2

This function performs the element-wise complex multiplication between two complex [I and Q
separated] input sequences, A and B, of the same length (N).

C[n] = A[n] * B[n], where 0 ≤ n < N-1

where:

Re{C[n]} = Re{A[n]}*Re{B[n]} - Im{A[n]}*Im{B[n]}
Im{C[n]} = Re{A[n]}*Im{B[n]} + Im{A[n]}*Re{B[n]}

Both input and output arrays populate with 32-bit float elements, with separate arrays for real and
imaginary components:

Re(x) = {Re(x[0]), Re(x[1]), ..., Re(x[N-1])}
Im(x) = {Im(x[0]), Im(x[1]), ..., Im(x[N-1])}

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 424:

armral_status armral_cmplx_vecmul_f32_2(uint32_t n, const float32_t *a_re,
 const float32_t *a_im,
 const float32_t *b_re,
 const float32_t *b_im, float32_t *c_re,
 float32_t *c_im);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

a_re

A read-only parameter of type const float32_t *.

Points to the real part of the first input vector.

a_im

A read-only parameter of type const float32_t *.

Points to the imaginary part of the first input vector.

b_re

A read-only parameter of type const float32_t *.

Points to the real part of the second input vector.

b_im

A read-only parameter of type const float32_t *.

Points to the imaginary part of the second input vector.

c_re

A write-only parameter of type float32_t *.

Points to the real part of the output result.

c_im

A write-only parameter of type float32_t *.

Points to the imaginary part of the output result.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.1.2 Vector Dot Product

Computes the dot product of two complex vectors.

The vectors are multiplied element-by-element and then summed.

pSrcA points to the first complex input vector and pSrcB points to the second complex input vector.
n specifies the number of complex samples. The data in each array is stored as armral_cmplx_f32_t
elements, with separate arrays for real and imaginary components:

(real, imag, real, imag, ...)

Each array has a total of n complex values.

The dot product algorithm is:

real_result = 0;
imag_result = 0;
for (n = 0; n < numSamples; n++) {
 real_result += p_src_a[2n+0]*p_src_b[2n+0] - p_src_a[2n+1]*p_src_b[2n+1];
 imag_result += p_src_a[2n+0]*p_src_b[2n+1] + p_src_a[2n+1]*p_src_b[2n+0];
}

3.1.2.1 armral_cmplx_vecdot_f32

This function computes the dot product between a pair of arrays of complex values. The arrays
are multiplied element-by-element and then summed. Array elements are assumed to be complex
float32 and with interleaved real and imaginary parts.

Syntax
Defined in armral.h on line 474:

armral_status armral_cmplx_vecdot_f32(uint32_t n,
 const armral_cmplx_f32_t *p_src_a,
 const armral_cmplx_f32_t *p_src_b,
 armral_cmplx_f32_t *p_src_c);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the first complex input vector.

p_src_b

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the second complex input vector.

p_src_c

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output complex vector.

3.1.2.2 armral_cmplx_vecdot_f32_2

This function computes the dot product between a pair of arrays of complex values. The arrays are
multiplied element-by-element and then summed. Array elements are assumed to be 32-bit floats,
and separate arrays are used for the real and imaginary parts of the input data.

Syntax
Defined in armral.h on line 496:

armral_status armral_cmplx_vecdot_f32_2(uint32_t n, const float32_t *p_src_a_re,
 const float32_t *p_src_a_im,
 const float32_t *p_src_b_re,
 const float32_t *p_src_b_im,
 float32_t *p_src_c_re,
 float32_t *p_src_c_im);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

p_src_a_re

A read-only parameter of type const float32_t *.

Points to the real part of the first input vector.

p_src_a_im

A read-only parameter of type const float32_t *.

Points to the imaginary part of the first input vector.

p_src_b_re

A read-only parameter of type const float32_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the real part of the second input vector.

p_src_b_im

A read-only parameter of type const float32_t *.

Points to the imaginary part of the second input vector.

p_src_c_re

A write-only parameter of type float32_t *.

Points to the real part of the output result.

p_src_c_im

A write-only parameter of type float32_t *.

Points to the imaginary part of the output result.

3.1.2.3 armral_cmplx_vecdot_i16

This function computes the dot product between a pair of arrays of complex values. The arrays
are multiplied element-by-element and then summed. Array elements are assumed to be complex
int16 in Q15 format and interleaved.

To avoid overflow issues input values are internally extended to 32-bit variables and all
intermediate calculations results are stored in 64-bit internal variables. To get the final result in Q15
and to avoid overflow, the accumulator narrows to 16 bits with saturation.

Syntax
Defined in armral.h on line 519:

armral_status armral_cmplx_vecdot_i16(uint32_t n,
 const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_b,
 armral_cmplx_int16_t *p_src_c);

Returns
An armral_status value that indicates success or failure.

Parameters
p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the first input vector.

p_src_b

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the second input vector.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

n

A read-only parameter of type uint32_t.

The number of samples in each vector.

p_src_c

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex result.

3.1.2.4 armral_cmplx_vecdot_i16_2

This function computes the dot product between a pair of arrays of complex values. The arrays are
multiplied element-by-element and then summed. Array elements are assumed to be int16 in Q15
format and separate arrays are used for real parts and imaginary parts of the input data.

To avoid overflow issues input values are internally extended to 32-bit variables and all
intermediate calculations results are stored in 64-bit internal variables. To get the final result in Q15
and to avoid overflow, the accumulator narrows to 16 bits with saturation.

Syntax
Defined in armral.h on line 544:

armral_status armral_cmplx_vecdot_i16_2(uint32_t n, const int16_t *p_src_a_re,
 const int16_t *p_src_a_im,
 const int16_t *p_src_b_re,
 const int16_t *p_src_b_im,
 int16_t *p_src_c_re,
 int16_t *p_src_c_im);

Returns
An armral_status value that indicates success or failure.

Parameters
p_src_a_re

A read-only parameter of type const int16_t *.

Points to the real part of first input vector.

p_src_a_im

A read-only parameter of type const int16_t *.

Points to the imag part of first input vector.

p_src_b_re

A read-only parameter of type const int16_t *.

Points to the real part of second input vector.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_src_b_im

A read-only parameter of type const int16_t *.

Points to the imag part of second input vector.

n

A read-only parameter of type uint32_t.

The number of samples in each vector.

p_src_c_re

A write-only parameter of type int16_t *.

Points to the real part of output complex result.

p_src_c_im

A write-only parameter of type int16_t *.

Points to the imag part of output complex result.

3.1.2.5 armral_cmplx_vecdot_i16_32bit

This function computes the dot product between a pair of arrays of complex values. The arrays
are multiplied element-by-element and then summed. Array elements are assumed to be complex
int16 in Q15 format and interleaved.

All intermediate calculations results are stored in 32-bit internal variables, saturating the value to
prevent overflow. To get the final result in Q15 and to avoid overflow, the accumulator narrows to
16 bits with saturation.

Syntax
Defined in armral.h on line 567:

armral_status armral_cmplx_vecdot_i16_32bit(uint32_t n,
 const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_b,
 armral_cmplx_int16_t *p_src_c);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the first input vector.

p_src_b

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the second input vector.

p_src_c

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex result.

3.1.2.6 armral_cmplx_vecdot_i16_2_32bit

This function computes the dot product between a pair of arrays of complex values. The arrays are
multiplied element-by-element and then summed.

Array elements are assumed to be int16 in Q15 format and separate arrays are used for both the
real parts and imaginary parts of the input data. All intermediate calculation results are stored in
32-bit internal variables, saturating the value to prevent overflow. To get the final result in Q15 and
to avoid overflow, the accumulator narrows to 16 bits with saturation.

Syntax
Defined in armral.h on line 593:

armral_status armral_cmplx_vecdot_i16_2_32bit(
 uint32_t n, const int16_t *p_src_a_re, const int16_t *p_src_a_im,
 const int16_t *p_src_b_re, const int16_t *p_src_b_im, int16_t *p_src_c_re,
 int16_t *p_src_c_im);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of samples in each vector.

p_src_a_re

A read-only parameter of type const int16_t *.

Points to the real part of the first input vector.

p_src_a_im

A read-only parameter of type const int16_t *.

Points to the imaginary part of the first input vector.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_src_b_re

A read-only parameter of type const int16_t *.

Points to the real part of the second input vector.

p_src_b_im

A read-only parameter of type const int16_t *.

Points to the imaginary part of the second input vector.

p_src_c_re

A write-only parameter of type int16_t *.

Points to the real part of the output result.

p_src_c_im

A write-only parameter of type int16_t *.

Points to the imaginary part of the output result.

3.2 Matrix functions
Functions for working with matrices.

Functions are provided for working with matrices, including:

• Matrix-vector multiplication for 16-bit integer datatypes.

• Matrix-matrix multiplication. Supports both 16-bit integer and 32-bit floating-point datatypes.
In addition, the solve functions support specifying a custom Q-format specifier for both input
and output matrices, instead of assuming that the input is in Q15 format.

• Matrix inversion. Supports the 32-bit floating-point datatype.

3.2.1 Complex Matrix-Vector Multiplication

Computes a matrix-by-vector multiplication, storing the result in a destination vector.

The destination vector is only written to and can be uninitialized.

3.2.1.1 armral_cmplx_mat_vec_mult_i16

This function performs the multiplication y = A x for matrix A and vectors x and y, and assumes
that:

• Matrix and vector elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

A 64-bit Q32.31 accumulator is used internally. If you do not need such a large range, consider
using armral_cmplx_mat_vec_mult_i16_32bit instead. To get the final result in Q15 and to avoid
overflow, the accumulator narrows to 16 bits with saturation.

Syntax
Defined in armral.h on line 631:

armral_status armral_cmplx_mat_vec_mult_i16(uint16_t m, uint16_t n,
 const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_x,
 armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows in matrix A and the length of the output vector y.

n

A read-only parameter of type uint16_t.

The number of columns in matrix A and the length of the input vector x .

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input matrix A.

p_src_x

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input vector x.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output vector y.

3.2.1.2 armral_cmplx_mat_vec_mult_batch_i16

This function performs matrix-vector multiplication for a batch of M -by- N matrices and length N
input vectors. Each multiplication is of the form y = A x for a matrix A and vectors x and y, and
assumes that:

• Matrix and vector elements are complex int16 in Q15 format.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

• Matrices are stored in memory in row-major order.

The matrix elements are interleaved such that all elements for a particular location within the
matrix are stored together. This means that, for instance, the first num_mats complex numbers
stored are the first element of each of the matrices in the batch. The offset to the next location in
the same matrix is given by the num_mats batch size:

{Re(0), Im(0), Re(1), Im(1), Re(2), Im(2), ...}

The same layout is used for vector elements, except that the offset to the next vector element is
num_mats * num_vecs_per_mat.

The total number of elements in the batch (num_mats * num_vecs_per_mat) must be a multiple of
12. The number of vectors per matrix must be either 1 or a multiple of 4.

A 64-bit Q32.31 accumulator is used internally. If you do not need such a large range, consider
using armral_cmplx_mat_vec_mult_batch_i16_32bit instead. To get the final result in Q15 and to
avoid overflow, the accumulator narrows to 16 bits with saturation.

Syntax
Defined in armral.h on line 680:

armral_status armral_cmplx_mat_vec_mult_batch_i16(
 uint16_t num_mats, uint16_t num_vecs_per_mat, uint16_t m, uint16_t n,
 const armral_cmplx_int16_t *p_src_a, const armral_cmplx_int16_t *p_src_x,
 armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint16_t.

The number of input matrices.

num_vecs_per_mat

A read-only parameter of type uint16_t.

The number of input and output vectors for each input matrix. The total number of input
vectors is num_mats * num_vecs_per_mat. There are the same number of output vectors.

m

A read-only parameter of type uint16_t.

The number of rows (M) in each matrix A and the length of each output vector y.

n

A read-only parameter of type uint16_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of columns (N) in each matrix A and the length of each input vector x.

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input matrix A.

p_src_x

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input vector x.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output vector y.

3.2.1.3 armral_cmplx_mat_vec_mult_batch_i16_pa

This function performs matrix-vector multiplication for a batch of M -by- N matrices and length N
input vectors, utilizing a "pointer array" storage layout for the input and output matrix batches.
Each multiplication is of the form y = A x for a matrix A and vectors x and y, and assumes that:

• Matrix and vector elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

The p_srcs_a parameter is an array of pointers of length M * N. The value of p_srcs_a[i] is a
pointer to the i-th element of the first matrix in the batch, as represented in row-major ordering,
such that the i-th element of the j-th matrix in the batch is located at p_srcs_a[i][j]. For example,
the j-th matrix in a batch of 2-by-2 matrices is formed as:

p_srcs_a[0][j] p_srcs_a[1][j]
p_srcs_a[2][j] p_srcs_a[3][j]

The input vector array p_srcs_x and output vector array p_dsts also point to an array of pointers,
such that the i-th element of the j-th vector is located at p_srcs_x[i][j] (and similarly for p_dsts).
For example, the j-th vector in a batch of vectors of length 2 is formed as:

p_srcs_x[0][j]
p_srcs_x[1][j]

representing an identical format to the input matrices.

The total number of elements in the batch (num_mats * num_vecs_per_mat) must be a multiple of
12. The number of vectors per matrix must be either 1 or a multiple of 4.

A 64-bit Q32.31 accumulator is used internally. If you do not need such a large range, consider
using armral_cmplx_mat_vec_mult_batch_i16_32bit_pa instead. To get the final result in Q15 and to
avoid overflow, the accumulator narrows to 16 bits with saturation.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 738:

armral_status armral_cmplx_mat_vec_mult_batch_i16_pa(
 uint16_t num_mats, uint16_t num_vecs_per_mat, uint16_t m, uint16_t n,
 const armral_cmplx_int16_t **p_srcs_a,
 const armral_cmplx_int16_t **p_srcs_x, armral_cmplx_int16_t **p_dsts);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint16_t.

The number of input matrices.

num_vecs_per_mat

A read-only parameter of type uint16_t.

The number of input and output vectors for each input matrix. The total number of input
vectors is num_mats * num_vecs_per_mat. There are the same number of output vectors.

m

A read-only parameter of type uint16_t.

The number of rows (M) in each matrix A and the length of each output vector y.

n

A read-only parameter of type uint16_t.

The number of columns (N) in each matrix A and the length of each input vector x.

p_srcs_a

A read-only parameter of type const armral_cmplx_int16_t **.

Points to the input matrix structure.

p_srcs_x

A read-only parameter of type const armral_cmplx_int16_t **.

Points to the input vector structure.

p_dsts

A write-only parameter of type armral_cmplx_int16_t **.

Points to the output vector structure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.1.4 armral_cmplx_mat_vec_mult_i16_32bit

This function performs the multiplication y = A x for matrix A and vectors x and y, and assumes
that:

• Matrix and vector elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

A 32-bit Q0.31 saturating accumulator is used internally. If you need a larger range, consider using
armral_cmplx_mat_vec_mult_i16 instead. To get a Q15 result, the final result is narrowed to 16 bits
with saturation.

Syntax
Defined in armral.h on line 763:

armral_status armral_cmplx_mat_vec_mult_i16_32bit(
 uint16_t m, uint16_t n, const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_x, armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows in matrix A and the length of the output vector y.

n

A read-only parameter of type uint16_t.

The number of columns in matrix A and the length of each input vector x.

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input matrix A.

p_src_x

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input vector x.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output matrix y.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.1.5 armral_cmplx_mat_vec_mult_batch_i16_32bit

This function performs matrix-vector multiplication for a batch of M -by- N matrices and length N
input vectors. Each multiplication is of the form y = A x for a matrix A and vectors x and y, and
assumes that:

• Matrix and vector elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

The matrix elements are interleaved such that all elements for a particular location within the
matrix are stored together. This means that, for instance, the first num_mats complex numbers
stored are the first element of each of the matrices in the batch. The offset to the next location in
the same matrix is given by the num_mats batch size:

{Re(0), Im(0), Re(1), Im(1), Re(2), Im(2), ...}

The same layout is used for vector elements, except that the offset to the next vector element is
num_mats * num_vecs_per_mat.

A 32-bit Q0.31 saturating accumulator is used internally. If you need a larger range, consider using
armral_cmplx_mat_vec_mult_batch_i16 instead. To get a Q15 result, the final result is narrowed to
16 bits with saturation.

Syntax
Defined in armral.h on line 806:

armral_status armral_cmplx_mat_vec_mult_batch_i16_32bit(
 uint16_t num_mats, uint16_t num_vecs_per_mat, uint16_t m, uint16_t n,
 const armral_cmplx_int16_t *p_src_a, const armral_cmplx_int16_t *p_src_x,
 armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint16_t.

The number of input matrices.

num_vecs_per_mat

A read-only parameter of type uint16_t.

The number of input and output vectors for each input matrix. The total number of input
vectors is num_mats * num_vecs_per_mat. There are the same number of output vectors.

m

A read-only parameter of type uint16_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of rows (M) in each matrix A and the length of each output vector y.

n

A read-only parameter of type uint16_t.

The number of columns (N) in each matrix A and the length of each input vector x.

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input matrix A.

p_src_x

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input vector x.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output vector y.

3.2.1.6 armral_cmplx_mat_vec_mult_batch_i16_32bit_pa

This function performs matrix-vector multiplication for a batch of M -by- N matrices and length N
input vectors, utilizing a "pointer array" storage layout for the input and output matrix batches.
Each multiplication is of the form y = A x for a matrix A and vectors x and y, and assumes that:

• Matrix and vector elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

The p_srcs_a parameter is an array of pointers of length M * N. The value of p_srcs_a[i] is a
pointer to the i-th element of the first matrix in the batch, as represented in row-major ordering,
such that the i-th element of the j-th matrix in the batch is located at p_srcs_a[i][j]. For example,
the j-th matrix in a batch of 2-by-2 matrices is formed as:

p_srcs_a[0][j] p_srcs_a[1][j]
p_srcs_a[2][j] p_srcs_a[3][j]

The input vector array p_srcs_x and output vector array p_dsts also point to an array of pointers,
such that the i-th element of the j-th vector is located at p_srcs_x[i][j] (and similarly for p_dsts).
For example, the j-th vector in a batch of vectors of length 2 is formed as:

p_srcs_x[0][j]
p_srcs_x[1][j]

representing an identical format to the input matrices.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

A 32-bit Q0.31 saturating accumulator is used internally. If you need a larger range, consider using
armral_cmplx_mat_vec_mult_batch_i16_pa instead. To get a Q15 result, the final result is narrowed
to 16 bits with saturation.

Syntax
Defined in armral.h on line 859:

armral_status armral_cmplx_mat_vec_mult_batch_i16_32bit_pa(
 uint16_t num_mats, uint16_t num_vecs_per_mat, uint16_t m, uint16_t n,
 const armral_cmplx_int16_t **p_srcs_a,
 const armral_cmplx_int16_t **p_srcs_x, armral_cmplx_int16_t **p_dsts);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint16_t.

The number of input matrices.

num_vecs_per_mat

A read-only parameter of type uint16_t.

The number of input and output vectors for each input matrix. The total number of input
vectors is num_mats * num_vecs_per_mat. There are the same number of output vectors.

m

A read-only parameter of type uint16_t.

The number of rows (M) in each matrix A and the length of each output vector y.

n

A read-only parameter of type uint16_t.

The number of columns (N) in each matrix A and the length of each input vector x.

p_srcs_a

A read-only parameter of type const armral_cmplx_int16_t **.

Points to the input matrix structure.

p_srcs_x

A read-only parameter of type const armral_cmplx_int16_t **.

Points to the input vector structure.

p_dsts

A write-only parameter of type armral_cmplx_int16_t **.

Points to the output vector structure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.1.7 armral_cmplx_mat_vec_mult_f32

This function performs the multiplication y = A x for matrix A and vectors x and y, and assumes
that:

• Matrix and vector elements are complex 32-bit float values.

• Matrices are stored in memory in row-major order.

Syntax
Defined in armral.h on line 879:

armral_status armral_cmplx_mat_vec_mult_f32(uint16_t m, uint16_t n,
 const armral_cmplx_f32_t *p_src_a,
 const armral_cmplx_f32_t *p_src_x,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows in matrix A and the length of the output vector y.

n

A read-only parameter of type uint16_t.

The number of columns in matrix A and the length of the input vector x .

p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix A.

p_src_x

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input vector x.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix y.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.1.8 armral_cmplx_mat_vec_mult_batch_f32

This function performs matrix-vector multiplication for a batch of M -by- N matrices and length N
input vectors. Each multiplication is of the form y = A x for a matrix A and vectors x and y, and
assumes that:

• Matrix and vector elements are complex 32-bit float values.

• Matrices are stored in memory in row-major order.

The matrix elements are interleaved such that all elements for a particular location within the
matrix are stored together. This means that, for instance, the first num_mats complex numbers
stored are the first element of each of the matrices in the batch. The offset to the next location in
the same matrix is given by the num_mats batch size:

{Re(0), Im(0), Re(1), Im(1), Re(2), Im(2), ...}

The same layout is used for vector elements, except that the offset to the next vector element is
num_mats * num_vecs_per_mat.

The total number of elements in the batch (num_mats * num_vecs_per_mat) must be a multiple of
12.

Syntax
Defined in armral.h on line 922:

armral_status armral_cmplx_mat_vec_mult_batch_f32(
 uint16_t num_mats, uint16_t num_vecs_per_mat, uint16_t m, uint16_t n,
 const armral_cmplx_f32_t *p_src_a, const armral_cmplx_f32_t *p_src_x,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint16_t.

The number of input matrices.

num_vecs_per_mat

A read-only parameter of type uint16_t.

The number of input and output vectors for each input matrix. The total number of input
vectors is num_mats * num_vecs_per_mat. There are the same number of output vectors.

m

A read-only parameter of type uint16_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of rows (M) in each matrix A and the length of each output vector y.

n

A read-only parameter of type uint16_t.

The number of columns (N) in each matrix A and the length of each input vector x.

p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix A.

p_src_x

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input vector x.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output vector y.

3.2.1.9 armral_cmplx_mat_vec_mult_batch_f32_pa

This function performs matrix-vector multiplication for a batch of M -by- N matrices and length N
input vectors, utilizing a "pointer array" storage layout for the input and output matrix batches.
Each multiplication is of the form y = A x for a matrix A and vectors x and y, and assumes that:

• Matrix and vector elements are complex 32-bit float values.

• Matrices are stored in memory in row-major order.

The p_srcs_a parameter is an array of pointers of length M * N. The value of p_srcs_a[i] is a
pointer to the i-th element of the first matrix in the batch, as represented in row-major ordering,
such that the i-th element of the j-th matrix in the batch is located at p_srcs_a[i][j]. For example,
the j-th matrix in a batch of 2-by-2 matrices is formed as:

p_srcs_a[0][j] p_srcs_a[1][j]
p_srcs_a[2][j] p_srcs_a[3][j]

The input vector array p_srcs_x and output vector array p_dsts also point to an array of pointers,
such that the i-th element of the j-th vector is located at p_srcs_x[i][j] (and similarly for p_dsts).
For example, the j-th vector in a batch of vectors of length 2 is formed as:

p_srcs_x[0][j]
p_srcs_x[1][j]

representing an identical format to the input matrices.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 970:

armral_status armral_cmplx_mat_vec_mult_batch_f32_pa(
 uint16_t num_mats, uint16_t num_vecs_per_mat, uint16_t m, uint16_t n,
 const armral_cmplx_f32_t **p_srcs_a, const armral_cmplx_f32_t **p_srcs_x,
 armral_cmplx_f32_t **p_dsts);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint16_t.

The number of input matrices.

num_vecs_per_mat

A read-only parameter of type uint16_t.

The number of input and output vectors for each input matrix. The total number of input
vectors is num_mats * num_vecs_per_mat. There are the same number of output vectors.

m

A read-only parameter of type uint16_t.

The number of rows (M) in each matrix A and the length of each output vector y.

n

A read-only parameter of type uint16_t.

The number of columns (N) in each matrix A and the length of each input vector x.

p_srcs_a

A read-only parameter of type const armral_cmplx_f32_t **.

Points to the input matrix structure.

p_srcs_x

A read-only parameter of type const armral_cmplx_f32_t **.

Points to the input vector structure.

p_dsts

A write-only parameter of type armral_cmplx_f32_t **.

Points to the output vector structure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.2 General Complex Matrix-Matrix Multiplication

Computes a general matrix-by-matrix multiplication, storing the result in a destination matrix.

The destination matrix is only written to and can be uninitialized.

3.2.2.1 armral_cmplx_matmul_i16

This function performs the multiplication C = A B for matrices, and assumes that:

• Matrix elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

A 64-bit Q32.31 accumulator is used internally. If you do not need such a large range, consider
using armral_cmplx_matmul_i16_32bit instead. To get the final result in Q15 and to avoid overflow,
the accumulator narrows to 16 bits with saturation.

Syntax
Defined in armral.h on line 1009:

armral_status armral_cmplx_matmul_i16(uint16_t m, uint16_t n, uint16_t k,
 const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_b,
 armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows (M) in matrices A and C.

n

A read-only parameter of type uint16_t.

The number of columns (N) in matrices B and C.

k

A read-only parameter of type uint16_t.

The number of columns (K) in matrix A and the number of rows in matrix B.

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the first input matrix A.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_src_b

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the second input matrix B.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output matrix C.

3.2.2.2 armral_cmplx_matmul_i16_32bit

This function performs the multiplication C = A B for matrices, and assumes that:

• Matrix elements are complex int16 in Q15 format.

• Matrices are stored in memory in row-major order.

A 32-bit Q0.31 saturating accumulator is used internally. If you need a larger range, consider using
armral_cmplx_matmul_i16 instead. To get a Q15 result, the final result is narrowed to 16 bits with
saturation.

Syntax
Defined in armral.h on line 1035:

armral_status armral_cmplx_matmul_i16_32bit(uint16_t m, uint16_t n, uint16_t k,
 const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_b,
 armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows (M) in matrices A and C.

n

A read-only parameter of type uint16_t.

The number of columns (N) in matrices B and C.

k

A read-only parameter of type uint16_t.

The number of columns (K) in matrix A and the number of rows in matrix B.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the first input matrix A.

p_src_b

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the second input matrix B.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output matrix C.

3.2.2.3 armral_cmplx_matmul_f32

This function performs the multiplication C = A B for matrices, and assumes that:

• Matrix elements are complex 32-bit floating point values.

• Matrices are stored in memory in row-major order.

Syntax
Defined in armral.h on line 1056:

armral_status armral_cmplx_matmul_f32(uint16_t m, uint16_t n, uint16_t k,
 const armral_cmplx_f32_t *p_src_a,
 const armral_cmplx_f32_t *p_src_b,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows (M) in matrices A and C.

n

A read-only parameter of type uint16_t.

The number of columns (N) in matrices B and C.

k

A read-only parameter of type uint16_t.

The number of columns (K) in matrix A and the number of rows in matrix B.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the first input matrix A.

p_src_b

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the second input matrix B.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix C.

3.2.2.4 armral_cmplx_matmul_aah_f32

This function performs a matrix multiplication of an input M -by- N matrix A with its conjugate
transpose A^H:

C = A A^H

C is therefore M -by- M.

The input matrix p_src_a and output matrix p_src_c are stored contiguously in memory, in row-
major order.

p_src_a and p_dst_c must not alias each other.

Syntax
Defined in armral.h on line 1084:

armral_status armral_cmplx_matmul_aah_f32(uint16_t m, uint16_t n,
 const armral_cmplx_f32_t *p_src_a,
 armral_cmplx_f32_t *p_dst_c);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows (M) in the input matrix A, and the number of rows and columns in the
output matrix C.

n

A read-only parameter of type uint16_t.
Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 56 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of columns (N) in the input matrix A.

p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix A.

p_dst_c

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix C.

3.2.2.5 armral_cmplx_matmul_ahb_f32

This function performs the multiplication of the conjugate transpose of A with the matrix B, to
compute the matrix C. That is:

C = A^H B

Matrix A is K -by- M, B is K -by- N, and C is M -by- N. All matrices are stored contiguously in memory, in
row-major order.

None of the arrays passed to this function are allowed to alias.

Syntax
Defined in armral.h on line 1111:

armral_status armral_cmplx_matmul_ahb_f32(uint16_t m, uint16_t n, uint16_t k,
 const armral_cmplx_f32_t *p_src_a,
 const armral_cmplx_f32_t *p_src_b,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of columns (M) in matrix A and the number of rows in matrix C.

n

A read-only parameter of type uint16_t.

The number of columns (N) in matrices B and C.

k

A read-only parameter of type uint16_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of rows (K) in matrices A and B.

p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix A.

p_src_b

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix B.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix C.

3.2.3 Specific-Sized Complex Matrix-Matrix Multiplication

Computes a specific-sized matrix-by-matrix multiplication, storing the result in a destination matrix.

The destination matrix is only written to and can be uninitialized.

3.2.3.1 armral_cmplx_mat_mult_2x2_f32

This function performs an optimized product of two square 2-by-2 matrices. The function
assumes matrices are stored in column-major order. In LTE and 5G, you can use the
armral_cmplx_mat_mult_2x2_f32 function in the equalization step in the formula:

x̂ = G y

Equalization matrix G corresponds to the first input matrix (matrix A) of the function. The function
assumes that matrix G is transposed during computation so that the matrix presents as column-
major on input.

The second input matrix (matrix B) is formed by two 2-by-1 vectors (y vectors in the preceding
formula) so that each row of B represents a 2-by-1 vector output from each antenna port, and each
call to armral_cmplx_mat_mult_2x2_f32 computes two distinct x̂ estimates.

Syntax
Defined in armral.h on line 1153:

armral_status armral_cmplx_mat_mult_2x2_f32(const armral_cmplx_f32_t *p_src_a,
 const armral_cmplx_f32_t *p_src_b,
 armral_cmplx_f32_t *p_dst);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the first input matrix A.

p_src_b

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the second input matrix B.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix.

3.2.3.2 armral_cmplx_mat_mult_2x2_f32_iq

This function performs an optimized product of two square 2-by-2 matrices whose complex
elements have already been separated into real component and imaginary component arrays. The
function assumes that matrices are stored in column-major order. In LTE and 5G, you can use the
armral_cmplx_mat_mult_2x2_f32_iq function in the equalization step in the formula:

x̂ = G y

Equalization matrix G corresponds to the first input matrix (matrix A) of the function. The function
assumes matrix G is transposed during computation so that the matrix presents as column-major
on input. The second input matrix (matrix B) is formed by two 2-by-1 vectors (y vectors in the
preceding formula) so that each row of B represents a 2-by-1 vector output from each antenna
port, and each call to armral_cmplx_mat_mult_2x2_f32_iq computes two distinct x̂ estimates.

Syntax
Defined in armral.h on line 1185:

armral_status armral_cmplx_mat_mult_2x2_f32_iq(const float32_t *src_a_re,
 const float32_t *src_a_im,
 const float32_t *src_b_re,
 const float32_t *src_b_im,
 float32_t *dst_re,
 float32_t *dst_im);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
src_a_re

A read-only parameter of type const float32_t *.

Points to the real part of the first input matrix.

src_a_im

A read-only parameter of type const float32_t *.

Points to the imag part of the first input matrix.

src_b_re

A read-only parameter of type const float32_t *.

Points to the real part of the second input matrix.

src_b_im

A read-only parameter of type const float32_t *.

Points to the imag part of the second input matrix.

dst_re

A write-only parameter of type float32_t *.

Points to the real part of the output matrix.

dst_im

A write-only parameter of type float32_t *.

Points to the imag part of the output matrix.

3.2.3.3 armral_cmplx_mat_mult_4x4_f32

This function performs an optimized product of two square 4-by-4 matrices. The function
assumes that matrices are stored in column-major order. In LTE and 5G, you can use the
armral_cmplx_mat_mult_4x4_f32 function in the equalization step in the formula:

x̂ = G y

Equalization matrix G corresponds to the first input matrix (matrix A) of the function. The function
assumes that matrix G is transposed during computation so that the matrix presents as column-
major on input. The second input matrix (matrix B) is formed by four 4-by-1 vectors (y vectors in
the preceding formula) so that each row of B represents a 4-by-1 vector output from each antenna
port, and each call to cmplx_mat_mult_4x4_f32 computes four distinct x̂ estimates.

Syntax
Defined in armral.h on line 1215:

armral_status armral_cmplx_mat_mult_4x4_f32(const armral_cmplx_f32_t *p_src_a,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 const armral_cmplx_f32_t *p_src_b,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
p_src_a

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the first input matrix A.

p_src_b

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the second input matrix B.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix.

3.2.3.4 armral_cmplx_mat_mult_4x4_f32_iq

This function performs an optimized product of two square 4-by-4 matrices whose complex
elements have already been separated into real and imaginary component arrays. The
function assumes matrices are stored in column-major order. In LTE and 5G, you can use the
armral_cmplx_mat_mult_4x4_f32_iq function in the equalization step in the formula:

x̂ = G y

Equalization matrix G corresponds to the first input matrix (matrix A) of the function. The function
assumes that matrix G is transposed during computation so that the matrix presents as column-
major on input. The second input matrix (matrix B) is formed by four 4-by-1 vectors (y vectors in
the preceding formula) so that each row of B represents a 4-by-1 vector output from each antenna
port, and each call to armral_cmplx_mat_mult_4x4_f32_iq computes four distinct x̂ estimates.

Syntax
Defined in armral.h on line 1246:

armral_status armral_cmplx_mat_mult_4x4_f32_iq(const float32_t *src_a_re,
 const float32_t *src_a_im,
 const float32_t *src_b_re,
 const float32_t *src_b_im,
 float32_t *dst_re,
 float32_t *dst_im);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
src_a_re

A read-only parameter of type const float32_t *.

Points to the real part of the first input matrix.

src_a_im

A read-only parameter of type const float32_t *.

Points to the imag part of the first input matrix.

src_b_re

A read-only parameter of type const float32_t *.

Points to the real part of the second input matrix.

src_b_im

A read-only parameter of type const float32_t *.

Points to the imag part of the second input matrix.

dst_re

A write-only parameter of type float32_t *.

Points to the real part of the output matrix.

dst_im

A write-only parameter of type float32_t *.

Points to the imag part of the output matrix.

3.2.4 Channel Matrix-Matrix Multiplication

Computes a matrix-by-matrix multiplication, storing the result in a destination matrix.

The destination matrix is only written to and can be uninitialized.

To permit specifying different fixed-point formats for the input and output matrices, these
functions take an extra fixed-point type specifier.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.4.1 armral_solve_2x2_f32

In LTE and 5G, you can use the armral_solve_2x2_f32 function in the equalization step, as in the
formula:

x̂ = G y

where y is a vector for the received signal, size corresponds to the number of antennae and
x̂ is the estimate of the transmitted signal, size corresponds to the number of layers. G is the
equalization complex matrix and is assumed to be a 2-by-2 matrix. I and Q components of G
elements are assumed to be stored separated in memory. Also, each coefficient of G (Gxy, for x, y
= {1, 2}) is assumed to be stored separated in memory locations set at p_gstride one from the
other.

The number of input signals is assumed to be a multiple of 12, and must be divisible by the number
of subcarriers per G matrix.

For type 1 equalization, the number of subcarriers per G matrix must be four. For type 2
equalization, the number of subcarriers per G matrix must be six. An implementation is also
available for cases where the number of subcarriers per G matrix is equal to one.

Syntax
Defined in armral.h on line 1306:

armral_status
armral_solve_2x2_f32(uint32_t num_sub_carrier, uint32_t num_sc_per_g,
 const armral_cmplx_int16_t *p_y, uint32_t p_ystride,
 const armral_fixed_point_index *p_y_num_fract_bits,
 const float32_t *p_g_real, const float32_t *p_g_imag,
 uint32_t p_gstride, armral_cmplx_int16_t *p_x,
 uint32_t p_xstride,
 armral_fixed_point_index num_fract_bits_x);

Returns
An armral_status value that indicates success or failure.

Parameters
num_sub_carrier

A read-only parameter of type uint32_t.

The number of subcarriers to equalize.

num_sc_per_g

A read-only parameter of type uint32_t.

The number of subcarriers per G matrix.

p_y

A read-only parameter of type const armral_cmplx_int16_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the input received signal.

p_ystride

A read-only parameter of type uint32_t.

The stride between two Rx antennae.

p_y_num_fract_bits

A read-only parameter of type const armral_fixed_point_index *.

The number of fractional bits in y.

p_g_real

A read-only parameter of type const float32_t *.

The real part of coefficient matrix G.

p_g_imag

A read-only parameter of type const float32_t *.

The imag part of coefficient matrix G.

p_gstride

A read-only parameter of type uint32_t.

The stride between elements of G.

p_x

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output received signal.

p_xstride

A read-only parameter of type uint32_t.

The stride between two layers.

num_fract_bits_x

A read-only parameter of type armral_fixed_point_index.

The number of fractional bits in x.

3.2.4.2 armral_solve_2x4_f32

In LTE and 5G, you can use the armral_solve_2x4_f32 function in the equalization step, as in the
formula:

x̂ = G y

where y is a vector for the received signal, size corresponds to the number of antennae and x̂ is
the estimate of the transmitted signal, size corresponds to the number of layers.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

G is the equalization complex matrix and is assumed to be a 2-by-4 matrix. I and Q components of G
elements are assumed to be stored separated in memory.

Also, each coefficient of G (Gxy, for x = {1, 2} and y = {1, 2, 3, 4}) is assumed to be stored
separated in memory locations set at p_gstride one from the other.

The number of input signals is assumed to be a multiple of 12, and must be divisible by the number
of subcarriers per G matrix.

For type 1 equalization, the number of subcarriers per G matrix must be four. For type 2
equalization, the number of subcarriers per G matrix must be six. An implementation is also
available for cases where the number of subcarriers per G matrix is equal to one.

Syntax
Defined in armral.h on line 1356:

armral_status
armral_solve_2x4_f32(uint32_t num_sub_carrier, uint32_t num_sc_per_g,
 const armral_cmplx_int16_t *p_y, uint32_t p_ystride,
 const armral_fixed_point_index *p_y_num_fract_bits,
 const float32_t *p_g_real, const float32_t *p_g_imag,
 uint32_t p_gstride, armral_cmplx_int16_t *p_x,
 uint32_t p_xstride,
 armral_fixed_point_index num_fract_bits_x);

Returns
An armral_status value that indicates success or failure.

Parameters
num_sub_carrier

A read-only parameter of type uint32_t.

The number of subcarriers to equalize.

num_sc_per_g

A read-only parameter of type uint32_t.

The number of subcarriers per G matrix.

p_y

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input received signal.

p_ystride

A read-only parameter of type uint32_t.

The stride between two Rx antennae.

p_y_num_fract_bits

A read-only parameter of type const armral_fixed_point_index *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of fractional bits in y.

p_g_real

A read-only parameter of type const float32_t *.

The real part of coefficient matrix G.

p_g_imag

A read-only parameter of type const float32_t *.

The imag part of coefficient matrix G.

p_gstride

A read-only parameter of type uint32_t.

The stride between elements of G.

p_x

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output received signal.

p_xstride

A read-only parameter of type uint32_t.

The stride between two layers.

num_fract_bits_x

A read-only parameter of type armral_fixed_point_index.

The number of fractional bits in x.

3.2.4.3 armral_solve_4x4_f32

In LTE and 5G, you can use the armral_solve_4x4_f32 function in the equalization step, as in the
formula:

x̂ = G y

where y is a vector for the received signal, size corresponds to the number of antennae and x̂ is
the estimate of the transmitted signal, size corresponds to the number of layers.

The input values for y are given in the Q0.15 fixed-point format. Each component of the vector
may have a different number of fractional bits. The number of fractional bits per y component is
passed in an array of the same length as y.

G is the equalization complex matrix and is assumed to be a 4-by-4 matrix. I and Q components of G
elements are assumed to be stored separated in memory.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Also, each coefficient of G (Gxy, for x, y = {1, 2, 3, 4}) is assumed to be stored separated in
memory locations set at p_gstride one from the other.

It is assumed that each component of the vectors y and x are stored in memory at p_y_stride and
p_x_stride one from the other. It is also assumed that p_gstride is greater than or equal to the
number of subcarriers divided by the number of subcarriers per G. p_y_stride and p_x_stride are
assumed greater than or equal to the number of subcarriers. If these assumptions are violated, the
results returned will be incorrect.

The number of input signals is assumed to be a multiple of 12, and must be divisible by the number
of subcarriers per G matrix.

For type 1 equalization, the number of subcarriers per G matrix must be four. For type 2
equalization, the number of subcarriers per G matrix must be six. An implementation is also
available for cases where the number of subcarriers per G matrix is equal to one.

Syntax
Defined in armral.h on line 1418:

armral_status
armral_solve_4x4_f32(uint32_t num_sub_carrier, uint32_t num_sc_per_g,
 const armral_cmplx_int16_t *p_y, uint32_t p_ystride,
 const armral_fixed_point_index *p_y_num_fract_bits,
 const float32_t *p_g_real, const float32_t *p_g_imag,
 uint32_t p_gstride, armral_cmplx_int16_t *p_x,
 uint32_t p_xstride,
 armral_fixed_point_index num_fract_bits_x);

Returns
An armral_status value that indicates success or failure.

Parameters
num_sub_carrier

A read-only parameter of type uint32_t.

The number of subcarriers to equalize.

num_sc_per_g

A read-only parameter of type uint32_t.

The number of subcarriers per G matrix.

p_y

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input received signal.

p_ystride

A read-only parameter of type uint32_t.

The stride between two Rx antennae.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_y_num_fract_bits

A read-only parameter of type const armral_fixed_point_index *.

The number of fractional bits in y.

p_g_real

A read-only parameter of type const float32_t *.

The real part of coefficient matrix G.

p_g_imag

A read-only parameter of type const float32_t *.

The imag part of coefficient matrix G.

p_gstride

A read-only parameter of type uint32_t.

The stride between elements of G.

p_x

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output received signal.

p_xstride

A read-only parameter of type uint32_t.

The stride between two layers.

num_fract_bits_x

A read-only parameter of type armral_fixed_point_index.

The number of fractional bits in x.

3.2.4.4 armral_solve_1x4_f32

In LTE and 5G, you can use the armral_solve_1x4_f32 function in the equalization step, as in the
formula:

x̂ = G y

where y is a vector for the received signal, size corresponds to the number of antennae and x̂ is
the estimate of the transmitted signal, size corresponds to the number of layers.

G is the equalization complex matrix and is assumed to be a 1-by-4 matrix (i.e. a row vector). I and
Q components of G elements are assumed to be stored separated in memory.

Also, each coefficient of G (G1y, for y = {1, 2, 3, 4}) is assumed to be stored separated in
memory locations set at p_gstride one from the other.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of input signals is assumed to be a multiple of 12, and must be divisible by the
number of subcarriers per G matrix. For type 1 equalization, the number of subcarriers per G matrix
must be four. For type 2 equalization, the number of subcarriers per G matrix must be six. An
implementation is also available for cases where the number of subcarriers per G matrix is equal to
one.

Syntax
Defined in armral.h on line 1467:

armral_status
armral_solve_1x4_f32(uint32_t num_sub_carrier, uint32_t num_sc_per_g,
 const armral_cmplx_int16_t *p_y, uint32_t p_ystride,
 const armral_fixed_point_index *p_y_num_fract_bits,
 const float32_t *p_g_real, const float32_t *p_g_imag,
 uint32_t p_gstride, armral_cmplx_int16_t *p_x,
 armral_fixed_point_index num_fract_bits_x);

Returns
An armral_status value that indicates success or failure.

Parameters
num_sub_carrier

A read-only parameter of type uint32_t.

The number of subcarriers to equalize.

num_sc_per_g

A read-only parameter of type uint32_t.

The number of subcarriers per G matrix.

p_y

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input received signal.

p_ystride

A read-only parameter of type uint32_t.

The stride between two Rx antennae.

p_y_num_fract_bits

A read-only parameter of type const armral_fixed_point_index *.

The number of fractional bits in y conversion.

p_g_real

A read-only parameter of type const float32_t *.

The real part of coefficient matrix G.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

p_g_imag

A read-only parameter of type const float32_t *.

The imag part of coefficient matrix G.

p_gstride

A read-only parameter of type uint32_t.

The stride between elements of G.

p_x

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output received signal.

num_fract_bits_x

A read-only parameter of type armral_fixed_point_index.

The number of fractional bits in x.

3.2.4.5 armral_solve_1x2_f32

In LTE and 5G, you can use the armral_solve_1x2_f32 function in the equalization step, as in the
formula:

x̂ = G y

where y is a vector for the received signal, size corresponds to the number of antennae and
x̂ is the estimate of the transmitted signal, size corresponds to the number of layers. G is the
equalization complex matrix and is assumed to be a 1-by-2 matrix (i.e. a row vector). I and Q
components of G elements are assumed to be stored separated in memory.

Also, each coefficient of G (G11, G12) is assumed to be stored separated in memory locations set at
p_gstride one from the other.

The number of input signals is assumed to be a multiple of 12, and must be divisible by the number
of subcarriers per G matrix.

For type 1 equalization, the number of subcarriers per G matrix must be four. For type 2
equalization, the number of subcarriers per G matrix must be six. An implementation is also
available for cases where the number of subcarriers per G matrix is equal to one.

Syntax
Defined in armral.h on line 1513:

armral_status
armral_solve_1x2_f32(uint32_t num_sub_carrier, uint32_t num_sc_per_g,
 const armral_cmplx_int16_t *p_y, uint32_t p_ystride,
 const armral_fixed_point_index *p_y_num_fract_bits,
 const float32_t *p_g_real, const float32_t *p_g_imag,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 uint32_t p_gstride, armral_cmplx_int16_t *p_x,
 armral_fixed_point_index num_fract_bits_x);

Returns
An armral_status value that indicates success or failure.

Parameters
num_sub_carrier

A read-only parameter of type uint32_t.

The number of subcarriers to equalize.

num_sc_per_g

A read-only parameter of type uint32_t.

The number of subcarriers per G matrix.

p_y

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input received signal.

p_ystride

A read-only parameter of type uint32_t.

The stride between two Rx antennae.

p_y_num_fract_bits

A read-only parameter of type const armral_fixed_point_index *.

The number of fractional bits in y conversion.

p_g_real

A read-only parameter of type const float32_t *.

The real part of coefficient matrix G.

p_g_imag

A read-only parameter of type const float32_t *.

The imag part of coefficient matrix G.

p_gstride

A read-only parameter of type uint32_t.

The stride between elements of G.

p_x

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output received signal.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

num_fract_bits_x

A read-only parameter of type armral_fixed_point_index.

The number of fractional bits in x.

3.2.5 Complex Matrix Inversion

Computes the inverse of a complex Hermitian square matrix of size N -by- N.

3.2.5.1 armral_cmplx_hermitian_mat_inverse_f32

This function computes the inverse of a single complex Hermitian square matrix of size N -by- N.

The supported dimensions are 2-by-2, 3-by-3, 4-by-4, 8-by-8, and 16-by-16.

The input and output matrices are filled in row-major order with complex float32_t elements.

Syntax
Defined in armral.h on line 1546:

armral_status armral_cmplx_hermitian_mat_inverse_f32(
 uint32_t size, const armral_cmplx_f32_t *p_src, armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The size of the input matrix.

p_src

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix structure.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix structure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.5.2 armral_cmplx_mat_inverse_f32

This function computes the inverse of a single complex square matrix of size N -by- N.

The supported dimensions are 2-by-2, 3-by-3, 4-by-4, 8-by-8, and 16-by-16.

The input and output matrices are filled in row-major order with complex float32_t elements.

Syntax
Defined in armral.h on line 1563:

armral_status armral_cmplx_mat_inverse_f32(uint32_t size,
 const armral_cmplx_f32_t *p_src,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The size of the input matrix.

p_src

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix structure.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix structure.

3.2.5.3 armral_cmplx_hermitian_mat_inverse_batch_f32

This function computes the inverse of a batch of M complex Hermitian square matrices, each of size
N -by- N.

The supported matrix dimensions are 2-by-2, 3-by-3, and 4-by-4.

The input and output matrices are filled in row-major order with complex float32_t elements,
interleaved such that all elements for a particular location within the matrix are stored together.
This means that, for instance, the first four complex numbers stored are the first element from each

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

of the first four matrices in the batch. The offset to the next location in the same matrix is given by
the num_mats batch size:

{Re(0), Im(0), Re(1), Im(1), ..., Re(M - 1), Im(M - 1)}

The number of matrices in a batch (M) must be a multiple of the matrix dimension. So, if N = 2 then
M must be a multiple of two, and if N = 4 then M must be a multiple of four.

Syntax
Defined in armral.h on line 1592:

armral_status
armral_cmplx_hermitian_mat_inverse_batch_f32(uint32_t num_mats, uint32_t size,
 const armral_cmplx_f32_t *p_src,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint32_t.

The number (M) of input and output matrices.

size

A read-only parameter of type uint32_t.

The size (N) of the input and output matrix.

p_src

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix structure.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix structure.

3.2.5.4 armral_cmplx_mat_inverse_batch_f32

This function computes the inverse of a batch of M complex general square matrices, each of size N
-by- N.

The supported matrix dimensions are 2-by-2, 3-by-3, and 4-by-4.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The input and output matrices are filled in row-major order with complex float32_t elements,
interleaved such that all elements for a particular location within the matrix are stored together.
This means that, for instance, the first four complex numbers stored are the first element from each
of the first four matrices in the batch. The offset to the next location in the same matrix is given by
the num_mats batch size:

{Re(0), Im(0), Re(1), Im(1), ..., Re(M - 1), Im(M - 1)}

Syntax
Defined in armral.h on line 1619:

armral_status
armral_cmplx_mat_inverse_batch_f32(uint32_t num_mats, uint32_t size,
 const armral_cmplx_f32_t *p_src,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint32_t.

The number (M) of input and output matrices.

size

A read-only parameter of type uint32_t.

The size (N) of the input and output matrix.

p_src

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix structure.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix structure.

3.2.5.5 armral_cmplx_hermitian_mat_inverse_batch_f32_pa

This function computes the inverse of a batch of M complex Hermitian square matrices, each of size
N -by- N, utilizing a "pointer array" storage layout for the input and output matrix batches.

The supported matrix dimensions are 2-by-2, 3-by-3, and 4-by-4. The p_srcs parameter is an
array of pointers of length N -by- N. The value of p_srcs[i] is a pointer to the i-th element of the
first matrix in the batch, as represented in row-major ordering, such that the i-th element of the

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

j-th matrix in the batch is located at p_srcs[i][j]. Similarly, the j-th matrix in a batch of 2-by-2
matrices is formed as:

p_srcs[0][j] p_srcs[1][j]
p_srcs[2][j] p_srcs[3][j]

The output array p_dsts points to an array of pointers, representing an identical format to the
input.

The number of matrices in a batch (M) must be a multiple of the matrix dimension. So, if N = 2 then
M must be a multiple of two, and if N = 4 then M must be a multiple of four.

Syntax
Defined in armral.h on line 1652:

armral_status armral_cmplx_hermitian_mat_inverse_batch_f32_pa(
 uint32_t num_mats, uint32_t size, const armral_cmplx_f32_t **p_srcs,
 armral_cmplx_f32_t **p_dsts);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint32_t.

The number (M) of input and output matrices.

size

A read-only parameter of type uint32_t.

The size (N) of the input and output matrix.

p_srcs

A read-only parameter of type const armral_cmplx_f32_t **.

Points to the input matrix structure.

p_dsts

A write-only parameter of type armral_cmplx_f32_t **.

Points to the output matrix structure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.5.6 armral_cmplx_mat_inverse_batch_f32_pa

This function computes the inverse of a batch of M complex general square matrices, each of size N
-by- N, utilizing a "pointer array" storage layout for the input and output matrix batches.

The supported matrix dimensions are 2-by-2, 3-by-3, and 4-by-4. The p_srcs parameter is an
array of pointers of length N -by- N. The value of p_srcs[i] is a pointer to the i-th element of the
first matrix in the batch, as represented in row-major ordering, such that the i-th element of the
j-th matrix in the batch is located at p_srcs[i][j]. Similarly, the j-th matrix in a batch of 2-by-2
matrices is formed as:

p_srcs[0][j] p_srcs[1][j]
p_srcs[2][j] p_srcs[3][j]

The output array p_dsts points to an array of pointers, representing an identical format to the
input.

Syntax
Defined in armral.h on line 1680:

armral_status
armral_cmplx_mat_inverse_batch_f32_pa(uint32_t num_mats, uint32_t size,
 const armral_cmplx_f32_t **p_srcs,
 armral_cmplx_f32_t **p_dsts);

Returns
An armral_status value that indicates success or failure.

Parameters
num_mats

A read-only parameter of type uint32_t.

The number (M) of input and output matrices.

size

A read-only parameter of type uint32_t.

The size (N) of the input and output matrix.

p_srcs

A read-only parameter of type const armral_cmplx_f32_t **.

Points to the input matrix structure.

p_dsts

A write-only parameter of type armral_cmplx_f32_t **.

Points to the output matrix structure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.6 Complex Matrix Pseudo-Inverse

Computes the regularized pseudo-inverse of a complex matrix of size M -by- N.

3.2.6.1 armral_cmplx_pseudo_inverse_direct_f32

Computes the regularized pseudo-inverse of a single matrix. The N -by- M regularized pseudo-
inverse C of an M -by- N matrix A is defined as:

C = A^H * (A * A^H + λ * I)^-1

for M <= N, and is defined as:

C = (A^H * A + λ * I)^-1 * A^H

for M > N.

This function performs numerical matrix inversion using the Schur complement to compute the
regularized pseudo-inverse of A directly from the appropriate expression.

Warning: This method is numerically unstable for matrices that are not very well conditioned.

The input matrix p_src and output matrix p_dst are stored contiguously in memory, in row-major
order.

Note:

• If m <= n the number of rows m in the input matrix must be 1, 2, 3, 4, 8 or 16.

• If m > n the number of columns n in the input matrix must be 1, 2, 3, 4, 8 or 16.

Syntax
Defined in armral.h on line 1735:

armral_status
armral_cmplx_pseudo_inverse_direct_f32(uint16_t m, uint16_t n, float32_t lambda,
 const armral_cmplx_f32_t *p_src,
 armral_cmplx_f32_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of rows in input matrix A.

n

A read-only parameter of type uint16_t.

The number of columns in input matrix A.

lambda

A read-only parameter of type float32_t.

The real scalar quantity λ.

p_src

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix A.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix C.

3.2.6.2 armral_cmplx_pseudo_inverse_direct_f32_noalloc

Non-allocating variant of armral_cmplx_pseudo_inverse_direct_f32 .

Computes the regularized pseudo-inverse of a single matrix. The N -by- M regularized pseudo-
inverse C of an M -by- N matrix A is defined as:

C = A^H * (A * A^H + λ * I)^-1

for M <= N, and is defined as:

C = (A^H * A + λ * I)^-1 * A^H

for M > N.

This function performs numerical matrix inversion using the Schur complement to compute the
regularized pseudo-inverse of A directly from the appropriate expression.

Warning: This method is numerically unstable for matrices that are not very well conditioned.

The input matrix p_src and output matrix p_dst are stored contiguously in memory, in row-major
order.

Note:

• If m <= n the number of rows m in the input matrix must be 1, 2, 3, 4, 8 or 16.

• If m > n the number of columns n in the input matrix must be 1, 2, 3, 4, 8 or 16.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

Note:

• If m <= n the buffer must be at least m * m * sizeof(armral_cmplx_f32_t) + 3 bytes.

• If m > n the buffer must be at least n * n * sizeof(armral_cmplx_f32_t) + 3 bytes.

Syntax
Defined in armral.h on line 1792:

armral_status armral_cmplx_pseudo_inverse_direct_f32_noalloc(
 uint16_t m, uint16_t n, float32_t lambda, const armral_cmplx_f32_t *p_src,
 armral_cmplx_f32_t *p_dst, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
m

A read-only parameter of type uint16_t.

The number of rows in input matrix A.

n

A read-only parameter of type uint16_t.

The number of columns in input matrix A.

lambda

A read-only parameter of type float32_t.

The real scalar quantity λ.

p_src

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input matrix A.

p_dst

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output matrix C.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.2.7 SVD of a Single Complex Matrix

The Singular Value Decomposition (SVD) is used for selecting orthogonal user equipment pairing in
mMIMO channels.

3.2.7.1 armral_svd_cf32

This function performs the Singular Value Decomposition (SVD) of an M -by- N single complex
matrix A, where M ≥ N and A is stored in column-major order. The SVD of A is a two-sided
decomposition in the form A = U Σ V^H, with U an M -by- M single complex orthogonal matrix. Note
that we only store the first N columns of U because there are at most N non-zero singular values. V
is an N -by- N single complex orthogonal matrix, and Σ is an M -by- N real matrix. Entries Σ_{i,i}, i <
n contain the singular values, and other entries in Σ are zero. We only store the singular values, not
the full matrix Σ. The singular values Σ_{i,i} are stored in vector s for 0 ≤ i < N. The matrices U
and V^H are implicitly used in the algorithm, unless parameter vect is specified to be true, in which
case the left and right singular vectors (respectively) are stored in U and V^H in column-major order.
The singular vectors are therefore stored contiguously in U, and are non-contiguous in V^H. Note
that it is V^H that is returned, not V.

There are different algorithms for an efficient SVD. The most appropriate is automatically selected
depending on the size of the input matrix.

Syntax
Defined in armral.h on line 4408:

armral_status armral_svd_cf32(bool vect, uint32_t m, uint32_t n,
 armral_cmplx_f32_t *a, float32_t *s,
 armral_cmplx_f32_t *u, armral_cmplx_f32_t *vt);

Returns
An armral_status value that indicates success or failure.

Parameters
vect

A read-only parameter of type bool.

If true, both the singular values and the singular vectors are computed, else only the singular
values are computed.

m

A read-only parameter of type uint32_t.

The number of rows (M) in matrix A.

n

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of columns (N) in matrix A.

a

A parameter of type armral_cmplx_f32_t *.

On entry contains the M -by- N matrix on which to perform the SVD. On exit contains the
Householder reflectors used to perform the bidiagonalization of A.

s

A write-only parameter of type float32_t *.

The vector of singular values.

u

A write-only parameter of type armral_cmplx_f32_t *.

The left singular vectors, if required. If vect is true, u is populated with the left singular
vectors in the SVD. Sufficient memory to store M N float32_t values is assumed to have
been allocated before the call to this method.

vt

A write-only parameter of type armral_cmplx_f32_t *.

The right singular vectors, if required. If vect is true, vt is populated with the right singular
vectors in the SVD. Sufficient memory to store N N float32_t values is assumed to have
been allocated before the call to this method.

3.2.7.2 armral_svd_cf32_noalloc

Non-allocating variant of armral_svd_cf32.

This function performs the Singular Value Decomposition (SVD) of an M -by- N single complex
matrix A, where M ≥ N and A is stored in column-major order. The SVD of A is a two-sided
decomposition in the form A = U Σ V^H, with U an M -by- M single complex orthogonal matrix. Note
that we only store the first N columns of U because there are at most N non-zero singular values. V
is an N -by- N single complex orthogonal matrix, and Σ is an M -by- N real matrix. Entries Σ_{i,i}, i <
n contain the singular values, and other entries in Σ are zero. We only store the singular values, not
the full matrix Σ. The singular values Σ_{i,i} are stored in vector s for 0 ≤ i < N. The matrices U
and V^H are implicitly used in the algorithm, unless parameter vect is specified to be true, in which
case the left and right singular vectors (respectively) are stored in U and V^H in column-major order.
The singular vectors are therefore stored contiguously in U, and are non-contiguous in V^H. Note
that it is V^H that is returned, not V.

There are different algorithms for an efficient SVD. The most appropriate is automatically selected
depending on the size of the input matrix.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The buffer must be at least as large as the number of bytes returned by calling
armral_svd_cf32_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 4468:

armral_status armral_svd_cf32_noalloc(bool vect, uint32_t m, uint32_t n,
 armral_cmplx_f32_t *a, float32_t *s,
 armral_cmplx_f32_t *u,
 armral_cmplx_f32_t *vt, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
vect

A read-only parameter of type bool.

If true, both the singular values and the singular vectors are computed, else only the singular
values are computed.

m

A read-only parameter of type uint32_t.

The number of rows (M) in matrix A.

n

A read-only parameter of type uint32_t.

The number of columns (N) in matrix A.

a

A parameter of type armral_cmplx_f32_t *.

On entry contains the M -by- N matrix on which to perform the SVD. On exit contains the
Householder reflectors used to perform the bidiagonalization of A.

s

A write-only parameter of type float32_t *.

The vector of singular values.

u

A write-only parameter of type armral_cmplx_f32_t *.

The left singular vectors, if required. If vect is true, u is populated with the left singular
vectors in the SVD. Sufficient memory to store M N float32_t values is assumed to have
been allocated before the call to this method.

vt

A write-only parameter of type armral_cmplx_f32_t *.
Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 83 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The right singular vectors, if required. If vect is true, vt is populated with the right singular
vectors in the SVD. Sufficient memory to store N N float32_t values is assumed to have
been allocated before the call to this method.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.2.7.3 armral_svd_cf32_noalloc_buffer_size

Calculates the required buffer size in bytes needed to perform a singular value decomposition
(SVD) of an M -by- N input matrix A.

Syntax
Defined in armral.h on line 4484:

uint32_t armral_svd_cf32_noalloc_buffer_size(bool vect, uint32_t m, uint32_t n);

Returns
The required buffer size in bytes.

Parameters
vect

A read-only parameter of type bool.

If true, both the singular values and the singular vectors are computed, else only the singular
values are computed.

m

A read-only parameter of type uint32_t.

The number of rows (M) in matrix A.

n

A read-only parameter of type uint32_t.

The number of columns (N) in matrix A.

3.3 Lower PHY support functions
Functions for working in the lower physical layer (lower PHY).

The Lower PHY functions include support for:

• A Gold Sequence generator

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

• A correlation coefficient of a pair of 16-bit integer arrays (in Q15 format)

• FIR filters. Supports both 16-bit integer and 32-bit floating-point datatypes. Support is
provided for decimation factors of both one and two.

• Fast Fourier Transforms (FFTs). Supports both 16-bit integer and 32-bit floating-point
datatypes.

• Scrambling of a bit sequence. Supports scrambling of data from individual code blocks, but not
from transport blocks.

3.3.1 Sequence Generator

Fills a pointer with a Gold Sequence of the specified length, generated from the specified seed.

The sequence generator is the same generator that is described in the 3GPP Technical
Specification (TS) 36.211, Chapter 7.2.

3.3.1.1 armral_seq_generator

This function generates a pseudo-random sequence (Gold Sequence) that is used in 4G and 5G
networks to scramble data of a specific channel or to generate a specific sequence (for example for
Downlink Reference Signal generation).

The sequence generator is the same generator that is described in the 3GPP Technical
Specification (TS) 36.211, Chapter 7.2. The generator uses two polynomials, x1 and x2, defined as:

x1(n+31) = (x1(n+3) + x1(n)) mod 2
x2(n+31) = (x2(n+3) + x2(n+2) + x2(n+1) + x2(n)) mod 2

to generate the output sequence:

c(n) = (x1(n+Nc) + x2(n+Nc)) mod 2

where Nc is a constant with a value of 1600. The initialization for x1 and x2 satisfies the condition
that:

x1(0) = 1
x1(i) = 0 for i=1,2,...,30
x2(i) = cinit(i) >> i for i=0,1,...,30

The cinit parameter is provided as an input parameter for the algorithm, which is used to derive
x2. The algorithm generates x1 and x2 and skips the first 1600 bits.

Syntax
Defined in armral.h on line 1849:

armral_status armral_seq_generator(uint32_t sequence_len, uint32_t seed,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 uint8_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
sequence_len

A read-only parameter of type uint32_t.

The length of the sequence in bits (cinit).

seed

A read-only parameter of type uint32_t.

The random sequence starting point.

p_dst

A write-only parameter of type uint8_t *.

Points to the output bits.

3.3.2 Correlation Coefficient

Calculates Pearson's Correlation Coefficient from a pair of complex vectors.

3.3.2.1 armral_corr_coeff_i16

Calculates Pearson's Correlation Coefficient from a pair of vectors of complex numbers in Q15
format with real component and imaginary component interleaved, with the result stored to a
pointer to a single complex number.

Pearson's correlation coefficient is calculated using:

 SUM(x*conj(y)) - n*avg(x)*avg(y)
Rxy = ---
 SQRT(SUM(x*conj(x)) - n*avg(x)*conj(avg(x)))
 * SQRT(SUM(y*conj(y)) - n*avg(y)*conj(avg(y)))

Warning: n must be less than or equal to INT32_MAX, the largest number representable in a 32-
bit signed integer.

Syntax
Defined in armral.h on line 1968:

armral_status armral_corr_coeff_i16(uint32_t n,
 const armral_cmplx_int16_t *p_src_a,
 const armral_cmplx_int16_t *p_src_b,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 armral_cmplx_int16_t *c);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of complex samples in each vector.

p_src_a

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the first input vector.

p_src_b

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the second input vector.

c

A write-only parameter of type armral_cmplx_int16_t *.

Points to the result.

3.3.3 FIR Filter

FIR filter implemented for single-precision floating-point and 16-bit signed integers.

For example, given an input array x, an output array y, and a set of coefficients b, the following is
calculated:

y[n] = b[0] x[N-1] +
 b[1] x[N-2] +
 ... +
 b[N-1] x[0]
 =

The FIR coefficients are assumed to be reversed in memory, such that b_N above is the first
coefficient in memory rather than the last.

3.3.3.1 armral_fir_filter_cf32

Computes a complex floating-point single-precision FIR filter.

The size parameter, which is the length of the input array, must be a multiple of four. Both the
input array and the coefficients array must be padded with zeros up to the next multiple of four.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2012:

armral_status armral_fir_filter_cf32(uint32_t size, uint32_t taps,
 const armral_cmplx_f32_t *input,
 const armral_cmplx_f32_t *coeffs,
 armral_cmplx_f32_t *output);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of complex samples in input.

taps

A read-only parameter of type uint32_t.

The number of taps of the FIR filter.

input

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input samples buffer.

coeffs

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the coefficients array.

output

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output array.

3.3.3.2 armral_fir_filter_cf32_decimate_2

Computes a complex floating-point single-precision FIR filter with a decimation factor of two.

The size parameter, which is the length of the input array before decimation, must be a multiple
of eight. The input array must be padded with zeros up to the next multiple of eight, and the
coefficients array must be padded with zeros up to the next multiple of four.

Syntax
Defined in armral.h on line 2034:

armral_status armral_fir_filter_cf32_decimate_2(

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 uint32_t size, uint32_t taps, const armral_cmplx_f32_t *input,
 const armral_cmplx_f32_t *coeffs, armral_cmplx_f32_t *output);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of complex samples in input.

taps

A read-only parameter of type uint32_t.

The number of taps of the FIR filter.

input

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the input samples buffer.

coeffs

A read-only parameter of type const armral_cmplx_f32_t *.

Points to the coefficients array.

output

A write-only parameter of type armral_cmplx_f32_t *.

Points to the output array.

3.3.3.3 armral_fir_filter_cs16

Computes a complex signed 16-bit integer FIR filter.

The size parameter, which is the length of the input array, must be a multiple of eight. Both the
input array and the coefficients array must be padded with zeros up to the next multiple of eight.

Syntax
Defined in armral.h on line 2052:

armral_status armral_fir_filter_cs16(uint32_t size, uint32_t taps,
 const armral_cmplx_int16_t *input,
 const armral_cmplx_int16_t *coeffs,
 armral_cmplx_int16_t *output);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
size

A read-only parameter of type uint32_t.

The number of complex samples in input.

taps

A read-only parameter of type uint32_t.

The number of taps of the FIR filter.

input

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input samples buffer.

coeffs

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the coefficients array.

output

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output array.

3.3.3.4 armral_fir_filter_cs16_decimate_2

Computes a complex signed 16-bit integer FIR filter with a decimation factor of two.

The size parameter, which is the length of the input array before decimation, must be a multiple
of eight. The input array must be padded with zeros up to the next multiple of eight, and the
coefficients array must be padded with zeros up to the next multiple of four.

Syntax
Defined in armral.h on line 2074:

armral_status armral_fir_filter_cs16_decimate_2(
 uint32_t size, uint32_t taps, const armral_cmplx_int16_t *input,
 const armral_cmplx_int16_t *coeffs, armral_cmplx_int16_t *output);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of complex samples in input.

taps

A read-only parameter of type uint32_t.

The number of taps of the FIR filter.

input

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input samples buffer.

coeffs

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the coefficients array.

output

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output array.

3.3.4 Fast Fourier Transforms (FFT)

Computes the Discrete Fourier Transform (DFT) of a sequence (forwards transform), or the inverse
(backwards transform).

FFT plans are represented by an opaque structure. To fill the plan structure, define a pointer to the
structure and call armral_fft_create_plan_cf32 or armral_fft_create_plan_cs16. For example:

armral_fft_plan_t *plan;
armral_fft_create_plan_cf32(&plan, 32, ARMRAL_FFT_FORWARDS);
armral_fft_execute_cf32(plan, x, y);
armral_fft_destroy_plan_cf32(&plan);

3.3.4.1 armral_fft_create_plan_cf32

Creates a plan to solve a complex fp32 FFT.

Fills the passed pointer with a pointer to the plan that is created. The plan that is created can then
be used to solve problems with specified size and direction. It is efficient to create plans once and
reuse them, rather than creating a plan for every execute call. For some inputs, creating FFT plans
can incur a significant overhead.

To avoid memory leaks, call armral_fft_destroy_plan_cf32 when you no longer need this plan.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 3193:

armral_status armral_fft_create_plan_cf32(armral_fft_plan_t **p, int n,
 armral_fft_direction_t dir);

Returns
An armral_status value that indicates success or failure

Parameters
p

A parameter of type armral_fft_plan_t **.

A pointer to the resulting plan pointer. On output *p is a valid pointer, to be passed to
armral_fft_execute_cf32.

n

A read-only parameter of type int.

The problem size to be solved by this FFT plan.

dir

A write-only parameter of type armral_fft_direction_t.

The direction to be solved by this FFT plan.

3.3.4.2 armral_fft_execute_cf32

Performs a single FFT using the specified plan and arrays.

Uses the plan created by armral_fft_create_plan_cf32 to perform the configured FFT with the
arrays that are specified.

Syntax
Defined in armral.h on line 3213:

armral_status armral_fft_execute_cf32(const armral_fft_plan_t *p,
 const armral_cmplx_f32_t *x,
 armral_cmplx_f32_t *y);

Returns
An armral_status value that indicates success or failure.

Parameters
p

A read-only parameter of type const armral_fft_plan_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

A pointer to the FFT plan. The pointer is the value that is filled in by an earlier call to
armral_fft_create_plan_cf32.

x

A read-only parameter of type const armral_cmplx_f32_t *.

The input array for this FFT. The length must be the same as the value of n that was
previously passed to armral_fft_create_plan_cf32.

y

A write-only parameter of type armral_cmplx_f32_t *.

The output array for this FFT. The length must be the same as the value of n that was
previously passed to armral_fft_create_plan_cf32.

3.3.4.3 armral_fft_destroy_plan_cf32

Destroys an FFT plan.

The armral_fft_execute_cf32 function frees any associated memory, and sets *p = NULL, for a plan
that was previously created by armral_fft_create_plan_cf32.

Syntax
Defined in armral.h on line 3230:

armral_status armral_fft_destroy_plan_cf32(armral_fft_plan_t **p);

Returns
An armral_status value that indicates success or failure.

Parameters
p

A parameter of type armral_fft_plan_t **.

A pointer to the FFT plan pointer. The pointer must be the value that is returned by an earlier
call to armral_fft_create_plan_cf32. On function exit, the value that is pointed to is set to
NULL.

3.3.4.4 armral_fft_create_plan_cs16

Creates a plan to solve a complex int16 (Q0.15 format) FFT.

Fills the passed pointer with a pointer to the plan that is created. The plan that is created can then
be used to solve problems with specified size and direction. It is efficient to create plans once and
reuse them, rather than creating a plan for every execute call. For some inputs, creating FFT plans
can incur a significant overhead.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

To avoid memory leaks, call armral_fft_destroy_plan_cs16 when you no longer need this plan.

Syntax
Defined in armral.h on line 3251:

armral_status armral_fft_create_plan_cs16(armral_fft_plan_t **p, int n,
 armral_fft_direction_t dir);

Returns
An armral_status value that indicates success or failure.

Parameters
p

A parameter of type armral_fft_plan_t **.

A pointer to the resulting plan pointer. On output *p is a valid pointer, to be passed to
armral_fft_execute_cs16.

n

A read-only parameter of type int.

The problem size to be solved by this FFT plan.

dir

A write-only parameter of type armral_fft_direction_t.

The direction to be solved by this FFT plan.

3.3.4.5 armral_fft_execute_cs16

Performs a single FFT using the specified plan and arrays.

Uses the plan created by armral_fft_create_plan_cs16 to perform the configured FFT with the
arrays that are specified.

Syntax
Defined in armral.h on line 3271:

armral_status armral_fft_execute_cs16(const armral_fft_plan_t *p,
 const armral_cmplx_int16_t *x,
 armral_cmplx_int16_t *y);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
p

A read-only parameter of type const armral_fft_plan_t *.

A pointer to the FFT plan. The pointer is the value that is filled in by an earlier call to
armral_fft_create_plan_cs16.

x

A read-only parameter of type const armral_cmplx_int16_t *.

The input array for this FFT. The length must be the same as the value of n that was
previously passed to armral_fft_create_plan_cs16.

y

A write-only parameter of type armral_cmplx_int16_t *.

The output array for this FFT. The length must be the same as the value of n that was
previously passed to armral_fft_create_plan_cs16.

3.3.4.6 armral_fft_destroy_plan_cs16

Destroys an FFT plan.

The armral_fft_execute_cs16 function frees any associated memory, and sets *p = NULL, for a plan
that was previously created by armral_fft_create_plan_cs16.

Syntax
Defined in armral.h on line 3288:

armral_status armral_fft_destroy_plan_cs16(armral_fft_plan_t **p);

Returns
An armral_status value that indicates success or failure.

Parameters
p

A parameter of type armral_fft_plan_t **.

A pointer to the FFT plan pointer. The pointer must be the value that is returned by an earlier
call to armral_fft_create_plan_cs16. On function exit, the value that is pointed to is set to
NULL.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.3.5 Scrambling

Scrambles the input bits using the given pseudo-random sequence.

The scrambler can be applied for Physical Uplink Control Channels (PUCCH) formats 2, 3 and 4, as
well as Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH),
and Physical Broadcast Channel (PBCH). The implementation here covers the scrambling described
in 3GPP Technical Specification (TS) 38.211, sections 6.3.2.5.1, 6.3.2.6.1, 7.3.1.1, 7.3.2.3, and
7.3.3.1.

3.3.5.1 armral_scramble_code_block

This function generates a block of scrambled bits using a pseudo-random sequence according to
the scrambler described in the 3GPP Technical Specification (TS) 38.211. For a codeword b with
length M transmitted on the physical channel, the block of bits b(0), ..., b(M - 1) is scrambled
according to:

s(i) = (b(i) + c(i)) mod 2

where s(0), ..., s(M - 1) are the scrambled bits and c is a pseudo-random scrambling sequence
defined by a length-31 Gold sequence. Note that this function cannot be used to scramble a
transport block, as defined in TS 38.212 section 7.1.2.

Syntax
Defined in armral.h on line 4530:

armral_status armral_scramble_code_block(const uint8_t *src, const uint8_t *seq,
 uint32_t num_bits, uint8_t *dst);

Returns
An armral_status value that indicates success or failure.

Parameters
src

A read-only parameter of type const uint8_t *.

Points to the array of input bits.

seq

A read-only parameter of type const uint8_t *.

Points to the pseudo-random sequence. This is assumed to be a Gold sequence. The Gold
sequence generator armral_seq_generator can be used to generate this.

num_bits

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of input bits.

dst

A read-only parameter of type uint8_t *.

Points to the array of output bits. This contains enough bytes to store num_bits bits.

3.4 Upper PHY support functions
Functions for working in the upper physical layer (upper PHY).

The Upper PHY functions include support for:

• Digital modulation and demodulation, using QPSK, 16QAM, 64QAM, or 256QAM.

• Cyclic Redundancy Check (CRC), both little-endian and big-endian, for the six 5G polynomials
(CRC24A, CRC24B, CRC24C, CRC16, CRC11, and CRC6).

• Polar encoding and decoding.

• Low-Density Parity Check (LDPC) encoding and decoding.

• LTE Turbo encoding and decoding.

• LTE tail biting convolutional encoding and decoding.

• Rate matching and rate recovery for Polar coding.

• Rate matching and rate recovery for LDPC coding.

3.4.1 Modulation

Performs modulation and demodulation of digital signals. Modulation takes a bitstream and outputs
a series of Q2.13 fixed-point complex symbols. Demodulation takes Q2.13 fixed-point complex
symbols and generates a series of log-likelihood ratios (LLRs), which can be used in Polar decoding.

The functions take as parameter the modulation type being used, namely either QPSK or QAM, see
armral_modulation_type.

The number of complex samples needed for a given bitstream (and therefore the size of the
memory buffer passed) depends on the modulation type being used: QPSK, 16QAM, 64QAM, and
256QAM correspond to two, four, six, and eight bits per symbol, respectively (log base-2 of the
constellation size).

3.4.1.1 armral_modulation

Performs modulation of a bitstream, outputs a series of Q2.13 fixed-point complex symbols.

The expected size of p_dst depends on the modulation type being used: QPSK, 16QAM, 64QAM,
and 256QAM consume two, four, six, and eight bits per symbol, respectively.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 1887:

armral_status armral_modulation(uint32_t nbits, armral_modulation_type mod_type,
 const uint8_t *p_src,
 armral_cmplx_int16_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
nbits

A read-only parameter of type uint32_t.

The number of input modulated bits.

mod_type

A read-only parameter of type armral_modulation_type.

The type of modulation to perform.

p_src

A read-only parameter of type const uint8_t *.

Points to input bit flow.

p_dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to output complex symbols (format Q2.13).

3.4.1.2 armral_demodulation

This function implements the soft-demodulation (or soft bit demapping) for QPSK, 16QAM,
64QAM, and 256QAM constellations.

For complex symbols x_i, the input sequence is assumed to be made of complex symbols rx
= rx_re + j * rx_im, whose components I and Q are 16 bits each (format Q2.13) and in an
interleaved form:

{Re(0), Im(0), Re(1), Im(1), ..., Re(N - 1), Im(N - 1)}

The output of the soft-demodulation algorithm is a sequence of log-likelihood ratio (LLR)
int8_t values, which indicate the relative confidence of the demapping decision, component by
component, instead of taking a hard decision and giving the bit value itself.

The LLRs are computed using a maximum likelihood approach. The LLR calculations use a threshold
method to approximate the maximum likelihood. This reduces the time complexity required for

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

the demodulation, and gives good estimates of the maximum likelihood when the noise is low or
moderate on a channel. In order to keep the LLRs in a range of int8_t, scaling can be applied with
the use of a unit of least precision (ulp).

All the constellation mappings follow those defined in the 3GPP Technical Specification (TS) 38.211
V15.2.0, Chapter 5.1.

Syntax
Defined in armral.h on line 1929:

armral_status armral_demodulation(uint32_t n_symbols, uint16_t ulp,
 armral_modulation_type mod_type,
 const armral_cmplx_int16_t *p_src,
 int8_t *p_dst);

Returns
An armral_status value that indicates success or failure.

Parameters
n_symbols

A read-only parameter of type uint32_t.

The number of complex symbols in the input.

ulp

A read-only parameter of type uint16_t.

The change in input amplitude corresponding to a unit change in the output LLRs (format
Q2.13). The integer representation of ulp must lie in the range [2, 2^15].

mod_type

A read-only parameter of type armral_modulation_type.

The modulation type.

p_src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to input complex source (format Q2.13).

p_dst

A write-only parameter of type int8_t *.

Points to the output byte seq.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.2 Cyclic Redundancy Check (CRC)

Computes a Cyclic Redundancy Check (CRC) of an input buffer using carry-less multiplication and
Barret reduction.

CRC24A polynomial = x^24 + x^23 + x^18 + x^17 + x^14 + x^11 + x^10 + x^7 +
 x^6 + x^5 + x^4 + x^3 + x + 1
CRC24B polynomial = x^24 + x^23 + x^6 + x^5 + x + 1
CRC24C polynomial = x^24 + x^23 + x^21 + x^20 + x^17 + x^15 + x^13 + x^12 +
 x^8 + x^4 + x^2 + x + 1
CRC16 polynomial = x^16 + x^12 + x^5 + 1
CRC11 polynomial = x^11 + x^10 + x^9 + x^5 + 1
CRC6 polynomial = x^6 + x^5 + 1

The input buffer is assumed to be padded to at least 8 bytes. If the input size is greater than 8
bytes, then padding to a multiple of 16 bytes (128 bits) is assumed.

Both little-endian and big-endian orderings are provided, using the le and be suffixes, respectively.

3.4.2.1 armral_crc24_a_le

Computes the CRC24 of an input buffer using the CRC24A polynomial. Blocks of 64 bits are
interpreted using little-endian ordering.

Syntax
Defined in armral.h on line 2582:

armral_status armral_crc24_a_le(uint32_t size, const uint64_t *input,
 uint64_t *crc24);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc24

A write-only parameter of type uint64_t *.

The computed 24-bit CRC result.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.2.2 armral_crc24_a_be

Computes the CRC24 of an input buffer using the CRC24A polynomial. Blocks of 64 bits are
interpreted using big-endian ordering.

Syntax
Defined in armral.h on line 2594:

armral_status armral_crc24_a_be(uint32_t size, const uint64_t *input,
 uint64_t *crc24);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc24

A write-only parameter of type uint64_t *.

The computed 24-bit CRC result.

3.4.2.3 armral_crc24_b_le

Computes the CRC24 of an input buffer using the CRC24B polynomial. Blocks of 64 bits are
interpreted using little-endian ordering.

Syntax
Defined in armral.h on line 2606:

armral_status armral_crc24_b_le(uint32_t size, const uint64_t *input,
 uint64_t *crc24);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc24

A write-only parameter of type uint64_t *.

The computed 24-bit CRC result.

3.4.2.4 armral_crc24_b_be

Computes the CRC24 of an input buffer using the CRC24B polynomial. Blocks of 64 bits are
interpreted using big-endian ordering.

Syntax
Defined in armral.h on line 2618:

armral_status armral_crc24_b_be(uint32_t size, const uint64_t *input,
 uint64_t *crc24);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc24

A write-only parameter of type uint64_t *.

The computed 24-bit CRC result.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.2.5 armral_crc24_c_le

Computes the CRC24 of an input buffer using the CRC24C polynomial. Blocks of 64 bits are
interpreted using little-endian ordering.

Syntax
Defined in armral.h on line 2630:

armral_status armral_crc24_c_le(uint32_t size, const uint64_t *input,
 uint64_t *crc24);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc24

A write-only parameter of type uint64_t *.

The computed 24-bit CRC result.

3.4.2.6 armral_crc24_c_be

Computes the CRC24 of an input buffer using the CRC24C polynomial. Blocks of 64 bits are
interpreted using big-endian ordering.

Syntax
Defined in armral.h on line 2642:

armral_status armral_crc24_c_be(uint32_t size, const uint64_t *input,
 uint64_t *crc24);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc24

A write-only parameter of type uint64_t *.

The computed 24-bit CRC result.

3.4.2.7 armral_crc16_le

Computes the CRC16 of an input buffer using the CRC16 polynomial. Blocks of 64 bits are
interpreted using little-endian ordering.

Syntax
Defined in armral.h on line 2654:

armral_status armral_crc16_le(uint32_t size, const uint64_t *input,
 uint64_t *crc16);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc16

A write-only parameter of type uint64_t *.

The computed 16-bit CRC result.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.2.8 armral_crc16_be

Computes the CRC16 of an input buffer using the CRC16 polynomial. Blocks of 64 bits are
interpreted using big-endian ordering.

Syntax
Defined in armral.h on line 2666:

armral_status armral_crc16_be(uint32_t size, const uint64_t *input,
 uint64_t *crc16);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc16

A write-only parameter of type uint64_t *.

The computed 16-bit CRC result.

3.4.2.9 armral_crc11_le

Computes the CRC11 of an input buffer using the CRC11 polynomial. Blocks of 64 bits are
interpreted using little-endian ordering.

Syntax
Defined in armral.h on line 2678:

armral_status armral_crc11_le(uint32_t size, const uint64_t *input,
 uint64_t *crc11);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc11

A write-only parameter of type uint64_t *.

The computed 11-bit CRC result.

3.4.2.10 armral_crc11_be

Computes the CRC11 of an input buffer using the CRC11 polynomial. Blocks of 64 bits are
interpreted using big-endian ordering.

Syntax
Defined in armral.h on line 2690:

armral_status armral_crc11_be(uint32_t size, const uint64_t *input,
 uint64_t *crc11);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc11

A write-only parameter of type uint64_t *.

The computed 11-bit CRC result.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.2.11 armral_crc6_le

Computes the CRC6 of an input buffer using the CRC6 polynomial. Blocks of 64 bits are interpreted
using little-endian ordering.

Syntax
Defined in armral.h on line 2702:

armral_status armral_crc6_le(uint32_t size, const uint64_t *input,
 uint64_t *crc6);

Returns
An armral_status value that indicates success or failure.

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc6

A write-only parameter of type uint64_t *.

The computed 6-bit CRC result.

3.4.2.12 armral_crc6_be

Computes the CRC6 of an input buffer using the CRC6 polynomial. Blocks of 64 bits are interpreted
using big-endian ordering.

Syntax
Defined in armral.h on line 2714:

armral_status armral_crc6_be(uint32_t size, const uint64_t *input,
 uint64_t *crc6);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
size

A read-only parameter of type uint32_t.

The number of bytes of the given buffer.

input

A read-only parameter of type const uint64_t *.

Points to the input byte sequence.

crc6

A write-only parameter of type uint64_t *.

The computed 6-bit CRC result.

3.4.3 Polar Encoding

In uplink, Polar codes are used to encode the Uplink Control Information (UCI) over the Physical
Uplink Control Channel (PUCCH) and Physical Uplink Shared Channel (PUSCH). In downlink, Polar
codes are used to encode the Downlink Control Information (DCI) over the Physical Downlink
Control Channel (PDCCH).

By construction, Polar codes only allow code lengths that are powers of two (N=2^n). The number
of input information bits, K, can take any arbitrary value up to the maximum value of N (K<=N). In
particular, 5G NR restricts the usage of Polar codes length from N=32 bits to N=1024 bits. For
N<32, other types of channel coding are performed.

Given the input sequence vector [u] = [u(0), u(1), ..., u(N-1)], if index i is included in the
frozen bits set, then u(i) = 0. The input information bits are stored in the remaining entries.
[d] = [d(0), d(1), ..., d(N-1)] is the vector of output encoded bits. [G_N] is the channel
transformation matrix (N -by- N), obtained by recursively applying the Kronecker product from the
basic kernel G_2 = |1 0; 1 1| to the order n = log2(N).

The output after encoding, [d], is obtained by [d] = [u]*[G_N].

For more information, refer to the 3GPP Technical Specification (TS) 38.212 V16.0.0 (2019-12).

3.4.3.1 armral_polar_frozen_mask

Computes the frozen bits mask used for encoding and decoding a Polar code.

The mask is formatted as an array of uint8_t elements, where each byte element describes the
corresponding bit index in the Polar-encoded message. After armral_polar_subchannel_interleave,
the value of each bit in the interleaved message is set based on the corresponding byte index
of the frozen mask. The exact behavior of possible values in the frozen mask is described by
armral_polar_frozen_bit_type.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The armral_polar_frozen_mask function takes both the number of information bits and the
number of parity bits separately, because the number of parity bits does not depend exactly on
K or E, but also depends on if you are coding for the uplink or downlink. The downlink always has
zero parity bits.

The values of the input parameters must satisfy K + n_pc < N and satisfy K + n_pc < E. The
possible values of n_pc and n_pc_wm are described in section 6.3.1.3.1 of the 3GPP Technical
Specification (TS) 38.212: n_pc must be either 0 or 3, n_pc_wm must be either 0 or 1, and n_pc >=
n_pc_wm must also be true.

Syntax
Defined in armral.h on line 2788:

armral_status armral_polar_frozen_mask(uint32_t n, uint32_t e, uint32_t k,
 uint32_t n_pc, uint32_t n_pc_wm,
 uint8_t *frozen);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The Polar code length in bits, must be a power of 2.

e

A read-only parameter of type uint32_t.

The encoded code length in bits, after rate-matching (either shortening, puncturing or
repetition).

k

A read-only parameter of type uint32_t.

The number of information bits in the encoded message, the sum of the message and CRC
bits (K = A + L).

n_pc

A read-only parameter of type uint32_t.

The number of parity bits in the encoded message.

n_pc_wm

A read-only parameter of type uint32_t.

The number of row-weight-selected parity bits in the encoded message. Must be either zero
or one.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

frozen

A write-only parameter of type uint8_t *.

The output frozen mask, length n bytes. As described by armral_polar_frozen_bit_type,
elements corresponding to frozen bits are set to 0xFF, elements corresponding to parity bits
are set to 0x01, and elements corresponding to information bits are set to 0x00 .

3.4.3.2 armral_polar_subchannel_interleave

The armral_polar_subchannel_interleave function performs subchannel allocation. To calculate
the u bit array, as specified in section 5.3.1.2 of the 3GPP Technical Specification (TS) 38.212, the
function interleaves the supplied input bit array c into a larger output bit array. c interleaves into
positions where the frozen mask indicates an information bit is present. Interleaving is performed
as specified in section 5.3.1.1 of 3GPP TS 38.212.

For a particular underlying Polar code of length N bits (N must be a power of two between 32 and
1024 inclusive), the frozen mask must be an array of length N bytes. By the nature of Polar coding,
K′ ≤ N must be true.

Syntax
Defined in armral.h on line 2816:

armral_status armral_polar_subchannel_interleave(uint32_t n, uint32_t kplus,
 const uint8_t *frozen,
 const uint8_t *c, uint8_t *u);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The Polar code size N.

kplus

A read-only parameter of type uint32_t.

The number of information bits plus the number of parity bits: K′ = K + n_pc.

frozen

A read-only parameter of type const uint8_t *.

Points to the frozen bits mask given by armral_polar_frozen_mask.

c

A read-only parameter of type const uint8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The input codeword, of length K bits.

u

A write-only parameter of type uint8_t *.

The output codeword including frozen and parity bits, of length N bits.

3.4.3.3 armral_polar_subchannel_deinterleave

The armral_polar_subchannel_deinterleave function performs the inverse of subchannel
allocation. To calculate the c bit array, as specified in section 5.3.1.2 of the 3GPP Technical
Specification (TS) 38.212, the function deinterleaves the supplied input bit array u into a smaller
output bit array. Bits stored in u are taken from c at indices where the frozen mask indicates an
information bit is present. The bits at the remaining frozen mask bit indices are ignored.

For a particular underlying Polar code of length N bits (N must be a power of two between 32 and
1024 inclusive), the frozen mask must be an array of length N bytes. By the nature of Polar coding,
K ≤ N must be true.

Syntax
Defined in armral.h on line 2843:

armral_status armral_polar_subchannel_deinterleave(uint32_t k,
 const uint8_t *frozen,
 const uint8_t *u,
 uint8_t *c);

Returns
An armral_status value that indicates success or failure.

Parameters
k

A read-only parameter of type uint32_t.

The number of information bits, not including the number of parity bits.

frozen

A read-only parameter of type const uint8_t *.

Points to the frozen bits mask given by armral_polar_frozen_mask.

u

A read-only parameter of type const uint8_t *.

The input decoded codeword, including frozen and parity bits, of length N bits.

c

A write-only parameter of type uint8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The output codeword, of length K bits.

3.4.3.4 armral_polar_encode_block

Encodes the specified sequence of n input bits using Polar encoding.

Syntax
Defined in armral.h on line 2859:

armral_status armral_polar_encode_block(uint32_t n, const uint8_t *p_u_seq_in,
 uint8_t *p_d_seq_out);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The Polar code length in bits, where n must be a power of 2.

p_u_seq_in

A read-only parameter of type const uint8_t *.

Points to the input sequence [u] of bits [u(0), u(1), ..., u(N-1)].

p_d_seq_out

A write-only parameter of type uint8_t *.

Points to the output encoded sequence [d] of bits [d(0), d(1), ..., d(N-1)].

3.4.3.5 armral_polar_decode_block

Decodes k real information bits from a Polar-encoded message of length n , given as input as a
sequence of 8-bit log-likelihood ratios. The number of information bits k itself is not needed for
the armral_polar_decode_block function itself, since computing the frozen bits mask is handled
elsewhere in armral_polar_frozen_mask.

If l=1, the decoder uses a Successive Cancellation (SC) method. If l>1 , the decoder uses a
Successive Cancellation List (SCL) method instead. l candidate codewords are maintained and
returned, sorted by worsening path metric (in other words, the first returned value is the most likely
to be correct). List sizes of 1, 2, 4 and 8 are supported. Unsupported values of n or l will return
ARMRAL_ARGUMENT_ERROR.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2885:

armral_status armral_polar_decode_block(uint32_t n, const uint8_t *frozen,
 uint32_t l, const int8_t *p_llr_in,
 uint8_t *p_u_seq_out);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The Polar code length in bits, must be a power of 2

frozen

A read-only parameter of type const uint8_t *.

Points to the frozen bits mask given by armral_polar_frozen_mask.

l

A read-only parameter of type uint32_t.

The list size to be used in decoding.

p_llr_in

A read-only parameter of type const int8_t *.

Points to the input sequence of LLR bytes.

p_u_seq_out

A write-only parameter of type uint8_t *.

Points to l decoded sequences, ordered by decreasing path metric, each of length n bits.

3.4.3.6 armral_polar_rate_matching

Matches the rate of the Polar encoded code block to the rate of the channel using sub-block
interleaving, bit selection, and channel interleaving based on Downlink or Uplink direction. This is
as described in the 3GPP Technical Specification (TS) 38.212 section 5.4.1.

The code rate of the code block is defined by the ratio of the rate-matched length e to the number
of information bits in the message k. It is assumed that e is strictly greater than k. Given a rate-
matched length and number of information bits, the code block length is determined as described
in section 5.3.1 of TS 38.212.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2912:

armral_status armral_polar_rate_matching(uint32_t n, uint32_t e, uint32_t k,
 armral_polar_ibil_type i_bil,
 const uint8_t *p_d_seq_in,
 uint8_t *p_f_seq_out);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of bits in the code block.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message.

k

A read-only parameter of type uint32_t.

The number of information bits in the code block.

i_bil

A read-only parameter of type armral_polar_ibil_type.

Flag to enable/disable the interleaving of coded bits.

p_d_seq_in

A read-only parameter of type const uint8_t *.

Points to n bits representing the Polar encoded message.

p_f_seq_out

A write-only parameter of type uint8_t *.

Points to e bits representing the rate-matched message.

3.4.3.7 armral_polar_rate_matching_noalloc

Non-allocating variant of armral_polar_rate_matching.

Matches the rate of the Polar encoded code block to the rate of the channel using sub-block
interleaving, bit selection, and channel interleaving based on Downlink or Uplink direction. This is
as described in the 3GPP Technical Specification (TS) 38.212 section 5.4.1.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The code rate of the code block is defined by the ratio of the rate-matched length e to the number
of information bits in the message k. It is assumed that e is strictly greater than k. Given a rate-
matched length and number of information bits, the code block length is determined as described
in section 5.3.1 of TS 38.212.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

When i_bil = ARMRAL_POLAR_IBIL_DISABLE the buffer must be at least ((n + 7) / 8) *
sizeof(uint8_t) bytes. When i_bil = ARMRAL_POLAR_IBIL_ENABLE the buffer must be at least ((n
+ e + 7) / 8) * sizeof(uint8_t) bytes.

Syntax
Defined in armral.h on line 2951:

armral_status armral_polar_rate_matching_noalloc(
 uint32_t n, uint32_t e, uint32_t k, armral_polar_ibil_type i_bil,
 const uint8_t *p_d_seq_in, uint8_t *p_f_seq_out, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of bits in the code block.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message.

k

A read-only parameter of type uint32_t.

The number of information bits in the code block.

i_bil

A read-only parameter of type armral_polar_ibil_type.

Flag to enable/disable the interleaving of coded bits.

p_d_seq_in

A read-only parameter of type const uint8_t *.

Points to n bits representing the Polar encoded message.

p_f_seq_out

A write-only parameter of type uint8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to e bits representing the rate-matched message.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.3.8 armral_polar_rate_recovery

Recovers the log-likelihood ratios (LLRs) from demodulation to match the length of Polar code
blocks using channel deinterleaving, bit recovery, and sub-block deinterleaving. These operations
are the inverse of channel interleaving, bit selection, and sub-block interleaving used in Polar rate
matching, which is described in the 3GPP Technical Specification (TS) 38.212 section 5.4.1.1.

The size of the code block is given in section 5.3.1 of TS 38.212, and is related to the ratio of
the rate matched length e and information bits per code block k according to clause 5.4.1 of TS
38.212.

The code rate of the code block is the ratio of the rate-matched length e to the number of
information bits in the message k.

Syntax
Defined in armral.h on line 2986:

armral_status armral_polar_rate_recovery(uint32_t n, uint32_t e, uint32_t k,
 armral_polar_ibil_type i_bil,
 const int8_t *p_llr_in,
 int8_t *p_llr_out);

Returns
An armral_status value that indicates success or failure.

Parameters
n

A read-only parameter of type uint32_t.

The number of bits in the code block. Defined in section 5.3.1 of TS 38.212.

e

A read-only parameter of type uint32_t.

The length of the rate-matched message. This is also the number of LLRs in the demodulated
message.

k

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of information bits in the message to recover. The ratio of e/k is the rate of the
transmitted code block. e is assumed to be strictly greater than k.

i_bil

A read-only parameter of type armral_polar_ibil_type.

Flag to enable/disable the de-interleaving of coded bits.

p_llr_in

A read-only parameter of type const int8_t *.

Points to e 8-bit LLRs, which are assumed to be the output of demodulation.

p_llr_out

A write-only parameter of type int8_t *.

Points to n 8-bit rate-recovered LLRs. This output can be passed as input to Polar decoding.

3.4.3.9 armral_polar_rate_recovery_noalloc

Non-allocating variant of armral_polar_rate_recovery. This function recovers the log-likelihood
ratios (LLRs) from demodulation to match the length of Polar code blocks using channel
deinterleaving, bit recovery, and sub-block deinterleaving. These operations are the inverse of
channel interleaving, bit selection, and sub-block interleaving used in Polar rate matching, which is
described in the 3GPP Technical Specification (TS) 38.212 section 5.4.1.1.

The size of the code block is given in section 5.3.1 of TS 38.212, and is related to the ratio of
the rate matched length e and information bits per code block k according to clause 5.4.1 of TS
38.212.

The code rate of the code block is the ratio of the rate-matched length e to the number of
information bits in the message k.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least (n + e) * sizeof(uint8_t) bytes.

Syntax
Defined in armral.h on line 3029:

armral_status armral_polar_rate_recovery_noalloc(
 uint32_t n, uint32_t e, uint32_t k, armral_polar_ibil_type i_bil,
 const int8_t *p_llr_in, int8_t *p_llr_out, void *buffer);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
n

A read-only parameter of type uint32_t.

The number of bits in the code block. Defined in section 5.3.1 of TS 38.212.

e

A read-only parameter of type uint32_t.

The length of the rate-matched message. This is also the number of LLRs in the demodulated
message.

k

A read-only parameter of type uint32_t.

The number of information bits in the message to recover. The ratio of e/k is the rate of the
transmitted code block. e is assumed to be strictly greater than k.

i_bil

A read-only parameter of type armral_polar_ibil_type.

Flag to enable/disable the de-interleaving of coded bits.

p_llr_in

A read-only parameter of type const int8_t *.

Points to e 8-bit LLRs, which are assumed to be the output of demodulation.

p_llr_out

A write-only parameter of type int8_t *.

Points to n 8-bit rate-recovered LLRs. This output can be passed as input to Polar decoding.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.3.10 armral_polar_crc_attachment

Performs the Cyclic Redundancy Check (CRC) attachment described in section 5.2.1 of the 3GPP
Technical Specification (TS) 38.212.

Syntax
Defined in armral.h on line 3044:

armral_status armral_polar_crc_attachment(const uint8_t *data_in, uint32_t a,
 uint8_t *data_out);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
data_in

A read-only parameter of type const uint8_t *.

Points to the input sequence.

a

A read-only parameter of type uint32_t.

The length of the input sequence (A).

data_out

A write-only parameter of type uint8_t *.

Points to the output sequence of length K = A + L, where L is the length of the CRC
generator polynomial.

3.4.3.11 armral_polar_crc_attachment_noalloc

Non-allocating variant of armral_polar_crc_attachment.

This function performs the Cyclic Redundancy Check (CRC) attachment described in section 5.2.1
of the 3GPP Technical Specification (TS) 38.212.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_polar_crc_attachment_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 3068:

armral_status armral_polar_crc_attachment_noalloc(const uint8_t *data_in,
 uint32_t a, uint8_t *data_out,
 void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
data_in

A read-only parameter of type const uint8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the input sequence.

a

A read-only parameter of type uint32_t.

The length of the input sequence (A).

data_out

A write-only parameter of type uint8_t *.

Points to the output sequence of length K = A + L, where L is the length of the CRC
generator polynomial.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.3.12 armral_polar_crc_attachment_noalloc_buffer_size

Calculates the required buffer size in bytes for Polar Cyclic Redundancy Check (CRC) attachment
for an input sequence of length A.

Syntax
Defined in armral.h on line 3079:

uint32_t armral_polar_crc_attachment_noalloc_buffer_size(uint32_t a);

Returns
The required buffer size in bytes.

Parameters
a

A read-only parameter of type uint32_t.

The length of the input sequence (A).

3.4.3.13 armral_polar_crc_check

Calculates the Cyclic Redundancy Check (CRC) value of a Polar decoded code block of length A,
as described in section 5.1.1 of the 3GPP Technical Specification (TS) 38.212, and checks if the
computed CRC value matches the CRC value attached to that code block.

If the CRC values match the function returns true; otherwise it returns false.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 3096:

bool armral_polar_crc_check(const uint8_t *data_in, uint32_t k);

Returns
A boolean value that indicates success or failure.

Parameters
data_in

A read-only parameter of type const uint8_t *.

Points to the input sequence of length A = K - L, where L is the length of the CRC
generator polynomial.

k

A read-only parameter of type uint32_t.

The length of the message in the input sequence (K).

3.4.3.14 armral_polar_crc_check_noalloc

Non-allocating variant of armral_polar_crc_check .

This function calculates the Cyclic Redundancy Check (CRC) value of a Polar decoded code block
of length A, as described in section 5.1.1 of the 3GPP Technical Specification (TS) 38.212, and
checks if the computed CRC value matches the CRC value attached to that code block.

If the CRC values match the function returns true; otherwise it returns false.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_polar_crc_check_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 3123:

bool armral_polar_crc_check_noalloc(const uint8_t *data_in, uint32_t k,
 void *buffer);

Returns
A boolean value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
data_in

A read-only parameter of type const uint8_t *.

Points to the input sequence of length A = K - L, where L is the length of the CRC
generator polynomial.

k

A read-only parameter of type uint32_t.

The length of the message in the input sequence (K).

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.3.15 armral_polar_crc_check_noalloc_buffer_size

Calculates the required buffer size in bytes needed to perform a Cyclic Redundancy Check (CRC)
on a Polar decoded message of length K.

Syntax
Defined in armral.h on line 3133:

uint32_t armral_polar_crc_check_noalloc_buffer_size(uint32_t k);

Returns
The required buffer size in bytes.

Parameters
k

A read-only parameter of type uint32_t.

The length of the message in the input sequence (K).

3.4.4 Low-Density Parity Check (LDPC)

Performs encoding and decoding of data using Low-density Parity Check (LDPC) methods. The
implementation is described in the 3GPP Technical Specification (TS) 38.212, in sections 5.2.2 and
5.3.2.

Encoding of a single block is supported. Depending on the rate matching applied to a signal, one
of two base graphs are used when creating an LDPC encoding. Concepts of rate matching are

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

not included, but the implementation provided does take the graph as input to be able to perform
different encoding operations.

A base graph is described by a sparse matrix, in which each non-zero entry indicates the presence
of a shifted identity matrix. The size of the matrix is denoted by z and depends on the size of the
message to encode. z is referred to as the lifting size, and a lifting size belongs to a particular lifting
set (indices from 0 to 7). The amount each identity matrix is shifted by depends on the lifting set
index.

3.4.4.1 armral_ldpc_get_base_graph

Uses the identifier of a base graph to get the data structure that describes a base graph.

Syntax
Defined in armral.h on line 3377:

const armral_ldpc_base_graph_t *
armral_ldpc_get_base_graph(armral_ldpc_graph_t bg);

Returns
A pointer to an LDPC base graph.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

Enum identifier of the base graph to get.

3.4.4.2 armral_ldpc_encode_block

Performs encoding using LDPC as laid out in the 3GPP Technical Specification (TS) 38.212.
Encoding is performed for a single code block.

The length of the code block is determined from the lifting size z and base graph. For example, for
base graph 1 the length of a code block is 68 * z bits, and for base graph 2 the length of the code
block is 52 * z bits. The output from the encoding begins at the third column of the base graph.
The first two columns are punctured, as per section 5.3.2 of TS 38.212. The number of encoded
bits returned from this function is 66 * z for base graph 1, and 50 * z for base graph 2. The values
of z are limited to those in table 5.3.2-1 in TS 38.212.

The number of information bits in a code block is determined by the lifting size and base graph.
For base graph 1 the number of information bits per code block is 22 * z. For base graph 2 the
number of information bits per code block is 10 * z. It is assumed that the correct number of input
bits is passed into this function.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 3422:

armral_status armral_ldpc_encode_block(const uint8_t *data_in,
 armral_ldpc_graph_t bg, uint32_t z,
 uint32_t len_filler_bits,
 uint8_t *data_out);

Returns
An armral_status value that indicates success or failure.

Parameters
data_in

A read-only parameter of type const uint8_t *.

The information bits to encode. It is assumed that the number of bits stored in data_in fits
into a single code block. The number of information bits is assumed to be 22 * z for base
graph 1, and 10 * z for base graph 2.

bg

A read-only parameter of type armral_ldpc_graph_t.

Identifier for the base graph to use for encoding. TS 38.212 defines two base graphs in table
5.3.2-2 and 5.3.2-3. The base graph, in combination with the lifting size z, determines the
block size and the graph to use for encoding the block.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

len_filler_bits

A read-only parameter of type uint32_t.

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

data_out

A write-only parameter of type uint8_t *.

The codeword to be transmitted. data_out has the first two columns for the base graphs
punctured, and contains the information and calculated parity bits after encoding.

3.4.4.3 armral_ldpc_encode_block_noalloc

Non-allocating variant of armral_ldpc_encode_block.

This function performs encoding using LDPC as laid out in the 3GPP Technical Specification (TS)
38.212. Encoding is performed for a single code block.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The length of the code block is determined from the lifting size z and base graph. For example, for
base graph 1 the length of a code block is 68 * z bits, and for base graph 2 the length of the code
block is 52 * z bits. The output from the encoding begins at the third column of the base graph.
The first two columns are punctured, as per section 5.3.2 of TS 38.212. The number of encoded
bits returned from this function is 66 * z for base graph 1, and 50 * z for base graph 2. The values
of z are limited to those in table 5.3.2-1 in TS 38.212.

The number of information bits in a code block is determined by the lifting size and base graph.
For base graph 1 the number of information bits per code block is 22 * z. For base graph 2 the
number of information bits per code block is 10 * z. It is assumed that the correct number of input
bits is passed into this function.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_ldpc_encode_block_noalloc_buffer_size . with identical inputs.

Syntax
Defined in armral.h on line 3479:

armral_status armral_ldpc_encode_block_noalloc(const uint8_t *data_in,
 armral_ldpc_graph_t bg,
 uint32_t z,
 uint32_t len_filler_bits,
 uint8_t *data_out, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
data_in

A read-only parameter of type const uint8_t *.

The information bits to encode. It is assumed that the number of bits stored in data_in fits
into a single code block. The number of information bits is assumed to be 22 * z for base
graph 1, and 10 * z for base graph 2.

bg

A read-only parameter of type armral_ldpc_graph_t.

Identifier for the base graph to use for encoding. TS 38.212 defines two base graphs in table
5.3.2-2 and 5.3.2-3. The base graph, in combination with the lifting size z, determines the
block size and the graph to use for encoding the block.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

len_filler_bits

A read-only parameter of type uint32_t.

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

data_out

A write-only parameter of type uint8_t *.

The codeword to be transmitted. data_out has the first two columns for the base graphs
punctured, and contains the information and calculated parity bits after encoding.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.4.4 armral_ldpc_encode_block_noalloc_buffer_size

Calculates the required buffer size in bytes to encode a single code block using LDPC for a given
base graph and lifting size z.

Syntax
Defined in armral.h on line 3503:

uint32_t armral_ldpc_encode_block_noalloc_buffer_size(armral_ldpc_graph_t bg,
 uint32_t z,
 uint32_t len_filler_bits);

Returns
The required buffer size in bytes.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

Identifier for the base graph to use for encoding. TS 38.212 defines two base graphs in table
5.3.2-2 and 5.3.2-3. The base graph, in combination with the lifting size z, determines the
block size and the graph to use for encoding the block.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

len_filler_bits

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

3.4.4.5 armral_ldpc_decode_block

Performs decoding of LDPC using a layered min-sum algorithm. This is an iterative algorithm
which takes 8-bit log-likelihood ratios (LLRs) and calculates the most likely codeword by calculating
updates using information available from the parity checks in the LDPC graph. LLRs are updated
after evaluating checks in a 'layer', where a layer is assumed to contain the same number of checks
as the lifting size z. There are 46 layers in base graph 1, and 42 layers in base graph 2. Decoding is
performed for a single code block.

There is the option to use CRC checking as a stopping criteria for the iterative decoding. For code
blocks with CRC bits attached, the input crc_idx should be set to the index of the bit where
the CRC bits begin, as calculated according to section 5.2.2 of the 3GPP Technical Specification
(TS) 38.212. It is possible that there is no CRC data attached to the code block, in which case
ARMRAL_LDPC_NO_CRC can be passed.

Syntax
Defined in armral.h on line 3543:

armral_status armral_ldpc_decode_block(const int8_t *llrs,
 armral_ldpc_graph_t bg, uint32_t z,
 uint32_t crc_idx, uint32_t num_its,
 uint8_t *data_out);

Returns
An armral_status value that indicates success or failure.

Parameters
llrs

A read-only parameter of type const int8_t *.

The initial LLRs to use in the decoding. This is typically the output after demodulation and
rate recovery.

bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph to use for the decoding.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

crc_idx

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The index of the bit where the CRC attached to the code block begins. If there is no CRC
attached, set this to ARMRAL_LDPC_NO_CRC.

num_its

A read-only parameter of type uint32_t.

The maximum number of iterations of the LDPC decoder to run. The algorithm may
terminate after fewer iterations if the current candidate codeword passes all the parity
checks, or if it satisfies the CRC check.

data_out

A write-only parameter of type uint8_t *.

The decoded bits. These are of length 68 * z for base graph 1 and 52 * z for base graph 2.
It is assumed that the array data_out is able to store this many bits.

3.4.4.6 armral_ldpc_decode_block_noalloc

Non-allocating variant of armral_ldpc_decode_block.

This function performs decoding of LDPC using a layered min-sum algorithm. This is an iterative
algorithm which takes 8-bit log-likelihood ratios (LLRs) and calculates the most likely codeword by
calculating updates using information available from the parity checks in the LDPC graph. LLRs are
updated after evaluating checks in a 'layer', where a layer is assumed to contain the same number
of checks as the lifting size z. There are 46 layers in base graph 1, and 42 layers in base graph 2.
Decoding is performed for a single code block.

There is the option to use CRC checking as a stopping criteria for the iterative decoding. For code
blocks with CRC bits attached, the input crc_idx should be set to the index of the bit where
the CRC bits begin, as calculated according to section 5.2.2 of the 3GPP Technical Specification
(TS) 38.212. It is possible that there is no CRC data attached to the code block, in which case
ARMRAL_LDPC_NO_CRC can be passed.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_ldpc_decode_block_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 3594:

armral_status armral_ldpc_decode_block_noalloc(const int8_t *llrs,
 armral_ldpc_graph_t bg,
 uint32_t z, uint32_t crc_idx,
 uint32_t num_its,
 uint8_t *data_out, void *buffer);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
llrs

A read-only parameter of type const int8_t *.

The initial LLRs to use in the decoding. This is typically the output after demodulation and
rate recovery.

bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph to use for the decoding.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

crc_idx

A read-only parameter of type uint32_t.

The index of the bit where the CRC attached to the code block begins. If there is no CRC
attached, set this to ARMRAL_LDPC_NO_CRC.

num_its

A read-only parameter of type uint32_t.

The maximum number of iterations of the LDPC decoder to run. The algorithm may
terminate after fewer iterations if the current candidate codeword passes all the parity
checks, or if it satisfies the CRC check.

data_out

A write-only parameter of type uint8_t *.

The decoded bits. These are of length 68 * z for base graph 1 and 52 * z for base graph 2.
It is assumed that the array data_out is able to store this many bits.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.4.7 armral_ldpc_decode_block_noalloc_buffer_size

Calculates the required buffer size in bytes needed to perform LDPC decoding of a single code
block for a given base graph and lifting size z.

Syntax
Defined in armral.h on line 3616:

uint32_t armral_ldpc_decode_block_noalloc_buffer_size(armral_ldpc_graph_t bg,
 uint32_t z,
 uint32_t crc_idx,
 uint32_t num_its);

Returns
The required buffer size in bytes.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph to use for the decoding.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

crc_idx

A read-only parameter of type uint32_t.

The index of the bit where the CRC attached to the code block begins. If there is no CRC
attached, set this to ARMRAL_LDPC_NO_CRC.

num_its

A read-only parameter of type uint32_t.

The maximum number of iterations of the LDPC decoder to run. The algorithm may
terminate after fewer iterations if the current candidate codeword passes all the parity
checks, or if it satisfies the CRC check.

3.4.4.8 armral_ldpc_rate_matching

Matches the rate of the code block encoded with LDPC code to the rate of the channel using bit
selection and bit interleaving. This is as described in the 3GPP Technical Specification (TS) 38.212
section 5.4.2.

The input to the rate matching is assumed to be the output from LDPC encoding for a single code
block. The output from rate matching is to be passed to demodulation.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The code rate for a given code block is the ratio of rate matched length e to the number of
information bits per code block. The number of information bits is assumed to be 22 * z for base
graph 1, and 10 * z for base graph 2, where z is the lifting size. It is assumed that e is strictly
greater than the number of information bits in a code block. e must also be a multiple of the
modulation order (i.e. the number of bits per modulation symbol).

Syntax
Defined in armral.h on line 3670:

armral_status armral_ldpc_rate_matching(armral_ldpc_graph_t bg, uint32_t z,
 uint32_t e, uint32_t nref,
 uint32_t len_filler_bits, uint32_t k,
 uint32_t rv, armral_modulation_type mod,
 const uint8_t *src, uint8_t *dst);

Returns
An armral_status value that indicates success or failure.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph for which rate matching is to be performed.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message. This is assumed to be a multiple of the
number of bits per modulation symbol.

nref

A read-only parameter of type uint32_t.

The soft buffer size for limited buffer rate matching. nref is defined in TS 38.212 section
5.4.2.1.

len_filler_bits

A read-only parameter of type uint32_t.

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

k

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Codeblock size, the number of bits to encode as per section 5.3.2 of TS 38.212.

rv

A read-only parameter of type uint32_t.

Redundancy version used in rate matching. Must be in the set {0, 1, 2, 3} . The effect of
choosing different redundancy versions is described in table 5.4.2.1-2 of TS 38.212.

mod

A read-only parameter of type armral_modulation_type.

The type of modulation to perform. Required to perform bit-interleaving, as described in
section 5.4.2 of TS 38.212.

src

A read-only parameter of type const uint8_t *.

Input array. This is assumed to be the output of LDPC encoding. This contains 66 * z bits in
the case that base graph 1 is used, and 50 * z bits in the case that base graph 2 is used.

dst

A write-only parameter of type uint8_t *.

Contains e bits of data, which is the rate-matched data ready to be passed to modulation.

3.4.4.9 armral_ldpc_rate_matching_noalloc

Non-allocating variant of armral_ldpc_rate_matching.

This function matches the rate of the code block encoded with LDPC code to the rate of the
channel using bit selection and bit interleaving. This is as described in the 3GPP Technical
Specification (TS) 38.212 section 5.4.2.

The input to the rate matching is assumed to be the output from LDPC encoding for a single code
block. The output from rate matching is to be passed to demodulation.

The code rate for a given code block is the ratio of rate matched length e to the number of
information bits per code block. The number of information bits is assumed to be 22 * z for base
graph 1, and 10 * z for base graph 2, where z is the lifting size. It is assumed that e is strictly
greater than the number of information bits in a code block. e must also be a multiple of the
modulation order (i.e. the number of bits per modulation symbol).

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least ((2 * z * 66) + e) * sizeof(uint8_t) bytes.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 3733:

armral_status armral_ldpc_rate_matching_noalloc(
 armral_ldpc_graph_t bg, uint32_t z, uint32_t e, uint32_t nref,
 uint32_t len_filler_bits, uint32_t k, uint32_t rv,
 armral_modulation_type mod, const uint8_t *src, uint8_t *dst, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph for which rate matching is to be performed.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message. This is assumed to be a multiple of the
number of bits per modulation symbol.

nref

A read-only parameter of type uint32_t.

The soft buffer size for limited buffer rate matching. nref is defined in TS 38.212 section
5.4.2.1.

len_filler_bits

A read-only parameter of type uint32_t.

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

k

A read-only parameter of type uint32_t.

Codeblock size, the number of bits to encode as per section 5.3.2 of TS 38.212.

rv

A read-only parameter of type uint32_t.

Redundancy version used in rate matching. Must be in the set {0, 1, 2, 3} . The effect of
choosing different redundancy versions is described in table 5.4.2.1-2 of TS 38.212.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

mod

A read-only parameter of type armral_modulation_type.

The type of modulation to perform. Required to perform bit-interleaving, as described in
section 5.4.2 of TS 38.212.

src

A read-only parameter of type const uint8_t *.

Input array. This is assumed to be the output of LDPC encoding. This contains 66 * z bits in
the case that base graph 1 is used, and 50 * z bits in the case that base graph 2 is used.

dst

A write-only parameter of type uint8_t *.

Contains e bits of data, which is the rate-matched data ready to be passed to modulation.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.4.10 armral_ldpc_rate_recovery

Recovers the log-likelihood ratios (LLRs) from demodulation to match the length of an LDPC code
block. This is the inverse of the operations for rate matching for LDPC described in the 3GPP
Technical Specification (TS) 38.212 section 5.4.2. The input array is of length e bytes, where e is
the rate-matched length of the code block. It is assumed that e is a multiple of the modulation
order (i.e. the number of bits per modulation symbol).

The size of the code block is determined using the base graph and lifting size z. For base graph 1,
the code block is of length 68 * z. For base graph 2, the code block is of length 52 * z. The output
of the rate recovery will be of length 66 * z for base graph 1, and 50 * z for base graph 2, as it is
assumed that the first two information columns are punctured.

The rate of the code block is the ratio of the rate matched length e and the number of information
bits in the code block. The number of information bits in the code block is 22 * z for base graph 1,
and 10 * z for base graph 2.

The output array also serves as an input array. It contains the current approximation to LLRs. The
LLRs calculated from the rate-recovery are summed to existing LLRs in the output array.

Syntax
Defined in armral.h on line 3797:

armral_status armral_ldpc_rate_recovery(armral_ldpc_graph_t bg, uint32_t z,
 uint32_t e, uint32_t nref,
 uint32_t len_filler_bits, uint32_t k,
 uint32_t rv, armral_modulation_type mod,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 const int8_t *src, int8_t *dst);

Returns
An armral_status value that indicates success or failure.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph for which rate matching is to be performed.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message. This is assumed to be a multiple of the
number of bits per modulation symbol.

nref

A read-only parameter of type uint32_t.

The soft buffer size for limited buffer rate matching. nref is defined in TS 38.212 section
5.4.2.1.

len_filler_bits

A read-only parameter of type uint32_t.

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

k

A read-only parameter of type uint32_t.

Codeblock size, the number of bits to encode as per section 5.3.2 of TS 38.212.

rv

A read-only parameter of type uint32_t.

Redundancy version used in rate matching. Must be in the set {0, 1, 2, 3} . The effect of
choosing different redundancy versions is described in table 5.4.2.1-2 of TS 38.212.

mod

A read-only parameter of type armral_modulation_type.

The type of modulation to perform. Required to perform bit-interleaving, as described in
section 5.4.2 of TS 38.212.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

src

A read-only parameter of type const int8_t *.

Input array of a total of e 8-bit LLRs. This is the output after demodulation.

dst

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs. If no approximation of the LLRs is
known, all entries must be set to zero. The array has length 66 * z for base graph 1, and
50 * z for base graph 2. On exit, updated rate-recovered 8-bit LLRs, which are ready to be
passed to decoding.

3.4.4.11 armral_ldpc_rate_recovery_noalloc

Non-allocating variant of armral_ldpc_rate_recovery. This function recovers the log-likelihood
ratios (LLRs) from demodulation to match the length of an LDPC code block. This is the inverse
of the operations for rate matching for LDPC described in the 3GPP Technical Specification (TS)
38.212 section 5.4.2. The input array is of length e bytes, where e is the rate-matched length of
the code block. It is assumed that e is a multiple of the modulation order (i.e. the number of bits per
modulation symbol).

The size of the code block is determined using the base graph and lifting size z. For base graph 1,
the code block is of length 68 * z. For base graph 2, the code block is of length 52 * z. The output
of the rate recovery will be of length 66 * z for base graph 1, and 50 * z for base graph 2, as it is
assumed that the first two information columns are punctured.

The rate of the code block is the ratio of the rate matched length e and the number of information
bits in the code block. The number of information bits in the code block is 22 * z for base graph 1,
and 10 * z for base graph 2.

The output array also serves as an input array. It contains the current approximation to LLRs. The
LLRs calculated from the rate-recovery are summed to existing LLRs in the output array.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least e * sizeof(uint8_t) bytes.

Syntax
Defined in armral.h on line 3869:

armral_status armral_ldpc_rate_recovery_noalloc(
 armral_ldpc_graph_t bg, uint32_t z, uint32_t e, uint32_t nref,
 uint32_t len_filler_bits, uint32_t k, uint32_t rv,
 armral_modulation_type mod, const int8_t *src, int8_t *dst, void *buffer);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
bg

A read-only parameter of type armral_ldpc_graph_t.

The type of base graph for which rate matching is to be performed.

z

A read-only parameter of type uint32_t.

The lifting size. Valid values of the lifting size are described in table 5.3.2-1 in TS 38.212.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message. This is assumed to be a multiple of the
number of bits per modulation symbol.

nref

A read-only parameter of type uint32_t.

The soft buffer size for limited buffer rate matching. nref is defined in TS 38.212 section
5.4.2.1.

len_filler_bits

A read-only parameter of type uint32_t.

The number of filler bits. As per TS 38.212, section 5.2.2, filler bits insertion is needed to
ensure that the code block segments have a valid length and are a multiple of the lifting size.

k

A read-only parameter of type uint32_t.

Codeblock size, the number of bits to encode as per section 5.3.2 of TS 38.212.

rv

A read-only parameter of type uint32_t.

Redundancy version used in rate matching. Must be in the set {0, 1, 2, 3} . The effect of
choosing different redundancy versions is described in table 5.4.2.1-2 of TS 38.212.

mod

A read-only parameter of type armral_modulation_type.

The type of modulation to perform. Required to perform bit-interleaving, as described in
section 5.4.2 of TS 38.212.

src

A read-only parameter of type const int8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Input array of a total of e 8-bit LLRs. This is the output after demodulation.

dst

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs. If no approximation of the LLRs is
known, all entries must be set to zero. The array has length 66 * z for base graph 1, and
50 * z for base graph 2. On exit, updated rate-recovered 8-bit LLRs, which are ready to be
passed to decoding.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.5 LTE Turbo

Performs encoding and decoding of data using LTE Turbo methods. The encoding scheme is
defined in section 5.1.3.2 of the 3GPP Technical Specification (TS) 36.212 "Multiplexing and
channel coding". The decoder implements a maximum a posteriori (MAP) algorithm and returns a
hard decision (either 0 or 1) for each output bit. The encoding and decoding are performed for a
single code block.

3.4.5.1 armral_turbo_encode_block

This function implements the LTE Turbo encoding scheme described in 3GPP Technical
Specification (TS) 36.212 "Multiplexing and channel coding". It takes as input an array src of length
k bits, where k must be one of the values defined in TS 36.212 Table 5.1.3-3. The outputs of the
encoding are written into the three arrays dst0, dst1, and dst2, each of which contains k + 4 bits
of output. The encoding is performed for a single code block.

Syntax
Defined in armral.h on line 3913:

armral_status armral_turbo_encode_block(const uint8_t *src, uint32_t k,
 uint8_t *dst0, uint8_t *dst1,
 uint8_t *dst2);

Returns
An armral_status value that indicates success or failure.

Parameters
src

A read-only parameter of type const uint8_t *.

Input data of length k bits.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

k

A read-only parameter of type uint32_t.

Length of the input code block in bits.

dst0

A write-only parameter of type uint8_t *.

The systematic portion of the output of length k + 4 bits. If k + 4 is not on a byte boundary,
the most significant bits of the final byte in this array contain the systematic bits.

dst1

A write-only parameter of type uint8_t *.

The parity portion of the output of length k + 4 bits. If k + 4 is not on a byte boundary, the
most significant bits of the final byte in this array contain the parity bits.

dst2

A write-only parameter of type uint8_t *.

The interleaved parity portion of the output of length k + 4 bits. If k + 4 is not on a byte
boundary, the most significant bits of the final byte in this array contain the interleaved bits.

3.4.5.2 armral_turbo_encode_block_noalloc

Non-allocating variant of armral_turbo_encode_block.

This function implements the LTE Turbo encoding scheme described in 3GPP Technical
Specification (TS) 36.212 "Multiplexing and channel coding". It takes as input an array src of length
k bits, where k must be one of the values defined in TS 36.212 Table 5.1.3-3. The outputs of the
encoding are written into the three arrays dst0, dst1, and dst2, each of which contains k + 4 bits
of output. The encoding is performed for a single code block.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least (k / 8) * sizeof(uint8_t) bytes.

Syntax
Defined in armral.h on line 3950:

armral_status armral_turbo_encode_block_noalloc(const uint8_t *src, uint32_t k,
 uint8_t *dst0, uint8_t *dst1,
 uint8_t *dst2, void *buffer);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
src

A read-only parameter of type const uint8_t *.

Input data of length k bits.

k

A read-only parameter of type uint32_t.

Length of the input code block in bits.

dst0

A write-only parameter of type uint8_t *.

The systematic portion of the output of length k + 4 bits. If k + 4 is not on a byte boundary,
the most significant bits of the final byte in this array contain the systematic bits.

dst1

A write-only parameter of type uint8_t *.

The parity portion of the output of length k + 4 bits. If k + 4 is not on a byte boundary, the
most significant bits of the final byte in this array contain the parity bits.

dst2

A write-only parameter of type uint8_t *.

The interleaved parity portion of the output of length k + 4 bits. If k + 4 is not on a byte
boundary, the most significant bits of the final byte in this array contain the interleaved bits.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.5.3 armral_turbo_decode_block

This function implements a maximum a posteriori (MAP) algorithm to decode the output of the LTE
Turbo encoding scheme described in 3GPP Technical Specification (TS) 36.212 "Multiplexing and
channel coding". It takes as input three arrays sys, par and itl, each of length k + 4 bits where
k must be one of the values defined in TS 36.212 Table 5.1.3-3. These three arrays contain the
log-likelihood ratios (LLRs) of the systematic, parity and interleaved parity bits. The decoding is
performed for a single code block.

The output is written into the array dst, which must contain enough bytes to store k bits. These are
hard outputs (that is, either 0 or 1); the function does not return LLRs.

The function takes a parameter max_iter, which specifies the maximum number of iterations that
the decoder will perform. The algorithm will terminate in fewer iterations if there is no change in
the computed LLRs between consecutive iterations.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 3984:

armral_status armral_turbo_decode_block(const int8_t *sys, const int8_t *par,
 const int8_t *itl, uint32_t k,
 uint8_t *dst, uint32_t max_iter);

Returns
An armral_status value that indicates success or failure.

Parameters
sys

A read-only parameter of type const int8_t *.

The systematic portion of the input of length k + 4 bytes representing 8-bit log-likelihood
ratios.

par

A read-only parameter of type const int8_t *.

The parity portion of the input of length k + 4 bytes representing 8-bit log-likelihood ratios.

itl

A read-only parameter of type const int8_t *.

The interleaved portion of the input of length k + 4 representing 8-bit log-likelihood ratios.

k

A read-only parameter of type uint32_t.

Length of the output code block in bits.

dst

A write-only parameter of type uint8_t *.

Decoded output data of length k bits.

max_iter

A read-only parameter of type uint32_t.

Maximum number of decoding iterations to perform.

3.4.5.4 armral_turbo_decode_block_noalloc

Non-allocating variant of armral_turbo_decode_block.

This function implements a maximum a posteriori (MAP) algorithm to decode the output of the LTE
Turbo encoding scheme described in 3GPP Technical Specification (TS) 36.212 "Multiplexing and
channel coding". It takes as input three arrays sys, par and itl, each of length k + 4 bits where

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

k must be one of the values defined in TS 36.212 Table 5.1.3-3. These three arrays contain the
log-likelihood ratios (LLRs) of the systematic, parity and interleaved parity bits. The decoding is
performed for a single code block.

The output is written into the array dst, which must contain enough bytes to store k bits. These are
hard outputs (that is, either 0 or 1); the function does not return LLRs.

The function takes a parameter max_iter, which specifies the maximum number of iterations that
the decoder will perform. The algorithm will terminate in fewer iterations if there is no change in
the computed LLRs between consecutive iterations.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_turbo_decode_block_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 4028:

armral_status armral_turbo_decode_block_noalloc(const int8_t *sys,
 const int8_t *par,
 const int8_t *itl, uint32_t k,
 uint8_t *dst, uint32_t max_iter,
 void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
sys

A read-only parameter of type const int8_t *.

The systematic portion of the input of length k + 4 bytes representing 8-bit log-likelihood
ratios.

par

A read-only parameter of type const int8_t *.

The parity portion of the input of length k + 4 bytes representing 8-bit log-likelihood ratios.

itl

A read-only parameter of type const int8_t *.

The interleaved portion of the input of length k + 4 representing 8-bit log-likelihood ratios.

k

A read-only parameter of type uint32_t.

Length of the output code block in bits.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

dst

A write-only parameter of type uint8_t *.

Decoded output data of length k bits.

max_iter

A read-only parameter of type uint32_t.

Maximum number of decoding iterations to perform.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.5.5 armral_turbo_decode_block_noalloc_buffer_size

Calculates the required buffer size in bytes required to perform Turbo decoding of a single code
block of length k.

Syntax
Defined in armral.h on line 4042:

uint32_t armral_turbo_decode_block_noalloc_buffer_size(uint32_t k,
 uint32_t max_iter);

Returns
The required buffer size in bytes.

Parameters
k

A read-only parameter of type uint32_t.

Length of the output code block in bits.

max_iter

A read-only parameter of type uint32_t.

Maximum number of decoding iterations to perform.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.5.6 armral_turbo_rate_matching

Matches the rate of the Turbo encoded code block to the rate of the channel using sub-block
interleaving, bit collection, and bit selection and pruning. This is as described in 3GPP Technical
Specification (TS) 36.212 section 5.1.4.1.

Syntax
Defined in armral.h on line 4065:

armral_status armral_turbo_rate_matching(uint32_t d, uint32_t e, uint32_t rv,
 const uint8_t *src0,
 const uint8_t *src1,
 const uint8_t *src2, uint8_t *dst);

Returns
An armral_status value that indicates success or failure.

Parameters
d

A read-only parameter of type uint32_t.

The number of bits in the encoded message.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message.

rv

A read-only parameter of type uint32_t.

The redundancy version number for the transmission.

src0

A read-only parameter of type const uint8_t *.

Input array. Stores d bits, which are the systematic output of Turbo encoding.

src1

A read-only parameter of type const uint8_t *.

Input array. Stores d bits, which are the parity output of Turbo encoding.

src2

A read-only parameter of type const uint8_t *.

Input array. Stores d bits, which are the interleaved parity output of Turbo encoding.

dst

A write-only parameter of type uint8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Output array. Stores e bits, which is the output after sub-block interleaving, bit collection and
pruning as per 3GPP technical specification 36.212 section 5.1.4.

3.4.5.7 armral_turbo_rate_matching_noalloc

Non-allocating variant of armral_turbo_rate_matching.

This function matches the rate of the Turbo encoded code block to the rate of the channel using
sub-block interleaving, bit collection, and bit selection and pruning. This is as described in 3GPP
Technical Specification (TS) 36.212 section 5.1.4.1.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_turbo_rate_matching_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 4100:

armral_status armral_turbo_rate_matching_noalloc(
 uint32_t d, uint32_t e, uint32_t rv, const uint8_t *src0,
 const uint8_t *src1, const uint8_t *src2, uint8_t *dst, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
d

A read-only parameter of type uint32_t.

The number of bits in the encoded message.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message.

rv

A read-only parameter of type uint32_t.

The redundancy version number for the transmission.

src0

A read-only parameter of type const uint8_t *.

Input array. Stores d bits, which are the systematic output of Turbo encoding.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

src1

A read-only parameter of type const uint8_t *.

Input array. Stores d bits, which are the parity output of Turbo encoding.

src2

A read-only parameter of type const uint8_t *.

Input array. Stores d bits, which are the interleaved parity output of Turbo encoding.

dst

A write-only parameter of type uint8_t *.

Output array. Stores e bits, which is the output after sub-block interleaving, bit collection and
pruning as per 3GPP technical specification 36.212 section 5.1.4.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.5.8 armral_turbo_rate_matching_noalloc_buffer_size

Calculates the required buffer size in bytes needed to perform Turbo encoding rate matching for an
encoded message of length d and a rate-matched message of length e.

Syntax
Defined in armral.h on line 4114:

uint32_t armral_turbo_rate_matching_noalloc_buffer_size(uint32_t d, uint32_t e,
 uint32_t rv);

Returns
The required buffer size in bytes.

Parameters
d

A read-only parameter of type uint32_t.

The number of bits in the encoded message.

e

A read-only parameter of type uint32_t.

The number of bits in the rate-matched message.

rv

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The redundancy version number for the transmission.

3.4.5.9 armral_turbo_rate_recovery

Recovers the log-likelihood ratios (LLRs) from demodulation to match the length of a Turbo
encoded code block. This is the inverse of the operations for rate matching for Turbo described in
the 3GPP Technical Specification (TS) 36.212 section 5.1.4.1.

The destination arrays dst0, dst1, and dst2 also serve as input arrays. On input, they contain
the current approximation to LLRs. The LLRs calculated from the rate-recovery are summed
with existing LLRs in the destination arrays. The LLRs are expected to be zero the first time rate
recovery is performed. Using the output from rate recovery as input for another call to rate
recovery with a different redundancy version allows for data from multiple redundancy versions to
be combined.

Syntax
Defined in armral.h on line 4156:

armral_status armral_turbo_rate_recovery(uint32_t d, uint32_t e, uint32_t rv,
 const int8_t *src, int8_t *dst0,
 int8_t *dst1, int8_t *dst2);

Returns
An armral_status value that indicates success or failure.

Parameters
d

A read-only parameter of type uint32_t.

The number of recovered 8-bits LLRs.

e

A read-only parameter of type uint32_t.

The number of demodulated 8-bit LLRs.

rv

A read-only parameter of type uint32_t.

The redundancy version number for the transmission

src

A read-only parameter of type const int8_t *.

Input array of a total of e 8-bit LLRs. This is the output after demodulation.

dst0

A parameter of type int8_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

On entry, contains the current approximation to LLRs for the systematic output of Turbo
encoding. If no approximation of the LLRs is known, all entries must be set to zero. The array
has length d. On exit, contains updated rate-recovered 8-bit LLRs, which are ready to be
passed to decoding.

dst1

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs for the parity output of Turbo
encoding. If no approximation of the LLRs is known, all entries must be set to zero. The array
has length d. On exit, contains updated rate-recovered 8-bit LLRs, which are ready to be
passed to decoding.

dst2

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs for the interleaved parity output of
Turbo encoding. If no approximation of the LLRs is known, all entries must be set to zero. The
array has length d. On exit, contains updated rate-recovered 8-bit LLRs, which are ready to
be passed to decoding.

3.4.5.10 armral_turbo_rate_recovery_noalloc

Non-allocating variant of armral_turbo_rate_recovery.

This function recovers the log-likelihood ratios (LLRs) from demodulation to match the length of
a Turbo encoded code block. This is the inverse of the operations for rate matching for Turbo
described in the 3GPP Technical Specification (TS) 36.212 section 5.1.4.1.

The destination arrays dst0, dst1, and dst2 also serve as input arrays. On input, they contain
the current approximation to LLRs. The LLRs calculated from the rate-recovery are summed
with existing LLRs in the destination arrays. The LLRs are expected to be zero the first time rate
recovery is performed. Using the output from rate recovery as input for another call to rate
recovery with a different redundancy version allows for data from multiple redundancy versions to
be combined.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_turbo_rate_recovery_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 4209:

armral_status armral_turbo_rate_recovery_noalloc(uint32_t d, uint32_t e,
 uint32_t rv, const int8_t *src,
 int8_t *dst0, int8_t *dst1,
 int8_t *dst2, void *buffer);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
d

A read-only parameter of type uint32_t.

The number of recovered 8-bits LLRs.

e

A read-only parameter of type uint32_t.

The number of demodulated 8-bit LLRs.

rv

A read-only parameter of type uint32_t.

The redundancy version number for the transmission

src

A read-only parameter of type const int8_t *.

Input array of a total of e 8-bit LLRs. This is the output after demodulation.

dst0

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs for the systematic output of Turbo
encoding. If no approximation of the LLRs is known, all entries must be set to zero. The array
has length d. On exit, contains updated rate-recovered 8-bit LLRs, which are ready to be
passed to decoding.

dst1

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs for the parity output of Turbo
encoding. If no approximation of the LLRs is known, all entries must be set to zero. The array
has length d. On exit, contains updated rate-recovered 8-bit LLRs, which are ready to be
passed to decoding.

dst2

A parameter of type int8_t *.

On entry, contains the current approximation to LLRs for the interleaved parity output of
Turbo encoding. If no approximation of the LLRs is known, all entries must be set to zero. The
array has length d. On exit, contains updated rate-recovered 8-bit LLRs, which are ready to
be passed to decoding.

buffer

A read-only parameter of type void *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Workspace buffer to be used internally.

3.4.5.11 armral_turbo_rate_recovery_noalloc_buffer_size

Calculates the required buffer size in bytes required to perform Turbo rate recovery for d recovered
LLRs and e demodulated LLRs.

Syntax
Defined in armral.h on line 4223:

uint32_t armral_turbo_rate_recovery_noalloc_buffer_size(uint32_t d, uint32_t e,
 uint32_t rv);

Returns
The required buffer size in bytes.

Parameters
d

A read-only parameter of type uint32_t.

The number of recovered 8-bits LLRs.

e

A read-only parameter of type uint32_t.

The number of demodulated 8-bit LLRs.

rv

A read-only parameter of type uint32_t.

The redundancy version number for the transmission

3.4.6 LTE Convolutional Coding

Performs encoding and decoding of data using LTE tail biting convolutional coding. The encoding
scheme is defined in section 5.1.3.1 of the 3GPP Technical Specification (TS) 36.212 "Multiplexing
and channel coding". The decoder implements the Wrap Around Viterbi Algorithm (WAVA)
described in R. Y. Shao, Shu Lin and M. P. C. Fossorier, "Two decoding algorithms for tailbiting
codes", in IEEE Transactions on Communications, vol. 51, no. 10, pp. 1658-1665, Oct. 2003. The
encoding and decoding are performed for a single code block.

3.4.6.1 armral_tail_biting_convolutional_encode_block

This function implements the LTE tail biting convolutional encoding scheme described in 3GPP
Technical Specification (TS) 36.212 "Multiplexing and channel coding". It takes as input an array

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

src of length k bits. The outputs of the encoding are written into the three arrays dst0, dst1, and
dst2 (the coding rate is equal to 1/3), each of which contains k bits. The constraint length of the
encoder is 7, hence it makes use of a shift register of 6 bits. The generator polynomials are:

• g0 = 1 0 1 1 0 1 1

• g1 = 1 1 1 1 0 0 1

• g2 = 1 1 1 0 1 0 1

The encoding is performed for a single code block.

Syntax
Defined in armral.h on line 4265:

armral_status armral_tail_biting_convolutional_encode_block(const uint8_t *src,
 uint32_t k,
 uint8_t *dst0,
 uint8_t *dst1,
 uint8_t *dst2);

Returns
An armral_status value that indicates success or failure.

Parameters
src

A read-only parameter of type const uint8_t *.

Input data of length k bits.

k

A read-only parameter of type uint32_t.

Length of the input code block in bits. k is assumed to be greater or equal than 8.

dst0

A write-only parameter of type uint8_t *.

The first output stream of length k bits.

dst1

A write-only parameter of type uint8_t *.

The second output stream of length k bits.

dst2

A write-only parameter of type uint8_t *.

The third output stream of length k bits.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.4.6.2 armral_tail_biting_convolutional_decode_block

This function implements the Wrap Around Viterbi Algorithm (WAVA) to decode the output of the
LTE tail biting convolutional coding scheme described in 3GPP Technical Specification (TS) 36.212
"Multiplexing and channel coding". It takes as input three arrays containing the log-likelihood ratios
(LLRs) of the three encoded streams of bits. The decoding is performed for a single code block.
WAVA is described in R. Y. Shao, Shu Lin and M. P. C. Fossorier, "Two decoding algorithms for
tailbiting codes," in IEEE Transactions on Communications, vol. 51, no. 10, pp. 1658-1665, Oct.
2003.

The output is written into the array dst, which must contain enough bytes to store k bits. These are
hard outputs (that is, either 0 or 1).

Syntax
Defined in armral.h on line 4296:

armral_status armral_tail_biting_convolutional_decode_block(
 const int8_t *src0, const int8_t *src1, const int8_t *src2, uint32_t k,
 uint32_t iter_max, uint8_t *dst);

Returns
An armral_status value that indicates success or failure.

Parameters
src0

A read-only parameter of type const int8_t *.

The first input of length k bytes representing 8-bit log-likelihood ratios.

src1

A read-only parameter of type const int8_t *.

The second input of length k bytes representing 8-bit log-likelihood ratios.

src2

A read-only parameter of type const int8_t *.

The third input of length k bytes representing 8-bit log-likelihood ratios.

k

A read-only parameter of type uint32_t.

Length of the output code block in bits.

iter_max

A read-only parameter of type uint32_t.

Maximum number of iterations.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

dst

A write-only parameter of type uint8_t *.

Decoded output data of length k bits.

3.4.6.3 armral_tail_biting_convolutional_decode_block_noalloc

Non-allocating variant of armral_tail_biting_convolutional_decode_block .

This function implements the Wrap Around Viterbi Algorithm (WAVA) to decode the output of the
LTE tail biting convolutional coding scheme described in 3GPP Technical Specification (TS) 36.212
"Multiplexing and channel coding". It takes as input three arrays containing the log-likelihood ratios
(LLRs) of the three encoded streams of bits. The decoding is performed for a single code block.
WAVA is described in R. Y. Shao, Shu Lin and M. P. C. Fossorier, "Two decoding algorithms for
tailbiting codes," in IEEE Transactions on Communications, vol. 51, no. 10, pp. 1658-1665, Oct.
2003.

This function takes a pre-allocated buffer (buffer) to use internally. This variant will not call any
system memory allocators.

The buffer must be at least as large as the number of bytes returned by calling
armral_tail_biting_convolutional_decode_block_noalloc_buffer_size with identical inputs.

Syntax
Defined in armral.h on line 4334:

armral_status armral_tail_biting_convolutional_decode_block_noalloc(
 const int8_t *src0, const int8_t *src1, const int8_t *src2, uint32_t k,
 uint32_t iter_max, uint8_t *dst, void *buffer);

Returns
An armral_status value that indicates success or failure.

Parameters
src0

A read-only parameter of type const int8_t *.

The first input of length k bytes representing 8-bit log-likelihood ratios.

src1

A read-only parameter of type const int8_t *.

The second input of length k bytes representing 8-bit log-likelihood ratios.

src2

A read-only parameter of type const int8_t *.

The third input of length k bytes representing 8-bit log-likelihood ratios.
Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 153 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

k

A read-only parameter of type uint32_t.

Length of the output code block in bits.

iter_max

A read-only parameter of type uint32_t.

Maximum number of iterations.

dst

A write-only parameter of type uint8_t *.

Decoded output data of length k bits.

buffer

A read-only parameter of type void *.

Workspace buffer to be used internally.

3.4.6.4 armral_tail_biting_convolutional_decode_block_noalloc_buffer_size

Calculates the required buffer size in bytes to decode the output of the tail biting convolutional
coding scheme for an output code block of length k bits.

Syntax
Defined in armral.h on line 4347:

uint32_t armral_tail_biting_convolutional_decode_block_noalloc_buffer_size(
 uint32_t k, uint32_t iter_max);

Returns
The required buffer size in bytes.

Parameters
k

A read-only parameter of type uint32_t.

Length of the output code block in bits.

iter_max

A read-only parameter of type uint32_t.

Maximum number of iterations.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.5 DU-RU IF support functions
Functions for working with Distributed Units (DUs) and Radio Units (RUs).

The DU-RU IF functions include support for:

• Mu-Law compression and decompression, in 8-bit, 9-bit, and 14-bit formats.

• Block floating-point compression and decompression, in 8-bit, 9-bit, and 14-bit formats.

• Block scaling compression and decompression, in 8-bit, 9-bit, and 14-bit formats.

3.5.1 Mu-Law Compression

The Mu-Law algorithm enables the compression of User Plane (UP) data over the fronthaul
interface.

3.5.1.1 armral_mu_law_compr_8bit

The Mu-Law compression method combines a bit-shift operation for dynamic range with a
nonlinear piece-wise approximation of the original logarithmic Mu-Law. The Mu-Law compression
operates on n_prb Resource Blocks (RB) of fixed size. Each block consists of 12 16-bit complex
resource elements. Each block taken as input is compressed into 12 complex output samples, each
8 bits wide, and the shift applied to the block.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2106:

armral_status armral_mu_law_compr_8bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_8bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_8bit *.

Points to the output 8-bit data and exponent.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.1.2 armral_mu_law_compr_9bit

The Mu-Law compression method combines a bit-shift operation for dynamic range with a
nonlinear piece-wise approximation of the original logarithmic Mu-Law. The Mu-Law compression
operates on n_prb Resource Blocks (RB) of fixed size. Each block consists of 12 16-bit complex
resource elements. Each block taken as input is compressed into 12 complex output samples, each
9 bits wide, and the shift applied to the block.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2128:

armral_status armral_mu_law_compr_9bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_9bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_9bit *.

Points to the output 9-bit data and shift.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.1.3 armral_mu_law_compr_14bit

The Mu-Law compression method combines a bit-shift operation for dynamic range with a
nonlinear piece-wise approximation of the original logarithmic Mu-Law. The Mu-Law compression
operates on n_prb Resource Blocks (RB) of fixed size. Each block consists of 12 16-bit complex
resource elements. Each block taken as input is compressed into 12 complex output samples, each
14 bits wide, and the shift applied to the block.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2149:

armral_status armral_mu_law_compr_14bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_14bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_14bit *.

Points to the output 14-bit data and shift.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.5.1.4 armral_mu_law_decompr_8bit

The Mu-Law decompression method is a logical reverse function of the compression method. The
Mu-Law decompression operates on n_prb Resource Blocks (RB) of fixed size. Each block consists
of 12 8-bit complex resource elements. Each block taken as input is expanded into 12 complex
output samples, each 16 bits wide, and the shift applied to the block.

A phase-compensation factor, stored in *scale, is used to scale values.

Syntax
Defined in armral.h on line 2170:

armral_status armral_mu_law_decompr_8bit(uint32_t n_prb,
 const armral_compressed_data_8bit *src,
 armral_cmplx_int16_t *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_8bit *.

Points to the input 8-bit data and shift.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex samples sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.1.5 armral_mu_law_decompr_9bit

The Mu-Law decompression method is a logical reverse function of the compression method. The
Mu-Law decompression operates on n_prb Resource Blocks (RB) of fixed size. Each block consists

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

of 12 9-bit complex resource elements. Each block taken as input is expanded into 12 complex
output samples, each 16 bits wide, and the shift applied to the block.

A phase-compensation factor, stored in *scale, is used to scale values.

Syntax
Defined in armral.h on line 2191:

armral_status armral_mu_law_decompr_9bit(uint32_t n_prb,
 const armral_compressed_data_9bit *src,
 armral_cmplx_int16_t *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_9bit *.

Points to the input 9-bit data and shift.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex samples sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.1.6 armral_mu_law_decompr_14bit

The Mu-Law decompression method is a logical reverse function of the compression method. The
Mu-Law decompression operates on n_prb Resource Blocks (RB) of fixed size. Each block consists
of 12 14-bit complex resource elements. Each block taken as input is expanded into 12 complex
output samples, each 16 bits wide, and the shift applied to the block.

A phase-compensation factor, stored in *scale, is used to scale values.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2212:

armral_status armral_mu_law_decompr_14bit(
 uint32_t n_prb, const armral_compressed_data_14bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_14bit *.

Points to the input 14-bit data and shift.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex samples sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.2 Block Scaling Compression

Implements algorithms for data compression and decompression using block scaling representation
of complex samples.

3.5.2.1 armral_block_scaling_compr_8bit

The function operates on a fixed block size of one Physical Resource Block (PRB). Each block
consists of 12 16-bit complex resource elements. Each block taken as input is compressed into 24
8-bit post-scaled samples and a common unsigned scaling factor.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2244:

armral_status
armral_block_scaling_compr_8bit(uint32_t n_prb, const armral_cmplx_int16_t *src,
 armral_compressed_data_8bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_8bit *.

Points to the output 8-bit data and a scaling factor.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.2.2 armral_block_scaling_compr_9bit

The function operates on a fixed block size of one Physical Resource Block (PRB). Each block
consists of 12 16-bit complex resource elements. Each block taken as input is compressed into 24
9-bit post-scaled samples and a common unsigned scaling factor.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2265:

armral_status
armral_block_scaling_compr_9bit(uint32_t n_prb, const armral_cmplx_int16_t *src,
 armral_compressed_data_9bit *dst,
 const armral_cmplx_int16_t *scale);

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_9bit *.

Points to the output 9-bit data and a scaling factor.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.2.3 armral_block_scaling_compr_14bit

The function operates on a fixed block size of one Physical Resource Block (PRB). Each block
consists of 12 16-bit complex resource elements. Each block taken as input is compressed into 24
14-bit post-scaled samples and a common unsigned scaling factor.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2285:

armral_status armral_block_scaling_compr_14bit(
 uint32_t n_prb, const armral_cmplx_int16_t *src,
 armral_compressed_data_14bit *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_14bit *.

Points to the output 14-bit data and a scaling factor.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.2.4 armral_block_scaling_decompr_8bit

The function operates on a fixed block size of one Physical Resource Block (PRB). Each block
consists of 12 8-bit complex post-scaled resource elements and an unsigned scaling factor. Each
block taken as input is expanded into 12 16-bit complex samples.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2304:

armral_status armral_block_scaling_decompr_8bit(
 uint32_t n_prb, const armral_compressed_data_8bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_8bit *.

Points to the input 8-bit data and scaling factor.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the output complex samples sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.2.5 armral_block_scaling_decompr_9bit

The function operates on a fixed block size of one Physical Resource Block (PRB). Each block
consists of 12 9-bit complex post-scaled resource elements and an unsigned scaling factor. Each
block taken as input is expanded into 12 16-bit complex samples.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2323:

armral_status armral_block_scaling_decompr_9bit(
 uint32_t n_prb, const armral_compressed_data_9bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_9bit *.

Points to the input 9-bit data and a scaling factor.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex samples sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.5.2.6 armral_block_scaling_decompr_14bit

The function operates on a fixed block size of one Physical Resource Block (PRB). Each block
consists of 12 14-bit complex post-scaled resource elements and an unsigned scaling factor. Each
block taken as input is expanded into 12 16-bit complex samples.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2343:

armral_status armral_block_scaling_decompr_14bit(
 uint32_t n_prb, const armral_compressed_data_14bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_14bit *.

Points to the input 14-bit data and a scaling factor.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the output complex samples sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3 Block Floating Point

Implements algorithms for data compression and decompression through block floating-point
representation of complex samples.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

3.5.3.1 armral_block_float_compr_8bit

Block floating-point compression to 8-bit.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
16-bit complex resource elements. Each block taken as input is compressed into 24 8-bit samples
and one unsigned exponent.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2374:

armral_status armral_block_float_compr_8bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_8bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_8bit *.

Points to the output 8-bit data and exponent.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.2 armral_block_float_compr_9bit

Block floating point compression to 9-bit big-endian.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of
12 16-bit complex resource elements. Each block taken as input is compressed into 24 9-bit

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

big-endian samples and one unsigned exponent. Big-endian means that where data from a 9-bit
element is split across multiple bytes, the most significant bits are stored in the output byte with
lowest address, and remaining bits are stored in the high bits of the next output byte.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2399:

armral_status armral_block_float_compr_9bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_9bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_9bit *.

Points to the output 9-bit data and exponent.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.3 armral_block_float_compr_12bit

Block floating point compression to 12-bit big-endian.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
16-bit complex resource elements. Each block taken as input is compressed into 24 12-bit big-
endian samples and one unsigned exponent. Big-endian means that where data from a 12-bit
element is split across multiple bytes, the most significant bits are stored in the output byte with
lowest address, and remaining bits are stored in the high bits of the next output byte.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2421:

armral_status armral_block_float_compr_12bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_12bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_12bit *.

Points to the output 12-bit data and exponent.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.4 armral_block_float_compr_14bit

Block floating point compression to 14-bit big-endian.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
16-bit complex resource elements. Each block taken as input is compressed into 24 14-bit big-
endian samples and one unsigned exponent. Big-endian means that where data from a 14-bit
element is split across multiple bytes, the most significant bits are stored in the output byte with
lowest address, and remaining bits are stored in the high bits of the next output byte.

A phase-compensation factor, stored in *scale, is used to scale values before compression in the
case that scale is non-NULL.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Syntax
Defined in armral.h on line 2446:

armral_status armral_block_float_compr_14bit(uint32_t n_prb,
 const armral_cmplx_int16_t *src,
 armral_compressed_data_14bit *dst,
 const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_cmplx_int16_t *.

Points to the input complex samples sequence.

dst

A write-only parameter of type armral_compressed_data_14bit *.

Points to the output 14-bit data and exponent.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.5 armral_block_float_decompr_8bit

Block floating-point decompression from 8 bit.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
8-bit complex resource elements and an unsigned exponent. Each block taken as input is expanded
into 12 16-bit complex samples.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2468:

armral_status armral_block_float_decompr_8bit(
 uint32_t n_prb, const armral_compressed_data_8bit *src,

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_8bit *.

Points to the input compressed block sequence.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the complex output sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.6 armral_block_float_decompr_9bit

Block floating point decompression from 9 bit big-endian.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
9-bit big-endian complex resource elements and an unsigned exponent. Each block taken as input
is expanded into 12 16-bit complex samples. Big-endian here means that where data from a 9-bit
element is split across multiple bytes, the most significant bits are stored in the output byte with
lowest address, and remaining bits are stored in the high bits of the next output byte.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2492:

armral_status armral_block_float_decompr_9bit(
 uint32_t n_prb, const armral_compressed_data_9bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_9bit *.

Points to the input compressed block sequence.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the complex output sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.7 armral_block_float_decompr_12bit

Block floating point decompression from 12 bit big-endian.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
12-bit big-endian complex resource elements and an unsigned exponent. Each block taken as input
is expanded into 12 16-bit complex samples. Big-endian here means that where data from a 12-
bit element is split across multiple bytes, the most significant bits are stored in the output byte with
lowest address, and remaining bits are stored in the high bits of the next output byte.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2516:

armral_status armral_block_float_decompr_12bit(
 uint32_t n_prb, const armral_compressed_data_12bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_12bit *.

Points to the input compressed block sequence.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the complex output sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

3.5.3.8 armral_block_float_decompr_14bit

Block floating point decompression from 14 bit big-endian.

The function operates on a fixed block size of one Resource Block (RB). Each block consists of 12
14-bit big-endian complex resource elements and an unsigned exponent. Each block taken as input
is expanded into 12 16-bit complex samples. Big-endian here means that where data from a 14-
bit element is split across multiple bytes, the most significant bits are stored in the output byte with
lowest address, and remaining bits are stored in the high bits of the next output byte.

A phase-compensation factor, stored in *scale, is used to scale values after decompression in the
case that scale is non-NULL.

Syntax
Defined in armral.h on line 2540:

armral_status armral_block_float_decompr_14bit(
 uint32_t n_prb, const armral_compressed_data_14bit *src,
 armral_cmplx_int16_t *dst, const armral_cmplx_int16_t *scale);

Returns
An armral_status value that indicates success or failure.

Parameters
n_prb

A read-only parameter of type uint32_t.

The number of input resource blocks.

src

A read-only parameter of type const armral_compressed_data_14bit *.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Functions

Points to the input compressed block sequence.

dst

A write-only parameter of type armral_cmplx_int16_t *.

Points to the complex output sequence.

scale

A read-only parameter of type const armral_cmplx_int16_t *.

Phase compensation term to use, or NULL.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Data Structures

4. Data Structures
This section describes the data structures that are available in Arm RAN Acceleration Library.

4.1 armral_cmplx_f32_t
32-bit floating-point complex data type.

Syntax
Defined in armral.h on line 195:

typedef struct {
 float32_t re; ///< 32-bit real component.
 float32_t im; ///< 32-bit imaginary component.
} armral_cmplx_f32_t;

4.2 armral_cmplx_int16_t
16-bit signed integer complex data type.

Syntax
Defined in armral.h on line 187:

typedef struct {
 int16_t re; ///< 16-bit real component.
 int16_t im; ///< 16-bit imaginary component.
} armral_cmplx_int16_t;

4.3 armral_compressed_data_12bit
The structure for a 12-bit compressed block.

See armral_block_float_compr_12bit and armral_block_float_decompr_12bit.

Syntax
Defined in armral.h on line 233:

typedef struct {
 int8_t exp; ///< Block exponent, in the range 0-4 (inclusive).
 int8_t mantissa[36]; ///< Packed data, 12 bits per element.
} armral_compressed_data_12bit;

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Data Structures

4.4 armral_compressed_data_14bit
The structure for a 14-bit compressed block.

See armral_block_float_compr_14bit and armral_block_float_decompr_14bit.

Syntax
Defined in armral.h on line 244:

typedef struct {
 int8_t exp; ///< Block exponent, in the range 0-2 (inclusive).
 int8_t mantissa[42]; ///< Packed data, 14 bits per element.
} armral_compressed_data_14bit;

4.5 armral_compressed_data_8bit
The structure for an 8-bit compressed block.

See armral_block_float_compr_8bit and armral_block_float_decompr_8bit.

Syntax
Defined in armral.h on line 211:

typedef struct {
 int8_t exp; ///< Block exponent, in the range 0-8 (inclusive).
 int8_t mantissa[24]; ///< Packed data, 8 bits per element.
} armral_compressed_data_8bit;

4.6 armral_compressed_data_9bit
The structure for a 9-bit compressed block.

See armral_block_float_compr_9bit and armral_block_float_decompr_9bit.

Syntax
Defined in armral.h on line 222:

typedef struct {
 int8_t exp; ///< Block exponent, in the range 0-7 (inclusive).
 int8_t mantissa[27]; ///< Packed data, 9 bits per element.
} armral_compressed_data_9bit;

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Data Structures

4.7 armral_ldpc_base_graph_t
Data structure required to store the data in a Low Density Parity Check (LDPC) base graph. The
data of a base graph is stored in Compressed Sparse Row (CSR) format.

Syntax
Defined in armral.h on line 3330:

typedef struct {
 ///
 /// The number of rows in the base graph.
 uint32_t nrows;

 /// The number of columns in the base graph which are associated with message
 /// bits. Punctured columns are included.
 uint32_t nmessage_bits;

 /// The number of block columns that are in the codeword. `ncodeword_bits` is
 /// the number of columns in the base graph minus the two punctured columns.
 uint32_t ncodeword_bits;

 /// The indices of the start of a row in the base graph, which you can use to
 /// index into the `col_inds` array to get the column indices of the non-zero
 /// entries in a row of the base graph.
 const uint32_t *row_start_inds;

 /// The indices of the non-zero columns in the base graph. Each of the entries
 /// in a row are stored contiguously. The start of a row is identified by
 /// indices stored in the `row_start_inds` array. For example, the start of
 /// row with index (zero-based) `2` is at index `row_start_inds[2]`.
 const uint32_t *col_inds;

 /// The shifts applied to the identity matrix to give the matrix at each
 /// non-zero column in the base graph. The shifts for all lifting sets are
 /// stored in this array. All shifts for one lifting set are stored before the
 /// next lifting set. This means that the shifts for lifting set with index
 /// (zero-based) `3`, and row with index `5` is at index
 /// `(row_start_inds[5] + 3) * 8`, where `8` is the number of lifting
 /// sets.
 const uint32_t *shifts;
} armral_ldpc_base_graph_t;

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Macros

5. Macros
This section describes the macro definitions that are available in Arm RAN Acceleration Library.

5.1 ARMRAL_NUM_COMPLEX_SAMPLES
The number of complex samples in each compressed block.

Syntax
Defined in armral.h on line 203:

#define ARMRAL_NUM_COMPLEX_SAMPLES 12

5.2 ARMRAL_LDPC_NO_CRC
A constant which can be passed to armral_ldpc_decode_block when the input code block has no
CRC attached.

Syntax
Defined in armral.h on line 3368:

#define ARMRAL_LDPC_NO_CRC 0

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07
Enumerations

6. Enumerations
This section describes the enumeration definitions (enum in C/C++) that are available in Arm RAN
Acceleration Library.

6.1 armral_status
Error status returned by functions in the library.

Syntax
Defined in armral.h on line 105:

typedef enum {
 ARMRAL_SUCCESS = 0, ///< No error.
 ARMRAL_ARGUMENT_ERROR = -1, ///< One or more arguments are incorrect.
} armral_status;

6.2 armral_modulation_type
Formats that are supported by modulation and demodulation. See armral_modulation and
armral_demodulation.

Syntax
Defined in armral.h on line 114:

typedef enum {
 ARMRAL_MOD_QPSK = 0, ///< QPSK, size 4 constellation, 2 bits per symbol.
 ARMRAL_MOD_16QAM = 1, ///< 16QAM, size 16 constellation, 4 bits per symbol.
 ARMRAL_MOD_64QAM = 2, ///< 64QAM, size 64 constellation, 6 bits per symbol.
 ARMRAL_MOD_256QAM = 3 ///< 256QAM, size 256 constellation, 8 bits per symbol.
} armral_modulation_type;

6.3 armral_fixed_point_index
Fixed-point format index Q[integer_bits, fractional_bits] for int16_t. For usage information,
see the armral_solve_* functions.

Syntax
Defined in armral.h on line 125:

typedef enum {
 /// 1 sign bit, 0 integer bits, 15 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q15 = 15,
 /// 1 sign bit, 1 integer bit, 14 fractional bits.

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07
Enumerations

 ARMRAL_FIXED_POINT_INDEX_Q1_14 = 14,
 /// 1 sign bit, 2 integer bits, 13 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q2_13 = 13,
 /// 1 sign bit, 3 integer bits, 12 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q3_12 = 12,
 /// 1 sign bit, 4 integer bits, 11 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q4_11 = 11,
 /// 1 sign bit, 5 integer bits, 10 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q5_10 = 10,
 /// 1 sign bit, 6 integer bits, 9 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q6_9 = 9,
 /// 1 sign bit, 7 integer bits, 8 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q7_8 = 8,
 /// 1 sign bit, 8 integer bits, 7 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q8_7 = 7,
 /// 1 sign bit, 9 integer bits, 6 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q9_6 = 6,
 /// 1 sign bit, 10 integer bits, 5 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q10_5 = 5,
 /// 1 sign bit, 11 integer bits, 4 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q11_4 = 4,
 /// 1 sign bit, 12 integer bits, 3 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q12_3 = 3,
 /// 1 sign bit, 13 integer bits, 2 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q13_2 = 2,
 /// 1 sign bit, 14 integer bits, 1 fractional bit.
 ARMRAL_FIXED_POINT_INDEX_Q14_1 = 1,
 /// 1 sign bit, 15 integer bits, 0 fractional bits.
 ARMRAL_FIXED_POINT_INDEX_Q15_0 = 0
} armral_fixed_point_index;

6.4 armral_polar_frozen_bit_type
Defines the values that can be stored in the output frozen mask that is created by
armral_polar_frozen_mask. For a given input bit array, each index i in the frozen mask describes
the corresponding bit index i in the array. Each entry describes the origin of the bit at the point
of output from armral_polar_encode_block, in particular whether the origin of the bit was an
information bit (present in the original codeword), a parity bit (calculated from the codeword bits),
or a frozen bit (set to zero).

Syntax
Defined in armral.h on line 170:

typedef enum {
 ARMRAL_POLAR_INFO_BIT = 0, ///< Information bit.
 ARMRAL_POLAR_PARITY_BIT = 1, ///< Parity bit.
 ARMRAL_POLAR_FROZEN_BIT = 255 ///< Frozen bit (set to zero).
} armral_polar_frozen_bit_type;

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07
Enumerations

6.5 armral_polar_ibil_type
Enable or disable the interleaving of coded bits in Polar rate matching.

Syntax
Defined in armral.h on line 179:

typedef enum {
 ARMRAL_POLAR_IBIL_DISABLE = 0, ///< Downlink direction
 ARMRAL_POLAR_IBIL_ENABLE = 1, ///< Uplink direction
} armral_polar_ibil_type;

6.6 armral_fft_direction_t
The direction of the FFT being computed. The direction is passed to armral_fft_create_plan_cf32
and armral_fft_create_plan_cs16.

Syntax
Defined in armral.h on line 3169:

typedef enum {
 ARMRAL_FFT_FORWARDS = -1, ///< Compute a forwards (non-inverse) FFT.
 ARMRAL_FFT_BACKWARDS = 1, ///< Compute a backwards (inverse) FFT.
} armral_fft_direction_t;

6.7 armral_ldpc_graph_t
Identifies the base graph to use in LDPC encoding and decoding. The base graphs are defined in
tables 5.3.2-2 and 5.3.2-3 in the 3GPP Technical Specification (TS) 38.212.

Syntax
Defined in armral.h on line 3320:

typedef enum {
 LDPC_BASE_GRAPH_1, ///< Identifier for LDPC base graph 1.
 LDPC_BASE_GRAPH_2 ///< Identifier for LDPC base graph 2.
} armral_ldpc_graph_t;

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 181

Arm® RAN Acceleration Library Reference Guide Document ID: 102249_24.07_00_en
Version 24.07

Type Aliases

7. Type Aliases
This section describes the type aliases (typedef in C/C++) that are available in Arm RAN
Acceleration Library.

7.1 armral_fft_plan_t
The opaque structure to an FFT plan. You must fill an FFT plan before you use it. To fill an FFT
plan, call armral_fft_create_plan_cf32 or armral_fft_create_plan_cs16.

Syntax
Defined in armral.h on line 3162:

typedef struct armral_fft_plan_t armral_fft_plan_t;

Copyright © 2020–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 181

	Arm® RAN Acceleration Library Reference Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Tutorials
	2.1 Get started with Arm RAN Acceleration Library (ArmRAL)
	2.2 Get started with ArmRAL noisy channel simulation
	2.3 Use Arm RAN Acceleration Library (ArmRAL)

	3. Functions
	3.1 Vector functions
	3.1.1 Vector Multiply
	3.1.1.1 armral_cmplx_vecmul_i16
	3.1.1.2 armral_cmplx_vecmul_i16_2
	3.1.1.3 armral_cmplx_vecmul_f32
	3.1.1.4 armral_cmplx_vecmul_f32_2

	3.1.2 Vector Dot Product
	3.1.2.1 armral_cmplx_vecdot_f32
	3.1.2.2 armral_cmplx_vecdot_f32_2
	3.1.2.3 armral_cmplx_vecdot_i16
	3.1.2.4 armral_cmplx_vecdot_i16_2
	3.1.2.5 armral_cmplx_vecdot_i16_32bit
	3.1.2.6 armral_cmplx_vecdot_i16_2_32bit

	3.2 Matrix functions
	3.2.1 Complex Matrix-Vector Multiplication
	3.2.1.1 armral_cmplx_mat_vec_mult_i16
	3.2.1.2 armral_cmplx_mat_vec_mult_batch_i16
	3.2.1.3 armral_cmplx_mat_vec_mult_batch_i16_pa
	3.2.1.4 armral_cmplx_mat_vec_mult_i16_32bit
	3.2.1.5 armral_cmplx_mat_vec_mult_batch_i16_32bit
	3.2.1.6 armral_cmplx_mat_vec_mult_batch_i16_32bit_pa
	3.2.1.7 armral_cmplx_mat_vec_mult_f32
	3.2.1.8 armral_cmplx_mat_vec_mult_batch_f32
	3.2.1.9 armral_cmplx_mat_vec_mult_batch_f32_pa

	3.2.2 General Complex Matrix-Matrix Multiplication
	3.2.2.1 armral_cmplx_matmul_i16
	3.2.2.2 armral_cmplx_matmul_i16_32bit
	3.2.2.3 armral_cmplx_matmul_f32
	3.2.2.4 armral_cmplx_matmul_aah_f32
	3.2.2.5 armral_cmplx_matmul_ahb_f32

	3.2.3 Specific-Sized Complex Matrix-Matrix Multiplication
	3.2.3.1 armral_cmplx_mat_mult_2x2_f32
	3.2.3.2 armral_cmplx_mat_mult_2x2_f32_iq
	3.2.3.3 armral_cmplx_mat_mult_4x4_f32
	3.2.3.4 armral_cmplx_mat_mult_4x4_f32_iq

	3.2.4 Channel Matrix-Matrix Multiplication
	3.2.4.1 armral_solve_2x2_f32
	3.2.4.2 armral_solve_2x4_f32
	3.2.4.3 armral_solve_4x4_f32
	3.2.4.4 armral_solve_1x4_f32
	3.2.4.5 armral_solve_1x2_f32

	3.2.5 Complex Matrix Inversion
	3.2.5.1 armral_cmplx_hermitian_mat_inverse_f32
	3.2.5.2 armral_cmplx_mat_inverse_f32
	3.2.5.3 armral_cmplx_hermitian_mat_inverse_batch_f32
	3.2.5.4 armral_cmplx_mat_inverse_batch_f32
	3.2.5.5 armral_cmplx_hermitian_mat_inverse_batch_f32_pa
	3.2.5.6 armral_cmplx_mat_inverse_batch_f32_pa

	3.2.6 Complex Matrix Pseudo-Inverse
	3.2.6.1 armral_cmplx_pseudo_inverse_direct_f32
	3.2.6.2 armral_cmplx_pseudo_inverse_direct_f32_noalloc

	3.2.7 SVD of a Single Complex Matrix
	3.2.7.1 armral_svd_cf32
	3.2.7.2 armral_svd_cf32_noalloc
	3.2.7.3 armral_svd_cf32_noalloc_buffer_size

	3.3 Lower PHY support functions
	3.3.1 Sequence Generator
	3.3.1.1 armral_seq_generator

	3.3.2 Correlation Coefficient
	3.3.2.1 armral_corr_coeff_i16

	3.3.3 FIR Filter
	3.3.3.1 armral_fir_filter_cf32
	3.3.3.2 armral_fir_filter_cf32_decimate_2
	3.3.3.3 armral_fir_filter_cs16
	3.3.3.4 armral_fir_filter_cs16_decimate_2

	3.3.4 Fast Fourier Transforms (FFT)
	3.3.4.1 armral_fft_create_plan_cf32
	3.3.4.2 armral_fft_execute_cf32
	3.3.4.3 armral_fft_destroy_plan_cf32
	3.3.4.4 armral_fft_create_plan_cs16
	3.3.4.5 armral_fft_execute_cs16
	3.3.4.6 armral_fft_destroy_plan_cs16

	3.3.5 Scrambling
	3.3.5.1 armral_scramble_code_block

	3.4 Upper PHY support functions
	3.4.1 Modulation
	3.4.1.1 armral_modulation
	3.4.1.2 armral_demodulation

	3.4.2 Cyclic Redundancy Check (CRC)
	3.4.2.1 armral_crc24_a_le
	3.4.2.2 armral_crc24_a_be
	3.4.2.3 armral_crc24_b_le
	3.4.2.4 armral_crc24_b_be
	3.4.2.5 armral_crc24_c_le
	3.4.2.6 armral_crc24_c_be
	3.4.2.7 armral_crc16_le
	3.4.2.8 armral_crc16_be
	3.4.2.9 armral_crc11_le
	3.4.2.10 armral_crc11_be
	3.4.2.11 armral_crc6_le
	3.4.2.12 armral_crc6_be

	3.4.3 Polar Encoding
	3.4.3.1 armral_polar_frozen_mask
	3.4.3.2 armral_polar_subchannel_interleave
	3.4.3.3 armral_polar_subchannel_deinterleave
	3.4.3.4 armral_polar_encode_block
	3.4.3.5 armral_polar_decode_block
	3.4.3.6 armral_polar_rate_matching
	3.4.3.7 armral_polar_rate_matching_noalloc
	3.4.3.8 armral_polar_rate_recovery
	3.4.3.9 armral_polar_rate_recovery_noalloc
	3.4.3.10 armral_polar_crc_attachment
	3.4.3.11 armral_polar_crc_attachment_noalloc
	3.4.3.12 armral_polar_crc_attachment_noalloc_buffer_size
	3.4.3.13 armral_polar_crc_check
	3.4.3.14 armral_polar_crc_check_noalloc
	3.4.3.15 armral_polar_crc_check_noalloc_buffer_size

	3.4.4 Low-Density Parity Check (LDPC)
	3.4.4.1 armral_ldpc_get_base_graph
	3.4.4.2 armral_ldpc_encode_block
	3.4.4.3 armral_ldpc_encode_block_noalloc
	3.4.4.4 armral_ldpc_encode_block_noalloc_buffer_size
	3.4.4.5 armral_ldpc_decode_block
	3.4.4.6 armral_ldpc_decode_block_noalloc
	3.4.4.7 armral_ldpc_decode_block_noalloc_buffer_size
	3.4.4.8 armral_ldpc_rate_matching
	3.4.4.9 armral_ldpc_rate_matching_noalloc
	3.4.4.10 armral_ldpc_rate_recovery
	3.4.4.11 armral_ldpc_rate_recovery_noalloc

	3.4.5 LTE Turbo
	3.4.5.1 armral_turbo_encode_block
	3.4.5.2 armral_turbo_encode_block_noalloc
	3.4.5.3 armral_turbo_decode_block
	3.4.5.4 armral_turbo_decode_block_noalloc
	3.4.5.5 armral_turbo_decode_block_noalloc_buffer_size
	3.4.5.6 armral_turbo_rate_matching
	3.4.5.7 armral_turbo_rate_matching_noalloc
	3.4.5.8 armral_turbo_rate_matching_noalloc_buffer_size
	3.4.5.9 armral_turbo_rate_recovery
	3.4.5.10 armral_turbo_rate_recovery_noalloc
	3.4.5.11 armral_turbo_rate_recovery_noalloc_buffer_size

	3.4.6 LTE Convolutional Coding
	3.4.6.1 armral_tail_biting_convolutional_encode_block
	3.4.6.2 armral_tail_biting_convolutional_decode_block
	3.4.6.3 armral_tail_biting_convolutional_decode_block_noalloc
	3.4.6.4 armral_tail_biting_convolutional_decode_block_noalloc_buffer_size

	3.5 DU-RU IF support functions
	3.5.1 Mu-Law Compression
	3.5.1.1 armral_mu_law_compr_8bit
	3.5.1.2 armral_mu_law_compr_9bit
	3.5.1.3 armral_mu_law_compr_14bit
	3.5.1.4 armral_mu_law_decompr_8bit
	3.5.1.5 armral_mu_law_decompr_9bit
	3.5.1.6 armral_mu_law_decompr_14bit

	3.5.2 Block Scaling Compression
	3.5.2.1 armral_block_scaling_compr_8bit
	3.5.2.2 armral_block_scaling_compr_9bit
	3.5.2.3 armral_block_scaling_compr_14bit
	3.5.2.4 armral_block_scaling_decompr_8bit
	3.5.2.5 armral_block_scaling_decompr_9bit
	3.5.2.6 armral_block_scaling_decompr_14bit

	3.5.3 Block Floating Point
	3.5.3.1 armral_block_float_compr_8bit
	3.5.3.2 armral_block_float_compr_9bit
	3.5.3.3 armral_block_float_compr_12bit
	3.5.3.4 armral_block_float_compr_14bit
	3.5.3.5 armral_block_float_decompr_8bit
	3.5.3.6 armral_block_float_decompr_9bit
	3.5.3.7 armral_block_float_decompr_12bit
	3.5.3.8 armral_block_float_decompr_14bit

	4. Data Structures
	4.1 armral_cmplx_f32_t
	4.2 armral_cmplx_int16_t
	4.3 armral_compressed_data_12bit
	4.4 armral_compressed_data_14bit
	4.5 armral_compressed_data_8bit
	4.6 armral_compressed_data_9bit
	4.7 armral_ldpc_base_graph_t

	5. Macros
	5.1 ARMRAL_NUM_COMPLEX_SAMPLES
	5.2 ARMRAL_LDPC_NO_CRC

	6. Enumerations
	6.1 armral_status
	6.2 armral_modulation_type
	6.3 armral_fixed_point_index
	6.4 armral_polar_frozen_bit_type
	6.5 armral_polar_ibil_type
	6.6 armral_fft_direction_t
	6.7 armral_ldpc_graph_t

	7. Type Aliases
	7.1 armral_fft_plan_t

