

Platform Security Requirements
1.0

Document number: DEN 0106

Release Quality: Beta

Issue Number: 0

Confidentiality: Non-Confidential

Date of Issue: 10th July 2024

© Copyright Arm Limited 2019-2024. All rights reserved.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page ii
1.0 Beta (issue 0) Non-confidential

Contents
Release Information .. iv

References.. vii

Terms and abbreviations ... viii

Potential for change .. ix

Conventions .. ix
Typographical conventions .. ix
Numbers .. x

Feedback .. x
Feedback on this book... x

1 Introduction ... 11

2 Security goals... 12

2.1 Unique identity.. 12

2.2 Security lifecycle ... 12

2.3 Attestation .. 12

2.4 Authorized software ... 12

2.5 Secure update ... 12

2.6 Rollback protection ... 13

2.7 Security by isolation .. 13

2.8 Secure interfaces ... 13

2.9 Data Binding .. 13

2.10 Trusted services .. 13

3 Scope ... 14

4 Compliance .. 16

5 Security requirements .. 17

5.1 Security Lifecycle .. 17

5.2 Reset and Secure Boot .. 18
5.2.1 Boot keys ... 20
5.2.2 Boot types ... 20
5.2.3 Boot parameters ... 21
5.2.4 Boot ROM execution ... 22
5.2.4.1 Secondary processors .. 22
5.2.4.2 DMA and External interfaces .. 22

5.3 Clocks and power .. 23

5.4 Memory system... 24

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page iii
1.0 Beta (issue 0) Non-confidential

5.5 Processing elements (Processors) ... 26
5.5.1 Interrupts and Exceptions ... 27
5.5.2 Debug ... 27

5.6 Peripherals and Security subsystems ... 29
5.6.1 Peripherals ... 29
5.6.2 External peripherals.. 30
5.6.3 Security subsystems ... 31

5.7 Invasive subsystems .. 32

5.8 Platform identity ... 33

5.9 Random number generation ... 33

5.10 Trusted Clock, Timer, Watchdog Timer and Real-time Clock .. 35
5.10.1 Trusted Clock Source ... 35
5.10.2 Trusted Timer .. 35
5.10.3 Trusted Watchdog .. 36
5.10.4 Trusted Real-time Clock .. 37

5.11 Cryptography .. 37

5.12 Secure storage ... 39

5.13 On-chip Secure memory ... 41

5.14 External Secure memory ... 41
5.14.1 Confidentiality protection ... 42
5.14.2 Integrity protection .. 42
5.14.3 Replay protection ... 42
5.14.4 External Secure Memory Protection .. 43

Appendix A: Requirement Checklist .. 44

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page iv
1.0 Beta (issue 0) Non-confidential

About this document

Release Information

The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

July 2024 BET0 Non-confidential Beta release. Alignment with text and terms from
other PSA and PSA Certified documents.

Oct 2020 ALP-0 Non-confidential First alpha-quality release.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page v
1.0 Beta (issue 0) Non-confidential

Platform Security Requirements

Copyright ©2019-2024 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this License (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this License. By using or copying the
Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property

embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data. This document was produced using reasonable efforts based on information available as of the
date of issue of this document. The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope
of its obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety
and that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are
responsible for any applications which are used in conjunction with any Arm technology described in this document, and to
minimize risks, adequate design and operating safeguards should be provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST EXTENT
PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this License then Arm may terminate this License immediately upon giving
written notice to Licensee. Licensee may terminate this License at any time. Upon termination of this License by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
License, all terms shall survive except for the License grants.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page vi
1.0 Beta (issue 0) Non-confidential

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach. Any
termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between
the English version of this License and any translation, the terms of the English version of this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. No License, express, implied or otherwise, is granted to Licensee under this License, to
use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © [2024] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

https://www.arm.com/company/policies/trademarks

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page vii
1.0 Beta (issue 0) Non-confidential

References

This document refers to the following documents.

Table 1: References

Ref Document Number Author(s) Title

[1] JSADEN014 PSA Certified Platform Security Model 1.1

[2] DEN 0128 Arm Platform Security Model 1.1

[3] DEN 0063 Arm Firmware Framework for M

[4] DEN 0077A Arm Firmware Framework for Arm® v8-A

[5] NIST SP 800-90A,
NIST SP-800-90B
NIST SP-800-90C

NIST A) Recommendation for the Random Number Generation
using Deterministic Randon Bit Generators

B) Recommendation for the Entropy Sources Used for
Random Bit Generation

C) Recommendation for Random Bit Generator (RBG)
Constructions

[6] AIS 20/31 BSI Random Number Generation

[7] FIPS 140-3 or
ISO/IEC19790

NIST
ISO/IEC

Security Requirements for Cryptographic Modules

[8] DEN 0072 Arm Platform Security Boot Guide

[9] SP 800-22 NIST A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications

[10] SP 800-57 NIST Recommendation for Key Management: Part 1 - General

[11] Semiengineering.com The Benefits of Anti-fuse OTP

[12] JSADEN0112 PSA Certified Platform Threat Model and Security Goals v1.0

[13] SOG-IS Crypto Working Group SOG-IS Crypto Evaluation Scheme Agreed Cryptographic
Mechanisms

[14] Arm Cache Speculation Side channels

https://semiengineering.com/the-benefits-of-antifuse-otp/
https://www.psacertified.org/development-resources/building-in-security/platform-threat-model-and-security-goals/
https://developer.arm.com/documentation/102816/latest/

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page viii
1.0 Beta (issue 0) Non-confidential

Terms and abbreviations

This document uses the following terms and abbreviations.

Table 2: Terms and abbreviations

Term Meaning

BDK Boot Decryption Key

Cryptographic hash A one-way function which maps data of arbitrary size to a bit string of fixed size.

DMA Direct memory access, meaning some non-CPU mechanism that can read or write to
memory, typically, also accessible by the CPU.

DPM Debug Protection Mechanism

HUK Hardware Unique Key

IAK Initial Attestation Key

In-package In the same physical package. Where package decapsulation and probing attacks are out
of scope, this term can be read as on-chip.

JTAG Joint Test Action Group debug interface

MTP Multiple-time programmable

NVM Non-volatile memory

OEM Original Equipment Manufacturer

On-chip On the same physical die. Where package decapsulation and probing attacks are out of
scope, this term can be read as in-package.

OTP One-time programmable, for example, using anti-fuse or eFuse technologies

PE Processing Element, or more generally, a processor

PSA Platform Security Architecture

RMA Return Merchandise Authorization

RPMB Replay Protected Memory Block

RoT Root of Trust

ROTPK Root of Trust Public Key (also known as a Boot Validation Key)

SE Secure Element, typically a discrete chip that provides cryptographic operations and key
storage with enhanced security robustness.

SEn Secure Enclave, typically an on-chip IP with functionality similar to a Secure Element and
enhanced robustness.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page ix
1.0 Beta (issue 0) Non-confidential

SBF Secure Boot Firmware

SoC System-on-Chip, a single die or multiple die within the same physical package.

SRAM Static RAM

SWD Serial Wire Debug Port

TLS Transport Layer Security

TPM Trusted Platform Module, typically V2.0 as defined by Trusted Computing Group

TRNG True Random Number Generator

TRTC Trusted Real-Time Clock

Trusted world An isolated environment that supports services that need to be trusted to ensure the
security of the platform.

Non-trusted world An environment that supports services that do need to be trusted for the security of the
platform

Potential for change

The contents of this specification are subject to change.

Conventions

Typographical conventions

The typographical conventions are:

Italic Introduces special terminology and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Also used for a few terms that have specific technical meanings and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page x
1.0 Beta (issue 0) Non-confidential

Indicates a link, which can be:

• A cross-reference to another location within the document.

• A URL, for example http://infocenter.arm.com.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an email to arm.psa-feedback@arm.com. Give:

• The title (Platform Security Requirements).

• The number and issue (DEN 0106 1.0 Beta 0).

• The page numbers to which your comments apply.

• The rule identifiers to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

mailto:arm.psa-feedback@arm.com

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 11
1.0 Beta (issue 0) Non-confidential

1 Introduction
This document specifies the minimum security requirements expected of System-on-Chips (SoC) found in many
market segments. It is intended for chipset architects, designers, and verification engineers to support security-
by-design. It can be used for chipset designers requiring compliance with various security requirements, or for
the process of certification schemes, for example PSA Certified™, through security evaluation laboratories.

This document does not specify a specific system architecture or the use of specific components. Other
documentation from Arm provides guidance on how to best meet the security requirements using the Arm
architecture and system IP.

System designers are encouraged to check conformance to the security requirements so that a specific
implementation fulfils the objective.

This document uses the term Trusted world to refer to an isolated environment (enforced by hardware) that
hosts trusted services. The term Non-trusted world refers to any environment that hosts services that do not
need to be trusted.

Isolation is fundamental to building a secure platform. In some applications a two-way partitioning, for example,
to isolate a single Trusted world from a single Non-trusted world, is sufficient. However, the need for multiple
Trusted worlds can arise when there is either explicit mistrust between Trusted services, or, more generally,
there is no dependency between Trusted services that must co-exist on the platform. In such cases, one Trusted
world perceives any other Trusted world, or worlds, as part of the Non-trusted world. The Platform Security
Model [1][2], illustrates some possibilities.

Unless necessary to illustrate a specific point, the rest of this document assumes a two-way Trusted and Non-
trusted partitioning. The requirements are intended to apply also when there are multiple Trusted worlds,
multiple Non-trusted worlds, or both.

http://psacertified.org/

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 12
1.0 Beta (issue 0) Non-confidential

2 Security goals
The Platform Security Model [1][2] outlines the important principles of a secure system in the form of ten
security goals. These goals, which are based on [12], are not Arm specific, but are inherently embodied in various
Arm specifications and are used as the basis for developing the detailed security requirements within this
document.

2.1 Unique identity

In order to interact with a specific device instance, that instance must be uniquely identifiable. The identity must
be attestable and that attestation verifiable as a means of proving the device identity, see section 2.3.

2.2 Security lifecycle

A system must ensure that the protection of assets and the availability of device functions follow a prescribed
and constrained path from manufacture to device disposal. Therefore, the system must have a state machine
that it can use to make appropriate security decisions within a particular context. This is known as a security
lifecycle.

The security state of a device within its security lifecycle depends on software versions, run-time measurements,
hardware configuration, status of debug ports, and on the product lifecycle phase. Product lifecycle phases
include, for example, development, deployment, returns, and end-of-life. Each security state defines the security
properties of the device. The security state must be attestable, see section 2.3, and may impact access to bound
data, see section 2.9.

2.3 Attestation

A system must be able to provide evidence of its trustworthiness to relying parties. To have validity, the system
must be part of a governance program. Such a program includes roles such as evaluation labs, attestation
verifiers, and relying parties.

For the trustworthiness of a device to be established, its identity, see section 2.1, and security state, see
section 2.2 are proven through attestation.

2.4 Authorized software

A system can only be trustworthy if it runs the software that has been analyzed. Secure boot (also referred to as
verified boot) and secure loading processes are necessary to ensure that only authorized software can be
executed on the device. See also section 2.6. Allowing unauthorized software is acceptable only if such software
cannot compromise the security of the device.

2.5 Secure update

Device software, credentials, programmable hardware configuration, must be updateable to resolve security
issues or to provide feature updates. Updates must not compromise the device security. Authentication of an
update is required. However, execution of any updated software must be authorized in accordance with
section 2.4. The update process itself must be secure against abuse.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 13
1.0 Beta (issue 0) Non-confidential

2.6 Rollback protection

Updates are necessary to resolve known security issues, or provide feature updates, see section 2.5. Preventing
unauthorized rollback, known as anti-rollback, to a previous version with a known (and subsequently fixed)
vulnerability is essential. However, authorized rollback for recovery purposes may be allowed.

2.7 Security by isolation

It is probable that software contains flaws that can be exploited to compromise the security of a system (see
sections 2.4 and 2.5). Isolation of a trustworthy service from less trusted or untrusted services is essential to
protect the integrity of that service. More generally, isolation boundaries aim to prevent one service from
compromising other services, for example, between any on-device services and between on-device services and
the connected world.

Example software architectures that use security by isolation are the firmware frameworks detailed in [3][4].

2.8 Secure interfaces

Interaction over isolation boundaries, see section 2.7, is essential if isolated services are to serve a purpose. Any
such interaction must not be able to compromise the interacting services or device. This will require validation of
exchanged data. It may also be necessary to ensure the confidentiality and integrity of any data exchanged.

2.9 Data Binding

Sensitive data, for example, user or service credentials, or secret keys, must be bound to a device to prevent
disclosure outside of the device. It may also be required to bind such data to prevent disclosure beyond its
owner. Inherently secure storage (typically on-chip with secure access controls) or confidentiality and integrity
assured storage (typically off-chip with reliance on cryptography) may be used. Where binding relies on
cryptography and keys, see section 2.10, the keys are sensitive data and so must be bound to the device or the
data owner. It may also be necessary to bind the data to the security state, for example, to deny access during
debug, see section 2.2.

2.10 Trusted services

Trusted services must ensure that other goals are met.

Trusted services may include configuration of the hardware to support security lifecycle (see section 2.2),
isolation (see section 2.7), and cryptographic services that may use bound secrets (for example, keys) used to
support attestation (see section 2.3), secure boot and secure loading (see section 2.4), and binding of data (see
section 2.9). The trusted services must be kept as small as possible to enable analysis and reduce the likelihood
flaws.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 14
1.0 Beta (issue 0) Non-confidential

3 Scope
The classes of threats considered in this document are listed in Table 3, those that are specifically not considered
are listed in Table 4. However, when the device is subject to any security certification, such as PSA Certified, the
requirements of that scheme take precedence. An Attack Methods document is available on PSACertified.org,
which gives examples of the types of attacks that are in scope at the various PSA Certified certification levels.
Awareness of these examples can guide the design solutions.

Table 3: In scope threat classes

Threat Summary

T.ROGUE_CODE An attacker succeeds in loading and executing rogue code on the device in order to
obtain assets or escalate privileges.

T.TAMPERING An attacker replaces, or tampers with, off-chip storage, memory or peripherals in
order to obtain assets or escalate privileges.

T.CLONING An attacker with physical access reads data in off-chip storage or memory. This
enables reverse engineering or cloning of assets to other systems.

T.DEBUG_ABUSE An attacker succeeds in accessing debug features in order to illegally modify
system behavior or access assets.

T.WEAK_CRYPTO An attacker breaks the cryptography used by the device in order to access assets or
impersonate the device. This threat only relates to algorithm strength, key size,
and random number generation.

T.IMPERSONATION An attacker pretends to be the device in order to intercept assets that are
provisioned to the device.

T.POWER_ABUSE An attacker abuses power management controls using software in order to access
assets.

T.SOFT_SIDE_CHANNELS An attacker uses software-observable side channels to infer information about
assets.

Table 4: Out of scope threat classes

Threat Summary

T.INVASIVE_ATTACK An attacker uses invasive techniques, in which systems are physically unpackaged
and probed, in order to recover assets or modify system behavior.

T.GLITCHING A physically present attacker uses power, clock, temperature, and energy glitch
attacks that cause faults such as instruction skipping, malformed data in
reads/writes, or instruction decoding errors.

http://psacerified.org/

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 15
1.0 Beta (issue 0) Non-confidential

Threat Summary

T.PHYS_SIDE_CHANNELS An attacker infers the value of sensitive on-chip code or data by using physical non-
invasive techniques, such as differential power analysis or timing attacks. An
example asset can be a cryptographic key.

T.DENIAL_OF_SERVICE An attacker damages an asset or prevents an asset from being accessed.

T.SUPPLY_CHAIN While the guidance in this document provides mitigation against potential attacks in
a supply chain, such as firmware tampering, it does not directly address supply chain
security.

T.APPLICATIONS Threats to the Non-trusted world and general application security.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 16
1.0 Beta (issue 0) Non-confidential

4 Compliance
To show compliance with this document, there must be evidence-backed documentation that shows the design
meets all applicable requirements that this document describes. Typically, compliance can be demonstrated
through verified output of a design review. Such compliance documentation may be a valuable input to a
security certification scheme such as PSA Certified1.

It is recommended that the design and any assessment is conducted as part of a Secure Development Lifecycle,
which is becoming increasing relevant to demonstrating compliance with regulatory requirements.

The design team must provide evidence of fulfillment for each requirement. This confirmation must include
justification for the compliance in the form of a brief outline, and references to the relevant detailed
specifications. In general, requirements might not be applicable if the threats that they mitigate can be shown to
not form part of the threat model of the system, or that any vulnerabilities that might result from not meeting a
requirement can be demonstrated to be mitigated in another way. In some cases, it is necessary to provide more
robust security. In these cases, supporting evidence must be documented alongside the requirement.

In several areas, this document provides recommendations. Where possible, these recommendations are
provided to give guidance on reasonable default design choices. The threat model and functional requirements
of the system are key in determining how requirements are met and the recommendations to follow. The
development of a product threat model is beyond the scope of this document; however, example threat models
can be found on PSACertified.org. These can freely be used as the starting point for the generation of specific
threat models.

1 https://www.psacertified.org/

https://www.psacertified.org/
https://www.psacertified.org/

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 17
1.0 Beta (issue 0) Non-confidential

5 Security requirements
At an abstract level, a system comprises a collection of assets, alongside operations that act on those assets. In
this context, an asset is defined as code or data that has an owner and an intrinsic value, for example, a
monetary value. All data sets are assets that are associated with a value, even if that value is zero. A data set can
be any stored or processed information.

High-value assets that require protection belong to a Trusted world, while low-value assets that do not require
protection should belong to a Non-trusted world. The classification, ranking, and mapping of assets to worlds
depends on the product requirements, and is beyond the scope of this document.

This section describes the security requirements that an SoC meets. The requirements are described in tables
and are distinct from the supporting text. The text provides additional context to ease comprehension of the
rationale for each requirement. Normative requirements are described within tables. Text outside of the tables
is informative.

5.1 Security Lifecycle

During its creation and use, the system progresses through a series of states. These states indicate the assets
present in the system and the functionality that is available or has been disabled. With the exception of entering
and exiting any debug state, progression through the states is usually controlled using a write-once mechanism.

A generic minimal security lifecycle is illustrated in Figure 1. It is expected that an actual product will contain the
actual states and transitions specific to that product, Original Equipment Manufacturer (OEM) manufacturing, or
market requirements.

Figure 1: Generic security lifecycle

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 18
1.0 Beta (issue 0) Non-confidential

As a minimum, a system compliant with this document provides a lifecycle control mechanism in which:

• The lifecycle state is held in, or derivable from, protected or one-time programmable memory.
• All lifecycle state transitions are restricted to a designated set that includes at least:

• A designated initial state from which the system starts.
• A designated deployed state (Secured) which mandates the use of the system security features.
• A designated terminal state (Decommissioned) from which no further transitions are permitted.

This is also known as Return Merchandise Authorization (RMA).
• A transition into the Decommissioned state should put beyond use all secret and private keys through,

for example, physical or logical protection or some means of atomic zeroization. The transition must also
be authorized by the Root of Trust owner to prevent an attacker from erasing important secrets.

• Some systems might have the capability to hide secret and private keys during an invasive debug state
such as Trusted World Debug (see Figure 1). This makes it possible for the system to go back to a
‘secured’ state and is represented by the “Recoverable” transition in Figure 1.

• Booting, debugging, and scan-chain access are governed by a secure lifecycle policy.

Debug support in deployed devices is not considered to be mandatory because it is common for hardware-
supported debug, for example, via a JTAG or SWD port, to be permanently disabled. Where debug on a deployed
device is required, the requirements in section 5.5.2 are applicable.

Table 5: Life-cycle state requirements

R010_PSR_LCYC The system must enforce a security lifecycle.

R020_PSR_LCYC The security lifecycle must have a designated initial state.

R030_PSR_LCYC
The security lifecycle must have a designated secured state which enforces the security
requirements.

R040_PSR_LCYC
The security lifecycle must have a designated terminal state from which no further
transitions are allowed.

R050_PSR_LCYC
A transition into the terminal state must put secrets and private cryptographic keys beyond
use.

R060_PSR_LCYC
A transition into the terminal state must be authorized by the owner of the security
lifecycle.

R070_PSR_LCYC
Where the security lifecycle does not include any debug state then any debug capability
must be absent or permanently disabled.

It should be noted that the system can also contain other lifecycles that are specific to a market, application, or
supply chain. These lifecycles are expected to be orthogonal and complementary to the security lifecycle
described here.

5.2 Reset and Secure Boot

The secure configuration of a system depends on trusted software that forms part of a chain of trust that begins
with the secure boot of the SoC. Secure boot, also known as verified boot, ensures the integrity of firmware and
critical data by detecting tampering or unauthorized changes. Further details on secure boot and authentication

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 19
1.0 Beta (issue 0) Non-confidential

mechanisms can be found in the Platform Security Boot Guide [8], and in the reference implementation provided
by the Trusted Firmware1 project.

Secure boot is based on an immutable secure boot image. It is the first code to run on the processor core and it
is responsible for verifying and launching the next stage of boot. The secure boot image is referred to by the
generic term Boot ROM2 in this document. Boot ROMs are typically implemented as some combination of
mask ROM, or embedded flash or one-time-programmable memory with hardware support to ensure that once
programmed cannot be altered. The executed image is inherently trusted provided the Boot ROM is on the same
chip as the core that executes it. It may be acceptable for the Boot ROM to be on a separate die within the same
package as the boot processor core if decapsulation and probing attacks are out of scope.

The Boot ROM contains the boot vectors for the main processing elements as well as the secure boot image.
Typically, the boot loader is divided into several stages, the first of which is the Boot ROM. Later stages will be
loaded from non-volatile storage into, ideally, secure RAM and executed there. In this document, the second
stage boot loader is referred to as Secure Boot Firmware3 (SBF).

Table 6: Immutable boot code requirements

R010_PSR_BROM
The SoC must have an on-chip Boot ROM with the initial code that is needed to perform a
Secure Boot. Where package decapsulation and probing attacks are out of scope, the term
“on-chip” can be read as in-package.

An on-chip security subsystem (see section 5.6.3) with its own private Boot ROM may be provided to co-ordinate
the boot of the system. When a system reset occurs the security subsystem performs the required verification
and any decryption stages prior to releasing the main application processor from reset. The main application
processor should execute an image verified by the security subsystem. The main application processor may then
extend the chain-of-trust by authenticating further executable images.

Careful analysis of Boot ROM code is essential because a vulnerability can undermine the entire system security.
Committing all of the first stage of secure boot to immutable storage is a risk as any change requires a hardware
revision. Extending the capability of the Boot ROM via an image that it loads from non-volatile storage, ideally
into on-chip memory, and then authenticates is an accepted practice4.

The Boot ROM contains sensitive code that verifies and optionally decrypts the next stage of the boot. For some
devices, if an attacker were able to read and disassemble the ROM image, they could gain valuable information
that could be used to target an attack that circumvents the verification mechanism. For example, timing
information can be used to target a fault injection attack.

Contingent on the threat model, it might aid robustness if the Boot ROM code and data is accessible only during
boot. Device designers should consider implementing a non-reversible mechanism which prevents access by, for
example, erasing any volatile Boot ROM state and making the Boot ROM code and the ROTPK inaccessible using
a sticky register bit that is activated by the boot software. This is an example of Temporal Isolation, a topic
covered in [1] and [2].

1 https://www.trustedfirmware.org
2 BL1 in the Trusted Firmware project.
3 BL2 in the Trusted Firmware project.
4 This is called split bootloaders in the Trusted Firmware project. BL1_1 is the immutable on-chip image executed first,
BL1_2 is the image loaded and verified by BL1_1. Together, these constitute the “Boot ROM”.

https://www.trustedfirmware.org/

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 20
1.0 Beta (issue 0) Non-confidential

5.2.1 Boot keys

The Secure Boot Firmware must be authenticated by the Boot ROM using an on-chip immutable public key,
which is here referred to as the Root of Trust Public Key (ROTPK)1, 2. The specific public key algorithm used for
authentication is defined by the implementation but subject to the security requirements defined in
section 5.11, or any market requirements, security certification scheme, or regulatory requirements applicable in
a geographical area.

To minimize the amount of required on-chip immutable storage, an SoC may instead store the cryptographic
hash of the public key, enabling the larger public key to be held in external storage. On each boot, the Boot ROM
can then calculate the hash of the public key read from the external storage and compare it with the hash in on-
chip memory to ensure it is the correct key.

Encryption of Secure Boot Firmware images, where needed, requires a secret Boot Decryption Key (BDK) that
should be available only to the Immutable Boot ROM. It is typical for the image to be encrypted and then signed;
thus decryption is only necessary if the image is successfully verified. This ordering also supports the use case
where the content is considered confidential and should not be visible to the signing authority. Signing followed
by encryption can be necessary where the operations are performed by different entities at different times in
the supply chain; for example, where encryption is unique for each target device and is only performed when the
image is to be delivered but issuing the signing requests at that time impacts the delivery timing.

Table 7: Boot key requirements

R010_PSR_BKEY
The SoC must either contain an on-chip ROTPK, or the information that is needed to
securely verify the ROTPK. Such information must be immutable.

R020_PSR_BKEY
If a cryptographic hash of the ROTPK is stored in on-chip non-volatile memory, rather than
the key itself, it must be immutable.

R030_PSR_BKEY
A secret Boot Decryption Key only accessible to the Immutable Boot ROM will be required
if it is necessary to encrypt the Secure Boot Firmware.

It is recommended that a signature of the end-result is included where firmware images are delivered as a
delta/diff. If the on-device firmware must be encrypted, then that would be applied via on-device encryption of
the end-result image.

5.2.2 Boot types

A cold boot is a boot that is not based on any previous system state, and occurs on power-up, or, if already
powered up, on a hard-reset input signal generated by a reset circuit, or by a software initiated reset. A warm
boot is a boot that is based on previous system state in order to achieve a more rapid activation of the system
than might be possible with a cold boot. A warm boot typically occurs when the SoC is powered-up and a

1 Some markets require the ROTPK to be inaccessible once it has been used, thus reducing the amount of
information exposed to potential attackers.

2 Some markets recommend encrypting all data in external storage, including public keys, to reduce the amount
of information exposed to potential attackers.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 21
1.0 Beta (issue 0) Non-confidential

software trigger occurs, or via an input signal from, for example, a peripheral (on-chip or off-chip) monitoring
relevant events.

Note that an implementation may leave some state undefined on power-up, and that a powered-on reset may
not result in all state being reset. It should not be assumed that the reset types have exactly the same result.

Where a warm reboot is required, it is necessary to deploy some method to signal the use of stored state,
examples include:

• The Boot ROM can distinguish between a warm boot and a cold boot via a status register.

• The SoC can use an alternate reset vector for a warm boot, causing the Boot ROM to execute warm boot
specific code. Directing the SoC to use a specific may be via a status register.

Typically, any storage needed to support these mechanisms is implemented within an always-on power domain.

Table 8: Warm boot requirements

R010_PSR_BWRM
If the system supports warm boot, a flag or register must exist to distinguishing between
a warm and cold boot.

R020_PSR_BWRM
Where a flag or register is used to distinguish between cold and warm boot, it must be
programmable only by a Trusted world.

R030_PSR_BWRM
Where a flag or register is used to distinguish between cold and warm boot, it must be
set after a cold or a warm boot has started to cold boot.

R040_PSR_BWRM
Where a flag or register is used to distinguish between cold and warm boots, the default
should be for cold boot, and should use a value that any unauthorized perturbation will
result in a cold boot.

Implementing a warm boot brings significant security challenges if any of the necessary retained state is security
sensitive and is held in off-chip storage when the system is suspended. The threat model for the platform needs
to be considered. See also sections 5.3 and 5.14.

A boot status register can be implemented to indicate the boot state of each processor. For example, the boot
status register enables the application processor to check whether other processors booted up correctly and be
used for attestation purposes. The register must be either immutable if accessible by a non-trusted world or
accessible only by a trusted world, including any secure debug.

Table 9: Boot status register requirements

R010_PSR_BSTR
If a boot status register is implemented, it must either be accessible only by a Trusted
world, including secure debug, or immutable if accessible to an un-trusted world.

5.2.3 Boot parameters

Some Boot ROM implementations can be influenced by additional configuration information stored in on-chip
one-time programmable memory (OTP). Examples of configuration information include:

• Selection of the device containing the first loadable firmware image, e.g. NOR, NAND or eMMC flash.

• Storage of the ROTPK, or a hash of the ROTPK.

• Storage of a Boot Decryption Key for boot image decryption.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 22
1.0 Beta (issue 0) Non-confidential

The effect of these parameters on Boot ROM behavior must be carefully considered for each state in the security
lifecycle. Some parameter values might need to be disallowed depending on the state of the security lifecycle. For
example, some factory test parameters are expected to be disabled once the provisioning lifecycle state is reached,
and options to select the boot device from chip pins should de disabled when the device is considered to be in a
secure life-cycle state.

Table 10: Boot parameter requirements

R010_PSR_BPRM The Boot ROM must be aware of the current security lifecycle state.

R020_PSR_BPRM
Any Boot ROM configuration outside of on-chip OTP memory must be authenticated using
an on-chip immutable public key, or on-chip immutable hash of an external public key.

R030_PSR_BPRM
It must not be possible to boot the first loadable firmware from any other storage device
unless a Trusted Debug mode permits this (see section 5.5.2).

5.2.4 Boot ROM execution

Execution of the Boot ROM must not be perturbed by other agents, for example, by other processors, Direct
Memory Access (DMA) mechanisms or via external interfaces (for example, PCI, JTAG, interrupts). Therefore,
other processors, DMA mechanisms and external interfaces must be appropriately restricted during a secure
cold or warm boot. This helps prevent secure boot from being bypassed.

Other processors, DMA and external interfaces can be re-enabled by boot software when it is safe to do so, for
example after secure boot and security protections have been configured.

5.2.4.1 Secondary processors

If the SoC implements multiple processing elements (PE), the designated boot PE is called the primary boot PE.
After the de-assertion of a reset the primary boot PE executes the Boot ROM code, but the remaining – the
secondary - PEs should be held in reset, or a safe platform-specific state, until the primary boot PE initializes and
releases them from reset. There are at least a few possible examples:

• The platform power controller can hold all secondary PEs in a reset state, while the primary boot PE
executes the Boot ROM until it requests for the secondary PEs to be released.

• All PEs execute from the Boot ROM from the same boot vector. However, the Boot ROM identifies the
primary boot PE and boots using the secure boot image, while the secondary PEs are made inactive in
some way.

Table 11: Secondary processor requirements

R010_PSR_BSPE All secondary PEs must remain inactive until permitted to boot by the primary PE.

5.2.4.2 DMA and External interfaces

Disabling all DMA capable IP and interrupts on or before the start of the Boot ROM secure boot process, typically
on a reset, is recommended. This is a simple way to ensure compliance with Table 12 requirements, however, it
is recognized that this might be too restrictive for some system designs.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 23
1.0 Beta (issue 0) Non-confidential

Table 12: DMA and external interface requirements

R010_PSR_BEXE Secure boot execution state must be protected from DMA reads and writes.

R020_PSR_BEXE Secure boot execution state must be protected from external interfaces.

5.3 Clocks and power

Platforms with a high degree of power control might integrate an advanced power management subsystem
using dedicated hardware, and possibly executes a small software stack from local RAM. In such cases, the
management subsystem must be trusted and have control over trusted assets, for example:

• Reset examples include:
o State machines that sequence the assertion and de-assertion of resets in relation to the

reset hierarchy, the system clocks, and any power states.
o Re-synchronization of resets at clock boundaries.

• Clock generation and selection:
o Registers to enable or disable clocks.
o Registers that manage clock glitch and/or frequency detectors.
o Configuration of clock sources, including any phase-locked-loops.
o Clock dividers and other glitch-less clock switching and clock gating mechanisms.

• Power control examples include:
o Access to power controllers, switches, or regulators.
o State machines for sequencing when changing power states.
o Logic or processing to intelligently apply power states either on request, or dynamically.

• State saving and restoration. To dynamically apply power states, some subsystems can also perform
saving and restoration of system states without the involvement of the main application processor.

Unrestricted access to this functionality is a security risk because it could be used by an attacker to induce a fault
that targets a Trusted service by, for example, perturbing a system clock. To mitigate this threat, the advanced
power mechanism belongs in a Trusted world. The system must also include a Trusted management function, to
perform policy checks on any requests from any Non-trusted world before they are applied.

This approach still permits execution of most Non-trusted complex peripheral wake up code from the Non-
trusted world.

If the system can be suspended, various system state will need to be saved. To prevent an attacker with physical
access from modifying or reading the saved state, it must be protected using authenticated encryption. See also
sections 5.2.2 and 5.14.

Table 13: Clock and power requirements

R010_PSR_PWR
Advanced power control mechanisms must integrate a Trusted management function to
control clocks and power.

R020_PSR_PWR
It must not be possible to directly access reset, clock, and power management mechanisms
from a Non-trusted world.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 24
1.0 Beta (issue 0) Non-confidential

R030_PSR_PWR

If suspend to RAM is supported (see also warm boot in section 5.2.2), any protection keys
for external memory need to be saved and restored. These operations must be handled by
a Trusted service and the keys must be stored in either on-chip Trusted storage or wrapped
using a key derived from an on-chip Hardware Unique Key (HUK).

R040_PSR_PWR

Security critical suspend state information that is stored in memory accessible to an

attacker (typically off-chip or off-package) must be encrypted and authenticated using a key

that is not accessible to the attacker.

5.4 Memory system

Isolation between the operations and assets of a Trusted and any other world(s) follows from the Isolation
security goal, section 2.7. Operations and assets are connected by transactions, where a transaction represents
an instruction fetch, a data read or write to storage containing the asset. In such a system, storage comprises
registers, random access memory, and non-volatile memory. Note that the processor is not necessarily the only
component on an SoC that may need to distinguish between trusted and non-trusted operations. For example,
there may be DMA operations that perform operations that are specific to the security state.

The system memory map should be divided into at least two partitions, one in which Trusted world assets are
held, and another in which Non-trusted world assets are held. Each transaction belongs to either a Trusted world
or the Non-trusted world1. In some systems there may need to be more than two partitions, see section 1
and [1][2].

A Non-trusted operation must not be able to access trusted assets. However, to build a useful system it is
necessary to communicate between the two worlds, usually through shared memory. Therefore, a Trusted
operation must be able to access (some) Non-trusted assets, in addition to trusted assets. However, it is a
security risk for a Trusted operation to fetch code belonging to a Non-trusted world, and therefore should not be
permitted. This can be enforced using one of the following methods:

• Disabling or faulting2 on instruction fetches from a Trusted world into the Non-trusted world. This can be
fixed in hardware or configurable by Trusted firmware.

• Careful code review of Trusted operations to ensure secure transactions never fetch instructions from
Non-secure memory.

Table 14: Trusted and Non-trusted isolation requirements

R010_PSR_MSYS
The SoC must provide a hardware-based mechanism for isolating the memories of a
Trusted world from any Non-trusted world.

R020_PSR_MSYS
A Trusted world operation can access Trusted world assets and might be able to access
Non-trusted world data assets.

R030_PSR_MSYS
A Trusted world operation must not fetch Non-trusted world instructions. Where hardware
mechanisms to prevent such fetches exist they should be controlled only from a Trusted
world.

R040_PSR_MSYS A Non-trusted world operation must only access Non-trusted world assets.

1 The terms Secure and Non-Secure/Normal are used in Arm TrustZone and mean trusted and non-trusted respectively.
2 Where provided in Arm processors, the Secure Instruction Fetch bit (SIF) can be set to cause a fault.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 25
1.0 Beta (issue 0) Non-confidential

Designs that use a network-on-chip type interconnect might have mechanisms that allow the routing of packets
to be dynamically configured so that they arrive at a different interface even though the access address remains
unchanged. This is a security risk as it can open the possibility of exploits. Any such configuration of routing must
only be possible from a Trusted world.

It is possible to have world-aware peripherals, in which the peripheral is visible in both a Trusted world(s) and a
Non-trusted world(s) at the same time. This may be achieved through address aliasing or hardware signals.

Peripheral address space must be in a non-executable area of memory.

Table 15: Programmable address mapping requirements

R010_PSR_PAM
If programmable address remapping logic is implemented in the interconnect, then its
configuration must be possible only from a Trusted world.

R020_PSR_PAM
If target-side filtering is implemented to identify Trusted and Non-trusted world
transactions, it must only permit Trusted or all Non-trusted transactions to any one region.
Trusted and Non-trusted aliased accesses to the same address region are not permitted.

R030_PSR_PAM
The target-side transaction filters configuration space must only be accessed from a Trusted
world.

R040_PSR_PAM
Configuration of the on-chip interconnect that modifies routing or the memory map must
only be possible from a Trusted world unless it is not possible for such modifications to
affect Trusted world transactions.

Assets from different worlds can at different times occupy the same physical storage locations. This is called
shared storage. The underlying storage can be volatile, for example, on-chip RAM, external RAM, or peripheral
space. The shared storage can also be non-volatile, such as flash or, if available, Magneto-resistive RAM (MRAM).
Before any shared storage can be reallocated from one world to another, the asset must be securely removed,
unless explicitly required to be shared. This process is called scrubbing, and can be performed by a Trusted
world, using either trusted hardware or trusted software. Typically, one of the following methods:

• Overwritten with a pre-defined constant value.

• Overwritten with a random value.

• Indirectly changed to a random value, for example, by changing the secret key used to decrypt the
content.

Immediately after the scrubbing process the storage contains no information, therefore, it must not be treated
as data or as executable instructions.

When a copy of a Trusted world asset is held in a processor cache, it is important that the implementation does
not permit any mechanism that provides any Non-trusted world with access to that asset. In effect, any cached
copy needs also to be scrubbed. Typically, this means that the cache line holding the copy should be invalidated
to ensure no post-scrub write-back to memory. If a hardware engine is used for scrubbing memory, careful
attention must be given to the sequence to make sure that the relevant cached data is invalidated before the
scrubbing operation.

Similarly, assets can be shared between software at different privilege levels within the same world. Software at
each privilege level in each world is referred to as a security domain.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 26
1.0 Beta (issue 0) Non-confidential

Table 16: Scrubbing of shared storage requirements

R010_PSR_SSS
Shared storage must be scrubbed before it can be reallocated to a different world or security
domain.

R020_PSR_SSS
Shared storage must not be executable immediately after allocation from a different security
domain.

R030_PSR_SSS Assets held in a processor cache must be invalidated to ensure no post-scrubbing write-back.

5.5 Processing elements (Processors)

Most security breaches are caused by software vulnerabilities. Therefore, a key aspect of hardware system
architecture is selecting and configuring security features of a host processor. The goal is to support a secure
software framework which minimizes the likelihood of threats identified in the security development lifecycle of
the product combining with vulnerabilities in software being exploited by an attacker during product
deployment.

It is recommended that hardware security features are selected according to the software architecture and
threat model of the product.

At a minimum, the SoC must ensure that:

• the execution state of a Trusted world cannot be tampered by a Non-trusted world. The implications for
memory transactions and interrupts are covered in other sections.

• there is suitable hardware support to ensure that writable data in memory is never executable. This
mitigates common “shellcode” exploits.

• controls are implemented to appropriately disable speculative execution1 on processors that have this
characteristic.

Table 17: Processor (PE) requirements

R010_PSR_PE
The processor must provide a hardware-based mechanism(s) for isolating the execution
contexts of a Trusted world from the Non-trusted world(s).

R020_PSR_PE
The processor must provide a hardware-based mechanism(s) that ensures runtime data in
memory is never executable.

R030_PSR_PE
If a processor implements features to prevent the isolation mechanisms being bypassed, they
should be used and must be controlled by trusted software. Examples include speculative
execution.

R040_PSR_PE

If a processor implements features to prevent side channel leakage, they should be used
where leakage is identified as a concern and must be controlled by trusted software.
Examples include the caches and the memory management system, and instructions that act
on security critical assets where the timing is data dependent.

Other PE features should be considered beyond the base security requirements in this document, such as:

1 Some background on this can be found in the Cache Speculation Side-channels whitepaper [14].

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 27
1.0 Beta (issue 0) Non-confidential

• Protection against return-oriented programming (ROP)1 and jump-oriented programming (JOP)2 attacks.
The protection should prevent malicious code from executing illegal subsets of code functions.

• Detection of use-after-free (UAF) vulnerabilities3; a memory safety issue in some programming
languages.

5.5.1 Interrupts and Exceptions

Each world may receive interrupts and exceptions. An interrupt or exception that is only meant to be received by
a Trusted world is referred to as a Trusted interrupt (or exception). In most cases, a Trusted interrupt (or
exception) must only be visible to the intended trusted world, and not be visible to any Non-trusted world. This
aims to prevent information leaks that might be useful to an attacker. Consequently, the on-chip interrupt
network must be able to route any interrupt to any world. However, the routing of Trusted interrupts must only
be configured from a Trusted world.

When a memory access violation occurs, such as when a Non-trusted world tries to access a Trusted asset, a
security exception or security interrupt is raised.

Table 18: Interrupt and exception handling requirements

R010_PSR_IEH
An interrupt or exception originating from a Trusted operation must by default be mapped
only to a Trusted handler.

R020_PSR_IEH

Security interrupts or exceptions should only be handled by a Trusted world, However,
where there is no security risk, security interrupts may be handled by a Non-trusted world
provided R030_PSR_IEH is met.

R030_PSR_IEH
Any configuration to mask or route a Trusted interrupt or exception must only be carried out
from a Trusted world.

R040_PSR_IEH

Any status flags recording Trusted interrupt events must only be readable from a Trusted
world, unless specifically configured by a Trusted world to be readable by the Non-trusted
world.

These requirements permit a Trusted operation to deliver a Trusted Interrupt to a Non-trusted handler, for
example, to signal to the Non-trusted world the end of an operation performed by a trusted world. The
configuration of the interrupt must be performed by a Trusted world before or during a Trusted operation.

Where a Non-trusted world is permitted by the trusted world to raise Secure interrupts, the Secure interrupt
handler must be written carefully in order to avoid denial of service and other attacks that may lead to leakage
of sensitive data.

5.5.2 Debug

A processor typically supports at least two types of debug modes:

1 For example, Pointer Authentication is available for Arm PEs from Armv8.3-A onwards.
2 For example, Branch Target Identification is available for Arm PEs from Armv8.5-A onwards.
3 For example, the Memory Tagging Extension available for Arm PEs from Armv8.5-A onwards.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 28
1.0 Beta (issue 0) Non-confidential

• External debug: The debugging occurs either on-chip (for example, in a second processor) or off-chip (for
example, a debugger connected via JTAG or SWD).

• Self-hosted debug: The processor itself hosts a debugger. Developer software and debugger run on the
same processor.

Deployed products may have debug via hardware interfaces permanently disabled and may prevent self-hosted
debug by excluding the necessary device-side software in the production build. The implications of not being
able to use code debugging on a deployed device must be considered. Note that this does not prevent the ability
to host device-level diagnostics.

All active debug mechanisms need access control to prevent abuse. Access rights must be based on:

• The requestor of the debug access.

• The type of debug capability being requested.

• The current security lifecycle state.

The enforcement of these properties must be provided by an on-chip component, which is referred to as a
debug protection mechanism (DPM). An SoC can include one or more DPMs. A DPM authenticates each
requestor using one of the following methods:

• Token-based authentication. A token containing unlock information that is signed by a trusted authority
is sent to the device. The device uses a public key to check if the signature is valid before enabling debug
access.

• Password-based authentication. A password is sent to the device which checks the value before enabling
debug access. If an attacker is able to extract the password stored in the device then the device should
instead store a cryptographic hash of the password. The device should limit the authentication attempt
rate to deter a brute force attack.

Which method to use often depends on the trade-off between complexity on the device and complexity of the
external debug server. For example, it is more complicated to implement signature checking on a device than to
compare passwords, but managing a database of unique passwords may be more complicated than a small
number of private keys on a server.

To prevent the leak of a secret from affecting multiple devices, tokens or passwords used to authenticate to
DPMs should be unique for each instance.

Table 19: Debug requirements

R010_PSR_DBUG
All external debug functionality must be protected by a DPM so that only an authorized
external entity can access the debug functionality.

R020_PSR_DBUG
A DPM must be implemented either solely in hardware or together with software running
in a Trusted world.

R030_PSR_DBUG A DPM must be aware of the current security lifecycle state

R040_PSR_DBUG A DPM unlock password must be at least 128 bits in length.

Complex SoCs often include extra debug functionality beyond the main processor. Examples of this are initiators
on the interconnect, which are controlled directly from an external debug interface, and system trace modules.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 29
1.0 Beta (issue 0) Non-confidential

Care must be taken to make sure that they are controlled by the correct DPM. They must be evaluated based on
their access to assets that belong to each world and assigned the corresponding DPM.

A scan chain is a mechanism to test all the flip-flops in an SoC. Scan chains are a form of debug and need to be
governed by a security lifecycle to ensure they can never be accessed after a certain point. While scan chains are
expected to be disabled in the factory, the specific requirements will be determined by the product.

Table 20: Scan chain requirements

R010_PSR_SCCN Access to scan chains must be security lifecycle aware.

R020_PSR_SCCN The coverage of a scan chain must be security lifecycle aware.

5.6 Peripherals and Security subsystems

A peripheral or subsystem is hardware that is not part of a processor (PE). It can be an integral part of the SoC or
external, in which case it will be connected via an off-chip bus. In many cases the hardware is an isolated system
with its own local resources, configuration and, possibly, firmware. It has an interface to receive commands and
data from one or more processors (PEs) and might be capable of direct memory access (DMA).

5.6.1 Peripherals

Peripherals offer an interface allowing commands to be received that cause the peripheral to operate on assets.
These might be assets of a Trusted world or a Non-trusted world depending on the functionality provided. A
Trusted peripheral is one that operates on assets belonging to a Trusted world. A few types of peripheral
mapping topologies are possible, see also Figure 2:

• A peripheral is mapped exclusively into one world or the other depending on its role.

• A Trusted peripheral might only act on Trusted world assets.

• A Trusted peripheral might act within both worlds, supporting both Trusted and Non-trusted operations

as determined by the specific operation. An implementation-specific policy manages the separation,

which might be fixed in hardware or configurable by a Trusted service.

Figure 2: Peripheral operations

Trusted

Non-
trusted

Operation Target resourceInterface

Secure

Non-
secure

Secure

Non-secure Policy

Secure

Non-secure

Distinguish origin

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 30
1.0 Beta (issue 0) Non-confidential

Interfaces can be implemented fully in hardware or mediated by a service in a Trusted world. These interfaces
permit software to request operations on data. Care must be taken by the interface designer to ensure that
Trusted assets and operations are isolated from the Non-trusted assets and operations.

Table 21: Peripheral requirements

R010_PSR_PER
If access to a peripheral, or a subset of its operations, is dynamically switched between a
Trusted world and any Non-trusted world, then this must only be done under the control of
a Trusted world.

R020_PSR_PER
A Trusted peripheral must be able to distinguish whether commands and data were received
at an interface accessible to a Trusted world only, or at an interface accessible to the Non-
trusted world.

R030_PSR_PER
If a Trusted peripheral stores Trusted-world assets within the peripheral, it must not be
possible for a Non-trusted world to perform operations on those assets.

R040_PSR_PER
A Trusted peripheral that exposes a Non-secure interface must apply a policy check to the
Non-trusted commands and data before acting on them. The policy check must be atomic
and, following the check, it must not be possible to modify the checked commands or data.

R050_PSR_PER
All DMA transactions from any Non-trusted peripheral must be constrained using an on-chip
mechanism configured by a Trusted-world.

When data is processed on behalf of multiple worlds, a policy is needed to constrain privileges based on the
accessor. An example policy for a cryptographic accelerator peripheral would cover at least:

• The world the input data can be read from.

• The world the output data can be written to.

• Whether encryption is permitted.

• Whether decryption is permitted.

Figure 2 shows an illustration with a policy in place, where requests can be rejected if they do not comply with
the policy.

5.6.2 External peripherals

SoCs will often need to communicate with external - off-chip - peripherals. Examples of such peripherals include
secure elements, displays, network controllers, and interface controller hubs. Some interfaces are via simple
interfaces such as I2C, SPI or UART, whereas others may be via high bandwidth controllers within the SoC, for
example, PCIe or USB.

Like external storage, see Section 5.14, external peripherals may be subject to physical probing of the interface
and to replacement by local attackers.

It is important to protect SoC assets from DMA and transactions that originate from outside the SoC, e.g. PCIe.
Therefore, transactions must be constrained using an on-chip mechanism. The configuration of such a
constraining mechanism can be fixed in hardware or configurable by firmware. The precise constraints will vary
depending on the context. For instance, the boot process must configure the constraining mechanism to protect
its own assets, while the runtime firmware or OS will have need to reconfigure the mechanism to protect a

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 31
1.0 Beta (issue 0) Non-confidential

different set of assets. Note that protecting SoC assets from external DMA operations is a system-integrity issue
as well as security problem.

Some designs are subject to threat models in which particular hardware IP blocks could have unknown or
undesirable behaviors. In these cases, additional initiator-side filters should be implemented and under sole
control of a Trusted world to ensure that such IP cannot access Trusted world assets beyond that authorized by a
Trusted world policy.

Table 22: External peripheral requirements

R010_PSR_XPER
When an external peripheral can receive commands from an external system, for example
PCIe, then the system must enforce a policy to check that those commands do not breach
the security of the SoC.

R020_PSR_XPER
If an external peripheral is used to send or receive clear or unauthenticated Trusted world
assets, then it must meet the requirements for Trusted operations.

5.6.3 Security subsystems

A security subsystem is a peripheral that is used to operate on or store high value Trusted assets. The security
services provided by a security subsystem might include one or more of the following services:

• A key for a unique, unclonable identity that is bound to hardware.

• Counters.

• Key storage and management.

• Cryptographic operations where the keys are never visible outside the security subsystem.

• Key derivation.

• True random number generation.

• Secure storage of boot measurements used as the basis for a system to perform secure attestation.

• Transparent encryption of RAM or storage

A security subsystem must be managed by a Trusted world. This ensures that the security subsystem is always
available for use by a Trusted world.

If a Trusted world does not intend to use a particular security subsystem, or make some uses, it might choose to
delegate the subsystem to the Non-trusted world, subject to the threat model of the final product.

If the security subsystem is off-chip then it is susceptible to bus interposition attacks or physical replacement. A
compliant platform must ensure that the communication path is protected from eavesdropping. Communication
may also require replay protection to ensure that an attacker cannot record and replay bus traffic. To ensure
that an off-chip attack does not reduce security, there are two methods to consider:

• The SoC and security subsystem are physically tied during manufacture. For example, the subsystem can
be placed within the same physical packaging as the SoC, though this depends on the physical attacks in
scope in the threat model.

• The SoC and security subsystem are cryptographically bound during manufacture time. For example,
during device assembly an off-chip security subsystem is connected to the host system and unique
shared keys established and stored. The SoC must authenticate the security subsystem before any use.
Where supported, the security subsystem should authenticate the SoC in order to prevent extraction of

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 32
1.0 Beta (issue 0) Non-confidential

stored secrets. Authentication failure is used to detect replacement of the security subsystem or the
SoC.

A product threat model shall dictate more specific requirements of a security subsystem. For instance, there
might be requirements necessitated by the chosen operating system vendor, by market, or by region in which
the system is to operate in.

Table 23: Security subsystem requirements

R010_PSR_SUB
An off-chip security subsystem must be physically or logically inseparable from the host
system. Separation must not reduce system security.

R020_PSR_SUB
Communication to and from an off-chip security subsystem must be protected against
eavesdropping.

R030_PSR_SUB
Communication to and from an off-chip security subsystem must be able to detect
tampering and replay attacks.

R030_PSR_SUB
A security subsystem key must not be directly accessible by any software unless a policy
explicitly allows the key to be exported.

R040_PSR_SUB
A Trusted world must be able to enforce a usage policy for any security subsystem key that
can be used for Non-trusted world cryptographic operations.

Examples of security subsystems include, but are not limited to, Security Enclaves (SEn), Secure Elements (SE) or
Trusted Platform Modules (TPMs), DRAM protection subsystems, and security sensitive accelerators.

It is recommended that security subsystems are managed by a Trusted world to ensure that Trusted services can
safely use them.

Some security subsystems can also offer increased tamper resistance against a variety of side channel attacks.
Increasing protection for cryptographic keys in the system by providing a security subsystem with a hardware
key store that prevents the keys from being read by both Non-trusted and Trusted software is recommended.

5.7 Invasive subsystems

Invasive subsystems include any hardware system feature or interface which could be used to compromise
security properties, such as:

• JTAG debug interface.

• Boundary scan interface.

• I2C interface with access to on-chip resources.

• Reliability, Availability and Serviceability (RAS) and other fault detection and recovery technologies.

• Interfaces to a power management subsystem.

Table 24: Invasive subsystem requirements

R010_PSR_ISUB An Invasive subsystem must only be controllable from a Trusted world.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 33
1.0 Beta (issue 0) Non-confidential

5.8 Platform identity

To meet the Attestation security goal in section 2.3, the system must include an attestation key. An attestation
key is a cryptographic key that proves identity, and therefore trustworthiness, to the external world. The
attestation key might be used to initially provision credentials of a market specific attestation scheme, and is,
therefore, called the Initial Attestation Key (IAK). An Initial Attestation Key might also be known as an
endorsement key on some systems. It is strongly recommended to use public key cryptography, whereby the
attestation key is a keypair consisting of a (secret) private key and a public key.

The manufacturer is expected to issue information about the key for the purposes of proving that a platform is
genuine during remote attestation. The manufacturer vouches that the key is protected in a platform that they
have manufactured. For example, the manufacturer can produce a public key certificate signed by their own
certificate authority. The manufacturer in this context is the company who provisioned or generated the key.
The certificate should be made available to the platform owner in order to participate with remote attestation
services.

The Initial Attestation Key must be protected against cloning. If an attacker can copy the key to another
platform, then they will be able to impersonate the device. This means that the key must be safely stored in a
Trusted world. It is acceptable to provision the IAK through manufacturing processes or to derive it at run-time
from a HUK.

For privacy sensitive deployments, such as personal devices, it is permitted for a group of devices to share the
same attestation key. This provides a degree of anonymity for device owners. However, keys should only be
shared within small groups to reduce the impact of a leaked key. The particular group size might depend on the
size of production batches or industry standards.

Table 25: Platform identity requirements

R010_PSR_PID
The SoC must include an Initial Attestation Key that is either held within secure storage
controlled by a Trusted world or held within a Security subsystem.

R020_PSR_PID The Initial Attestation Key must be unique per instance or per batch of devices.

R030_PSR_PID
In an implementation that uses a Security subsystem for cryptographic identities, the Initial
Attestation Key must only be visible to the Security subsystem.

R040_PSR_PID The Initial Attestation Key must be protected by a security lifecycle.

Additional keys for firmware decryption and provisioning may also be included. These keys are either unique to
the device or are class keys that are common across a family of devices.

5.9 Random number generation

Many cryptographic protocols depend on challenge-response mechanisms that need truly random numbers. This
makes a true random number generator (TRNG) an important element of a secure system. There is normally a
requirement that specifies the quality of the source or a set of tests that must be passed. The quality of a
random source is normally described in terms of entropy. For any string of bits provided by a TRNG, the
maximum entropy is achieved if all bit combinations are equally probable. Recommendations can be found
in [5].

A hardware realization of a TRNG typically consists of two main components: an entropy source and a digital
post-processing block, as illustrated in Figure 3.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 34
1.0 Beta (issue 0) Non-confidential

Figure 3: Entropy source top level

The entropy source incorporates the non-deterministic, entropy-providing circuitry. Constructing an on-chip
entropy source might exploit die thermal noise or manufacture process variations.

Digital post-processing is responsible for collecting entropy from the source, for monitoring the quality of the
data, and for filtering it to ensure a high level of entropy. For example, repeated periodic sequences are
predictable and must be rejected. This is important because fault injection techniques can be used to induce
predictable behavior in a TRNG.

Although a filtering scheme can remove predictable patterns in an entropy source, other more complex patterns
might degrade the available entropy. The extent of any such degradation depends on the quality of the source,
and in some cases additional digital processing might be required to compensate for it. A common compensation
technique utilizes a cryptographic hash function to compress a long bit string of lower entropy into a shorter bit
string of higher entropy. However, this comes at the expense of available data rate. To counter this, a digital post
processing stage can expand the entropy source to provide a greater number of bits per second by using the
filtered or compressed source to seed a cryptographically strong pseudo random sequence generator with a
large period. Recommendations can be found in [5].

Each random bit generated should be used no more than once, which ensures statistical independence between
samples. This applies to consecutive reads on any one interface, and for reads via different interfaces.

One or more suitably sized First-in-First-out (FIFO) buffers might be implemented to ensure short-term peak
demands are met. Where there is no FIFO or the TRNG is too slow to cover peak demand, use of the TRNG to
occasionally seed a Pseudo Random Number Generator (PRNG) is common.

Table 26: Random number requirements

R010_PSR_RNG The entropy source and post processing must be an integrated hardware block.

R020_PSR_RNG It must not be possible to monitor the entropy source output on production parts.

R030_PSR_RNG It must not be possible to halt the entropy source output on production parts.

R040_PSR_RNG Each bit from the entropy source must be used no more than once.

R050_PSR_RNG Each bit derived in post-processing must be used no more than once.

Digital post processing

FIFO

FIFO

FIFO

Entropy
source

Filter Compress Expand

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 35
1.0 Beta (issue 0) Non-confidential

There are many possible choices for measuring entropy. The required methods will be determined by the
applicable certification scheme protection profile, industry or government regulations. The NIST 800-22 test
suite is commonly referenced [9], but see also [6].

Although some or all of the digital post processing can be performed in software by a Trusted Service, a full
hardware design is recommended.

5.10 Trusted Clock, Timer, Watchdog Timer and Real-time Clock

Various forms of trusted timer (e.g. for scheduling a lockout), trusted watchdog timer functionality (e.g. to
counter denial of service) and wall clock time are typically required. Trusted timers and watchdog timers are
required to provide time-based triggers to Trusted services. All the timers in this section require a trusted clock
source, and in the case of wall-clock timers, a trusted source of date and time.

5.10.1 Trusted Clock Source

A trusted clock source must only be configured by Trusted software and be resistant against tampering to ensure
timing validity. Clock sources can be internal or external, requiring different approaches to ensure either tamper
resistance or to provide tamper detection:

• Internal clock source: the clock source is an integrated autonomous oscillator(s) on the die that cannot
be easily altered or stopped without deploying invasive techniques. Such clocks must not rely on any
external input.

• External clock source: the clock source is connected to the SoC via an I/O pin or pins, for example, from a
clock module circuit or a crystal. In this case, an attacker can easily stop the clock or alter its frequency.
Where this is the case and that threat is in scope, the SoC must implement monitoring hardware that
can detect when the clock frequency is outside its acceptable range.

It is recommended that where clock monitoring hardware is implemented, the hardware provides a status
register to indicate if the associated clock source is compromised. This register must be readable only from a
Trusted world to prevent leakage or modification of information that may assist an attacker. To signal a clock
frequency violation, it might useful if a Trusted clock monitoring hardware can generate a Trusted interrupt.

Table 27: Trusted clock source requirements

R010_PSR_TCLK Clock sources used by a Trusted timer must be exclusively controlled by Trusted software.

R020_PSR_TCLK Clock sources used by a Trusted timer must be resistant against tampering.

R030_PSR_TCLK
If a Trusted clock source is external, then monitoring hardware must be implemented that
reports via a trusted register that the clock frequency is within acceptable bounds.

5.10.2 Trusted Timer

Trusted timers are needed to provide time-based triggers to Trusted services. The SoC must support at least one
Trusted timer.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 36
1.0 Beta (issue 0) Non-confidential

Table 28: Trusted timer requirements

R010_PSR_TTME At least one Trusted timer must exist.

R020_PSR_TTME
A Trusted timer must only be modifiable by Trusted software. Examples of modifications
include refresh, suspension, or reset.

R030_PSR_TTME
The clock source that drives a Trusted timer must be exclusively controlled by Trusted
software.

R040_PSR_TTME A Trusted timer must only produce Trusted interrupts.

5.10.3 Trusted Watchdog

Trusted watchdog timers are useful to protect against attacks. For example, where trusted service execution
depends on the non-trusted scheduler, or to set a limit on how long the system can remain in an update state so
that it is not used as a foothold for an attack.

In such cases, if the Trusted world task is not performed within a pre-defined time limit, some corrective action
is taken, for example, a hard reset issued and the SoC restarted (see section 5.2.2).

It is recommended that a Trusted watchdog timer has the ability to signal an interrupt in advance of the
corrective action, for example, to permit software to save any necessary state before the reboot.

Table 29: Trusted watchdog requirements

R010_PSR_TWDG At least one Trusted watchdog timer must exist.

R020_PSR_TWDG
A Trusted watchdog time must only be configured by Trusted software. Examples of
configuration are time intervals, corrective action options, e.g. refresh, or hard reset.

R030_PSR_TWDG
Before needing a refresh, a Trusted watchdog timer must be capable of running for a
time that is long enough to complete critical pre-corrective action saving of state.

R040_PSR_TWDG
A Trusted watchdog timer must be able to trigger a reset of the SoC, after a pre-defined
time. This value may be fixed in hardware or programmed by Trusted software.

R050_PSR_TWDG
A Trusted watchdog timer must implement a flag that indicates the occurrence of a
timeout event that causes a warm reset, to allow post-reset software to distinguish this
from a powerup cold boot. See also warm boot in section 5.2.2.

R060_PSR_TWDG
The clock source driving a Trusted watchdog timer must be exclusively controlled by
Trusted software.

R070_PSR_TWDG A Trusted Watchdog must only produce Trusted interrupts.

After a system reset, it is recommended that a Trusted watchdog timer should be started before execution of
the immutable boot code transfers control to the next firmware stage.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 37
1.0 Beta (issue 0) Non-confidential

5.10.4 Trusted Real-time Clock

Some trusted services rely on the availability of Trusted real-time clack (also known as wall-clock time), for
example, it is common for Digital Rights Management (DRM) systems to authorize access to streamed media
until a certain time/date, or a for a number of days.

A Trusted real-clock time (TRTC) is typically implemented using an on-chip trusted real-time counter that is
synchronized securely with a remote time server.

An implementation of a TRTC might consist of a continuously powered counter driven by a continuous and
accurate clock source, with Trusted time programmable only from a Trusted world. However, systems that may
lose power must deal with power outages. A suitable solution can be realized by implementing a counter
together with a status flag. The valid flag is set when the Trusted timer has been updated by a Trusted service
and is cleared when power is removed from the timer.

When the Trusted time is lost due to a power outage, the response depends on the target specifications. For
example, it might be acceptable to restrict specific Trusted services until the TRTC has been updated by the
appropriate Trusted service.

Table 30: Trusted real-time clock requirements

R010_PSR_TRTC A TRTC must be configured only by a Trusted world access.

R020_PSR_TRTC All components of a TRTC must be implemented within the same power domain.

R030_PSR_TRTC
On initial power-up, and following any other power outage to the TRTC, a validity
mechanism must indicate that the TRTC is not trusted.

R040_PSR_TRTC The TRTC must be exclusively controlled by a Trusted world.

5.11 Cryptography

The cryptographic algorithms that are used must be strong against networked adversaries and local attackers.
The specific choice of algorithms depends on the target market and any applicable regulations.

The security strength of a cryptographic algorithm is determined by the number of operations that is required to
break it in some way. If the security strength associated with an algorithm or system is S bits, then it is expected
that (roughly) 2S basic operations are required to break it. It must be noted that S bits does not refer to the key
length. For example, to meet 128 bits of security strength, an RSA-based key must be at least 3072 bits and an
elliptic-curve-based key must be at least 256 bits.

Further information can be found in externally published documents from the cryptographic community and
governments, for example, it is recommended to use approved algorithms from [10]. Alternatively, refer to the
approved cryptographic algorithm lists that SOG-IS [13], IPA, and Common Criteria (CC) have published for the
EU, Japan, and China.

It is strongly recommended that implemented algorithms execute in data independent time, for example,
constant or random time, in order to prevent, or make harder, timing-based attacks.

Table 31: Cryptography strength requirements

R010_PSR_CRSS
Unless defined by a national or sector standard, all use of cryptography must use an
algorithm that meets at least 128 bits of security.

https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.ipa.go.jp/en/index.html

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 38
1.0 Beta (issue 0) Non-confidential

It is important that a key is treated as an atomic unit when it is created, updated, or destroyed. This applies at
the level of the requesting entity. Replacing part of a key with a known value and then using that key in a
cryptographic operation makes it easier for an attacker to discover the key using a divide and conquer brute-
force attack. This is especially relevant when a key is stored in memory units that are smaller than the key; for
example, a 128-bit key that is stored in four 32-bit memory locations. Entities, such as trusted firmware
functions, which implement creation, updating or destruction services for keys should ensure that it is not
possible for their clients to observe or use keys in a manner which breaks the assumption of atomicity.

Table 32: Key atomicity requirements

R010_PSR_KATM
A key must be treated as an atomic unit. It must not be possible to use a key in a
cryptographic operation before it has been fully created, fully updated, or during its
destruction.

R020_PSR_KATM
Any operations on a key must be atomic. It must not be possible to interrupt the creation,
update, or destruction of a key.

A cryptographic scheme provides one or more security services and is based on a purpose and an algorithm
requiring specific key properties and key management. Keys are characterized depending on their classification
as private, public, or symmetric keys and according to their use.

Broadly, each key should only be used for a single purpose, such as encryption, signature generation (signing),
verification (integrity) check, and key wrapping. The main motivations for this principle are:

1. Limiting the uses of a key limits the potential harm if the key is compromised.

2. The use of a single key for two or more different cryptographic schemes can reduce the security
provided by one or more of the processes.

3. Different uses of a single key can lead to conflicts in the way each key should be managed. For example,
the different lifetime of keys used in different cryptographic operations may result in keys having to be
retained longer than is best practice for one or more uses of that key.

In cases where a scheme can provide more than one cryptographic service, this principle does not prevent use of
a single key. For instance, when a symmetric key is used both to encrypt and authenticate data in a single
operation or when a digital signature is used to provide both authentication and integrity.

Re-using part of a larger key in a scheme that uses a shorter key, or using a shorter key in a larger algorithm and
padding the key input, can leak information about the key. Such usage is prohibited.

Table 33: Key use requirements

R010_PSR_KUS A key must only be used by the cryptographic scheme for which it was created.

R020_PSR_KUS A key must only be used by the purpose for which it was created.

A secure SoC will need a number of keys during its operation, each with potentially different lifespans:

• A static key is a key that cannot change after it has been introduced to the device. It might be stored in
an immutable structure like a ROM (therefore, set by the SoC Vendor) or a set of fuses programmed at
the required time in the manufacture or deployment of the product. Although a static key cannot have
its value changed, that does not preclude it from being revoked or made inaccessible.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 39
1.0 Beta (issue 0) Non-confidential

• An ephemeral key is a key that has a short lifespan. Such keys exist only when they are required, for
example, a TLS session. In many cases they will not be retained over a power or reset cycle of the device
(see section 5.2). Ephemeral keys are created in the device in several ways, such from a TRNG source or
via a key derivation algorithm. The use of ephemeral keys can give better protection by generating keys
that are unique for every boot cycle, or each session.

A hardware key, either static or ephemeral, is a key that is visible only to hardware, so invisible to software.
Typically, these are used for Trusted world cryptographic operations, but usage by a Non-trusted world must be
subject to a trusted usage policy.

A temporally isolated key, either static or ephemeral, is a key that is only available at a specific point in time. For
example, a bootloader can derive a key from source material, e.g., a static key, on each system reset, use the
key, erase the key, and finally trigger a hardware mechanism to hide the source material until the next system
reset. This allows the bootloader to have a secret that cannot be derived or used by software that is later loaded.

Table 34: Key lifetime requirements

R010_PSR_KLT
When a key is no longer required by the system, it must be put beyond use to prevent it from
being revealed at a later time.

R020_PSR_KLT
A static key must be stored in an immutable structure, for example a ROM or a set of bulk-
lockable fuses.

R025_PSR_KLT
Revocation of (or making inaccessible), and any re-enablement, of a static key must only be
possible by trusted software.

R030_PSR_KLT
To prevent the re-derivation of previously used keys, the source material used in the
derivation must be hidden either by Trusted code or Trusted hardware.

R040_PSR_KLT
If an ephemeral key is stored in memory or in a register in clear text form, the storage
location must be scrubbed before being used for another purpose.

R050_PSR_KLT
A key that is accessible to, or generated by, a Non-trusted world must only be used for Non-
trusted cryptographic operations. These are operations that are either implemented in Non-
trusted software or have both clear text and cipher text in the Non-trusted world.

R060_PSR_KLT

A key that is accessible to, or generated by, a Trusted world can be used for operations in
both Non-trusted and Non-trusted worlds, and even across worlds, if a Non-trusted world
cannot access the key directly, or a Trusted world can control the use of the key through a
policy.

R070_PSR_KLT A Trusted hardware key must not be directly accessible by any software.

R080_PSR_KLT
A Trusted world must be able to enforce a usage policy for any Trusted hardware key that
can be used for Non-trusted world cryptographic operations.

5.12 Secure storage

Trusted assets, such as firmware images and sensitive data, often need to be stored in external storage. The
threat model may require the external memory to be protected from attackers who may try to read, modify or
clone the trusted assets. Therefore, a compliant SoC must provide a secure storage solution by embedding:

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 40
1.0 Beta (issue 0) Non-confidential

• A hardware unique key (HUK) as the root key for encrypting and decrypting data held in external storage.
The key is hardware unique so that assets cannot be cloned or decrypted on another platform. The
actual key used for such encryption and decryption should be derived from the HUK.

• An on-chip Trusted non-volatile counter is required for version control of firmware and trusted data held
in external storage. An important property of these counters is that it must not be possible to roll them
back, to prevent replay attacks. There must be at least one counter for Trusted firmware use and at least
one counter for Non-trusted firmware use.

An implementation of secure storage can be made with a Trusted service or by using a hardware approach. A
hardware implementation of secure storage can be transparent to software and provide increased throughput
compared to a software solution. However, a hardware implementation must conform to the requirements
described in section 5.6.3.

Table 35: Secure storage requirements

R010_PSR_SST Any sensitive data that needs to be stored must be stored in Secure storage.

R020_PSR_SST The SoC must embed at least one hardware unique key (HUK) of at least 128 bits of entropy.

R030_PSR_SST The HUK used as a root key for secure storage must have at least 128 bits of entropy.

R040_PSR_SST
The HUK used for secure storage must only be accessible by Trusted code or Trusted
hardware that acts on behalf of Trusted code.

R050_PSR_SST
An on-chip non-volatile Trusted firmware version counter implementation must provide a
counter range sufficient for the expected number of updates over the planned lifetime of the
product. Where the end application is not known then 0-63 is typical.

R060_PSR_SST
An on-chip non-volatile Non-trusted firmware version counter implementation must provide
a counter range sufficient for the expected number of updates over the planned lifetime of
the product. Where the end application is not known then 0-255 is typical.

R070_PSR_SST It must only be possible to increment a version counter through a Trusted access.

R080_PSR_SST
It must only be possible to increment a version counter; it must not be possible for it to be
decremented.

R090_PSR_SST
When a version counter reaches its maximum value, it must not roll over, and no further
changes must be possible.

R100_PSR_SST
A version counter must be non-volatile, and the stored value must survive a power down
period up to the lifetime of the system.

Ideally, an SoC implements secure storage and version counters using on-chip non-volatile storage. It is
recognized that Multi-Time-Programmable (MTP) storage is currently not economically viable for smaller process
nodes. However, One-Time Programmable (OTP) storage, based on anti-fuse or e-fuse technology, is widely
available and cost-effective, but supporting n updates requires n bits. The advantages of anti-fuse OTP
technology are discussed in [11].

Flash memory devices that support Replay Protected Memory Block (RPMB) technology can provide a route to
replay protection from an external storage device. Secure use of such storage requires many of the requirements
in section 5.6 to be met.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 41
1.0 Beta (issue 0) Non-confidential

5.13 On-chip Secure memory

Trusted code is expected to execute from, and store high value assets in, Secure memory. Secure memory
provides confidentiality, integrity and replay protection, properties that can be provided by physical means or by
cryptographic means.

A typical implementation is on-chip Static RAM (SRAM). It may be acceptable to use SRAM on a separate die
within the same package as the main SoC if decapsulation and probing attacks are out of scope.

Example Secure memory use cases are:

• Secure boot code and data.

• Secure Monitor code.

• A Trusted OS or a Secure Partition Manager.

• Cryptographic services.

• Trusted services.

Secure memory refers to one or more dedicated regions that are mapped onto one or more physical RAM
implementations. The mapping of regions for use by trusted code can be static and fixed by design, or
programmable at runtime. When a physical RAM is not entirely dedicated to Secure memory, it can be
configured to be shared between worlds. However, the underlying locations are not classified as shared volatile
storage unless they are reallocated from a trusted world to a non-trusted world, see also section 5.4.

The size of the Secure memory depends on the target requirements and is therefore not specified in this
document.

Table 36: Secure memory requirements

R010_PSR_SMEM The SoC must integrate Secure memory.

R020_PSR_SMEM Secure memory must be mapped into a Trusted world only.

R030_PSR_SMEM
If the mapping of Secure memory into regions is programmable, then configuration of the
regions must only be possible from a Trusted world.

5.14 External Secure memory

Some SoC designs rely on external memory, typically DRAM, for sensitive code and data. External memory is
vulnerable to probing attacks, which can be used to:

• Directly recover sensitive assets.

• Subvert the behavior of the system to extract assets.

• Use the system for illegitimate purposes.

To mitigate these risks, the protections covered in sections 5.14.1 to 5.14.3 can be applied to an asset before it is
stored in external memory. The type of protection required depends on the nature of the stored asset in the
context of the deployed target system. See also section 5.2.2 on warm boot implications.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 42
1.0 Beta (issue 0) Non-confidential

5.14.1 Confidentiality protection

An attacker that can freeze external memory or use a battery-backed DRAM module can directly recover any
asset in main memory. This is known as a “cold boot” attack.

Encryption ensures that assets in main memory cannot be read by physical attackers. Encryption can be
transparently provided through performance-optimized on-chip cryptographic hardware blocks, each of which
receives a symmetric key. Alternatively, the encryption might be provided by software that executes in on-chip
Secure memory (see section 5.13), at the expense of performance and coverage. The required level of
cryptographic protection depends on the target requirements and is not specified here.

When encryption is implemented, it must not be possible to decrypt a copy of the memory contents on a
different device. Therefore, the keys used for encryption must be unique to the SoC. It is recommended that the
keys are randomly generated on each system reset.

5.14.2 Integrity protection

Integrity protection enables the detection of external modification of DRAM content, enabling execution to be
halted to prevent an attacker from exploiting any such modifications. However, cryptographic hashes need to be
generated and stored (and themselves be integrity protected) on write and validated on read. Alternatively, a
keyed-hash could be used provided the key is stored securely. Either way, additional storage is required and the
processing degrades performance.

Integrity protection is unlikely to be practical to perform for all the memory, and so should be restricted to
integrity protection of very specific assets.

The required level of cryptographic protection depends on the target requirements and is not specified here.

5.14.3 Replay protection

An attacker with the right specialized equipment might be able to capture and reproduce memory content,
either by directly altering the contents in physical memory, or by interposing on bus transactions between the
SoC and the external memory. However, the data necessary to detect a replay needs to be generated and stored
(also integrity protected) on write and checked on read. This will consume secure storage and degrades
performance.

With this capability an attacker can force an SoC to accept a piece of captured memory that passes integrity
checks and correctly decrypts. For an attacker to exploit this vulnerability:

1. They must capture memory content at an address that is known to contain an insecure value or insecure
configuration.

2. The attacker then “replays” this memory content when the SoC requests for this memory and at a point
in time that is suitable for the attacker. This is a form of “timing attack”.

3. Once the SoC receives the memory transaction, it may operate on it, which may reduce or deactivate
software defenses. For example, the memory content might contain system configuration that was
previously safe but is now unsafe, which is then written into a privileged configuration register.

With the addition of replay protection, attackers cannot use captured memory to mount a timing attack.

Replay protection is unlikely to be practical to perform for all the memory, and so should be restricted to
protection of very specific assets. Depending on the threat model, the use of memory encryption, section 5.14.1,
and Error Correction Codes in DDR memory may provide reasonable benefit.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 43
1.0 Beta (issue 0) Non-confidential

5.14.4 External Secure Memory Protection

The choice of confidentiality, integrity and replay protection depends on the threat model of the final system.
However, there are some common rules that apply in all cases, which are listed in Table 37.

Table 37: External memory protection requirements

R010_PSR_EXTM Keys used by a memory protection block must be unique to the SoC.

R010_PSR_EXTM
If the mapping of cryptographic hardware into the memory system is configurable, then it
must only be possible to perform the configuration from a Trusted world.

R010_PSR_EXTM
The activation and deactivation of external memory protection must only be possible
from a Trusted world.

R010_PSR_EXTM
If a memory region is configured for encryption, then there must not exist any alias in the
memory system that can be used to bypass the encryption/decryption mechanism.

The addition of cryptographic hardware in the data path to the memory system often carries performance
penalties that are typically proportional to the cryptographic strength.

The threat model should indicate if DRAM integrity protection is required. A row hammer attack exploits
unintended physical side-effects of DRAM memory to change the values stored in other memory cells. Target
Row Refresh (TRR) as defined by JEDEC, should be implemented to add resistance to such attacks.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 44
1.0 Beta (issue 0) Non-confidential

Appendix A: Requirement Checklist

Reference Section 5.1 Security Lifecycle

R010_PSR_LCYC The system must enforce a security lifecycle.

R020_PSR_LCYC The security lifecycle must have a designated initial state.

R030_PSR_LCYC
The security lifecycle must have a designated secured state which enforces the security
requirements.

R040_PSR_LCYC
The security lifecycle must have a designated terminal state from which no further
transitions are allowed.

R050_PSR_LCYC
A transition into the terminal state must put secrets and private cryptographic keys beyond
use.

R060_PSR_LCYC
A transition into the terminal state must be authorized by the owner of the security
lifecycle.

R070_PSR_LCYC
Where the security lifecycle does not include any debug state then any debug capability
must be absent or permanently disabled.

Reference Section 5.2 Reset and Secure Boot

R010_PSR_BROM
The SoC must have an on-chip Boot ROM with the initial code that is needed to perform a
Secure Boot. Where package decapsulation and probing attacks are out of scope, the term
“on-chip” can be read as in-package.

Reference Section 5.2.1 Boot keys

R010_PSR_BKEY
The SoC must either contain an on-chip ROTPK, or the information that is needed to
securely verify the ROTPK. Such information must be immutable.

R020_PSR_BKEY
If a cryptographic hash of the ROTPK is stored in on-chip non-volatile memory, rather than
the key itself, it must be immutable.

R030_PSR_BKEY
A secret Boot Decryption Key only accessible to the Immutable Boot ROM will be required
if it is necessary to encrypt the Secure Boot Firmware.

Requirement Section 5.2.2 Boot types

R010_PSR_BWRM
If the system supports warm boot, a flag or register must exist to distinguishing between
a warm and cold boot.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 45
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.2.2 Boot types

R020_PSR_BWRM
Where a flag or register is used to distinguish between cold and warm boot, it must be
programmable only by a Trusted world.

R030_PSR_BWRM
Where a flag or register is used to distinguish between cold and warm boot, it must be
set after a cold or a warm boot has started to cold boot.

R040_PSR_BWRM
Where a flag or register is used to distinguish between cold and warm boots, the default
should be for cold boot, and should use a value that any unauthorized perturbation will
result in a cold boot.

R010_PSR_BSTR
If a boot status register is implemented, it must either be accessible only by a Trusted
world, including secure debug, or immutable if accessible to an un-trusted world.

Requirement Section 5.2.3 Boot parameters

R010_PSR_BPRM The Boot ROM must be aware of the current security lifecycle state.

R020_PSR_BPRM
Any Boot ROM configuration outside of on-chip OTP memory must be authenticated using
an on-chip immutable public key, or on-chip immutable hash of an external public key.

R030_PSR_BPRM
It must not be possible to boot the first loadable firmware from any other storage device
unless a Trusted Debug mode permits this (see section 5.5.2).

Requirement Section 5.2.4 Boot ROM execution

R010_PSR_BSPE All secondary PEs must remain inactive until permitted to boot by the primary PE.

R010_PSR_BEXE Secure boot execution state must be protected from DMA reads and writes.

R020_PSR_BEXE Secure boot execution state must be protected from external interfaces.

Requirement Section 5.3 Clocks and power

R010_PSR_PWR
Advanced power control mechanisms must integrate a Trusted management function to
control clocks and power.

R020_PSR_PWR
It must not be possible to directly access reset, clock, and power management
mechanisms from a Non-trusted world.

R030_PSR_PWR

If suspend to RAM is supported (see also warm boot in section 5.2.2), any protection keys
for external memory need to be saved and restored. These operations must be handled
by a Trusted service and the keys must be stored in either on-chip Trusted storage or
wrapped using a key derived from an on-chip Hardware Unique Key (HUK).

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 46
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.3 Clocks and power

R040_PSR_PWR
Security critical suspend state information that is stored in memory accessible to an
attacker (typically off-chip or may be off-package) must be encrypted and authenticated
using a key that is not accessible to an attacker (typically on-chip, may be in-package).

Requirement Section 5.4 Memory system

R010_PSR_MSYS
The SoC must provide a hardware-based mechanism for isolating the memories of a
Trusted world from any Non-trusted world.

R020_PSR_MSYS
A Trusted world operation can access Trusted world assets and might be able to access
Non-trusted world data assets.

R030_PSR_MSYS
A Trusted world operation must not fetch Non-trusted world instructions. Where
hardware mechanisms to prevent such fetches exist they should be controlled only from a
Trusted world.

R040_PSR_MSYS A Non-trusted world operation must only access Non-trusted world assets.

R010_PSR_PAM
If programmable address remapping logic is implemented in the interconnect, then its
configuration must be possible only from a Trusted world.

R020_PSR_PAM

If target-side filtering is implemented to identify Trusted and Non-trusted world
transactions, it must only permit Trusted or all Non-trusted transactions to any one
region. Trusted and Non-trusted aliased accesses to the same address region are not
permitted.

R030_PSR_PAM
The target-side transaction filters configuration space must only be accessed from a
Trusted world.

R040_PSR_PAM
Configuration of the on-chip interconnect that modifies routing or the memory map must
only be possible from a Trusted world unless it is not possible for such modifications to
affect Trusted world transactions.

R010_PSR_SSS
Shared storage must be scrubbed before it can be reallocated to a different world or
security domain.

R020_PSR_SSS
Shared storage must not be executable immediately after allocation from a different
security domain.

R030_PSR_SSS
Assets held in a processor cache must be invalidated to ensure no post-scrubbing write-
back.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 47
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.5 Processing elements (Processors)

R010_PSR_PE
The processor must provide a hardware-based mechanism(s) for isolating the execution
contexts of a Trusted world from the Non-trusted world(s).

R020_PSR_PE
The processor must provide a hardware-based mechanism(s) that ensures runtime data in
memory is never executable.

R030_PSR_PE
If a processor implements features to prevent the isolation mechanisms being bypassed,
they should be used and must be controlled by trusted software. Examples include
speculative execution.

R040_PSR_PE

If a processor implements features to prevent side channel leakage, they should be used
where leakage is identified as a concern and must be controlled by trusted software.
Examples include the caches and the memory management system, and instructions that
act on security critical assets where the timing is data dependent.

Requirement Section 5.5.1 Interrupts and Exceptions

R010_PSR_IEH
An interrupt or exception originating from a Trusted operation must by default be
mapped only to a Trusted handler.

R020_PSR_IEH
Security interrupts or exceptions should only be handled by a Trusted world, However,
where there is no security risk, security interrupts may be handled by a Non-trusted world
provided R030_PSR_IEH is met.

R030_PSR_IEH
Any configuration to mask or route a Trusted interrupt or exception must only be carried
out from a Trusted world.

R040_PSR_IEH
Any status flags recording Trusted interrupt events must only be readable from a Trusted
world, unless specifically configured by a Trusted world to be readable by the Non-trusted
world.

Requirement Section 5.5.2 Debug

R010_PSR_DBUG
All external debug functionality must be protected by a DPM so that only an authorized
external entity can access the debug functionality.

R020_PSR_DBUG
A DPM must be implemented either solely in hardware or together with software running
in a Trusted world.

R030_PSR_DBUG A DPM must be aware of the current security lifecycle state

R040_PSR_DBUG A DPM unlock password must be at least 128 bits in length.

R010_PSR_SCCN Access to scan chains must be security lifecycle aware.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 48
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.5.2 Debug

R020_PSR_SCCN The coverage of a scan chain must be security lifecycle aware.

Requirement Section 5.6.1 Peripherals

R010_PSR_PER
If access to a peripheral, or a subset of its operations, is dynamically switched between a
Trusted world and any Non-trusted world, then this must only be done under the control of
a Trusted world.

R020_PSR_PER
A Trusted peripheral must be able to distinguish whether commands and data were
received at an interface accessible to a Trusted world only, or at an interface accessible to
the Non-trusted world.

R030_PSR_PER
If a Trusted peripheral stores Trusted-world assets within the peripheral, it must not be
possible for a Non-trusted world to perform operations on those assets.

R040_PSR_PER
A Trusted peripheral that exposes a Non-secure interface must apply a policy check to the
Non-trusted commands and data before acting on them. The policy check must be atomic
and, following the check, it must not be possible to modify the checked commands or data.

R050_PSR_PER
All DMA transactions from any Non-trusted peripheral must be constrained using an on-
chip mechanism configured by a Trusted-world.

Requirement Section 5.6.2 External peripherals

R010_PSR_XPER
When an external peripheral can receive commands from an external system, for example
PCIe, then the system must enforce a policy to check that those commands do not breach
the security of the SoC.

R020_PSR_XPER
If an external peripheral is used to send or receive clear or unauthenticated Trusted world
assets, then it must meet the requirements for Trusted operations.

Requirement Section 5.6.3 Security subsystems

R010_PSR_SUB
An off-chip security subsystem must be physically or logically inseparable from the host
system. Separation must not reduce system security.

R020_PSR_SUB
Communication to and from an off-chip security subsystem must be protected against
eavesdropping.

R030_PSR_SUB
Communication to and from an off-chip security subsystem must be able to detect
tampering and replay attacks.

R030_PSR_SUB
A security subsystem key must not be directly accessible by any software unless a policy
explicitly allows the key to be exported.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 49
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.6.3 Security subsystems

R040_PSR_SUB
A Trusted world must be able to enforce a usage policy for any security subsystem key that
can be used for Non-trusted world cryptographic operations.

Requirement Section 5.7 Invasive subsystems

R010_PSR_ISUB An Invasive subsystem must only be controllable from a Trusted world.

Requirement Section 5.8 Platform identity

R010_PSR_PID
The SoC must include an Initial Attestation Key that is either held within secure storage
controlled by a Trusted world or held within a Security subsystem.

R020_PSR_PID The Initial Attestation Key must be unique per instance or per batch of devices.

R030_PSR_PID
In an implementation that uses a Security subsystem for cryptographic identities, the Initial
Attestation Key must only be visible to the Security subsystem.

R040_PSR_PID The Initial Attestation Key must be protected by a security lifecycle.

Requirement Section 5.9 Random number generation

R010_PSR_RNG The entropy source and post processing must be an integrated hardware block.

R020_PSR_RNG It must not be possible to monitor the entropy source output on production parts.

R030_PSR_RNG It must not be possible to halt the entropy source output on production parts.

R040_PSR_RNG Each bit from the entropy source must be used no more than once.

R050_PSR_RNG Each bit derived in post-processing must be used no more than once.

Requirement Section 5.10.1 Trusted Clock Source

R010_PSR_TCLK Clock sources used by a Trusted timer must be exclusively controlled by Trusted software.

R020_PSR_TCLK Clock sources used by a Trusted timer must be resistant against tampering.

R030_PSR_TCLK
If a Trusted clock source is external, then monitoring hardware must be implemented that
reports via a trusted register that the clock frequency is within acceptable bounds.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 50
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.10.2 Trusted Timer

R010_PSR_TTME At least one Trusted timer must exist.

R020_PSR_TTME
A Trusted timer must only be modifiable by Trusted software. Examples of modifications
include refresh, suspension, or reset.

R030_PSR_TTME
The clock source that drives a Trusted timer must be exclusively controlled by Trusted
software.

R040_PSR_TTME A Trusted timer must only produce Trusted interrupts.

Requirement Section 5.10.3 Trusted Watchdog

R010_PSR_TWDG At least one Trusted watchdog timer must exist.

R020_PSR_TWDG
A Trusted watchdog time must only be configured by Trusted software. Examples of
configuration are time intervals, corrective action options, e.g. refresh, or hard reset.

R030_PSR_TWDG
Before needing a refresh, a Trusted watchdog timer must be capable of running for a time
that is long enough to complete critical pre-corrective action saving of state.

R040_PSR_TWDG
A Trusted watchdog timer must be able to trigger a reset of the SoC, after a pre-defined
time. This value may be fixed in hardware or programmed by Trusted software.

R050_PSR_TWDG
A Trusted watchdog timer must implement a flag that indicates the occurrence of a
timeout event that causes a warm reset, to allow post-reset software to distinguish this
from a powerup cold boot. See also warm boot in section 5.2.2.

R060_PSR_TWDG
The clock source driving a Trusted watchdog timer must be exclusively controlled by
Trusted software.

R070_PSR_TWDG A Trusted Watchdog must only produce Trusted interrupts.

Requirement Section 5.10.4 Trusted Real-time Clock

R010_PSR_TRTC A TRTC must be configured only by a Trusted world access.

R020_PSR_TRTC All components of a TRTC must be implemented within the same power domain.

R030_PSR_TRTC
On initial power-up, and following any other power outage to the TRTC, a validity
mechanism must indicate that the TRTC is not trusted.

R040_PSR_TRTC The TRTC must be exclusively controlled by a Trusted world.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 51
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.11 Cryptography

R010_PSR_CRSS
Unless defined by a national or sector standard, all use of cryptography must use an
algorithm that meets at least 128 bits of security.

R010_PSR_KATM
A key must be treated as an atomic unit. It must not be possible to use a key in a
cryptographic operation before it has been fully created, fully updated, or during its
destruction.

R020_PSR_KATM
Any operations on a key must be atomic. It must not be possible to interrupt the creation,
update, or destruction of a key.

R010_PSR_KUS A key must only be used by the cryptographic scheme for which it was created.

R020_PSR_KUS A key must only be used by the purpose for which it was created.

R010_PSR_KLT
When a key is no longer required by the system, it must be put beyond use to prevent it
from being revealed at a later time.

R020_PSR_KLT
A static key must be stored in an immutable structure, for example a ROM or a set of
bulk-lockable fuses.

R025_PSR_KLT
Revocation of (or making inaccessible), and any re-enablement, of a static key must only
be possible by trusted software.

R030_PSR_KLT
To prevent the re-derivation of previously used keys, the source material used in the
derivation must be hidden either by Trusted code or Trusted hardware.

R040_PSR_KLT
If an ephemeral key is stored in memory or in a register in clear text form, the storage
location must be scrubbed before being used for another purpose.

R050_PSR_KLT
A key that is accessible to, or generated by, a Non-trusted world must only be used for
Non-trusted cryptographic operations. These are operations that are either implemented
in Non-trusted software or have both clear text and cipher text in the Non-trusted world.

R060_PSR_KLT

A key that is accessible to, or generated by, a Trusted world can be used for operations in
both Non-trusted and Non-trusted worlds, and even across worlds, if a Non-trusted world
cannot access the key directly, or a Trusted world can control the use of the key through
a policy.

R070_PSR_KLT A Trusted hardware key must not be directly accessible by any software.

R080_PSR_KLT
A Trusted world must be able to enforce a usage policy for any Trusted hardware key that
can be used for Non-trusted world cryptographic operations.

Requirement Section 5.12 Secure storage

R010_PSR_SST Any sensitive data that needs to be stored must be stored in Secure storage.

R020_PSR_SST
The SoC must embed at least one hardware unique key (HUK) of at least 128 bits of
entropy.

DEN 0106 Copyright © 2019 - 2024 Arm Limited or its affiliates. All rights reserved. Page 52
1.0 Beta (issue 0) Non-confidential

Requirement Section 5.12 Secure storage

R030_PSR_SST The HUK used as a root key for secure storage must have at least 128 bits of entropy.

R040_PSR_SST
The HUK used for secure storage must only be accessible by Trusted code or Trusted
hardware that acts on behalf of Trusted code.

R050_PSR_SST
An on-chip non-volatile Trusted firmware version counter implementation must provide a
counter range sufficient for the expected number of updates over the planned lifetime of
the product. Where the end application is not known then 0-63 is typical.

R060_PSR_SST
An on-chip non-volatile Non-trusted firmware version counter implementation must
provide a counter range sufficient for the expected number of updates over the planned
lifetime of the product. Where the end application is not known then 0-255 is typical.

R070_PSR_SST It must only be possible to increment a version counter through a Trusted access.

R080_PSR_SST
It must only be possible to increment a version counter; it must not be possible for it to
be decremented.

R090_PSR_SST
When a version counter reaches its maximum value, it must not roll over, and no further
changes must be possible.

R100_PSR_SST
A version counter must be non-volatile, and the stored value must survive a power down
period up to the lifetime of the system.

Requirement Section 5.13 On-chip Secure memory

R010_PSR_SMEM The SoC must integrate Secure memory.

R020_PSR_SMEM Secure memory must be mapped into a Trusted world only.

R030_PSR_SMEM
If the mapping of Secure memory into regions is programmable, then configuration of the
regions must only be possible from a Trusted world.

Requirement Section 5.14.4 External Secure Memory Protection

R010_PSR_EXTM Keys used by a memory protection block must be unique to the SoC.

R010_PSR_EXTM
If the mapping of cryptographic hardware into the memory system is configurable, then it
must only be possible to perform the configuration from a Trusted world.

R010_PSR_EXTM
The activation and deactivation of external memory protection must only be possible
from a Trusted world.

R010_PSR_EXTM
If a memory region is configured for encryption, then there must not exist any alias in the
memory system that can be used to bypass the encryption/decryption mechanism.

	Release Information
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback
	Feedback on this book

	1 Introduction
	2 Security goals
	2.1 Unique identity
	2.2 Security lifecycle
	2.3 Attestation
	2.4 Authorized software
	2.5 Secure update
	2.6 Rollback protection
	2.7 Security by isolation
	2.8 Secure interfaces
	2.9 Data Binding
	2.10 Trusted services

	3 Scope
	4 Compliance
	5 Security requirements
	5.1 Security Lifecycle
	5.2 Reset and Secure Boot
	5.2.1 Boot keys
	5.2.2 Boot types
	5.2.3 Boot parameters
	5.2.4 Boot ROM execution
	5.2.4.1 Secondary processors
	5.2.4.2 DMA and External interfaces

	5.3 Clocks and power
	5.4 Memory system
	5.5 Processing elements (Processors)
	5.5.1 Interrupts and Exceptions
	5.5.2 Debug

	5.6 Peripherals and Security subsystems
	5.6.1 Peripherals
	5.6.2 External peripherals
	5.6.3 Security subsystems

	5.7 Invasive subsystems
	5.8 Platform identity
	5.9 Random number generation
	5.10 Trusted Clock, Timer, Watchdog Timer and Real-time Clock
	5.10.1 Trusted Clock Source
	5.10.2 Trusted Timer
	5.10.3 Trusted Watchdog
	5.10.4 Trusted Real-time Clock

	5.11 Cryptography
	5.12 Secure storage
	5.13 On-chip Secure memory
	5.14 External Secure memory
	5.14.1 Confidentiality protection
	5.14.2 Integrity protection
	5.14.3 Replay protection
	5.14.4 External Secure Memory Protection

