
W H I T E P A P E R

Arm Neoverse V1 Core:
Performance Analysis
Methodology

Performance Analysis on Neoverse V1 Core
Using Hardware PMU Features

Jumana Mundichipparakkal*, Yibo Cai*, Sam Ellis,

Darin Greene, Michael Williams, Tushar Chouhan

W H I T E P A P E R 2

Contents

1 Introduction

2 Neoverse V1 Performance Monitoring Events & Metrics

2.1 Neoverse V1 PMU References

2.2 Neoverse V1 PMU Events Selection for Workload Characterization

2.3 Neoverse V1 PMU Derived Metrics for Workload Characterization

3 Neoverse V1 Performance Analysis Methodology

3.1 Neoverse V1 Processor

3.2 Neoverse V1: Topdown Performance Analysis Methodology

3.2.1 Stage 1: Topdown Analysis

3.2.2 UStress: Micro-architecture Metrics Validation Workload Suite

3.2.3 Stage 2: Micro-architecture Exploration

4 Case Study: Topdown Performance Analysis on Neoverse V1

4.1 About Arrow CSV Parser

4.2 Hotspot Analysis with Topdown Methodology

4.3 Code Optimization with Arm Neon

4.4 Summary

W H I T E P A P E R 3

5 Glossary

6 Acknowledgements

7 References

8 Appendix A. UStress Data

A.1 UStress Tests: MPKI

A.2 UStress Tests: Miss Ratio

9 Appendix B. Neoverse V1 Events

B1.1 Bus

B1.2 Chain

B1.3 Exception

B1.4 L1D_Cache

B1.5 L1I_Cache

B1.6 L2_Cache

B1.7 L3_Cache

B1.8 LL_Cache

B1.9 Memory

B1.10 Retired

W H I T E P A P E R 4

9 Appendix B. Neoverse V1 Events (Cont)

B1.11 SPE

B1.12 Spec_Operation

B1.13 Stall

B1.14 General

B1.15 TLB

B1.16 SVE

10 Appendix C. Neoverse V1 Metrics

C1.1 Metric Group: Topdown_L1

C1.2 Metric Group: Cycle_Accounting

C1.3 Metric Group: General

C1.4 Metric Group: MPKI

C1.5 Metric Group: Miss_Ratio

C1.6 Metric Group: Branch_Effectiveness

C1.7 Metric Group: ITLB_Effectiveness

C1.8 Metric Group: DTLB_Effectiveness

C1.9 Metric Group: L1I_Cache_Effectiveness

C1.10 Metric Group: L1D_Cache_Effectiveness

C1.11 Metric Group: L2_Cache_Effectiveness

C1.12 Metric Group: LL_Cache_Effectiveness

C1.13 Metric Group: Operation_Mix

W H I T E P A P E R 5

1. Introduction

Neoverse V-series cores are designed to deliver the maximum

single-threaded performance available from Arm for cloud and

high-performance computing (HPC) workloads. Neoverse V1, the first

in this new performance tier, is the first Arm-designed core to support

key performance features including Scalable Vector Extensions, bFloat16

and Int8MatMul. Combined with platform capabilities such as DDR5

memory and PCIe Gen5 I/O, the Neoverse V1 platform provides leading

performance for cloud, HPC and ML workloads.

This paper outlines a methodology for workload characterization and

root cause analysis using the Performance Monitoring Unit (PMU) events

on the Neoverse V1 CPU. The intended audience is software developers

and performance analysts working on software analysis, optimizations,

tuning, and development. The content can also support silicon engineers

in selecting the right set of PMU events for conducting system analysis.

W H I T E P A P E R 6

Background

This paper is an extension to the previous whitepaper titled “Arm Neoverse

Core N1: Performance Analysis Methodology”, which introduced the basic

performance analysis methodology that can be followed on any Neoverse

platform with a set of architecturally common PMU events and derived

metrics. As this was the first document on PMU based methodology

from Arm, a basic introduction to the Arm Performance Monitoring Unit

[5, Chapter 2] and using the Linux perf tool for accessing PMU events

and conducting performance analysis [5, Chapter 4] was already covered.

In this paper, we focus on introducing new capabilities supported by the

Neoverse V1 on top of the existing features in the Neoverse N1, which is

the previous generation. It is recommended to read this paper for a basic

understanding of the hardware PMU unit and common architectural

events, as well as how to use Linux perf based tooling to conduct

performance analysis.

Outline

The content of this paper is divided into 4 chapters.

Chapter 2 will introduce the hardware PMU on the Neoverse V1 with

a list of the most relevant PMU events for workload characterization.

Chapter 3 will present the workload characterization methodology using

the Neoverse V1 core PMU events, including some validation examples.

Chapter 4 will explore a case study on how the performance

analysis methodology presented in Chapter 3 was used to conduct

code optimization on the Apache Arrow workload.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf

W H I T E P A P E R 7

2. Neoverse V1 Performance
Monitoring Events & Metrics

The Neoverse V1 CPU implements the PMU extensions of the Arm v8.4[4]

with support for 100+ hardware events. The Neoverse V1 PMU has six

configurable counter registers and one dedicated function counter

to count CPU cycles.

2.1 Neoverse V1 PMU References

There are three key references for the Neoverse V1 PMU events

and other information needed for their perusal as below:

01 Arm Neoverse V1 PMU Guide[2]

02 Arm Neoverse V1 Technical Reference Manual[1]

03 Arm Neoverse V1 Software Optimization Manual[3]

04 Arm Architecture Reference Manual[4]

The PMU events implemented by the Neoverse V1 core are listed in

the Arm Neoverse V1 Core Technical Reference Manual [1, Chapter 1].

These events are grouped per CPU function groups with enhanced SW

consumer-friendly descriptions and presented in Appendix B.

We also provide the Neoverse V1 PMU Guide[2], a supplementary guide

to the hardware PMU events implemented by the core. This PMU Guide

provides detailed descriptions of PMU events categorized per CPU block.

Micro-architectural and architectural definitions required for a better

understanding of each PMU event are included, with relevant definitions

marked as references to each PMU event description. The Neoverse V1

PMU Guide[2] also adds an exclusive CPU execution flow chapter that

shows key CPU execution flows that the memory subsystem, with a

https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/101427/latest/
https://developer.arm.com/documentation/pjdoc466751330-9685/latest/
https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/documentation/101427/latest/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/

W H I T E P A P E R 8

depiction of PMU events being counted in each stage. We recommend

using the V1 PMU Guide[2] as the go-to reference manual for detailed

descriptions of performance analysis activities using PMU events.

2.2 Neoverse V1 PMU Events Selection for Workload Characterization

For conducting performance analysis and workload characterization, Figure

1 presents a cheat sheet with Arm recommended subset of PMU events

supported by Neoverse V1. Descriptions of these events can be referred

to in Appendix B. These events can be used to derive metrics that can

support the analysis methodology discussed in Section 3.
F I G . 1

Neoverse V1 PMU Events Cheat Sheet

https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/

W H I T E P A P E R 9

2.3 Neoverse V1 PMU Derived Metrics for Workload Characterization

For conducting performance analysis and workload characterization,

Figure 2 presents a cheat sheet with Arm specified derived metrics using

the PMU events shortlisted in Figure 1. Appendix C has the details

of all the metric groups and metrics supported by Neoverse V1.
F I G . 2

Neoverse V1 PMU Metrics Cheat Sheet

We refer to Chapter 3 for the Arm performance analysis methodology to

be used for conducting workload characterization using the list of events

and metrics specified in Figure 1 and 2.

W H I T E P A P E R 10

3. Neoverse V1 Performance
Analysis Methodology

In this chapter, we give a brief introduction to the Neoverse V1 core

micro-architecture. Followingly, we present the Arm top-down performance

analysis methodology for Neoverse V1 with a set of validation tests to show

how to use this methodology for optimization use cases. The Neoverse V1

is the first CPU in the Neoverse family that supports a full set of level 1

metrics for top-down analysis, which is introduced in Section 3.2.

3.1 Neoverse V1 Processor

Figure 1 shows the micro-architecture details of the Arm Neoverse core,

which is a super pipelined super-scalar processor which has an in-order

frontend and out-of-order backend.

W H I T E P A P E R 11

F I G . 3

Arm Neoverse V1 Core
Micro-architecture Block Diagram

The frontend of the core comprises of the instruction fetch and decode

units. The frontend also includes a branch predictor unit that fetches

instructions ahead of the pipeline and helps to hide latencies caused

by control flow bubbles in the pipeline. The fetch unit can fetch multiple

instructions per cycle whose bandwidth is specific to a micro-architecture

W H I T E P A P E R 12

design, which gets stored in a decode queue. The decode queue

sends multiple instructions per cycle for decoding, whose bandwidth

is determined by the number of decode slots available. The decode unit

decomposes the Arm architecture instructions into micro-operations. The

decode unit decode more than one micro-operations per cycle, which is

fed to the re-order buffer for execution in the out-of-order backend. This

bandwidth is determined by the number of renamed SLOTS available in

the micro-architecture. From a micro-architecture standpoint, the rename

unit is considered the boundary between the frontend and backend of

the processor.

The backend of the core has a scheduler in the dispatch unit that

orchestrates the operation executed when the issue queue associated with

the operation can store the execution. The issue queue sends operations

for execution when the execution unit is free and the operands are ready.

Once the execution is complete, the results are sent to the commit reorder

buffer(ROB) from where the instructions are retired when the speculated

execution is confirmed. The backend of the CPU executes the operations

out-of-order and stores results, with the help of the reorder buffer. The

reorder buffer helps to track dependencies between operations (or is it

the dispatch unit) and tracks the operand availability for the execution of

operations. Register renaming is undertaken in this stage as well to mitigate

data dependency hazards.

Issue queues are employed for:

01 Queuing the micro-operations(uops) to assigned ports.

02 Managing dependencies between operations.

03 Tracking operand availability for execution.

W H I T E P A P E R 13

Each execution port supports different categories of operations. After

the execution of operations, ROB is updated with execution results

and operations that are completed are retired architecturally in the

right program order.

Memory Subsystem

The Memory subsystem of the CPU handles the execution of load and

store operations which rely heavily on the memory hierarchy levels. The

Neoverse V1 has a dedicated L1/L2 cache per core, where the L2 cache

is shared between the L1 data cache and the L1 instruction cache.

The Load Store Unit controls the data flow between the caches and to

memory. The Neoverse V1 has multiple load/store units, which can both

handle read and write operations. The core supports two hierarchical set

associative caches, L1 Data Cache and L2 Cache whose size is configurable

per implementation. The private L2 cache of the core connects to the rest

of the system via an AMBA 5 CHI interface.

Neoverse V1 System Configurations

All systems with the coherent mesh interconnect support a shared

system-level cache. Understanding the cache hierarchy and configuration

of the system being analyzed is crucial in deriving insights from the cache

effectiveness Performance Monitoring Unit (PMU) events. It is always best

to check with the Silicon Provider for details on the system configuration

for the underlying system, including the cache sizes.

3.2 Neoverse V1: Topdown Performance Analysis Methodology

As explained in section 3.1, out-of-order machines are heavily pipelined

to achieve higher instructions per cycle (IPC). These deep pipelines can be

stalled in different parts of the pipeline simultaneously caused by different

operations in flight. Pipeline stalls cause significant IPC drops, which result

in inefficient execution of the program. We introduce the Arm topdown

W H I T E P A P E R 14

performance analysis methodology as our solution to support performance

analysis, workload characterization, and micro-architecture exploration

on Arm architecture compliant CPUs that support the Performance

Monitors Extension. This methodology uses PMU events in the hardware

to help profile an application to identify processor bottlenecks, and aid

root cause analysis.

To tune an application code for a micro-architecture, the first step

is to detect the code bottleneck which is where most of the cycles are

spent. For this, we need to measure the distribution of execution cycles

spent, which provides insights into the cycles that were both efficient and

wasted by pipeline stalls and redirections. Followingly, we need to measure

micro-architectural metrics that help deep dive into the bottlenecking CPU

component for further analysis. Arm top-down methodology for hotspot

analysis and micro-architectural analysis is specified to be conducted in

two stages, as depicted in Figure 2.

Stage 1: Topdown Analysis

Topdown analysis is the first stage to be followed in the methodology

which helps with hotspot detection. A set of pipeline efficiency metrics are

specified using the PMU events to measure, which helps to characterize the

distribution of cycles spent by the processor. Topdown analysis metrics are

formulated as a decision tree of metrics that need to be traversed within

each metric group to help locate the bottleneck.

Neoverse V1 only supports the first level of this decision tree. Further

levels in this stage will be supported by the future Neoverse cores.

Stage 2: Micro-architecture Exploration

Once the potential hotspot in the processor pipeline is identified in

stage 1, the next step is to conduct a micro-architectural analysis of the

bottlenecking CPU resource. Stage 2 is defined as the micro-architecture

W H I T E P A P E R 15

exploration stage for which we specify a set of CPU resource effectiveness

metrics in metric groups per resource. Industry-standard metrics like Misses

Per Kilo Instructions (MPKI) and Miss Ratios are also metric groups defined

in this stage.

Arm recommends collecting all the metrics that are in Stage 1 and Stage

2 for workload characterization. For further analysis, we have also

specified our recommended set of micro-architecture exploration metric

groups against some of the hotspots detected in Stage 1. Note that all

the Stage 2 metrics can be used to derive further insights into the overall

micro-architecture behaviour during the execution of the application

under investigation and can be used independently to Stage 1.

F I G . 4

Arm V1 Topdown Performance Analysis
Methodology for Neoverse V1

W H I T E P A P E R 16

3.2.1 Stage 1 : Topdown Analysis

Topdown analysis starts by making the following four measurements,

each being a percentage of the total execution bandwidth of the processor:

 — The percentage of execution bandwidth used by operations that

are retired.

 — The percentage of execution bandwidth lost to mis-speculation.

 — The percentage of execution bandwidth lost to stalls in the frontend.

 — The percentage of execution bandwidth lost to stalls in the backend.

The total execution bandwidth of the processor can be measured in

execution slots for operations. Slots are defined as the execution slots

in the rename unit which partitions the frontend and backend of the

processor. Frontend of the processor decodes and decomposes AArch64

instructions to micro-operations that can be executed by the backend

execution units as explained in Section 3.1. The number of slots supported

by the core determines the execution bandwidth of the processor for

top-down accounting. This is a micro-architectural parameter that is part

of the formulae for deriving the execution bandwidth related metrics.

Neoverse V1 supports four key metrics for top-down analysis level 1 that

are slot-based, which is a measurement of the efficiency of pipeline slots.

The four metrics in the first level are defined part of the metric group

TopDownL1 as below:

 — frontend_bound: This metric is the percentage of total slots that were

stalled due to resource constraints in the frontend unit of the processor.

 — backend_bound: This metric is the percentage of total slots that were

stalled due to resource constraints in the backend unit of the processor.

W H I T E P A P E R 17

 — bad_speculation: This metric is the percentage of total slots that

executed operations that didn’t retire due to a pipeline flush. This

indicates the cycles that were used but were inefficient as well as

cycles spent recovering from the mis-speculation, refilling the

pipeline from the correct location.

 — retiring: This metric is the percentage of total slots that retired

operations. This indicates the cycles that were used and efficient.

We refer to Appendix C for details on this metric groups and its

corresponding metrics. We demonstrate the usage of these metrics

using a validation workload suite introduced below.

3.2.2 UStress: Micro-architecture Metrics Validation Workload Suite

In order to validate the specified performance analysis metrics &

events, we developed an in-house validation suite comprising a set

of micro-architecture workloads that stress some of the major CPU

resources like branch prediction units, execution units (arithmetic

and memory), caches, and TLBs. These workloads can cause various

performance bottleneck scenarios in the CPU. The categories of tests

and their respective list of micro-benchmarks are as below.

 — Branch: branch_direct_workload, branch_indirect_workload,

call_return_workload.

 — Data Cache: l1d_cache_workload, l2d_cache_workload.

 — Instruction Cache: l1i_cache_workload.

 — Data TLB: l1d_tlb_workload.

 — Arithmetic Execution Units: div32_workload, …, fpdiv_workload,

…, mul64_workload.

 — Memory Subsystem: memcpy_workload, store_buffer_full_workload,

load_after_store_workload.

W H I T E P A P E R 18

We will walk through the recommended performance analysis methodology

using both stage 1 and stage 2 metrics with data collected by running these

tests on a Neoverse V1 platform built with gcc-10.3. We refer to Chapter

4 in the previous whitepaper on Arm Neoverse Core N1: Performance

Analysis Methodology for PMU data collection and sampling techniques

using Linux perf tool[5].

As a first step, let us look at Stage 1 top-down analysis metrics

measurements for each test in Figure 3 below.

F I G . 5

UStress workloads:
Top-down Analysis Level
1 Characterization

The following observations can be made on Figure 5 for each

workload category.

01 Branch tests that cause mispredictions of different branch types result

in pipeline flushes when branch targets or directions are resolved.

These flushes translate to the bad speculation-related stalls. As

expected, the relative percentage of pipeline bandwidth shows the

trend of a high percentage on bad_speculation metric (34% ~ 63%)

for this workload category.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf

W H I T E P A P E R 19

02 Data Cache tests cause data accesses that result in heavy L1 data cache

and L2 unified cache misses, which stall the backend of the processor.

As expected, tests in this category show a high percentage of backend_

bound metric (>90%).

03 Instruction Cache test causes heavy L1I cache miss during instruction

fetch, which stalls the frontend of the processor in the fetch stage. As

expected, test in this category measures a relatively high percentage

of frontend_bound metric (58%).

04 Data TLB tests that cause heavy data TLB miss that would cause stalls

in the processor’s backend caused by delays in the memory address

translation stage. As expected, the tests show high percentage of

backend_bound metric (61%).

05 Arithmetic execution unit tests stress the different execution

units of the processor that process various arithmetic operations of

different latency requirements. The pressure in the execution units will

be reflected as a stall in the processor’s backend. As expected, tests in

this category measure a high percentage of backend_bound metric (55%

~ 89%).

06 Memory subsystem stresses the load store units associated with the

memory operation executing in the processor’s backend. As expected,

these tests result in a high percentage of backend_bound metric (63%

for memcpy_workload, 52% for store_buffer_full_workload). The test

load_after_store_workload results in high bad_speculation (36%) because

the code triggers many speculative loads which are abandoned due to

mispredicted data address. The test memcpy_workload copies memory

block smaller than L1D Cache efficiently

in batch, which results in high retiring.

W H I T E P A P E R 20

Based on Stage 1 top-down analysis measurements for the validation tests,

we have shown that the proposed top-down level 1 metrics provide clear

indication of the bottlenecking part of the processor pipeline, which is a

first step to locating the bottleneck or hotspot of the program.

The next phase of the analysis process is to investigate the potential

bottle-necking micro-architecture components. Such micro-architecture

exploration metrics are grouped per CPU resource in the next stage

termed “Stage 2”, which is discussed below.

3.2.3 Stage 2: Micro-architecture Exploration

Once the execution pipeline bottleneck region is identified from Stage 1,

the next step is to deep dive for further analysis.

A relatively high frontend_bound metric shows that execution cycles are

being wasted due to pipeline stalls in the in-order frontend division of

the processor. This can be because of many reasons like inefficiency in

the branch prediction unit, fetch latency due to instruction cache misses

and translation delays caused by Instruction TLB walks.

A relatively high backend_bound metric shows that execution cycles are

wasted due to pipeline stalls in the processor’s backend. This can be

because of many reasons like inefficiency in backend units like execution

units, data cache misses and translation delays caused by data TLB walks.

A relatively high bad_speculation metric shows the pipeline stalls caused

by flushes or machine clears that break the pipeline needing a control flow

change. Branch mis-predictions are one of the major causes for this, as

well as exceptions.

W H I T E P A P E R 21

A relatively high retiring metric means the pipelines were utilized. However,

this metric could indicate inefficiency in terms of underutilization of the

micro-architectural capabilities, for example scalar execution of a code that

could have performed more efficiently with vector operations.

To analyze this further, we propose the below micro-architecture

exploration metric groups that can be used for Stage 2 analysis. In this

stage, we recommend a set of metric groups for narrowing down the

further analysis of tests falling into the four categories of pipelined BW

usage in Stage 1, as shown in Figure 2.

As a common step in Stage 2, we first introduce two metric groups MPKI

and Miss rate, which can help with a quick behavioural analysis of the CPU

components that could be the potential bottlenecks.

MPKI – Misses Per Kilo Instructions

Misses Per Kilo Instructions is a set of metrics that can be derived to

normalize the misses in CPU components, mainly branches, caches and

TLBs, against the total instructions executed. This is an industry-standard

metric that also helps with comparison across different implementations of

the Arm architecture, as instructions retired should count the same on all

AArch64-based micro-architectures.

Section 2.3 lists all the MPKI metrics that can be derived for Neoverse V1

and Appendix B has all the metrics and their formulae.

W H I T E P A P E R 22

F I G . 6

UStress Workloads: MPKI

Figure 4 shows the results of the key MPKI metric measurements for

Branch/Cache/TLB related UStress validation tests. Arithmetic and

Memory tests are not plotted as they have very low MPKI. We refer

to Table 1 in Appendix A for the full set of MPKI measurements for

the UStress workloads.

The following observations can be made on Figure 6 for each

workload category.

01 The branch tests show relatively high branch MPKI values compared

to other metrics, as expected.

02 The data cache tests relatively high L1D MPKI and L2 MPKI for tests

l1d_cache_workload and l2d_cache_workload respectively, along with

some pressure in the frontend.

03 The instruction cache test shows relatively high L1I MPKI and

branch MPKI, matching the expected behavior for a frontend_bound

workload. In this scenario, we may need to explore branch and L1I

cache effectiveness metrics further to determine the root cause.

Sometimes pressure in one CPU resource can cause pressure in other

components. In this test, L1I MPKI is above 1000 which is unusual as

this means L1I_CACHE_REFILL is greater than INST_RETIRED. This is

W H I T E P A P E R 23

because L1I_CACHE_REFILL can be triggered by speculatively executed

code that did not retire. In this case it is advised to check

the INST_SPEC against the INST_RETIRED count to see how big

is the difference between speculatively executed instructions to the

retired instructions.

04 Data TLB test shows relatively high L1D TLB MPKI. However, we

see little DTLB Walk MPKI which shows no cost in terms of translation

table walks.

05 Arithmetic execution unit tests show very low MPKI. MPKI does

not matter much in these tests as these are mainly core bound in

the backend. These workloads will need more backend related metrics

to further analyze the bottlenecks.

06 Memory subsystem unit tests show low MPKI as the test data always

hit in L1D cache.

Miss Ratio

Miss ratio metric group provide a set of metrics that calculate ratio of the

misses in the CPU components, mainly branches, caches and TLBs, against

the total accesses in those components. These metrics provide insights

on the efficiency of each CPU component in the pipeline and help to

root cause issues.

W H I T E P A P E R 24

F I G . 7

UStress Workloads: Miss Ratio

Section 2.3 lists all the Miss Ratio metrics that can be derived for Neoverse

V1 and Appendix B has all the metrics and their formulae.

Figure 5 shows the results of the key Miss Ratio metric measurements for

Branch/Cache/TLB related UStress validation tests. Arithmetic and Memory

tests are not plotted as these workloads do not record misses. We refer to

Table 2 in Appendix A for the full set of Miss Ratio measurements for the

UStress workloads.

The following observations can be made on Figure 7 for each

workload category.

01 Branch tests show relatively high branch mis-prediction ratio

(30% ~ 50%) values against other metrics, which confirms the

expected behaviour.

02 Data Cache tests show high L1D cache miss ratio (>95%) for

l1d_cache_workload and high L2 miss rate for l2d_cache_workload.

W H I T E P A P E R 25

03 Instruction Cache test l1i_cache_workload shows relatively high L1I

cache miss ratio (>80%) and high branch misprediction rate (74.82%)

as expected.

04 Data TLB test l1d_tlb_workload shows relatively high L1D TLB miss ratio

(>95%), as expected.

05 Arithmetic execution unit tests mostly show high L2 cache miss ratio

(~18%), but the corresponding MPKI is very low. The high miss ratio

is due to very few L2 accesses, but not a true bottleneck.

06 Similar to Arithmetic unit tests, L2 miss ratio of the memory

subsystem tests are due to few L2 accesses, not high misses.

Operation Mix

The Neoverse V1 micro-architecture as shown in Figure 1 has a variety

of execution units that can process five types of operations: branch,

single-cycle integers, multicycle integers, load/store unit with address

generation, and advanced floating-point/SIMD operations. Operations

that are issued to these execution units can be counted by the PMU

events listed in Section 2.2 under OperationMix.

Section 2.3 lists all the OperationMix metrics that can be derived for

Neoverse V1 and Appendix C has all the metrics and their formulae.

Note that these metrics use events that count speculatively issued

operations at the issue stage, which provide an estimate of the execution

unit utilization, but not the retired instruction mix of the program. To derive

the utilization of each operation type, the percentage of each type of

operation is calculated as a fraction of the total operations issued, which is

counted by the event INST_SPEC.

W H I T E P A P E R 26

F I G . 8

UStress Workloads:
Operation Mix Metrics

Neoverse V1 does not support retired events for counting the architectural

instruction mix. Neoverse V1 supports events to further break down the

branch operations into immediate, indirect, and return branches, counted

by events BR_IMMED_SPEC, BR_INDIRECT_SPEC, and BR_RETURN_SPEC

respectively. Note that BR_RETURN_SPEC is a subset of BR_INDIRECT_

SPEC. Sum of the BR_IMMED_SPEC and BR_INDIRECT_SPEC branch

operation events can compute the total branches executed.

Figure 8 shows the Operation Mix metrics measurements for all the

UStress workloads.

W H I T E P A P E R 27

The following observations can be made on Figure 8 for each

workload category.

01 Branch instruction proportion of branch mis-prediction tests

looks counter-intuitive with high percentage of load and integer

operations and a minimal percentage of branch operations (2.41% ~

11.67%). For example, in the test branch_direct_workload, operation

mix measurements show that only 2.94% of instructions are branches.

Inspecting assembly code shows there should at least be 10% ~ 12.5%

(1/10 ~ 1/8) branch instructions. On Neoverse V1, Operation Mix is

calculated on the speculated operations issued to the processor, not

the retired ones. In these tests, a high branch mis-prediction rate causes

numerous speculated operations to be abandoned, causing a significant

gap in the speculated and retired instruction counts. In the case of

branches, Neoverse V1 supports both INST_RETIRED and BR_RETIRED

events to compare the ratio of retired branch instructions against total

retired instructions.

02 Data Cache tests show a large proportion of load operations

(32.41%) as well as integer operations (34.77%) as expected.

03 Instruction Cache test shows very high scalar integer operations

(>80%). This test calls a chain of functions located in gaps of instruction

cache size by continuously incrementing and dereferencing a function

pointer, which are integer operations. Moreover, due to high branch

misprediction ratio, the speculated integer operations are much higher

than the retired ones.

W H I T E P A P E R 28

04 Data TLB test shows relatively high scalar integer operations and a

mix of loads and branch operations (integer_dp=66.62%, load=16.61%,

branch=16.73%).

05 Arithmetic execution unit tests (mul and div tests) show high scalar

operation percentage (83.3%) for scalar integer tests and high floating

point operations (66.5%) for the FP tests (fpmul and fpdiv). For tests that

are double to integer conversion, we see a mix of scalar fp (40.0%) as

well as scalar integer (40.0%) as expected.

06 Memory subsystem test memcpy_workload has a greater

proportion of load and store operations, as expected. For the

store_buffer_full_workload test, high store (32.5%) is observed while

the load_after_store_workload test shows a high proportion of load

operations (42.2%).

Branch Effectiveness & Branch Mix

Branch mis-predictions are costly in a deeply pipelined CPU, causing

pipeline flushes and wasted cycles. As a general rule, workloads typically

contain, on average, 1 branch in every 6 instructions. Though modern CPUs

have optimized branch prediction units, there are many use cases like ray

tracing, decision tree algorithms, etc. that are branch heavy and hard to

predict. In some of these applications, there can be hundreds of unique

branch paths to take and the target may be input data dependent.

Branch prediction performance can be evaluated using two PMU events,

BR_MIS_PRED_RETIRED and BR_RETIRED. BR_MIS_PRED_RETIRED

provides an account of the total branches that were executed but

mis-predicted. This means that the direction of the code path was wrong

and the following operations in the path were wasted, causing a pipeline

flush. BR_RETIRED counts the total branches architecturally executed

by the CPU.

W H I T E P A P E R 29

Two performance metrics that can be derived for a high-level evaluation

of the branch execution performance regarding the overall program

execution are the branch_mpki and branch_misprediction_ratio metrics.

branch_mpki provides total branch mispredictions per kilo instructions.

branch_misprediction_ratio gives an indication of the ratio of branches

that were mis-predicted to overall branches.

Section 2.3 lists all the BranchEffectiveness metrics that can be derived

for Neoverse V1 and Appendix C has all the metrics and their formulae.

In the UStress branch tests, the tests branch_direct_workload,

branch_indirect_workload and call_return_workload measured high bad_

speculation bound metric in Stage 1 top-down analysis stage. For these

tests, we discussed the MPKI and Miss ratio values from Figures 6 and 7

respectively, which show branch-related metrics relatively high compared

to the other resources. In a branch performance-bound workload, the PMU

events specified here can be sampled using perf record, to determine which

functions are causing the increased branch miss rates. We refer to Chapter

4 in N1 performance methodology whitepaper for guidance on how to

perform sampling using Linux perf tool [5, Chapter 4].

Branch prediction units work differently depending on the branch

type. There are three main sub-units that work for different branch

types as below.

 — Branch History Table (BHT) that stores the history of conditional

branches, taken or not.

 — Branch Target Buffer (BTB) that stores the target address

for indirect branches.

 — Return Address Stack (RAS) that stores the function return branches.

Neoverse V1 supports three events, BR_IMMED_SPEC, BR_RETURN_SPEC

and BR_INDIRECT_SPEC, to categorize the immediate, indirect and return

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf

W H I T E P A P E R 30

branches executed, respectively. Getting a breakdown of the branch type

helps to deep dive into each of these sub-units within the branch prediction

unit. Branch tests branch_direct_workload, branch_indirect_workload and

call_return_workload stress each of these branch sub-units. Let us look at

the breakdown of the branch category events for each UStress branch tests

in Table 1 as a set of Branch Mix metrics defined below:

As expected, branch_direct_workload has high percentage of immediate

branches (99.98%) and branch_indirect_workload contains high percentage

of indirect branches (87.98%). The call_return_workload has a mix of direct,

indirect and return branches with relatively high return branches (28.88%)

compared to other tests.

TLB/MMU Effectiveness

Another important performance evaluation step is to check the

virtual memory system performance, that affects the instruction fetch

performance in frontend and memory access performance on the data side.

The processor needs to translate a virtual address to physical

address for any instruction/data memory access before it accesses the

respective cache. Note that a program’s view of memory is virtual address,

but the processor works with the physical address when accessing cache

or memory.

Virtual to physical mappings are defined in the page translation tables

which reside in system memory. Accessing these tables requires one

Tests % immediate % indirect % return

branch_direct_workload 99.98% 0.01% 0.01%

branch_indirect_workload 11.99% 87.98% 0.02%

call_return_workload 42.26% 28.86% 28.88%

T A B L E 1

Branch Operation Mix For UStress
Branch Workloads

W H I T E P A P E R 31

or more memory accesses which take many cycles to complete—this is

referred to as a translation table walk. However, to make these translations

faster, Translation Lookaside Buffers (TLBs) cache translation table walks,

greatly reducing the number of accesses to system memory.

Neoverse V1 implements a two level TLB hierarchy. The first level contains

separate, dedicated TLBs for the instruction and data (load/store) address

translations. Total accesses to these TLBs are counted by L1I_TLB and L1D_

TLB respectively. The second level contains a unified L2 TLB that is shared

by both instruction side and data side accesses. There are corresponding

REFILL counters, that count the refills in these TLB levels. Some

performance metrics that can be derived for a high-level evaluation of the

TLB execution performance are the l<n>_tlb_mpki and l<n>_tlb_miss_rate

metrics, where <n> stands for each levels of TLB instruction and data side.

Those accesses that cause a translation table walk due to misses in the

instruction side and data side TLBs are counted by events, ITLB_WALK

and DTLB_WALK respectively. For evaluating the TLB effectiveness and

cost of latency caused by translation table walks specifically, dtlb_mpki,

dtlb_walk_ratio, itlb_mpki and itlb_walk_ratio are the key metrics that can

be derived. itlb_mpki and dtlb_mpki provide the rate of TLB Walks per kilo

instructions for instruction and data accesses respectively. These derived

metrics help to evaluate and correlate the TLB efficiency with respect to

the total instructions. dtlb_walk_ratio provides ratio of DTLB Walks to the

overall TLB lookups made by the program. Note that this is the same as

DTLB_WALK/MEM_ACCESS as every MEM_ACCESS causes a L1D_TLB

access. itlb_walk_ratio provides a percentage of ITLB walks to the overall

TLB lookups initiated from the instruction side.

Section 2.3 lists all the TLBEffectiveness metrics that can be derived for

Neoverse V1 and Appendix C has all the metrics and their formulae.

W H I T E P A P E R 32

In the Data TLB tests from our validation suite, the test l1_dtlb_workload

measured high frontend_bound metric in Stage 1 top-down analysis stage.

For this test, we discussed the MPKI and Miss ratio values from Figure 6

and Figure 7, which show data-tlb related metrics relatively high compared

to the other resources. In a data TLB performance-bound workload, the

PMU events specified here can be sampled using perf record, to determine

which functions are causing the increased branch miss rates. We refer to

Chapter 4 in N1 performance methodology whitepaper[5] for guidance on

how to perform sampling using Linux perf tool.

Cache Effectiveness

The Neoverse V1 implements a multi-level cache hierarchy. The first

level (L1) includes a dedicated cache for instructions and a separate

dedicated cache for data accesses. The second level (L2) is a unified L2

cache that is shared between code and data. Further down the hierarchy,

the system could have an optional shared system level cache (SLC) in the

interconnect. It is recommended to check with the platform providers

for cache configurations.

The Neoverse V1 core supports hierarchical PMU events for all the cache

hierarchy levels. For each level of caches, there are total access counts

and refill counts. Note that AArch64 do not support cache MISS counters,

but only REFILLs. A cache miss could lead to multiple cache line refills if

the access is on a cache line boundary or multiple cache misses could be

satisfied by a single REFILL. We refer to the V1 PMU Guide[2] for details

on the cache event counter descriptions. Cache policies and associativity

details can also be referred in the Chapter Micro-architecture details in

the V1 PMU Guide[2].

Some performance metrics that can be derived for a high-level evaluation

of the cache execution behavior are the l<n>__mpki and l<n>_tlb_miss_ratio

metrics, where <n> stands for each levels of instruction and data caches.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/

W H I T E P A P E R 33

Section 2.3 lists all the L<n>CacheEffectiveness metrics that can be derived

for Neoverse V1 and Appendix C has all the metrics and their formulae.

In the cache tests from our validation suite, the test l1i_cache_workload

measured high frontend_bound metric and the tests l1d_cache_workload

and l2d_cache_workload measured high backend_bound_metric in Stage

1 top-down analysis stage. For these tests, we discussed the MPKI and

Miss ratio values from Figure 6 and Figure 7, which show the respective

cache-related metrics relatively high compared to the other resources. In

cache performance-bound workload, the PMU events specified here can

be sampled using perf record, to determine which functions are causing

the increased branch miss rates. We refer to Chapter 4 in N1 performance

methodology whitepaper[5] for guidance on how to perform sampling using

Linux perf tool.

Core Memory Traffic

The MEM_ACCESS event counts the total number of memory operations

that were issued by the Load Store Unit (LSU) of the core. As these

operations are looked up in the L1D_CACHE first, both the events L1D_

CACHE and MEM_ACCESS count at the same rate. Neoverse V1 also

supports two additional events, MEM_ACCESS_RD and MEM_ACCESS_

WR, that can provide the read and write traffic breakdown respectively.

Note that these events are not the same as LD_SPEC and ST_SPEC

since they count memory operations speculatively issued, but not

necessarily executed.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf

W H I T E P A P E R 34

Last Level Cache Counter Usage

On systems which support a shared system level cache in the interconnect,

LL_CACHE_RD counts the total accesses to the SLC. In a system that

has the SLC configured to count LL_CACHE_RD events, LL_CACHE_RD

counter counts total SLC accesses made by the core and LL_CACHE_MISS_

RD counts the access missed at SLC.

To study the last level read behavior, Last level cache read miss metrics that

can be derived are ll_cache_read_mpki and ll_cache_miss_ratio. Another useful

metric to measure the SLC hit percentage for the read traffic is

the SLC Read Hit Ratio denoted as ll_cache_read_hit_ratio.

Last level cache events do not have a write variant in Neoverse V1

since SLC is only used as an eviction cache for the core and all the writes

complete early at the interconnect when the transaction is acknowledged

but not necessarily completed.

Section 2.3 lists all the LastLevelCacheEffectiveness metrics that

can be derived for Neoverse V1 and Appendix C has all the metrics and

their formulae.

Remote Cache Access

For Neoverse V1 systems with multiple sockets or SOCs, V1 supports the

REMOTE_ACCESS event which counts the memory transactions that were

completed by a subordinate source from another chip.

W H I T E P A P E R 35

4. Case Study: Topdown Performance
Analysis on Neoverse V1

This case study illustrates how the Arm topdown analysis methodology

for Neoverse V1 was applied for code optimization of Apache Arrow CSV

parser code, which achieved a performance uplift of 80%.

4.1. About Arrow CSV Parser

Apache Arrow[8] is an open-source project for efficient columnar data

interchange. The library supports a variety of data structures that can

be moved without ser-/deserialization. These data structures are highly

efficient for in-memory computation. Apache Arrow supports multiple

languages. In this case study, we work with the Arrow CSV Parser

implemented in C++.

F I G . 9

9 CSV Data -> Arrow Data

Unlike the traditional dataset, which stores data row by row, the Arrow

data is column-based where fields of the same column are contiguous in

memory. The columnar format is especially convenient for Online Analytical

Processing (OLAP) workloads[9].

https://github.com/apache/arrow
https://en.wikipedia.org/wiki/Column-oriented_DBMS#Access_time

W H I T E P A P E R 36

Arrow CSV Parser converts CSV data (row based) to Arrow data (column

based), as shown in Figure 9.

 — On the left side is the CSV data. Each row represents one record.

Fields of the same row are contiguous in the memory.

 — On the right side is the Arrow data. Fields of the same column are

contiguous in the memory. E.g., the three names (Mike, Peter, Jack) are

packed in one large column buffer “MikePeterJack”, with an index array

[0,4,9,13] to slice the individual names from that buffer.

4.2. Hotspot Analysis with Topdown Methodology

We follow the below steps to analyze the performance of the CSV parser

on a Neoverse V1 platform and evaluate if there are any optimization

opportunities for this library.

Experiments are conducted on the Neoverse-V1 (Amazon Graviton3)

built with Ubuntu 22.04 aarch64 OS and gcc-10.3 compiler. Apache

Arrow code used is from the release build (-O3). Baseline performance

is evaluated on commit f0110cf26 and optimized performance is evaluated

on commit 464ccdef0.

Evaluate Baseline Performance

Firstly, we run the CSV parser benchmark to evaluate the baseline

performance, which can be measured in IPC and the bandwidth obtained

by the parser.

F I G . 1 0

Apache Arrow Baseline:
Bandwidth and IPC

https://github.com/apache/arrow/search?q=f0110cf26&type=commits
https://github.com/apache/arrow/search?q=464ccdef0&type=commits

W H I T E P A P E R 37

From the benchmark result shown in Figure 10, Arrow CSV parser

processes about 1G bytes CSV data per second. IPC (Instructions Per Cycle)

achieved on the V1 platform > 4.5, which is quite high. Our first impression

looking at this data would be that the Arrow library has probably adopted

some optimization methods to achieve this high IPC. However, high IPC

doesn’t always mean efficient execution, so we will dig deeper into the

code execution using stage 1 for top-down analysis first.

Conduct Stage 1 Topdown Analysis

We collected the PMU events to derive the TopdownL1 metrics to evaluate

the pipeline efficiency and plot it as in Figure 11.As the TopdownL1 chart

F I G . 1 1

Apache Arrow Baseline:
Stage 1 Top-down Analysis Metrics

shows in Figure 11, more than half of the cycles are retiring instructions,

which matches the high IPC we observed. The code is ~25% frontend_bound

and backend_bound with no speculation performance issues.

Conduct Stage 2 Microarchitecture Exploration

Let us now look at the Stage 2 micro-architecture exploration metrics for

CPU resource pressure evaluation. Firstly, we derive the MPKI and MissRatio

metric groups which is presented in Table 2 below.

W H I T E P A P E R 38

As shown in Table 2, both MPKI and MissRatio metrics are very low for most

of the resources. The highest Miss Ratio comes from l2_tlb_miss_ratio =

43.85%, but the corresponding l2_tlb_mpki is only 0.05. There is no pressure

on the Cache or Branch units. Now, let us look at the Operation Mix metrics

of this workload.

branch l1d_cache l1i_cache l2_cache l1d_tlb l1i_tlb l2_tlb dtlb itlb

MPKI 0.01 2.12 0.04 0.26 0.12 0.00 0.05 0.05 0.00

Miss Ratio 0.01% 0.84% 0.03% 2.55% 0.05% 0.13% 43.85% 0.02% 0.06%

T A B L E 2

MPKI and Miss Ratio For
UStress Tests

As observed in Figure 12, integer_dp_percentage is very high for this

workload at 63% of operations. This counts the percentage of scalar integer

processing instructions which is about 2/3 of operations executed. This

iscunexpected for the workload that is parsing heavy volumes of data

for which we would expect high volumes of load and store instructions.

The Arrow CSV parser copies data from the CSV buffer to the Arrow

buffer, and it must treat normal chars and field separators (comma, EOL,

etc.) separately. High volumes of integer calculations are achieving a very

high IPC value, but this could be executed more efficiently if there is an

opportunity to leverage vector processing using SIMD. To investigate

this, we first need to check where in the code are these integer

operations executed.

F I G . 1 2

Apache Arrow Baseline:
Operation Mix

W H I T E P A P E R 39

Why High integer_dp_percentage?

Analyzing code location using the PMU sampling approach [5, Chapter 4],

it turns out that the Arrow code is already optimized to process input CSV

characters in batch, instead of sequential char-by-char processing, which

could have explained the high scalar integer execution. Looking closely at

the logic, it was identified that there is a code path in the conversion of

CSV row-based data to Arrow column-based format that needs to handle

some special tokens (comma, EOL, etc) differently than normal field chars.

This path breaks the parallel execution requiring input character processing

one by one. This is causing high scalar execution, which has the potential

to be optimized. If we can pre-check for the special characters and make

sure there is no special token in the upcoming data block (e.g., 8 continuous

characters), the input can be saved in batches. This scenario is very

common in real-world CSV data. The figure below illustrates the diverging

code path with an example.

The code tuning exercise can be summarized as “Given a string of 8 chars,

and a predefined character set, how to rewrite the code to pre-check if

the string contains any char in the predefined set”. Arrow implements a

bloom filter to perform a quick scanning of the upcoming string block. This

essentially maps a char to one bit in a uint64 mask to check if it matches

a predefined token. The bloom filter executes a lot of integer shift, logical

and arithmetic operations, which is the reason there is a high

integer_dp_percentage.

F I G . 1 3

Diverging Code Path in Apache
Arrow CSV Parser

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf

W H I T E P A P E R 40

Note: Readers may argue that this pre-check and process in batch approach may

hurt performance if there are many very short CSV fields. This is a real concern,

and the Arrow CSV parser will check field sizes and adjust the best approach

dynamically.

4.3. Code Optimization with Arm Neon

Instead of a bloom filter, we can try to see if we can use Neon to vectorize

the routine in the code that checks if there are any special tokens in 8 or

16 continuous chars.

Vectorization Optimization

The scalar code below illustrates how we check if a char matches any of the

five special CSV tokens: return (\r), newline (\n), delimiter (,), quote (“), and

escape (\). The delimiter, quote, and escape chars are configurable.

bool Matches(uint8_t c) {
 return (c == ‘\r’) | (c == ‘\n’) |(c == delim) | (c ==
quote) | (c == escape);
}

If we vectorize the code using Neon, 8 input chars can be checked at once.

bool Matches(uint8x8_t w) {
 v = vceq_u8(w, vdup_n_u8(‘\r’));
 v = vorr_u8(v, vceq_u8(w, vdup_n_u8(‘\n’)));
 v = vorr_u8(v, vceq_u8(w, delim_));
 v = vorr_u8(v, vceq_u8(w, quote_));
 v = vorr_u8(v, vceq_u8(w, escape_));
 return (uint64_t)v != 0;
}

W H I T E P A P E R 41

Benchmark the Optimized Code

To evaluate the performance, we run the optimized CSV parser

benchmark again.

F I G . 1 4

Apache Arrow Optimized:
Bandwidth & IPC

Compared with the original baseline code, optimized code performance

increases by ~80% with a bandwidth uplift from 1.10GB/s to 1.99GB/s.

Table 3 shows the change in cycles, instructions and IPC. The total

instruction decreases by ~50% and cycles reduced significantly by ~45%.

IPC is still very high at 4.30 though with a small drop from previous value.

Note that IPC alone is not a measurement to evaluate performance drop

or improvement as it is a ratio and in this case both instructions and cycles

dropped heavily.

Re-plot the Stage 1 Top-down Metrics

Cycles Instructions IPC Benchmark
Score

Original Baseline 5.45E+9 2.53E+10 4.64 1.10G/s

Optimized 2.97E+9 1.28E+10 4.30 1.99G/s

T A B L E 3

Apache Arrow Performance Comparison
Between Baseline and Optimized Code

W H I T E P A P E R 42

Let us now collect the top-down level 1 metrics for further evaluation.

Figure 15 shows high retiring rate for this workload with 35% backend_

bound metric. Let us now look at how the top-down level 1 metrics

compare before and after optimization in Table 4.F I G . 1 5

Arrow CSV Parser Optimized:
TopdownL1

From Table 4, it can be observed that after optimization, the top-down

level 1 analysis shows a drop in retiring percentage from 53% to 48%

and backend_bound metric increases from 24% to 35%. This shows

increased backend pressure with reduction in retiring caused by efficient

vector unit utilization.

retiring frontend_bound backend_bound bad_speculation

Baseline 53% 23% 24% 0%

Optimized 48% 17% 35% 0%

T A B L E 4

Apache Arrow Topdown Level 1
Metrics: Baseline and Optimized Code

Re-plot the Operation Mix Metrics

Let us now collect the operation mix metrics for further evaluation.

Figure 16 shows simd_percentage of 28% that reflects the SIMD

optimization conducted with a reduction in integer_dp_percentage.

W H I T E P A P E R 43

Table 5 below shows the comparisons of the Operation Mix metrics

before and after optimization. Compared with Operation Mix before

optimization, integer_dp_percentage drops half from ~2/3 of the total.

After vectorization, simd_percentage now occupies over 1/4th of the

total operations. operations to ~1/3 of the operations.

F I G . 1 6

Apache Arrow Optimized:
Operation Mix

integer_dp_
percentage simd_percentage load_percentage store_percentage

branch_
percentage

Baseline 63% 0% 18% 7% 12%

Optimized 34% 28% 17% 8% 13%

T A B L E 5

Apache Arrow
Operation Mix
Metrics: Baseline
and Optimized
Code

W H I T E P A P E R 44

4.4. Summary

The original baseline Arrow CSV parser performance was quite good from

an IPC point of view. However, by conducting hotspot analysis with the

top-down methodology proposed in this paper, we could identify hotspot

in the code where high volumes of integer processing instructions are being

executed. This provided us insights into opportunities for optimization

leveraging Arm Neon technology. The optimized code improves throughout

by about 80% and cuts down half of the total instructions by exploiting

vector instructions.

For code optimization, it is always helpful to identify hotspots in the

code that are areas of pipeline bottlenecks or that are stealing most of

the CPU cycles. Arm top-down methodology presented in this document

methodology can help us find the bottlenecks quickly and focus

optimization exercises on the performance-critical code.

The upstream PR of this optimization is available at:

github.com/apache/arrow/pull/11896.

If you try this methodology and have any further comments or code

optimization stories to share, we would love to hear from you. Feel free

to reach out to us at sw-ecosystem@arm.com.

https://github.com/apache/arrow/pull/11896.
mailto:sw-ecosystem%40arm.com?subject=

W H I T E P A P E R 45

5. Glossary

Term Meaning

CMO Cache Maintenance Operations

CPU Central Processing Unit

LSU Load Store Unit

MMU Memory Management Unit

PE Processing Element

PMU Performance Monitoring Unit

SiP Silicon Provider

SLC System Level Cache

TLB Translation Lookaside Buffer

SIMD Single Instruction Multiple Data

6. Acknowledgements

We would like to thank David Murray, Alessandro Di Bella, Nick Forrington,

Manisha Malhotra, Ryan Harkin and Al Grant for their support and review

of this paper.

W H I T E P A P E R 46

7. References

[01] Arm®, “Arm® Neoverse V1 Technical Reference Manual”,
developer.arm.com/documentation/101427/latest/

[02] Arm®, “Arm® Neoverse V1 PMU Guide
developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/

[03] Arm®, “Arm® Neoverse™ V1 Software Optimization Guide Documentation”,
developer.arm.com/documentation/pjdoc466751330-9685/latest/

[04] Arm®, “Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Documentation” developer.arm.com/docs/ddi0487/latest

[05] Arm®, “Arm® Neoverse N1 Core: Performance Analysis Methodology
armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-
n1-core-performance-v2.pdf

[06] “Arm Telemetry Solution Repository”
gitlab.arm.com/telemetry-solution/telemetry-solution

[07] “Arm PMU Event Repository”,
github.com/ARM-software/data

[08] “Apache Arrow”,
github.com/apache/arrow

[09] en.wikipedia.org/wiki/Column-oriented_DBMS#Access_time

https://developer.arm.com/documentation/101427/latest/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/pjdoc466751330-9685/latest/
https://developer.arm.com/docs/ddi0487/latest
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
https://gitlab.arm.com/telemetry-solution/telemetry-solution
https://github.com/ARM-software/data
https://github.com/apache/arrow
https://en.wikipedia.org/wiki/Column-oriented_DBMS#Access_time

W H I T E P A P E R 47

8. Appendix A. UStress Data
A.1. UStress Tests: MPKI
Table 6 shows the results of the key MPKI metric measurements

for all the UStress validation tests.

branch_
mpki

l1d_cache_
mpki

l1i_cache_
mpki

l2_cache_
mpki

l1d_tlb_
mpki l1i_tlb_mpki l2_tlb_mpki dtlb_mpki itlb_mpki

Branch

branch_direct_
workload 54.45 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

branch_indirect_
workload 21.86 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

call_return_
workload 45.76 0.18 0.01 0.00 0.11 0.00 0.00 0.00 0.00

D-Cache

l1d_cache_
workload 0.66 331.59 0.03 0.02 0.03 0.00 0.00 0.00 0.00

l2d_cache_
workload 0.05 317.08 0.13 144.35 77.89 0.00 2.39 2.20 0.00

I-Cache l1i_cache_
workload 243.70 0.02 1637.87 0.03 0.03 0.00 0.00 0.00 0.00

DTLB l1d_tlb_
workload 0.00 0.04 0.01 0.02 165.28 0.00 0.03 0.00 0.00

Arithmetic

mul32_
workload 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

mul64_
workload 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

mac32_
workload 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

mac64_
workload 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

div32_workload 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00

div64_workload 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

fpmul_workload 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

fpmac_workload 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

fpdiv_workload 0.01 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00

fpsqrt_workload 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

int2double_
workload 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

double2int_
workload 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Memory

memcpy_
workload 0.24 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

store_buffer_
full_workload 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

load_after_
store_workload 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00

T A B L E 6

UStress Tests: MPKI

W H I T E P A P E R 48

A.2. UStress Tests: Miss Ratio
Table 7 shows the results of the key Miss ratio metric measurements

for all the UStress validation tests.

branch_
misprediction
_ratio

l1d_cache_
miss_ratio

l1i_cache_
miss_ratio

l2_cache_
miss_ratio

l1d_tlb_
miss_ratio

l1i_tlb_
miss_ratio

l2_tlb_miss
_ratio

dtlb_walk
_ratio

itlb_walk
_ratio

Branch

branch_direct_
workload 46.15 1.37 0.00 17.02 1.06 0.00 12.32 0.09 0.00

branch_indirect_
workload 46.81 0.00 0.00 13.08 0.00 0.00 4.87 0.00 0.00

call_return_
workload 32.03 0.11 0.00 0.01 0.06 0.00 0.24 0.00 0.00

D-Cache

l1d_cache_
workload 0.20 99.74 0.01 0.00 0.01 0.00 0.14 0.00 0.00

l2d_cache_
workload 0.02 95.93 0.04 22.63 23.57 0.01 3.06 0.67 0.01

I-Cache l1i_cache_
workload 74.82 0.00 91.22 0.00 0.01 0.00 5.72 0.00 0.00

DTLB l1d_tlb_
workload 0.00 0.03 0.00 1.52 99.10 0.00 0.02 0.00 0.00

Arithmetic

mul32_
workload 0.00 1.16 0.00 18.10 0.79 0.02 5.88 0.09 0.01

mul64_
workload 0.00 1.50 0.01 17.51 1.06 0.02 11.72 0.10 0.01

mac32_
workload 0.00 1.31 0.00 18.08 0.73 0.02 10.44 0.11 0.01

mac64_
workload 0.00 1.24 0.01 14.96 0.78 0.02 9.34 0.12 0.01

div32_workload 0.00 1.18 0.01 18.41 0.67 0.02 12.38 0.08 0.01

div64_workload 0.00 1.13 0.01 17.63 0.70 0.02 10.58 0.07 0.01

fpmul_workload 0.00 1.26 0.01 17.13 0.72 0.02 8.52 0.09 0.01

fpmac_workload 0.00 1.27 0.01 19.21 0.72 0.02 11.65 0.10 0.01

fpdiv_workload 0.01 1.47 0.02 16.82 0.71 0.02 10.25 0.08 0.01

fpsqrt_workload 0.00 1.32 0.01 16.56 0.81 0.02 12.09 0.08 0.01

int2double_
workload 0.00 1.27 0.00 17.51 0.75 0.00 13.22 0.09 0.00

double2int_
workload 0.00 1.24 0.00 18.39 0.80 0.00 11.49 0.09 0.00

Memory

memcpy_
workload 0.19 0.00 0.01 0.00 0.00 0.00 1.42 0.00 0.00

store_buffer_
full_workload 0.00 0.00 0.00 18.18 0.00 0.00 8.85 0.00 0.00

load_after_
store_workload 0.24 0.00 0.00 17.71 0.00 0.00 4.72 0.00 0.00

T A B L E 7

UStress Tests: Miss Ratio

W H I T E P A P E R 49

9. Appendix B1. Neoverse V1 Events
B1.1 Bus

Event Num Event Mnemonic Description

0x0019 BUS_ACCESS Counts memory transactions
issued by the CPU to the external
bus, including snoop requests and
snoop responses. Each beat of data
is counted individually.

0x0060 BUS_ACCESS_RD Counts memory read transactions
seen on the external bus. Each beat
of data is counted individually.

0x0061 BUS_ACCESS_WR Counts memory write transactions
seen on the external bus. Each beat
of data is counted individually.

0x001D BUS_CYCLES Counts bus cycles in the CPU.
Bus cycles represent a clock cycle
in which a transaction could be sent
or received on the interface from the
CPU to the external bus. Since that
interface is driven at the same clock
speed as the CPU, this event is a
duplicate of CPU_CYCLES.

Event Num Event Mnemonic Description

0x001E CHAIN Counts whenever the even
numbered PMU counter registers
overflow. This event is used when
the even/odd pairs of registers are
used as a single counter.

B1.2 Chain

T A B L E 8

Neoverse V1 Events: Bus

T A B L E 9

Neoverse V1 Events: Chain

W H I T E P A P E R 50

B1.3 Exception

Event Num Event Mnemonic Description

0x0084 EXC_DABORT Counts exceptions that are
taken locally and are caused by
data aborts or SErrors. Conditions
that could cause those exceptions
are attempting to read or write
memory where the MMU generates
a fault, attempting to read or write
memory with a misaligned address,
interrupts from the nSEI inputs and
internally generated SErrors.

0x0087 EXC_FIQ Counts FIQ exceptions including the
virtual FIQs that are taken locally.

0x008A EXC_HVC Counts HVC exceptions taken to EL2.

0x0086 EXC_IRQ Counts IRQ exceptions including the
virtual IRQs that are taken locally.

0x0083 EXC_PABORT Counts synchronous exceptions
that are taken locally and caused
by Instruction Aborts.

0x000A EXC_RETURN Counts any architecturally
executed exception return
instructions. Eg: AArch64: ERET

0x0088 EXC_SMC Counts SMC exceptions
take to EL3.

0x0082 EXC_SVC Counts SVC exceptions
taken locally.

0x0009 EXC_TAKEN Counts any taken architecturally
visible exceptions such as IRQ,
FIQ, SError, and other synchronous
exceptions. Exceptions are counted
whether or not they are
taken locally.

0x008C EXC_TRAP_DABORT Counts exceptions which
are traps not taken locally
and are caused by Data Aborts
or SError interrupts. Conditions
that could cause those exceptions
are: 1. Attempting to read or
write memory where the MMU
generates a fault, 2. Attempting
to read or write memory with a
misaligned address, 3. Interrupts
from the SEI input, 4. internally
generated SErrors.

0x008F EXC_TRAP_FIQ Counts FIQs which are not
taken locally but taken from EL0,
EL1, or EL2 to EL3 (which would be
the normal behavior for FIQs when
not executing in EL3).

T A B L E 1 0

Neoverse V1 Events: Exception

W H I T E P A P E R 51

Event Num Event Mnemonic Description

0x008E EXC_TRAP_IRQ Counts IRQ exceptions
including the virtual IRQs that
are not taken locally.

0x008D EXC_TRAP_OTHER Counts the number of synchronous
trap exceptions which are not taken
locally and are not SVC, SMC, HVC,
data aborts, Instruction Aborts, or
interrupts.

0x008B EXC_TRAP_PABORT Counts exceptions which are
traps not taken locally and are
caused by Instruction Aborts. For
example, attempting to execute an
instruction with a misaligned PC.

0x0081 EXC_UNDEF Counts the number of
synchronous exceptions which
are taken locally that are due
to attempting to execute an
instruction that is UNDEFINED.
Attempting to execute instruction
bit patterns that have not been
allocated. Attempting to execute
instructions when they are
disabled. Attempting to execute
instructions at an inappropriate
Exception level. Attempting to
execute an instruction when the
value of PSTATE.IL is 1.

W H I T E P A P E R 52

B1.4 L1D_Cache

Event Num Event Mnemonic Description

0x0004 L1D_CACHE Counts level 1 data cache
accesses from any load/store
operations. Atomic operations that
resolve in the CPUs caches (near
atomic operations) counts as both a
write access and read access. Each
access to a cache line is counted
including the multiple accesses
caused by single instructions such
as LDM or STM. Each access to
other level 1 data or unified memory
structures, for example refill buffers,
write buffers, and write-back buffers,
are also counted.

0x0048 L1D_CACHE_INVAL Counts each explicit
invalidation of a cache line in
the level 1 data cache caused by:
- Cache Maintenance Operations
(CMO) that operate by a virtual
address. - Broadcast cache coherency
operations from another CPU in the
system. This event does not count for
the following conditions: 1. A cache
refill invalidates a cache line. 2. A
CMO which is executed on that CPU
and invalidates a cache line specified
by set/way. Note that CMOs that
operate by set/way cannot be
broadcast from one CPU to another.

0x0039 L1D_CACHE_LMISS_RD Counts cache line refills into the level
1 data cache from any memory read
operations, that incurred additional
latency.

0x0040 L1D_CACHE_RD Counts level 1 data cache accesses
from any load operation. Near atomic
operations that resolve in the CPUs
caches counts as both a write access
and read access.

0x0003 L1D_CACHE_REFILL Counts level 1 data cache refills
caused by speculatively executed
load or store operations that missed
in the level 1 data cache. This event
only counts one event per cache line.
This event does not count cache line
allocations from preload instructions
or from hardware cache prefetching.

0x0044 L1D_CACHE_REFILL_INNER Counts level 1 data cache refills
where the cache line data came
from caches inside the immediate
cluster of the core.

T A B L E 1 1

Neoverse V1 Events: L1D_Cache

W H I T E P A P E R 53

Event Num Event Mnemonic Description

0x0045 L1D_CACHE_REFILL_OUTER Counts level 1 data cache refills
for which the cache line data came
from outside the immediate cluster
of the core, like an SLC in the system
interconnect or DRAM.

0x0042 L1D_CACHE_REFILL_RD Counts level 1 data cache refills
caused by speculatively executed
load instructions where the memory
read operation misses in the level 1
data cache. This event only counts
one event per cache line.

0x0043 L1D_CACHE_REFILL_WR Counts level 1 data cache refills
caused by speculatively executed
store instructions where the memory
write operation misses in the level 1
data cache. This event only counts
one event per cache line.

0x0015 L1D_CACHE_WB Counts write-backs of dirty data
from the L1 data cache to the L2
cache. This occurs when either a
dirty cache line is evicted from L1
data cache and allocated in the L2
cache or dirty data is written to the
L2 and possibly to the next level
of cache. This event counts both
victim cache line evictions and
cache write-backs from snoops or
cache maintenance operations. The
following cache operations are not
counted: 1. Invalidations which do
not result in data being transferred
out of the L1 (such as evictions of
clean data), 2. Full line writes which
write to L2 without writing L1, such
as write streaming mode.

0x0047 L1D_CACHE_WB_CLEAN Counts write-backs from the level
1 data cache that are a result of a
coherency operation made by another
CPU. Event count includes cache
maintenance operations.

0x0046 L1D_CACHE_WB_VICTIM Counts dirty cache line evictions
from the level 1 data cache caused by
a new cache line allocation. This event
does not count evictions caused by
cache maintenance operations.

0x0041 L1D_CACHE_WR Counts level 1 data cache accesses
generated by store operations. This
event also counts accesses caused by
a DC ZVA (data cache zero, specified
by virtual address) instruction. Near
atomic operations that resolve in the
CPUs caches count as a write access
and read access.

W H I T E P A P E R 54

B1.5 L1I_Cache

Event Num Event Mnemonic Description

0x0014 L1I_CACHE Counts instruction fetches which
access the level 1 instruction cache.
Instruction cache accesses caused by
cache maintenance operations are
not counted.

0x4006 L1I_CACHE_LMISS Counts cache line refills into
the level 1 instruction cache, that
incurred additional latency.

0x0001 L1I_CACHE_REFILL Counts cache line refills in the level 1
instruction cache caused by a missed
instruction fetch. Instruction fetches
may include accessing multiple
instructions, but the single cache line
allocation is counted once.

B1.6 L2_Cache

Event Num Event Mnemonic Description

0x0016 L2D_CACHE Counts level 2 cache accesses.
Level 2 cache is a unified cache
for data and instruction accesses.
Accesses are for misses in the first
level caches or translation resolutions
due to accesses. This event also
counts write back of dirty data from
level 1 data cache to the L2 cache.

0x0020 L2D_CACHE_ALLOCATE TBD

0x0058 L2D_CACHE_INVAL Counts each explicit invalidation
of a cache line in the level 2 cache
by cache maintenance operations
that operate by a virtual address,
or by external coherency operations.
This event does not count if either:
1. A cache refill invalidates a cache
line or, 2. A Cache Maintenance
Operation (CMO), which invalidates
a cache line specified by set/way,
is executed on that CPU. CMOs
that operate by set/way cannot be
broadcast from one CPU to another.

T A B L E 1 2

Neoverse V1 Events: L1I_Cache

T A B L E 1 3

Neoverse V1 Events: L2_Cache

W H I T E P A P E R 55

Event Num Event Mnemonic Description

0x4009 L2D_CACHE_LMISS_RD Counts cache line refills into
the level 2 unified cache from any
memory read operations that
incurred additional latency.

0x0050 L2D_CACHE_RD Counts level 2 cache accesses
due to memory read operations.
Level 2 cache is a unified cache
for data and instruction accesses,
accesses are for misses in the level
1 caches or translation resolutions
due to accesses.

0x0017 L2D_CACHE_REFILL Counts cache line refills into the
level 2 cache. level 2 cache is a
unified cache for data and instruction
accesses. Accesses are for misses
in the level 1 caches or translation
resolutions due to accesses.

0x0052 L2D_CACHE_REFILL_RD Counts refills for memory
accesses due to memory read
operation counted by L2D_CACHE_
RD. level 2 cache is a unified cache
for data and instruction accesses,
accesses are for misses in the level 1
caches or translation resolutions due
to accesses.

0x0053 L2D_CACHE_REFILL_WR Counts refills for memory
accesses due to memory write
operation counted by L2D_CACHE_
WR. level 2 cache is a unified cache
for data and instruction accesses,
accesses are for misses in the level
1 caches or translation resolutions
due to accesses.

W H I T E P A P E R 56

Event Num Event Mnemonic Description

0x002B L3D_CACHE Counts level 3 cache accesses.
Level 3 cache is a unified cache
for data and instruction accesses.
Accesses are for misses in the lower
level caches or translation resolutions
due to accesses.

0x0029 L3D_CACHE_ALLOCATE Counts level 3 cache line
allocates that do not fetch data
from outside the level 3 data or
unified cache. For example, allocates
due to streaming stores.

0x400B L3D_CACHE_LMISS_RD Counts any cache line refill into
the level 3 cache from memory
read operations that incurred
additional latency.

0x00A0 L3D_CACHE_RD TBD

0x002A L3D_CACHE_REFILL Counts level 3 accesses that receive
data from outside the L3 cache.

T A B L E 1 4

Neoverse V1 Events: L3_Cache

Event Num Event Mnemonic Description

0x0018 L2D_CACHE_WB Counts write-backs of data from
the L2 cache to outside the CPU.
This includes snoops to the L2 (from
other CPUs) which return data even
if the snoops cause an invalidation.
L2 cache line invalidations which do
not write data outside the CPU and
snoops which return data from an L1
cache are not counted. Data would
not be written outside the cache
when invalidating a clean cache line.

0x0057 L2D_CACHE_WB_CLEAN Counts write-backs from the level
2 cache that are a result of either: 1.
Cache maintenance operations, 2.
Snoop responses or, 3. Direct cache
transfers to another CPU due to a
forwarding snoop request.

0x0056 L2D_CACHE_WB_VICTIM Counts evictions from the level
2 cache because of a line being
allocated into the L2 cache.

0x0051 L2D_CACHE_WR Counts level 2 cache accesses
due to memory write operations.
Level 2 cache is a unified cache
for data and instruction accesses,
accesses are for misses in the level
1 caches or translation resolutions
due to accesses.

B1.7 L3_Cache

W H I T E P A P E R 57

Event Num Event Mnemonic Description

0x001A MEMORY_ERROR Counts any detected correctable
or uncorrectable physical memory
errors (ECC or parity) in protected
CPUs RAMs. On the core, this
event counts errors in the caches
(including data and tag rams). Any
detected memory error (from either a
speculative and abandoned access, or
an architecturally executed access) is
counted. Note that errors are only
detected when the actual protected
memory is accessed by an operation.

0x0013 MEM_ACCESS Counts memory accesses issued
by the CPU load store unit, where
those accesses are issued due to
load or store operations. This event
counts any memory access, no matter
whether the data is received from any
level of cache hierarchy or external
memory. If memory accesses are
broken up into smaller transactions
than what were specified in the
load or store instructions, then the
event counts those smaller
memory transactions.

B1.9 MemoryT A B L E 1 6

Neoverse V1 Events: Memory

Event Num Event Mnemonic Description

0x0037 LL_CACHE_MISS_RD Counts read transactions that
were returned from outside the core
cluster but missed in the system level
cache. This event counts when the
system register CPUECTLR.EXTLLC
bit is set. This event counts read
transactions returned from outside
the core if those transactions are
missed in the System level Cache.
The data source of the transaction
is indicated by a field in the CHI
transaction returning to the CPU. This
event does not count reads caused by
cache maintenance operations.

0x0036 LL_CACHE_RD Counts read transactions that
were returned from outside the core
cluster. This event counts when the
system register CPUECTLR.EXTLLC
bit is set. This event counts read
transactions returned from outside
the core if those transactions are
either hit in the System Level Cache
or missed in the SLC and are returned
from any other external sources.

B1.8 LL_CacheT A B L E 1 5

Neoverse V1 Events: LL_Cache

W H I T E P A P E R 58

Event Num Event Mnemonic Description

0x0066 MEM_ACCESS_RD Counts memory accesses issued
by the CPU due to load operations.
The event counts any memory load
access, no matter whether the data
is received from any level of cache
hierarchy or external memory.
The event also counts atomic load
operations. If memory accesses are
broken up by the load/store unit into
smaller transactions that are issued
by the bus interface, then the event
counts those smaller transactions.

0x0067 MEM_ACCESS_WR Counts memory accesses issued
by the CPU due to store operations.
The event counts any memory
store access, no matter whether
the data is located in any level of
cache or external memory. The event
also counts atomic load and store
operations. If memory accesses are
broken up by the load/store unit into
smaller transactions that are issued
by the bus interface, then the event
counts those smaller transactions.

0x0031 REMOTE_ACCESS Counts accesses to another
chip, which is implemented as a
different CMN mesh in the system.
If the CHI bus response back to the
core indicates that the data source
is from another chip (mesh), then
the counter is updated. If no data is
returned, even if the system snoops
another chip/mesh, then the counter
is not updated.

Event Num Event Mnemonic Description

0x0022 BR_MIS_PRED_RETIRED Counts branches counted
by BR_RETIRED which were
mispredicted and caused a
pipeline flush.

0x0021 BR_RETIRED Counts architecturally executed
branches, whether the branch is taken
or not. Instructions that explicitly
write to the PC are also counted.

B1.10 RetiredT A B L E 1 7

Neoverse V1 Events: Retired

W H I T E P A P E R 59

Event Num Event Mnemonic Description

0x000B CID_WRITE_RETIRED Counts architecturally
executed writes to the CONTEXTIDR
register, which usually contain the
kernel PID and can be output with
hardware trace.

0x0008 INST_RETIRED Counts instructions that have been
architecturally executed.

0x003A OP_RETIRED Counts micro-operations that are
architecturally executed. This is a
count of number of micro-operations
retired from the commit queue in a
single cycle.

0x0000 SW_INCR Counts software writes to
the PMSWINC_EL0 (software
PMU increment) register. The
PMSWINC_EL0 register is a
manually updated counter for use
by application software. This event
could be used to measure any user
program event, such as accesses to a
particular data structure (by writing
to the PMSWINC_EL0 register each
time the data structure is accessed).
To use the PMSWINC_EL0 register
and event, developers must insert
instructions that write to the
PMSWINC_EL0 register into the
source code. Since the SW_INCR
event records writes to the
PMSWINC_EL0 register, there is
no need to do a read/increment/
write sequence to the PMSWINC_
EL0 register.

0x001C TTBR_WRITE_RETIRED Counts architectural writes
to TTBR0/1_EL1. If virtualization
host extensions are enabled (by
setting the HCR_EL2.E2H bit to 1),
then accesses to TTBR0/1_EL1 that
are redirected to TTBR0/1_EL2, or
accesses to TTBR0/1_EL12, are
counted. TTBRn registers are
typically updated when the kernel
is swapping user-space threads
or applications.

Event Num Event Mnemonic Description

0x4003 SAMPLE_COLLISION Counts statistical profiling samples
that have collided with a previous
sample and so therefore not taken.

B1.11 SPET A B L E 1 8

Neoverse V1 Events: SPE

W H I T E P A P E R 60

Event Num Event Mnemonic Description

0x8005 ASE_INST_SPEC Counts speculatively executed
Advanced SIMD operations.

0x0074 ASE_SPEC Counts speculatively
executed Advanced SIMD
operations excluding load, store
and move micro-operations that
move data to or from SIMD
(vector) registers.

0x0078 BR_IMMED_SPEC Counts immediate branch operations
which are speculatively executed.

0x007A BR_INDIRECT_SPEC Counts indirect branch operations
including procedure returns, which
are speculatively executed. This
includes operations that force a
software change of the PC, other
than exception-generating operations.
Eg: BR Xn, RET

0x0010 BR_MIS_PRED Counts branches which are
speculatively executed and
mispredicted.

0x0012 BR_PRED Counts branches speculatively
executed and were predicted right.

0x0079 BR_RETURN_SPEC Counts procedure return operations
(RET) which are speculatively
executed.

0x0077 CRYPTO_SPEC Counts speculatively executed
cryptographic operations except for
PMULL and VMULL operations.

0x007E DMB_SPEC Counts DMB operations that are
speculatively issued to the Load/
Store unit in the CPU. This event does
not count implied barriers from load
acquire/store release operations.

B1.12 Spec_OperationT A B L E 1 9

Neoverse V1 Events:
Spec_Operation

Event Num Event Mnemonic Description

0x4001 SAMPLE_FEED Counts statistical profiling
samples taken for sampling.

0x4002 SAMPLE_FILTRATE Counts statistical profiling
samples taken which are not removed
by filtering.

0x4000 SAMPLE_POP Counts statistical profiling sample
population, the count of all operations
that could be sampled but may or may
not be chosen for sampling.

W H I T E P A P E R 61

Event Num Event Mnemonic Description

0x0073 DP_SPEC Counts speculatively executed logical
or arithmetic instructions such as
MOV/MVN operations.

0x007D DSB_SPEC Counts DSB operations that are
speculatively issued to Load/Store
unit in the CPU.

0x001B INST_SPEC Counts operations that have been
speculatively executed.

0x007C ISB_SPEC Counts ISB operations that are
executed.

0x006C LDREX_SPEC Counts Load-Exclusive operations
(such as LDREX or LDX) that have
been speculatively executed. Eg:
LDREX, LDX

0x0070 LD_SPEC Counts speculatively executed
load operations including Single
Instruction Multiple Data (SIMD)
load operations.

0x003B OP_SPEC Counts micro-operations
speculatively executed. This is
the count of the number of micro-
operations dispatched in a cycle.

0x0076 PC_WRITE_SPEC Counts speculatively executed
operations which cause software
changes of the PC. Those operations
include all taken branch operations.

0x0090 RC_LD_SPEC Counts any load acquire operations
that are speculatively executed. Eg:
LDAR, LDARH, LDARB

0x0091 RC_ST_SPEC Counts any store release operations
that are speculatively executed. Eg:
STLR, STLRH, STLRB’

0x006E STREX_FAIL_SPEC Counts store-exclusive operations
that have been speculatively
executed and have not successfully
completed the store operation.

0x006D STREX_PASS_SPEC Counts store-exclusive operations
that have been speculatively
executed and have successfully
completed the store operation.

W H I T E P A P E R 62

Event Num Event Mnemonic Description

0x003C STALL Counts cycles when no operations
are sent to the rename unit from the
frontend or from the rename unit to
the backend for any reason (either
frontend or backend stall).

0x0024 STALL_BACKEND Counts cycles whenever the
rename unit is unable to send any
micro-operations to the backend
of the pipeline because of backend
resource constraints. Backend
resource constraints can include
issue stage fullness, execution stage
fullness, or other internal pipeline
resource fullness. All the backend
slots were empty during the cycle
when this event counts.

B1.13 StallT A B L E 2 0

Neoverse V1 Events: Stall

Event Num Event Mnemonic Description

0x006F STREX_SPEC Counts store-exclusive
operations that have been
speculatively executed.

0x0071 ST_SPEC Counts speculatively executed
store operations including Single
Instruction Multiple Data (SIMD)
store operations.

0x006A UNALIGNED_LDST_SPEC Counts unaligned memory operations
issued by the CPU. This event counts
unaligned accesses (as defined by the
actual instruction), even if they are
subsequently issued as multiple
aligned accesses.

0x0068 UNALIGNED_LD_SPEC Counts unaligned memory
read operations issued by the CPU.
This event counts unaligned accesses
(as defined by the actual instruction),
even if they are subsequently
issued as multiple aligned accesses.
The event does not count preload
operations (PLD, PLI).

0x0069 UNALIGNED_ST_SPEC Counts unaligned memory write
operations issued by the CPU. This
event counts unaligned accesses (as
defined by the actual instruction),
even if they are subsequently issued
as multiple aligned accesses.

0x0075 VFP_SPEC Counts speculatively executed
floating point operations. This
event does not count operations
that move data to or from floating
point (vector) registers.

W H I T E P A P E R 63

Event Num Event Mnemonic Description

0x4004 CNT_CYCLES Counts constant frequency cycles.

0x0011 CPU_CYCLES Counts CPU clock cycles (not timer
cycles). The clock measured by this
event is defined as the physical clock
driving the CPU logic.

Event Num Event Mnemonic Description

0x0034 DTLB_WALK Counts data memory translation table
walks caused by a miss in the L2 TLB
driven by a memory access. Note that
partial translations that also cause a
table walk are counted. This event
does not count table walks caused by
TLB maintenance operations.

B1.14 General

B1.15 TLB

T A B L E 2 1

Neoverse V1 Events: General

T A B L E 2 2

Neoverse V1 Events: TLB

Event Num Event Mnemonic Description

0x4005 STALL_BACKEND_MEM Counts cycles when the backend is
stalled because there is a pending
demand load request in progress in
the last level core cache.

0x0023 STALL_FRONTEND Counts cycles when frontend
could not send any micro-operations
to the rename stage because of
frontend resource stalls caused by
fetch memory latency or branch
prediction flow stalls. All the frontend
slots were empty during the cycle
when this event counts.

0x003F STALL_SLOT Counts slots per cycle in which
no operations are sent to the
rename unit from the frontend or
from the rename unit to the backend
for any reason (either frontend or
backend stall).

0x003D STALL_SLOT_BACKEND Counts slots per cycle in which no
operations are sent from the rename
unit to the backend due to backend
resource constraints.

0x003E STALL_SLOT_FRONTEND Counts slots per cycle in which no
operations are sent to the rename
unit from the frontend due to
frontend resource constraints.

W H I T E P A P E R 64

Event Num Event Mnemonic Description

0x0035 ITLB_WALK Counts instruction memory
translation table walks caused by
a miss in the L2 TLB driven by a
memory access. Partial translations
that also cause a table walk are
counted. This event does not
count table walks caused by TLB
maintenance operations.

0x0025 L1D_TLB Counts level 1 data TLB accesses
caused by any memory load or store
operation. Note that load or store
instructions can be broken up into
multiple memory operations. This
event does not count TLB
maintenance operations.

0x004E L1D_TLB_RD Counts level 1 data TLB
accesses caused by memory
read operations. This event counts
whether the access hits or misses in
the TLB. This event does not count
TLB maintenance operations.

0x0005 L1D_TLB_REFILL Counts level 1 data TLB accesses
that resulted in TLB refills. If there
are multiple misses in the TLB that
are resolved by the refill, then this
event only counts once. This event
counts for refills caused by preload
instructions or hardware prefetch
accesses. This event counts regardless
of whether the miss hits in L2 or
results in a translation table walk.
This event will not count if the
translation table walk results in a fault
(such as a translation or access fault),
since there is no new translation
created for the TLB. This event will
not count on an access from an
AT (Address Translation) instruction.

0x004C L1D_TLB_REFILL_RD Counts level 1 data TLB refills
caused by memory read operations.
If there are multiple misses in the
TLB that are resolved by the refill,
then this event only counts once.
This event counts for refills caused
by preload instructions or hardware
prefetch accesses. This event counts
regardless of whether the miss hits
in L2 or results in a translation table
walk. This event will not count if the
translation table walk results in a fault
(such as a translation or access fault),
since there is no new translation
created for the TLB. This event will
not count on an access from an
Address Translation (AT) instruction.

W H I T E P A P E R 65

Event Num Event Mnemonic Description

0x004D L1D_TLB_REFILL_WR Counts level 1 data TLB refills
caused by data side memory write
operations. If there are multiple
misses in the TLB that are resolved
by the refill, then this event only
counts once. This event counts for
refills caused by preload instructions
or hardware prefetch accesses. This
event counts regardless of whether
the miss hits in L2 or results in a
translation table walk. This event will
not count if the table walk results
in a fault (such as a translation or
access fault), since there is no new
translation created for the TLB.
This event will not count with an
access from an Address Translation
(AT) instruction.

0x004F L1D_TLB_WR Counts any L1 data side TLB
accesses caused by memory
write operations. This event counts
whether the access hits or misses in
the TLB. This event does not count
TLB maintenance operations.

0x002D L2D_TLB_REFILL Counts level 2 TLB refills caused
by memory operations from both
data and instruction fetch, except for
those caused by TLB maintenance
operations and hardware prefetches.

0x005C L2D_TLB_REFILL_RD Counts level 2 TLB refills caused by
memory read operations from both
data and instruction fetch except for
those caused by TLB maintenance
operations or hardware prefetches.

0x005D L2D_TLB_REFILL_WR Counts level 2 TLB refills caused
by memory write operations from
both data and instruction fetch
except for those caused by TLB
maintenance operations.

0x005F L2D_TLB_WR Counts level 2 TLB accesses
caused by memory write operations
from both data and instruction fetch
except for those caused by TLB
maintenance operations.

W H I T E P A P E R 66

Event Num Event Mnemonic Description

0x80C1 FP_FIXED_OPS_SPEC Counts speculatively executed
non-scalable single precision floating
point operations.

0x80C0 FP_SCALE_OPS_SPEC Counts speculatively executed
scalable single precision floating
point operations.

0x8006 SVE_INST_SPEC Counts speculatively executed
operations that are SVE operations.

0x80BD SVE_LDFF_FAULT_SPEC Counts speculatively executed SVE
first fault or non-fault load operations
that clear at least one bit in the FFR.

0x80BC SVE_LDFF_SPEC Counts speculatively
executed SVE first fault or
non-fault load operations.

0x8075 SVE_PRED_EMPTY_SPEC Counts speculatively executed
predicated SVE operations with no
active predicate elements.

0x8076 SVE_PRED_FULL_SPEC Counts speculatively executed
predicated SVE operations with all
predicate elements active.

0x8077 SVE_PRED_PARTIAL_SPEC Counts speculatively executed
predicated SVE operations with
at least one but not all active
predicate elements.

0x8074 SVE_PRED_SPEC Counts speculatively executed
predicated SVE operations.

B1.16 SVET A B L E 2 3

Neoverse V1 Events: SVE

Event Num Event Mnemonic Description

0x002D L2D_TLB_REFILL Counts level 2 TLB refills caused
by memory operations from both
data and instruction fetch, except for
those caused by TLB maintenance
operations and hardware prefetches.

0x005C L2D_TLB_REFILL_RD Counts level 2 TLB refills caused by
memory read operations from both
data and instruction fetch except for
those caused by TLB maintenance
operations or hardware prefetches.

0x005D L2D_TLB_REFILL_WR Counts level 2 TLB refills caused
by memory write operations from
both data and instruction fetch
except for those caused by TLB
maintenance operations.

0x005F L2D_TLB_WR Counts level 2 TLB accesses
caused by memory write operations
from both data and instruction fetch
except for those caused by TLB
maintenance operations.

W H I T E P A P E R 67

Metric Name Metric Formula Unit

backend_bound 100 * STALL_SLOT_BACKEND/(CPU_
CYCLES *8)

percent of slots

bad_speculation 100 * (((1 - (OP_RETIRED/OP_SPEC)) * (1 -
(STALL_SLOT/(CPU_CYCLES * 8)))) +
((BR_MIS_PRED * 4)/CPU_CYCLES))

percent of slots

frontend_bound 100 * ((STALL_SLOT_FRONTEND/(CPU_
CYCLES * 8)) - ((BR_MIS_PRED * 4)/CPU_
CYCLES))

percent of slots

retiring 100 * (OP_RETIRED/OP_SPEC) * (1 -
(STALL_SLOT/(CPU_CYCLES * 8))) percent of slots

C1.1.2 Metric FormulaT A B L E 2 5

Neoverse V1 Metrics:
Topdown_L1, Metric Formula

Metric Name Metric Title Metric Description

backend_bound Backend Bound This metric is the percentage of
total slots that were stalled due to
resource constraints in the backend
of the processor.

bad_speculation Bad Speculation This metric is the percentage of total
slots that executed operations and
didn’t retire due to a pipeline flush.
This indicates cycles that were
utilized but inefficiently.

frontend_bound Frontend Bound This metric is the percentage of
total slots that were stalled due to
resource constraints in the frontend
of the processor.

retiring Retiring This metric is the percentage of
total slots that retired operations,
which indicates cycles that were
utilized efficiently.

10. Appendix C1. Neoverse V1 Metrics
C.1.1 Metric Group: Topdown_L1
This metric group contains the first set of metrics to begin topdown

analysis of application performance, which provide the percentage

distribution of processor pipeline utilization.

C1.1.1 Metric DescriptionsT A B L E 2 4

Neoverse V1 Metrics:
Topdown_L1, Metric Descriptions

W H I T E P A P E R 68

Metric Name Metric Formula Unit

backend_stalled_cycles STALL_BACKEND / CPU_
CYCLES * 100

percent of cycles

frontend_stalled_cycles STALL_FRONTEND / CPU_
CYCLES * 100

percent of cycles

Metric Name Metric Events

backend_stalled_cycles CPU_CYCLES, STALL_BACKEND

frontend_stalled_cycles CPU_CYCLES, STALL_FRONTEND

C1.2.2 Metric Formula

C1.2.3 Metric Events

T A B L E 2 8

Neoverse V1 Metrics:
Cycle_Accounting, Metric Formula

T A B L E 2 9

Neoverse V1 Metrics:
Cycle_Accounting, Metric Events

Metric Name Metric Title Metric Description

backend_stalled_cycles Backend Stalled Cycles This metric is the percentage
of cycles that were stalled due to
resource constraints in the backend
unit of the processor.

frontend_stalled_cycles Frontend Stalled Cycles This metric is the percentage
of cycles that were stalled due to
resource constraints in the frontend
unit of the processor.

C1.2 Metric Group: Cycle_Accounting
This metric group contains a set of metrics that measure the percentage

of processor cycles stalled in either frontend or backend of the processor.

C1.2.1 Metric DescriptionsT A B L E 2 7

Neoverse V1 Metrics:
Cycle_Accounting, Metric
Descriptions

Metric Name Metric Events

backend_bound CPU_CYCLES, STALL_SLOT_BACKEND

bad_speculation CPU_CYCLES, OP_SPEC, BR_MIS_PRED, STALL_SLOT, OP_RETIRED

frontend_bound CPU_CYCLES, BR_MIS_PRED, STALL_SLOT_FRONTEND

retiring CPU_CYCLES, OP_SPEC, STALL_SLOT, OP_RETIRED

C1.1.3 Metric EventsT A B L E 2 6

Neoverse V1 Metrics:
Topdown_L1, Metric Events

W H I T E P A P E R 69

C1.4 Metric Group: MPKI
This metric group contains metrics for different CPU resources that can be

measured as misses per kilo instructions.

Metric Name Metric Title Metric Description

branch_mpki Branch MPKI This metric measures the number of
branch mispredictions per thousand
instructions executed.

dtlb_mpki DTLB MPKI This metric measures the number
of data TLB Walks per thousand
instructions executed.

itlb_mpki ITLB MPKI This metric measures the number of
instruction TLB Walks per thousand
instructions executed.

l1d_cache_mpki L1D Cache MPKI This metric measures the
number of level 1 data cache
accesses missed per thousand
instructions executed.

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the
number of level 1 instruction TLB
accesses missed per thousand
instructions executed.

C1.4.1 Metric Descriptions

C1.3.3 Metric Events

Metric Name Metric Events

ipc CPU_CYCLES, INST_RETIRED

T A B L E 3 2

Neoverse V1 Metrics:
General, Metric Events

T A B L E 3 3

Neoverse V1 Metrics:
MPKI, Metric Descriptions

Metric Name Metric Title Metric Description

ipc Instructions Per Cycle This metric measures the number
of instructions retired per cycle.

C1.3.1 Metric Descriptions

C1.3.2 Metric Formula

Metric Name Metric Formula Unit

ipc INST_RETIRED / CPU_CYCLES per cycle

T A B L E 3 0

Neoverse V1 Metrics:
General, Metric Descriptions

T A B L E 3 1

Neoverse V1 Metrics:
General, Metric Formula

C1.3 Metric Group: General
This metric group contains general CPU metrics for performance analysis.

W H I T E P A P E R 70

Metric Name Metric Formula Unit

branch_mpki BR_MIS_PRED_RETIRED / INST_RETIRED * 1000 MPKI

dtlb_mpki DTLB_WALK / INST_RETIRED * 1000 MPKI

itlb_mpki ITLB_WALK / INST_RETIRED * 1000 MPKI

l1d_cache_mpki L1D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l1d_tlb_mpki L1D_TLB_REFILL / INST_RETIRED * 1000 MPKI

l1i_cache_mpki L1I_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l1i_tlb_mpki L1I_TLB_REFILL / INST_RETIRED * 1000 MPKI

l2_cache_mpki L2D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l2_tlb_mpki L2D_TLB_REFILL / INST_RETIRED * 1000 MPKI

ll_cache_read_mpki LL_CACHE_MISS_RD / INST_RETIRED * 1000 MPKI

C1.4.2 Metric FormulaT A B L E 3 4

Neoverse V1 Metrics:
MPKI, Metric Formula

Metric Name Metric Title Metric Description

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the
number of level 1 instruction TLB
accesses missed per thousand
instructions executed.

l1i_cache_mpki L1I Cache MPKI This metric measures the
number of level 1 instruction cache
accesses missed per thousand
instructions executed.

l1i_tlb_mpki L1 Instruction TLB MPKI This metric measures the
number of level 1 instruction TLB
accesses missed per thousand
instructions executed.

l2_cache_mpki L2 Cache MPKI This metric measures the number
of level 2 unified cache accesses
missed per thousand instructions
executed. Note that cache accesses
in this cache are either data memory
access or instruction fetch as this is a
unified cache.

l2_tlb_mpki L2 Unified TLB MPKI This metric measures the number
of level 2 unified TLB accesses missed
per thousand instructions executed.

ll_cache_read_mpki LL Cache Read MPKI This metric measures the number of
last level cache read accesses missed
per thousand instructions executed.

W H I T E P A P E R 71

Metric Name Metric Formula Unit

branch_mpki BR_MIS_PRED_RETIRED / INST_RETIRED * 1000 MPKI

dtlb_mpki DTLB_WALK / INST_RETIRED * 1000 MPKI

itlb_mpki ITLB_WALK / INST_RETIRED * 1000 MPKI

l1d_cache_mpki L1D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l1d_tlb_mpki L1D_TLB_REFILL / INST_RETIRED * 1000 MPKI

l1i_cache_mpki L1I_CACHE_REFILL / INST_RETIRED * 1000 MPKI

Metric Name Metric Events

branch_mpki BR_MIS_PRED_RETIRED, INST_RETIRED

dtlb_mpki INST_RETIRED, DTLB_WALK

itlb_mpki INST_RETIRED, ITLB_WALK

l1d_cache_mpki L1D_CACHE_REFILL, INST_RETIRED

l1d_tlb_mpki INST_RETIRED, L1D_TLB_REFILL

l1i_cache_mpki INST_RETIRED, L1I_CACHE_REFILL

l1i_tlb_mpki INST_RETIRED, L1I_TLB_REFILL

l2_cache_mpki L2D_CACHE_REFILL, INST_RETIRED

l2_tlb_mpki INST_RETIRED, L2D_TLB_REFILL

ll_cache_read_mpki INST_RETIRED, LL_CACHE_MISS_RD

C1.4.3 Metric EventsT A B L E 3 5

Neoverse V1 Metrics:
MPKI, Metric Events

W H I T E P A P E R 72

C1.5.1 Metric Descriptions

C1.5 Metric Group: Miss_Ratio
This metric group contains metrics to measure miss ratios of different

processor resources.

T A B L E 3 6

Neoverse V1 Metrics:
Miss_Ratio, Metric Descriptions Metric Name Metric Title Metric Description

branch_misprediction_ratio Branch Misprediction Ratio This metric measures the ratio of
branches mispredicted to the total
number of branches architecturally
executed. This gives an indication of
the effectiveness of the branch
prediction unit.

dtlb_walk_ratio DTLB Walk Ratio This metric measures the
ratio of instruction TLB Walks
to the total number of data TLB
accesses. This gives an indication
of the effectiveness of the data
TLB accesses.

itlb_walk_ratio ITLB Walk Ratio This metric measures the ratio
of instruction TLB Walks to the
total number of instruction TLB
accesses. This gives an indication of
the effectiveness of the instruction
TLB accesses.

l1d_cache_miss_ratio L1D Cache Miss Ratio This metric measures the ratio of
 level 1 data cache accesses missed
to the total number of level 1 data
cache accesses. This gives an
indication of the effectiveness of
the level 1 data cache.

l1d_tlb_miss_ratio L1 Data TLB Miss Ratio This metric measures the ratio of
level 1 data TLB accesses missed to
the total number of level 1 data
TLB accesses. This gives an indication
of the effectiveness of the level 1
data TLB.

W H I T E P A P E R 73

Metric Name Metric Title Metric Description

l1i_cache_miss_ratio L1I Cache Miss Ratio This metric measures the ratio of
level 1 instruction cache accesses
missed to the total number of level 1
instruction cache accesses. This gives
an indication of the effectiveness of
the level 1 instruction cache.

l1i_tlb_miss_ratio L1 Instruction TLB Miss Ratio This metric measures the ratio
of level 1 instruction TLB accesses
missed to the total number of level 1
instruction TLB accesses. This gives
an indication of the effectiveness of
the level 1 instruction TLB.

l2_cache_miss_ratio L2 Cache Miss Ratio This metric measures the ratio
of level 2 cache accesses missed to
the total number of level 2 cache
accesses. This gives an indication of
the effectiveness of the level 2 cache,
which is a unified cache that stores
both data and instruction. Note
that cache accesses in this cache
are either data memory access or
instruction fetch as this is a
unified cache.

l2_tlb_miss_ratio L2 Unified TLB Miss Ratio This metric measures the ratio of level
2 unified TLB accesses missed to the
total number of level 2 unified TLB
accesses. This gives an indication of
the effectiveness of the level 2 TLB

ll_cache_read_miss_ratio LL Cache Read Miss Ratio This metric measures the ratio of last
level cache read accesses missed to
the total number of last level cache
accesses. This gives an indication
of the effectiveness of the last level
cache for read traffic. Note that cache
accesses in this cache are either
data memory access or instruction
fetch as this is a system level cache.

W H I T E P A P E R 74

Metric Name Metric Events

branch_misprediction_ratio BR_MIS_PRED_RETIRED, BR_RETIRED

dtlb_walk_ratio L1D_TLB, DTLB_WALK

itlb_walk_ratio ITLB_WALK, L1I_TLB

l1d_cache_miss_ratio L1D_CACHE_REFILL, L1D_CACHE

l1d_tlb_miss_ratio L1D_TLB, L1D_TLB_REFILL

l1i_cache_miss_ratio L1I_CACHE, L1I_CACHE_REFILL

l1i_tlb_miss_ratio L1I_TLB_REFILL, L1I_TLB

l1i_tlb_miss_ratio L2D_CACHE_REFILL, L2D_CACHE

l2_tlb_miss_ratio L2D_TLB, L2D_TLB_REFILL

ll_cache_read_miss_ratio LL_CACHE_MISS_RD, LL_CACHE_RD

C1.5.3 Metric EventsT A B L E 3 8

Neoverse V1 Metrics:
Miss_Ratio, Metric Events

Metric Name Metric Formula Unit

branch_misprediction_ratio BR_MIS_PRED_RETIRED / BR_RETIRED per branch

dtlb_walk_ratio DTLB_WALK / L1D_TLB per TLB access

itlb_walk_ratio ITLB_WALK / L1I_TLB per TLB access

l1d_cache_miss_ratio L1D_CACHE_REFILL / L1D_CACHE per cache access

l1d_tlb_miss_ratio L1D_TLB_REFILL / L1D_TLB per TLB access

l1i_cache_miss_ratio L1I_CACHE_REFILL / L1I_CACHE per cache access

l1i_tlb_miss_ratio L1I_TLB_REFILL / L1I_TLB per TLB access

l2_cache_miss_ratio L2D_CACHE_REFILL / L2D_CACHE per cache access

l2_tlb_miss_ratio L2D_TLB_REFILL / L2D_TLB per TLB access

ll_cache_read_miss_ratio LL_CACHE_MISS_RD / LL_CACHE_RD per cache access

C1.5.2 Metric FormulaT A B L E 3 7

Neoverse V1 Metrics:
Miss_Ratio, Metric Formula

W H I T E P A P E R 75

C1.6.3 Metric Events

Metric Name Metric Events

branch_misprediction_ratio BR_MIS_PRED_RETIRED, BR_RETIRED

branch_mpki BR_MIS_PRED_RETIRED, INST_RETIRED

T A B L E 4 1

Neoverse V1 Metrics:
Branch_Effectiveness,
Metric Events

C1.6 Metric Group: Branch_Effectiveness
This metric group contains metrics to evaluate the effectiveness of branch

instruction execution on this processor.

Metric Name Metric Title Metric Description

branch_misprediction_ratio Branch Misprediction Ratio This metric measures the ratio of
branches mispredicted to the total
number of branches architecturally
executed. This gives an indication of
the effectiveness of the branch
prediction unit.

branch_mpki Branch MPKI This metric measures the number of
branch mispredictions per thousand
instructions executed.

C1.6.1 Metric Descriptions

C1.6.2 Metric Formula

Metric Name Metric Formula Unit

branch_misprediction_ratio BR_MIS_PRED_RETIRED / BR_RETIRED per branch

branch_mpki BR_MIS_PRED_RETIRED / INST_RETIRED * 1000 MPKI

T A B L E 3 9

Neoverse V1 Metrics:
Branch_Effectiveness,
Metric Description

T A B L E 4 0

Neoverse V1 Metrics:
Branch_Effectiveness,
Metric Formula

W H I T E P A P E R 76

C1.7.2 Metric Formula

Metric Name Metric Formula Unit

itlb_mpki ITLB_WALK / INST_RETIRED * 1000 MPKI

itlb_walk_ratio ITLB_WALK / L1I_TLB per TLB access

l1i_tlb_miss_ratio L1I_TLB_REFILL / L1I_TLB per TLB access

l1i_tlb_mpki L1I_TLB_REFILL / INST_RETIRED * 1000 MPKI

l2_tlb_miss_ratio L2D_TLB_REFILL / L2D_TLB per TLB access

l2_tlb_mpki L2D_TLB_REFILL / INST_RETIRED * 1000 MPKI

T A B L E 4 3

Neoverse V1 Metrics:
ITLB_Effectiveness,
Metric Formula

C1.7 Metric Group: ITLB_Effectiveness
This metric group contains metrics to evaluate the effectiveness of

instruction TLB on this processor.

Metric Name Metric Title Metric Description

itlb_mpki ITLB MPKI This metric measures the number of
instruction TLB Walks per thousand
instructions executed.

itlb_walk_ratio ITLB Walk Ratio This metric measures the ratio
of instruction TLB Walks to the
total number of instruction TLB
accesses. This gives an indication of
the effectiveness of the instruction
TLB accesses.

l1i_tlb_miss_ratio L1 Instruction TLB Miss Ratio This metric measures the ratio of level
1 instruction TLB accesses missed to
the total number of level 1 instruction
TLB accesses. This gives an indication
of the effectiveness of the level 1
instruction TLB.

l1i_tlb_mpki L1 Instruction TLB MPKI This metric measures the
number of level 1instruction TLB
accesses missed per thousand
instructions executed.

l2_tlb_miss_ratio L2 Unified TLB Miss Ratio This metric measures the ratio of level
2 unified TLB accesses missed to the
total number of level 2 unified TLB
accesses. This gives an indication of
the effectiveness of the level 2 TLB.

l2_tlb_mpki L2 Unified TLB MPKI This metric measures the number
of level 2 unified TLB accesses missed
per thousand instructions executed.

C1.7.1 Metric DescriptionsT A B L E 4 2

Neoverse V1 Metrics:
ITLB_Effectiveness,
Metric Descriptions

W H I T E P A P E R 77

C1.8.1 Metric Descriptions

C1.8 Metric Group: DTLB_Effectiveness
This metric group contains metrics to evaluate the effectiveness of data

TLB on this processor.

Metric Name Metric Title Metric Description

dtlb_mpki DTLB MPKI This metric measures the number
of data TLB Walks per thousand
instructions executed.

dtlb_walk_ratio DTLB Walk Ratio This metric measures the
ratio of instruction TLB Walks
to the total number of data TLB
accesses. This gives an indication
of the effectiveness of the data
TLB accesses.

l1d_tlb_miss_ratio L1 Data TLB Miss Ratio This metric measures the ratio
of level 1 data TLB accesses missed
to the total number of level 1 data
TLB accesses. This gives an indication
of the effectiveness of the level 1
data TLB.

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the
number of level 1 instruction TLB
accesses missed per thousand
instructions executed.

l2_tlb_miss_ratio L2 Unified TLB Miss Ratio This metric measures the ratio of level
2 unified TLB accesses missed to the
total number of level 2 unified TLB
accesses. This gives an indication of
the effectiveness of the level 2 TLB.

l2_tlb_mpki L2 Unified TLB MPKI This metric measures the
number of level 2 unified TLB
accesses missed per thousand
instructions executed.

T A B L E 4 5

Neoverse V1 Metrics:
DTLB_Effectiveness,
Metric Descriptions

C1.7.3 Metric Events

Metric Name Metric Events

itlb_mpki INST_RETIRED, ITLB_WALK

itlb_walk_ratio ITLB_WALK, L1I_TLB

l1i_tlb_miss_ratio L1I_TLB_REFILL, L1I_TLB

l1i_tlb_mpki INST_RETIRED, L1I_TLB_REFILL

l2_tlb_miss_ratio L2D_TLB, L2D_TLB_REFILL

l2_tlb_mpki INST_RETIRED, L2D_TLB_REFILL

T A B L E 4 4

Neoverse V1 Metrics:
ITLB_Effectiveness,
Metric Events

W H I T E P A P E R 78

C1.9 Metric Group: L1I_Cache_Effectiveness
This metric group contains metrics to evaluate the effectiveness of L1

Instruction cache on this processor.

C1.8.2 Metric Formula

Metric Name Metric Formula Unit

dtlb_mpki DTLB_WALK / INST_RETIRED * 1000 MPKI

dtlb_walk_ratio DTLB_WALK / L1D_TLB per TLB access

l1d_tlb_miss_ratio L1D_TLB_REFILL / L1D_TLB per TLB access

l1d_tlb_mpki L1D_TLB_REFILL / INST_RETIRED * 1000 MPKI

l2_tlb_miss_ratio L2D_TLB_REFILL / L2D_TLB per TLB access

l2_tlb_mpki L2D_TLB_REFILL / INST_RETIRED * 1000 MPKI

C1.8.3 Metric Events

Metric Name Metric Events

dtlb_mpki INST_RETIRED, DTLB_WALK

dtlb_walk_ratio L1D_TLB, DTLB_WALK

l1d_tlb_miss_ratio L1D_TLB, L1D_TLB_REFILL

l1d_tlb_mpki INST_RETIRED, L1D_TLB_REFILL

l2_tlb_miss_ratio L2D_TLB, L2D_TLB_REFILL

l2_tlb_mpki INST_RETIRED, L2D_TLB_REFILL

T A B L E 4 6

Neoverse V1 Metrics:
DTLB_Effectiveness,
Metric Formula

T A B L E 4 7

Neoverse V1 Metrics:
DTLB_Effectiveness,
Metric Events

Metric Name Metric Title Metric Description

l1d_tlb_miss_ratio L1 Data TLB Miss Ratio This metric measures the ratio
of level 1 data TLB accesses missed
to the total number of level 1 data
TLB accesses. This gives an indication
of the effectiveness of the level 1
data TLB.

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the
number of level 1 instruction TLB
accesses missed per thousand
instructions executed.

W H I T E P A P E R 79

C1.10 Metric Group: L1D_Cache_Effectiveness
This metric group contains metrics to evaluate the effectiveness of

L1 Data Cache on this processor.

Metric Name Metric Title Metric Description

l1d_cache_miss_ratio L1D Cache Miss Ratio This metric measures the ratio of
level 1 data cache accesses missed
to the total number of level 1 data
cache accesses. This gives an
indication of the effectiveness of
the level 1 data cache.

C1.10.1 Metric DescriptionsT A B L E 5 1

Neoverse V1 Metrics:
L1D_Cache_Effectiveness,
Metric Descriptions

Metric Name Metric Title Metric Description

l1i_cache_miss_ratio L1I Cache Miss Ratio This metric measures the ratio of
level 1 instruction cache accesses
missed to the total number of level 1
instruction cache accesses. This gives
an indication of the effectiveness of
the level 1 instruction cache.

l1i_cache_mpki L1I Cache MPKI This metric measures the
number of level 1 instruction
cache accesses missed per
thousand instructions executed.

C1.9.1 Metric Descriptions

C1.9.2 Metric Formula

C1.9.3 Metric Events

Metric Name Metric Formula Unit

l1i_cache_miss_ratio L1I_CACHE_REFILL / L1I_CACHE per cache access

l1i_cache_mpki L1I_CACHE_REFILL / INST_RETIRED * 1000 MPKI

Metric Name Metric Events

l1i_cache_miss_ratio L1I_CACHE, L1I_CACHE_REFILL

l1i_cache_mpki INST_RETIRED, L1I_CACHE_REFILL

T A B L E 4 8

Neoverse V1 Metrics:
L1I_Cache_Effectiveness,
Metric Descriptions

T A B L E 4 9

Neoverse V1 Metrics:
L1I_Cache_Effectiveness,
Metric Formula

T A B L E 5 0

Neoverse V1 Metrics:
L1I_Cache_Effectiveness,
Metric Events

W H I T E P A P E R 80

C1.11 Metric Group: L2_Cache_Effectiveness
This metric group contains metrics to evaluate the effectiveness of L2

Unified Cache on this processor.

Metric Name Metric Title Metric Description

l2_cache_miss_ratio L2 Cache Miss Ratio This metric measures the ratio of
level 2 cache accesses missed to
the total number of level 2 cache
accesses. This gives an indication of
the effectiveness of the level 2 cache,
which is a unified cache that stores
both data and instruction. Note
that cache accesses in this cache
are either data memory access or
instruction fetch as this is a
unified cache.

l2_cache_mpki L2 Cache MPKI This metric measures the number
of level 2 unified cache accesses
missed per thousand instructions
executed. Note that cache accesses
in this cache are either data memory
access or instruction fetch as this is
a unified cache.

C1.11.1 Metric DescriptionsT A B L E 5 4

Neoverse V1 Metrics:
L2_Cache_Effectiveness,
Metric Descriptions

C1.10.2 Metric Formula

Metric Name Metric Formula Unit

l1d_cache_miss_ratio L1D_CACHE_REFILL / L1D_CACHE per cache access

l1d_cache_mpki L1D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

C1.10.3 Metric Events

Metric Name Metric Events

l1d_cache_miss_ratio L1D_CACHE_REFILL, L1D_CACHE

l1d_cache_mpki L1D_CACHE_REFILL, INST_RETIRED

T A B L E 5 2

Neoverse V1 Metrics:
L1D_Cache_Effectiveness,
Metric Formula

T A B L E 5 3

Neoverse V1 Metrics:
L1D_Cache_Effectiveness,
Metric Events

Metric Name Metric Title Metric Description

l1d_cache_mpki L1D Cache MPKI This metric measures the number of
level 1 data cache accesses missed
per thousand instructions executed.

W H I T E P A P E R 81

C1.12 Metric Group: LL_Cache_Effectiveness
This metric group contains metrics to evaluate the effectiveness of Last

Level Cache on this processor.

Metric Name Metric Title Metric Description

ll_cache_read_hit_ratio LL Cache Read Hit Ratio This metric measures the ratio of
last level cache read accesses hit in
the cache to the total number of last
level cache accesses. This gives an
indication of the effectiveness of the
last level cache for read traffic. Note
that cache accesses in this cache
are either data memory access or
instruction fetch as this is a system
level cache.

ll_cache_read_miss_ratio LL Cache Read Miss Ratio This metric measures the ratio of
last level cache read accesses missed
to the total number of last level cache
accesses. This gives an indication
of the effectiveness of the last level
cache for read traffic. Note that cache
accesses in this cache are either
data memory access or instruction
fetch as this is a system level cache.

ll_cache_read_mpki LL Cache Read MPKI This metric measures the number of
last level cache read accesses missed
per thousand instructions executed.

C1.12.1 Metric DescriptionsT A B L E 5 7

Neoverse V1 Metrics:
LL_Cache_Effectiveness,
Metric Descriptions

C1.11.3 Metric Events

Metric Name Metric Events

l2_cache_miss_ratio L2D_CACHE_REFILL, L2D_CACHE

l2_cache_mpki L2D_CACHE_REFILL, INST_RETIRED

C1.11.2 Metric Formula

Metric Name Metric Formula Unit

l2_cache_miss_ratio L2D_CACHE_REFILL / L2D_CACHE per cache access

l2_cache_mpki L2D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

T A B L E 5 5

Neoverse V1 Metrics:
L2_Cache_Effectiveness,
Metric Formula

T A B L E 5 6

Neoverse V1 Metrics:
L2_Cache_Effectiveness,
Metric Events

W H I T E P A P E R 82

C1.13.1 Metric Descriptions

C1.13 Metric Group: Operation_Mix
This metric group provides the distribution of micro-operation types

executed for the program.

Metric Name Metric Title Metric Description

branch_percentage Branch Operations Percentage This metric measures branch
operations as a percentage of
operations speculatively executed.

crypto_percentage Crypto Operations Percentage This metric measures crypto
operations as a percentage of
operations speculatively executed.

integer_dp_percentage Integer Operations Percentage This metric measures scalar
integer operations as a percentage of
operations speculatively executed.

load_percentage Load Operations Percentage This metric measures load
operations as a percentage of
operations speculatively executed.

scalar_fp_percentage Floating Point
Operations Percentage

This metric measures scalar floating
point operations as a percentage of
operations speculatively executed.

T A B L E 6 0

Neoverse V1 Metrics:
Operation_Mix,
Metric Descriptions

C1.12.2 Metric Formula

C1.12.3 Metric Events

Metric Name Metric Formula Unit

ll_cache_read_hit_ratio (LL_CACHE_RD - LL_CACHE_MISS_RD) /
LL_CACHE_RD

per cache access

ll_cache_read_miss_ratio LL_CACHE_MISS_RD / LL_CACHE_RD per cache access

ll_cache_read_mpki LL_CACHE_MISS_RD / INST_RETIRED * 1000 MPKI

Metric Name Metric Events

ll_cache_read_hit_ratio LL_CACHE_MISS_RD, LL_CACHE_RD

ll_cache_read_miss_ratio LL_CACHE_MISS_RD, LL_CACHE_RD

ll_cache_read_mpki INST_RETIRED, LL_CACHE_MISS_RD

T A B L E 5 8

Neoverse V1 Metrics:
LL_Cache_Effectiveness,
Metric Formula

T A B L E 5 9

Neoverse V1 Metrics:
LL_Cache_Effectiveness,
Metric Events

83

C1.13.3 Metric Events

Metric Name Metric Events

branch_percentage INST_SPEC, BR_INDIRECT_SPEC, BR_IMMED_SPEC

crypto_percentage INST_SPEC, CRYPTO_SPEC

integer_dp_percentage INST_SPEC, DP_SPEC

load_percentage INST_SPEC, LD_SPEC

scalar_fp_percentage INST_SPEC, VFP_SPEC

simd_percentage INST_SPEC, ASE_SPEC

store_percentage INST_SPEC, ST_SPEC

T A B L E 6 2

Neoverse V1 Metrics:
Operation_Mix,
Metric Events

C1.13.2 Metric Formula

Metric Name Metric Formula Unit

branch_percentage (BR_IMMED_SPEC + BR_INDIRECT_SPEC) /
INST_SPEC * 100

percent of operations

crypto_percentage CRYPTO_SPEC / INST_SPEC * 100 percent of operations

integer_dp_percentage DP_SPEC / INST_SPEC * 100 percent of operations

load_percentage LD_SPEC / INST_SPEC * 100 percent of operations

scalar_fp_percentage VFP_SPEC / INST_SPEC * 100 percent of operations

simd_percentage ASE_SPEC / INST_SPEC * 100 percent of operations

store_percentage ST_SPEC / INST_SPEC * 100 percent of operations

T A B L E 6 1

Neoverse V1 Metrics:
Operation_Mix,
Metric Formula

Metric Name Metric Title Metric Description

simd_percentage SIMD Operations Percentage This metric measures SIMD
operations as a percentage of total
operations speculatively executed.

store_percentage Store Operations Percentage This metric measures store
operations as a percentage of
operations speculatively executed.

© A R M LT D . 2 0 2 3 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the
product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in
this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties
implied or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information
to the reader about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information in this document or any
error or omission in such information.

