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1. Introduction

Neoverse V-series cores are designed to deliver the maximum  

single-threaded performance available from Arm for cloud and  

high-performance computing (HPC) workloads. Neoverse V1, the first  

in this new performance tier, is the first Arm-designed core to support  

key performance features including Scalable Vector Extensions, bFloat16  

and Int8MatMul. Combined with platform capabilities such as DDR5 

memory and PCIe Gen5 I/O, the Neoverse V1 platform provides leading 

performance for cloud, HPC and ML workloads. 

This paper outlines a methodology for workload characterization and  

root cause analysis using the Performance Monitoring Unit (PMU) events 

on the Neoverse V1 CPU. The intended audience is software developers  

and performance analysts working on software analysis, optimizations, 

tuning, and development. The content can also support silicon engineers  

in selecting the right set of PMU events for conducting system analysis.
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Background

This paper is an extension to the previous whitepaper titled “Arm Neoverse 

Core N1: Performance Analysis Methodology”, which introduced the basic 

performance analysis methodology that can be followed on any Neoverse 

platform with a set of architecturally common PMU events and derived 

metrics. As this was the first document on PMU based methodology  

from Arm, a basic introduction to the Arm Performance Monitoring Unit  

[5, Chapter 2] and using the Linux perf tool for accessing PMU events 

and conducting performance analysis [5, Chapter 4] was already covered. 

In this paper, we focus on introducing new capabilities supported by the 

Neoverse V1 on top of the existing features in the Neoverse N1, which is 

the previous generation. It is recommended to read this paper for a basic 

understanding of the hardware PMU unit and common architectural  

events, as well as how to use Linux perf based tooling to conduct 

performance analysis. 

Outline

The content of this paper is divided into 4 chapters.

Chapter 2 will introduce the hardware PMU on the Neoverse V1 with  

a list of the most relevant PMU events for workload characterization.

Chapter 3 will present the workload characterization methodology using 

the Neoverse V1 core PMU events, including some validation examples.

Chapter 4 will explore a case study on how the performance  

analysis methodology presented in Chapter 3 was used to conduct  

code optimization on the Apache Arrow workload.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
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2.  Neoverse V1 Performance  
Monitoring Events & Metrics

The Neoverse V1 CPU implements the PMU extensions of the Arm v8.4[4] 

with support for 100+ hardware events. The Neoverse V1 PMU has six 

configurable counter registers and one dedicated function counter  

to count CPU cycles.

2.1 Neoverse V1 PMU References

There are three key references for the Neoverse V1 PMU events  

and other information needed for their perusal as below:

01 Arm Neoverse V1 PMU Guide[2]

02 Arm Neoverse V1 Technical Reference Manual[1]

03 Arm Neoverse V1 Software Optimization Manual[3]

04 Arm Architecture Reference Manual[4]

The PMU events implemented by the Neoverse V1 core are listed in  

the Arm Neoverse V1 Core Technical Reference Manual [1, Chapter 1].  

These events are grouped per CPU function groups with enhanced SW  

consumer-friendly descriptions and presented in Appendix B.

We also provide the Neoverse V1 PMU Guide[2], a supplementary guide 

to the hardware PMU events implemented by the core. This PMU Guide 

provides detailed descriptions of PMU events categorized per CPU block. 

Micro-architectural and architectural definitions required for a better 

understanding of each PMU event are included, with relevant definitions 

marked as references to each PMU event description. The Neoverse V1 

PMU Guide[2] also adds an exclusive CPU execution flow chapter that 

shows key CPU execution flows that the memory subsystem, with a 

https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/101427/latest/
https://developer.arm.com/documentation/pjdoc466751330-9685/latest/
https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/documentation/101427/latest/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
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depiction of PMU events being counted in each stage. We recommend 

using the V1 PMU Guide[2] as the go-to reference manual for detailed 

descriptions of performance analysis activities using PMU events.

2.2 Neoverse V1 PMU Events Selection for Workload Characterization

For conducting performance analysis and workload characterization, Figure 

1 presents a cheat sheet with Arm recommended subset of PMU events 

supported by Neoverse V1. Descriptions of these events can be referred  

to in Appendix B. These events can be used to derive metrics that can 

support the analysis methodology discussed in Section 3.
F I G .  1

Neoverse V1 PMU Events Cheat Sheet

https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
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2.3 Neoverse V1 PMU Derived Metrics for Workload Characterization

For conducting performance analysis and workload characterization,  

Figure 2 presents a cheat sheet with Arm specified derived metrics using  

the PMU events shortlisted in Figure 1. Appendix C has the details  

of all the metric groups and metrics supported by Neoverse V1.
F I G .  2

Neoverse V1 PMU Metrics Cheat Sheet

We refer to Chapter 3 for the Arm performance analysis methodology to  

be used for conducting workload characterization using the list of events 

and metrics specified in Figure 1 and 2.
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3.  Neoverse V1 Performance  
Analysis Methodology

In this chapter, we give a brief introduction to the Neoverse V1 core  

micro-architecture. Followingly, we present the Arm top-down performance 

analysis methodology for Neoverse V1 with a set of validation tests to show 

how to use this methodology for optimization use cases. The Neoverse V1 

is the first CPU in the Neoverse family that supports a full set of level 1 

metrics for top-down analysis, which is introduced in Section 3.2. 

3.1 Neoverse V1 Processor

Figure 1 shows the micro-architecture details of the Arm Neoverse core, 

which is a super pipelined super-scalar processor which has an in-order 

frontend and out-of-order backend.
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F I G .  3

Arm Neoverse V1 Core  
Micro-architecture Block Diagram

The frontend of the core comprises of the instruction fetch and decode 

units. The frontend also includes a branch predictor unit that fetches 

instructions ahead of the pipeline and helps to hide latencies caused  

by control flow bubbles in the pipeline. The fetch unit can fetch multiple 

instructions per cycle whose bandwidth is specific to a micro-architecture 
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design, which gets stored in a decode queue. The decode queue  

sends multiple instructions per cycle for decoding, whose bandwidth  

is determined by the number of decode slots available. The decode unit 

decomposes the Arm architecture instructions into micro-operations. The 

decode unit decode more than one micro-operations per cycle, which is 

fed to the re-order buffer for execution in the out-of-order backend. This 

bandwidth is determined by the number of renamed SLOTS available in  

the micro-architecture. From a micro-architecture standpoint, the rename 

unit is considered the boundary between the frontend and backend of  

the processor. 

The backend of the core has a scheduler in the dispatch unit that 

orchestrates the operation executed when the issue queue associated with 

the operation can store the execution. The issue queue sends operations 

for execution when the execution unit is free and the operands are ready. 

Once the execution is complete, the results are sent to the commit reorder 

buffer(ROB) from where the instructions are retired when the speculated 

execution is confirmed. The backend of the CPU executes the operations 

out-of-order and stores results, with the help of the reorder buffer. The 

reorder buffer helps to track dependencies between operations (or is it 

the dispatch unit) and tracks the operand availability for the execution of 

operations. Register renaming is undertaken in this stage as well to mitigate 

data dependency hazards.

Issue queues are employed for:

01 Queuing the micro-operations(uops) to assigned ports.

02 Managing dependencies between operations.

03 Tracking operand availability for execution. 
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Each execution port supports different categories of operations. After  

the execution of operations, ROB is updated with execution results  

and operations that are completed are retired architecturally in the  

right program order. 

Memory Subsystem

The Memory subsystem of the CPU handles the execution of load and 

store operations which rely heavily on the memory hierarchy levels. The 

Neoverse V1 has a dedicated L1/L2 cache per core, where the L2 cache  

is shared between the L1 data cache and the L1 instruction cache.

The Load Store Unit controls the data flow between the caches and to 

memory.  The Neoverse V1 has multiple load/store units, which can both 

handle read and write operations. The core supports two hierarchical set 

associative caches, L1 Data Cache and L2 Cache whose size is configurable 

per implementation. The private L2 cache of the core connects to the rest 

of the system via an AMBA 5 CHI interface.

Neoverse V1 System Configurations

All systems with the coherent mesh interconnect support a shared  

system-level cache. Understanding the cache hierarchy and configuration 

of the system being analyzed is crucial in deriving insights from the cache 

effectiveness Performance Monitoring Unit (PMU) events. It is always best 

to check with the Silicon Provider for details on the system configuration 

for the underlying system, including the cache sizes.

3.2 Neoverse V1: Topdown Performance Analysis Methodology

As explained in section 3.1, out-of-order machines are heavily pipelined 

to achieve higher instructions per cycle (IPC). These deep pipelines can be 

stalled in different parts of the pipeline simultaneously caused by different 

operations in flight. Pipeline stalls cause significant IPC drops, which result 

in inefficient execution of the program. We introduce the Arm topdown 
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performance analysis methodology as our solution to support performance 

analysis, workload characterization, and micro-architecture exploration  

on Arm architecture compliant CPUs that support the Performance 

Monitors Extension. This methodology uses PMU events in the hardware  

to help profile an application to identify processor bottlenecks, and aid  

root cause analysis. 

To tune an application code for a micro-architecture, the first step 

is to detect the code bottleneck which is where most of the cycles are  

spent. For this, we need to measure the distribution of execution cycles 

spent, which provides insights into the cycles that were both efficient and  

wasted by pipeline stalls and redirections. Followingly, we need to measure  

micro-architectural metrics that help deep dive into the bottlenecking CPU 

component for further analysis. Arm top-down methodology for hotspot 

analysis and micro-architectural analysis is specified to be conducted in  

two stages, as depicted in Figure 2.   

Stage 1: Topdown Analysis

Topdown analysis is the first stage to be followed in the methodology 

which helps with hotspot detection. A set of pipeline efficiency metrics are 

specified using the PMU events to measure, which helps to characterize the 

distribution of cycles spent by the processor. Topdown analysis metrics are 

formulated as a decision tree of metrics that need to be traversed within 

each metric group to help locate the bottleneck. 

Neoverse V1 only supports the first level of this decision tree. Further 

levels in this stage will be supported by the future Neoverse cores.

Stage 2: Micro-architecture Exploration

Once the potential hotspot in the processor pipeline is identified in 

stage 1, the next step is to conduct a micro-architectural analysis of the 

bottlenecking CPU resource. Stage 2 is defined as the micro-architecture 
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exploration stage for which we specify a set of CPU resource effectiveness 

metrics in metric groups per resource. Industry-standard metrics like Misses 

Per Kilo Instructions (MPKI) and Miss Ratios are also metric groups defined 

in this stage. 

Arm recommends collecting all the metrics that are in Stage 1 and Stage  

2 for workload characterization. For further analysis, we have also  

specified our recommended set of micro-architecture exploration metric 

groups against some of the hotspots detected in Stage 1. Note that all  

the Stage 2 metrics can be used to derive further insights into the overall  

micro-architecture behaviour during the execution of the application  

under investigation and can be used independently to Stage 1.

F I G .  4

Arm V1 Topdown Performance Analysis 
Methodology for Neoverse V1
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3.2.1 Stage 1 : Topdown Analysis

Topdown analysis starts by making the following four measurements, 

each being a percentage of the total execution bandwidth of the processor:

 — The percentage of execution bandwidth used by operations that  

are retired.

 — The percentage of execution bandwidth lost to mis-speculation.

 — The percentage of execution bandwidth lost to stalls in the frontend.

 — The percentage of execution bandwidth lost to stalls in the backend.

The total execution bandwidth of the processor can be measured in 

execution slots for operations. Slots are defined as the execution slots 

in the rename unit which partitions the frontend and backend of the 

processor. Frontend of the processor decodes and decomposes AArch64 

instructions to micro-operations that can be executed by the backend 

execution units as explained in Section 3.1. The number of slots supported  

by the core determines the execution bandwidth of the processor for  

top-down accounting. This is a micro-architectural parameter that is part  

of the formulae for deriving the execution bandwidth related metrics.

Neoverse V1 supports four key metrics for top-down analysis level 1 that 

are slot-based, which is a measurement of the efficiency of pipeline slots.  

The four metrics in the first level are defined part of the metric group 

TopDownL1 as below:

 — frontend_bound: This metric is the percentage of total slots that were 

stalled due to resource constraints in the frontend unit of the processor.

 — backend_bound: This metric is the percentage of total slots that were 

stalled due to resource constraints in the backend unit of the processor.
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 — bad_speculation: This metric is the percentage of total slots that  

executed operations that didn’t retire due to a pipeline flush. This 

indicates the cycles that were used but were inefficient as well as  

cycles spent recovering from the mis-speculation, refilling the  

pipeline from the correct location.

 — retiring: This metric is the percentage of total slots that retired 

operations. This indicates the cycles that were used and efficient.

We refer to Appendix C for details on this metric groups and its 

corresponding metrics. We demonstrate the usage of these metrics  

using a validation workload suite introduced below.

3.2.2 UStress: Micro-architecture Metrics Validation Workload Suite

In order to validate the specified performance analysis metrics &  

events, we developed an in-house validation suite comprising a set  

of micro-architecture workloads that stress some of the major CPU  

resources like branch prediction units, execution units (arithmetic 

and memory), caches, and TLBs. These workloads can cause various 

performance bottleneck scenarios in the CPU. The categories of tests  

and their respective list of micro-benchmarks are as below.

 

 — Branch: branch_direct_workload, branch_indirect_workload,  

call_return_workload.

 — Data Cache: l1d_cache_workload, l2d_cache_workload.

 — Instruction Cache: l1i_cache_workload.

 — Data TLB: l1d_tlb_workload.

 — Arithmetic Execution Units: div32_workload, …, fpdiv_workload,  

…, mul64_workload.

 — Memory Subsystem: memcpy_workload, store_buffer_full_workload,  

load_after_store_workload.
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We will walk through the recommended performance analysis methodology 

using both stage 1 and stage 2 metrics with data collected by running these 

tests on a Neoverse V1 platform built with gcc-10.3. We refer to Chapter 

4 in the previous whitepaper on Arm Neoverse Core N1: Performance 

Analysis Methodology for PMU data collection and sampling techniques 

using Linux perf tool[5].

As a first step, let us look at Stage 1 top-down analysis metrics 

measurements for each test in Figure 3 below. 

F I G .  5

UStress workloads:  
Top-down Analysis Level  
1 Characterization

The following observations can be made on Figure 5 for each  

workload category.

01  Branch tests that cause mispredictions of different branch types result  

in pipeline flushes when branch targets or directions are resolved.  

These flushes translate to the bad speculation-related stalls. As  

expected, the relative percentage of pipeline bandwidth shows the  

trend of a high percentage on bad_speculation metric (34% ~ 63%)  

for this workload category.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
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02  Data Cache tests cause data accesses that result in heavy L1 data cache 

and L2 unified cache misses, which stall the backend of the processor. 

As expected, tests in this category show a high percentage of backend_

bound metric (>90%).

03   Instruction Cache test causes heavy L1I cache miss during instruction 

fetch, which stalls the frontend of the processor in the fetch stage. As 

expected, test in this category measures a relatively high percentage  

of frontend_bound metric (58%).

04  Data TLB tests that cause heavy data TLB miss that would cause stalls 

in the processor’s backend caused by delays in the memory address 

translation stage. As expected, the tests show high percentage of 

backend_bound metric (61%).

05  Arithmetic execution unit tests stress the different execution  

units of the processor that process various arithmetic operations of 

different latency requirements. The pressure in the execution units will 

be reflected as a stall in the processor’s backend. As expected, tests in 

this category measure a high percentage of backend_bound metric (55% 

~ 89%).

06  Memory subsystem stresses the load store units associated with the 

memory operation executing in the processor’s backend. As expected, 

these tests result in a high percentage of backend_bound metric (63% 

for memcpy_workload, 52% for store_buffer_full_workload). The test 

load_after_store_workload results in high bad_speculation (36%) because 

the code triggers many speculative loads which are abandoned due to 

mispredicted data address. The test memcpy_workload copies memory 

block smaller than L1D Cache efficiently  

in batch, which results in high retiring.
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Based on Stage 1 top-down analysis measurements for the validation tests, 

we have shown that the proposed top-down level 1 metrics provide clear 

indication of the bottlenecking part of the processor pipeline, which is a 

first step to locating the bottleneck or hotspot of the program.  

The next phase of the analysis process is to investigate the potential 

bottle-necking micro-architecture components. Such micro-architecture 

exploration metrics are grouped per CPU resource in the next stage  

termed “Stage 2”, which is discussed below.

3.2.3 Stage 2: Micro-architecture Exploration

Once the execution pipeline bottleneck region is identified from Stage 1, 

the next step is to deep dive for further analysis.

A relatively high frontend_bound metric shows that execution cycles are 

being wasted due to pipeline stalls in the in-order frontend division of  

the processor. This can be because of many reasons like inefficiency in  

the branch prediction unit, fetch latency due to instruction cache misses  

and translation delays caused by Instruction TLB walks.

A relatively high backend_bound metric shows that execution cycles are 

wasted due to pipeline stalls in the processor’s backend. This can be 

because of many reasons like inefficiency in backend units like execution 

units, data cache misses and translation delays caused by data TLB walks.

A relatively high bad_speculation metric shows the pipeline stalls caused 

by flushes or machine clears that break the pipeline needing a control flow 

change. Branch mis-predictions are one of the major causes for this, as  

well as exceptions.
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A relatively high retiring metric means the pipelines were utilized. However, 

this metric could indicate inefficiency in terms of underutilization of the 

micro-architectural capabilities, for example scalar execution of a code that 

could have performed more efficiently with vector operations.

To analyze this further, we propose the below micro-architecture 

exploration metric groups that can be used for Stage 2 analysis. In this 

stage, we recommend a set of metric groups for narrowing down the 

further analysis of tests falling into the four categories of pipelined BW 

usage in Stage 1, as shown in Figure 2.

As a common step in Stage 2, we first introduce two metric groups MPKI 

and Miss rate, which can help with a quick behavioural analysis of the CPU 

components that could be the potential bottlenecks.

MPKI – Misses Per Kilo Instructions

Misses Per Kilo Instructions is a set of metrics that can be derived to 

normalize the misses in CPU components, mainly branches, caches and 

TLBs, against the total instructions executed. This is an industry-standard 

metric that also helps with comparison across different implementations of 

the Arm architecture, as instructions retired should count the same on all 

AArch64-based micro-architectures.

Section 2.3 lists all the MPKI metrics that can be derived for Neoverse V1 

and Appendix B has all the metrics and their formulae.
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F I G .  6

UStress Workloads: MPKI

Figure 4 shows the results of the key MPKI metric measurements for 

Branch/Cache/TLB related UStress validation tests. Arithmetic and  

Memory tests are not plotted as they have very low MPKI. We refer  

to Table 1 in Appendix A for the full set of MPKI measurements for  

the UStress workloads.

The following observations can be made on Figure 6 for each  

workload category.

01  The branch tests show relatively high branch MPKI values compared  

to other metrics, as expected.

02  The data cache tests relatively high L1D MPKI and L2 MPKI for tests 

l1d_cache_workload and l2d_cache_workload respectively, along with 

some pressure in the frontend.

03  The instruction cache test shows relatively high L1I MPKI and  

branch MPKI, matching the expected behavior for a frontend_bound 

workload. In this scenario, we may need to explore branch and L1I  

cache effectiveness metrics further to determine the root cause. 

Sometimes pressure in one CPU resource can cause pressure in other 

components. In this test, L1I MPKI is above 1000 which is unusual as 

this means L1I_CACHE_REFILL is greater than INST_RETIRED. This is 
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because L1I_CACHE_REFILL can be triggered by speculatively executed 

code that did not retire. In this case it is advised to check  

the INST_SPEC against the INST_RETIRED count to see how big  

is the difference between speculatively executed instructions to the 

retired instructions.  

04  Data TLB test shows relatively high L1D TLB MPKI. However, we  

see little DTLB Walk MPKI which shows no cost in terms of translation 

table walks. 

05  Arithmetic execution unit tests show very low MPKI. MPKI does  

not matter much in these tests as these are mainly core bound in  

the backend. These workloads will need more backend related metrics  

to further analyze the bottlenecks.

06  Memory subsystem unit tests show low MPKI as the test data always  

hit in L1D cache.

Miss Ratio

Miss ratio metric group provide a set of metrics that calculate ratio of the 

misses in the CPU components, mainly branches, caches and TLBs, against 

the total accesses in those components. These metrics provide insights  

on the efficiency of each CPU component in the pipeline and help to  

root cause issues.
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F I G .  7

UStress Workloads: Miss Ratio

Section 2.3 lists all the Miss Ratio metrics that can be derived for Neoverse 

V1 and Appendix B has all the metrics and their formulae.

Figure 5 shows the results of the key Miss Ratio metric measurements for 

Branch/Cache/TLB related UStress validation tests. Arithmetic and Memory 

tests are not plotted as these workloads do not record misses. We refer to 

Table 2 in Appendix A for the full set of Miss Ratio measurements for the 

UStress workloads.

The following observations can be made on Figure 7 for each  

workload category. 

01  Branch tests show relatively high branch mis-prediction ratio  

(30% ~ 50%) values against other metrics, which confirms the  

expected behaviour.

02  Data Cache tests show high L1D cache miss ratio (>95%) for  

l1d_cache_workload and high L2 miss rate for l2d_cache_workload.
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03  Instruction Cache test l1i_cache_workload shows relatively high L1I  

cache miss ratio (>80%) and high branch misprediction rate (74.82%)  

as expected.

04  Data TLB test l1d_tlb_workload shows relatively high L1D TLB miss ratio 

(>95%), as expected.

05  Arithmetic execution unit tests mostly show high L2 cache miss ratio  

(~18%), but the corresponding MPKI is very low. The high miss ratio  

is due to very few L2 accesses, but not a true bottleneck.

06  Similar to Arithmetic unit tests, L2 miss ratio of the memory  

subsystem tests are due to few L2 accesses, not high misses.

Operation Mix

The Neoverse V1 micro-architecture as shown in Figure 1 has a variety  

of execution units that can process five types of operations: branch,  

single-cycle integers, multicycle integers, load/store unit with address 

generation, and advanced floating-point/SIMD operations. Operations  

that are issued to these execution units can be counted by the PMU  

events listed in Section 2.2 under OperationMix.

Section 2.3 lists all the OperationMix metrics that can be derived for 

Neoverse V1 and Appendix C has all the metrics and their formulae.

Note that these metrics use events that count speculatively issued 

operations at the issue stage, which provide an estimate of the execution 

unit utilization, but not the retired instruction mix of the program. To derive 

the utilization of each operation type, the percentage of each type of 

operation is calculated as a fraction of the total operations issued, which is 

counted by the event INST_SPEC.
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F I G .  8

UStress Workloads: 
Operation Mix Metrics

Neoverse V1 does not support retired events for counting the architectural 

instruction mix. Neoverse V1 supports events to further break down the 

branch operations into immediate, indirect, and return branches, counted 

by events BR_IMMED_SPEC, BR_INDIRECT_SPEC, and BR_RETURN_SPEC 

respectively. Note that BR_RETURN_SPEC is a subset of BR_INDIRECT_

SPEC. Sum of the BR_IMMED_SPEC and BR_INDIRECT_SPEC branch 

operation events can compute the total branches executed.

Figure 8 shows the Operation Mix metrics measurements for all the  

UStress workloads. 
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The following observations can be made on Figure 8 for each  

workload category.

01   Branch instruction proportion of branch mis-prediction tests  

looks counter-intuitive with high percentage of load and integer 

operations and a minimal percentage of branch operations (2.41% ~ 

11.67%). For example, in the test branch_direct_workload, operation 

mix measurements show that only 2.94% of instructions are branches. 

Inspecting assembly code shows there should at least be 10% ~ 12.5% 

(1/10 ~ 1/8) branch instructions. On Neoverse V1, Operation Mix is  

calculated on the speculated operations issued to the processor, not 

the retired ones. In these tests, a high branch mis-prediction rate causes 

numerous speculated operations to be abandoned, causing a significant 

gap in the speculated and retired instruction counts. In the case of 

branches, Neoverse V1 supports both INST_RETIRED and BR_RETIRED 

events  to compare the ratio of retired branch instructions against total 

retired instructions.

02  Data Cache tests show a large proportion of load operations  

(32.41%) as well as integer operations (34.77%) as expected.

03   Instruction Cache test shows very high scalar integer operations 

(>80%). This test calls a chain of functions located in gaps of instruction 

cache size by continuously incrementing and dereferencing a function 

pointer, which are integer operations. Moreover, due to high branch 

misprediction ratio, the speculated integer operations are much higher 

than the retired ones.
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04  Data TLB test shows relatively high scalar integer operations and a  

mix of loads and branch operations (integer_dp=66.62%, load=16.61%, 

branch=16.73%).

05   Arithmetic execution unit tests (mul and div tests) show high scalar 

operation percentage (83.3%) for scalar integer tests and high floating 

point operations (66.5%) for the FP tests (fpmul and fpdiv). For tests that 

are double to integer conversion, we see a mix of scalar fp (40.0%) as 

well as scalar integer (40.0%) as expected. 

06  Memory subsystem test memcpy_workload has a greater  

proportion of load and store operations, as expected. For the  

store_buffer_full_workload test, high store (32.5%) is observed while 

the load_after_store_workload test shows a high proportion of load 

operations (42.2%). 

Branch Effectiveness & Branch Mix

Branch mis-predictions are costly in a deeply pipelined CPU, causing 

pipeline flushes and wasted cycles. As a general rule, workloads typically 

contain, on average, 1 branch in every 6 instructions. Though modern CPUs 

have optimized branch prediction units, there are many use cases like ray 

tracing, decision tree algorithms, etc. that are branch heavy and hard to 

predict. In some of these applications, there can be hundreds of unique 

branch paths to take and the target may be input data dependent.

Branch prediction performance can be evaluated using two PMU events, 

BR_MIS_PRED_RETIRED and BR_RETIRED. BR_MIS_PRED_RETIRED 

provides an account of the total branches that were executed but  

mis-predicted. This means that the direction of the code path was wrong 

and the following operations in the path were wasted, causing a pipeline 

flush. BR_RETIRED counts the total branches architecturally executed  

by the CPU.
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Two performance metrics that can be derived for a high-level evaluation  

of the branch execution performance regarding the overall program 

execution are the branch_mpki and branch_misprediction_ratio metrics. 

branch_mpki provides total branch mispredictions per kilo instructions. 

branch_misprediction_ratio gives an indication of the ratio of branches  

that were mis-predicted to overall branches.

Section 2.3 lists all the BranchEffectiveness metrics that can be derived  

for Neoverse V1 and Appendix C has all the metrics and their formulae.

In the UStress branch tests, the tests branch_direct_workload,  

branch_indirect_workload and call_return_workload measured high bad_

speculation bound metric in Stage 1 top-down analysis stage. For these 

tests, we discussed the MPKI and Miss ratio values from Figures 6 and 7 

respectively, which show branch-related metrics relatively high compared 

to the other resources. In a branch performance-bound workload, the PMU 

events specified here can be sampled using perf record, to determine which 

functions are causing the increased branch miss rates. We refer to Chapter 

4 in N1 performance methodology whitepaper for guidance on how to 

perform sampling using Linux perf tool [5, Chapter 4].

Branch prediction units work differently depending on the branch  

type. There are three main sub-units that work for different branch  

types as below. 

 — Branch History Table (BHT) that stores the history of conditional 

branches, taken or not.

 — Branch Target Buffer (BTB) that stores the target address  

for indirect branches.

 — Return Address Stack (RAS) that stores the function return branches.

Neoverse V1 supports three events, BR_IMMED_SPEC, BR_RETURN_SPEC 

and BR_INDIRECT_SPEC, to categorize the immediate, indirect and return 

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
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branches executed, respectively. Getting a breakdown of the branch type 

helps to deep dive into each of these sub-units within the branch prediction 

unit. Branch tests branch_direct_workload, branch_indirect_workload and 

call_return_workload stress each of these branch sub-units. Let us look at 

the breakdown of the branch category events for each UStress branch tests 

in Table 1 as a set of Branch Mix metrics defined below:

As expected, branch_direct_workload has high percentage of immediate 

branches (99.98%) and branch_indirect_workload contains high percentage 

of indirect branches (87.98%). The call_return_workload has a mix of direct, 

indirect and return branches with relatively high return branches (28.88%) 

compared to other tests.

TLB/MMU Effectiveness

Another important performance evaluation step is to check the 

virtual memory system performance, that affects the instruction fetch 

performance in frontend and memory access performance on the data side. 

The processor needs to translate a virtual address to physical  

address for any instruction/data memory access before it accesses the 

respective cache. Note that a program’s view of memory is virtual address, 

but the processor works with the physical address when accessing cache  

or memory.

Virtual to physical mappings are defined in the page translation tables 

which reside in system memory. Accessing these tables requires one  

Tests % immediate % indirect % return

branch_direct_workload 99.98% 0.01% 0.01%

branch_indirect_workload 11.99% 87.98% 0.02%

call_return_workload 42.26% 28.86% 28.88%

T A B L E  1

Branch Operation Mix For UStress 
Branch Workloads
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or more memory accesses which take many cycles to complete—this is 

referred to as a translation table walk. However, to make these translations 

faster, Translation Lookaside Buffers (TLBs) cache translation table walks, 

greatly reducing the number of accesses to system memory.

Neoverse V1 implements a two level TLB hierarchy. The first level contains 

separate, dedicated TLBs for the instruction and data (load/store) address 

translations. Total accesses to these TLBs are counted by L1I_TLB and L1D_

TLB respectively. The second level contains a unified L2 TLB that is shared 

by both instruction side and data side accesses. There are corresponding 

REFILL counters, that count the refills in these TLB levels. Some 

performance metrics that can be derived for a high-level evaluation of the 

TLB execution performance are the l<n>_tlb_mpki and l<n>_tlb_miss_rate 

metrics, where <n> stands for each levels of TLB instruction and data side. 

Those accesses that cause a translation table walk due to misses in the 

instruction side and data side TLBs are counted by events, ITLB_WALK 

and DTLB_WALK respectively. For evaluating the TLB effectiveness and 

cost of latency caused by translation table walks specifically, dtlb_mpki, 

dtlb_walk_ratio, itlb_mpki and itlb_walk_ratio are the key metrics that can 

be derived. itlb_mpki and dtlb_mpki provide the rate of TLB Walks per kilo 

instructions for instruction and data accesses respectively. These derived 

metrics help to evaluate and correlate the TLB efficiency with respect to 

the total instructions. dtlb_walk_ratio provides ratio of DTLB Walks to the 

overall TLB lookups made by the program. Note that this is the same as 

DTLB_WALK/MEM_ACCESS as every MEM_ACCESS causes a L1D_TLB 

access. itlb_walk_ratio provides a percentage of ITLB walks to the overall 

TLB lookups initiated from the instruction side. 

Section 2.3 lists all the TLBEffectiveness metrics that can be derived for 

Neoverse V1 and Appendix C has all the metrics and their formulae.
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In the Data TLB tests from our validation suite, the test l1_dtlb_workload 

measured high frontend_bound metric in Stage 1 top-down analysis stage. 

For this test, we discussed the MPKI and Miss ratio values from Figure 6 

and Figure 7, which show data-tlb related metrics relatively high compared 

to the other resources. In a data TLB performance-bound workload, the 

PMU events specified here can be sampled using perf record, to determine 

which functions are causing the increased branch miss rates. We refer to 

Chapter 4 in N1 performance methodology whitepaper[5] for guidance on 

how to perform sampling using Linux perf tool.

Cache Effectiveness

The Neoverse V1 implements a multi-level cache hierarchy. The first  

level (L1) includes a dedicated cache for instructions and a separate 

dedicated cache for data accesses. The second level (L2) is a unified L2 

cache that is shared between code and data. Further down the hierarchy, 

the system could have an optional shared system level cache (SLC) in the 

interconnect. It is recommended to check with the platform providers  

for cache configurations. 

The Neoverse V1 core supports hierarchical PMU events for all the cache 

hierarchy levels. For each level of caches, there are total access counts 

and refill counts. Note that AArch64 do not support cache MISS counters, 

but only REFILLs. A cache miss could lead to multiple cache line refills if 

the access is on a cache line boundary or multiple cache misses could be 

satisfied by a single REFILL. We refer to the V1 PMU Guide[2] for details 

on the cache event counter descriptions. Cache policies and associativity 

details can also be referred in the Chapter Micro-architecture details in  

the V1 PMU Guide[2].

Some performance metrics that can be derived for a high-level evaluation 

of the cache execution behavior are the  l<n>__mpki and l<n>_tlb_miss_ratio 

metrics, where <n> stands for each levels of instruction and data caches. 

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
https://developer.arm.com/documentation/PJDOC-1063724031-605393/r1p1/
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Section 2.3 lists all the L<n>CacheEffectiveness metrics that can be derived 

for Neoverse V1 and Appendix C has all the metrics and their formulae.

In the cache tests from our validation suite, the test l1i_cache_workload 

measured high frontend_bound metric and the tests l1d_cache_workload 

and l2d_cache_workload measured high backend_bound_metric in Stage 

1 top-down analysis stage. For these tests, we discussed the MPKI and 

Miss ratio values from Figure 6 and Figure 7, which show the respective 

cache-related metrics relatively high compared to the other resources. In 

cache performance-bound workload, the PMU events specified here can 

be sampled using perf record, to determine which functions are causing 

the increased branch miss rates. We refer to Chapter 4 in N1 performance 

methodology whitepaper[5] for guidance on how to perform sampling using 

Linux perf tool.

Core Memory Traffic

The MEM_ACCESS event counts the total number of memory operations 

that were issued by the Load Store Unit (LSU) of the core. As these 

operations are looked up in the L1D_CACHE first, both the events L1D_

CACHE and MEM_ACCESS count at the same rate. Neoverse V1 also 

supports two additional events, MEM_ACCESS_RD and MEM_ACCESS_

WR, that can provide the read and write traffic breakdown respectively. 

Note that these events are not the same as LD_SPEC and ST_SPEC  

since they count memory operations speculatively issued, but not 

necessarily executed.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
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Last Level Cache Counter Usage

On systems which support a shared system level cache in the interconnect, 

LL_CACHE_RD counts the total accesses to the SLC. In a system that 

has the SLC configured to count LL_CACHE_RD events, LL_CACHE_RD 

counter counts total SLC accesses made by the core and LL_CACHE_MISS_

RD counts the access missed at SLC.

To study the last level read behavior, Last level cache read miss metrics that 

can be derived are ll_cache_read_mpki and ll_cache_miss_ratio. Another useful 

metric to measure the SLC hit percentage for the read traffic is  

the SLC Read Hit Ratio denoted as ll_cache_read_hit_ratio.

Last level cache events do not have a write variant in Neoverse V1  

since SLC is only used as an eviction cache for the core and all the writes 

complete early at the interconnect when the transaction is acknowledged 

but not necessarily completed.

Section 2.3 lists all the LastLevelCacheEffectiveness metrics that  

can be derived for Neoverse V1 and Appendix C has all the metrics and  

their formulae.

Remote Cache Access

For Neoverse V1 systems with multiple sockets or SOCs, V1 supports the 

REMOTE_ACCESS event which counts the memory transactions that were 

completed by a subordinate source from another chip. 
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4. Case Study: Topdown Performance  
Analysis on Neoverse V1

This case study illustrates how the Arm topdown analysis methodology 

for Neoverse V1 was applied for code optimization of Apache Arrow CSV 

parser code, which achieved a performance uplift of 80%.

4.1. About Arrow CSV Parser

Apache Arrow[8] is an open-source project for efficient columnar data 

interchange. The library supports a variety of data structures that can 

be moved without ser-/deserialization. These data structures are highly 

efficient for in-memory computation. Apache Arrow supports multiple 

languages. In this case study, we work with the Arrow CSV Parser 

implemented in C++.  

F I G .  9

9 CSV Data -> Arrow Data

Unlike the traditional dataset, which stores data row by row, the Arrow 

data is column-based where fields of the same column are contiguous in 

memory. The columnar format is especially convenient for Online Analytical 

Processing (OLAP) workloads[9].

https://github.com/apache/arrow
https://en.wikipedia.org/wiki/Column-oriented_DBMS#Access_time
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Arrow CSV Parser converts CSV data (row based) to Arrow data (column 

based), as shown in Figure 9.

 — On the left side is the CSV data. Each row represents one record.  

Fields of the same row are contiguous in the memory.

 — On the right side is the Arrow data. Fields of the same column are 

contiguous in the memory. E.g., the three names (Mike, Peter, Jack) are 

packed in one large column buffer “MikePeterJack”, with an index array 

[0,4,9,13] to slice the individual names from that buffer.

4.2. Hotspot Analysis with Topdown Methodology

We follow the below steps to analyze the performance of the CSV parser 

on a Neoverse V1 platform and evaluate if there are any optimization 

opportunities for this library.

Experiments are conducted on the Neoverse-V1 (Amazon Graviton3)  

built with Ubuntu 22.04 aarch64 OS and gcc-10.3 compiler. Apache  

Arrow code used is from the release build (-O3). Baseline performance  

is evaluated on commit f0110cf26 and optimized performance is evaluated 

on commit 464ccdef0.

Evaluate Baseline Performance

Firstly, we run the CSV parser benchmark to evaluate the baseline 

performance, which can be measured in IPC and the bandwidth obtained 

by the parser. 

F I G .  1 0

Apache Arrow Baseline: 
Bandwidth and IPC

https://github.com/apache/arrow/search?q=f0110cf26&type=commits
https://github.com/apache/arrow/search?q=464ccdef0&type=commits
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From the benchmark result shown in Figure 10, Arrow CSV parser 

processes about 1G bytes CSV data per second. IPC (Instructions Per Cycle) 

achieved on the V1 platform > 4.5, which is quite high. Our first impression 

looking at this data would be that the Arrow library has probably adopted 

some optimization methods to achieve this high IPC. However, high IPC 

doesn’t always mean efficient execution, so we will dig deeper into the 

code execution using stage 1 for top-down analysis first.

Conduct Stage 1 Topdown Analysis

We collected the PMU events to derive the TopdownL1 metrics to evaluate 

the pipeline efficiency and plot it as in Figure 11.As the TopdownL1 chart 

F I G .  1 1

Apache Arrow Baseline:
Stage 1 Top-down Analysis Metrics

shows in Figure 11, more than half of the cycles are retiring instructions, 

which matches the high IPC we observed. The code is ~25% frontend_bound 

and backend_bound with no speculation performance issues.

Conduct Stage 2 Microarchitecture Exploration

Let us now look at the Stage 2 micro-architecture exploration metrics for 

CPU resource pressure evaluation. Firstly, we derive the MPKI and MissRatio 

metric groups which is presented in Table 2 below.
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As shown in Table 2, both MPKI and MissRatio metrics are very low for most 

of the resources. The highest Miss Ratio comes from l2_tlb_miss_ratio = 

43.85%, but the corresponding l2_tlb_mpki is only 0.05. There is no pressure 

on the Cache or Branch units. Now, let us look at the Operation Mix metrics 

of this workload. 

branch l1d_cache l1i_cache l2_cache l1d_tlb l1i_tlb l2_tlb dtlb itlb

MPKI 0.01 2.12 0.04 0.26 0.12 0.00 0.05 0.05 0.00

Miss Ratio 0.01% 0.84% 0.03% 2.55% 0.05% 0.13% 43.85% 0.02% 0.06%

T A B L E  2

MPKI and Miss Ratio For  
UStress Tests

As observed in Figure 12, integer_dp_percentage is very high for this 

workload at 63% of operations. This counts the percentage of scalar integer 

processing instructions which is about 2/3 of operations executed. This 

iscunexpected for the workload that is parsing heavy volumes of data 

for which we would expect high volumes of load and store instructions. 

The Arrow CSV parser copies data from the CSV buffer to the Arrow 

buffer, and it must treat normal chars and field separators (comma, EOL, 

etc.) separately. High volumes of integer calculations are achieving a very 

high IPC value, but this could be executed more efficiently if there is an 

opportunity to leverage vector processing using SIMD. To investigate  

this, we first need to check where in the code are these integer  

operations executed.

F I G .  1 2

Apache Arrow Baseline:  
Operation Mix
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Why High integer_dp_percentage?

Analyzing code location using the PMU sampling approach [5, Chapter 4], 

it turns out that the Arrow code is already optimized to process input CSV 

characters in batch, instead of sequential char-by-char processing, which 

could have explained the high scalar integer execution. Looking closely at 

the logic, it was identified that there is a code path in the conversion of 

CSV row-based data to Arrow column-based format that needs to handle 

some special tokens (comma, EOL, etc) differently than normal field chars. 

This path breaks the parallel execution requiring input character processing 

one by one. This is causing high scalar execution, which has the potential 

to be optimized. If we can pre-check for the special characters and make 

sure there is no special token in the upcoming data block (e.g., 8 continuous 

characters), the input can be saved in batches. This scenario is very 

common in real-world CSV data. The figure below illustrates the diverging 

code path with an example.

The code tuning exercise can be summarized as “Given a string of 8 chars, 

and a predefined character set, how to rewrite the code to pre-check if 

the string contains any char in the predefined set”. Arrow implements a 

bloom filter to perform a quick scanning of the upcoming string block. This 

essentially maps a char to one bit in a uint64 mask to check if it matches  

a predefined token. The bloom filter executes a lot of integer shift, logical 

and arithmetic operations, which is the reason there is a high  

integer_dp_percentage.

F I G .  1 3

Diverging Code Path in Apache  
Arrow CSV Parser

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/neoverse-n1-core-performance-v2.pdf
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Note: Readers may argue that this pre-check and process in batch approach may 

hurt performance if there are many very short CSV fields. This is a real concern, 

and the Arrow CSV parser will check field sizes and adjust the best approach 

dynamically.

4.3. Code Optimization with Arm Neon

Instead of a bloom filter, we can try to see if we can use Neon to vectorize 

the routine in the code that checks if there are any special tokens in 8 or  

16 continuous chars.

Vectorization Optimization

The scalar code below illustrates how we check if a char matches any of the 

five special CSV tokens: return (\r), newline (\n), delimiter (,), quote (“), and 

escape (\). The delimiter, quote, and escape chars are configurable.

bool Matches(uint8_t c) {
  return (c == ‘\r’) | (c == ‘\n’) |(c == delim) | (c == 
quote) | (c == escape);
}

If we vectorize the code using Neon, 8 input chars can be checked at once.

bool Matches(uint8x8_t w) {
  v = vceq_u8(w, vdup_n_u8(‘\r’));
  v = vorr_u8(v, vceq_u8(w, vdup_n_u8(‘\n’)));
  v = vorr_u8(v, vceq_u8(w, delim_));
  v = vorr_u8(v, vceq_u8(w, quote_));
  v = vorr_u8(v, vceq_u8(w, escape_));
  return (uint64_t)v != 0;
}
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Benchmark the Optimized Code

To evaluate the performance, we run the optimized CSV parser  

benchmark again.

F I G .  1 4

Apache Arrow Optimized:
Bandwidth & IPC

Compared with the original baseline code,  optimized code performance 

increases by ~80% with a bandwidth uplift from 1.10GB/s to 1.99GB/s. 

Table 3 shows the change in cycles, instructions and IPC. The total 

instruction decreases by ~50% and cycles reduced significantly by ~45%. 

IPC is still very high at 4.30 though with a small drop from previous value. 

Note that IPC alone is not a measurement to evaluate performance drop 

or improvement as it is a ratio and in this case both instructions and cycles 

dropped heavily.

Re-plot the Stage 1 Top-down Metrics

Cycles Instructions IPC Benchmark 
Score

Original Baseline 5.45E+9 2.53E+10 4.64 1.10G/s

Optimized 2.97E+9 1.28E+10 4.30 1.99G/s

T A B L E  3

Apache Arrow Performance Comparison 
Between Baseline and Optimized Code
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Let us now collect the top-down level 1 metrics for further evaluation.

Figure 15 shows high retiring rate for this workload with 35%  backend_

bound metric. Let us now look at how the top-down level 1 metrics 

compare before and after optimization in Table 4.F I G .  1 5

Arrow CSV Parser Optimized: 
TopdownL1

From Table 4, it can be observed that after optimization, the top-down  

level 1 analysis shows a drop in retiring percentage from 53% to 48%  

and backend_bound metric increases from 24% to 35%. This shows 

increased backend pressure with reduction in retiring caused by efficient 

vector unit utilization.

retiring frontend_bound backend_bound bad_speculation

Baseline 53% 23% 24% 0%

Optimized 48% 17% 35% 0%

T A B L E  4

Apache Arrow Topdown Level 1 
Metrics: Baseline and Optimized Code

Re-plot the Operation Mix Metrics

Let us now collect the operation mix metrics for further evaluation.

Figure 16 shows simd_percentage of 28% that reflects the SIMD 

optimization conducted with a reduction in integer_dp_percentage. 
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Table 5 below shows the comparisons of the Operation Mix metrics 

before and after optimization. Compared with Operation Mix before 

optimization, integer_dp_percentage drops half from ~2/3 of the total. 

After vectorization, simd_percentage now occupies over 1/4th of the  

total operations. operations to ~1/3 of the operations.

 

F I G .  1 6

Apache Arrow Optimized: 
Operation Mix

integer_dp_
percentage simd_percentage load_percentage store_percentage

branch_
percentage

Baseline 63% 0% 18% 7% 12%

Optimized 34% 28% 17% 8% 13%

T A B L E  5

Apache Arrow 
Operation Mix 
Metrics: Baseline 
and Optimized 
Code
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4.4. Summary

The original baseline Arrow CSV parser performance was quite good from 

an IPC point of view. However, by conducting hotspot analysis with the 

top-down methodology proposed in this paper, we could identify hotspot 

in the code where high volumes of integer processing instructions are being 

executed. This provided us insights into opportunities for optimization 

leveraging Arm Neon technology. The optimized code improves throughout 

by about 80% and cuts down half of the total instructions by exploiting 

vector instructions.

For code optimization, it is always helpful to identify hotspots in the 

code that are areas of pipeline bottlenecks or that are stealing most of 

the CPU cycles. Arm top-down methodology presented in this document 

methodology can help us find the bottlenecks quickly and focus 

optimization exercises on the performance-critical code.

The upstream PR of this optimization is available at:  

github.com/apache/arrow/pull/11896.

If you try this methodology and have any further comments or code 

optimization stories to share, we would love to hear from you. Feel free  

to reach out to us at sw-ecosystem@arm.com.

https://github.com/apache/arrow/pull/11896.
mailto:sw-ecosystem%40arm.com?subject=
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5. Glossary

Term Meaning

CMO Cache Maintenance Operations

CPU Central Processing Unit

LSU Load Store Unit

MMU Memory Management Unit

PE Processing Element

PMU Performance Monitoring Unit

SiP Silicon Provider

SLC System Level Cache

TLB Translation Lookaside Buffer

SIMD Single Instruction Multiple Data
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8. Appendix A. UStress Data
A.1. UStress Tests: MPKI 
Table 6 shows the results of the key MPKI metric measurements  

for all the UStress validation tests.

branch_
mpki

l1d_cache_
mpki

l1i_cache_
mpki

l2_cache_
mpki

l1d_tlb_
mpki l1i_tlb_mpki l2_tlb_mpki dtlb_mpki itlb_mpki

Branch

branch_direct_
workload 54.45 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

branch_indirect_
workload 21.86 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

call_return_
workload 45.76 0.18 0.01 0.00 0.11 0.00 0.00 0.00 0.00

D-Cache

l1d_cache_
workload 0.66 331.59 0.03 0.02 0.03 0.00 0.00 0.00 0.00

l2d_cache_
workload 0.05 317.08 0.13 144.35 77.89 0.00 2.39 2.20 0.00

I-Cache l1i_cache_
workload 243.70 0.02 1637.87 0.03 0.03 0.00 0.00 0.00 0.00

DTLB l1d_tlb_
workload 0.00 0.04 0.01 0.02 165.28 0.00 0.03 0.00 0.00

Arithmetic

mul32_
workload 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

mul64_
workload 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

mac32_
workload 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

mac64_
workload 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

div32_workload 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00

div64_workload 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

fpmul_workload 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

fpmac_workload 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

fpdiv_workload 0.01 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00

fpsqrt_workload 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

int2double_
workload 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

double2int_
workload 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Memory

memcpy_
workload 0.24 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

store_buffer_
full_workload 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

load_after_
store_workload 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00

T A B L E  6
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A.2. UStress Tests: Miss Ratio 
Table 7 shows the results of the key Miss ratio metric measurements  

for all the UStress validation tests. 

branch_
misprediction
_ratio

l1d_cache_
miss_ratio

l1i_cache_
miss_ratio

l2_cache_
miss_ratio

l1d_tlb_
miss_ratio

l1i_tlb_
miss_ratio

l2_tlb_miss
_ratio

dtlb_walk
_ratio

itlb_walk
_ratio

Branch

branch_direct_
workload 46.15 1.37 0.00 17.02 1.06 0.00 12.32 0.09 0.00

branch_indirect_
workload 46.81 0.00 0.00 13.08 0.00 0.00 4.87 0.00 0.00

call_return_
workload 32.03 0.11 0.00 0.01 0.06 0.00 0.24 0.00 0.00

D-Cache

l1d_cache_
workload 0.20 99.74 0.01 0.00 0.01 0.00 0.14 0.00 0.00

l2d_cache_
workload 0.02 95.93 0.04 22.63 23.57 0.01 3.06 0.67 0.01

I-Cache l1i_cache_
workload 74.82 0.00 91.22 0.00 0.01 0.00 5.72 0.00 0.00

DTLB l1d_tlb_
workload 0.00 0.03 0.00 1.52 99.10 0.00 0.02 0.00 0.00

Arithmetic

mul32_
workload 0.00 1.16 0.00 18.10 0.79 0.02 5.88 0.09 0.01

mul64_
workload 0.00 1.50 0.01 17.51 1.06 0.02 11.72 0.10 0.01

mac32_
workload 0.00 1.31 0.00 18.08 0.73 0.02 10.44 0.11 0.01

mac64_
workload 0.00 1.24 0.01 14.96 0.78 0.02 9.34 0.12 0.01

div32_workload 0.00 1.18 0.01 18.41 0.67 0.02 12.38 0.08 0.01

div64_workload 0.00 1.13 0.01 17.63 0.70 0.02 10.58 0.07 0.01

fpmul_workload 0.00 1.26 0.01 17.13 0.72 0.02 8.52 0.09 0.01

fpmac_workload 0.00 1.27 0.01 19.21 0.72 0.02 11.65 0.10 0.01

fpdiv_workload 0.01 1.47 0.02 16.82 0.71 0.02 10.25 0.08 0.01

fpsqrt_workload 0.00 1.32 0.01 16.56 0.81 0.02 12.09 0.08 0.01

int2double_
workload 0.00 1.27 0.00 17.51 0.75 0.00 13.22 0.09 0.00

double2int_
workload 0.00 1.24 0.00 18.39 0.80 0.00 11.49 0.09 0.00

Memory

memcpy_
workload 0.19 0.00 0.01 0.00 0.00 0.00 1.42 0.00 0.00

store_buffer_
full_workload 0.00 0.00 0.00 18.18 0.00 0.00 8.85 0.00 0.00

load_after_
store_workload 0.24 0.00 0.00 17.71 0.00 0.00 4.72 0.00 0.00

T A B L E  7

UStress Tests: Miss Ratio
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9. Appendix B1. Neoverse V1 Events
B1.1 Bus

Event Num Event Mnemonic Description

0x0019 BUS_ACCESS Counts memory transactions  
issued by the CPU to the external 
bus, including snoop requests and 
snoop responses. Each beat of data  
is counted individually.

0x0060 BUS_ACCESS_RD Counts memory read transactions 
seen on the external bus. Each beat 
of data is counted individually.

0x0061 BUS_ACCESS_WR Counts memory write transactions
seen on the external bus. Each beat 
of data is counted individually.

0x001D BUS_CYCLES Counts bus cycles in the CPU.  
Bus cycles represent a clock cycle  
in which a transaction could be sent 
or received on the interface from the 
CPU to the external bus. Since that 
interface is driven at the same clock 
speed as the CPU, this event is a 
duplicate of CPU_CYCLES.

Event Num Event Mnemonic Description

0x001E CHAIN Counts whenever the even  
numbered PMU counter registers 
overflow. This event is used when  
the even/odd pairs of registers are 
used as a single counter.

B1.2 Chain

T A B L E  8

Neoverse V1 Events: Bus

T A B L E  9

Neoverse V1 Events: Chain
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B1.3 Exception

Event Num Event Mnemonic Description

0x0084 EXC_DABORT Counts exceptions that are  
taken locally and are caused by  
data aborts or SErrors. Conditions 
that could cause those exceptions  
are attempting to read or write 
memory where the MMU generates 
a fault, attempting to read or write 
memory with a misaligned address, 
interrupts from the nSEI inputs and 
internally generated SErrors.

0x0087 EXC_FIQ Counts FIQ exceptions including the
virtual FIQs that are taken locally.

0x008A EXC_HVC Counts HVC exceptions taken to EL2.

0x0086 EXC_IRQ Counts IRQ exceptions including the
virtual IRQs that are taken locally.

0x0083 EXC_PABORT Counts synchronous exceptions 
that are taken locally and caused  
by Instruction Aborts.

0x000A EXC_RETURN Counts any architecturally  
executed exception return 
instructions. Eg: AArch64: ERET

0x0088 EXC_SMC Counts SMC exceptions  
take to EL3.

0x0082 EXC_SVC Counts SVC exceptions  
taken locally.

0x0009 EXC_TAKEN Counts any taken architecturally 
visible exceptions such as IRQ, 
FIQ, SError, and other synchronous 
exceptions. Exceptions are counted 
whether or not they are  
taken locally.

0x008C EXC_TRAP_DABORT Counts exceptions which  
are traps not taken locally  
and are caused by Data Aborts 
or SError interrupts. Conditions 
that could cause those exceptions 
are: 1. Attempting to read or 
write memory where the MMU 
generates a fault, 2. Attempting 
to read or write memory with a 
misaligned address, 3. Interrupts 
from the SEI input, 4. internally 
generated SErrors.

0x008F EXC_TRAP_FIQ Counts FIQs which are not  
taken locally but taken from EL0, 
EL1, or EL2 to EL3 (which would be 
the normal behavior for FIQs when 
not executing in EL3).

T A B L E  1 0

Neoverse V1 Events: Exception
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Event Num Event Mnemonic Description

0x008E EXC_TRAP_IRQ Counts IRQ exceptions  
including the virtual IRQs that  
are not taken locally.

0x008D EXC_TRAP_OTHER Counts the number of synchronous
trap exceptions which are not taken
locally and are not SVC, SMC, HVC,
data aborts, Instruction Aborts, or
interrupts.

0x008B EXC_TRAP_PABORT Counts exceptions which are  
traps not taken locally and are 
caused by Instruction Aborts. For 
example, attempting to execute an 
instruction with a misaligned PC.

0x0081 EXC_UNDEF Counts the number of  
synchronous exceptions which 
are taken locally that are due 
to attempting to execute an 
instruction that is UNDEFINED. 
Attempting to execute instruction 
bit patterns that have not been 
allocated. Attempting to execute 
instructions when they are 
disabled. Attempting to execute 
instructions at an inappropriate 
Exception level. Attempting to 
execute an instruction when the 
value of PSTATE.IL is 1.
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B1.4 L1D_Cache

Event Num Event Mnemonic Description

0x0004 L1D_CACHE Counts level 1 data cache  
accesses from any load/store 
operations. Atomic operations that 
resolve in the CPUs caches (near 
atomic operations) counts as both a 
write access and read access. Each 
access to a cache line is counted 
including the multiple accesses 
caused by single instructions such  
as LDM or STM. Each access to  
other level 1 data or unified memory
structures, for example refill buffers,
write buffers, and write-back buffers,
are also counted.

0x0048 L1D_CACHE_INVAL Counts each explicit  
invalidation of a cache line in  
the level 1 data cache caused by: 
- Cache Maintenance Operations 
(CMO) that operate by a virtual 
address. - Broadcast cache coherency 
operations from another CPU in the 
system. This event does not count for 
the following conditions: 1. A cache 
refill invalidates a cache line. 2. A 
CMO which is executed on that CPU 
and invalidates a cache line specified 
by set/way. Note that CMOs that 
operate by set/way cannot be 
broadcast from one CPU to another.

0x0039 L1D_CACHE_LMISS_RD Counts cache line refills into the level 
1 data cache from any memory read 
operations, that incurred additional 
latency.

0x0040 L1D_CACHE_RD Counts level 1 data cache accesses
from any load operation. Near atomic
operations that resolve in the CPUs
caches counts as both a write access
and read access.

0x0003 L1D_CACHE_REFILL Counts level 1 data cache refills 
caused by speculatively executed 
load or store operations that missed 
in the level 1 data cache. This event 
only counts one event per cache line. 
This event does not count cache line 
allocations from preload instructions 
or from hardware cache prefetching.

0x0044 L1D_CACHE_REFILL_INNER Counts level 1 data cache refills 
where the cache line data came  
from caches inside the immediate 
cluster of the core.

T A B L E  1 1

Neoverse V1 Events: L1D_Cache
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Event Num Event Mnemonic Description

0x0045 L1D_CACHE_REFILL_OUTER Counts level 1 data cache refills  
for which the cache line data came 
from outside the immediate cluster  
of the core, like an SLC in the system
interconnect or DRAM.

0x0042 L1D_CACHE_REFILL_RD Counts level 1 data cache refills 
caused by speculatively executed  
load instructions where the memory 
read operation misses in the level 1 
data cache. This event only counts 
one event per cache line.

0x0043 L1D_CACHE_REFILL_WR Counts level 1 data cache refills 
caused by speculatively executed 
store instructions where the memory 
write operation misses in the level 1 
data cache. This event only counts 
one event per cache line.

0x0015 L1D_CACHE_WB Counts write-backs of dirty data  
from the L1 data cache to the L2 
cache. This occurs when either a  
dirty cache line is evicted from L1 
data cache and allocated in the L2 
cache or dirty data is written to the 
L2 and possibly to the next level 
of cache. This event counts both 
victim cache line evictions and 
cache write-backs from snoops or 
cache maintenance operations. The 
following cache operations are not 
counted: 1. Invalidations which do  
not result in data being transferred 
out of the L1 (such as evictions of 
clean data), 2. Full line writes which 
write to L2 without writing L1, such 
as write streaming mode.

0x0047 L1D_CACHE_WB_CLEAN Counts write-backs from the level  
1 data cache that are a result of a
coherency operation made by another
CPU. Event count includes cache
maintenance operations.

0x0046 L1D_CACHE_WB_VICTIM Counts dirty cache line evictions  
from the level 1 data cache caused by 
a new cache line allocation. This event 
does not count evictions caused by 
cache maintenance operations.

0x0041 L1D_CACHE_WR Counts level 1 data cache accesses
generated by store operations. This
event also counts accesses caused by 
a DC ZVA (data cache zero, specified 
by virtual address) instruction. Near
atomic operations that resolve in the
CPUs caches count as a write access
and read access.
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B1.5 L1I_Cache

Event Num Event Mnemonic Description

0x0014 L1I_CACHE Counts instruction fetches which
access the level 1 instruction cache.
Instruction cache accesses caused by
cache maintenance operations are 
not counted.

0x4006 L1I_CACHE_LMISS Counts cache line refills into  
the level 1 instruction cache, that 
incurred additional latency.

0x0001 L1I_CACHE_REFILL Counts cache line refills in the level 1 
instruction cache caused by a missed 
instruction fetch. Instruction fetches 
may include accessing multiple 
instructions, but the single cache line 
allocation is counted once.

B1.6 L2_Cache

Event Num Event Mnemonic Description

0x0016 L2D_CACHE Counts level 2 cache accesses.  
Level 2 cache is a unified cache 
for data and instruction accesses. 
Accesses are for misses in the first 
level caches or translation resolutions 
due to accesses. This event also 
counts write back of dirty data from 
level 1 data cache to the L2 cache.

0x0020 L2D_CACHE_ALLOCATE TBD

0x0058 L2D_CACHE_INVAL Counts each explicit invalidation  
of a cache line in the level 2 cache  
by cache maintenance operations  
that operate by a virtual address,  
or by external coherency operations. 
This event does not count if either: 
1. A cache refill invalidates a cache 
line or, 2. A Cache Maintenance 
Operation (CMO), which invalidates 
a cache line specified by set/way, 
is executed on that CPU. CMOs 
that operate by set/way cannot be 
broadcast from one CPU to another.

T A B L E  1 2
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Event Num Event Mnemonic Description

0x4009 L2D_CACHE_LMISS_RD Counts cache line refills into  
the level 2 unified cache from any 
memory read operations that  
incurred additional latency.

0x0050 L2D_CACHE_RD Counts level 2 cache accesses  
due  to memory read operations. 
Level 2 cache is a unified cache 
for data and instruction accesses, 
accesses are for misses in the level  
1 caches or translation resolutions 
due to accesses.

0x0017 L2D_CACHE_REFILL Counts cache line refills into the  
level 2 cache. level 2 cache is a 
unified cache for data and instruction 
accesses. Accesses are for misses 
in the level 1 caches or translation 
resolutions due to accesses.

0x0052 L2D_CACHE_REFILL_RD Counts refills for memory  
accesses due to memory read 
operation counted by L2D_CACHE_
RD. level 2 cache is a unified cache 
for data and instruction accesses, 
accesses are for misses in the level 1 
caches or translation resolutions due 
to accesses.

0x0053 L2D_CACHE_REFILL_WR Counts refills for memory  
accesses due to memory write 
operation counted by L2D_CACHE_
WR. level 2 cache is a unified cache 
for data and instruction accesses, 
accesses are for misses in the level  
1 caches or translation resolutions 
due to accesses.
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Event Num Event Mnemonic Description

0x002B L3D_CACHE Counts level 3 cache accesses.  
Level 3 cache is a unified cache 
for data and instruction accesses. 
Accesses are for misses in the lower 
level caches or translation resolutions 
due to accesses.

0x0029 L3D_CACHE_ALLOCATE Counts level 3 cache line  
allocates that do not fetch data  
from outside the level 3 data or 
unified cache. For example, allocates 
due to streaming stores.

0x400B L3D_CACHE_LMISS_RD Counts any cache line refill into  
the level 3 cache from memory  
read operations that incurred 
additional latency.

0x00A0 L3D_CACHE_RD TBD

0x002A L3D_CACHE_REFILL Counts level 3 accesses that receive
data from outside the L3 cache.

T A B L E  1 4

Neoverse V1 Events: L3_Cache

Event Num Event Mnemonic Description

0x0018 L2D_CACHE_WB Counts write-backs of data from  
the L2 cache to outside the CPU.  
This includes snoops to the L2 (from 
other CPUs) which return data even 
if the snoops cause an invalidation. 
L2 cache line invalidations which do 
not write data outside the CPU and 
snoops which return data from an L1 
cache are not counted. Data would 
not be written outside the cache 
when invalidating a clean cache line.

0x0057 L2D_CACHE_WB_CLEAN Counts write-backs from the level  
2 cache that are a result of either: 1.
Cache maintenance operations, 2.
Snoop responses or, 3. Direct cache
transfers to another CPU due to a
forwarding snoop request.

0x0056 L2D_CACHE_WB_VICTIM Counts evictions from the level 
2 cache because of a line being 
allocated into the L2 cache.

0x0051 L2D_CACHE_WR Counts level 2 cache accesses  
due to memory write operations.  
Level 2 cache is a unified cache 
for data and instruction accesses, 
accesses are for misses in the level  
1 caches or translation resolutions 
due to accesses.

B1.7 L3_Cache
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Event Num Event Mnemonic Description

0x001A MEMORY_ERROR Counts any detected correctable  
or uncorrectable physical memory 
errors (ECC or parity) in protected 
CPUs RAMs. On the core, this 
event counts errors in the caches 
(including data and tag rams). Any 
detected memory error (from either a 
speculative and abandoned access, or 
an architecturally executed access) is
counted. Note that errors are only
detected when the actual protected
memory is accessed by an operation.

0x0013 MEM_ACCESS Counts memory accesses issued  
by the CPU load store unit, where 
those accesses are issued due to 
load or store operations. This event 
counts any memory access, no matter 
whether the data is received from any 
level of cache hierarchy or external 
memory. If memory accesses are 
broken up into smaller transactions 
than what were specified in the  
load or store instructions, then the 
event counts those smaller  
memory transactions.

B1.9 MemoryT A B L E  1 6

Neoverse V1 Events: Memory

Event Num Event Mnemonic Description

0x0037 LL_CACHE_MISS_RD Counts read transactions that  
were returned from outside the core 
cluster but missed in the system level 
cache. This event counts when the 
system register CPUECTLR.EXTLLC 
bit is set. This event counts read 
transactions returned from outside 
the core if those transactions are 
missed in the System level Cache. 
The data source of the transaction 
is indicated by a field in the CHI 
transaction returning to the CPU. This 
event does not count reads caused by 
cache maintenance operations.

0x0036 LL_CACHE_RD Counts read transactions that  
were returned from outside the core 
cluster. This event counts when the 
system register CPUECTLR.EXTLLC 
bit is set. This event counts read
transactions returned from outside 
the core if those transactions are 
either hit in the System Level Cache 
or missed in the SLC and are returned 
from any other external sources.

B1.8 LL_CacheT A B L E  1 5

Neoverse V1 Events: LL_Cache
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Event Num Event Mnemonic Description

0x0066 MEM_ACCESS_RD Counts memory accesses issued  
by the CPU due to load operations. 
The event counts any memory load 
access, no matter whether the data 
is received from any level of cache 
hierarchy or external memory. 
The event also counts atomic load 
operations. If memory accesses are 
broken up by the load/store unit into 
smaller transactions that are issued 
by the bus interface, then the event 
counts those smaller transactions.

0x0067 MEM_ACCESS_WR Counts memory accesses issued 
by the CPU due to store operations.
The event counts any memory 
store access, no matter whether 
the data is located in any level of 
cache or external memory. The event 
also counts atomic load and store 
operations. If memory accesses are 
broken up by the load/store unit into 
smaller transactions that are issued 
by the bus interface, then the event 
counts those smaller transactions.

0x0031 REMOTE_ACCESS Counts accesses to another  
chip, which is implemented as a 
different CMN mesh in the system. 
If the CHI bus response back to the 
core indicates that the data source 
is from another chip (mesh), then 
the counter is updated. If no data is 
returned, even if the system snoops 
another chip/mesh, then the counter 
is not updated.

Event Num Event Mnemonic Description

0x0022 BR_MIS_PRED_RETIRED Counts branches counted  
by BR_RETIRED which were
mispredicted and caused a  
pipeline flush.

0x0021 BR_RETIRED Counts architecturally executed
branches, whether the branch is taken
or not. Instructions that explicitly
write to the PC are also counted.

B1.10 RetiredT A B L E  1 7

Neoverse V1 Events: Retired
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Event Num Event Mnemonic Description

0x000B CID_WRITE_RETIRED Counts architecturally  
executed writes to the CONTEXTIDR 
register, which usually contain the 
kernel PID and can be output with 
hardware trace.

0x0008 INST_RETIRED Counts instructions that have been
architecturally executed.

0x003A OP_RETIRED Counts micro-operations that are
architecturally executed. This is a
count of number of micro-operations
retired from the commit queue in a
single cycle.

0x0000 SW_INCR Counts software writes to  
the PMSWINC_EL0 (software  
PMU increment) register. The
PMSWINC_EL0 register is a
manually updated counter for use  
by application software. This event 
could be used to measure any user 
program event, such as accesses to a 
particular data structure (by writing 
to the PMSWINC_EL0 register each 
time the data structure is accessed). 
To use the PMSWINC_EL0 register 
and event, developers must insert
instructions that write to the
PMSWINC_EL0 register into the
source code. Since the SW_INCR
event records writes to the
PMSWINC_EL0 register, there is  
no need to do a read/increment/ 
write sequence to the PMSWINC_
EL0 register.

0x001C TTBR_WRITE_RETIRED Counts architectural writes  
to TTBR0/1_EL1. If virtualization  
host extensions are enabled (by 
setting the HCR_EL2.E2H bit to 1), 
then accesses to TTBR0/1_EL1 that 
are redirected to TTBR0/1_EL2, or
accesses to TTBR0/1_EL12, are
counted. TTBRn registers are
typically updated when the kernel  
is swapping user-space threads  
or applications.

Event Num Event Mnemonic Description

0x4003 SAMPLE_COLLISION Counts statistical profiling samples
that have collided with a previous
sample and so therefore not taken.

B1.11 SPET A B L E  1 8

Neoverse V1 Events: SPE
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Event Num Event Mnemonic Description

0x8005 ASE_INST_SPEC Counts speculatively executed
Advanced SIMD operations.

0x0074 ASE_SPEC Counts speculatively  
executed Advanced SIMD  
operations  excluding load, store  
and move micro-operations that 
move data to or from SIMD  
(vector) registers.

0x0078 BR_IMMED_SPEC Counts immediate branch operations
which are speculatively executed.

0x007A BR_INDIRECT_SPEC Counts indirect branch operations
including procedure returns, which 
are speculatively executed. This 
includes operations that force a 
software change of the PC, other  
than exception-generating operations.  
Eg: BR Xn, RET

0x0010 BR_MIS_PRED Counts branches which are
speculatively executed and
mispredicted.

0x0012 BR_PRED Counts branches speculatively
executed and were predicted right.

0x0079 BR_RETURN_SPEC Counts procedure return operations
(RET) which are speculatively
executed.

0x0077 CRYPTO_SPEC Counts speculatively executed
cryptographic operations except for
PMULL and VMULL operations.

0x007E DMB_SPEC Counts DMB operations that are
speculatively issued to the Load/
Store unit in the CPU. This event does 
not count implied barriers from load
acquire/store release operations.

B1.12 Spec_OperationT A B L E  1 9

Neoverse V1 Events:  
Spec_Operation

Event Num Event Mnemonic Description

0x4001 SAMPLE_FEED Counts statistical profiling  
samples taken for sampling.

0x4002 SAMPLE_FILTRATE Counts statistical profiling  
samples taken which are not removed 
by filtering.

0x4000 SAMPLE_POP Counts statistical profiling sample
population, the count of all operations
that could be sampled but may or may
not be chosen for sampling.
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Event Num Event Mnemonic Description

0x0073 DP_SPEC Counts speculatively executed logical
or arithmetic instructions such as
MOV/MVN operations.

0x007D DSB_SPEC Counts DSB operations that are
speculatively issued to Load/Store
unit in the CPU.

0x001B INST_SPEC Counts operations that have been
speculatively executed.

0x007C ISB_SPEC Counts ISB operations that are 
executed.

0x006C LDREX_SPEC Counts Load-Exclusive operations
(such as LDREX or LDX) that have
been speculatively executed. Eg:
LDREX, LDX

0x0070 LD_SPEC Counts speculatively executed  
load operations including Single 
Instruction Multiple Data (SIMD)  
load operations.

0x003B OP_SPEC Counts micro-operations 
speculatively executed. This is  
the count of the number of micro-
operations dispatched in a cycle.

0x0076 PC_WRITE_SPEC Counts speculatively executed
operations which cause software
changes of the PC. Those operations
include all taken branch operations.

0x0090 RC_LD_SPEC Counts any load acquire operations
that are speculatively executed. Eg:
LDAR, LDARH, LDARB

0x0091 RC_ST_SPEC Counts any store release operations
that are speculatively executed. Eg:
STLR, STLRH, STLRB’

0x006E STREX_FAIL_SPEC Counts store-exclusive operations 
that have been speculatively 
executed and have not successfully 
completed the store operation.

0x006D STREX_PASS_SPEC Counts store-exclusive operations 
that have been speculatively 
executed and have successfully 
completed the store operation.
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Event Num Event Mnemonic Description

0x003C STALL Counts cycles when no operations  
are sent to the rename unit from the
frontend or from the rename unit to
the backend for any reason (either
frontend or backend stall).

0x0024 STALL_BACKEND Counts cycles whenever the  
rename unit is unable to send any
micro-operations to the backend 
of the pipeline because of backend 
resource constraints. Backend 
resource constraints can include 
issue stage fullness, execution stage 
fullness, or other internal pipeline 
resource fullness. All the backend 
slots were empty during the cycle 
when this event counts.

B1.13 StallT A B L E  2 0

Neoverse V1 Events: Stall

Event Num Event Mnemonic Description

0x006F STREX_SPEC Counts store-exclusive  
operations that have been 
speculatively executed.

0x0071 ST_SPEC Counts speculatively executed  
store operations including Single 
Instruction Multiple Data (SIMD) 
store operations.

0x006A UNALIGNED_LDST_SPEC Counts unaligned memory operations
issued by the CPU. This event counts
unaligned accesses (as defined by the
actual instruction), even if they are
subsequently issued as multiple
aligned accesses.

0x0068 UNALIGNED_LD_SPEC Counts unaligned memory  
read operations issued by the CPU. 
This event counts unaligned accesses 
(as defined by the actual instruction),
even if they are subsequently 
issued as multiple aligned accesses. 
The event does not count preload 
operations (PLD, PLI).

0x0069 UNALIGNED_ST_SPEC Counts unaligned memory write
operations issued by the CPU. This
event counts unaligned accesses (as
defined by the actual instruction),
even if they are subsequently issued 
as multiple aligned accesses.

0x0075 VFP_SPEC Counts speculatively executed 
floating point operations. This  
event does not count operations  
that move data to or from floating 
point (vector) registers.
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Event Num Event Mnemonic Description

0x4004 CNT_CYCLES Counts constant frequency cycles.

0x0011 CPU_CYCLES Counts CPU clock cycles (not timer
cycles). The clock measured by this
event is defined as the physical clock
driving the CPU logic.

Event Num Event Mnemonic Description

0x0034 DTLB_WALK Counts data memory translation table
walks caused by a miss in the L2 TLB
driven by a memory access. Note that
partial translations that also cause a
table walk are counted. This event
does not count table walks caused by
TLB maintenance operations.

B1.14 General

B1.15 TLB

T A B L E  2 1

Neoverse V1 Events: General

T A B L E  2 2

Neoverse V1 Events: TLB

Event Num Event Mnemonic Description

0x4005 STALL_BACKEND_MEM Counts cycles when the backend is
stalled because there is a pending
demand load request in progress in 
the last level core cache.

0x0023 STALL_FRONTEND Counts cycles when frontend  
could not send any micro-operations 
to the rename stage because of 
frontend resource stalls caused by 
fetch memory latency or branch 
prediction flow stalls. All the frontend 
slots were empty during the cycle 
when this event counts.

0x003F STALL_SLOT Counts slots per cycle in which  
no operations are sent to the  
rename unit from the frontend or 
from the rename unit to the backend 
for any reason (either frontend or 
backend stall).

0x003D STALL_SLOT_BACKEND Counts slots per cycle in which no
operations are sent from the rename
unit to the backend due to backend
resource constraints.

0x003E STALL_SLOT_FRONTEND Counts slots per cycle in which no
operations are sent to the rename 
unit from the frontend due to 
frontend resource constraints.
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Event Num Event Mnemonic Description

0x0035 ITLB_WALK Counts instruction memory 
translation table walks caused by 
a miss in the L2 TLB driven by a 
memory access. Partial translations 
that also cause a table walk are 
counted. This event does not 
count table walks caused by TLB 
maintenance operations.

0x0025 L1D_TLB Counts level 1 data TLB accesses
caused by any memory load or store
operation. Note that load or store
instructions can be broken up into
multiple memory operations. This
event does not count TLB
maintenance operations.

0x004E L1D_TLB_RD Counts level 1 data TLB  
accesses caused by memory  
read operations. This event counts 
whether the access hits or misses in 
the TLB. This event does not count 
TLB maintenance operations.

0x0005 L1D_TLB_REFILL Counts level 1 data TLB accesses  
that resulted in TLB refills. If there  
are multiple misses in the TLB that 
are resolved by the refill, then this 
event only counts once. This event 
counts for refills caused by preload
instructions or hardware prefetch
accesses. This event counts regardless
of whether the miss hits in L2 or
results in a translation table walk.
This event will not count if the
translation table walk results in a fault
(such as a translation or access fault),
since there is no new translation
created for the TLB. This event will
not count on an access from an
AT (Address Translation) instruction.

0x004C L1D_TLB_REFILL_RD Counts level 1 data TLB refills  
caused by memory read operations. 
If there are multiple misses in the 
TLB that are resolved by the refill, 
then this event only counts once. 
This event counts for refills caused 
by preload instructions or hardware 
prefetch accesses. This event counts 
regardless of whether the miss hits 
in L2 or results in a translation table 
walk. This event will not count if the
translation table walk results in a fault
(such as a translation or access fault),
since there is no new translation
created for the TLB. This event will
not count on an access from an
Address Translation (AT) instruction.
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Event Num Event Mnemonic Description

0x004D L1D_TLB_REFILL_WR Counts level 1 data TLB refills  
caused by data side memory write 
operations. If there are multiple 
misses in the TLB that are resolved 
by the refill, then this event only 
counts once. This event counts for 
refills caused by preload instructions 
or hardware prefetch accesses. This 
event counts regardless of whether 
the miss hits in L2 or results in a 
translation table walk. This event will 
not count if the table walk results 
in a fault (such as a translation or 
access fault), since there is no new 
translation created for the TLB.  
This event will not count with an 
access from an Address Translation
(AT) instruction.

0x004F L1D_TLB_WR Counts any L1 data side TLB  
accesses caused by memory  
write operations. This event counts 
whether the access hits or misses in 
the TLB. This event does not count 
TLB maintenance operations.

0x002D L2D_TLB_REFILL Counts level 2 TLB refills caused  
by memory operations from both  
data and instruction fetch, except for 
those caused by TLB maintenance
operations and hardware prefetches.

0x005C L2D_TLB_REFILL_RD Counts level 2 TLB refills caused by
memory read operations from both
data and instruction fetch except for
those caused by TLB maintenance
operations or hardware prefetches.

0x005D L2D_TLB_REFILL_WR Counts level 2 TLB refills caused  
by memory write operations from 
both data and instruction fetch 
except for those caused by TLB 
maintenance operations.

0x005F L2D_TLB_WR Counts level 2 TLB accesses  
caused by memory write operations 
from both data and instruction fetch 
except for those caused by TLB 
maintenance operations.



W H I T E  P A P E R 66

Event Num Event Mnemonic Description

0x80C1 FP_FIXED_OPS_SPEC Counts speculatively executed
non-scalable single precision floating
point operations.

0x80C0 FP_SCALE_OPS_SPEC Counts speculatively executed 
scalable single precision floating  
point operations.

0x8006 SVE_INST_SPEC Counts speculatively executed
operations that are SVE operations.

0x80BD SVE_LDFF_FAULT_SPEC Counts speculatively executed SVE
first fault or non-fault load operations
that clear at least one bit in the FFR.

0x80BC SVE_LDFF_SPEC Counts speculatively  
executed SVE first fault or  
non-fault load operations.

0x8075 SVE_PRED_EMPTY_SPEC Counts speculatively executed
predicated SVE operations with no
active predicate elements.

0x8076 SVE_PRED_FULL_SPEC Counts speculatively executed
predicated SVE operations with all
predicate elements active.

0x8077 SVE_PRED_PARTIAL_SPEC Counts speculatively executed
predicated SVE operations with  
at least one but not all active 
predicate elements.

0x8074 SVE_PRED_SPEC Counts speculatively executed
predicated SVE operations.

B1.16 SVET A B L E  2 3

Neoverse V1 Events: SVE

Event Num Event Mnemonic Description

0x002D L2D_TLB_REFILL Counts level 2 TLB refills caused  
by memory operations from both  
data and instruction fetch, except for 
those caused by TLB maintenance
operations and hardware prefetches.

0x005C L2D_TLB_REFILL_RD Counts level 2 TLB refills caused by
memory read operations from both
data and instruction fetch except for
those caused by TLB maintenance
operations or hardware prefetches.

0x005D L2D_TLB_REFILL_WR Counts level 2 TLB refills caused  
by memory write operations from 
both data and instruction fetch 
except for those caused by TLB 
maintenance operations.

0x005F L2D_TLB_WR Counts level 2 TLB accesses  
caused by memory write operations 
from both data and instruction fetch 
except for those caused by TLB 
maintenance operations.
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Metric Name Metric Formula Unit

backend_bound 100 * STALL_SLOT_BACKEND/(CPU_ 
CYCLES *8)

percent of slots

bad_speculation 100 * ( ((1 - (OP_RETIRED/OP_SPEC)) * (1 -
(STALL_SLOT/(CPU_CYCLES * 8)))) +
((BR_MIS_PRED * 4)/CPU_CYCLES) )

percent of slots

frontend_bound 100 * ((STALL_SLOT_FRONTEND/(CPU_
CYCLES * 8)) - ((BR_MIS_PRED * 4)/CPU_
CYCLES) )

percent of slots

retiring 100 * (OP_RETIRED/OP_SPEC) * (1 -
(STALL_SLOT/(CPU_CYCLES * 8))) percent of slots

C1.1.2 Metric FormulaT A B L E  2 5

Neoverse V1 Metrics:  
Topdown_L1, Metric Formula

Metric Name Metric Title Metric Description

backend_bound Backend Bound This metric is the percentage of 
total slots that were stalled due to 
resource constraints in the backend 
of the processor.

bad_speculation Bad Speculation This metric is the percentage of total 
slots that executed operations and 
didn’t retire due to a pipeline flush. 
This indicates cycles that were
utilized but inefficiently.

frontend_bound Frontend Bound This metric is the percentage of 
total slots that were stalled due to 
resource constraints in the frontend 
of the processor.

retiring Retiring This metric is the percentage of  
total slots that retired operations, 
which indicates cycles that were 
utilized efficiently.

10. Appendix C1. Neoverse V1 Metrics
C.1.1 Metric Group: Topdown_L1 
This metric group contains the first set of metrics to begin topdown  

analysis of application performance, which provide the percentage 

distribution of processor pipeline utilization.

C1.1.1 Metric DescriptionsT A B L E  2 4

Neoverse V1 Metrics:  
Topdown_L1, Metric Descriptions
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Metric Name Metric Formula Unit

backend_stalled_cycles STALL_BACKEND / CPU_ 
CYCLES * 100

percent of cycles

frontend_stalled_cycles STALL_FRONTEND / CPU_ 
CYCLES * 100

percent of cycles

Metric Name Metric Events

backend_stalled_cycles CPU_CYCLES, STALL_BACKEND

frontend_stalled_cycles CPU_CYCLES, STALL_FRONTEND

C1.2.2 Metric Formula

C1.2.3 Metric Events

T A B L E  2 8

Neoverse V1 Metrics:  
Cycle_Accounting, Metric Formula

T A B L E  2 9

Neoverse V1 Metrics:  
Cycle_Accounting, Metric Events

Metric Name Metric Title Metric Description

backend_stalled_cycles Backend Stalled Cycles This metric is the percentage  
of cycles that were stalled due to 
resource constraints in the backend 
unit of the processor.

frontend_stalled_cycles Frontend Stalled Cycles This metric is the percentage  
of cycles that were stalled due to 
resource constraints in the frontend 
unit of the processor.

C1.2 Metric Group: Cycle_Accounting 
This metric group contains a set of metrics that measure the percentage  

of processor cycles stalled in either frontend or backend of the processor.

C1.2.1 Metric DescriptionsT A B L E  2 7

Neoverse V1 Metrics:  
Cycle_Accounting, Metric 
Descriptions

Metric Name Metric Events

backend_bound CPU_CYCLES, STALL_SLOT_BACKEND

bad_speculation CPU_CYCLES, OP_SPEC, BR_MIS_PRED, STALL_SLOT, OP_RETIRED

frontend_bound CPU_CYCLES, BR_MIS_PRED, STALL_SLOT_FRONTEND

retiring CPU_CYCLES, OP_SPEC, STALL_SLOT, OP_RETIRED

C1.1.3 Metric EventsT A B L E  2 6

Neoverse V1 Metrics:  
Topdown_L1, Metric Events
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C1.4 Metric Group: MPKI 
This metric group contains metrics for different CPU resources that can be 

measured as misses per kilo instructions.

Metric Name Metric Title Metric Description

branch_mpki Branch MPKI This metric measures the number of 
branch mispredictions per thousand 
instructions executed.

dtlb_mpki DTLB MPKI This metric measures the number 
of data TLB Walks per thousand 
instructions executed.

itlb_mpki ITLB MPKI This metric measures the number of 
instruction TLB Walks per thousand 
instructions executed.

l1d_cache_mpki L1D Cache MPKI This metric measures the  
number of level 1 data cache 
accesses missed per thousand 
instructions executed.

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the  
number of level 1 instruction TLB 
accesses missed per thousand 
instructions executed.

C1.4.1 Metric Descriptions

C1.3.3 Metric Events

Metric Name Metric Events

ipc CPU_CYCLES, INST_RETIRED

T A B L E  3 2

Neoverse V1 Metrics:  
General, Metric Events

T A B L E  3 3

Neoverse V1 Metrics:  
MPKI, Metric Descriptions

Metric Name Metric Title Metric Description

ipc Instructions Per Cycle This metric measures the number  
of instructions retired per cycle.

C1.3.1 Metric Descriptions

C1.3.2 Metric Formula

Metric Name Metric Formula Unit

ipc INST_RETIRED / CPU_CYCLES per cycle

T A B L E  3 0

Neoverse V1 Metrics:  
General, Metric Descriptions

T A B L E  3 1

Neoverse V1 Metrics:  
General, Metric Formula

C1.3 Metric Group: General 
This metric group contains general CPU metrics for performance analysis.
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Metric Name Metric Formula Unit

branch_mpki BR_MIS_PRED_RETIRED / INST_RETIRED * 1000 MPKI

dtlb_mpki DTLB_WALK / INST_RETIRED * 1000 MPKI

itlb_mpki ITLB_WALK / INST_RETIRED * 1000 MPKI

l1d_cache_mpki L1D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l1d_tlb_mpki L1D_TLB_REFILL / INST_RETIRED * 1000 MPKI

l1i_cache_mpki L1I_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l1i_tlb_mpki L1I_TLB_REFILL / INST_RETIRED * 1000 MPKI

l2_cache_mpki L2D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l2_tlb_mpki L2D_TLB_REFILL / INST_RETIRED * 1000 MPKI

ll_cache_read_mpki LL_CACHE_MISS_RD / INST_RETIRED * 1000 MPKI

C1.4.2 Metric FormulaT A B L E  3 4

Neoverse V1 Metrics:  
MPKI, Metric Formula

Metric Name Metric Title Metric Description

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the  
number of level 1 instruction TLB 
accesses missed per thousand 
instructions executed.

l1i_cache_mpki L1I Cache MPKI This metric measures the  
number of level 1 instruction cache 
accesses missed per thousand 
instructions executed.

l1i_tlb_mpki L1 Instruction TLB MPKI This metric measures the  
number of level 1 instruction TLB 
accesses missed per thousand 
instructions executed.

l2_cache_mpki L2 Cache MPKI This metric measures the number  
of level 2 unified cache accesses 
missed per thousand instructions 
executed. Note that cache accesses 
in this cache are either data memory 
access or instruction fetch as this is a 
unified cache.

l2_tlb_mpki L2 Unified TLB MPKI This metric measures the number  
of level 2 unified TLB accesses missed 
per thousand instructions executed.

ll_cache_read_mpki LL Cache Read MPKI This metric measures the number of 
last level cache read accesses missed 
per thousand instructions executed.
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Metric Name Metric Formula Unit

branch_mpki BR_MIS_PRED_RETIRED / INST_RETIRED * 1000 MPKI

dtlb_mpki DTLB_WALK / INST_RETIRED * 1000 MPKI

itlb_mpki ITLB_WALK / INST_RETIRED * 1000 MPKI

l1d_cache_mpki L1D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

l1d_tlb_mpki L1D_TLB_REFILL / INST_RETIRED * 1000 MPKI

l1i_cache_mpki L1I_CACHE_REFILL / INST_RETIRED * 1000 MPKI

Metric Name Metric Events

branch_mpki BR_MIS_PRED_RETIRED, INST_RETIRED

dtlb_mpki INST_RETIRED, DTLB_WALK

itlb_mpki INST_RETIRED, ITLB_WALK

l1d_cache_mpki L1D_CACHE_REFILL, INST_RETIRED

l1d_tlb_mpki INST_RETIRED, L1D_TLB_REFILL

l1i_cache_mpki INST_RETIRED, L1I_CACHE_REFILL

l1i_tlb_mpki INST_RETIRED, L1I_TLB_REFILL

l2_cache_mpki L2D_CACHE_REFILL, INST_RETIRED

l2_tlb_mpki INST_RETIRED, L2D_TLB_REFILL

ll_cache_read_mpki INST_RETIRED, LL_CACHE_MISS_RD

C1.4.3 Metric EventsT A B L E  3 5

Neoverse V1 Metrics:  
MPKI, Metric Events
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C1.5.1 Metric Descriptions

C1.5 Metric Group: Miss_Ratio 
This metric group contains metrics to measure miss ratios of different 

processor resources.

T A B L E  3 6

Neoverse V1 Metrics:  
Miss_Ratio, Metric Descriptions Metric Name Metric Title Metric Description

branch_misprediction_ratio Branch Misprediction Ratio This metric measures the ratio of 
branches mispredicted to the total 
number of branches architecturally 
executed. This gives an indication of
the effectiveness of the branch 
prediction unit.

dtlb_walk_ratio DTLB Walk Ratio This metric measures the  
ratio of instruction TLB Walks  
to the total number of data TLB 
accesses. This gives an indication  
of the effectiveness of the data  
TLB accesses.

itlb_walk_ratio ITLB Walk Ratio This metric measures the ratio  
of instruction TLB Walks to the  
total number of instruction TLB
accesses. This gives an indication of 
the effectiveness of the instruction 
TLB accesses.

l1d_cache_miss_ratio L1D Cache Miss Ratio This metric measures the ratio of 
 level 1 data cache accesses missed  
to the total number of level 1 data
cache accesses. This gives an 
indication of the effectiveness of  
the level 1 data cache.

l1d_tlb_miss_ratio L1 Data TLB Miss Ratio This metric measures the ratio of  
level 1 data TLB accesses missed to 
the total number of level 1 data
TLB accesses. This gives an indication 
of the effectiveness of the level 1 
data TLB.
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Metric Name Metric Title Metric Description

l1i_cache_miss_ratio L1I Cache Miss Ratio This metric measures the ratio of  
level 1 instruction cache accesses 
missed to the total number of level 1
instruction cache accesses. This gives 
an indication of the effectiveness of 
the level 1 instruction cache.

l1i_tlb_miss_ratio L1 Instruction TLB Miss Ratio This metric measures the ratio  
of level 1 instruction TLB accesses 
missed to the total number of level 1
instruction TLB accesses. This gives 
an indication of the effectiveness of 
the level 1 instruction TLB.

l2_cache_miss_ratio L2 Cache Miss Ratio This metric measures the ratio  
of level 2 cache accesses missed to 
the total number of level 2 cache
accesses. This gives an indication of 
the effectiveness of the level 2 cache, 
which is a unified cache that stores 
both data and instruction. Note
that cache accesses in this cache 
are either data memory access or 
instruction fetch as this is a
unified cache.

l2_tlb_miss_ratio L2 Unified TLB Miss Ratio This metric measures the ratio of level 
2 unified TLB accesses missed to the 
total number of level 2 unified TLB 
accesses. This gives an indication of
the effectiveness of the level 2 TLB

ll_cache_read_miss_ratio LL Cache Read Miss Ratio This metric measures the ratio of last 
level cache read accesses missed to 
the total number of last level cache 
accesses. This gives an indication 
of the effectiveness of the last level 
cache for read traffic. Note that cache 
accesses in this cache are either
data memory access or instruction 
fetch as this is a system level cache.
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Metric Name Metric Events

branch_misprediction_ratio BR_MIS_PRED_RETIRED, BR_RETIRED

dtlb_walk_ratio L1D_TLB, DTLB_WALK

itlb_walk_ratio ITLB_WALK, L1I_TLB

l1d_cache_miss_ratio L1D_CACHE_REFILL, L1D_CACHE

l1d_tlb_miss_ratio L1D_TLB, L1D_TLB_REFILL

l1i_cache_miss_ratio L1I_CACHE, L1I_CACHE_REFILL

l1i_tlb_miss_ratio L1I_TLB_REFILL, L1I_TLB

l1i_tlb_miss_ratio L2D_CACHE_REFILL, L2D_CACHE

l2_tlb_miss_ratio L2D_TLB, L2D_TLB_REFILL

ll_cache_read_miss_ratio LL_CACHE_MISS_RD, LL_CACHE_RD

C1.5.3 Metric EventsT A B L E  3 8

Neoverse V1 Metrics:  
Miss_Ratio, Metric Events

Metric Name Metric Formula Unit

branch_misprediction_ratio BR_MIS_PRED_RETIRED / BR_RETIRED per branch

dtlb_walk_ratio DTLB_WALK / L1D_TLB per TLB access

itlb_walk_ratio ITLB_WALK / L1I_TLB per TLB access

l1d_cache_miss_ratio L1D_CACHE_REFILL / L1D_CACHE per cache access

l1d_tlb_miss_ratio L1D_TLB_REFILL / L1D_TLB per TLB access

l1i_cache_miss_ratio L1I_CACHE_REFILL / L1I_CACHE per cache access

l1i_tlb_miss_ratio L1I_TLB_REFILL / L1I_TLB per TLB access

l2_cache_miss_ratio L2D_CACHE_REFILL / L2D_CACHE per cache access

l2_tlb_miss_ratio L2D_TLB_REFILL / L2D_TLB per TLB access

ll_cache_read_miss_ratio LL_CACHE_MISS_RD / LL_CACHE_RD per cache access

C1.5.2 Metric FormulaT A B L E  3 7

Neoverse V1 Metrics:  
Miss_Ratio, Metric Formula
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C1.6.3 Metric Events

Metric Name Metric Events

branch_misprediction_ratio BR_MIS_PRED_RETIRED, BR_RETIRED

branch_mpki BR_MIS_PRED_RETIRED, INST_RETIRED

T A B L E  4 1

Neoverse V1 Metrics:  
Branch_Effectiveness,  
Metric Events

C1.6 Metric Group: Branch_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of branch 

instruction execution on this processor.

Metric Name Metric Title Metric Description

branch_misprediction_ratio Branch Misprediction Ratio This metric measures the ratio of 
branches mispredicted to the total 
number of branches architecturally 
executed. This gives an indication of
the effectiveness of the branch 
prediction unit.

branch_mpki Branch MPKI This metric measures the number of 
branch mispredictions per thousand 
instructions executed.

C1.6.1 Metric Descriptions

C1.6.2 Metric Formula

Metric Name Metric Formula Unit

branch_misprediction_ratio BR_MIS_PRED_RETIRED / BR_RETIRED per branch

branch_mpki BR_MIS_PRED_RETIRED / INST_RETIRED * 1000 MPKI

T A B L E  3 9

Neoverse V1 Metrics:  
Branch_Effectiveness,  
Metric Description

T A B L E  4 0

Neoverse V1 Metrics:  
Branch_Effectiveness,  
Metric Formula
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C1.7.2 Metric Formula

Metric Name Metric Formula Unit

itlb_mpki ITLB_WALK / INST_RETIRED * 1000 MPKI

itlb_walk_ratio ITLB_WALK / L1I_TLB per TLB access

l1i_tlb_miss_ratio L1I_TLB_REFILL / L1I_TLB per TLB access

l1i_tlb_mpki L1I_TLB_REFILL / INST_RETIRED * 1000 MPKI

l2_tlb_miss_ratio L2D_TLB_REFILL / L2D_TLB per TLB access

l2_tlb_mpki L2D_TLB_REFILL / INST_RETIRED * 1000 MPKI

T A B L E  4 3

Neoverse V1 Metrics:  
ITLB_Effectiveness,  
Metric Formula

C1.7 Metric Group: ITLB_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of 

instruction TLB on this processor.

Metric Name Metric Title Metric Description

itlb_mpki ITLB MPKI This metric measures the number of 
instruction TLB Walks per thousand 
instructions executed.

itlb_walk_ratio ITLB Walk Ratio This metric measures the ratio  
of instruction TLB Walks to the  
total number of instruction TLB
accesses. This gives an indication of 
the effectiveness of the instruction 
TLB accesses.

l1i_tlb_miss_ratio L1 Instruction TLB Miss Ratio This metric measures the ratio of level 
1 instruction TLB accesses missed to 
the total number of level 1 instruction 
TLB accesses. This gives an indication
of the effectiveness of the level 1 
instruction TLB.

l1i_tlb_mpki L1 Instruction TLB MPKI This metric measures the  
number of level 1instruction TLB 
accesses missed per thousand 
instructions executed.

l2_tlb_miss_ratio L2 Unified TLB Miss Ratio This metric measures the ratio of level 
2 unified TLB accesses missed to the 
total number of level 2 unified TLB 
accesses. This gives an indication of 
the effectiveness of the level 2 TLB.

l2_tlb_mpki L2 Unified TLB MPKI This metric measures the number  
of level 2 unified TLB accesses missed 
per thousand instructions executed.

C1.7.1 Metric DescriptionsT A B L E  4 2

Neoverse V1 Metrics:  
ITLB_Effectiveness,  
Metric Descriptions
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C1.8.1 Metric Descriptions

C1.8 Metric Group: DTLB_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of data 

TLB on this processor.

Metric Name Metric Title Metric Description

dtlb_mpki DTLB MPKI This metric measures the number 
of data TLB Walks per thousand 
instructions executed.

dtlb_walk_ratio DTLB Walk Ratio This metric measures the  
ratio of instruction TLB Walks  
to the total number of data TLB 
accesses. This gives an indication  
of the effectiveness of the data  
TLB accesses.

l1d_tlb_miss_ratio L1 Data TLB Miss Ratio This metric measures the ratio  
of level 1 data TLB accesses missed  
to the total number of level 1 data
TLB accesses. This gives an indication 
of the effectiveness of the level 1 
data TLB.

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the  
number of level 1 instruction TLB 
accesses missed per thousand 
instructions executed.

l2_tlb_miss_ratio L2 Unified TLB Miss Ratio This metric measures the ratio of level 
2 unified TLB accesses missed to the 
total number of level 2 unified TLB 
accesses. This gives an indication of
the effectiveness of the level 2 TLB.

l2_tlb_mpki L2 Unified TLB MPKI This metric measures the  
number of level 2 unified TLB 
accesses missed per thousand 
instructions executed.

T A B L E  4 5
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C1.7.3 Metric Events

Metric Name Metric Events

itlb_mpki INST_RETIRED, ITLB_WALK

itlb_walk_ratio ITLB_WALK, L1I_TLB

l1i_tlb_miss_ratio L1I_TLB_REFILL, L1I_TLB

l1i_tlb_mpki INST_RETIRED, L1I_TLB_REFILL

l2_tlb_miss_ratio L2D_TLB, L2D_TLB_REFILL

l2_tlb_mpki INST_RETIRED, L2D_TLB_REFILL

T A B L E  4 4
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C1.9 Metric Group: L1I_Cache_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of L1 

Instruction cache on this processor.

C1.8.2 Metric Formula

Metric Name Metric Formula Unit

dtlb_mpki DTLB_WALK / INST_RETIRED * 1000 MPKI

dtlb_walk_ratio DTLB_WALK / L1D_TLB per TLB access

l1d_tlb_miss_ratio L1D_TLB_REFILL / L1D_TLB per TLB access

l1d_tlb_mpki L1D_TLB_REFILL / INST_RETIRED * 1000 MPKI

l2_tlb_miss_ratio L2D_TLB_REFILL / L2D_TLB per TLB access

l2_tlb_mpki L2D_TLB_REFILL / INST_RETIRED * 1000 MPKI

C1.8.3 Metric Events

Metric Name Metric Events

dtlb_mpki INST_RETIRED, DTLB_WALK

dtlb_walk_ratio L1D_TLB, DTLB_WALK

l1d_tlb_miss_ratio L1D_TLB, L1D_TLB_REFILL

l1d_tlb_mpki INST_RETIRED, L1D_TLB_REFILL

l2_tlb_miss_ratio L2D_TLB, L2D_TLB_REFILL

l2_tlb_mpki INST_RETIRED, L2D_TLB_REFILL

T A B L E  4 6
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Metric Name Metric Title Metric Description

l1d_tlb_miss_ratio L1 Data TLB Miss Ratio This metric measures the ratio  
of level 1 data TLB accesses missed  
to the total number of level 1 data
TLB accesses. This gives an indication 
of the effectiveness of the level 1 
data TLB.

l1d_tlb_mpki L1 Data TLB MPKI This metric measures the  
number of level 1 instruction TLB 
accesses missed per thousand 
instructions executed.
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C1.10 Metric Group: L1D_Cache_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of  

L1 Data Cache on this processor.

Metric Name Metric Title Metric Description

l1d_cache_miss_ratio L1D Cache Miss Ratio This metric measures the ratio of  
level 1 data cache accesses missed  
to the total number of level 1 data
cache accesses. This gives an 
indication of the effectiveness of  
the level 1 data cache.

C1.10.1 Metric DescriptionsT A B L E  5 1
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Metric Descriptions

Metric Name Metric Title Metric Description

l1i_cache_miss_ratio L1I Cache Miss Ratio This metric measures the ratio of  
level 1 instruction cache accesses 
missed to the total number of level 1
instruction cache accesses. This gives 
an indication of the effectiveness of 
the level 1 instruction cache.

l1i_cache_mpki L1I Cache MPKI This metric measures the  
number of level 1 instruction  
cache accesses missed per  
thousand instructions executed.

C1.9.1 Metric Descriptions

C1.9.2 Metric Formula

C1.9.3 Metric Events

Metric Name Metric Formula Unit

l1i_cache_miss_ratio L1I_CACHE_REFILL / L1I_CACHE per cache access

l1i_cache_mpki L1I_CACHE_REFILL / INST_RETIRED * 1000 MPKI

Metric Name Metric Events

l1i_cache_miss_ratio L1I_CACHE, L1I_CACHE_REFILL

l1i_cache_mpki INST_RETIRED, L1I_CACHE_REFILL

T A B L E  4 8
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C1.11 Metric Group: L2_Cache_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of L2 

Unified Cache on this processor.

Metric Name Metric Title Metric Description

l2_cache_miss_ratio L2 Cache Miss Ratio This metric measures the ratio of  
level 2 cache accesses missed to 
the total number of level 2 cache 
accesses. This gives an indication of 
the effectiveness of the level 2 cache, 
which is a unified cache that stores 
both data and instruction. Note
that cache accesses in this cache 
are either data memory access or 
instruction fetch as this is a
unified cache.

l2_cache_mpki L2 Cache MPKI This metric measures the number  
of level 2 unified cache accesses 
missed per thousand instructions 
executed. Note that cache accesses 
in this cache are either data memory 
access or instruction fetch as this is  
a unified cache.

C1.11.1 Metric DescriptionsT A B L E  5 4
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C1.10.2 Metric Formula

Metric Name Metric Formula Unit

l1d_cache_miss_ratio L1D_CACHE_REFILL / L1D_CACHE per cache access

l1d_cache_mpki L1D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

C1.10.3 Metric Events

Metric Name Metric Events

l1d_cache_miss_ratio L1D_CACHE_REFILL, L1D_CACHE

l1d_cache_mpki L1D_CACHE_REFILL, INST_RETIRED

T A B L E  5 2
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Metric Name Metric Title Metric Description

l1d_cache_mpki L1D Cache MPKI This metric measures the number of 
level 1 data cache accesses missed 
per thousand instructions executed.
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C1.12 Metric Group: LL_Cache_Effectiveness 
This metric group contains metrics to evaluate the effectiveness of Last 

Level Cache on this processor.

Metric Name Metric Title Metric Description

ll_cache_read_hit_ratio LL Cache Read Hit Ratio This metric measures the ratio of 
last level cache read accesses hit in 
the cache to the total number of last 
level cache accesses. This gives an 
indication of the effectiveness of the 
last level cache for read traffic. Note 
that cache accesses in this cache 
are either data memory access or 
instruction fetch as this is a system 
level cache.

ll_cache_read_miss_ratio LL Cache Read Miss Ratio This metric measures the ratio of  
last level cache read accesses missed 
to the total number of last level cache 
accesses. This gives an indication 
of the effectiveness of the last level 
cache for read traffic. Note that cache 
accesses in this cache are either
data memory access or instruction 
fetch as this is a system level cache.

ll_cache_read_mpki LL Cache Read MPKI This metric measures the number of 
last level cache read accesses missed 
per thousand instructions executed.

C1.12.1 Metric DescriptionsT A B L E  5 7
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C1.11.3 Metric Events

Metric Name Metric Events

l2_cache_miss_ratio L2D_CACHE_REFILL, L2D_CACHE

l2_cache_mpki L2D_CACHE_REFILL, INST_RETIRED

C1.11.2 Metric Formula

Metric Name Metric Formula Unit

l2_cache_miss_ratio L2D_CACHE_REFILL / L2D_CACHE per cache access

l2_cache_mpki L2D_CACHE_REFILL / INST_RETIRED * 1000 MPKI

T A B L E  5 5
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C1.13.1 Metric Descriptions

C1.13 Metric Group: Operation_Mix 
This metric group provides the distribution of micro-operation types 

executed for the program.

Metric Name Metric Title Metric Description

branch_percentage Branch Operations Percentage This metric measures branch 
operations as a percentage of 
operations speculatively executed.

crypto_percentage Crypto Operations Percentage This metric measures crypto 
operations as a percentage of 
operations speculatively executed.

integer_dp_percentage Integer Operations Percentage This metric measures scalar  
integer operations as a percentage of 
operations speculatively executed.

load_percentage Load Operations Percentage This metric measures load  
operations as a percentage of 
operations speculatively executed.

scalar_fp_percentage Floating Point  
Operations Percentage

This metric measures scalar floating 
point operations as a percentage of 
operations speculatively executed.

T A B L E  6 0
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C1.12.2 Metric Formula

C1.12.3 Metric Events

Metric Name Metric Formula Unit

ll_cache_read_hit_ratio (LL_CACHE_RD - LL_CACHE_MISS_RD) /
LL_CACHE_RD

per cache access

ll_cache_read_miss_ratio LL_CACHE_MISS_RD / LL_CACHE_RD per cache access

ll_cache_read_mpki LL_CACHE_MISS_RD / INST_RETIRED * 1000 MPKI

Metric Name Metric Events

ll_cache_read_hit_ratio LL_CACHE_MISS_RD, LL_CACHE_RD

ll_cache_read_miss_ratio LL_CACHE_MISS_RD, LL_CACHE_RD

ll_cache_read_mpki INST_RETIRED, LL_CACHE_MISS_RD
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C1.13.3 Metric Events

Metric Name Metric Events

branch_percentage INST_SPEC, BR_INDIRECT_SPEC, BR_IMMED_SPEC

crypto_percentage INST_SPEC, CRYPTO_SPEC

integer_dp_percentage INST_SPEC, DP_SPEC

load_percentage INST_SPEC, LD_SPEC

scalar_fp_percentage INST_SPEC, VFP_SPEC

simd_percentage INST_SPEC, ASE_SPEC

store_percentage INST_SPEC, ST_SPEC

T A B L E  6 2
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C1.13.2 Metric Formula

Metric Name Metric Formula Unit

branch_percentage (BR_IMMED_SPEC + BR_INDIRECT_SPEC) /
INST_SPEC * 100

percent of operations

crypto_percentage CRYPTO_SPEC / INST_SPEC * 100 percent of operations

integer_dp_percentage DP_SPEC / INST_SPEC * 100 percent of operations

load_percentage LD_SPEC / INST_SPEC * 100 percent of operations

scalar_fp_percentage VFP_SPEC / INST_SPEC * 100 percent of operations

simd_percentage ASE_SPEC / INST_SPEC * 100 percent of operations

store_percentage ST_SPEC / INST_SPEC * 100 percent of operations

T A B L E  6 1
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Metric Name Metric Title Metric Description

simd_percentage SIMD Operations Percentage This metric measures SIMD 
operations as a percentage of total 
operations speculatively executed.

store_percentage Store Operations Percentage This metric measures store  
operations as a percentage of 
operations speculatively executed.
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