

Arm® Neoverse™ N2
Revision: r0p1

Software Optimization Guide
Non-Confidential Issue 4.0
Copyright © 2020, 2021 Arm Limited (or its affiliates).
All rights reserved.

PJDOC-466751330-18256

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 90

Arm® Neoverse™ N2
Software Optimization Guide

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 16 Oct 2020 Confidential First release for r0p0

2.0 25 Feb 2021 Confidential Second release for r0p0

3.0 25 May 2021 Non-Confidential Third release for r0p0

4.0 10 Dec 2021 Non-Confidential First release for r0p1

Non-Confidential Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express
prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, has undertaken no analysis to identify or understand the scope and
content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm's customers is not intended to create or refer to
any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version
of the Agreement shall prevail.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 90

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned
in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage
guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by Arm and the party that
Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status
The information in this document is final, that is for a developed product.

Web Address
developer.arm.com

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this
document. If you find offensive terms in this document, please email terms@arm.com.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 90

Contents

1 Introduction ... 7

1.1 Product revision status .. 7

1.2 Intended audience .. 7

1.3 Scope ... 7

1.4 Conventions ... 7

1.4.1 Glossary ... 7

1.4.2 Terms and abbreviations ... 8

1.4.3 Typographical conventions ... 9

1.5 Additional reading ... 10

1.6 Feedback .. 11

1.6.1 Feedback on this product ... 11

1.6.2 Feedback on content ... 11

2 Overview .. 12

2.1 Pipeline overview .. 13

3 Instruction characteristics .. 15

3.1 Instruction tables ... 15

3.2 Legend for reading the utilized pipelines ... 15

3.3 Branch instructions ... 16

3.4 Arithmetic and logical instructions .. 17

3.5 Move and shift instructions .. 20

3.6 Divide and multiply instructions .. 21

3.7 Saturating and parallel arithmetic instructions ... 24

3.8 Pointer Authentication Instructions .. 25

3.9 Miscellaneous data-processing instructions ... 27

3.10 Load instructions ... 28

3.11 Store instructions .. 32

3.12 Tag Load Instructions ... 33

3.13 Tag Store instructions .. 34

3.14 FP data processing instructions ... 34

3.15 FP miscellaneous instructions .. 36

3.16 FP load instructions .. 38

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 90

3.17 FP store instructions .. 39

3.18 ASIMD integer instructions .. 41

3.19 ASIMD floating-point instructions .. 45

3.20 ASIMD BFloat16 (BF16) instructions ... 49

3.21 ASIMD miscellaneous instructions ... 50

3.22 ASIMD load instructions ... 53

3.23 ASIMD store instructions .. 56

3.24 Cryptography extensions .. 58

3.25 CRC ... 60

3.26 SVE Predicate instructions .. 60

3.27 SVE integer instructions .. 62

3.28 SVE floating-point instructions .. 68

3.29 SVE BFloat16 (BF16) instructions ... 71

3.30 SVE Load instructions .. 71

3.31 SVE Store instructions ... 74

3.32 SVE Miscellaneous instructions ... 75

3.33 SVE Cryptographic instructions ... 76

4 Special considerations ... 77

4.1 Dispatch constraints ... 77

4.2 Dispatch stall .. 77

4.3 Optimizing general-purpose register spills and fills .. 77

4.4 Optimizing memory routines .. 78

4.5 Load/Store alignment ... 79

4.6 Store to Load Forwarding .. 79

4.7 AES encryption/decryption ... 79

4.8 Region based fast forwarding ... 80

4.9 Branch instruction alignment .. 81

4.10 FPCR self-synchronization .. 81

4.11 Special register access ... 82

4.12 Register forwarding hazards ... 83

4.13 IT blocks ... 84

4.14 Instruction fusion .. 84

4.15 Zero Latency MOVs ... 85

4.16 Cache maintenance operation ... 85

4.17 Memory Tagging - Tagging Performance .. 86

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 90

4.18 Memory Tagging - Synchronous Mode ... 87

4.19 Complex ASIMD and SVE instructions .. 87

4.20 MOVPRFX fusion .. 88

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 90

1 Introduction
1.1 Product revision status
The rmpn identifier indicates the revision status of the product described in this book, for example,
r1p2, where:
Rm

 Identifies the major revision of the product, for example, r1.

Pn

 Identifies the minor revision or modification status of the product, for example, p2.

1.2 Intended audience
This document is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses an Arm core.

1.3 Scope
This document describes aspects of the Neoverse N2 micro-architecture that influence software
performance. Micro-architectural detail is limited to that which is useful for software optimization.

Documentation extends only to software visible behavior of the Neoverse N2 and not to the
hardware rationale behind the behavior.

1.4 Conventions
The following subsections describe conventions used in Arm documents.

1.4.1 Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 90

1.4.2 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

MOP Macro-OPeration

µOP Micro-OPeration

SQRT Square Root

T32 AArch32 Thumb® instruction set

FP Floating-point

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 90

1.4.3 Typographical conventions
Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace bold Denotes language keywords when used outside example code.

monospace
underline

Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.
For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined
in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or
damage.

This represents a requirement for the system that, if not followed, might result in system
failure or damage.

This represents a requirement for the system that, if not followed, will result in system
failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 90

1.5 Additional reading
This document contains information that is specific to this product. See the following documents
for other relevant information:

Table 1-1 Arm publications

Document name Document ID Licensee only

Arm® Architecture Reference Manual, Armv8, for
Armv8-A architecture profile

DDI 0487 N

Arm® Architecture Reference Manual Supplement,
Armv9, for Armv9-A architecture profile

DDI 0608 N

Arm® Neoverse™ N2 Core Technical Reference Manual
(arm_neoverse_n2_core_trm)

102099 N

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 90

1.6 Feedback
Arm welcomes feedback on this product and its documentation.

1.6.1 Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

1.6.2 Feedback on content
If you have comments on content, send an email to errata@arm.com and give:

• The title Arm® Neoverse™ N2 Software Optimization Guide.

• The number PJDOC-466751330-18256.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality
of the represented document when used with any other PDF reader.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 90

2 Overview
The Neoverse™ N2 is a high-performance and low-power product that implements the Arm®v9.0-
A architecture. This implementation supports all previous Armv8-A architecture implementations
up to and including Arm®v8.6-A.

The key features of Neoverse™ N2 are:

• Implementation of the Armv9-A A32, T32, and A64 instruction sets.

• AArch32 Execution state at Exception level EL0 and AArch64 Execution state at all exception
levels, EL0-EL3

• Memory Management Unit (MMU)

• 48-bit Physical Address (PA) and 48-bit Virtual Address (VA)

• Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor

• Generic Timers that supports 64-bit count input from an external system counter

• Implementation of the Reliability, Availability, and Serviceability (RAS) Extension

• Implementation of the Scalable Vector Extension (SVE) with a 128-bit vector length and
Scalable Vector Extension 2 (SVE2)

• Integrated execution unit with Advanced SIMD and floating-point support

• Support for the optional Cryptographic Extension, which is licensed separately

• Activity Monitoring Unit (AMU)

• Separate L1 data and instruction caches

• Private, unified data and instruction L2 cache

• Support for Memory System Resource Partitioning and Monitoring (MPAM)

• Armv9.0-A debug logic

• Performance Monitoring Unit (PMU)

• Embedded Trace Extension (ETE)

• Trace Buffer Extension (TRBE)

• Statistical Profiling Extension (SPE)

• Optional Embedded Logic Analyzer (ELA)

This document describes elements of the Neoverse N2 micro-architecture that influence software
performance so that software and compilers can be optimized accordingly.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 90

2.1 Pipeline overview
The following figure describes the high-level Neoverse N2 instruction processing pipeline.
Instructions are first fetched and then decoded into internal Macro-OPerations (MOPs). From
there, the MOPs proceed through register renaming and dispatch stages. A MOP can be split into
two Micro-OPerations (µOPs) further down the pipeline after the decode stage. Once dispatched,
µOPs wait for their operands and issue out-of-order to one of thirteen issue pipelines. Each issue
pipeline can accept one µOP per cycle.

Figure 2-1 Neoverse N2 pipeline

The execution pipelines support different types of operations, as shown in the following table.

Fetch

Decode,
Rename,
Dispatch

Load/Store 1

Integer Single-Cycle 0

Integer Single-Cycle 1

Integer Single /Multi-Cycle 0

FP/ASIMD 0

FP/ASIMD 1

Load/Store 0

Is
su

e

IN ORDER OUT OF ORDER

Integer Single /Multi-Cycle 1

Branch 0

Branch 1

Store data 0

Store data 1

Load 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 90

Table 2-1 Neoverse N2 operations

Instruction
groups

Instructions

Branch 0/1 Branch µOPs

Integer Single-Cycle 0/1 Integer ALU µOPs

Integer Single/Multi-
cycle 0/1

Integer ALU µOps, integer shift-ALU, multiply, divide, CRC and sum-of-absolute-differences
µOPs

Load/Store 0/1 Load, Store address generation and special memory µOPs

Load 2 Load µOPs

Store data 0/1 Store data µOPs

FP/ASIMD-0 ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP misc, FP add, FP multiply,
FP divide, FP sqrt, crypto µOPs, store data µOPs

FP/ASIMD-1 ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, ASIMD shift µOPs, store data µOPs,
crypto µOPs.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 90

3 Instruction characteristics
3.1 Instruction tables
This chapter describes high-level performance characteristics for most Armv9-A instructions. A
series of tables summarize the effective execution latency and throughput (instruction bandwidth
per cycle), pipelines utilized, and special behaviors associated with each group of instructions.
Utilized pipelines correspond to the execution pipelines described in chapter 2.

In the tables below, Exec Latency is defined as the minimum latency seen by an operation
dependent on an instruction in the described group.

In the tables below, Execution Throughput is defined as the maximum throughput (in instructions
per cycle) of the specified instruction group that can be achieved in the entirety of the Neoverse
N2 microarchitecture.

3.2 Legend for reading the utilized pipelines

Table 3-1 Neoverse N2 pipeline names and symbols

Pipeline name Symbol used in tables

Branch 0/1 B

Integer single Cycle 0/1 S

Integer single Cycle 0/1 and single/multicycle 0/1 I

Integer single/multicycle 0/1 M

Integer multicycle 0 M0

Load/Store 01 L01

Load/Store 0/1 and Load 2 L

Store data 0/1 D

FP/ASIMD 0/1 V

FP/ASIMD 0 V0

FP/ASIMD 1 V1

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 90

3.3 Branch instructions

Table 3-2 AArch64 Branch instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Branch, immed B 1 2 B -

Branch, register BR, RET 1 2 B -

Branch and link, immed BL 1 2 B, S -

Branch and link, register BLR 1 2 B, S -

Compare and branch CBZ, CBNZ, TBZ,
TBNZ

1 2 B -

Table 3-3 AArch32 Branch instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Branch, immed B 1 2 B -

Branch, register BX 1 2 B, S -

Branch and link, immed BL, BLX 1 2 B, S -

Branch and link, register BLX 1 2 B, S -

Compare and branch CBZ, CBNZ 1 2 B -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 90

3.4 Arithmetic and logical instructions

Table 3-4 AArch64 Arithmetic and logical instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ALU, basic ADD, ADC, AND,
BIC, EON, EOR,
ORN, ORR, SUB,
SBC

1 4 I -

ALU, basic, flagset ADDS, ADCS,
ANDS, BICS,
SUBS, SBCS

1 3 I -

ALU, extend and shift ADD{S}, SUB{S} 2 2 M -

Arithmetic, LSL shift, shift <= 4 ADD, SUB 1 4 I -

Arithmetic, flagset, LSL shift,
shift <= 4

ADDS, SUBS 1 4 I -

Arithmetic, LSR/ASR/ROR shift
or LSL shift > 4

ADD{S}, SUB{S} 2 2 M -

Arithmetic, immediate to logical
address tag

ADDG, SUBG 2 2 M -

Conditional compare CCMN, CCMP 1 4 I -

Conditional select CSEL, CSINC,
CSINV, CSNEG

1 4 I -

Convert floating-point condition
flags

AXFLAG,
XAFLAG

1 1 I -

Flag manipulation instructions SETF8, SETF16,
RMIF, CFINV

1 1 I -

Insert Random Tags IRG 2, 3 2, 1 M, M0 1

Insert Tag Mask GMI 1 4 I -

Logical, shift, no flagset AND, BIC, EON,
EOR, ORN, ORR

1 4 I -

Logical, shift, flagset ANDS, BICS 2 2 M -

Subtract Pointer SUBP 1 4 I -

Subtract Pointer, flagset SUBPS 1 3 I -

Table 3-5 AArch32 Arithmetic and logical instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ALU, basic, unconditional, no
flagset

ADD, ADC, ADR,
AND, BIC, EOR,
ORN, ORR, RSB,
RSC, SUB, SBC

1 4 I -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ALU, basic, unconditional,
flagset

ADDS, ADCS,
ANDS, BICS,
CMN, CMP,
EORS, ORNS,
ORRS, RSBS,
RSCS, SUBS,
SBCS, TEQ, TST

1 3 I -

ALU, basic, conditional ADD{S}, ADC{S},
AND{S}, BIC{S},
CMN, CMP,
EOR{S|, ORN{S},
ORR{S}, RSB{S},
RSC{S}, SUB{S},
SBC{S}, TEQ, TST

1 1 M0 -

ALU, basic, shift by register,
conditional

(same as ALU
basic, conditional)

2 1 I, M0 -

ALU, basic, shift by register,
unconditional, flagset

(same as ALU,
basic,
unconditional,
flagset)

2 1 M0 -

Arithmetic, shift by register,
unconditional, no flagset

ADD, ADC, RSB,
RSC, SUB, SBC

2 1 M0 -

Logical, shift by register,
unconditional, no flagset

AND, BIC, EOR,
ORN, ORR

1 1 M0 -

Arithmetic, LSL shift by immed,
shift <= 4, unconditional, no
flagset

ADD, ADC, RSB,
RSC, SUB, SBC

1 4 I -

Arithmetic, LSL shift by immed,
shift <= 4, unconditional, flagset

ADDS, ADCS,
RSBS, RSCS,
SUBS, SBCS

1 4 I -

Arithmetic, LSL shift by immed,
shift <= 4, conditional

ADD{S}, ADC{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S}

1 1 M0 -

Arithmetic, LSR/ASR/ROR shift
by immed or LSL shift by immed
> 4, unconditional

ADD{S}, ADC{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S}

2 2 M -

Arithmetic, LSR/ASR/ROR shift
by immed or LSL shift by immed
> 4, conditional

ADD{S}, ADC{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S}

2 1 M0 -

Logical, shift by immed, no
flagset, unconditional

AND, BIC, EOR,
ORN, ORR

1 4 I -

Logical, shift by immed, no
flagset, conditional

AND, BIC, EOR,
ORN, ORR

1 1 M0 -

Logical, shift by immed, flagset,
unconditional

ANDS, BICS,
EORS, ORNS,
ORRS

2 2 M -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Logical, shift by immed, flagset,
conditional

ANDS, BICS,
EORS, ORNS,
ORRS

2 1 M0 -

Test/Compare, shift by immed CMN, CMP, TEQ,
TST

2 2 M -

Branch forms +1 2 +B 2

Notes:
1.The latency is 2, throughput is 2 and utilized pipeline is M when GCR_EL1.RRND = 1. When GCR_EL1.RRND = 0,
latency is 3, throughput is 1 and pipeline utilized is M0.
2. Branch forms are possible when the instruction destination register is the PC. For those cases, an additional branch
µOP is required. This adds 1 cycle to the latency.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 90

3.5 Move and shift instructions

Table 3-6 AArch32 Move and shift instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Move, basic MOV, MOVW,
MVN

1 4 I -

Move, basic, flagset MOVS, MVNS 1 3 I

Move, shift by immed, no
flagset

ASR, LSL, LSR,
ROR, RRX, MVN

1 4 I -

Move, shift by immed, flagset ASRS, LSLS, LSRS,
RORS, RRXS,
MVNS

2 2 M -

Move, shift by register, no
flagset, unconditional

ASR, LSL, LSR,
ROR, RRX, MVN

1 4 I -

Move, shift by register, no
flagset, conditional

ASR, LSL, LSR,
ROR, RRX, MVN

2 2 I -

Move, shift by register, flagset ASRS, LSLS, LSRS,
RORS, RRXS,
MVNS

2 1 M0 -

Move, top MOVT 1 4 I -

Move, branch forms +1 2 +B -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 90

3.6 Divide and multiply instructions

Table 3-7 AArch64 Divide and multiply instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Divide, W-form SDIV, UDIV 5 to 12 1/12 to 1/5 M0 1

Divide, X-form SDIV, UDIV 5 to 20 1/20 to 1/5 M0 1

Multiply MUL, MNEG 2 2 M -

Multiply accumulate, W-form MADD, MSUB 2(1) 1 M0 2

Multiply accumulate, X-form MADD, MSUB 2(1) 1 M0 2

Multiply accumulate long SMADDL,
SMSUBL,
UMADDL,
UMSUBL

2(1) 1 M0 2

Multiply high SMULH, UMULH 3 2 M 2

Multiply long SMNEGL,
SMULL,
UMNEGL,
UMULL

2 2 M -

Table 3-8 AArch32 Divide and multiply instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Divide SDIV, UDIV 5 to 12 1/12 to 1/5 M0 1

Multiply, unconditional MUL, SMULBB,
SMULBT,
SMULTB,
SMULTT,
SMULWB,
SMULWT,
SMMUL{R},
SMUAD{X},
SMUSD{X}

2 2 M -

Multiply, conditional MUL, SMULBB,
SMULBT,
SMULTB,
SMULTT,
SMULWB,
SMULWT,
SMMUL{R},
SMUAD{X},
SMUSD{X}

2 1 M0 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Multiply accumulate, conditional MLA, MLS,
SMLABB,
SMLABT,
SMLATB,
SMLATT,
SMLAWB,
SMLAWT,
SMLAD{X},
SMLSD{X},
SMMLA{R},
SMMLS{R}

3 1 M0, I -

Multiply accumulate,
unconditional

MLA, MLS,
SMLABB,
SMLABT,
SMLATB,
SMLATT,
SMLAWB,
SMLAWT,
SMLAD{X},
SMLSD{X},
SMMLA{R},
SMMLS{R}

2(1) 1 M0 2

Multiply accumulate accumulate
long, conditional

UMAAL 4 1 I, M0 -

Multiply accumulate accumulate
long, unconditional

UMAAL 3 1 I, M0 -

Multiply accumulate long, no
flagset

SMLAL,
SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT,
SMLALD{X},
SMLSLD{X},
UMLAL

3 1 M0, I -

Multiply accumulate long,
flagset

SMLAL,
SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT,
SMLALD{X},
SMLSLD{X},
UMLAL

4 1 M0, I -

Multiply long, unconditional, no
flagset

SMULL, UMULL 2 2 M -

Multiply long, unconditional,
flagset

SMULLS,
UMULLS

3 1 M, I -

Multiply long, conditional SMULL{S},
UMULL{S}

3 1 M, I -

Notes:
1. Integer divides are performed using an iterative algorithm and block any subsequent divide operations until complete.
Early termination is possible, depending upon the data values.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 90

2. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in parentheses).
Accumulator forwarding is not supported for consumers of 64 bit multiply high operations.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 90

3.7 Saturating and parallel arithmetic instructions

Table 3-9 AArch32 Saturating and parallel arithmetic instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Parallel arith, unconditional SADD16,
SADD8, SSUB16,
SSUB8, UADD16,
UADD8,
USUB16, USUB8

2 1 M -

Parallel arith, conditional SADD16,
SADD8, SSUB16,
SSUB8, UADD16,
UADD8,
USUB16, USUB8

2(4) 1 M0, I 1

Parallel arith with exchange,
unconditional

SASX, SSAX,
UASX, USAX

3 2 I, M -

Parallel arith with exchange,
conditional

SASX, SSAX,
UASX, USAX

3(5) 1 I, M0 1

Parallel halving arith,
unconditional

SHADD16,
SHADD8,
SHSUB16,
SHSUB8,
UHADD16,
UHADD8,
UHSUB16,
UHSUB8

2 2 M -

Parallel halving arith, conditional SHADD16,
SHADD8,
SHSUB16,
SHSUB8,
UHADD16,
UHADD8,
UHSUB16,
UHSUB8

2 1 M0 -

Parallel halving arith with
exchange

SHASX, SHSAX,
UHASX, UHSAX

3 1 I, M0 -

Parallel saturating arith,
unconditional

QADD16,
QADD8,
QSUB16, QSUB8,
UQADD16,
UQADD8,
UQSUB16,
UQSUB8

2 2 M -

Parallel saturating arith,
conditional

QADD16,
QADD8,
QSUB16, QSUB8,
UQADD16,
UQADD8,
UQSUB16,
UQSUB8

2 1 M0 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Parallel saturating arith with
exchange, unconditional

QASX, QSAX,
UQASX, UQSAX

3 2 I, M -

Parallel saturating arith with
exchange, conditional

QASX, QSAX,
UQASX, UQSAX

3 1 I, M0 -

Saturate, unconditional SSAT, SSAT16,
USAT, USAT16

2 2 M -

Saturate, conditional SSAT, SSAT16,
USAT, USAT16

2 1 M0 -

Saturating arith, unconditional QADD, QSUB 2 2 M -

Saturating arith, conditional QADD, QSUB 2 1 M0 -

Saturating doubling arith,
unconditional

QDADD, QDSUB 3 1 M, M -

Saturating doubling arith
conditional

QDADD, QDSUB 3 1 M, M0 -

Notes:
1. GE-setting instructions require three extra µOPs and two additional cycles to conditionally update the GE field (GE
latency shown in parentheses).

3.8 Pointer Authentication Instructions

Table 3-10 AArch64 pointer authentication instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Authenticate data address AUTDA, AUTDB,
AUTDZA,
AUTDZB

5 1 M0 -

Authenticate instruction
address

AUTIA, AUTIB,
AUTIA1716,
AUTIB1716,
AUTIASP,
AUTIBSP,
AUTIAZ, AUTIBZ,
AUTIZA, AUTIZB

5 1 M0 -

Branch and link, register, with
pointer authentication

BLRAA, BLRAAZ,
BLRAB, BLRABZ

6 1 M0, B

Branch, register, with pointer
authentication

BRAA, BRAAZ,
BRAB, BRABZ

6 1 M0, B

Branch, return, with pointer
authentication

RETA, RETB 6 1 M0, B

Compute pointer authentication
code for data address

PACDA, PACDB,
PACDZA,
PACDZB

5 1 M0

Compute pointer authentication
code, using generic key

PACGA 5 1 M0

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Compute pointer authentication
code for instruction address

PACIA, PACIB,
PACIA1716,
PACIB1716,
PACIASP,
PACIBSP,
PACIAZ, PACIBZ,
PACIZA, PACIZB

5 1 M0

Load register, with pointer
authentication

LDRAA, LDRAB 9 1 M0, L

Strip pointer authentication
code

XPACD, XPACI,
XPACLRI

2 1 M0

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 90

3.9 Miscellaneous data-processing instructions

Table 3-11 AArch64 Miscellaneous data-processing instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Address generation ADR, ADRP 1 4 I -

Bitfield extract, one reg EXTR 1 4 I -

Bitfield extract, two regs EXTR 3 2 I, M -

Bitfield move, basic SBFM, UBFM 1 4 I -

Bitfield move, insert BFM 2 2 M -

Count leading CLS, CLZ 1 4 I -

Move immed MOVN, MOVK,
MOVZ

1 4 I -

Reverse bits/bytes RBIT, REV,
REV16, REV32

1 4 I -

Variable shift ASRV, LSLV,
LSRV, RORV

1 4 I -

Table 3-12 AArch32 Miscellaneous data-processing instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Bit field extract SBFX, UBFX 1 4 I -

Bit field insert/clear,
unconditional

BFI, BFC 2 2 M -

Bit field insert/clear, conditional BFI, BFC 2 1 M0 -

Count leading zeros CLZ 1 4 I -

Pack halfword, unconditional PKH 2 2 M -

Pack halfword, conditional PKH 2 1 M0 -

Reverse bits/bytes RBIT, REV,
REV16, REVSH

1 4 I -

Select bytes, unconditional SEL 1 4 I -

Select bytes, conditional SEL 2 2 I -

Sign/zero extend, normal SXTB, SXTH,
UXTB, UXTH

1 4 I -

Sign/zero extend, parallel,
unconditional

SXTB16, UXTB16 2 2 M -

Sign/zero extend, parallel,
conditional

SXTB16, UXTB16 2 1 M0 -

Sign/zero extend and add,
normal, unconditional

SXTAB, SXTAH,
UXTAB, UXTAH

2 2 M -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Sign/zero extend and add,
normal, conditional

SXTAB, SXTAH,
UXTAB, UXTAH

2 1 M0 -

Sign/zero extend and add,
parallel, unconditional

SXTAB16,
UXTAB16

4 1 M -

Sign/zero extend and add,
parallel, conditional

SXTAB16,
UXTAB16

4 1 M, M0 -

Sum of absolute differences USAD8 2 1 M0 -

Sum of absolute differences
accumulate, unconditional

USADA8 2 1 M0 -

Sum of absolute differences
accumulate, conditional

USADA8 3 1 M0, I -

3.10 Load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the maximum latency to
load all the registers written by the instruction.

Table 3-13 AArch64 Load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load register, literal LDR, LDRSW,
PRFM

4 3 L -

Load register, unscaled immed LDUR, LDURB,
LDURH, LDURSB,
LDURSH,
LDURSW,
PRFUM

4 3 L -

Load register, immed post-index LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW

4 3 L, I -

Load register, immed pre-index LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW

4 3 L, I -

Load register, immed
unprivileged

LDTR, LDTRB,
LDTRH, LDTRSB,
LDTRSH,
LDTRSW

4 3 L -

Load register, unsigned immed LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW,
PRFM

4 3 L -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load register, register offset,
basic

LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW,
PRFM

4 3 L -

Load register, register offset,
scale by 4/8

LDR, LDRSW,
PRFM

4 3 L -

Load register, register offset,
scale by 2

LDRH, LDRSH 4 3 L -

Load register, register offset,
extend

LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW,
PRFM

4 3 L -

Load register, register offset,
extend, scale by 4/8

LDR, LDRSW,
PRFM

4 3 L -

Load register, register offset,
extend, scale by 2

LDRH, LDRSH 4 3 L -

Load pair, signed immed offset,
normal, W-form

LDP, LDNP 4 3 L -

Load pair, signed immed offset,
normal, X-form

LDP, LDNP 4 1.5 L -

Load pair, signed immed offset,
signed words

LDPSW 5 1 I, L -

Load pair, immed post-index or
immed pre-index, normal, W-
form

LDP 4 3 L, I -

Load pair, immed post-index or
immed pre-index, normal, X-
form

LDP 4 1.5 L, I -

Load pair, immed post-index or
immed pre-index, signed words

LDPSW 5 1 I, L -

Table 3-14 AArch32 Load instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load, immed offset LDR{T}, LDRB{T},
LDRD, LDRH{T},
LDRSB{T},
LDRSH{T}

4 3 L 1, 2

Load, register offset, plus LDR, LDRB,
LDRD, LDRH,
LDRSB, LDRSH

4 3 L 1 ,2

Load, register offset, minus LDR, LDRB,
LDRD, LDRH,
LDRSB, LDRSH

5 3 I, L 1, 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load, scaled register offset,
plus, LSL2

LDR, LDRB 4 3 L 1, 2

Load, scaled register offset,
other

LDR, LDRB,
LDRH, LDRSB,
LDRSH

5 3 I, L 1, 2

Load, immed pre-indexed LDR, LDRB,
LDRD, LDRH,
LDRSB, LDRSH

4 3 L, I 1, 2

Load, register pre-indexed LDRH, LDRSB,
LDRSH

5 3 I, L, M0 1, 2, 3

Load, register pre-indexed LDRD 4 3 L, M0 1, 2, 3

Load, scaled register pre-
indexed, plus, LSL2

LDR, LDRB 4 3 L, M0 1, 2, 3

Load, scaled register pre-
indexed, unshifted

LDR, LDRB 4 3 L, M0 1, 2, 3

Load, scaled register pre-
indexed, other

LDR, LDRB 5 3 I, L, M0 1, 2, 3

Load, immed post-indexed LDR{T}, LDRB{T},
LDRD, LDRH{T},
LDRSB{T},
LDRSH{T}

4 3 L, I 1, 2

Load, register post-indexed LDR{T}, LDRB{T},
LDRH{T},
LDRSB{T},
LDRSH{T}

5 3 I, L, M0 1, 2, 3

Load, register post-indexed LDRD 4 3 L, M0 1, 2, 3

Preload, immed offset PLD, PLDW 4 3 L -

Preload, register offset, plus,
LSL2 and unshifted

PLD, PLDW 4 3 L -

Preload, register offset, minus PLD, PLDW 5 3 I, L -

Load multiple, no writeback,
base reg not in list

LDMIA, LDMIB,
LDMDA, LDMDB

N 3/R L 1, 4, 5

Load multiple, no writeback,
base reg in list

LDMIA, LDMIB,
LDMDA, LDMDB

1+ N 3/R I, L 1, 4, 5

Load multiple, writeback LDMIA, LDMIB,
LDMDA, LDMDB,
POP

1+ N 3/R L, I 1, 4, 5

(Load, all branch forms) - +1 - + B 6

Notes:
1. Conditional loads have extra µOP(s) which goes down pipeline I and have 1 cycle extra latency compared to their
unconditional counterparts.
2. Conditional loads go down L01 pipe and have an execution throughput of 2 whereas unconditional versions have a
throughput of 3.
3. The address update op goes down pipeline ‘I’ if the load is unconditional.
4. N is floor [(num_reg+5)/6].

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 90

5. R is floor [(num_reg +1)/2].
6. Branch forms are possible when the instruction destination register is the PC. For those cases, an additional branch
µOP is required. This adds 1 cycle to the latency.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 90

3.11 Store instructions
The following table describes performance characteristics for standard store instructions. Stores
µOPs are split into address and data µOPs. Once executed, stores are buffered and committed in
the background.

Table 3-15 AArch64 Store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store register, unscaled immed STUR, STURB,
STURH

1 2 L01, D -

Store register, immed post-
index

STR, STRB, STRH 1 2 L01, D, I -

Store register, immed pre-index STR, STRB, STRH 1 2 L01, D, I -

Store register, immed
unprivileged

STTR, STTRB,
STTRH

1 2 L01, D -

Store register, unsigned immed STR, STRB, STRH 1 2 L01, D -

Store register, register offset,
basic

STR, STRB, STRH 1 2 L01, D -

Store register, register offset,
scaled by 4/8

STR 1 2 L01, D -

Store register, register offset,
scaled by 2

STRH 1 2 I, L01, D -

Store register, register offset,
extend

STR, STRB, STRH 1 2 L01, D -

Store register, register offset,
extend, scale by 4/8

STR 1 2 L01, D -

Store register, register offset,
extend, scale by 2

STRH 1 2 I, L01, D -

Store pair, immed offset STP, STNP 1 2 L01, D -

Store pair, immed post-index STP 1 2 L01, D, I -

Store pair, immed pre-index STP 1 2 L01, D, I -

Table 3-16 AArch32 Store instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store, immed offset STR{T}, STRB{T},
STRD, STRH{T}

1 2 L01, D -

Store, register offset, plus STR, STRB, STRD,
STRH

1 2 L01, D -

Store, register offset, minus STR, STRB, STRD,
STRH

1 2 L01, D -

Store, scaled register
offset, plus, no shift

STR, STRB 1 2 L01, D -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store, scaled register offset,
plus, LSL2

STR, STRB 1 2 L01, D -

Store, scaled register offset,
plus, other

STR, STRB 2 2 I, L01, D -

Store, scaled register offset,
minus

STR, STRB 2 2 I, L01, D -

Store, immed pre-indexed STR, STRB, STRD,
STRH

1 2 L01, D, I -

Store, register pre-indexed,
plus, no shift

STR, STRB, STRD,
STRH

1 2 L01, D, M0 1

Store, register pre-indexed,
minus

STR, STRB, STRD,
STRH

2 2 I, L01, D, M0 1

Store, scaled register pre-
indexed, plus LSL2

STR, STRB 1 2 L01, D, M0 1

Store, scaled register pre-
indexed, other

STR, STRB 2 2 I, L01, D, M0 1

Store, immed post-indexed STR{T}, STRB{T},
STRD, STRH{T}

1 2 L01, D, I -

Store, register post-indexed STRH{T}, STRD 1 2 L01, D, M0 1

Store, register post-indexed STR{T}, STRB{T} 1 2 L01, D, M0 1

Store, scaled register post-
indexed

STR{T}, STRB{T} 1 2 L01, D, M0 2

Store multiple, no writeback STMIA, STMIB,
STMDA, STMDB

N 1/N L01, D 3

Store multiple, writeback STMIA, STMIB,
STMDA, STMDB,
PUSH

N 1/N L01, D 3

Notes:
1. The address update op goes down pipeline ‘I’ if the store is unconditional.
2. The address update op goes down pipeline “M” if the store is unconditional.
3. For store multiple instructions, N=floor((num_regs+3)/4).

3.12 Tag Load Instructions

Table 3-17 AArch64 Tag load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load allocation tag LDG 4 3 L -

Load multiple allocation tags LDGM 4 3 L -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 90

3.13 Tag Store instructions

Table 3-18 AArch64 Tag store instructions
Instruction Group AArch64

Instructions
Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store allocation tags to one or
two granules, post-index

STG, ST2G 1 2 L01, D, I -

Store allocation tags to one or
two granules, pre-index

STG, ST2G 1 2 L01, D, I -

Store allocation tags to one or
two granules, signed offset

STG, ST2G 1 2 L01, D -

Store allocation tag to one or
two granules, zeroing, post-
index

STZG, STZ2G 1 2 L01, D, I -

Store Allocation Tag to one or
two granules, zeroing, pre-index

STZG, STZ2G 1 2 L01, D, I -

Store allocation tag to two
granules, zeroing, signed offset

STZG, STZ2G 1 2 L01, D -

Store allocation tag and reg pair
to memory, post-Index

STGP 1 2 L01, D, I -

Store allocation tag and reg pair
to memory, pre-Index

STGP 1 2 L01, D, I -

Store allocation tag and reg pair
to memory, signed offset

STGP 1 2 L01, D -

Store multiple allocation tags STGM 1 2 L01, D -

Store multiple allocation tags,
zeroing

STZGM 1 2 L01, D -

3.14 FP data processing instructions

Table 3-19 AArch64 FP data processing instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP absolute value FABS, FABD 2 2 V -

FP arithmetic FADD, FSUB 2 2 V -

FP compare FCCMP{E},
FCMP{E}

2 1 V0 -

FP divide, H-form FDIV 7 2/7 V0 1

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP divide, S-form FDIV 7 to 10 2/9 to 2/7 V0 1

FP divide, D-form FDIV 7 to 15 1/7 to 2/7 V0 1

FP min/max FMIN, FMINNM,
FMAX, FMAXNM

2 2 V -

FP multiply FMUL, FNMUL 3 2 V 2

FP multiply accumulate FMADD, FMSUB,
FNMADD,
FNMSUB

4 (2) 2 V 3

FP negate FNEG 2 2 V -

FP round to integral FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

3 1 V0 -

FP select FCSEL 2 2 V -

FP square root, H-form FSQRT 7 4/7 V0 1

FP square root, S-form FSQRT 7 to 9 1/2 to 4/7 V0 1

FP square root, D-form FSQRT 7 to 16 2/15 to 2/7 V0 1

Table 3-20 AArch32 FP data processing instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP absolute value VABS 2 2 V -

VFP arith VADD, VSUB 2 2 V -

VFP compare, unconditional VCMP, VCMPE 2 1 V0 -

VFP compare, conditional VCMP, VCMPE 4 1 V, V0 -

VFP convert VCVT{R}, VCVTB,
VCVTT, VCVTA,
VCVTM, VCVTN,
VCVTP

3 1 V0 -

VFP convert to BFloat16 VCVTB, VCVTT 3 1 V0 -

VFP divide, H-form VDIV 7 4/7 V0 1

VFP divide, S-form VDIV 7 to 10 4/9 to 4/7 V0 1

VFP divide, D-form VDIV 7 to 15 1/7 to 2/7 V0 1

VFP max/min VMAXNM,
VMINNM

2 2 V -

VFP multiply VMUL, VNMUL 3 2 V 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP multiply accumulate
(chained)

VMLA, VMLS,
VNMLA, VNMLS

5 (2) 2 V 3

VFP multiply accumulate (fused) VFMA, VFMS,
VFNMA, VFNMS

4 (2) 2 V 3

VFP negate VNEG 2 2 V -

VFP round to integral VRINTA,
VRINTM,
VRINTN, VRINTP,
VRINTR, VRINTX,
VRINTZ

3 1 V0 -

VFP select VSELEQ,
VSELGE,
VSELGT, VSELVS

2 2 V -

VFP square root, H-form VSQRT 7 4/7 V0 1

VFP square root, S-form VSQRT 7 to 9 1/2 to 4/7 V0 1

VFP square root, D-form VSQRT 7 to 16 2/15 to 2/7 V0 1

Notes:
1. FP divide and square root operations are performed using an iterative algorithm and block subsequent similar
operations to the same pipeline until complete.
2. FP multiply-accumulate pipelines support late forwarding of the result from FP multiply µOPs to the accumulate
operands of an FP multiply-accumulate µOP. The latter can potentially be issued 1 cycle after the FP multiply µOP has
been issued.
3. FP multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

3.15 FP miscellaneous instructions

Table 3-21 AArch64 FP miscellaneous instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP convert, from gen to vec reg SCVTF, UCVTF 3 1 M0 -

FP convert, from vec to gen reg FCVTAS,
FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU

3 1 V -

FP convert, Javascript from vec
to gen reg

FJCVTZS 3 1 V0 -

FP convert, from vec to vec reg FCVT, FCVTXN 3 1 V0 -

FP move, immed FMOV 2 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP move, register FMOV 2 2 V -

FP transfer, from gen to low
half of vec reg

FMOV 3 1 M0 -

FP transfer, from gen to high
half of vec reg

FMOV 5 1 M0, V -

FP transfer, from vec to gen reg FMOV 2 1 V -

Table 3-22 AArch32 FP miscellaneous instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP move, extraction VMOVX 2 2 V -

VFP move, immed VMOV 2 2 V -

VFP move, insert VINS 2 2 V -

VFP move, register VMOV 2 2 V -

VFP transfer, core to vfp, single
reg to S-reg, cond

VMOV 5 1 M0, V -

VFP transfer, core to vfp, single
reg to S-reg, uncond

VMOV 3 1 M0 -

VFP transfer, core to vfp, single
reg to upper/lower half of D-
reg

VMOV 5 1 M0, V -

VFP transfer, core to vfp, 2 regs
to 2 S-regs, cond

VMOV 6 1/2 M0, V -

VFP transfer, core to vfp, 2 regs
to 2 S-regs, uncond

VMOV 4 1/2 M0 -

VFP transfer, core to vfp, 2 regs
to D-reg, cond

VMOV 5 1 M0, V -

VFP transfer, core to vfp, 2 regs
to D-reg, uncond

VMOV 3 1 M0 -

VFP transfer, vfp S-reg or
upper/lower half of vfp D-reg
to core reg, cond

VMOV 3 1 V, I -

VFP transfer, vfp S-reg or
upper/lower half of vfp D-reg
to core reg, uncond

VMOV 2 1 V -

VFP transfer, vfp 2 S-regs or D-
reg to 2 core regs, cond

VMOV 3 1 V, I -

VFP transfer, vfp 2 S-regs or D-
reg to 2 core regs, uncond

VMOV 2 1 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 90

3.16 FP load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction. Compared to standard
loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 3-23 AArch64 FP load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector reg, literal, S/D/Q
forms

LDR 6 3 L -

Load vector reg, unscaled
immed

LDUR 6 3 L -

Load vector reg, immed post-
index

LDR 6 3 L, I -

Load vector reg, immed pre-
index

LDR 6 3 L, I -

Load vector reg, unsigned
immed

LDR 6 3 L -

Load vector reg, register offset,
basic

LDR 6 3 L -

Load vector reg, register offset,
scale, S/D-form

LDR 6 3 L -

Load vector reg, register offset,
scale, H/Q-form

LDR 7 3 I, L -

Load vector reg, register offset,
extend

LDR 6 3 L -

Load vector reg, register offset,
extend, scale, S/D-form

LDR 6 3 L -

Load vector reg, register offset,
extend, scale, H/Q-form

LDR 7 3 I, L -

Load vector pair, immed offset,
S/D-form

LDP, LDNP 6 3 L -

Load vector pair, immed offset,
Q-form

LDP, LDNP 6 3/2 L -

Load vector pair, immed post-
index, S/D-form

LDP 6 3 I, L -

Load vector pair, immed post-
index, Q-form

LDP 6 3/2 L, I -

Load vector pair, immed pre-
index, S/D-form

LDP 6 3 I, L -

Load vector pair, immed pre-
index, Q-form

LDP 6 3/2 L, I -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 90

Table 3-24 AArch32 FP load instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP load, register VLDR 6 3 (2) L 1, 6, 7

FP load multiple, S form VLDMIA,
VLDMDB, VPOP

N(N*) 3/R (2/R) L 1, 2, 3,
4, 6, 7

FP load multiple, D form VLDMIA,
VLDMDB, VPOP

N(N*) 3/R (2/R) L, V 1, 2, 3,
4, 6, 7

(FP load, writeback forms) - (1) - + I 5, 7

Notes:
Condition loads have an extra uop which goes down pipeline V and have 2 cycle extra latency compared to their
unconditional counterparts.
1. N is (num_reg)/6 + 5.
2. N* is (num_reg)/4 + 5.
3. R is num_reg/2.
4. Writeback forms of load instructions require an extra µOP to update the base address. This update is typically
performed in parallel with or prior to the load µOP (update latency shown in parentheses).
5. The number is parenthesis represents the latency and throughput of conditional loads.
6. Conditional loads go down the L01 pipe.

3.17 FP store instructions
Stores MOPs are split into store address and store data µOPs. Once executed, stores are buffered
and committed in the background.

Table 3-25 AArch64 FP store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store vector reg, unscaled
immed, B/H/S/D-form

STUR 2 2 L01, V -

Store vector reg, unscaled
immed, Q-form

STUR 2 2 L01, V -

Store vector reg, immed post-
index, B/H/S/D-form

STR 2 2 L01, V, I -

Store vector reg, immed post-
index, Q-form

STR 2 2 L01, V, I -

Store vector reg, immed pre-
index, B/H/S/D-form

STR 2 2 L01, V, I -

Store vector reg, immed pre-
index, Q-form

STR 2 2 L01, V, I -

Store vector reg, unsigned
immed, B/H/S/D-form

STR 2 2 L01, V -

Store vector reg, unsigned
immed, Q-form

STR 2 2 L01, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store vector reg, register offset,
basic, B/H/S/D-form

STR 2 2 L01, V -

Store vector reg, register offset,
basic, Q-form

STR 2 2 L01, V -

Store vector reg, register offset,
scale, H-form

STR 2 2 I, L01, V -

Store vector reg, register offset,
scale, S/D-form

STR 2 2 L01, V -

Store vector reg, register offset,
scale, Q-form

STR 2 2 I, L01, V -

Store vector reg, register offset,
extend, B/H/S/D-form

STR 2 2 L01, V -

Store vector reg, register offset,
extend, Q-form

STR 2 2 L01, V -

Store vector reg, register offset,
extend, scale, H-form

STR 2 2 I, L01, V -

Store vector reg, register offset,
extend, scale, S/D-form

STR 2 2 L01, V -

Store vector reg, register offset,
extend, scale, Q-form

STR 2 2 I, L01, V -

Store vector pair, immed offset,
S-form

STP, STNP 2 2 L01, V -

Store vector pair, immed offset,
D-form

STP, STNP 2 2 L01, V -

Store vector pair, immed offset,
Q-form

STP, STNP 2 1 L01, V -

Store vector pair, immed post-
index, S-form

STP 2 2 I, L01, V -

Store vector pair, immed post-
index, D-form

STP 2 2 I, L01, V -

Store vector pair, immed post-
index, Q-form

STP 2 1 I, L01, V -

Store vector pair, immed pre-
index, S-form

STP 2 2 I, L01, V -

Store vector pair, immed pre-
index, D-form

STP 2 2 I, L01, V -

Store vector pair, immed pre-
index, Q-form

STP 2 1 I, L01, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 90

Table 3-26 AArch32 FP store instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP store, immed offset VSTR 2 2 L01, V -

FP store multiple, S-form VSTMIA,
VSTMDB, VPUSH

N + 1 2/R L01, V 1, 2

FP store multiple, D-form VSTMIA,
VSTMDB, VPUSH

N + 1 2/R L01, V 1, 2

(FP store, writeback forms) - (1) - + I 3

Notes:
1. For store multiple instructions, N = (num_reg/2)
2. R is num_regs.
3. Writeback forms of store instructions require an extra µOP to update the base address. This update is typically
performed in parallel with or prior to the store µOP (update latency shown in parentheses).

3.18 ASIMD integer instructions

Table 3-27 AArch64 ASIMD integer instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff SABD, UABD 2 2 V -

ASIMD absolute diff accum SABA, UABA 4(1) 1 V1 2

ASIMD absolute diff accum
long

SABAL(2),
UABAL(2)

4(1) 1 V1 2

ASIMD absolute diff long SABDL(2),
UABDL(2)

2 2 V -

ASIMD arith, basic ABS, ADD, NEG,
SADDL(2),
SADDW(2),
SHADD, SHSUB,
SSUBL(2),
SSUBW(2), SUB,
UADDL(2),
UADDW(2),
UHADD, UHSUB,
USUBL(2),
USUBW(2)

2 2 V -

ASIMD arith, complex ADDHN(2),
RADDHN(2),
RSUBHN(2),
SQABS, SQADD,
SQNEG, SQSUB,
SRHADD,
SUBHN(2),
SUQADD,
UQADD, UQSUB,
URHADD,
USQADD

2 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD arith, pair-wise ADDP, SADDLP,
UADDLP

2 2 V -

ASIMD arith, reduce, 4H/4S ADDV, SADDLV,
UADDLV

2 1 V1 -

ASIMD arith, reduce, 8B/8H ADDV, SADDLV,
UADDLV

4 1 V1, V -

ASIMD arith, reduce, 16B ADDV, SADDLV,
UADDLV

4 1 V1 -

ASIMD compare CMEQ, CMGE,
CMGT, CMHI,
CMHS, CMLE,
CMLT, CMTST

2 2 V -

ASIMD dot product SDOT, UDOT 3 (1) 2 V 2

ASIMD dot product using
signed and unsigned integers

SUDOT, USDOT 3(1) 2 V 2

ASIMD logical AND, BIC, EOR,
MOV, MVN,
NOT, ORN, ORR

2 2 V -

ASIMD matrix multiply-
accumulate

SMMLA,
UMMLA,
USMMLA

3(1) 2 V 2

ASIMD max/min, basic and pair-
wise

SMAX, SMAXP,
SMIN, SMINP,
UMAX, UMAXP,
UMIN, UMINP

2 2 V -

ASIMD max/min, reduce,
4H/4S

SMAXV, SMINV,
UMAXV, UMINV

2 2 V1 -

ASIMD max/min, reduce,
8B/8H

SMAXV, SMINV,
UMAXV, UMINV

4 1 V1, V -

ASIMD max/min, reduce, 16B SMAXV, SMINV,
UMAXV, UMINV

4 ½ V1 -

ASIMD multiply MUL, SQDMULH,
SQRDMULH

4 1 V0 -

ASIMD multiply accumulate MLA, MLS 4(1) 1 V0 1

ASIMD multiply accumulate
high

SQRDMLAH,
SQRDMLSH

4(2) 1 V0 1

ASIMD multiply accumulate
long

SMLAL(2),
SMLSL(2),
UMLAL(2),
UMLSL(2)

4(1) 1 V0 1

ASIMD multiply accumulate
saturating long

SQDMLAL(2),
SQDMLSL(2)

4(2) 1 V0 1

ASIMD multiply/multiply long
(8x8) polynomial, D-form

PMUL, PMULL(2) 3 1 V0 3

ASIMD multiply/multiply long
(8x8) polynomial, Q-form

PMUL, PMULL(2) 3 1 V0 3

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD multiply long SMULL(2),
UMULL(2),
SQDMULL(2)

3 2 V -

ASIMD pairwise add and
accumulate long

SADALP,
UADALP

4(1) 1 V1 2

ASIMD shift accumulate SSRA, SRSRA,
USRA, URSRA

4(1) 1 V1 2

ASIMD shift by immed, basic SHL, SHLL(2),
SHRN(2),
SSHLL(2), SSHR,
SXTL(2),
USHLL(2), USHR,
UXTL(2)

2 1 V1 -

ASIMD shift by immed and
insert, basic

SLI, SRI 2 1 V1 -

ASIMD shift by immed, complex RSHRN(2),
SQRSHRN(2),
SQRSHRUN(2),
SQSHL{U},
SQSHRN(2),
SQSHRUN(2),
SRSHR,
UQRSHRN(2),
UQSHL,
UQSHRN(2),
URSHR

4 1 V1 -

ASIMD shift by register, basic SSHL, USHL 2 1 V1 -

ASIMD shift by register,
complex

SRSHL, SQRSHL,
SQSHL, URSHL,
UQRSHL, UQSHL

4 1 V1 -

Table 3-28 AArch32 ASIMD integer instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff VABD 2 2 V -

ASIMD absolute diff accum VABA 4(1) 1 V1 2

ASIMD absolute diff accum
long

VABAL 4(1) 1 V1 2

ASIMD absolute diff long VABDL 2 2 V -

ASIMD arith, basic VADD, VADDL,
VADDW, VNEG,
VSUB, VSUBL,
VSUBW

2 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD arith, complex VABS, VADDHN,
VHADD, VHSUB,
VQABS, VQADD,
VQNEG, VQSUB,
VRADDHN,
VRHADD,
VRSUBHN,
VSUBHN

2 2 V -

ASIMD arith, pair-wise VPADD, VPADDL 2 2 V -

ASIMD compare VCEQ, VCGE,
VCGT, VCLE,
VTST

2 2 V -

ASIMD dot product VSDOT, VUDOT 3(1) 2 V 2

ASIMD dot product using
signed and unsigned integers

VSUDOT,
VUSDOT

3(1) 2 V 2

ASIMD logical VAND, VBIC,
VMVN, VORR,
VORN, VEOR

2 2 V -

ASIMD matrix multiply-
accumulate

VSMMLA,
VUMMLA,
VUSMMLA

3(1) 2 V 2

ASIMD max/min VMAX, VMIN,
VPMAX, VPMIN

2 2 V -

ASIMD multiply VMUL,
VQDMULH,
VQRDMULH

4 1 V0 -

ASIMD multiply accumulate VMLA, VMLS 4(1) 1 V0 1

ASIMD multiply accumulate
long

VMLAL, VMLSL 4(1) 1 V0 1

ASIMD multiply accumulate
saturating long

VQDMLAL,
VQDMLSL

4 1 V0 -

ASIMD multiply/multiply long
(8x8) polynomial, D-form

VMUL (.P8),
VMULL (.P8)

3 1 V0 -

ASIMD multiply (8x8)
polynomial, Q-form

VMUL (.P8) 3 1 V0 -

ASIMD multiply long VMULL (.S, .I),
VQDMULL

3 1 V0 -

ASIMD pairwise add and
accumulate

VPADAL 4(1) 1 V1 1

ASIMD shift accumulate VSRA, VRSRA 4(1) 1 V1 1

ASIMD shift by immed, basic VMOVL, VSHL,
VSHLL, VSHR,
VSHRN

2 1 V1 -

ASIMD shift by immed and
insert, basic

VSLI, VSRI 2 1 V1 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD shift by immed, complex VQRSHRN,
VQRSHRUN,
VQSHL{U},
VQSHRN,
VQSHRUN,
VRSHR, VRSHRN

4 1 V1 -

ASIMD shift by register, basic VSHL 2 1 V1 -

ASIMD shift by register,
complex

VQRSHL, VQSHL,
VRSHL

4 1 V1 -

Notes:
1. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of integer multiply-accumulate µOPs to issue one every cycle or one every other cycle (accumulate latency
shown in parentheses).
2. Other accumulate pipelines also support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of such µOPs to issue one every cycle (accumulate latency shown in parentheses).
3. This category includes instructions of the form “PMULL Vd.8H, Vn.8B, Vm.8B” and “PMULL2 Vd.8H, Vn.16B,
Vm.16B”.

3.19 ASIMD floating-point instructions

Table 3-29 AArch64 ASIMD floating-point instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP absolute
value/difference

FABS, FABD 2 2 V -

ASIMD FP arith, normal FADD, FSUB,
FADDP

2 2 V -

ASIMD FP compare FACGE, FACGT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT

2 2 V -

ASIMD FP complex add FCADD 2 2 V -

ASIMD FP complex multiply
add

FCMLA 4(2) 2 V 1

ASIMD FP convert, long (F16 to
F32)

FCVTL(2) 4 1/2 V0 -

ASIMD FP convert, long (F32 to
F64)

FCVTL(2) 3 1 V0 -

ASIMD FP convert, narrow (F32
to F16)

FCVTN(2) 4 1/2 V0 -

ASIMD FP convert, narrow (F64
to F32)

FCVTN(2),
FCVTXN(2)

3 2 V0 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP convert, other, D-
form F32 and Q-form F64

FCVTAS,
FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU, SCVTF,
UCVTF

3 1 V0 -

ASIMD FP convert, other, D-
form F16 and Q-form F32

FCVTAS,
VCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU, SCVTF,
UCVTF

4 1/2 V0 -

ASIMD FP convert, other, Q-
form F16

FCVTAS,
VCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU, SCVTF,
UCVTF

6 1/4 V0 -

ASIMD FP divide, D-form, F16 FDIV 7 1/7 V0 3

ASIMD FP divide, D-form, F32 FDIV 7 to 10 2/9 to 2/7 V0 3

ASIMD FP divide, Q-form, F16 FDIV 10 to 13 1/13 to 1/10 V0 3

ASIMD FP divide, Q-form, F32 FDIV 7 to 10 1/9 to 1/7 V0 3

ASIMD FP divide, Q-form, F64 FDIV 7 to 15 1/14 to 1/7 V0 3

ASIMD FP max/min, normal FMAX,
FMAXNM, FMIN,
FMINNM

2 2 V -

ASIMD FP max/min, pairwise FMAXP,
FMAXNMP,
FMINP,
FMINNMP

2 2 V -

ASIMD FP max/min, reduce,
F32 and D-form F16

FMAXV,
FMAXNMV,
FMINV,
FMINNMV

4 1 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP max/min, reduce, Q-
form F16

FMAXV,
FMAXNMV,
FMINV,
FMINNMV

6

2/3

V -

ASIMD FP multiply FMUL, FMULX 3 2 V 2

ASIMD FP multiply accumulate FMLA, FMLS 4(2) 2 V 1

ASIMD FP multiply accumulate
long

FMLAL(2),
FMLSL(2)

5(2) 2 V 1

ASIMD FP negate FNEG 2 2 V -

ASIMD FP round, D-form F32
and Q-form F64

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

3 1 V0 -

ASIMD FP round, D-form F16
and Q-form F32

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

4 1/2 V0 -

ASIMD FP round, Q-form F16 FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

6 1/4 V0 -

ASIMD FP square root, D-form,
F16

FSQRT 7 1/7 V0 3

ASIMD FP square root, D-form,
F32

FSQRT 7 to 10 2/9 to 2/7 V0 3

ASIMD FP square root, Q-form,
F16

FSQRT 11 to 13 1/13 to 1/11 V0 3

ASIMD FP square root, Q-form,
F32

FSQRT 7 to 10 1/9 to 1/7 V0 3

ASIMD FP square root, Q-form,
F64

FSQRT 7 to 16 1/15 to 1/7 V0 3

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 90

Table 3-30 AArch32 ASIMD floating-point instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP absolute value VABS 2 2 V -

ASIMD FP arith VABD, VADD,
VPADD, VSUB

2 2 V -

ASIMD FP compare VACGE, VACGT,
VACLE, VACLT,
VCEQ, VCGE,
VCGT, VCLE

2 2 V -

ASIMD FP complex add VCADD 2 2 V -

ASIMD FP complex multiply
add

VCMLA 4(2) 2 V 2

ASIMD FP convert, integer, D-
form

VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

3 1 V0 -

ASIMD FP convert, integer, Q-
form

VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

4 1/2 V0 -

ASIMD FP convert, fixed, D-
form

VCVT 3 1 V0 -

ASIMD FP convert, fixed, Q-
form

VCVT 4 1/2 V0 -

ASIMD FP convert, half-
precision

VCVT 4 1/2 V0 -

ASIMD FP max/min VMAX, VMIN,
VPMAX, VPMIN,
VMAXNM,
VMINNM

2 2 V -

ASIMD FP multiply VMUL, VNMUL 3 2 V 2

ASIMD FP chained multiply
accumulate

VMLA, VMLS 5(2) 2 V 1

ASIMD FP fused multiply
accumulate

VFMA, VFMS 4(2) 2 V 1

ASIMD FP multiply accumulate
long

VFMAL, VFMSL 5(2) 2 V 1

ASIMD FP negate VNEG 2 2 V

ASIMD FP round to integral, D-
form

VRINTA,
VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

3 1/2 V0 -

ASIMD FP round to integral, Q-
form

VRINTA,
VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

4 1 V0 -

Notes:

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 90

1. ASIMD multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of floating-point multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in
parentheses).
2. ASIMD multiply-accumulate pipelines support late forwarding of the result from ASIMD FP multiply µOPs to the
accumulate operands of an ASIMD FP multiply-accumulate µOP. The latter can potentially be issued 1 cycle after the
ASIMD FP multiply µOP has been issued.
3. ASIMD divide and square root operations are performed using an iterative algorithm and block subsequent similar
operations to the same pipeline until complete.

3.20 ASIMD BFloat16 (BF16) instructions

Table 3-31 AArch64 ASIMD BFloat (BF16) instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD convert, F32 to BF16 BFCVTN,
BFCVTN2

4 1 V0 -

ASIMD dot product BFDOT 4(2) 2 V 1

ASIMD matrix multiply
accumulate

BFMMLA 5(3) 2 V 1

ASIMD multiply accumulate
long

BFMLALB,
BFMLALT

4(2) 2 V 1

Scalar convert, F32 to BF16 BFCVT 3 1 V0 -

Table 3-32 AArch32 ASIMD BFloat (BF16) instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD convert, F32 to BF16 VCVTB, VCVTT 4 1 V0 -

ASIMD dot product VDOT 4(2) 2 V 1

ASIMD matrix multiply
accumulate

VMMLA 5(3) 2 V 1

ASIMD multiply accumulate
long

VFMAB, VFMAT 4(2) 2 V 1

Scalar convert, F32 to BF16 VCVT 3 1 V0 -

Notes:
1. ASIMD pipelines that execute these instructions support late-forwarding of accumulate operands from similar µOPs,
allowing a typical sequence of µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 90

3.21 ASIMD miscellaneous instructions

Table 3-33 AArch64 ASIMD miscellaneous instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD bit reverse RBIT 2 2 V -

ASIMD bitwise insert BIF, BIT, BSL 2 2 V -

ASIMD count CLS, CLZ, CNT 2 2 V -

ASIMD duplicate, gen reg DUP 3 1 M0 -

ASIMD duplicate, element DUP 2 2 V -

ASIMD extract EXT 2 2 V -

ASIMD extract narrow XTN(2) 2 2 V -

ASIMD extract narrow,
saturating

SQXTN(2),
SQXTUN(2),
UQXTN(2)

4 1 V1 -

ASIMD insert, element to
element

INS 2 2 V -

ASIMD move, FP immed FMOV 2 2 V -

ASIMD move, integer immed MOVI, MVNI 2 2 V -

ASIMD reciprocal and square
root estimate, D-form U32

URECPE,
URSQRTE

3 1 V0 -

ASIMD reciprocal and square
root estimate, Q-form U32

URECPE,
URSQRTE

4 1/2 V0 -

ASIMD reciprocal and square
root estimate, D-form F32 and
scalar forms

FRECPE,
FRSQRTE

3 1 V0 -

ASIMD reciprocal and square
root estimate, D-form F16 and
Q-form F32

FRECPE,
FRSQRTE

4 1/2 V0 -

ASIMD reciprocal and square
root estimate, Q-form F16

FRECPE,
FRSQRTE

6 1/4 V0 -

ASIMD reciprocal exponent FRECPX 3 1 V0

ASIMD reciprocal step FRECPS,
FRSQRTS

4 2 V -

ASIMD reverse REV16, REV32,
REV64

2 2 V -

ASIMD table lookup, 1 or 2
table regs

TBL 2 2 V -

ASIMD table lookup, 3 table
regs

TBL 4 1 V -

ASIMD table lookup, 4 table
regs

TBL 4 2/3 V -

ASIMD table lookup extension,
1 table reg

TBX 2 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD table lookup extension,
2 table reg

TBX 4 1 V -

ASIMD table lookup extension,
3 table reg

TBX 6 2/3 V -

ASIMD table lookup extension,
4 table reg

TBX 6 2/5 V -

ASIMD transfer, element to gen
reg

UMOV, SMOV 2 1 V -

ASIMD transfer, gen reg to
element

INS 5 1 M0, V -

ASIMD transpose TRN1, TRN2 2 2 V -

ASIMD unzip/zip UZP1, UZP2,
ZIP1, ZIP2

2 2 V -

Table 3-34 AArch32 ASIMD miscellaneous instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD bitwise insert VBIF, VBIT, VBSL 2 2 V -

ASIMD count VCLS, VCLZ,
VCNT

2 2 V -

ASIMD duplicate, core reg VDUP 3 1 M0 -

ASIMD duplicate, scalar VDUP 2 2 V -

ASIMD extract VEXT 2 2 V -

ASIMD move, immed VMOV 2 2 V -

ASIMD move, register VMOV 2 2 V -

ASIMD move, narrowing VMOVN 2 2 V -

ASIMD move, saturating VQMOVN,
VQMOVUN

4 1 V1 -

ASIMD reciprocal estimate, D-
form F32 and F64

VRECPE,
VRSQRTE

3 1 V0 -

ASIMD reciprocal estimate, D-
form F16 and Q-form F32

VRECPE,
VRSQRTE

4 1/2 V0

ASIMD reciprocal estimate, Q-
form F16

VRECPE,
VRSQRTE

6

1/4 V0 -

ASIMD reciprocal step VRECPS,
VRSQRTS

5 2 V -

ASIMD reverse VREV16,
VREV32, VREV64

2 2 V -

ASIMD swap VSWP 4 2/3 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD table lookup, 1 or 2
table regs

VTBL 2 2 V -

ASIMD table lookup, 3 table
regs

VTBL 4 1 V -

ASIMD table lookup, 4 table
regs

VTBL 6 2/3 V -

ASIMD table lookup extension,
1 reg

VTBX 2 2 V -

ASIMD table lookup extension,
2 table reg

VTBX 4 1 V -

ASIMD table lookup extension,
3 table reg

VTBX 6 2/3 V -

ASIMD table lookup extension,
4 table reg

VTBX 6 2/5 V -

ASIMD transfer, scalar to core
reg, word

VMOV 2 1 V -

ASIMD transfer, scalar to core
reg, byte/hword

VMOV 3 1 V, I -

ASIMD transfer, core reg to
scalar

VMOV 5 1 M0, V -

ASIMD transpose VTRN 4 2/3 V -

ASIMD unzip/zip VUZP, VZIP 4 2/3 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 90

3.22 ASIMD load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction. Compared to standard
loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 3-35 AArch64 ASIMD load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element,
multiple, 1 reg, D-form

LD1 6 3 L -

ASIMD load, 1 element,
multiple, 1 reg, Q-form

LD1 6 3 L -

ASIMD load, 1 element,
multiple, 2 reg, D-form

LD1 6 3/2 L -

ASIMD load, 1 element,
multiple, 2 reg, Q-form

LD1 6 3/2 L -

ASIMD load, 1 element,
multiple, 3 reg, D-form

LD1 6 1 L -

ASIMD load, 1 element,
multiple, 3 reg, Q-form

LD1 6 1 L -

ASIMD load, 1 element,
multiple, 4 reg, D-form

LD1 7 3/4 L -

ASIMD load, 1 element,
multiple, 4 reg, Q-form

LD1 7 3/4 L -

ASIMD load, 1 element, one
lane, B/H/S

LD1 8 2 L, V -

ASIMD load, 1 element, one
lane, D

LD1 8 2 L, V -

ASIMD load, 1 element, all
lanes, D-form, B/H/S

LD1R 8 2 L, V -

ASIMD load, 1 element, all
lanes, D-form, D

LD1R 8 2 L, V -

ASIMD load, 1 element, all
lanes, Q-form

LD1R 8 2 L, V -

ASIMD load, 2 element,
multiple, D-form, B/H/S

LD2 8 2 L, V -

ASIMD load, 2 element,
multiple, Q-form, B/H/S

LD2 8 3/2 L, V -

ASIMD load, 2 element,
multiple, Q-form, D

LD2 8 3/2 L, V -

ASIMD load, 2 element, one
lane, B/H

LD2 8 2 L, V -

ASIMD load, 2 element, one
lane, S

LD2 8 2 L, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 2 element, one
lane, D

LD2 8 2 L, V -

ASIMD load, 2 element, all
lanes, D-form, B/H/S

LD2R 8 2 L, V -

ASIMD load, 2 element, all
lanes, D-form, D

LD2R 8 2 L, V -

ASIMD load, 2 element, all
lanes, Q-form

LD2R 8 2 L, V -

ASIMD load, 3 element,
multiple, D-form, B/H/S

LD3 8 2/3 L, V -

ASIMD load, 3 element,
multiple, Q-form, B/H/S

LD3 8 2/3 L, V -

ASIMD load, 3 element,
multiple, Q-form, D

LD3 8 2/3 L, V -

ASIMD load, 3 element, one
lane, B/H

LD3 8 2/3 L, V -

ASIMD load, 3 element, one
lane, S

LD3 8 2/3 L, V -

ASIMD load, 3 element, one
lane, D

LD3 8 2/3 L, V -

ASIMD load, 3 element, all
lanes, D-form, B/H/S

LD3R 8 2/3 L, V -

ASIMD load, 3 element, all
lanes, D-form, D

LD3R 8 2/3 L, V -

ASIMD load, 3 element, all
lanes, Q-form, B/H/S

LD3R 8 2/3 L, V -

ASIMD load, 3 element, all
lanes, Q-form, D

LD3R 8 2/3 L, V -

ASIMD load, 4 element,
multiple, D-form, B/H/S

LD4 8 1 L, V -

ASIMD load, 4 element,
multiple, Q-form, B/H/S

LD4 9 1/2 L, V -

ASIMD load, 4 element,
multiple, Q-form, D

LD4 9 1/2 L, V -

ASIMD load, 4 element, one
lane, B/H

LD4 8 1 L, V -

ASIMD load, 4 element, one
lane, S

LD4 8 1 L, V -

ASIMD load, 4 element, one
lane, D

LD4 8 1 L, V -

ASIMD load, 4 element, all
lanes, D-form, B/H/S

LD4R 8 1 L, V -

ASIMD load, 4 element, all
lanes, D-form, D

LD4R 8 1 L, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 4 element, all
lanes, Q-form, B/H/S

LD4R 8 1 L, V -

ASIMD load, 4 element, all
lanes, Q-form, D

LD4R 8 1 L, V -

(ASIMD load, writeback form) - - - I 1

Table 3-36 AArch32 ASIMD load instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element,
multiple, 1 reg

VLD1 5 3(2) L 2

ASIMD load, 1 element,
multiple, 2 reg

VLD1 5 3(2) L 2

ASIMD load, 1 element,
multiple, 3 reg

VLD1 5 3/2(1) L 2

ASIMD load, 1 element,
multiple, 4 reg

VLD1 5 3/2(1) L 2

ASIMD load, 1 element, one
lane

VLD1 7 3(2) L, V 2

ASIMD load, 1 element, all
lanes, 1 reg

VLD1 7 3(2) L V 2

ASIMD load, 1 element, all
lanes, 2 reg

VLD1 7 1 L, V 2

ASIMD load, 2 element,
multiple, 2 reg

VLD2 7 1 L, V 2

ASIMD load, 2 element,
multiple, 4 reg

VLD2 8 1/2 L, V 2

ASIMD load, 2 element, one
lane, size 32

VLD2 7 1 L, V 2

ASIMD load, 2 element, one
lane, size 8/16

VLD2 7 1 L, V 2

ASIMD load, 2 element, all lanes VLD2 7 1 L, V 2

ASIMD load, 3 element,
multiple, 3 reg

VLD3 8 2/3 (1) L, V 2

ASIMD load, 3 element, one
lane, size 32

VLD3 8 2/3 (1) L, V 2

ASIMD load, 3 element, one
lane, size 8/16

VLD3 8 2/3 (1) L, V 2

ASIMD load, 3 element, all lanes VLD3 8 2/3 (1) L, V 2

ASIMD load, 4 element,
multiple, 4 reg

VLD4 8 1/2 L, V 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 4 element, one
lane, size 32

VLD4 8 1/2 L, V 2

ASIMD load, 4 element, one
lane, size 8/16

VLD4 8 1/2 L, V 2

ASIMD load, 4 element, all lanes VLD4 8 1/2 L, V 2

(ASIMD load, writeback form) - - - I 1

Notes:
1. Writeback forms of load instructions require an extra µOP to update the base address. This update is typically
performed in parallel with the load µOP (update latency shown in parentheses).
2. Conditional loads go down L01 pipe and the number in parenthesis represents their throughput when different from
the unconditional forms.

3.23 ASIMD store instructions
Stores MOPs are split into store address and store data µOPs. Once executed, stores are buffered
and committed in the background.

Table 3-37 AArch64 ASIMD store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 1 element,
multiple, 1 reg, D-form

ST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 1 reg, Q-form

ST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg, D-form

ST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg, Q-form

ST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 3 reg, D-form

ST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 3 reg, Q-form

ST1 2 2/3 L01, V -

ASIMD store, 1 element,
multiple, 4 reg, D-form

ST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 4 reg, Q-form

ST1 2 1/2 L01, V -

ASIMD store, 1 element, one
lane, B/H/S

ST1 4 1 L01, V -

ASIMD store, 1 element, one
lane, D

ST1 4 1 L01, V -

ASIMD store, 2 element,
multiple, D-form, B/H/S

ST2 4 1 V, L01 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 2 element,
multiple, Q-form, B/H/S

ST2 4 1/2 V, L01 -

ASIMD store, 2 element,
multiple, Q-form, D

ST2 4 1/2 V, L01 -

ASIMD store, 2 element, one
lane, B/H/S

ST2 4 1 V, L01 -

ASIMD store, 2 element, one
lane, D

ST2 4 1 V, L01 -

ASIMD store, 3 element,
multiple, D-form, B/H/S

ST3 5 1/2 V, L01 -

ASIMD store, 3 element,
multiple, Q-form, B/H/S

ST3 6 1/3 V, L01 -

ASIMD store, 3 element,
multiple, Q-form, D

ST3 6 1/3 V, L01 -

ASIMD store, 3 element, one
lane, B/H

ST3 5 1/2 V, L01 -

ASIMD store, 3 element, one
lane, S

ST3 5 1/2 V, L01 -

ASIMD store, 3 element, one
lane, D

ST3 5 1/2 V, L01 -

ASIMD store, 4 element,
multiple, D-form, B/H/S

ST4 6 1/3 V, L01 -

ASIMD store, 4 element,
multiple, Q-form, B/H/S

ST4 7 1/6 V, L01 -

ASIMD store, 4 element,
multiple, Q-form, D

ST4 5 1/4 V, L01 -

ASIMD store, 4 element, one
lane, B/H/S

ST4 6 2/3 V, L01 -

ASIMD store, 4 element, one
lane, D

ST4 4 1/2 V, L01 -

(ASIMD store, writeback form) - - - I 1

Table 3-38 AArch32 ASIMD store instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 1 element,
multiple, 1 reg

VST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg

VST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 3 reg

VST1 2 1 L01, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 90

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 1 element,
multiple, 4 reg

VST1 2 1 L01, V -

ASIMD store, 1 element, one
lane

VST1 4 1 V, L01 -

ASIMD store, 2 element,
multiple, 2 reg

VST2 5 2/3 V, L01 -

ASIMD store, 2 element,
multiple, 4 reg

VST2 5 1/3 V, L01 -

ASIMD store, 2 element, one
lane

VST2 4 1 V, L01 -

ASIMD store, 3 element,
multiple, 3 reg

VST3 5 1/2 V, L01 -

ASIMD store, 3 element, one
lane, size 32

VST3 4 1/2 V, L01 -

ASIMD store, 3 element, one
lane, size 8/16

VST3 4 1/2 V, L01 -

ASIMD store, 4 element,
multiple, 4 reg

VST4 5 1/3 V, L01 -

ASIMD store, 4 element, one
lane, size 32

VST4 5 2/3 V, L01 -

ASIMD store, 4 element, one
lane, size 8/16

VST4 5 2/3 V, L01 -

(ASIMD store, writeback form) - (1) - +I 1

Notes:
1. Writeback forms of store instructions require an extra µOP to update the base address. This update is typically
performed in parallel with the store µOP (update latency shown in parentheses).

3.24 Cryptography extensions

Table 3-39 AArch64 Cryptography extensions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V -

Crypto polynomial (64x64)
multiply long

PMULL (2) 2 1 V0 -

Crypto SHA1 hash acceleration
op

SHA1H 2 1 V0 -

Crypto SHA1 hash acceleration
ops

SHA1C, SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1 schedule
acceleration ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 90

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256 schedule
acceleration ops

SHA256SU0,
SHA256SU1

2 1 V0 -

Crypto SHA512 hash
acceleration ops

SHA512H,
SHA512H2,
SHA512SU0,
SHA512SU1

2 1 V0 -

Crypto SHA3 ops BCAX, EOR3,
RAX1, XAR

2 1 V0 -

Crypto SM3 ops SM3PARTW1,
SM3PARTW2SM
3SS1, SM3TT1A,
SM3TT1B,
SM3TT2A,
SM3TT2B

2 1 V0 -

Crypto SM4 ops SM4E, SM4EKEY 4 1 V0 -

Table 3-40 AArch32 Cryptography extensions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V 1

Crypto polynomial (64x64)
multiply long

VMULL.P64 2 1 V0 -

Crypto SHA1 hash acceleration
op

SHA1H 2 1 V0 -

Crypto SHA1 hash acceleration
ops

SHA1C, SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1 schedule
acceleration ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256 schedule
acceleration ops

SHA256SU0,
SHA256SU1

2 1 V0 -

Notes:
1. Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs will exhibit the performance
characteristics described in Section 4.6.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 90

3.25 CRC

Table 3-41 AArch64 CRC

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

CRC checksum ops CRC32, CRC32C 2 1 M0 1

Table 3-42 AArch32 CRC

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

CRC checksum ops CRC32, CRC32C 2 1 M0 1

Notes:
1. CRC execution supports late forwarding of the result from a producer µOP to a consumer µOP. This results in a 1
cycle reduction in latency as seen by the consumer.

3.26 SVE Predicate instructions

Table 3-43 SVE Predicate Instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Loop control, based on
predicate

BRKA, BRKB 2 2 M 1

Loop control, based on
predicate and flag setting

BRKAS, BRKBS 3 2 M 1

Loop control, propagating BRKN, BRKPA,
BRKPB

2 1 M0 1

Loop control, propagating and
flag setting

BRKNS, BRKPAS,
BRKPBS

3 1 M0, M 1

Loop control, based on GPR WHILEGE,
WHILEGT,
WHILEHI,
WHILEHS,
WHILELE,
WHILELO,
WHILELS,
WHILELT,
WHILERW,
WHILEWR

3 1 M -

Loop terminate CTERMEQ,
CTERMNE

1 1 M -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Predicate counting scalar ADDPL, ADDVL,
CNTB, CNTH,
CNTW, CNTD,
DECB, DECH,
DECW, DECD,
INCB, INCH,
INCW, INCD,
RDVL, SQDECB,
SQDECH,
SQDECW,
SQDECD,
SQINCB,
SQINCH,
SQINCW,
SQINCD,
UQDECB,
UQDECH,
UQDECW,
UQDECD,
UQINCB,
UQINCH,
UQINCW,
UQINCD

2 2 M -

Predicate counting scalar,
ALL, {1,2,4}

INC, DEC 1 4 I

Predicate counting scalar, active
predicate

CNTP, DECP,
INCP, SQDECP,
SQINCP,
UQDECP,
UQINCP

2 2 M -

Predicate counting vector,
active predicate

DECP, INCP,
SQDECP,
SQINCP,
UQDECP,
UQINCP

7 1 M, M0, V -

Predicate logical AND, BIC, EOR,
MOV, NAND,
NOR, NOT, ORN,
ORR

1 1 M0 1

Predicate logical, flag setting ANDS, BICS,
EORS, MOV,
NANDS, NORS,
NOTS, ORNS,
ORRS

2 1 M0, M 1

Predicate reverse REV 2 2 M -

Predicate select SEL 1 1 M0 -

Predicate set PFALSE, PTRUE 2 2 M -

Predicate set/initialize, set flags PTRUES 3 2 M -

Predicate find first/next PFIRST, PNEXT 3 2 M -

Predicate test PTEST 1 2 M -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Predicate transpose TRN1, TRN2 2 2 M -

Predicate unpack and widen PUNPKHI,
PUNPKLO

2 2 M -

Predicate zip/unzip ZIP1, ZIP2, UZP1,
UZP2

2 2 M -

Notes:
1. When the governing predicate is the same as destination, the latency is increased by one cycle.

3.27 SVE integer instructions

Table 3-44 SVE integer instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, absolute diff SABD, UABD 2 2 V -

Arithmetic, absolute diff accum SABA, UABA 4(1) 1 V1 2

Arithmetic, absolute diff accum
long

SABALB,
SABALT,
UABALB,
UABALT

4(1) 1 V1 2

Arithmetic, absolute diff long SABDLB,
SABDLT,
UABDLB,
UABDLT

2 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, basic ABS, ADD, ADR,
CNOT, NEG,
SADDLB,
SADDLBT,
SADDLT,
SADDWB,
SADDWT,
SHADD, SHSUB,
SHSUBR,
SSUBLB,
SSUBLBT,
SSUBLT,
SSUBLTB,
SSUBWB,
SSUBWT, SUB,
SUBHNB,
SUBHNT, SUBR,
UADDLB,
UADDLT,
UADDWB,
UADDWT,
UHADD, UHSUB,
UHSUBR,
USUBLB,
USUBLT,
USUBWB,
USUBWT

2 2 V -

Arithmetic, complex ADDHNB,
ADDHNT,
RADDHNB,
RADDHNT,
RSUBHNB,
RSUBHNT,
SQABS, SQADD,
SQNEG, SQSUB,
SQSUBR,
SRHADD,
SUQADD,
UQADD, UQSUB,
UQSUBR,
USQADD,
URHADD

2 2 V -

Arithmetic, large integer ADCLB, ADCLT,
SBCLB, SBCLT

2 2 V -

Arithmetic, pairwise add ADDP 2 2 V -

Arithmetic, pairwise add and
accum long

SADALP,
UADALP

4(1) 1 V1 2

Arithmetic, shift ASR, ASRR, LSL,
LSLR, LSR, LSRR

2 1 V1 -

Arithmetic, shift and accumulate SRSRA, SSRA,
URSRA, USRA

4(1) 1 V1 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, shift by immediate SHRNB, SHRNT,
SSHLLB, SSHLLT,
USHLLB, USHLLT

2 1 V1 -

Arithmetic, shift by immediate
and insert

SLI, SRI 2 1 V1 -

Arithmetic, shift complex RSHRNB,
RSHRNT,
SQRSHL,
SQRSHLR,
SQRSHRNB,
SQRSHRNT,
SQRSHRUNB,
SQRSHRUNT,
SQSHL, SQSHLR,
SQSHLU,
SQSHRNB,
SQSHRNT,
SQSHRUNB,
SQSHRUNT,
UQRSHL,
UQRSHLR,
UQRSHRNB,
UQRSHRNT,
UQSHL,
UQSHLR,
UQSHRNB,
UQSHRNT

4 1 V1 -

Arithmetic, shift right for divide ASRD 4 1 V1 -

Arithmetic, shift rounding SRSHL, SRSHLR,
SRSHR, URSHL,
URSHLR, URSHR

4 1 V1 -

Bit manipulation BDEP, BEXT,
BGRP

6 1/2 V1 -

Bitwise select BSL, BSL1N,
BSL2N, NBSL

2 2 V -

Count/reverse bits CLS, CLZ, CNT,
RBIT

2 2 V -

Broadcast logical bitmask
immediate to vector

DUPM, MOV 2 2 V -

Compare and set flags CMPEQ, CMPGE,
CMPGT, CMPHI,
CMPHS, CMPLE,
CMPLO, CMPLS,
CMPLT, CMPNE

4 1 V0, M
1

Complex add CADD, SQCADD 2 2 V -

Complex dot product 8-bit
element

CDOT 3(1) 2 V 2

Complex dot product 16-bit
element

CDOT 4(1) 1 V0 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Complex multiply-add B, H, S
element size

CMLA 4(1) 1 V0 2

Complex multiply-add D
element size

CMLA 5(3) 1/2 V0 2

Conditional extract operations,
scalar form

CLASTA, CLASTB 8 1 M0, V1, V -

Conditional extract operations,
SIMD&FP scalar and vector
forms

CLASTA,
CLASTB,
COMPACT,
SPLICE

3 1 V1 -

Convert to floating point, 64b
to float or convert to double

SCVTF, UCVTF 3 1 V0 -

Convert to floating point, 32b
to single or half

SCVTF, UCVTF 4 1/2 V0 -

Convert to floating point, 16b
to half

SCVTF, UCVTF 6 1/4 V0 -

Copy, scalar CPY 5 1 M0, V

Copy, scalar SIMD&FP or imm CPY 2 2 V

Divides, 32 bit SDIV, SDIVR,
UDIV, UDIVR

7 to 12 1/11 to 1/7 V0 3

Divides, 64 bit SDIV, SDIVR,
UDIV, UDIVR

7 to 20 1/20 to 1/7 V0 3

Dot product, 8 bit SDOT, UDOT 3(1) 2 V 2

Dot product, 8 bit, using signed
and unsigned integers

SUDOT, USDOT 3(1) 2 V 2

Dot product, 16 bit SDOT, UDOT 4(1) 1 V0 2

Duplicate, immediate and
indexed form

DUP, MOV 2 2 V -

Duplicate, scalar form DUP, MOV 3 1 M0 -

Extend, sign or zero SXTB, SXTH,
SXTW, UXTB,
UXTH, UXTW

2 1 V1 -

Extract EXT 2 2 V -

Extract narrow saturating SQXTNB,
SQXTNT,
SQXTUNB,
SQXTUNT,
UQXTNB,
UQXTNT

4 1 V1 -

Extract/insert operation, SIMD
and FP scalar form

LASTA, LASTB,
INSR

3 1 V1 -

Extract/insert operation, scalar LASTA, LASTB,
INSR

5 1 V1, M0 -

Histogram operations HISTCNT,
HISTSEG

2 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Horizontal operations, B, H, S
form, immediate operands only

INDEX 4 1 V0 -

Horizontal operations, B, H, S
form, scalar, immediate
operands)/ scalar operands only
/ immediate, scalar operands

INDEX 7 1 M0, V0 -

Horizontal operations, D form,
immediate operands only

INDEX 5 1/2 V0 -

Horizontal operations, D form,
scalar, immediate operands)/
scalar operands only /
immediate, scalar operands

INDEX 8 1/2 M0, V0 -

Logical AND, BIC, EON,
EOR, EORBT,
EORTB, MOV,
NOT, ORN, ORR

2 2 V -

Max/min, basic and pairwise SMAX, SMAXP,
SMIN, SMINP,
UMAX, UMAXP
UMIN, UMINP

2 2 V -

Matching operations MATCH,
NMATCH

2 1 V0, M 1,5

Matrix multiply-accumulate SMMLA,
UMMLA,
USMMLA

3(1) 2 V 2

Move prefix MOVPRFX 2 2 V -

Multiply, B, H, S element size MUL, SMULH,
UMULH

4 1 V0 -

Multiply, D element size MUL, SMULH,
UMULH

5 1/2 V0 -

Multiply long SMULLB,
SMULLT,
UMULLB,
UMULLT

4 1 V0 -

Multiply accumulate, B, H, S
element size

MLA, MLS 4(1) 1 V0 2

Multiply accumulate, D element
size

MLA, MLS, MAD,
MSB,

5(3) 1/2 V0 2

Multiply accumulate long SMLALB,
SMLALT,
SMLSLB,
SMLSLT,
UMLALB,
UMLALT,
UMLSLB,
UMLSLT

4(1) 1 V0 2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Multiply accumulate saturating
doubling long regular

SQDMLALB,
SQDMLALT,
SQDMLALBT,
SQDMLSLB,
SQDMLSLT,
SQDMLSLBT

4(2) 1 V0 4

Multiply saturating doubling
high, B, H, S element size

SQDMULH 4 1 V0 -

Multiply saturating doubling
high, D element size

SQDMULH 5 1/2 V0 -

Multiply saturating doubling
long

SQDMULLB,
SQDMULLT

4 1 V0 -

Multiply saturating rounding
doubling regular/complex
accumulate, B, H, S element
size

SQRDMLAH,
SQRDMLSH,
SQRDCMLAH

4(2) 1 V0 4

Multiply saturating rounding
doubling regular/complex
accumulate, D element size

SQRDMLAH,
SQRDMLSH,
SQRDCMLAH

5(3) 1/2 V0 4

Multiply saturating rounding
doubling regular/complex, B, H,
S element size

SQRDMULH 4 1 V0 -

Multiply saturating rounding
doubling regular/complex, D
element size

SQRDMULH 5 1/2 V0 -

Multiply/multiply long, (8x8)
polynomial

PMUL, PMULLB,
PMULLT

2 1 V0 -

Predicate counting, vector DECH, DECW,
DECD, INCH,
INCW, INCD,
SQDECH,
SQDECW,
SQDECD,
SQINCH,
SQINCW,
SQINCD,
UQDECH,
UQDECW,
UQDECD,
UQINCH,
UQINCW,
UQINCD

2 2 V0 -

Reciprocal estimate URECPE,
URSQRTE

4 1/2 V0

Reduction, arithmetic, B form SADDV, UADDV,
SMAXV, SMINV,
UMAXV, UMINV

 11 1/2 V, V1 -

Reduction, arithmetic, H form SADDV, UADDV,
SMAXV, SMINV,
UMAXV, UMINV

9 1/2 V, V1 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Reduction, arithmetic, S form SADDV, UADDV,
SMAXV, SMINV,
UMAXV, UMINV

8 4/5 V, V1 -

Reduction, logical

ANDV, EORV,
ORV

6 1 V, V1 -

Reverse, vector REV, REVB,
REVH, REVW

2 2 V -

Select, vector form MOV, SEL 2 2 V -

Table lookup TBL 2 2 V -

Table lookup extension TBX 2 2 V -

Transpose, vector form TRN1, TRN2 2 2 V -

Unpack and extend SUNPKHI,
SUNPKLO,
UUNPKHI,
UUNPKLO

2 2 V -

Zip/unzip UZP1, UZP2,
ZIP1, ZIP2

2 2 V -

Notes:
1. When the governing predicate is the same as destination, the latency is increased by one cycle.
2. SVE accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of such µOPs to issue one every N cycles (accumulate latency N shown in parentheses).
3. SVE integer divide operations are performed using an iterative algorithm and block subsequent similar operations to
the same pipeline until complete.
4. Same as 2 except that for saturating instructions require an extra cycle of latency for late-forwarding accumulate
operands.
5. If the consuming instruction has a flag source, the latency for this instruction is 4 cycles.

3.28 SVE floating-point instructions

Table 3-45 SVE floating-point instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point absolute
value/difference

FABD, FABS 2 2 V -

Floating point arithmetic FADD, FADDP,
FNEG, FSUB,
FSUBR

2 2 V -

Floating point associative add,
F16

FADDA 10 1/9 V1 -

Floating point associative add,
F32

FADDA 6 1/5 V1 -

Floating point associative add,
F64

FADDA 4 2 V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point compare FACGE, FACGT,
FACLE, FACLT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT, FCMNE,
FCMUO

2 1 V0 -

Floating point complex add FCADD 3 2 V -

Floating point complex multiply
add

FCMLA 5(2) 2 V 1

Floating point convert, long or
narrow (F16 to F32 or F32 to
F16)

FCVT, FCVTLT,
FCVTNT

4 1/2 V0 -

Floating point convert, long or
narrow (F16 to F64, F32 to
F64, F64 to F32 or F64 to F16)

FCVT, FCVTLT,
FCVTNT

3 1 V0 -

Floating point convert, round to
odd

FCVTX,
FCVTXNT

3 1 V0 -

Floating point base2 log, F16 FLOGB 6 1/4 V0

Floating point base2 log, F32 FLOGB 4 1/2 V0

Floating point base2 log, F64 FLOGB 3 1 V0

Floating point convert to
integer, F16

FCVTZS,
FCVTZU

6 1/4 V0 -

Floating point convert to
integer, F32

FCVTZS,
FCVTZU

4 1/2 V0 -

Floating point convert to
integer, F64

FCVTZS,
FCVTZU

3 1 V0 -

Floating point copy FCPY, FDUP,
FMOV

2 2 V -

Floating point divide, F16 FDIV, FDIVR 10 to 13 1/12 to 1/10 V0 2

Floating point divide, F32 FDIV, FDIVR 7 to 10 1/9 to 1/7 V0 2

Floating point divide, F64 FDIV, FDIVR 7 to 15 1/14 to 1/7 V0 2

Floating point min/max pairwise FMAXP,
FMAXNMP,
FMINP,
FMINNMP

2 2 V

Floating point min/max FMAX, DMIN,
FMAXNM,
FMINNM

2 2 V -

Floating point multiply FSCALE, FMUL,
FMULX

3 2 V -

Floating point multiply
accumulate

FMLA, FMLS,
FMAD, FMSB,
FNMAD, FNMLA,
FNMLS, FNMSB

4(2) 2 V 1

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point multiply add/sub
accumulate long

FMLALB,
FMLALT,
FMLSLB, FMLSLT

4(2) 2 V 1

Floating point reciprocal
estimate, F16

FRECPE,
FRECPX,
FRSQRTE

6 1/4 V0 -

Floating point reciprocal
estimate, F32

FRECPE,
FRECPX,
FRSQRTE

4 1/2 V0 -

Floating point reciprocal
estimate, F64

FRECPE,
FRECPX,
FRSQRTE

3 1 V0 -

Floating point reciprocal step FRECPS,
FRSQRTS

4 2 V -

Floating point reduction, F16 FADDV,
FMAXNMV,
FMAXV,
FMINNMV,
FMINV

6 2/3 V -

Floating point reduction, F32 FADDV,
FMAXNMV,
FMAXV,
FMINNMV,
FMINV

4 1 V -

Floating point reduction, F64 FADDV,
FMAXNMV,
FMAXV,
FMINNMV,
FMINV

2 2 V -

Floating point round to integral,
F16

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ

6 1/4 V0 -

Floating point round to integral,
F32

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ

4 1/2 V0 -

Floating point round to integral,
F64

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ

3 1 V0 -

Floating point square root, F16 FSQRT 10 to 13 1/12 to 1/10 V0 2

Floating point square root, F32 FSQRT 7 to 10 1/9 to 1/7 V0 2

Floating point square root F64 FSQRT 7 to 16 1/14 to 1/7 V0 2

Floating point trigonometric
exponentiation

FEXPA 3 1 V1

Floating point trigonometric
multiply add

FTMAD 4 2 V

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point trigonometric,
miscellaneous

FTSMUL, FTSSEL 3 2 V -

Notes:
1. SVE multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of floating-point multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in
parentheses).
2. SVE divide and square root operations are performed using an iterative algorithm and block subsequent similar
operations to the same pipeline until complete.

3.29 SVE BFloat16 (BF16) instructions

Table 3-46 SVE Bfloat16 (BF16) instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Convert, F32 to BF16 BFCVT,
BFCVTNT

3 1 V0 -

Dot product BFDOT 4(2) 2 V 1

Matrix multiply accumulate BFMMLA 5(3) 2 V 1

Multiply accumulate long BFMLALB,
BFMLALT

4(2) 2 V 1

Notes:
1. SVE pipelines that execute these instructions support late-forwarding of accumulate operands from similar µOPs,
allowing a typical sequence of µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

3.30 SVE Load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction.

Table 3-47 SVE Load instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector LDR 6 3 L -

Load predicate LDR 6 3 L, M -

Contiguous load, scalar + imm LD1B, LD1D,
LD1H, LD1W,
LD1SB, LD1SH,
LD1SW,

6 3 L -

Contiguous load, scalar + scalar LD1B, LD1D,
LD1H, LD1W,
LD1SB, LD1SH
LD1SW

6 3 L01 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Contiguous load broadcast,
scalar + imm

LD1RB, LD1RH,
LD1RD, LD1RW,
LD1RSB,
LD1RSH,
LD1RSW,
LD1RQB,
LD1RQD,
LD1RQH,

6 3 L -

Contiguous load broadcast,
scalar + scalar

LD1RQB,
LD1RQD,
LD1RQH,
LD1RQW

6 3 L -

Non temporal load, scalar +
imm

LDNT1B,
LDNT1D,
LDNT1H,
LDNT1W

6 3 L -

Non temporal load, scalar +
scalar

LDNT1B,
LDNT1D,
LDNT1H
LDNT1W

6 3 L, S -

Non temporal gather load,
vector + scalar 32-bit element
size

LDNT1B,
LDNT1H,
LDNT1W,
LDNT1SB,
LDNT1SH

9 1 L, V -

Non temporal gather load,
vector + scalar 64-bit element
size

LDNT1B,
LDNT1D,
LDNT1H,
LDNT1W,
LDNT1SB,
LDNT1SH,
LDNT1SW

10 1/2 L, V1 -

Contiguous first faulting load,
scalar + scalar

LDFF1B,
LDFF1D,
LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SD,
LDFF1SH
LDFF1SW

6 3 L, S -

Contiguous non faulting load,
scalar + imm

LDNF1B,
LDNF1D,
LDNF1H,
LDNF1W,
LDNF1SB,
LDNF1SH,
LDNF1SW

6 3 L -

Contiguous Load two structures
to two vectors, scalar + imm

LD2B, LD2D,
LD2H, LD2W

8 1 V, L -

Contiguous Load two structures
to two vectors, scalar + scalar

LD2B, LD2D,
LD2H, LD2W

9 1 V, L -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Contiguous Load three
structures to three vectors,
scalar + imm

LD3B, LD3D,
LD3H, LD3W

9 3/2 V, L -

Contiguous Load three
structures to three vectors,
scalar + scalar

LD3B, LD3D,
LD3H, LD3W

10 3/2 V, L, S -

Contiguous Load four
structures to four vectors,
scalar + imm

LD4B, LD4D,
LD4H LD4W

9 1/2 V, L -

Contiguous Load four
structures to four vectors,
scalar + scalar

LD4B, LD4D,
LD4H, LD4W

10 1/2 L, V, S -

Gather load, vector + imm, 32-
bit element size

LD1B, LD1H,
LD1W, LD1SB,
LD1SH, LD1SW,
LDFF1B,
LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SH,
LDFF1SW

9 1 L, V -

Gather load, vector + imm, 64-
bit element size

LD1B, LD1D,
LD1H, LD1W,
LD1SB, LD1SH,
LD1SW, LDFF1B,
LDFF1D
LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SD,
LDFF1SH,
LDFF1SW

9 1/2 L, V -

Gather load, 32-bit scaled
offset

LD1H, LD1SH,
LDFF1H,
LDFF1SH, LD1W,
LDFF1W,
LDFF1SW

10 1/2 L, V -

Gather load, 32-bit unpacked
unscaled offset

LD1B, LD1SB,
LDFF1B,
LDFF1SB, LD1D,
LDFF1D, LD1H,
LD1SH, LDFF1H,
LDFF1SH, LD1W,
LD1SW,
LDFF1W,
LDFF1SW

9 1 L, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 90

3.31 SVE Store instructions

Table 3-48 SVE Store instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store from predicate reg STR 1 2 L01 -

Store from vector reg STR 2 2 L01, V -

Contiguous store, scalar + imm ST1B, ST1H,
ST1D, ST1W

2 2 L01, V -

Contiguous store, scalar + scalar ST1H 2 2 L01, S, V -

Contiguous store, scalar + scalar ST1B, ST1D,
ST1W

2 2 L01, V -

Contiguous store two
structures from two vectors,
scalar + imm

ST2B, ST2H,
ST2D, ST2W

4 1 L01, V -

Contiguous store two
structures from two vectors,
scalar + scalar

ST2H 4 1 L01, S, V -

Contiguous store two
structures from two vectors,
scalar + scalar

ST2B, ST2D,
ST2W

4 1 L01, V -

Contiguous store three
structures from three vectors,
scalar + imm

ST3B, ST3D,
ST3H, ST3W

7 2/9 L01, V -

Contiguous store three
structures from three vectors,
scalar + scalar

ST3H 7 2/9 L01, S, V -

Contiguous store three
structures from three vectors,
scalar + scalar

ST3B, ST3D,
ST3W

7 2/9 L01, S, V -

Contiguous store four
structures from four vectors,
scalar + imm

ST2B, ST4D,
ST4H, ST4W

11 1/9 L01, V -

Contiguous store four
structures from four vectors,
scalar + scalar

ST4H 11 1/9 L01, S, V -

Contiguous store four
structures from four vectors,
scalar + scalar

ST4B, ST4D,
ST4W

11 1/9 L01, S, V -

Non temporal store, scalar +
imm

STNT1B,
STNT1D,
STNT1H,
STNT1W

2 2 L01, V -

Non temporal store, scalar +
scalar

STNT1H 2 2 L01, S, V -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 90

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Non temporal store, scalar +
scalar

STNT1B,
STNT1D,
STNT1W

2 2 L01, V -

Scatter non temporal store,
vector + scalar 32-bit element
size

STNT1B,
STNT1H,
STNT1W

4 1/2 L01, V -

Scatter non temporal store,
vector + scalar 64-bit element
size

STNT1B,
STNT1D,
STNT1H,
STNT1W

2 1 L01, V -

Scatter store vector + imm 32-
bit element size

ST1B, ST1H,
ST1W

4 1/2 L01, V -

Scatter store vector + imm 64-
bit element size

ST1B, ST1D,
ST1H, ST1W

2 1 L01, V -

Scatter store, 32-bit scaled
offset

ST1H, ST1W 4 1/2 L01, V -

Scatter store, 32-bit unpacked
unscaled offset

ST1B, ST1D,
ST1H, ST1W

2 1 L01, V -

Scatter store, 32-bit unpacked
scaled offset

ST1D, ST1H,
ST1W

2 1 L01, V -

Scatter store, 32-bit unscaled
offset

ST1B, ST1H,
ST1W

4 1/2 L01, V -

Scatter store, 64-bit scaled
offset

ST1D, ST1H,
ST1W

2 1 L01, V -

Scatter store, 64-bit unscaled
offset

ST1B, ST1D,
ST1H, ST1W

2 1 L01, V -

3.32 SVE Miscellaneous instructions

Table 3-49 SVE miscellaneous instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Read first fault register,
unpredicated

RDFFR 2 1 M0 -

Read first fault register,
predicated

RDFFR 3 1 M0, M 1

Read first fault register and set
flags

RDFFRS 4 1/2 M0, M 1

Set first fault register SETFFR 2 1 M0 -

Write to first fault register WRFFR 2 1 M0 -

Notes:
1. When destination is same as the governing predicate, the latency of the instruction increases by one cycle.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 90

3.33 SVE Cryptographic instructions

Table 3-50 SVE cryptographic instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V -

Crypto SHA3 ops BCAX, EOR3,
RAX1, XAR

2 1 V0 -

Crypto SM4 ops SM4E, SM4EKEY 4 1 V0 -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 90

4 Special considerations
4.1 Dispatch constraints
Dispatch of µOPs from the in-order portion to the out-of-order portion of the microarchitecture includes several
constraints. It is important to consider these constraints during code generation to maximize the effective dispatch
bandwidth and subsequent execution bandwidth of Neoverse N2.

The dispatch stage can process up to 5 MOPs per cycle and dispatch up to 10 µOPs per cycle, with the following
limitations on the number of µOPs of each type that may be simultaneously dispatched.

Up to 4 µOPs utilizing the S or B pipelines
Up to 4 µOPs utilizing the M pipelines
Up to 2 µOPs utilizing the M0 pipelines
Up to 2 µOPs utilizing the V0 pipeline
Up to 2 µOPs utilizing the V1 pipeline
Up to 6 µOPs utilizing the L pipelines

In the event there are more µOPs available to be dispatched in a given cycle than can be supported by the constraints
above, µOPs will be dispatched in oldest to youngest age-order to the extent allowed by the above.

4.2 Dispatch stall
In the event of a V-pipeline µOP containing more than 1 quad-word register source, a portion or
all of which was previously written as one or multiple single words, that µOP will stall in dispatch
for three cycles. This stall occurs only on the first such instance, and subsequent consumers of the
same register will not experience this stall.

4.3 Optimizing general-purpose register spills and fills
Register transfers between general-purpose registers (GPR) and ASIMD registers (VPR) are lower
latency than reads and writes to the cache hierarchy, thus it is recommended that GPR registers be
filled/spilled to the VPR rather to memory, when possible.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 90

4.4 Optimizing memory routines
To achieve maximum throughput for memory copy (or similar loops), one should do the following.

Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.

Align stores on 32B boundary wherever possible.

Use non-writeback forms of LDP and STP instructions interleaving them like shown in the example
below:

Loop_start:

 SUBS x2,x2,#96

 LDP q3,q4,[x1,#0]

 STP q3,q4,[x0,#0]

 LDP q3,q4,[x1,#32]

 STP q3,q4,[x0,#32]

 LDP q3,q4,[x1,#64]

 STP q3,q4,[x0,#64]

 ADD x1,x1,#96

 ADD x0,x0,#96

 BGT Loop_start

A recommended copy routine for AArch32 would look like the sequence above but would use
LDRD/STRD instructions. Avoid load-/store-multiple instruction encodings (such as LDM and
STM).

If the memory locations being copied are non-cacheable, the non-temporal version of LDPQ
(LDNPQ) should be used. STPQ should still be used for the stores.

Similarly, it Is recommended to use LDPQ to achieve maximum throughput for memcmp (memory
compare) loops that compare cacheable memory. LDNPQ should be used for non-cacheable
memory.

To achieve maximum throughput on memset, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of
looping.

Loop_start:

 STP q1,q3,[x0,#0]

 STP q1,q3,[x0,#0x20]

 STP q1,q3,[x0,#0x40]

 STP q1,q3,[x0,#0x60]

 ADD x0,x0,#0x80

 SUBS x2,x2,#0x80

 B.GT Loop_start

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 90

To achieve maximum performance on memset to zero, it is recommended that one use DC ZVA
instead of STP. An optimal routine might look something like the following.
Loop_start:

 SUBS x2,x2,#0x80

 DC ZVA,x0

 ADD x0,x0,#0x40

 DC ZVA,x0

 ADD x0,x0,#0x40

 B.GT Loop_start

4.5 Load/Store alignment
The Armv8-A architecture allows many types of load and store accesses to be arbitrarily aligned.
The Neoverse N2 handles most unaligned accesses without performance penalties. However,
there are cases which could reduce bandwidth or incur additional latency, as described below.

• Load operations that cross a cache-line (64-byte) boundary.

• Quad-word load operations that are not 4B aligned.

• Store operations that cross a 32B boundary.

4.6 Store to Load Forwarding
The Neoverse N2 core allows data to be forwarded from store instructions to a load instruction
with the restrictions mentioned below:

Load start address should align with the start or middle address of the older store. This does not
apply to LDPs that load 2 32b registers or LDRDs

Loads of size greater than 8 bytes can get the data forwarded from a maximum of 2 stores. If there
are 2 stores, then each store should forward to either first or second half of the load

Loads of size less than or equal to 8 bytes can get their data forwarded from only 1 store

4.7 AES encryption/decryption
Neoverse N2 can issue two AESE/AESMC/AESD/AESIMC instruction every cycle (fully pipelined)
with an execution latency of two cycles. This means encryption or decryption for at least four data
chunks should be interleaved for maximum performance:

AESE data0, key_reg

AESMC data0, data0

AESE data1, key_reg

AESMC data1, data1

AESE data2, key_reg

AESMC data2, data2

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 90

AESE data3, key_reg

AESMC data3, data3

AESE data0, key_reg

AESMC data0, data0

...

Pairs of dependent AESE/AESMC and AESD/AESIMC instructions are higher performance when
they are adjacent in the program code and both instructions use the same destination register.

4.8 Region based fast forwarding
The forwarding logic in the V pipelines is optimized to provide optimal latency for instructions
which are expected to commonly forward to one another. The effective latency of FP and ASIMD
instructions as described in section 3 is increased by one cycle if the producer and consumer
instructions are not part of the same forwarding region. These optimized forwarding regions are
defined in the following table.

Table 4-1 Optimized forwarding regions

Region Instruction Types Notes

1 ASIMD/SVE integer ALU, ASIMD/SVE integer shift, ASIMD/scalar insert and
move, ASIMD/SVE integer abs/cmp/max/min and the ASIMD miscellaneous
instructions in table 3-18.

1

2 FP/ASIMD/SVE floating-point multiply, FP/ASIMD/SVE floating point multiply-
accumulate, FP/ASIMD/SVE compare, FP/ASIMD/SVE add/sub and the ASIMD
miscellaneous instructions in table 3-18.

1,2,3

3 ASIMD/SVE Crypto and SHA1/SHA256 -

4 ASIMD/SVE AES, ASIMD/SVE polynomial multiply and all the instruction types in
region 1.

1

5 ASIMD/SVE BFDOT and BFMMLA instructions -

Notes:
1. Reciprocal step and estimate instructions are excluded from this region.
2. ASIMD/SVE extract narrow, saturating instructions are excluded from this region.
3. ASIMD miscellaneous instructions can only be consumers of this region.

The following instructions are not a part of any region:

• FP/ASIMD/SVE floating-point div/sqrt and SVE integer divides

• FP/ASIMD/SVE convert and rounding instructions that do not write to general purpose
registers

• ASIMD/SVE integer mul/mac

• ASIMD/SVE integer reduction

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 90

In addition to the regions mentioned in the table above, all instructions in regions 1 and 2 can fast
forward to FP/ASIMD/SVE stores, FP/ASIMD vector to integer register transfers and ASIMD
converts that write to general purpose registers.

More special notes about the forwarding region in table 4-1:

• Element sources (the non-vector operand in "by element" multiplies) used by ASIMD/SVE
floating-point multiply and multiply-accumulate operations cannot be consumers.

• Complex shift by immediate/register and shift accumulate instructions cannot be producers
(see sections 3.16 and 3.25) in region 1.

• Extract narrow, saturating instructions cannot be producers (see sections 3.19 and 3.25) in
region 1.

• Absolute difference accumulate and pairwise add and accumulate instructions cannot be
producers (see sections 3.16 and 3.25) in region 1.

• For floating-point producer-consumer pairs, the precision of the instructions should match
(single, double or half) in region 2.

• Pair-wise floating-point instructions cannot be producers or consumers in region 2.

It is not advisable to interleave instructions belonging to different regions. Also, certain instructions
can only be producers or consumers in a particular region but not both (see footnote 3 for table 4-
1). For example, the code below interleaves producers and consumers from regions 1 and 2. This
will result in and additional latency of 1 cycle as seen by FMUL.

FSUB v27.2s, v28.2s, v20.2s – Region 2
FADD v20.2s, v28.2s, v20.2s – Region 2
MOV v27.s[1], v20.s[1] - Region 2 producer but not a region 2 consumer
FMUL v26.2s, v27.2s, v6.2s – Region 2

4.9 Branch instruction alignment
Branch instruction and branch target instruction alignment and density can affect performance.

For best case performance, avoid placing more than four branch instructions within an
aligned 32-byte instruction memory region.

4.10 FPCR self-synchronization
Programmers and compiler writers should note that writes to the FPCR register are self-
synchronizing, i.e. its effect on subsequent instructions can be relied upon without an intervening
context synchronizing operation.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 90

4.11 Special register access
The Neoverse N2 performs register renaming for general purpose registers to enable speculative
and out-of-order instruction execution. But most special-purpose registers are not renamed.
Instructions that read or write non-renamed registers are subjected to one or more of the
following additional execution constraints.

Non-Speculative Execution – Instructions may only execute non-speculatively.

In-Order Execution – Instructions must execute in-order with respect to other similar instructions
or in some cases all instructions.

Flush Side-Effects – Instructions trigger a flush side-effect after executing for synchronization.

The table below summarizes various special-purpose register read accesses and the associated execution constraints or
side-effects.

Table 4-2 Special-purpose register read accesses

Register Read Non-Speculative In-
Order

Flush Side-Effect Notes

APSR Yes Yes No 3

CurrentEL No Yes No -

DAIF No Yes No -

DLR_EL0 No Yes No -

DSPSR_EL0 No Yes No -

ELR_* No Yes No -

FPCR No Yes No -

FPSCR Yes Yes No 2

FPSR Yes Yes No 2

NZCV No No No 1

SP_* No No No 1

SPSel No Yes No -

SPSR_* No Yes No -

FFR No Yes No -

Notes:
1. The NZCV and SP registers are fully renamed.
2. FPSR/FPSCR reads must wait for all prior instructions that may update the status flags to execute and retire.
3. APSR reads must wait for all prior instructions that may set the Q bit to execute and retire.
4. The table below summarizes various special-purpose register write accesses and the associated execution constraints
or side-effects.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 90

Table 4-3 Special-purpose register write accesses

Register Write Non-Speculative In-
Order

Flush Side-Effect Notes

APSR Yes Yes No 4

DAIF Yes Yes No -

DLR_EL0 Yes Yes No -

DSPSR_EL0 Yes Yes No -

ELR_* Yes Yes No -

FPCR Yes Yes Maybe 2

FPSCR Yes Yes Maybe 2, 3

FPSR Yes Yes No 3

NZCV No No No 1

SP_* No No No 1

SPSel Yes Yes Yes -

SPSR_* Yes Yes No -

FFR Yes Yes No -

Notes:
1. The NZCV and SP registers are fully renamed.
2. If the FPCR/FPSCR write is predicted to change the control field values, it will introduce a barrier which prevents
subsequent instructions from executing. If the FPCR/FPSCR write is predicted to not change the control field values, it
will execute without a barrier but trigger a flush if the values change.
3. FPSR/FPSCR writes must stall at dispatch if another FPSR/FPSCR write is still pending.
4. APSR writes that set the Q bit will introduce a barrier which prevents subsequent instructions from executing until the
write completes.

4.12 Register forwarding hazards
The Armv8-A architecture allows FP/ASIMD instructions to read and write 32-bit S-registers. In
AArch32, each S-register corresponds to one half (upper or lower) of an overlaid 64-bit D-register.
A Q register in turn consists of two overlaid D registers. Register forwarding hazards may occur
when one µOP reads a Q-register operand that has recently been written with one or more S-
register results. Consider the following scenario.

 VADD S0, S1, S2

 VADD Q6, Q5, Q0

The first instruction writes S0, which corresponds to the lowest part of Q0. The second instruction
then requires Q0 as an input operand. In this scenario, there is a RAW dependency between the
first and the second instructions. In most cases, Neoverse N2 performs slightly worse in such
situations.

Neoverse N2 is able to avoid this register-hazard condition for certain cases. The following rules
describe the conditions under which a register-hazard can occur.

• The producer writes an S-register (not a D[x] scalar)

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 90

• The consumer reads an overlapping Q-register (not as a D[x] scalar)

• The consumer is a FP/ASIMD µOP (not a store or MOV µOP)

To avoid unnecessary hazards, it is recommended that the programmer use D[x] scalar writes when
populating registers prior to ASIMD operations. For example, either of the following instruction
forms would safely prevent a subsequent hazard.

VLD1.32 D0[x], [address]

VADD Q1, Q0, Q2

4.13 IT blocks
The Armv8-A architecture performance deprecates some uses of the IT instruction in such a way
that software may be written using multiple naïve single instruction IT blocks. It is preferred that
software instead generate multi instruction IT blocks rather than single instruction blocks.

4.14 Instruction fusion
Neoverse N2 can accelerate certain instruction pairs in an operation called fusion. Specific
Aarch64 instruction pairs that can be fused are as follows:

CMP/CMN (immediate) + B.cond

CMP/CMN (register) + B.cond

CMP (immediate) + CSEL

CMP (register) + CSEL

CMP (immediate) + CSET

CMP (register) + CSET

TST (immediate) + B.cond

TST (register) + B.cond

BICS (register) + B.cond

NOP + Any instruction

The following instruction pairs are fused in both Aarch32 and Aarch64 modes:

AESE + AESMC (see Section 4.6 on AES Encryption/Decryption)

AESD + AESIMC (see Section 4.6 on AES Encryption/Decryption)

CMP/CMN (immediate) + B.cond

CMP/CMN (register) + B.cond

TST (immediate) + B.cond

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 90

TST (register) + B.cond

BICS (register) + B.cond

These instruction pairs must be adjacent to each other in program code. For CMP, CMN, TST and
BICS, fusion is not allowed for shifted and/or extended register forms. For BICS, the destination
register should be XZR or WZR if fusion is to take place.

4.15 Zero Latency MOVs
A subset of register-to-register move operations and move immediate operations are executed
with zero latency. These instructions do not utilize the scheduling and execution resources of the
machine. These are as follows:

MOV Xd, #0

MOV Xd, XZR

MOV Wd, #0

MOV Wd, WZR

MOV Hd, WZR

MOV Hd, XZR

MOV Sd, WZR

MOV Dd, XZR

MOVI Dd, #0

MOVI Vd.2D, #0

MOV Rd, #0 (AArch32)

MOV Wd, Wn

MOV Xd, Xn

MOV Rd, Rn (AArch32)

The last 3 instructions may not be executed with zero latency under certain conditions.

4.16 Cache maintenance operation
While using set way invalidation operations on L1 cache, it is recommended that software be
written to traverse the sets in the inner loop and ways in the out loop.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 90

4.17 Memory Tagging - Tagging Performance
To achieve maximum throughput for tag-only, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of
looping. Use STGM (or DCGVA) instruction as shown in the example below:

Loop_start:

SUBS x2,x2,#0x80

STGM x1,[x0]

ADD x0,x0,#0x40

STGM x1,[x0]

ADD x0,x0,#0x40

B.GT Loop_start

To achieve maximum throughput for tag and zeroing out data, it is recommended that one do the
following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of
looping. Use STZGM (or DCZGVA) instruction as shown in the example below:

Loop_start:

SUBS x2,x2,#0x80

STZGM x1,[x0]

ADD x0,x0,#0x40

STZGM x1,[x0]

ADD x0,x0,#0x40

B.GT Loop_start

To achieve maximum throughput for tag-loading, it is recommended that one do the following.

Unroll the loop to include multiple load operations per iteration, minimizing the overheads of
looping. Use LDGM instruction as shown in the example below:

Loop_start:

SUBS x2,x2,#0x80

LDGM x1,[x0]

ADD x0,x0,#0x40

LDGM x1,[x0]

ADD x0,x0,#0x40

B.GT Loop_start

Also, it is recommended to use STZGM (or DCZGVA) to set tag if data is not a concern.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 90

4.18 Memory Tagging - Synchronous Mode
In synchronous tag checking mode, stores cannot be performed speculatively. Each store must
complete a tag check before the next store can be executed non-speculatively. Thus, performance
of stores in synchronous tag checking mode will be diminished.

It is recommended to use asynchronous mode for better performance.

4.19 Complex ASIMD and SVE instructions
The bandwidth of the following ASIMD and SVE instructions is limited by decode constraints and it
is advisable to avoid them when high performing code is desired.

ASIMD

LD4R, post-indexed addressing, element size = 64b.

LD4, single 4-element structure, post indexed addressing mode, element size = 64b.

LD4, multiple 4-element structures, quad form.

LD4, multiple 4-element structures, double word form.

ST4, multiple 4-element structures, quad form, element size less than 64b.

ST4, multiple 4-element structures, quad form, element size = 64b, post indexed addressing mode.

SVE

LD1B gather (scalar + vector addressing) where vector index register is the same as the destination
register and element size = 32. Addressing mode is 32b unscaled offset.

LD1H gather (scalar + vector addressing) where vector index register is the same as the destination
register and element size = 32. Addressing mode is 32b scaled or unscaled offset.

LD1W gather (scalar + vector addressing) where vector index register is the same as the
destination register and element size = 32. Addressing mode is 32b scaled or unscaled offset.

LD3[B/H/W/D] contiguous (scalar + scalar addressing).

LD4[B/H/D/W] contiguous (scalar + immediate addressing).

LD4[B/H/D/W] contiguous (scalar + scalar addressing).

LDFF1B gather (scalar + vector addressing) where vector index register is the same as the
destination register and element size = 32. Addressing mode is 32b unscaled offset.

LDFF1H gather (scalar + vector addressing) where vector index register is the same as the
destination register and element size = 32. Addressing mode is 32b scaled or unscaled offset.

LDFF1W gather (scalar + vector addressing) where vector index register is the same as the
destination register and element size = 32. Addressing mode is 32b scaled or unscaled offset.

ST3[B/H/W/D] contiguous (scalar + scalar addressing).

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 90

ST4[B/H/D/W] contiguous (scalar + immediate addressing).

ST4[B/H/D/W] contiguous (scalar + scalar addressing).

4.20 MOVPRFX fusion
Under certain conditions, a mechanism called MOVPRFX fusion can be used to accelerate the
execution of an instruction pair that consists of an SVE MOVPRFX instruction immediately
followed in program order by an SVE integer, floating point or BF16 instruction. The list of SVE
instructions and the conditions under which tis fusion can be applied is mentioned in the tables
below.

Instruction Group SVE Instruction Notes

Integer Instructions

Arithmetic, absolute difference
accumulate

SABA, SABALB, SABALT, UABA, UABALB,
UABALT

-

Arithmetic, basic ABS, ADD, CNOT, NEG, SHADD, SHSUB,
SHSUBR, SUB, SUBR, UHADD, UHSUB,
UHSUBR

For ADD and SUB, only the
immediate and vector, predicated
forms are fusible.

Arithmetic, complex SQABS, SQADD, SQNEG, SQSUB, SQSUBR,
SRHADD, SUQADD, UQADD, UQSUB,
UQSUBR, URHADD, USQADD

For SQABS, SQSUB, UQADD and
UQSUB, only the immediate and
vector, predicated forms are
fusible.

Arithmetic, large integer ADCLB, ADCLT, SBCLB, SBCLT -

Arithmetic, pairwise add ADDP -

Arithmetic, pairwise add and
accum long

SADALP, UADALP -

Arithmetic, shift ASR, ASRR, LSL, LSLR, LSR, LSRR For ASR, LSL and LSR, only the
immediate, predicated and vector
forms are fusible.

Arithmetic, shift and accumulate SRSRA, SSRA, URSRA, USRA -

Arithmetic, shift complex SQRSHL, SQRSHLR, SQSHL, SQSHLR,
SQSHLU, UQRSHL, UQRSHLR, UQSHL,
UQSHLR

-

Arithmetic, shift right for divide ASRD -

Arithmetic, shift rounding SRSHL, SRSHLR, SRSHR, URSHL, URSHLR,
URSHR

-

Bitwise select BSL, BSL1N, BSL2N, NBSL -

Count/reverse bits CLS, CLZ, CNT, RBIT -

Complex add CADD, SQCADD -

Complex dot product CDOT -

Complex multiply-add CMLA -

Conditional extract operations CLASTA, CLASTB, SPLICE For CLASTA and CLASTB, only
the vector forms are fusible.

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 90

Instruction Group SVE Instruction Notes

Convert to floating point SCVTF, UCVTF -

Copy CPY All forms except the immediate,
zeroing form are fusible.

Divides SDIV, SDIVR, UDIV, UDIVR -

Dot product SDOT, UDOT, SUDOT, USDOT -

Extend, sign or zero SXTB, SXTH, SXTW, UXTB, UXTH, UXTW -

Extract/insert operation EXT, INSR -

Logical AND, BIC, EON, EOR, EORBT, EORTB,
NOT, ORN, ORR

For AND, BIC, EOR and ORR,
only the immediate and vector,
predicated forms are fusible

Max/min, basic and pairwise SMAX, SMAXP, SMIN, SMINP, UMAX,
UMAXP, UMIN, UMINP

-

Matrix multiply-accumulate SMMLA, UMMLA, USMMLA -

Multiply MUL, SMULH, UMULH For MUL, only the immediate and
vector, predicated forms are
fusible. For the others, only the
predicated form is fusible.

Multiply accumulate MLA, MLS For the vector forms, only
unpredicated and zeroing
predicate forms of MOVPRFX are
fusible.

Multiply accumulate long SMLALB, SMLALT, SMLSLB, SMLSLT,
UMLALB, UMLALT, UMLSLB, UMLSLT

-

Multiply accumulate saturating
doubling long regular

SQDMLALB, SQDMLALT, SQDMLALBT,
SQDMLSLB, SQDMLSLT, SQDMLSLBT

-

Multiply saturating rounding
doubling regular/complex
accumulate

SQRDMLAH, SQRDMLSH, SQRDCMLAH -

Predicate counting, vector form DECH, DECW, DECD, INCH, INCW, INCD,
SQDECH, SQDECW, SQDECD, SQINCH,
SQINCW, SQINCD, UQDECH, UQDECW,
UQDECD, UQINCH, UQINCW, UQINCD

-

Reciprocal estimate URECPE, URSQRTE -

Reverse, vector REV, REVB, REVH, REVW -

Select, vector form SEL -

Floating point Instructions

Floating point absolute
value/difference

FABD, FABS -

Floating point arithmetic FADD, FADDP, FNEG, FSUB, FSUBR For FADD and FSUB, only the
immediate and vector, predicated
forms are fusible.

Floating point complex add FCADD -

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-18256
Issue 4.0

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 90

Instruction Group SVE Instruction Notes

Floating point complex multiply
add

FCMLA For the vector form, only
unpredicated and zeroing
predicate forms of MOVPRFX are
fusible.

Floating point convert FCVT, FCVTX -

Floating point base2 log FLOGB -

Floating point convert to
integer

FCVTZS, FCVTZU -

Floating point copy FCPY, FMOV Only the predicated forms of
FCPY are fusible

Floating point divide FDIV, FDIVR -

Floating point min/max pairwise FMAXP, FMAXNMP, FMINP, FMINNMP -

Floating point min/max FMAX, FMIN, FMAXNM, FMINNM -

Floating point multiply FSCALE, FMUL, FMULX For FMUL, only the immediate
and vector, predicated forms are
fusible

Floating point multiply
accumulate

FMLA, FMLS, FMAD, FMSB, FNMAD,
FNMLA, FNMLS, FNMSB

For FMLA and FMLS, only
unpredicated and zeroing
predicate forms of MOVPRFX are
fusible.

Floating point multiply add/sub
accumulate long

FMLALB, FMLALT, FMLSLB, FMLSLT -

Floating point reciprocal
estimate

FRECPX -

Floating point round to integral FRINTA, FRINTI, FRINTM, FRINTN, FRINTP,
FRINTX, FRINTZ

-

Floating point square root FSQRT -

Floating point trigonometric
multiply add

FTMAD -

BF16 Instructions

Dot product BFDOT -

Matrix multiply accumulate BFMMLA -

Multiply accumulate long BFMLALB, BFMLALT -

Cryptographic Instructions

Crypto SHA3 ops BCAX, EOR3, XAR -

