

Arm Non-Confidential

Arm® Neoverse™ N1

Software Optimization Guide

Non-Confidential Issue 4.0
Copyright © 2018-2023 Arm Limited (or its affiliates).
All rights reserved.

PJDOC-466751330-9707

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 66

Arm Non-Confidential

Arm® Neoverse™ N1

Software Optimization Guide

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.

Confidential Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of the agreement
between you and Arm or the terms of the agreement between you and the party authorised by Arm to
disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information: (i) for the purposes of determining whether
implementations infringe any third party patents; (ii) for developing technology or products which
avoid any of Arm's intellectual property; or (iii) as a reference for modifying existing patents or patent
applications or creating any continuation, continuation in part, or extension of existing patents or
patent applications; or (iv) for generating data for publication or disclosure to third parties, which
compares the performance or functionality of the Arm technology described in this document with any
other products created by you or a third party, without obtaining Arm's prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to
create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed
written agreement prevails over and supersedes the conflicting provisions of these terms. This

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 66

Arm Non-Confidential

document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please follow
Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Non-Confidential. This document may only be used and distributed in accordance
with the terms of the agreement entered into by Arm and the party that Arm delivered this document
to.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com/

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 66

Contents
 Introduction 6

1.1 Product revision status 6

1.2 Intended audience 6

1.3 Conventions 6

1.3.1 Glossary 6

1.3.2 Typographical conventions 7

1.4 Additional reading 8

1.5 Feedback 8

1.5.1 Feedback on this product 8

1.5.2 Feedback on content 8

 About this document 9

2.1 Scope 9

2.2 Pipeline overview 9

 Instruction characteristics 11

3.1 Instruction tables 11

3.2 Legend for reading the utilized pipelines 11

3.3 Branch instructions 11

3.4 Arithmetic and logical instructions 12

3.5 Move and shift instructions 15

3.6 Divide and multiply instructions 15

3.7 Saturating and parallel arithmetic instructions 18

3.8 Miscellaneous data-processing instructions 19

3.9 Load instructions 20

3.10 Store instructions 25

3.11 FP data processing instructions 28

3.12 FP miscellaneous instructions 30

3.13 FP load instructions 32

3.14 FP store instructions 34

3.15 ASIMD integer instructions 36

3.16 ASIMD floating-point instructions 42

3.17 ASIMD miscellaneous instructions 47

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 66

Arm Non-Confidential

3.18 ASIMD load instructions 50

3.19 ASIMD store instructions 54

3.20 Cryptography extensions 57

3.21 CRC 58

 Special considerations 59

4.1 Dispatch constraints 59

4.2 Dispatch stall 59

4.3 Optimizing general-purpose register spills and fills 59

4.4 Optimizing memory copy 59

4.5 Load/Store alignment 60

4.6 Store to Load Forwarding 61

4.7 AES encryption/decryption 61

4.8 Region based fast forwarding 61

4.9 Branch instruction alignment 63

4.10 FPCR self-synchronization 63

4.11 Special register access 63

4.12 Register forwarding hazards 65

4.13 IT blocks 66

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Introduction

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 66

 Introduction
1.1 Product revision status
The rmpn identifier indicates the revision status of the product described in this book, for
example, r1p2, where:

rm Identifies the major revision of the product, for example, r1.

pn Identifies the minor revision or modification status of the product, for
example, p2.

1.2 Intended audience
This document is for system designers, system integrators, and programmers who are
designing or programming a System-on-Chip (SoC) that uses an Arm core.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

1.3.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the
Arm meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information.

1.3.1.1 Terms and Abbreviations

This document uses the following terms and abbreviations.

Term Meaning

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

VFP Vector Floating Point

MOP Macro-OPeration

µOP Micro-OPeration

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Introduction

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 66

Arm Non-Confidential

1.3.2 Typographical conventions

Convention Use

italic Introduces special terminology, denotes cross-
references, and citations.

bold Highlights interface elements, such as menu names.
Denotes signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Monospace bold Denotes language keywords when used outside example
code.

monospace italic Denotes arguments to monospace text where the
argument is to be replaced by a specific value.

monospace underline Denotes a permitted abbreviation for a command or
option. You can enter the underlined text instead of the
full command or option name.

<and> Encloses replaceable terms for assembler syntax where
they appear in code or code fragments.
For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific
technical meanings, that are defined in the Arm®
Glossary. For example, IMPLEMENTATION DEFINED,
IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Caution

Warning

Note

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Introduction

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 66

Arm Non-Confidential

1.4 Additional reading
This document contains information that is specific to this product. See the following
documents for other relevant information:

Table 1: Arm publications

Document name Document ID Licensee only Y/N

Arm® Architecture Reference Manual,
Armv8, for Armv8-A architecture profile

DDI 0487 N

Arm® Neoverse™ N1 Technical Reference
Manual

100616 N

1.5 Feedback

1.5.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

 The product name.

 The product revision or version.

 An explanation with as much information as you can provide. Include symptoms and
diagnostic procedures if appropriate.

1.5.2 Feedback on content

If you have comments on content, send an e-mail to errata@arm.com and give:

 The title: Arm® Neoverse™ N1 Software Optimization Guide.

 The number: PJDOC-466751330-9707.

 If applicable, the page number(s) to which your comments refer.

 A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note:

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

About this document

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 66

Arm Non-Confidential

 About this document
This document contains a guide to the Neoverse N1 micro-architecture with a view to aiding
software optimization.

2.1 Scope
This document provides high-level information about the Neoverse N1 pipeline, instruction
performance characteristics, and special performance considerations. This information is
intended to aid people who are optimizing software and compilers for Neoverse N1. For a
more complete description of the Neoverse N1 processor, please refer to the Arm®
Neoverse™ N1 Technical Reference Manual.

2.2 Pipeline overview
The following diagram describes the high-level Neoverse N1 instruction processing pipeline.
Instructions are first fetched, then decoded into internal macro-operations (Mops). From
there, the Mops proceed through register renaming and dispatch stages. A Mop can be split
further into two Uops at dispatch stage. Once dispatched, uops wait for their operands and
issue out-of-order to one of eight execution pipelines. Each execution pipeline can accept and
complete one uop per cycle.

Figure 1: Neoverse N1 pipeline

The execution pipelines support different types of operations, as shown in the following table.

Fetch
Decode,
Rename,
Dispatch

Load/ Store 1

Integer Single-Cycle 0

Integer Single-Cycle 1

Integer Single/Multi-Cycle

FP/ASIMD 0

FP/ASIMD 1

Load/ Store 0

Branch

Is
su

e

IN ORDER OUT OF ORDER

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

About this document

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 66

Arm Non-Confidential

Table 2: Neoverse N1 operations

Instruction groups Instructions

Branch Branch µOPs

Integer Single-Cycle
0/1

Integer ALU µOPs

Integer Single/Multi-
cycle 0/1

Integer shift-ALU, multiply, divide, CRC and sum-of-absolute-
differences µOPs

Load/Store Address
Generation 0/1

Load, Store address generation and special memory µOPs

FP/ASIMD-0 ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP
misc, FP add, FP multiply, FP divide, FP sqrt, crypto µOPs, store
data µOPs

FP/ASIMD-1 ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, ASIMD
shift µOPs, store data µOPs, crypto µOPs.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 66

Arm Non-Confidential

 Instruction characteristics
3.1 Instruction tables
This chapter describes high-level performance characteristics for most Arm v8.2-A A32, T32
and A64 instructions. A series of tables summarize the effective execution latency and
throughput (instruction bandwidth per cycle), pipelines utilized, and special behaviours
associated with each group of instructions. Utilized pipelines correspond to the execution
pipelines described in chapter 2.

In the tables below, Exec Latency is defined as the minimum latency seen by an operation
dependent on an instruction in the described group.

In the tables below, Execution Throughput is defined as the maximum throughput (in
instructions per cycle) of the specified instruction group that can be achieved in the entirety of
the Neoverse N1 microarchitecture

3.2 Legend for reading the utilized pipelines
Table 3: Neoverse N1 pipeline names and symbols

Pipeline name Symbol used in tables

Branch B

Integer single Cycle 0/1 S

Integer single Cycle 0/1 and single/multicycle I

Integer single/multicycle M

Integer single Cycle 1 and Integer multicycle D

Load/Store 0/1 L

FP/ASIMD 0/1 V

FP/ASIMD 0 V0

FP/ASIMD 1 V1

3.3 Branch instructions
Table 4: AArch64 Branch instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Branch, immed B 1 1 B -

Branch, register BR, RET 1 1 B -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Branch and link, immed BL 1 1 I, B -

Branch and link, register
(reg != lr)

BLR 2 1 I, B -

Branch and link, register
(reg == lr)

BLR 2 1 I, B -

Compare and branch CBZ, CBNZ,
TBZ, TBNZ

1 1 B -

Table 5: AArch32 Branch instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Branch, immed B 1 1 B -

Branch, register BX 1 1 B -

Branch and link, immed BL, BLX 1 1 B -

Branch and link, register
(reg != lr)

BLX 1 1 I, B -

Branch and link, register
(reg == lr)

BLX 2 1 I, B -

Compare and branch CBZ, CBNZ 1 1 B -

3.4 Arithmetic and logical instructions
Table 6: AArch64 Arithmetic and logical instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

 Arithmetic, basic ADD{S},
ADC{S},
SUB{S}, SBC{S}

 1 3 I

Arithmetic, extend and
shift

ADD{S},
SUB{S}

2 1 M

Arithmetic, LSL shift,
shift <= 4

ADD{S},
SUB{S}

1 3 I

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Arithmetic,
LSR/ASR/ROR shift or
LSL shift > 4

ADD{S},
SUB{S}

2 1 M

Conditional compare CCMN,
CCMP

1 3 I

Conditional select CSEL,
CSINC,
CSINV,
CSNEG

1 3 I

Logical, basic AND{S},
BIC{S}, EON,
EOR, ORN,
ORR

1 3 I

Logical, shift, no flagset AND, BIC,
EON, EOR,
ORN, ORR

1 3 I

Logical, shift, flagset ANDS, BICS 2 1 M

Table 7: AArch32 Arithmetic and logical instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ALU, basic ADD{S},
ADC{S},
ADR,
AND{S},
BIC{S},
CMN, CMP,
EOR{S},
ORN{S},
ORR{S},
RSB{S},
RSC{S},
SUB{S},
SBC{S}, TEQ,
TST

1 3 I

ALU, shift by register,
unconditional

(same as
ALU, basic)

2 1 M

ALU, shift by register,
conditional

(same as
ALU, basic)

2 1 I, M

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Arithmetic, LSL shift by
immed, shift <= 4,
unconditional

ADD{S},
ADC{S},
RSB{S},
RSC{S},
SUB{S},
SBC{S}

1 3 I

Arithmetic, LSL shift by
immed, shift <= 4,
conditional

ADD{S},
ADC{S},
RSB{S},
RSC{S},
SUB{S},
SBC{S}

1 1 M

Arithmetic,
LSR/ASR/ROR shift by
immed or LSL shift by
immed > 4

ADD{S},
ADC{S},
RSB{S},
RSC{S},
SUB{S},
SBC{S}

2 1 M

Logical, shift by immed,
noflagset

AND, BIC,
EOR, ORN,
ORR

1 3 I

Logical, shift by immed,
flagset

AND{S},
BIC{S},
EOR{S},
ORN{S},
ORR{S}

2 1 M

Test/Compare, shift by
immed

CMN, CMP,
TEQ, TST

2 1 M

Branch forms +1 1 +B 1

Note:

Branch forms are possible when the instruction destination register is the PC. For those cases,
an additional branch µOP is required. This adds 1 cycle to the latency.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 66

Arm Non-Confidential

3.5 Move and shift instructions
Table 8: AArch32 Move and shift instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Move, basic MOV{S},
MOVW,
MVN{S}

1 3 I

Move, shift by immed, no
setflags

ASR, LSL,
LSR, ROR,
RRX, MVN

1 3 I

Move, shift by immed,
setflags

ASRS, LSLS,
LSRS, RORS,
RRXS, MVNS

2 1 M

Move, shift by register,
no setflags,
unconditional

ASR, LSL,
LSR, ROR,
RRX, MVN

1 3 I

Move, shift by register,
no setflags, conditional

ASR, LSL,
LSR, ROR,
RRX, MVN

2 3/2 I

Move, shift by register,
setflags

ASRS, LSLS,
LSRS, RORS,
RRXS, MVNS

2 1 M

Move, top MOVT 1 3 I

Move, branch forms +1 1 +B

Note:

Branch forms are possible when the instruction destination register is the PC. For those cases,
an additional branch µOP is required. This adds 1 cycle to the latency.

3.6 Divide and multiply instructions
Table 9: AArch64 Divide and multiply instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Divide, W-form SDIV, UDIV 5 to 12 1/12 to 1/5 M 1

Divide, X-form SDIV, UDIV 5 to 20 1/20 to 1/5 M 1

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Multiply accumulate, W-
form

MADD,
MSUB

2(1) 1 M 2

Multiply accumulate, X-
form

MADD,
MSUB

4(3) 1/3 M 2, 4

Multiply accumulate
long

SMADDL,
SMSUBL,
UMADDL,
UMSUBL

2(1) 1 M 2

Multiply high SMULH,
UMULH

5(3) 1/4 M 5

Table 10: AArch32 Divide and multiply instructions

Instruction
Group

AArch32
Instructions

Exec
Latenc
y

Execution
Throughpu
t

Utilized
Pipeline
s

Note
s

Divide SDIV, UDIV 5 to 12 1/12 to 1/5 M 1

Multiply MUL, SMULBB, SMULBT,
SMULTB, SMULTT,
SMULWB, SMULWT,
SMMUL{R}, SMUAD{X},
SMUSD{X}

2 1 M

Multiply
accumulate,
conditional

MLA, MLS, SMLABB,
SMLABT, SMLATB,
SMLATT, SMLAWB,
SMLAWT, SMLAD{X},
SMLSD{X}, SMMLA{R},
SMMLS{R}

3 1 M, I

Multiply
accumulate,
unconditiona
l

MLA, MLS, SMLABB,
SMLABT, SMLATB,
SMLATT, SMLAWB,
SMLAWT, SMLAD{X},
SMLSD{X}, SMMLA{R},
SMMLS{R}

2(1) 1 M 2

Multiply
accumulate
accumulate
long,
conditional

UMAAL 4 1 I, M

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 66

Arm Non-Confidential

Instruction
Group

AArch32
Instructions

Exec
Latenc
y

Execution
Throughpu
t

Utilized
Pipeline
s

Note
s

Multiply
accumulate
accumulate
long,
unconditiona
l

UMAAL 3 1 I, M

Multiply
accumulate
long

SMLAL, SMLALBB,
SMLALBT, SMLALTB,
SMLALTT, SMLALD{X},
SMLSLD{X}, UMLAL

3 1 M, I

Multiply
long, all
setflag,
conditional
and no
setflag

SMULL, UMULL 3 1 M, I

Multiply
long,
unconditiona
l and no
setflag

SMULL, UMULL 2 1 M

(Multiply,
setflags
forms)

 +1 (Same as
above)

+I 3

Note:

1. Integer divides are performed using an iterative algorithm and block any subsequent
divide operations until complete. Early termination is possible, depending upon the
data values.

2. Multiply-accumulate pipelines support late-forwarding of accumulate operands from
similar µOPs, allowing a typical sequence of multiply-accumulate µOPs to issue one
every N cycles (accumulate latency N shown in parentheses).

3. Multiplies that set the condition flags require an additional integer µOP.

4. X-form multiply accumulates stall the multiplier pipeline for 2 extra cycles.

5. Multiply high operations stall the multiplier pipeline for N extra cycles before any other
type M uop can be issued to that pipeline, with N shown in parentheses.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 66

Arm Non-Confidential

3.7 Saturating and parallel arithmetic instructions
Table 11: AArch32 Saturating and parallel arithmetic instructions

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Parallel arith,
unconditional

SADD16, SADD8,
SSUB16, SSUB8,
UADD16, UADD8,
USUB16, USUB8

2 1 M -

Parallel arith,
conditional

SADD16, SADD8,
SSUB16, SSUB8,
UADD16, UADD8,
USUB16, USUB8

2(4) 3/5 M, I 1

Parallel arith
with exchange,
unconditional

SASX, SSAX, UASX,
USAX

3 1 I, M

Parallel arith
with exchange,
conditional

SASX, SSAX, UASX,
USAX

3(5) 3/5 I, M 1

Parallel halving
arith

SHADD16,
SHADD8,
SHSUB16, SHSUB8,
UHADD16,
UHADD8,
UHSUB16,
UHSUB8

2 1 M

Parallel halving
arith with
exchange

SHASX, SHSAX,
UHASX, UHSAX

3 1 I, M

Parallel
saturating arith

QADD16, QADD8,
QSUB16, QSUB8,
UQADD16,
UQADD8,
UQSUB16,
UQSUB8

2 2 M

Parallel
saturating arith
with exchange

QASX, QSAX,
UQASX, UQSAX

3 1 I, M

Saturate SSAT, SSAT16,
USAT, USAT16

2 1 M

Saturating arith QADD, QSUB 2 1 M

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 66

Arm Non-Confidential

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Saturating
doubling arith

QDADD, QDSUB 3 1 I, M

Note:

1. Branch forms are possible Conditional GE-setting instructions require three extra uops
and two additional cycles to conditionally update the GE field (GE latency shown in
parentheses).

3.8 Miscellaneous data-processing instructions

Table 12: AArch64 Miscellaneous data-processing instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Address generation ADR, ADRP 1 3 I -

Bitfield extract, one reg EXTR 1 3 I -

Bitfield extract, two regs EXTR 3 1 I, M -

Bitfield move, basic SBFM,
UBFM

1 3 I -

Bitfield move, insert BFM 2 1 M -

Count leading CLS, CLZ 1 3 I -

Move immed MOVN,
MOVK,
MOVZ

1 3 I -

Reverse bits/bytes RBIT, REV,
REV16,
REV32

1 3 I -

Variable shift ASRV, LSLV,
LSRV, RORV

1 3 I -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 66

Arm Non-Confidential

Table 13: AArch32 Miscellaneous data-processing instructions

Instruction Group AArch32
Instruction
s

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Bit field extract SBFX,
UBFX

1 3 I -

Bit field insert/clear BFI, BFC 2 1 M -

Count leading zeros CLZ 1 3 I -

Pack halfword PKH 2 1 M -

Reverse bits/bytes RBIT, REV,
REV16,
REVSH

1 3 I -

Select bytes,
unconditional

SEL 1 3 I -

Select bytes, conditional SEL 2 3/2 I -

Sign/zero extend, normal SXTB,
SXTH,
UXTB,
UXTH

1 3 I -

Sign/zero extend, parallel SXTB16,
UXTB16

2 1 M -

Sign/zero extend and add,
normal

SXTAB,
SXTAH,
UXTAB,
UXTAH

2 1 M -

Sign/zero extend and add,
parallel

SXTAB16,
UXTAB16

4 1/2 M -

Sum of absolute
differences

USAD8,
USADA8

2 1 M -

3.9 Load instructions
Table 14: AArch64 Load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Load register, literal LDR, LDRSW,
PRFM

4 2 L -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Load register,
unscaled immed

LDUR, LDURB,
LDURH,
LDURSB,
LDURSH,
LDURSW,
PRFUM

4 2 L

Load register, immed
post-index

LDR, LDRB,
LDRH, LDRSB,
LDRSH,
LDRSW

4 2 L, I

Load register, immed
pre-index

LDR, LDRB,
LDRH, LDRSB,
LDRSH,
LDRSW

4 2 L, I

Load register, immed
unprivileged

LDTR, LDTRB,
LDTRH,
LDTRSB,
LDTRSH,
LDTRSW

4 2 L

Load register,
unsigned immed

LDR, LDRB,
LDRH, LDRSB,
LDRSH,
LDRSW, PRFM

4 2 L

Load register,
register offset, basic

LDR, LDRB,
LDRH, LDRSB,
LDRSH,
LDRSW, PRFM

4 2 L

Load register,
register offset, scale
by 4/8

LDR, LDRSW,
PRFM

4 2 L

Load register,
register offset, scale
by 2

LDRH, LDRSH 5 2 I, L

Load register,
register offset,
extend

LDR, LDRB,
LDRH, LDRSB,
LDRSH,
LDRSW, PRFM

4 2 L

Load register,
register offset,
extend, scale by 4/8

LDR, LDRSW,
PRFM

4 2 L

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Load register,
register offset,
extend, scale by 2

LDRH, LDRSH 5 2 I, L

Load pair, signed
immed offset, normal,
W-form

LDP, LDNP 4 2 L

Load pair, signed
immed offset, normal,
X-form

LDP, LDNP 4 1 L

Load pair, signed
immed offset, signed
words, base != SP

LDPSW 5 1 I, L

Load pair, signed
immed offset, signed
words, base = SP

LDPSW 5 1 I, L

Load pair, immed
post-index, normal

LDP 4 1 L, I

Load pair, immed
post-index, signed
words

LDPSW 5 1 I, L

Load pair, immed pre-
index, normal

LDP 4 1 L, I

Load pair, immed pre-
index, signed words

LDPSW 5 1 I, L

Table 15: AArch32 Load instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Load, immed offset LDR{T},
LDRB{T},
LDRD,
LDRH{T},
LDRSB{T},
LDRSH{T}

4 2 L 1,2

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Load, register offset,
plus

LDR, LDRB,
LDRD,
LDRH,
LDRSB,
LDRSH

4 2 L 1,2

Load, register offset,
minus

LDR, LDRB,
LDRD,
LDRH,
LDRSB,
LDRSH

5 2 I, L 1,2

Load, scaled register
offset, plus, LSL2

LDR, LDRB 4 2 L 1

Load, scaled register
offset, other

LDR, LDRB,
LDRH,
LDRSB,
LDRSH

5 2 I, L 1

Load, immed pre-
indexed

LDR, LDRB,
LDRD,
LDRH,
LDRSB,
LDRSH

4 2 L, I 1,2

Load, register pre-
indexed, shift Rm, plus
and minus

LDR, LDRB,
LDRH,
LDRSB,
LDRSH

5 2 I, L, M 3

Load, register pre-
indexed

LDRD 4 2 L, I -

Load, register pre-
indexed, cond

LDRD 5 1 1/2 L, I -

Load, scaled register
pre-indexed, plus, LSL2

LDR, LDRB 4 2 L, I 1

Load, scaled register
pre-indexed, unshifted

LDR, LDRB 4 2 L, I -

Load, immed post-
indexed

LDR{T},
LDRB{T},
LDRD,
LDRH{T},
LDRSB{T},
LDRSH{T}

4 2 L, I 1,2

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Load, register post-
indexed

LDR, LDRB,
LDRH{T},
LDRSB{T},
LDRSH{T}

5 2 I, L -

Load, register post-
indexed

LDRD 4 2 L, I -

Load, register post-
indexed

LDRT,
LDRBT

5 2 I, L -

Load, scaled register
post-indexed

LDR, LDRB 4 2 L, M 3

Load, scaled register
post-indexed

LDRT,
LDRBT

4 2 L, M 3

Preload, immed offset PLD, PLDW 4 2 L -

Preload, register offset,
plus

PLD, PLDW 4 2 L -

Preload, register offset,
minus

PLD, PLDW 5 2 I, L -

Preload, scaled register
offset, plus LSL2

PLD, PLDW 5 2 I, L -

Preload, scaled register
offset, other

PLD, PLDW 5 2 I, L -

Load multiple, no
writeback, base reg not
in list

LDMIA,
LDMIB,
LDMDA,
LDMDB

N 2/R L 1, 4,
5

Load multiple, no
writeback, base reg in
list

LDMIA,
LDMIB,
LDMDA,
LDMDB

1+ N 2/R I, L 1, 4,
5

Load multiple, writeback LDMIA,
LDMIB,
LDMDA,
LDMDB,
POP

1+N 2/R L, I 1, 4,
5

(Load, all branch forms) - +1 - + B 6

Note:

1. Condition loads have an extra µOP which goes down pipeline I and have 1 cycle extra
latency compared to their unconditional counterparts.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 66

Arm Non-Confidential

2. The throughput of conditional LDRD is 1 as compared to a throughput of 2 for
unconditional LDRD.

3. The address update op for addressing forms which use reg scaled reg, or reg extend goes
down pipeline ‘I’ if the shift is LSL where the shift value is less than or equal to 4.

4. N is floor [(num_reg+3)/4].

5. R is floor [(num_reg +1)/2].

6. Branch forms are possible when the instruction destination register is the PC. For those
cases, an additional branch µOP is required. This adds 1 cycle to the latency.

3.10 Store instructions
The following tables describes performance characteristics for standard store instructions.
Stores µOPs are split into address and data µOPs. Once executed, stores are buffered and
committed in the background.

Table 16: AArch64 Store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Store register, unscaled
immed

STUR,
STURB,
STURH

1 2 L, D -

Store register, immed
post-index

STR, STRB,
STRH

1 2 L, D -

Store register, immed
pre-index

STR, STRB,
STRH

1 2 L, D -

Store register, immed
unprivileged

STTR,
STTRB,
STTRH

1 2 L, D -

Store register, unsigned
immed

STR, STRB,
STRH

1 2 L, D -

Store register, register
offset, basic

STR, STRB,
STRH

1 2 L, D -

Store register, register
offset, scaled by 4/8

STR 1 2 L, D -

Store register, register
offset, scaled by 2

STRH 2 3/2 I, L, D -

Store register, register
offset, extend

STR, STRB,
STRH

1 2 L, D -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Store register, register
offset, extend, scale by
4/8

STR 1 2 L, D -

Store register, register
offset, extend, scale by 1

STRH 2 3/2 I, L, D -

Store pair, immed offset,
W-form

STP, STNP 1 2 L, D -

Store pair, immed offset,
X-form

STP, STNP 1 1 L, D -

Store pair, immed post-
index, W-form

STP 1 1 L, D -

Store pair, immed post-
index, X-form

STP 1 1 L, D -

Store pair, immed pre-
index, W-form

STP 1 1 L, D -

Store pair, immed pre-
index, X-form

STP 1 1 L, D -

Table 17: AArch32 Store instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Store, immed offset STR{T},
STRB{T},
STRD,
STRH{T}

1 2 L, D -

Store, register offset,
plus

STR, STRB,
STRD, STRH

1 2 L, D -

Store, register offset,
minus

STR, STRB,
STRD, STRH

1 2 L, D -

Store, register offset, no
shift, plus

STR, STRB 1 2 L, D -

Store, scaled register
offset, plus LSL2

STR, STRB 1 2 L, D -

Store, scaled register
offset, other

STR, STRB 2 3/2 I, L, D -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Store, scaled register
offset, minus

STR, STRB 2 3/2 I, L, D -

Store, immed pre-
indexed

STR, STRB,
STRD, STRH

1 3/2 I, L, D -

Store, register pre-
indexed, plus, no shift

STR, STRB,
STRD, STRH

1 3/2 L, D -

Store, register pre-
indexed, minus

STR, STRB,
STRD, STRH

2 1 I, L, D -

Store, scaled register
pre-indexed, plus LSL2

STR, STRB 1 3/2 L, D -

Store, scaled register
pre-indexed, other

STR, STRB 2 1 I, L, D, M 1

Store, immed post-
indexed

STR{T},
STRB{T},
STRD,
STRH{T}

1 3/2 L, D -

Store, register post-
indexed

STRH{T},
STRD

1 3/2 L, D -

Store, register post-
indexed

STR{T},
STRB{T}

1 3/2 L, D -

Store, scaled register
post-indexed

STR{T},
STRB{T}

1 3/2 L, D -

Store multiple, no
writeback

STMIA,
STMIB,
STMDA,
STMDB

N 1/N L, D 2

Store multiple,
writeback

STMIA,
STMIB,
STMDA,
STMDB,
PUSH

N 1/N L, D 2

Note:

1. The address update op for addressing forms which use reg scaled reg, or reg extend goes
down pipeline ‘I’ if the shift is LSL where the shift value is less than or equal to 4.

2. For store multiple instructions, N=floor((num_regs+3)/4).

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 66

Arm Non-Confidential

3.11 FP data processing instructions
Table 18: AArch64 FP data processing instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

FP absolute value FABS 2 2 V -

FP arithmetic FADD, FSUB 2 2 V -

FP compare FCCMP{E},
FCMP{E}

2 1 V0 -

FP divide, H-form FDIV 7 4/7 V0 1

FP divide, S-form FDIV 7 to 10 4/9 to 4/7 V0 1

FP divide, D-form FDIV 7 to 15 1/7 to 2/7 V0 1

FP min/max FMIN,
FMINNM,
FMAX,
FMAXNM

2 2 V -

FP multiply FMUL,
FNMUL

3 2 V 2

FP multiply accumulate FMADD,
FMSUB,
FNMADD,
FNMSUB

4 (2) 2 V 3

FP negate FNEG 2 2 V -

FP round to integral FRINTA,
FRINTI,
FRINTM,
FRINTN,
FRINTP,
FRINTX,
FRINTZ

3 1 V0 -

FP select FCSEL 2 2 V -

FP square root, H-form FSQRT 7 4/7 V0 1

FP square root, S-form FSQRT 7 to 10 4/9 to 4/7 V0 1

FP square root, D-form FSQRT 7 to 17 1/8 to 2/7 V0 1

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 66

Arm Non-Confidential

Table 19: AArch32 FP data processing instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

VFP absolute value VABS 2 2 V -

VFP arith VADD,
VSUB

2 2 V -

VFP compare,
unconditional

VCMP,
VCMPE

2 1 V0 -

VFP compare,
conditional

VCMP,
VCMPE

4 1 V, V0 -

VFP convert VCVT{R},
VCVTB,
VCVTT,
VCVTA,
VCVTM,
VCVTN,
VCVTP

3 1 V0 -

VFP divide, H-form VDIV 7 4/7 V0 1

VFP divide, S-form VDIV 7 to 10 4/9 to 4/7 V0 1

VFP divide, D-form VDIV 7 to 15 1/7 to 2/7 V0 1

VFP max/min VMAXNM,
VMINNM

2 2 V -

VFP multiply VMUL,
VNMUL

3 2 V 2

VFP multiply accumulate
(chained)

VMLA,
VMLS,
VNMLA,
VNMLS

5 (2) 2 V 3

VFP multiply accumulate
(fused)

VFMA,
VFMS,
VFNMA,
VFNMS

4 (2) 2 V 3

VFP negate VNEG 2 2 V -

VFP round to integral VRINTA,
VRINTM,
VRINTN,
VRINTP,
VRINTR,
VRINTX,
VRINTZ

3 1 V0 -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

VFP select VSELEQ,
VSELGE,
VSELGT,
VSELVS

2 2 V -

VFP square root, H-form VSQRT 7 4/7 V0 1

VFP square root, S-form VSQRT 7 to 10 4/9 to 4/7 V0 1

VFP square root, D-form VSQRT 7 to 17 1/8 to 2/7 V0 1

Note:

1. FP divide and square root operations are performed using an iterative algorithm and
block subsequent similar operations to the same pipeline until complete.

2. FP multiply-accumulate pipelines support late forwarding of the result from FP multiply
µOPs to the accumulate operands of an FP multiply-accumulate µOP. The latter can
potentially be issued 1 cycle after the FP multiply µOP has been issued.

3. FP multiply-accumulate pipelines support late-forwarding of accumulate operands from
similar µOPs, allowing a typical sequence of multiply-accumulate µOPs to issue one every
N cycles (accumulate latency N shown in parentheses).

3.12 FP miscellaneous instructions
Table 20: AArch64 FP miscellaneous instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

FP convert, from vec to
vec reg

FCVT,
FCVTXN

3 1 V0 -

FP convert, from gen to
vec reg

SCVTF,
UCVTF

6 1 M, V0 -

FP convert, from vec to
gen reg

FCVTAS,
FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU

4 1 V0, V1 -

FP move, immed FMOV 2 2 V -

FP move, register FMOV 2 2 V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

FP transfer, from gen to
vec reg

FMOV 3 1 M -

FP transfer, from vec to
gen reg

FMOV 2 1 V1 -

Table 21: AArch32 FP miscellaneous instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

VFP move, immed VMOV 2 2 V -

VFP move, register VMOV 2 2 V -

VFP move, insert VINS 2 2 V -

VFP move, extraction VMOVX 2 2 V -

VFP transfer, core to vfp,
single reg to S-reg, cond

VMOV 5 1 M, V -

VFP transfer, core to vfp,
single reg to S-reg,
uncond

VMOV 3 1 M -

VFP transfer, core to vfp,
single reg to
upper/lower half of D-
reg

VMOV 5 1 M, V -

VFP transfer, core to vfp,
2 regs to 2 S-regs, cond

VMOV 6 1/2 M, V -

VFP transfer, core to vfp,
2 regs to 2 S-regs,
uncond

VMOV 4 1/2 M -

VFP transfer, core to vfp,
2 regs to D-reg, cond

VMOV 5 1 M, V -

VFP transfer, core to vfp,
2 regs to D-reg, uncond

VMOV 3 1 M -

VFP transfer, vfp S-reg
or upper/lower half of
vfp D-reg to core reg,
cond

VMOV 3 1 V1, I -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

VFP transfer, vfp S-reg
or upper/lower half of
vfp D-reg to core reg,
uncond

VMOV 2 1 V1 -

VFP transfer, vfp 2 S-
regs or D-reg to 2 core
regs, cond

VMOV 3 1 V1, I

VFP transfer, vfp 2 S-
regs or D-reg to 2 core
regs, uncond

VMOV 2 1 V1

3.13 FP load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache. Compared to
standard loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 22: AArch64 FP load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Load vector reg, literal,
S/D/Q forms

LDR - 2 L -

Load vector reg,
unscaled immed

LDUR 5 2 L -

Load vector reg, immed
post-index

LDR 5 2 L, I -

Load vector reg, immed
pre-index

LDR 5 2 L, I -

Load vector reg,
unsigned immed

LDR 5 2 L, I -

Load vector reg, register
offset, basic

LDR 5 2 L, I -

Load vector reg, register
offset, scale, S/D-form

LDR 5 2 L, I -

Load vector reg, register
offset, scale, H/Q-form

LDR 6 2 I, L -

Load vector reg, register
offset, extend

LDR 5 2 L, I -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Load vector reg, register
offset, extend, scale,
S/D-form

LDR 5 2 L, I -

Load vector reg, register
offset, extend, scale,
H/Q-form

LDR 6 2 I, L -

Load vector pair, immed
offset, S/D-form

LDP, LDNP 5 1 L, I -

Load vector pair, immed
offset, Q-form

LDP, LDNP 7 1 L -

Load vector pair, immed
post-index, S/D-form

LDP 5 1 I, L -

Load vector pair, immed
post-index, Q-form

LDP 7 1 L, I -

Load vector pair, immed
pre-index, S/D-form

LDP 5 1 I, L -

Load vector pair, immed
pre-index, Q-form

LDP 7 1 L, I -

Table 23: AArch32 FP load instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

FP load, register VLDR 4 2 L 1

FP load multiple, S form VLDMIA,
VLDMDB,
VPOP

N 2/R L 1, 2,
3

FP load multiple, D form VLDMIA,
VLDMDB,
VPOP

N + 2 1/R L, V 1, 2,
3

(FP load, writeback
forms)

- (1) - + I 4

Note:

1. Condition loads have an extra µOP which goes down pipeline V and have 2 cycle extra
latency compared to their unconditional counterparts.

2. N is floor[(num_reg+3)/4].

3. R is floor[(num_reg+1)/2].

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 66

Arm Non-Confidential

4. Writeback forms of load instructions require an extra µOP to update the base address.
This update is typically performed in parallel with or prior to the load µOP (update latency
shown in parentheses).

3.14 FP store instructions
Stores MOPs are split into store address and store data µOPs. Once executed, stores are
buffered and committed in the background.

Table 24: AArch64 FP store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Store vector reg,
unscaled immed,
B/H/S/D-form

STUR 2 2 L, I -

Store vector reg,
unscaled immed, Q-form

STUR 2 1 L, I -

Store vector reg, immed
post-index, B/H/S/D-
form

STR 2 2 L, V -

Store vector reg, immed
post-index, Q-form

STR 2 1 L, V -

Store vector reg, immed
pre-index, B/H/S/D-
form

STR 2 2 L, V -

Store vector reg, immed
pre-index, Q-form

STR 2 1 L, V -

Store vector reg,
unsigned immed,
B/H/S/D-form

STR 2 2 L, V -

Store vector reg,
unsigned immed, Q-form

STR 2 1 L, V -

Store vector reg,
register offset, basic,
B/H/S/D-form

STR 2 2 L, V -

Store vector reg,
register offset, basic, Q-
form

STR 2 1 L, V -

Store vector reg,
register offset, scale, H-
form

STR 2 2 I, L, V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Store vector reg,
register offset, scale,
S/D-form

STR 2 2 L, V -

Store vector reg,
register offset, scale, Q-
form

STR 2 1 I, L, V -

Store vector reg,
register offset, extend,
B/H/S/D-form

STR 2 2 L, V -

Store vector reg,
register offset, extend,
Q-form

STR 2 1 L, V -

Store vector reg,
register offset, extend,
scale, H-form

STR 2 2 I, L, V -

Store vector reg,
register offset, extend,
scale, S/D-form

STR 2 2 L, V -

Store vector reg,
register offset, extend,
scale, Q-form

STR 2 1 I, L, V -

Store vector pair, immed
offset, S-form

STP, STNP 2 2 L, V -

Store vector pair, immed
offset, D-form

STP, STNP 2 1 L, V -

Store vector pair, immed
offset, Q-form

STP, STNP 3 1/2 L, V -

Store vector pair, immed
post-index, S-form

STP 2 1 L, V -

Store vector pair, immed
post-index, D-form

STP 2 1 L, V -

Store vector pair, immed
post-index, Q-form

STP 3 1 L, V -

Store vector pair, immed
pre-index, S-form

STP 2 1 L, V -

Store vector pair, immed
pre-index, D-form

STP 2 1 L, V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Store vector pair, immed
pre-index, Q-form

STP 3 1/2 L, V -

Table 25: AArch32 FP store instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

FP store, immed offset VSTR 2 2 L, I -

FP store multiple, S-form VSTMIA,
VSTMDB,
VPUSH

N+1 2/R L, V 1, 3

FP store multiple, D-
form

VSTMIA,
VSTMDB,
VPUSH

P + 1 1/R L, V 2, 3

(FP store, writeback
forms)

- (1) - + I 4

Note:

1. For store multiple instructions, N=floor((num_regs+3)/4).

2. For store multiple instructions, P=floor((num_regs+1)/2).

3. R=floor[(num_regs + 1)/2].

4. Writeback forms of store instructions require an extra µOP to update the base address.
This update is typically performed in parallel with or prior to the store µOP (update
latency shown in parentheses).

3.15 ASIMD integer instructions
Table 26: AArch64 ASIMD integer instructions

Instruction
Group

AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD absolute
diff

SABD, UABD 2 2 V -

ASIMD absolute
diff accum

SABA, UABA 4(1) 1 V1 2

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 66

Arm Non-Confidential

Instruction
Group

AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD absolute
diff accum long

SABAL(2), UABAL(2) 4(1) 1 V1 2

ASIMD absolute
diff long

SABDL(2),
UABDL(2)

2 2 V -

ASIMD arith,
basic

ABS, ADD, NEG,
SADDL(2),
SADDW(2), SHADD,
SHSUB, SSUBL(2),
SSUBW(2), SUB,
UADDL(2),
UADDW(2),
UHADD, UHSUB,
USUBL(2),
USUBW(2)

2 2 V -

ASIMD arith,
complex

ADDHN(2),
RADDHN(2),
RSUBHN(2), SQABS,
SQADD, SQNEG,
SQSUB, SRHADD,
SUBHN(2),
SUQADD, UQADD,
UQSUB, URHADD,
USQADD

2 2 V -

ASIMD arith,
pair-wise

ADDP, SADDLP,
UADDLP

2 2 V -

ASIMD arith,
reduce, 4H/4S

ADDV, SADDLV,
UADDLV

3 1 V1 -

ASIMD arith,
reduce, 8B/8H

ADDV, SADDLV,
UADDLV

5 1 V1, V -

ASIMD arith,
reduce, 16B

ADDV, SADDLV,
UADDLV

6 1/2 V1 -

ASIMD compare CMEQ, CMGE,
CMGT, CMHI,
CMHS, CMLE,
CMLT, CMTST

2 2 V -

ASIMD dot
product

SDOT, UDOT 2 2 V -

ASIMD logical AND, BIC, EOR,
MOV, MVN, ORN,
ORR, NOT

2 2 V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 66

Arm Non-Confidential

Instruction
Group

AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD max/min,
basic and pair-
wise

SMAX, SMAXP,
SMIN, SMINP,
UMAX, UMAXP,
UMIN, UMINP

2 2 V -

ASIMD max/min,
reduce, 4H/4S

SMAXV, SMINV,
UMAXV, UMINV

3 1 V1 -

ASIMD max/min,
reduce, 8B/8H

SMAXV, SMINV,
UMAXV, UMINV

5 1 V1, V -

ASIMD max/min,
reduce, 16B

SMAXV, SMINV,
UMAXV, UMINV

6 1/2 V1 -

ASIMD multiply,
D-form

MUL, SQDMULH,
SQRDMULH

4 1 V0 -

ASIMD multiply,
Q-form

MUL, SQDMULH,
SQRDMULH

5 1/2 V0 -

ASIMD multiply
accumulate, D-
form

MLA, MLS 4(1) 1 V0 1

ASIMD multiply
accumulate, Q-
form

MLA, MLS 5(2) 1/2 V0 1

ASIMD multiply
accumulate high,
D-form

SQRDMLAH,
SQRDMLSH

4 1 V0 -

ASIMD multiply
accumulate high,
Q-form

SQRDMLAH,
SQRDMLSH

5 1/2 V0 -

ASIMD multiply
accumulate long

SMLAL(2),
SMLSL(2),
UMLAL(2),
UMLSL(2)

4(1) 1 V0 1

ASIMD multiply
accumulate
saturating long

SQDMLAL(2),
SQDMLSL(2)

4 1 V0 -

ASIMD
multiply/multiply
long (8x8)
polynomial, D-
form

PMUL, PMULL(2) 3 1 V0 3

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 66

Arm Non-Confidential

Instruction
Group

AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD
multiply/multiply
long (8x8)
polynomial, Q-
form

PMUL, PMULL(2) 4 1/2 V0 3

ASIMD multiply
long

SMULL(2),
UMULL(2),
SQDMULL(2)

4 1 V0 -

ASIMD pairwise
add and
accumulate long

SADALP, UADALP 4(1) 1 V1 2

ASIMD shift
accumulate

SSRA, SRSRA, USRA,
URSRA

4(1) 1 V1 2

ASIMD shift by
immed, basic

SHL, SHLL(2),
SHRN(2), SSHLL(2),
SSHR, SXTL(2),
USHLL(2), USHR,
UXTL(2)

2 1 V1 -

ASIMD shift by
immed and
insert, basic

SLI, SRI 2 1 V1 -

ASIMD shift by
immed, complex

RSHRN(2),
SQRSHRN(2),
SQRSHRUN(2),
SQSHL{U},
SQSHRN(2),
SQSHRUN(2),
SRSHR,
UQRSHRN(2),
UQSHL,
UQSHRN(2),
URSHR

4 1 V1 -

ASIMD shift by
register, basic

SSHL, USHL 2 1 V1 -

ASIMD shift by
register,
complex

SRSHL, SQRSHL,
SQSHL, URSHL,
UQRSHL, UQSHL

4 1 V1 -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 66

Arm Non-Confidential

Table 27: AArch32 ASIMD integer instructions

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD absolute
diff

VABD 2 2 V -

ASIMD absolute
diff accum

VABA 4(1) 1 V1 2

ASIMD absolute
diff accum long

VABAL 4(1) 1 V1 2

ASIMD absolute
diff long

VABDL 2 2 V -

ASIMD arith,
basic

VADD, VADDL,
VADDW, VNEG,
VSUB, VSUBL,
VSUBW

2 2 V -

ASIMD arith,
complex

VABS, VADDHN,
VHADD, VHSUB,
VQABS, VQADD,
VQNEG, VQSUB,
VRADDHN,
VRHADD,
VRSUBHN,
VSUBHN

2 2 V -

ASIMD arith,
pair-wise

VPADD, VPADDL 2 2 V -

ASIMD compare VCEQ, VCGE,
VCGT, VCLE, VTST

2 1 V -

ASIMD dot
product

VSDOT, VUDOT 2 2 V -

ASIMD logical VAND, VBIC,
VMVN, VORR,
VORN, VEOR

2 1 V -

ASIMD max/min VMAX, VMIN,
VPMAX, VPMIN

2 1 V -

ASIMD multiply,
D-form

VMUL,
VQDMULH,
VQRDMULH

4 1 V0 -

ASIMD multiply,
Q-form

VMUL,
VQDMULH,
VQRDMULH

5 1/2 V0 -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 66

Arm Non-Confidential

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD multiply
accumulate, D-
form

VMLA, VMLS 4(1) 1 V0 1

ASIMD multiply
accumulate, Q-
form

VMLA, VMLS 5(2) 1/2 V0 1

ASIMD multiply
accumulate long

VMLAL, VMLSL 4(1) 1 V0 1

ASIMD multiply
accumulate high,
D-form

VQRDMLAH,
VQRDMLSH

4 1 V0 -

ASIMD multiply
accumulate high,
Q-form

VQRDMLAH,
VQRDMLSH

5 1/2 V0 -

ASIMD multiply
accumulate
saturating long

VQDMLAL,
VQDMLSL

4 1 V0 -

ASIMD
multiply/multiply
long (8x8)
polynomial, D-
form

VMUL (.P8),
VMULL (.P8)

3 1 V0 -

ASIMD multiply
(8x8) polynomial,
Q-form

VMUL (.P8) 4 1/2 V0 -

ASIMD multiply
long

VMULL (.S, .I),
VQDMULL

4 1 V0 -

ASIMD pairwise
add and
accumulate

VPADAL 4(1) 1 V1 1

ASIMD shift
accumulate

VSRA, VRSRA 4(1) 1 V1 1

ASIMD shift by
immed, basic

VMOVL, VSHL,
VSHLL, VSHR,
VSHRN

2 1 V1 -

ASIMD shift by
immed and insert,
basic

VSLI, VSRI 2 1 V1 -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 66

Arm Non-Confidential

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD shift by
immed, complex

VQRSHRN,
VQRSHRUN,
VQSHL{U},
VQSHRN,
VQSHRUN,
VRSHR, VRSHRN

4 1 V1 -

ASIMD shift by
register, basic

VSHL 2 1 V1 -

ASIMD shift by
register, complex

VQRSHL, VQSHL,
VRSHL

4 1 V1 -

Note:

1. Multiply-accumulate pipelines support late-forwarding of accumulate operands from
similar µOPs, allowing a typical sequence of integer multiply-accumulate µOPs to issue
one every cycle or one every other cycle (accumulate latency shown in parentheses).

2. Other accumulate pipelines also support late-forwarding of accumulate operands from
similar µOPs, allowing a typical sequence of such µOPs to issue one every cycle
(accumulate latency shown in parentheses).

3. This category includes instructions of the form “PMULL Vd.8H, Vn.8B, Vm.8B” and
“PMULL2 Vd.8H, Vn.16B, Vm.16B”.

3.16 ASIMD floating-point instructions
Table 28: AArch64 ASIMD floating point instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD FP
absolute
value/difference

FABS, FABD 2 2 V -

ASIMD FP arith,
normal

FABD, FADD,
FSUB, FADDP

2 2 V -

ASIMD FP
compare

FACGE, FACGT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT

2 2 V -

ASIMD FP
convert, long (F16
to F32)

FCVTL(2) 4 1/2 V0 -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD FP
convert, long (F32
to F64)

FCVTL(2) 3 1 V0 -

ASIMD FP
convert, narrow
(F32 to F16)

FCVTN(2) 4 1/2 V0 -

ASIMD FP
convert, narrow
(F64 to F32)

FCVTN(2),
FCVTXN(2)

3 1 V0 -

ASIMD FP
convert, other, D-
form F32 and Q-
form F64

FCVTAS, FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

3 1 V0 -

ASIMD FP
convert, other, D-
form F16 and Q-
form F32

FCVTAS, FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

4 1/2 V0 -

ASIMD FP
convert, other, Q-
form F16

FCVTAS, FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

6 1/4 V0 -

ASIMD FP divide,
D-form, F16

FDIV 7 1/7 V0 3

ASIMD FP divide,
D-form, F32

FDIV 7 to 10 2/9 to 2/7 V0 3

ASIMD FP divide,
Q-form, F16

FDIV 10 to
13

 1/13 to
1/10

V0 3

ASIMD FP divide,
Q-form, F32

FDIV
7 to 10 1/9 to 1/7

V0 3

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD FP divide,
Q-form, F64

FDIV
7 to 15 1/14 to 1/7

V0 3

ASIMD FP
max/min, normal

FMAX, FMAXNM,
FMIN, FMINNM

2 2 V -

ASIMD FP
max/min, pairwise

FMAXP,
FMAXNMP,
FMINP,
FMINNMP

2 2 V -

ASIMD FP
max/min, reduce

FMAXV,
FMAXNMV,
FMINV,
FMINNMV

5 2 V -

ASIMD FP
max/min, reduce,
Q-form F16

FMAXV,
FMAXNMV,
FMINV,
FMINNMV

8 2/3 V -

ASIMD FP
multiply

FMUL, FMULX 3 2 V 2

ASIMD FP
multiply
accumulate

FMLA, FMLS 4 (2) 2 V 1

ASIMD FP
multiply
accumulate long

FMLAL(2),
FMLSL(2)

5(2) 2 V 1

ASIMD FP negate FNEG 2 2 V -

ASIMD FP round,
D-form F32 and
Q-form F64

FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

3 1 V0 -

ASIMD FP round,
D-form F16 and
Q-form F32

FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

4 1/2 V0 -

ASIMD FP round,
Q-form F16

FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

6 1/4 V0 -

ASIMD FP square
root, D-form, F16

FSQRT 7 1/7 V0 3

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD FP square
root, D-form, F32

FSQRT 7 to 10 2/9 to 2/7 V0 3

ASIMD FP square
root, Q-form, F16

FSQRT 11 to
13 1/13 to 1/11

V0 3

ASIMD FP square
root, Q-form, F32

FSQRT
7 to 10 1/9 to 1/7

V0 3

ASIMD FP square
root, Q-form, F64

FSQRT
7 to 17 1/16 to 1/7

V0 3

Table 29: AArch32 ASIMD floating point instructions

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD FP
absolute value

VABS 2 2 V -

ASIMD FP arith VABD, VADD,
VPADD, VSUB

2 2 V -

ASIMD FP
compare

VACGE, VACGT,
VACLE, VACLT,
VCEQ, VCGE,
VCGT, VCLE

2 2 V -

ASIMD FP
convert, integer,
D-form

VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

3 1 V0 -

ASIMD FP
convert, integer,
Q-form

VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

4 1/2 V0 -

ASIMD FP
convert, fixed, D-
form

VCVT 3 1 V0 -

ASIMD FP
convert, fixed, Q-
form

VCVT 4 1/2 V0 -

ASIMD FP
convert, half-
precision

VCVT 4 1/2 V0 -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 66

Arm Non-Confidential

Instruction
Group

AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD FP
max/min

VMAX, VMIN,
VPMAX, VPMIN,
VMAXNM,
VMINNM

2 2 V -

ASIMD FP
multiply

VMUL, VNMUL 3 2 V 2

ASIMD FP
chained multiply
accumulate

VMLA, VMLS 5(2) 2 V 1

ASIMD FP fused
multiply
accumulate

VFMA, VFMS 4(2) 2 V 1

ASIMD FP fused
multiply
accumulate long

VFMAL(2),VFMSL(
2)

4(2) 2 V 1

ASIMD FP negate VNEG 2 2 V

ASIMD FP round
to integral, D-
form

VRINTA, VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

3 1 V0 -

ASIMD FP round
to integral, Q-
form

VRINTA, VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

4 1/2 V0 -

Note:

1. ASIMD multiply-accumulate pipelines support late-forwarding of accumulate operands
from similar µOPs, allowing a typical sequence of floating-point multiply-accumulate
µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

2. ASIMD multiply-accumulate pipelines support late forwarding of the result from ASIMD
FP multiply µOPs to the accumulate operands of an ASIMD FP multiply-accumulate µOP.
The latter can potentially be issued 1 cycle after the ASIMD FP multiply µOP has been
issued.

3. ASIMD divide and square root operations are performed using an iterative algorithm and
block subsequent similar operations to the same pipeline until complete.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 66

Arm Non-Confidential

3.17 ASIMD miscellaneous instructions
Table 30: AArch64 ASIMD miscellaneous instructions

Instruction
Group

AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD bit
reverse

RBIT 2 2 V -

ASIMD bitwise
insert

BIF, BIT, BSL 2 2 V

ASIMD count CLS, CLZ, CNT 2 2 V

ASIMD duplicate,
gen reg

DUP 3 1 M

ASIMD duplicate,
element

DUP 2 2 V

ASIMD extract EXT 2 2 V

ASIMD extract
narrow

XTN 2 2 V

ASIMD extract
narrow,
saturating

SQXTN(2),
SQXTUN(2),
UQXTN(2)

4 1 V1

ASIMD insert,
element to
element

INS 2 2 V

ASIMD move, FP
immed

FMOV 2 2 V

ASIMD move,
integer immed

MOVI, MVNI 2 2 V

ASIMD reciprocal
estimate, D-form
F32 and F64

FRECPE, FRECPX,
FRSQRTE,
URECPE,
URSQRTE

3 1 V0

ASIMD reciprocal
estimate, D-form
F16 and Q-form
F32

FRECPE, FRECPX,
FRSQRTE,
URECPE,
URSQRTE

4 1/2 V0

ASIMD reciprocal
estimate, Q-form
F16

FRECPE, FRECPX,
FRSQRTE,
URECPE,
URSQRTE

6 1/4 V0

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 66

Arm Non-Confidential

Instruction
Group

AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD reciprocal
step

FRECPS, FRSQRTS 4 2 V

ASIMD reverse REV16, REV32,
REV64

2 2 V

ASIMD table
lookup, 1 or 2
table regs

TBL 2 2 V

ASIMD table
lookup, 3 table
regs

TBL 4 1/2 V

ASIMD table
lookup, 4 table
regs

TBL 4 2/3 V

ASIMD table
lookup extension,
1 table reg

TBX 2 2 V

ASIMD table
lookup extension,
2 table reg

TBX 4 1/2 V

ASIMD table
lookup extension,
3 table reg

TBX 6 2/3 V

ASIMD table
lookup extension,
4 table reg

TBX 6 2/5 V

ASIMD transfer,
element to gen
reg

UMOV, SMOV 2 1 V1

ASIMD transfer,
gen reg to
element

INS 5 1 M, V

ASIMD transpose TRN1, TRN2 2 2 V

ASIMD unzip/zip UZP1, UZP2, ZIP1,
ZIP2

2 2 V

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 66

Arm Non-Confidential

Table 31: AArch32 ASIMD miscellaneous instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD bitwise insert VBIF, VBIT,
VBSL 2 2 V -

ASIMD count VCLS, VCLZ,
VCNT 2 2 V -

ASIMD duplicate, core
reg

VDUP 3 1 M -

ASIMD duplicate, scalar VDUP 2 2 V -

ASIMD extract VEXT 2 2 V -

ASIMD move, immed VMOV 2 2 V -

ASIMD move, register VMOV 2 2 V -

ASIMD move, narrowing VMOVN 2 2 V -

ASIMD move, saturating VQMOVN,
VQMOVUN 4 1 V1 -

ASIMD reciprocal
estimate, D-form

VRECPE,
VRSQRTE 3 1 V0 -

ASIMD reciprocal
estimate, Q-form

VRECPE,
VRSQRTE 4 1/2 V0 -

ASIMD reciprocal step VRECPS,
VRSQRTS 5 2 V -

ASIMD reverse VREV16,
VREV32,
VREV64

2
2 V -

ASIMD swap VSWP 4 2/3 V -

ASIMD table lookup, 1
or 2 table regs

VTBL 2 2 V -

ASIMD table lookup, 3
table regs

VTBL 4 1/2 V -

ASIMD table lookup, 4
table regs

VTBL 4 2/3 V -

ASIMD table lookup
extension, 1 reg

VTBX 2 2 V -

ASIMD table lookup
extension, 2 table reg

VTBX 4 1/2 V -

ASIMD table lookup
extension, 3 table reg

VTBX 6 2/3 V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD table lookup
extension, 4 table reg

VTBX 6 2/5 V -

ASIMD transfer, scalar
to core reg, word

VMOV 2 1 V1 -

ASIMD transfer, scalar
to core reg, byte/hword

VMOV 3 1 V1, I -

ASIMD transfer, core
reg to scalar

VMOV 5 1 M, V -

ASIMD transpose VTRN 4 2/3 V -

ASIMD unzip/zip VUZP, VZIP 4 2/3 V -

3.18 ASIMD load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache. Compared to
standard loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 32: AArch64 ASIMD load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD load, 1 element,
multiple, 1 reg, D-form

LD1 5 2 L -

ASIMD load, 1 element,
multiple, 1 reg, Q-form

LD1 5 2 L -

ASIMD load, 1 element,
multiple, 2 reg, D-form

LD1 5 1 L -

ASIMD load, 1 element,
multiple, 2 reg, Q-form

LD1 5 1 L -

ASIMD load, 1 element,
multiple, 3 reg, D-form

LD1 6 2/3 L -

ASIMD load, 1 element,
multiple, 3 reg, Q-form

LD1 6 2/3 L -

ASIMD load, 1 element,
multiple, 4 reg, D-form

LD1 6 1/2 L -

ASIMD load, 1 element,
multiple, 4 reg, Q-form

LD1 6 1/2 L -

ASIMD load, 1 element,
one lane, B/H/S

LD1 7 2 L, V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD load, 1 element,
one lane, D

LD1 7 2 L, V -

ASIMD load, 1 element,
all lanes, D-form, B/H/S

LD1R 7 2 L, V -

ASIMD load, 1 element,
all lanes, D-form, D

LD1R 7 2 L, V -

ASIMD load, 1 element,
all lanes, Q-form

LD1R 7 2 L, V -

ASIMD load, 2 element,
multiple, D-form, B/H/S

LD2 7 1 L, V -

ASIMD load, 2 element,
multiple, Q-form, B/H/S

LD2 7 1 L, V -

ASIMD load, 2 element,
multiple, Q-form, D

LD2 7 1 L, V -

ASIMD load, 2 element,
one lane, B/H

LD2 7 1 L, V -

ASIMD load, 2 element,
one lane, S

LD2 7 1 L, V -

ASIMD load, 2 element,
one lane, D

LD2 7 1 L, V -

ASIMD load, 2 element,
all lanes, D-form, B/H/S

LD2R 7 1 L, V -

ASIMD load, 2 element,
all lanes, D-form, D

LD2R 7 1 L, V -

ASIMD load, 2 element,
all lanes, Q-form

LD2R 7 1 L, V -

ASIMD load, 3 element,
multiple, D-form, B/H/S

LD3 8 1/2 L, V -

ASIMD load, 3 element,
multiple, Q-form, B/H/S

LD3 8 1/2 L, V -

ASIMD load, 3 element,
multiple, Q-form, D

LD3 8 1/2 L, V -

ASIMD load, 3 element,
one lane, B/H

LD3 7 1/2 L, V -

ASIMD load, 3 element,
one lane, S

LD3 7 1/2 L, V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD load, 3 element,
one lane, D

LD3 7 1/2 L, V -

ASIMD load, 3 element,
all lanes, D-form, B/H/S

LD3R 7 1/2 L, V -

ASIMD load, 3 element,
all lanes, D-form, D

LD3R 7 1/2 L, V -

ASIMD load, 3 element,
all lanes, Q-form, B/H/S

LD3R 7 1/2 L, V -

ASIMD load, 3 element,
all lanes, Q-form, D

LD3R 7 1/2 L, V -

ASIMD load, 4 element,
multiple, D-form, B/H/S

LD4 8 2/7 L, V -

ASIMD load, 4 element,
multiple, Q-form, B/H/S

LD4 10 1/5 L, V -

ASIMD load, 4 element,
multiple, Q-form, D

LD4 10 1/5 L, V -

ASIMD load, 4 element,
one lane, B/H

LD4 8 1/2 L, V -

ASIMD load, 4 element,
one lane, S

LD4 8 1/2 L, V -

ASIMD load, 4 element,
one lane, D

LD4 8 1/2 L, V -

ASIMD load, 4 element,
all lanes, D-form, B/H/S

LD4R 8 1/2 L, V -

ASIMD load, 4 element,
all lanes, D-form, D

LD4R 8 1/2 L, V -

ASIMD load, 4 element,
all lanes, Q-form, B/H/S

LD4R 8 1/2 L, V -

ASIMD load, 4 element,
all lanes, Q-form, D

LD4R 8 1/2 L, V -

(ASIMD load, writeback
form)

- (1) - + I 1

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 66

Arm Non-Confidential

Table 33: AArch32 ASIMD load instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD load, 1 element,
multiple, 1 reg

VLD1 5 2 L -

ASIMD load, 1 element,
multiple, 2 reg

VLD1 5 2 L -

ASIMD load, 1 element,
multiple, 3 reg

VLD1 5 1 L -

ASIMD load, 1 element,
multiple, 4 reg

VLD1 5 1 L -

ASIMD load, 1 element,
one lane

VLD1 7 2 L, V -

ASIMD load, 1 element,
all lanes, 1 reg

VLD1 7 2 L, V -

ASIMD load, 1 element,
all lanes, 2 reg

VLD1 7 2/3 L, V -

ASIMD load, 2 element,
multiple, 2 reg

VLD2 7 2/3 L, V -

ASIMD load, 2 element,
multiple, 4 reg

VLD2 8 1/2 L, V -

ASIMD load, 2 element,
one lane, size 32

VLD2 7 1 L, V -

ASIMD load, 2 element,
one lane, size 8/16

VLD2 7 1 L, V -

ASIMD load, 2 element,
all lanes

VLD2 7 1 L, V -

ASIMD load, 3 element,
multiple, 3 reg

VLD3 8 2/3 L, V -

ASIMD load, 3 element,
one lane, size 32

VLD3 8 2/3 L, V -

ASIMD load, 3 element,
one lane, size 8/16

VLD3 8 2/3 L, V -

ASIMD load, 3 element,
all lanes

VLD3 8 2/3 L, V -

ASIMD load, 4 element,
multiple, 4 reg

VLD4 8 1/2 L, V -

ASIMD load, 4 element,
one lane, size 32

VLD4 8 1/2 L, V -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD load, 4 element,
one lane, size 8/16

VLD4 8 1/2 L, V -

ASIMD load, 4 element,
all lanes

VLD4 8 1/2 L, V -

(ASIMD load, writeback
form)

- (1) - +I 1

Note:

1. Writeback forms of load instructions require an extra µOP to update the base
address. This update is typically performed in parallel with the load µOP (update
latency shown in parentheses).

3.19 ASIMD store instructions
Stores MOPs are split into store address and store data µOPs. Once executed, stores are
buffered and committed in the background.

Table 34: AArch64 ASIMD store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD store, 1 element,
multiple, 1 reg, D-form

ST1 2 2 L, V -

ASIMD store, 1 element,
multiple, 1 reg, Q-form

ST1 2 1 L, V -

ASIMD store, 1 element,
multiple, 2 reg, D-form

ST1 2 1 L, V -

ASIMD store, 1 element,
multiple, 2 reg, Q-form

ST1 3 1/2 L, V -

ASIMD store, 1 element,
multiple, 3 reg, D-form

ST1 3 2/3 L, V -

ASIMD store, 1 element,
multiple, 3 reg, Q-form

ST1 4 1/3 L, V -

ASIMD store, 1 element,
multiple, 4 reg, D-form

ST1 3 1/2 L, V -

ASIMD store, 1 element,
multiple, 4 reg, Q-form

ST1 5 1/4 L, V -

ASIMD store, 1 element,
one lane, B/H/S

ST1 4 1 V, L -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

ASIMD store, 1 element,
one lane, D

ST1 4 1 V, L -

ASIMD store, 2 element,
multiple, D-form, B/H/S

ST2 4 1 V, L -

ASIMD store, 2 element,
multiple, Q-form, B/H/S

ST2 5 1/2 V, L -

ASIMD store, 2 element,
multiple, Q-form, D

ST2 5 1/2 V, L -

ASIMD store, 2 element,
one lane, B/H/S

ST2 4 1 V, L -

ASIMD store, 2 element,
one lane, D

ST2 4 1 V, L -

ASIMD store, 3 element,
multiple, D-form, B/H/S

ST3 5 1/2 V, L -

ASIMD store, 3 element,
multiple, Q-form, B/H/S

ST3 6 1/3 V, L -

ASIMD store, 3 element,
multiple, Q-form, D

ST3 6 1/3 V, L -

ASIMD store, 3 element,
one lane, B/H

ST3 4 1/2 V, L -

ASIMD store, 3 element,
one lane, S

ST3 4 1/2 V, L -

ASIMD store, 3 element,
one lane, D

ST3 5 1/2 V, L -

ASIMD store, 4 element,
multiple, D-form, B/H/S

ST4 7 1/3 V, L -

ASIMD store, 4 element,
multiple, Q-form, B/H/S

ST4 9 1/6 V, L -

ASIMD store, 4 element,
multiple, Q-form, D

ST4 6 1/4 V, L -

ASIMD store, 4 element,
one lane, B/H

ST4 5 - V, L -

ASIMD store, 4 element,
one lane, S

ST4 - 2/3 V, L -

ASIMD store, 4 element,
one lane, D

ST4 - - V, L -

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 66

Arm Non-Confidential

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

(ASIMD store, writeback
form)

- (1) - Add I 1

Table 35: AArch32 ASIMD store instructions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

ASIMD store, 1 element,
multiple, 1 reg

VST1 2 2 L, V -

ASIMD store, 1 element,
multiple, 2 reg

VST1 2 2 L, V -

ASIMD store, 1 element,
multiple, 3 reg

VST1 3 2/3 L, V -

ASIMD store, 1 element,
multiple, 4 reg

VST1 3 1/2 L, V -

ASIMD store, 1 element,
one lane

VST1 4 2 V, L -

ASIMD store, 2 element,
multiple, 2 reg

VST2 4 1 V, L -

ASIMD store, 2 element,
multiple, 4 reg

VST2 5 1/2 V, L -

ASIMD store, 2 element,
one lane

VST2 4 2 V, L -

ASIMD store, 3 element,
multiple, 3 reg

VST3 5 2/3 V, L -

ASIMD store, 3 element,
one lane, size 32

VST3 4 1 V, L -

ASIMD store, 3 element,
one lane, size 8/16

VST3 4 1 V, L -

ASIMD store, 4 element,
multiple, 4 reg

VST4 8 1/2 V, L -

ASIMD store, 4 element,
one lane, size 32

VST4 7 2 V, L -

ASIMD store, 4 element,
one lane, size 8/16

VST4 7 2 V, L -

(ASIMD store, writeback
form)

- (1) - +I 1

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 66

Arm Non-Confidential

Note:
1. Writeback forms of store instructions require an extra µOP to update the base address.

This update is typically performed in parallel with the store µOP (update latency shown in
parentheses).

3.20 Cryptography extensions
Table 36: AArch64 Cryptography extensions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

Crypto AES ops AESD, AESE,
AESIMC,
AESMC

2 1 V0 -

Crypto polynomial
(64x64) multiply long

PMULL (2) 2 1 V0 -

Crypto SHA1 hash
acceleration op

SHA1H 2 1 V0 -

Crypto SHA1 hash
acceleration ops

SHA1C,
SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1
schedule acceleration
ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256
schedule acceleration
ops

SHA256SU0,
SHA256SU1

2 1 V0 -

Table 37: AArch32 Cryptography extensions

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Crypto AES ops AESD, AESE,
AESIMC,
AESMC

2 1 V0 1

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Instruction characteristics

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 66

Arm Non-Confidential

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

Crypto polynomial
(64x64) multiply long

VMULL.P64 2 1 V0 -

Crypto SHA1 hash
acceleration op

SHA1H 2 1 V0 -

Crypto SHA1 hash
acceleration ops

SHA1C,
SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1 schedule
acceleration ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256
schedule acceleration
ops

SHA256SU0
,
SHA256SU1

2 1 V0 -

Note:
1. Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs

will exhibit the performance characteristics described in Section 4.6.

3.21 CRC
Table 38: AArch64 CRC

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipeline
s

Notes

CRC checksum ops CRC32,
CRC32C 2 1 M 1

Table 39: AArch32 CRC

Instruction Group AArch32
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Note
s

CRC checksum ops CRC32,
CRC32C 2 1 M 1

Note:
1. CRC execution supports late forwarding of the result from a producer µOP to a consumer

µOP. This results in a 1 cycle reduction in latency as seen by the consumer.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 66

Arm Non-Confidential

 Special considerations
4.1 Dispatch constraints
Dispatch of uops from the in-order portion to the out-of-order portion of the microarchitecture
includes a number of constraints. It is important to consider these constraints during code
generation in order to maximize the effective dispatch bandwidth and subsequent execution
bandwidth of Neoverse N1.

The dispatch stage can process up to 4 Mops per cycle and dispatch up to 8 uops per cycle, with
the following limitations on the number of uops of each type that may be simultaneously
dispatched.

 Up to 2 uops utilizing B pipeline

 Up to 4 uops utilizing S pipelines

 Up to 2 uops utilizing M pipeline

 Up to 2 uops utilizing each of the V pipelines.

 Up to 2 uops utilizing each of the L pipelines

In the event there are more uops available to be dispatched in a given cycle than can be
supported by the constraints above, uops will be dispatched in oldest to youngest age-order to
the extent allowed by the above.

4.2 Dispatch stall
In the event of a V-pipeline µOP containing more than 1 quad-word register source, a portion
or all of which was previously written as one or multiple single words, that µOP will stall in
dispatch for three cycles. This stall occurs only on the first such instance, and subsequent
consumers of the same register will not experience this stall.

4.3 Optimizing general-purpose register spills and fills
Register transfers between general-purpose registers (GPR) and ASIMD registers (VPR) are
lower latency than reads and writes to the cache hierarchy, thus it is recommended that GPR
registers be filled/spilled to the VPR rather to memory, when possible.

4.4 Optimizing memory copy
To achieve maximum throughput for memory copy (or similar loops), one should do the
following.

 Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.

 Use discrete, non-writeback forms of load and store instructions while interleaving them.

 Align stores on 16B boundary wherever possible.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 66

Arm Non-Confidential

 The following examples show the recommended instruction sequence for a long memory
copy in AArch64 state

For forward copies:

 Loop_start:
 SUBS X2,X2,#96
 LDP Q3,Q4,[x1,#0]
 STP Q3,Q4,[x0,#0]
 LDP Q3,Q4,[x1,#32]
 STP Q3,Q4,[x0,#32]
 LDP Q3,Q4,[x1,#64]
 STP Q3,Q4,[x0,#64]
 ADD X1,X1,#96
 ADD X0,X0,#96
 BGT Loop_start

For backward copies:

Loop_start:
 SUBS X2,X2,#96
 LDP Q4,Q3,[x1,#-32]
 STR Q3,,[x0,#-16]
 STR Q4,,[x0,#-32]
 LDP Q4,Q3,[x1,#-64]
 STR Q3,[x0,#-48]
 STR Q4,[x0,#-64]
 LDP Q4,Q3,[x1,#-96]
 STR Q3,[x0,#-80]
 STR Q4,[x0,#-96]
 SUB X1,X1,#96
 SUB X0,X0,#96
 BGT Loop_start

A recommended copy routine for AArch32 would look like the sequence above but would use
LDRD/STRD instructions. Avoid load-/store-multiple instruction encodings (such as LDM and
STM).

4.5 Load/Store alignment
The Armv8.2-A architecture allows many types of load and store accesses to be arbitrarily
aligned. The Neoverse N1 handles most unaligned accesses without performance penalties.
However, there are cases which reduce bandwidth or incur additional latency, as described
below.

 Load operations that cross a cache-line (64-byte) boundary.

 Quad-word load operations that are not 4B aligned.

 Store operations that cross a 16B boundary.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 66

Arm Non-Confidential

4.6 Store to Load Forwarding
Under most circumstances, the Neoverse N1 processor implements an optimization known as
store to load forwarding (STLF). This optimization allows load operations to a memory address
which has recently been written to forward directly from an internal processor data structure,
reducing load latency times.

On Neoverse N1, this optimization is effective where data of size Z bytes is stored at an
address X, and read back at address X + Y, where Y is 0 or a multiple of Z/2.

For example, if a four byte store is written at address 0x100 followed by a two byte load from
address 0x102, STLF will be effective. However, if the same store is followed by a two byte load
starting at 0x101, STLF will not trigger.

Consequently, stores and loads that are aligned to addresses that match the data size they
write or read will more frequently satisfy the STLF conditions.

To enable the store to load forwarding optimization, it is recommended that data expected to
be read back with close temporal locality is written and read at element aligned addresses.

4.7 AES encryption/decryption
Neoverse N1 can issue one AESE/AESMC/AESD/AESIMC instruction every cycle (fully
pipelined) with an execution latency of two cycles. This means encryption or decryption for at
least two data chunks should be interleaved for maximum performance:

AESE data0, key0

AESMC data0, data0

AESE data1, key0

AESMC data1, data1

AESE data0, key1

AESMC data0, data0

AESE data1, key1

AESMC data1, data1

...

Pairs of dependent AESE/AESMC and AESD/AESIMC instructions are higher performance
when they are adjacent in the program code and both instructions use the same destination
register.

4.8 Region based fast forwarding
The forwarding logic in the V pipelines is optimized to provide optimal latency for instructions
which are expected to commonly forward to one another. The effective latency of FP and
ASIMD instructions as described in section 3 is increased by one cycle if the producer and
consumer instructions are not part of the same forwarding region. These optimized forwarding
regions are defined in the following table.

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 66

Arm Non-Confidential

Table 40: Optimized forwarding regions

Region Instruction Types Notes

1 ASIMD ALU, ASIMD shift, ASIMD/ scalar insert and move, ASIMD
abs/cmp/max/min and the ASIMD miscellaneous instructions in table
30 and table 31.

1

2 FP multiply, FP multiply-accumulate, FP compare, FP add/sub and the
ASIMD miscellaneous instructions in table 30 and table 31.

1,2,3

3 Crypto SHA1/SHA256.

Notes:
1. Reciprocal step and estimate instructions are excluded from this region.
2. ASIMD extract narrow, saturating instructions are excluded from this region.
3. ASIMD miscellaneous instructions can only be consumers of this region.

The following instructions are not a part of any region:
 FP div/sqrt
 FP convert and rounding
 ASIMD integer mul/mac
 ASIMD reduction.

In addition to the regions mentioned in the table above, all floating point and ASIMD
instructions can fast forward to FP and ASIMD stores.

More special notes about the forwarding region in table 40:

 Fast forwarding will not occur in AArch32 mode if the consuming register’s width is
greater than that of the producer.

 Element sources used by FP multiply and multiply-accumulate operations cannot be
consumers.

 Complex ASIMD shift by immediate/register and shift accumulate instructions cannot
be producers (see section 3.14) in region 1.

 ASIMD extract narrow, saturating instructions cannot be producers (see section 3.16)
in region 1.

 ASIMD absolute difference accumulate and pairwise add and accumulate instructions
cannot be producers (see section 3.14) in region 1.

 For FP producer-consumer pairs, the precision of the instructions should match (single,
double or half) in region 2.

 Pair-wise FP instructions cannot be producers or consumers in region 2.

It is not advisable to interleave instructions belonging to different regions. Also, certain
instructions can only be producers or consumers in a particular region but not both (see notes
for table 40). For example, the code below interleaves producers and consumers from regions 1
and 2. This will result in and additional latency of 1 cycle as seen by FMUL.

FSUB v27.2s, v28.2s, v20.2s – Region 2
FADD v20.2s, v28.2s, v20.2s – Region 2
MOV v27.s[1], v20.s[1] - Region 2 producer but not a region 2 consumer

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 66

Arm Non-Confidential

FMUL v26.2s, v27.2s, v6.2s – Region 2

4.9 Branch instruction alignment
Branch instruction and branch target instruction alignment and density can affect performance.
For best-case performance, consider the following guidelines.

 Avoid placing more than 4 branch instructions within an aligned 32-byte instruction
memory region.

 When possible, a branch and its target should be located within the same 2M aligned
memory region.

Consider aligning subroutine entry points and branch targets to 32B boundaries, within the
bounds of the code-density requirements of the program. This will ensure that the subsequent
fetch can maximize bandwidth following the taken branch by bringing in all useful instructions

For loops which comprise 32 or fewer instruction bytes, it is preferred that the loop be located
entirely within a single aligned 32-byte instruction memory region.

4.10 FPCR self-synchronization
Programmers and compiler writers should note that writes to the FPCR register are self-
synchronizing, i.e. its effect on subsequent instructions can be relied upon without an
intervening context synchronizing operation.

4.11 Special register access
The Neoverse N1 performs register renaming for general purpose registers to enable
speculative and out-of-order instruction execution. But most special-purpose registers are not
renamed. Instructions that read or write non-renamed registers are subjected to one or more
of the following additional execution constraints.

 Non-Speculative Execution – Instructions may only execute non-speculatively.

 In-Order Execution – Instructions must execute in-order with respect to other similar
instructions or in some cases all instructions.

 Flush Side-Effects – Instructions trigger a flush side-effect after executing for
synchronization.

The table below summarizes various special-purpose register read accesses and the associated
execution constraints or side-effects.

Table 41: Special-purpose register read accesses

Register Read Non-Speculative In-
Order

Flush Side-Effect Notes

APSR Yes Yes No 3

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 66

Arm Non-Confidential

Register Read Non-Speculative In-
Order

Flush Side-Effect Notes

CurrentEL No Yes No -

DAIF No Yes No -

DLR_EL0 No Yes No -

DSPSR_EL0 No Yes No -

ELR_* No Yes No -

FPCR No Yes No -

FPSCR Yes Yes No 2

FPSR Yes Yes No 2

NZCV No No No 1

SP_* No No No 1

SPSel No Yes No -

SPSR_* No Yes No -

Note:

1. The NZCV and SP registers are fully renamed.

2. FPSR/FPSCR reads must wait for all prior instructions that may update the status flags to
execute and retire.

3. APSR reads must wait for all prior instructions that may set the Q bit to execute and
retire.

The table below summarizes various special-purpose register write accesses and the associated
execution constraints or side-effects.

Table 42: Special-purpose register write accesses

Register Write Non-Speculative In-
Order

Flush Side-Effect Notes

APSR Yes Yes No 4

DAIF Yes Yes No -

DLR_EL0 Yes Yes No -

DSPSR_EL0 Yes Yes No -

ELR_* Yes Yes No -

FPCR Yes Yes Maybe 2

FPSCR Yes Yes Maybe 2, 3

FPSR Yes Yes No 3

NZCV No No No 1

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 66

Arm Non-Confidential

Register Write Non-Speculative In-
Order

Flush Side-Effect Notes

SP_* No No No 1

SPSel Yes Yes Yes -

SPSR_* Yes Yes No -

Note:

1. The NZCV and SP registers are fully renamed.

2. If the FPCR/FPSCR write is predicted to change the control field values, it will introduce a
barrier which prevents subsequent instructions from executing. If the FPCR/FPSCR
write is predicted to not change the control field values, it will execute without a barrier
but trigger a flush if the values change.

3. FPSR/FPSCR writes must stall at dispatch if another FPSR/FPSCR write is still pending.

4. APSR writes that set the Q bit will introduce a barrier which prevents subsequent
instructions from executing until the write completes.

4.12 Register forwarding hazards
The Armv8-A architecture allows FP/ASIMD instructions to read and write 32-bit S-registers.
In AArch32, Each S-register corresponds to one half (upper or lower) of an overlaid 64-bit D-
register. A Q register in turn consists of two overlaid D register. Register forwarding hazards
may occur when one µOP reads a Q-register operand that has recently been written with one
or more S-register result. Consider the following scenario.

 VADD S0, S1, S2

 VADD Q6, Q5, Q0

The first instruction writes S0, which correspond to the lowest part of Q0. The second
instruction then requires Q0 as an input operand. In this scenario, there is a RAW dependency
between the first and the second instructions. In most cases, Neoverse N1 performs slightly
worse in such situations.

Neoverse N1 is able to avoid this register-hazard condition for certain cases. The following
rules describe the conditions under which a register-hazard can occur.

 The producer writes an S-register (not a D[x] scalar)

 The consumer reads an overlapping Q-register (not as a D[x] scalar)

 The consumer is a FP/ASIMD µOP (not a store or MOV µOP)

To avoid unnecessary hazards, it is recommended that the programmer use D[x] scalar writes
when populating registers prior to ASIMD operations. For example, either of the following
instruction forms would safely prevent a subsequent hazard.

VLD1.32 D0[x], [address]

VADD Q1, Q0, Q2F

Arm® Neoverse™ N1 Software Optimization Guide PJDOC-466751330-9707
Issue 4.0

Special considerations

Copyright © 2018-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 66

Arm Non-Confidential

4.13 IT blocks
The Armv8-A architecture performance deprecates some uses of the IT instruction in such a
way that software may be written using multiple naïve single instruction IT blocks. It is
preferred that software instead generate multi instruction IT blocks rather than single
instruction blocks.

