
AMBA® DTI
Protocol Specification
Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0088G (ID062824)

AMBA DTI
Protocol Specification

Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this specification:

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm Limited ("Arm"). No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether the subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data. This document was produced using reasonable efforts based on information available as of the date
of issue of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm's view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and that
you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning your
products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible for
any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED "AS IS". ARM
PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Change history

Date Issue Confidentiality Change

18 November 2016 0000-00 Non-Confidential Edition 0 (First release)

09 May 2017 0000-01 Non-Confidential Edition 1

11 September 2017 0000-02 Non-Confidential Edition 2

13 July 2018 0000-03 Non-Confidential Edition 3

27 August 2020 E Non-Confidential Addition of v2 protocols

16 June 2021 E.b Non-Confidential Technical corrections

28 September 2023 F Non-Confidential DTI-TBU protocol: This issue is a standalone document for the
DTI-TBUv3 protocol. Information on DTI-TBUv1 and DTI-TBUv2 is not
included in this issue. For DTI-TBUv1 and DTI-TBUv2, see Arm
Developer, https://developer.arm.com/documentation.

DTI-ATS protocol: This issue describes DTI-ATSv1, DTI-ATSv2, and
DTI-ATSv3 protocols.

28 June 2024 G Non-Confidential Support for DTI-TBUv4 and DTI-ATSv4, and other technical corrections.
ii Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Reference by Arm to any third party's products or services within this document is not an express or implied approval or
endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use, duplication, or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to
Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes
to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners.

Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
PRE-21451 version 3
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. iii
ID062824 Non-Confidential

AMBA SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT ("LICENCE") IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED ("ARM") FOR THE USE OF ARM'S
INTELLECTUAL PROPERTY (INCLUDING, WITHOUT LIMITATION, ANY COPYRIGHT) IN THE RELEVANT AMBA
SPECIFICATION ACCOMPANYING THIS LICENCE. ARM LICENSES THE RELEVANT AMBA SPECIFICATION TO
YOU ON CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY CLICKING "I AGREE" OR
OTHERWISE USING OR COPYING THE RELEVANT AMBA SPECIFICATION YOU INDICATE THAT YOU AGREE TO
BE BOUND BY ALL THE TERMS OF THIS LICENCE.

"LICENSEE" means You and your Subsidiaries.
"Subsidiary" means, if You are a single entity, any company the majority of whose voting shares is now or hereafter owned or
controlled, directly or indirectly, by You. A company shall be a Subsidiary only for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, Arm hereby grants to LICENSEE a perpetual, non-exclusive,
non-transferable, royalty free, worldwide licence to:

(i) use and copy the relevant AMBA Specification for the purpose of developing and having developed products
that comply with the relevant AMBA Specification;

(ii) manufacture and have manufactured products which either: (a) have been created by or for LICENSEE under
the licence granted in Clause 1(i); or (b) incorporate a product(s) which has been created by a third party(s)
under a licence granted by Arm in Clause 1(i) of such third party's AMBA Specification Licence; and

(iii) offer to sell, sell, supply or otherwise distribute products which have either been (a) created by or for
LICENSEE under the licence granted in Clause 1(i); or (b) manufactured by or for LICENSEE under the
licence granted in Clause 1(ii).

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

(i) where a product created under Clause 1(i) is an integrated circuit which includes a CPU then either: (a) such
CPU shall only be manufactured under licence from Arm; or (b) such CPU is neither substantially compliant
with nor marketed as being compliant with the Arm instruction sets licensed by Arm from time to time;

(ii) the licences granted in Clause 1(iii) shall not extend to any portion or function of a product that is not itself
compliant with part of the relevant AMBA Specification; and

(iii) no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any Arm
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause
1 be construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any Arm
technology except the relevant AMBA Specification.

4. THE RELEVANT AMBA SPECIFICATION IS PROVIDED "AS IS" WITH NO REPRESENTATION OR
WARRANTIES EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
OF SATISFACTORY QUALITY, MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE, OR THAT ANY USE OR IMPLEMENTATION OF SUCH ARM TECHNOLOGY WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL
PROPERTY RIGHTS.

5. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, TO THE
FULLEST EXTENT PETMITTED BY LAW, THE MAXIMUM LIABILITY OF ARM IN AGGREGATE FOR ALL
CLAIMS MADE AGAINST ARM, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE
SUBJECT MATTER OF THIS AGREEMENT (INCLUDING WITHOUT LIMITATION (I) LICENSEE'S USE OF THE
ARM TECHNOLOGY; AND (II) THE IMPLEMENTATION OF THE ARM TECHNOLOGY IN ANY PRODUCT
CREATED BY LICENSEE UNDER THIS AGREEMENT) SHALL NOT EXCEED THE FEES PAID (IF ANY) BY
LICENSEE TO ARM UNDER THIS AGREEMENT. THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT
WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

6. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the Arm
tradename, or AMBA trademark in connection with the relevant AMBA Specification or any products based thereon.
Nothing in Clause 1 shall be construed as authority for LICENSEE to make any representations on behalf of Arm in respect
of the relevant AMBA Specification.

7. This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights if
LICENSEE is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to You. You may terminate this Licence at any time. Upon expiry or termination
of this Licence by You or by Arm LICENSEE shall stop using the relevant AMBA Specification and destroy all copies of
the relevant AMBA Specification in your possession together with all documentation and related materials. Upon expiry
or termination of this Licence, the provisions of clauses 6 and 7 shall survive.
iv Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

8. The validity, construction and performance of this Agreement shall be governed by English Law.

PRE-21451 version 3

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. v
ID062824 Non-Confidential

vi Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Contents
AMBA DTI Protocol Specification

Preface
About this specification .. xii

Intended audience ... xii
Using this specification .. xii
Conventions ... xii
Typographic conventions ... xii
Signals .. xiii
Numbers ... xiii

Additional reading ... xiv
Arm publications ... xiv
Other publications ... xiv

Feedback on this specification .. xv
Inclusive language commitment .. xv

Chapter 1 Introduction
1.1 About DTI protocols ... 1-18

1.1.1 Protocol interaction .. 1-18
1.1.2 Field references ... 1-19

1.2 DTI protocol specification terminology ... 1-20

Chapter 2 DTI Protocol Overview
2.1 DTI protocol messages .. 2-24

2.1.1 Message groups .. 2-24
2.1.2 Message listing .. 2-24
2.1.3 Flow control .. 2-27
2.1.4 Reserved fields .. 2-27
2.1.5 Reserved encodings .. 2-27
2.1.6 IMPLEMENTATION DEFINED fields ... 2-27
2.1.7 Ignored fields ... 2-27
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. vii
ID062824 Non-Confidential

2.2 Managing DTI connections .. 2-28
2.2.1 Channel states ... 2-28
2.2.2 Handshaking .. 2-28
2.2.3 Initialization and disconnection .. 2-30
2.2.4 Connecting multiple TBUs or PCIe RPs to a TCU 2-30

Chapter 3 DTI-TBU Messages
3.1 Connection and disconnection message group ... 3-32

3.1.1 DTI_TBU_CONDIS_REQ .. 3-32
3.1.2 DTI_TBU_CONDIS_ACK ... 3-34

3.2 Translation request message group ... 3-37
3.2.1 DTI_TBU_TRANS_REQ .. 3-37
3.2.2 DTI_TBU_TRANS_RESP .. 3-41
3.2.3 DTI_TBU_TRANS_RESPEX ... 3-55
3.2.4 DTI_TBU_TRANS_FAULT .. 3-57
3.2.5 Additional rules on permitted translation responses 3-59
3.2.6 Calculating transaction attributes ... 3-60
3.2.7 Speculative transactions and translations .. 3-64
3.2.8 Cache lookup process ... 3-65

3.3 Invalidation and synchronization message group .. 3-66
3.3.1 DTI_TBU_INV_REQ .. 3-66
3.3.2 DTI_TBU_INV_ACK ... 3-69
3.3.3 DTI_TBU_SYNC_REQ .. 3-69
3.3.4 DTI_TBU_SYNC_ACK ... 3-70
3.3.5 DTI-TBU invalidation sequence ... 3-70
3.3.6 DTI-TBU invalidation operations .. 3-73

3.4 Register access message group .. 3-81
3.4.1 DTI_TBU_REG_WRITE ... 3-81
3.4.2 DTI_TBU_REG_WACK ... 3-82
3.4.3 DTI_TBU_REG_READ .. 3-82
3.4.4 DTI_TBU_REG_RDATA .. 3-83
3.4.5 Deadlock avoidance in register accesses .. 3-84

3.5 Message dependencies for DTI-TBU ... 3-85

Chapter 4 DTI-ATS Messages
4.1 Connection and disconnection message group ... 4-88

4.1.1 DTI_ATS_CONDIS_REQ .. 4-88
4.1.2 DTI_ATS_CONDIS_ACK ... 4-90

4.2 Translation request message group ... 4-94
4.2.1 DTI_ATS_TRANS_REQ .. 4-94
4.2.2 DTI_ATS_TRANS_RESP .. 4-97
4.2.3 DTI_ATS_TRANS_FAULT ... 4-103
4.2.4 The ATS translation sequence ... 4-105

4.3 Invalidation and synchronization message group .. 4-107
4.3.1 DTI_ATS_INV_REQ .. 4-107
4.3.2 DTI_ATS_INV_ACK ... 4-109
4.3.3 DTI_ATS_INV_COMP ... 4-110
4.3.4 DTI_ATS_SYNC_REQ .. 4-111
4.3.5 DTI_ATS_SYNC_ACK ... 4-112
4.3.6 The DTI-ATS invalidation sequence .. 4-113
4.3.7 DTI-ATS invalidation operations .. 4-114

4.4 Page request message group .. 4-117
4.4.1 DTI_ATS_PAGE_REQ .. 4-117
4.4.2 DTI_ATS_PAGE_ACK ... 4-119
4.4.3 DTI_ATS_PAGE_RESP .. 4-120
4.4.4 DTI_ATS_PAGE_RESPACK ... 4-122
4.4.5 Generating the page response .. 4-123

4.5 Message dependencies for DTI-ATS ... 4-124
viii Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 5 Transport Layer
5.1 Introduction .. 5-128
5.2 AXI4-Stream transport protocol .. 5-129

5.2.1 AXI4-Stream signals .. 5-129
5.2.2 Interleaving .. 5-130
5.2.3 Usage of the TID and TDEST signals .. 5-130

Chapter 6 Pseudocode
6.1 Memory attributes .. 6-132

6.1.1 Memory attribute types .. 6-132
F.1.2 Memory attribute decoding .. 6-133
6.1.3 Memory attribute processing .. 6-134

6.2 Cache lookup ... 6-138
6.2.1 MatchTranslation ... 6-138
6.2.2 MatchFault ... 6-139
6.2.3 PermissionCheck ... 6-139
6.2.4 Shared pseudocode ... 6-140

Appendix A Revisions
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ix
ID062824 Non-Confidential

x Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Preface

This preface introduces the AMBA Distributed Translation Interface protocol specification.

It contains the following sections:

• About this specification on page xii

• Additional reading on page xiv

• Feedback on this specification on page xv
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. xi
ID062824 Non-Confidential

 Preface
 About this specification
About this specification

This specification describes the AMBA Distributed Translation Interface (DTI) protocol. It includes information on
DTI messages, caching model, transport layer, and the pseudocode that describes various features of the DTI
protocol.

Intended audience

This specification is intended for the following audiences:

• Root Complex designers implementing ATS functionality.

• Designers of components implementing TBU functionality.

Using this specification

This specification is organized into the following chapters:

Chapter 1 Introduction

This chapter introduces the DTI protocol.

Chapter 2 DTI Protocol Overview

This chapter provides an overview of the DTI protocol.

Chapter 3 DTI-TBU Messages

This chapter describes the message groups of the DTI-TBU protocol.

Chapter 4 DTI-ATS Messages

This chapter describes the message groups of the DTI-ATS protocol.

Chapter 5 Transport Layer

This chapter describes the transport layer of the DTI protocol.

Chapter 6 Pseudocode

This chapter provides example implementations of the requirements specified in this specification.

Appendix A Revisions

Information about the technical changes between released issues of this specification.

Conventions

The following sections describe conventions that this specification can use:

• Typographic conventions

• Signals on page xiii

• Numbers on page xiii

Typographic conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, and indicates internal
cross-references and citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings.
xii Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

 Preface
 About this specification
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Lowercase x At the second letter of a signal name denotes a collective term for both Read and Write.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example, 0xFFFF0000.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. xiii
ID062824 Non-Confidential

 Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm. See Arm Developer, https://developer.arm.com/documentation
for access to Arm documentation.

Arm publications
• AMBA® LTI Protocol Specification (ARM IHI 0089)

• Arm® System Memory Management Unit Architecture Specification SMMU architecture version 3 (ARM IHI
0070)

• AMBA® AXI-Stream Protocol Specification (ARM IHI 0051)

Other publications
• PCI Express Base Specification, Revision 6, PCI-SIG

• Compute Express Link Specification, Compute Express LinkTM Consortium, Inc., Revision 3
xiv Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

 Preface
 Feedback on this specification
Feedback on this specification

Arm welcomes feedback on its documentation.

If you have any comments or suggestions for additions and improvements, create a ticket at
https://support.developer.arm.com. As part of the ticket, please include:

• The title, AMBA DTI Protocol Specification.

• The number, ARM IHI 0088G.

• The page number(s) that your comments apply.

• A concise explanation of your comments.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find
offensive terms in this document, please contact terms@arm.com.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. xv
ID062824 Non-Confidential

 Preface
 Feedback on this specification
xvi Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 1
Introduction

This chapter introduces the DTI protocol.

It contains the following sections:

• About the DTI protocols on page 1-18

• DTI protocol specification terminology on page 1-20
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 1-17
ID062824 Non-Confidential

1 Introduction
1.1 About the DTI protocols
1.1 About the DTI protocols

This section introduces the AMBA Distributed Translation Interface (DTI) protocols and describes the components
of a DTI-compliant implementation.

The DTI protocol is used by implementations of the Arm® System MMUv3 (SMMUv3) Architecture Specification.
An SMMUv3 implementation that is built using the DTI interface consists of the following components:

• A Translation Control Unit (TCU) that performs translation table walks and implements the SMMUv3
programmers' model.

• At least one Translation Buffer Unit (TBU). The TBU intercepts transactions in need of translation and
provides translations for them. The TBU requests translations from the TCU and caches those translations
for use by other transactions.
The TCU communicates with the TBU to invalidate cached translations when necessary.

• A PCI Express (PCIe) Root Port with Address Translation Services (ATS) support. For more information, see
the PCI Express Base Specification. When PCIe ATS functionality is required, this component communicates
directly with the TCU to retrieve ATS translations, and then uses a TBU to:

— Translate transactions that have not already been translated using ATS.

— Perform stage 2 translation for transactions that have been subject to stage 1 translation using ATS.

— Ensure that only trusted PCIe endpoints can issue transactions with ATS translations, by performing
security checks on ATS translated traffic.

• A DTI interconnect that manages the communication between TBUs and the TCU, and between PCIe Root
Ports implementing ATS and the TCU.

This specification specifies two protocols, which have different purposes:

• DTI-TBU protocol defines communication between a TBU and a TCU.

• DTI-ATS protocol defines communication between a PCIe Root Port and a TCU.

These two protocols are collectively referred to as the DTI protocol. The current versions of the DTI protocol are
as follows:

DTI-TBUv1 Describes DTI-TBU version 1.

DTI-TBUv2 Describes DTI-TBU version 2.

DTI-TBUv3 Describes DTI-TBU version 3.

DTI-TBUv4 Describes DTI-TBU version 4.

DTI-ATSv1 Describes DTI-ATS version 1.

DTI-ATSv2 Describes DTI-ATS version 2.

DTI-ATSv3 Describes DTI-ATS version 3.

DTI-ATSv4 Describes DTI-ATS version 4.

Note

This specification does not describe DTI-TBUv1 and DTI-TBUv2. For information on these versions, see Arm
Developer, https://developer.arm.com/documentation.

1.1.1 Protocol interaction

The DTI protocol is a point-to-point protocol. Each channel consists of a link between a TBU or PCIe Root Port
implementing ATS, and a TCU.

Components using the SMMU must provide the correct StreamID and SubstreamID. For ATS translated
transactions, a PCIe Root Port must provide additional information.
1-18 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

1 Introduction
1.1 About the DTI protocols
Figure 1-1 shows an example SMMU system that implements DTI.

Figure 1-1 An example SMMU system

Figure 1-1 includes the necessary components of a DTI-compliant implementation. However, DTI connections can
cover large distances across an SoC. Most implementations do not include a standalone SMMU component. DTI
allows an implementation to distribute the functions of the SMMU across the SoC with TBUs located close to the
devices that require translation.

It is possible for a device to implement its own TBU functionality. This allows the following behavior:

• A device can incorporate advanced or specialized prefetching or translation caching requirements that cannot
be met by a general-purpose TBU design.

• A device that can require a fully coherent connection to the memory interconnect and require very low
latency translation. For fully coherent operations, all caches in the device must be tagged with physical
addresses. This requires that translation is performed before the first level of caching. In such systems, the
translation must be fast and is normally tightly integrated into the design of the device.

1.1.2 Field references

The behavior or values returned by the component sometimes depends on previous messages. Since some message
pairs have the same field names, it is necessary to specify which message has the field (FIELD) being referenced.
Fields from the corresponding message (MSG) are referenced as MSG.FIELD. Fields from the message are
referenced as FIELD, without the qualifier.

Memory interconnect

Other device

Memory and other devices

TBU TBU

TCU

PCIe Root Port with ATS

Untranslated transactions Untranslated transactions and
ATS translated transactions

DTI

DTI-TBU DTI-TBU

Table walks

Translated
transactions

Translated
transactions

Transactions

DTI interconnect

DTI-ATS

SMMU

Invalidates Configuration
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 1-19
ID062824 Non-Confidential

1 Introduction
1.2 DTI protocol specification terminology
1.2 DTI protocol specification terminology

This document uses the following terms and abbreviations.

ASID

Address Space ID, distinguishing TLB entries for separate address spaces. For example, address
spaces of different PE processes are distinguished by ASID.

ATS

PCI Express term, Address Translation Services, which are provided for remote endpoint TLBs.

Downstream

A direction of information flow where the information is flowing away from the TBU or the Root
Complex.

DTI-ATSv1

Describes characteristics of DTI-ATS version 1.

DTI-ATSv2

Describes characteristics of DTI-ATS version 2.

DTI-ATSv3

Describes characteristics of DTI-ATS version 3.

DTI-ATSv4

Describes characteristics of DTI-ATS version 4.

DTI-TBUv1

Describes characteristics of DTI-TBU version 1.

DTI-TBUv2

Describes characteristics of DTI-TBU version 2.

DTI-TBUv3

Describes characteristics of DTI-TBU version 3.

DTI-TBUv4

Describes characteristics of DTI-TBU version 4.

E2H

EL2 Host mode. The Virtualization Host Extensions, introduced in the Arm Architecture Reference
Manual for A-profile architecture, Issue B, extend the EL2 translation regime providing
ASID-tagged translations.

Endpoint

A PCI Express function, which is used in the context of a device that is a client of the SMMU.

HTTU

Hardware Translation Table Update. The act of updating the Access flag or Dirty state of a page in
a given TTD that is automatically done in hardware on an access or write to the corresponding page.

IMPLEMENTATION DEFINED

Means that the behavior is not architecturally defined but must be defined and documented by
individual implementations.

IPA

Intermediate Physical Address
1-20 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

1 Introduction
1.2 DTI protocol specification terminology
PA

Physical Address

PASID

PCI Express term: Process Address Space ID, an endpoint-local ID. There might be many distinct
uses of a specific PASID value in a system.

PCI

Peripheral Component Interconnect specification

PCIe

PCI Express

PCIe Root Complex

A PCIe System Element that includes at least one Host Bridge, Root Port, or Root Complex
Integrated Endpoint.

PCIe RP

A port on a PCIe Root Complex

PRI

ATS Page Request Interface mechanism

SMMU

System MMU. Unless otherwise specified, this term is used to mean SMMUv3.

StreamWorld

SMMUv3 translations have a StreamWorld property that denotes the translation regime and is
directly equivalent to an Exception level on a PE.

StreamID

A StreamID uniquely identifies a stream of transactions that can originate from different devices but
are associated with the same context.

SubstreamID

A SubstreamID might optionally be provided to an SMMU implementing stage 1 translation.

The SubstreamID differentiates streams of traffic originating from the same logical block to
associate different application address translations to each.

Upstream

A direction of information flow where the information is flowing towards the TBU or Root
Complex.

VA

Virtual address

VMID

Virtual Machine ID, distinguishing TLB entries for addresses from separate virtual machines.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 1-21
ID062824 Non-Confidential

1 Introduction
1.2 DTI protocol specification terminology
1-22 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 2
DTI Protocol Overview

This chapter is an overview of the DTI protocol. It contains the following sections:

• DTI protocol messages on page 2-24

• Managing DTI connections on page 2-28
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 2-23
ID062824 Non-Confidential

2 DTI Protocol Overview
2.1 DTI protocol messages
2.1 DTI protocol messages

This section contains the following subsections:

• Message groups

• Message listing

• Flow control on page 2-27

• Reserved fields on page 2-27

• IMPLEMENTATION DEFINED fields on page 2-27

2.1.1 Message groups

DTI protocol messages are grouped according to function. Table 2-1 shows the DTI message groups:

2.1.2 Message listing

DTI messages are fixed length and have a whole number of bytes in size. The transport medium must preserve the
correct number of bytes for each message.

The four least significant bits of every message are used to encode the message type.

Some message types include a protocol field. In that case, the message is identified by the combination of its
message type and protocol field values.

The message type encodings are defined independently for upstream and downstream messages.

Table 2-1 Message groups of the DTI Protocol

Message group
Direction of
first message

DTI-TBU protocol function
DTI-ATS protocol
function

Connection and
disconnection

Downstream Establishes or terminates the
connection.

Establishes or terminates
the connection.

Translation
request

Downstream Retrieves a non-ATS
translation.

Performs permission checks and
stage 2 translations, if necessary,
on translations that have been
translated by ATS.

Performs Granule Protection
Checks (GPC).

Retrieves an ATS
translation.
Performs GPC.

Invalidation and
synchronization

Upstream Invalidates cached translations. Invalidates cached ATS
translations.

Page request Downstream - Requests that pages are
available using the ATS
Page Request Interface
(PRI) mechanism.

Register access Upstream Provides access to local
IMPLEMENTATION DEFINED
registers.

-

2-24 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

2 DTI Protocol Overview
2.1 DTI protocol messages
DTI-TBU protocol downstream messages

Table 2-2 shows the downstream messages of the DTI-TBU protocol.

DTI-TBU protocol upstream messages

Table 2-3 shows the upstream messages of the DTI-TBU protocol.

Table 2-2 DTI-TBU protocol downstream messages

Message group Message
M_MSG_TYPE field
encoding

Message length in
bits

Connection and
disconnection

DTI_TBU_CONDIS_REQ 0x0 32

Translation request DTI_TBU_TRANS_REQ 0x2 160

Invalidation and
synchronization

DTI_TBU_INV_ACK 0x4 8

DTI_TBU_SYNC_ACK 0x5 8

Register access DTI_TBU_REG_WACK 0x6 8

DTI_TBU_REG_RDATA 0x7 64

IMPLEMENTATION
DEFINED

- 0xE -

- 0xF -

Table 2-3 DTI-TBU protocol upstream messages

Message group Message
S_MSG_TYPE field
encoding

Message length
in bits

Connection and
disconnection

DTI_TBU_CONDIS_ACK 0x0 32

Translation request DTI_TBU_TRANS_FAULT 0x1 32

DTI_TBU_TRANS_RESP 0x2 160

DTI_TBU_TRANS_RESPEX 0x3 192

Invalidation and
synchronization

DTI_TBU_INV_REQ 0x4 128

DTI_TBU_SYNC_REQ 0x5 8

Register access DTI_TBU_REG_WRITE 0x6 64

DTI_TBU_REG_READ 0x7 32

IMPLEMENTATION
DEFINED

- 0xE -

- 0xF -
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 2-25
ID062824 Non-Confidential

2 DTI Protocol Overview
2.1 DTI protocol messages
DTI-ATS protocol downstream messages

Table 2-4 shows the downstream messages of the DTI-ATS protocol.

DTI-ATS protocol upstream message

Table 2-5 shows the upstream messages of the DTI-ATS protocol.

IMPLEMENTATION DEFINED messages

Messages with bits [3:0] equal to 0xE or 0xF can be used for IMPLEMENTATION DEFINED purposes.

Table 2-4 DTI-ATS protocol downstream message

Message group Message
M_MSG_TYPE field
encoding

Message
length in bits

Connection and
disconnection

DTI_ATS_CONDIS_REQ 0x0 32

Translation request DTI_ATS_TRANS_REQ 0x2 160

Invalidation and
synchronization

DTI_ATS_INV_ACK 0xC 8

DTI_ATS_INV_COMPa

a. DTI-ATSv3 or later

0xB 96

DTI_ATS_SYNC_ACK 0xD 8

Page request DTI_ATS_PAGE_REQ 0x8 128

DTI_ATS_PAGE_RESPACKb

b. DTI-ATSv2 or later

0x9 8

IMPLEMENTATION
DEFINED

- 0xE -

- 0xF -

Table 2-5 DTI-ATS protocol upstream messages

Message group Message
S_MSG_TYPE field
encoding

Message length
in bits

Connection and
disconnection

DTI_ATS_CONDIS_ACK 0x0 32

Translation request DTI_ATS_TRANS_FAULT 0x1 32

DTI_ATS_TRANS_RESP 0x2 160

Invalidation and
synchronization

DTI_ATS_INV_REQ 0xC 128

DTI_ATS_SYNC_REQ 0xD 8

Page request DTI_ATS_PAGE_ACK 0x8 8

DTI_ATS_PAGE_RESP 0x9 96

IMPLEMENTATION
DEFINED

- 0xE -

- 0xF -
2-26 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

2 DTI Protocol Overview
2.1 DTI protocol messages
IMPLEMENTATION DEFINED messages must only be exchanged between components that are designed to expect
them when in permitted channel states. See Channel states on page 2-28.

The mechanism for discovering this, if required, is IMPLEMENTATION DEFINED.

2.1.3 Flow control

The DTI protocol uses tokens to provide flow control. The tokens are used to manage the number of messages of
different types that can be outstanding at a point in time.

The DTI protocol uses the following types of tokens:

Translation tokens

Used in translation requests to limit the number of outstanding translation requests.

Invalidation tokens

Used in invalidation messages to limit the number of outstanding invalidation requests.

Request messages consume tokens and response messages return them. See Flow control result section of respective
message. If a response message is received over multiple cycles, then the token is only returned when the complete
message has been received.

IDs are used to track some outstanding messages. A new request message cannot reuse an ID until a response
message with that ID is received. If a response message is received over multiple cycles when the width of DTI
interface is narrower than width of the response message, then the ID can only be reused when the complete message
has been received. If a request message has multiple response messages associated with it, then the ID can only be
reused when the final response message has been received. More details can be found in the Flow control result
section of each message.

Note

The only response message that is not the final response message is DTI_TBU_TRANS_FAULT with
FAULT_TYPE = TranslationStall.

2.1.4 Reserved fields

Reserved fields in messages are described as either Should-Be-Zero (SBZ) or Should-Be-One (SBO).

The recipient of a message with Reserved fields must ignore these fields. It is recommended that the sender drive a
Reserved field to 0 if it is described as SBZ, and 1 if it is described as SBO.

2.1.5 Reserved encodings

When a field is not Reserved but it has Reserved encodings, it is a protocol error to use a Reserved encoding.

2.1.6 IMPLEMENTATION DEFINED fields

Some message fields are defined as being IMPLEMENTATION DEFINED. These fields can be used by implementations
for any defined purpose.

These fields are treated as Reserved by components that do not require them.

2.1.7 Ignored fields

If a message has Ignored fields, the sender can drive any value to these fields, and the recipient must ignore these
fields.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 2-27
ID062824 Non-Confidential

2 DTI Protocol Overview
2.2 Managing DTI connections
2.2 Managing DTI connections

This section contains the following subsections:

• Channel states

• Handshaking

• Initialization and disconnection on page 2-30

• Connecting multiple TBUs or PCIe RPs to a TCU on page 2-30

2.2.1 Channel states

The four possible states of a DTI channel are:

DISCONNECTED

The TBU or PCIe RP might be powered down. A TCU must always be able to accept a Connect
Request whenever a TBU or PCIe RP is powered up and able to send one. The method that is used
to meet this requirement is outside the scope of this specification.

REQ_CONNECT

The TBU or PCIe RP has issued a Connect Request. The TCU must provide a handshaking response
to either establish or reject the connection.

CONNECTED

The channel is connected.

REQ_DISCONNECT

The TBU or PCIe RP has issued a Disconnect Request. The TCU issues a Disconnect Accept in
response.

2.2.2 Handshaking

On power up, the channel is initially in the DISCONNECTED state. Figure 2-1 on page 2-29 shows how the
channel state changes in response to connect and disconnect messages.
2-28 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

2 DTI Protocol Overview
2.2 Managing DTI connections
Figure 2-1 Handshake accept

Alternatively, a Connect Request might be denied, as shown in Figure 2-2.

Figure 2-2 Handshake deny

A Connect Deny indicates a system failure, for example, due to a badly configured system. Subsequent attempts to
connect are also likely to be denied until there is a system configuration change.

DISCONNECTED

REQ_CONNECT

CONNECTED

REQ_DISCONNECT

Connect Accept

Disconnect Request

Disconnect Accept

DISCONNECTED

DISCONNECTED

REQ_CONNECT

CONNECTED

REQ_DISCONNECT

DISCONNECTED

Connect Request

TBU or PCIe RP TCU

DISCONNECTED

REQ_CONNECT

Connect Deny

DISCONNECTED

DISCONNECTED

REQ_CONNECT

DISCONNECTED

Connect Request

TBU or PCIe RP TCU
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 2-29
ID062824 Non-Confidential

2 DTI Protocol Overview
2.2 Managing DTI connections
Table 2-6 describes the connection or disconnection messages that are permitted in each channel state.

Channel behavior in the REQ_DISCONNECT state

When the channel is in the REQ_DISCONNECT state:

• Any outstanding invalidation or synchronization responses are not returned. All invalidation requests are
considered to be completed when the TBU or PCIe RP enters DISCONNECTED state and invalidates its
caches.

• Outstanding register access responses, DTI_TBU_REG_RDATA or DTI_TBU_REG_WACK, are not
returned.

• Outstanding DTI_ATS_PAGE_RESPACK messages are not returned.

• The TBU or PCIe RP must continue to accept protocol-appropriate requests from the TCU. No response is
given to the requests, and they can be ignored.

2.2.3 Initialization and disconnection

When the TBU enters the DISCONNECTED state, all state information is lost, including cache and register
contents. The TBU must invalidate its caches before entering CONNECTED state. The TCU must reinitialize any
necessary register contents after the connection handshake.

The DTI channel must not be disconnected while ATS is enabled in any PCIe Endpoint. DTI-ATS has no register
messages.

2.2.4 Connecting multiple TBUs or PCIe RPs to a TCU

A DTI channel is a point-to-point link between a single TBU or PCIe RP and a single TCU. If a TCU is connected
to multiple physical TBUs or PCIe RPs using a single interface, then each has its own DTI channel.

Therefore:

• If a TCU is required to send a message to multiple TBUs or PCIe RPs, then it must issue multiple messages.

• Each channel has its own flow control tokens.

• Outstanding message IDs, for example DTI_TBU_TRANS_REQ.TRANSLATION_ID, are specific to a
channel. Multiple channels can have messages outstanding with the same ID at the same time.

• A DTI channel has a single connection state. It cannot be connected as both DTI-TBU and DTI-ATS at the
same time.

Table 2-6 Connection or disconnection messages permitted in each channel state

Channel state
Downstream permitted
messages

Upstream permitted
messages

DISCONNECTED Connect Request only None

REQ_CONNECT None Connect Accept or Connect Deny

CONNECTED Any, subject to the protocol rules Any, subject to the protocol rules

REQ_DISCONNECT None Any, subject to the protocol rules
2-30 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 3
DTI-TBU Messages

This chapter describes the message groups of the DTI-TBU protocol.

It contains the following sections:

• Connection and disconnection message group on page 3-32

• Translation request message group on page 3-37

• Invalidation and synchronization message group on page 3-66

• Register access message group on page 3-81
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-31
ID062824 Non-Confidential

3 DTI-TBU Messages
3.1 Connection and disconnection message group
3.1 Connection and disconnection message group

The DTI-TBU protocol is designed to enable a single TCU to connect to multiple TBUs implementing different
versions of the DTI-TBU.

However, it is expected that all TBUs connected to a TCU use the same version of DTI-TBU. This is because the
SMMU architecture does not permit TBUs in the same implementation to have different feature sets.

• If using SMMUv3.2, it is required that all TBUs support DTI-TBUv2 or later.

• If using SMMU extensions for RME or RME Device Assignment, it is required that all TBUs support
DTI-TBUv3 or later.

This section contains the following subsections:

• DTI_TBU_CONDIS_REQ

• DTI_TBU_CONDIS_ACK on page 3-34

3.1.1 DTI_TBU_CONDIS_REQ

The DTI_TBU_CONDIS_REQ message is used to initiate a connection or disconnection handshake.

Description

Connection state change request.

Source

TBU

Usage constraints

The TBU can only send a disconnect request when:

• The channel is in the CONNECTED state.

• There are no outstanding translation requests.

• The conditions for completing any future invalidation and synchronization are met. In
practice, the result is that all downstream transactions must be complete.

The TBU can only send a connect request when the channel is in the DISCONNECTED state.

Flow control result

None

Field descriptions

The DTI_TBU_CONDIS_REQ bit assignments are:

TOK_TRANS_REQ[11:8], bits [31:28]

TOK_TRANS_REQ[7:0] is bits [19:12].

The meaning of this field depends on the value of the STATE field.

STATE = 0

This field indicates the number of translation tokens returned.

The number of translation tokens returned is equal to the value of this field
plus one.

This field must be the value of TOK_TRANS_GNT that was received in the
DTI_TBU_CONDIS_ACK message that acknowledged the connection of
the channel.

7 6 5 4 3 2 1 0 LSB

IMP DEF M_MSG_TYPE

24
16
8
0

TOK_INV_GNT
TOK_TRANS_REQ[3:0] VERSION
Reserved PROTOCOL STATE

SUP_REG
TOK_TRANS_REQ[7:4]

TOK_TRANS_REQ[11:8] SPDSTAGES
3-32 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.1 Connection and disconnection message group
STATE = 1

This field indicates the number of translation tokens requested.

The number of translation tokens requested is equal to the value of this field
plus one.

STAGES, bits [27:26]

This field indicates the security stages. STAGES[1:0] is encoded as follows:

0b00 M: SMMUv3 defined translation stages only

0b01 MG: SMMUv3 defined translation stages, plus Granule Protection Checks
(GPC)

0b10 G: GPC only

0b11 Reserved

When STATE is 0, this field is ignored.

SPD, bit [25]

Same Power Domain (SPD). This extension is micro-architectural to make it easier to
integrate power control.

0 The TBU and TCU are in different power domains.

1 The TBU and TCU are in the same power domain.

When STATE is 0, this field is ignored.

Note
This field is Reserved in versions prior to DTI-TBUv3 and will be ignored by TCUs that
do not support DTI-TBUv3 and DTI-TBUv4.

SUP_REG, bit [24]

This field indicates when register accesses are supported.

0 Register accesses are not supported.

1 Register accesses are supported.

When STATE is 1 and the value of this bit is 0, the TCU must not issue DTI_TBU
register access messages on this channel.

When STATE is 0, this field is ignored.

TOK_INV_GNT, bits [23:20]

This field indicates the number of invalidation tokens granted.

The number of invalidation tokens granted is equal to the value of this field plus one.

This field is ignored when the STATE field has a value of 0.

TOK_TRANS_REQ[7:0], bits [19:12]

See TOK_TRANS_REQ[11:8], bits [31:28].

VERSION, bits [11:8]

This field identifies the requested protocol version.

0b0000 DTI-TBUv1

0b0001 DTI-TBUv2

0b0010 DTI-TBUv3

0b0011 DTI-TBUv4

All other encodings are for future protocol versions and are currently not defined.

Note
This specification describes only DTI-TBUv3 and DTI-TBUv4. For information on
DTI-TBUv1 and DTI-TBUv2, see Arm Developer,
https://developer.arm.com/documentation.

A TBU can request any protocol version it supports. A DTI-TBU TCU must process
requests for all protocol versions, including those not yet defined.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-33
ID062824 Non-Confidential

3 DTI-TBU Messages
3.1 Connection and disconnection message group
The DTI_TBU_CONDIS_ACK message indicates the protocol version to use.

IMPLEMENTATION DEFINED, bit [7]

IMPLEMENTATION DEFINED

Bit [6]

Reserved, SBZ

PROTOCOL, bit [5]

This bit identifies the protocol that is used by this TBU.

0 DTI-TBU

This bit must be 0.

STATE, bit [4]

This bit identifies the new channel state requested.

0 Disconnect request

1 Connect request

A Disconnect request can only be issued when the channel is in the CONNECTED state.

A Connect request can only be issued when the channel is in the DISCONNECTED
state.

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-25.

0b0000 DTI_TBU_CONDIS_REQ

3.1.2 DTI_TBU_CONDIS_ACK

The DTI_TBU_CONDIS_ACK message is used to accept or deny a request as part of the connection or
disconnection handshake process.

Description

A connection state change acknowledgment.

Source

TCU

Usage constraints

The TBU must have previously issued an unacknowledged DTI_TBU_CONDIS_REQ message.

Flow control result

None

Field descriptions

The DTI_TBU_CONDIS_ACK bit assignments are:

TOK_TRANS_GNT[11:8], bits [31:28]

TOK_TRANS_GNT[7:0] is bits [19:12].

This field indicates the number of preallocated tokens for translation requests that have
been granted. The number of translation tokens granted is equal to the value of this field
plus one.

When the value of STATE is 1, the value of this field must equal the value of the

IMP DEF Reserved

24
16
8
0

7 6 5 4 3 2 1 0 LSB
TOK_TRANS_GNT[11:8]

TOK_TRANS_GNT[3:0] VERSION
S_MSG_TYPESTATE

TOK_TRANS_GNT[7:4]OAS[2:0] Reserved
OAS[3]Reserved
3-34 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.1 Connection and disconnection message group
TOK_TRANS_REQ field in the DTI_TBU_CONDIS_REQ message that initiated the
connection.

When the value of STATE is 0, this field is ignored.

Bits [27:25]

Reserved, SBZ

OAS, bits [24:21]

This indicates the output address size, which is the maximum address size permitted for
translated addresses.

0b0000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are Reserved.

The TBU must ensure that the output address does not exceed the OAS.

Bit [20]

Reserved, SBZ

TOK_TRANS_GNT[7:0], bits [19:12]

See TOK_TRANS_GNT[11:8], bits [31:28].

VERSION, bits [11:8]

The protocol version that is granted by the TCU.

0b0000 DTI-TBUv1

0b0001 DTI-TBUv2

0b0010 DTI-TBUv3

0b0011 DTI-TBUv4

All other encodings are Reserved.

The value of this field must not be greater than the value of the VERSION field in the
DTI_TBU_CONDIS_REQ Connect Request message.

Note
This specification describes only DTI-TBUv3 and DTI-TBUv4. For information on
DTI-TBUv1 and DTI-TBUv2, see Arm Developer,
https://developer.arm.com/documentation.

IMPLEMENTATION DEFINED, bit [7]

IMPLEMENTATION DEFINED

Bits [6:5]

Reserved, SBZ

STATE, bit [4]

Identifies the new state. The possible values of this bit are:

0 DISCONNECTED

1 CONNECTED

When the value of STATE in the unacknowledged DTI_TBU_CONDIS_REQ message
is 0, the value of this bit must be 0.

When the value of STATE in the unacknowledged DTI_TBU_CONDIS_ REQ message
is 1, this field can be 0 or 1 where value 0 denies the connection and value 1 accepts the
connection.

For example, it can be 0 if there are no translation tokens available. This normally
indicates a serious system configuration failure.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-35
ID062824 Non-Confidential

3 DTI-TBU Messages
3.1 Connection and disconnection message group
S_MSG_TYPE, bits [3:0]

Identifies the message type. The value of this field is taken from the list of encodings
for upstream messages, see DTI-TBU protocol upstream messages on page 2-25.

0b0000 DTI_TBU_CONDIS_ACK
3-36 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
3.2 Translation request message group

The DTI-TBU translation request messages enable the TBU to find the translation for a given transaction, or
prefetch a translation. The TCU responds with either a successful translation or a fault.

Note

Unless the description indicates otherwise, behavior and reference to DTI_TBU_TRANS_RESP and
DTI_TBU_TRANS_RESPEX messages are equivalent.

This section contains the following subsections:

• DTI_TBU_TRANS_REQ

• DTI_TBU_TRANS_RESP on page 3-41

• DTI_TBU_TRANS_RESPEX on page 3-55

• DTI_TBU_TRANS_FAULT on page 3-57

• Additional rules on permitted translation responses on page 3-59

• Calculating transaction attributes on page 3-60

• Speculative transactions and translations on page 3-64

• Cache lookup process on page 3-65

3.2.1 DTI_TBU_TRANS_REQ

The DTI_TBU_TRANS_REQ message is used to initiate a translation request.

Description

A translation request.

Source

TBU

Usage constraints

The TBU must have at least one translation token.

Flow control result

The TBU consumes a translation token.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-37
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Field descriptions

The DTI_TBU_TRANS_REQ bit assignments are:

IA, bits [159:96]

This field holds the input address, IA[63:0], to be used in the translation.

SSID, bits [95:76]

This field indicates the SubstreamID value that is used for the translation.

When the value of SSV is 0, this field is Reserved, SBZ.

When MMUV is 0, SSID is Reserved, SBZ.

IMPLEMENTATION DEFINED, bit [75:72]

IMPLEMENTATION DEFINED

FLOW[1], bit [71]

FLOW[0] is bit [22]. This field indicates the translation flow required.

0b00 Stall

If enabled, the SMMU stall fault flow can be used for this request.

A translation request can only be stalled by the TCU if FLOW = Stall.

Selecting FLOW = Stall does not cause a stall to occur. A stall only occurs
if software enables stall faulting for the translation context.

0b01 ATST

The transaction has been translated by ATS.

When FLOW = ATST, it indicates that this transaction was the result of a
previous ATS translation request made using DTI-ATS.

0b10 NoStall

If a translation fault occurs, then even if the SMMU has enabled stall
faulting for this translation context, a fault response is returned without
dependence on software activity.

0b11 PRI

If a translation fault occurs, a fault response is returned indicating that a PRI
request might resolve the fault. Architecturally, the request is treated as an
ATS request and translation faults do not result in an event record. This
option is for use by PCIe enumerated endpoints.

PRI requests must be sent using a DTI-ATS connection. There is no
mechanism to issue a PRI request from a DTI-TBU connection.

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0QOS M_MSG_TYPE

TRANSLATION_ID[7: 0]
PERM[1] SSV PnUFLOW[0] SEC_SID[0] PERM[0] InD PROTOCOL

Reserved

NS

SID

IMP DEFSSID[3:0]

SSID[19:4]

IA

TRANSLATION_ID[11:8]

FLOW[1]

NSESEC_SID[1]IDENT

MMUVReserved REQEX
3-38 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
Note
If FLOW = PRI and PERM = SPEC, then translation faults are reported as NonAbort.
For more information, see FAULT_TYPE field in DTI_TBU_TRANS_FAULT on
page 3-57.

When MMUV is 0, FLOW is Reserved, SBZ.

Bit [70]

Reserved, SBZ

MMUV, bit [69]

When MMUV is 0, no SMMU stage 1 or 2 checking is performed, only the Realm
Management Extension (RME) Granule Protection Check is performed.
When DTI_TBU_CONDIS_REQ.STAGES is G, MMUV must be 0.

When DTI_TBU_CONDIS_REQ.STAGES is M, MMUV must be 1.

Note
When MMUV = 0, a translation can be requested where REQ.IA exceeds
DTI_TBU_CONDIS_ACK.OAS. The TCU must return a fault in this case, similar to
the behavior with BYPASS responses.

Rules dependent on the value of fields that are Reserved when MMUV = 0, are valid
only when MMUV = 1.

REQEX, bit [68]

This field controls whether the TCU can return a DTI_TBU_TRANS_RESPEX
response.

When REQEX = 0, the translation response cannot be DTI_TBU_TRANS_RESPEX.

When REQEX = 1, the translation response can be DTI_TBU_TRANS_RESPEX.

The response is never required by DTI to be DTI_TBU_TRANS_RESPEX. It can
always be DTI_TBU_TRANS_RESP or DTI_TBU_TRANS_FAULT.

Bits [67:64]

Reserved, SBZ

SID, bits [63:32]

This field indicates the StreamID value that is used for the translation.

When MMUV is 0, SID is Reserved, SBZ.

TRANSLATION_ID[11:8], bits [31:28]

TRANSLATION_ID[7:0] is bits [15:8].

This field gives the identification number of this translation.

The value of this field must not be in use by any translation request that has not yet
received a DTI_TBU_TRANS_RESP or DTI_TBU_TRANS_FAULT with
FAULT_TYPE != TranslationStall response.

Any 12-bit translation ID can be used, if the maximum number of outstanding
translation requests is not exceeded.

IDENT, bit [27]

This field indicates whether an identity translation is required.

When IDENT is 1, DTI_TBU_TRANS_RESP.OA must always be equal to IA.

The encodings of IDENT are as follows:

0 Identity translation is not required.

1 Identity translation is required.

When IDENT is 1, FLOW must be ATST.

When MMUV is 0, IDENT is Reserved, SBZ.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-39
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
SEC_SID[1], bit [26]

This field indicates the Security states of StreamID. The encodings of SEC_SID[1:0]
are as follows:

0b00 Non-secure

0b01 Secure

0b10 Realm

0b11 Reserved

When DTI_TBU_CONDIS_REQ.STAGES is M, SEC_SID must be Non-secure or
Secure.

When MMUV is 0, SEC_SID is Reserved, SBZ.

If FLOW = ATST, SEC_SID must be Non-secure or Realm.

NSE, bit [25]

{NSE, NS} indicates the physical address space of the untranslated transaction. For
more information, see NS, bit [24].

NS, bit [24]

{NSE, NS} indicates the physical address space of the untranslated transaction. The
encodings of {NSE, NS} are as follows:

0b00 Secure

0b01 Non-secure

0b10 Root

0b11 Realm

When MMUV is 1 and SEC_SID is Non-secure, {NSE,NS} must be Non-secure.
When MMUV is 1 and SEC_SID is Secure, {NSE,NS} must be Non-secure or Secure.
When MMUV is 1 and SEC_SID is Realm, {NSE,NS} must be Non-secure or Realm.

PERM[1], bit [23]

PERM[1] and PERM[0] indicate permissions a translation request requires to avoid
causing a permission fault.

The encoding of PERM[1:0] is:

0b00 W: Write permission required.

0b01 R: Read permission required.

0b11 SPEC: Neither permission required. The translation request is speculative
and cannot cause a permission fault.

0b10 RW: Read and write permission required.

FLOW[0], bit [22]

See FLOW[1], bit [71].

SSV, bit [21]

This bit indicates whether a valid SSID field is associated with this translation.

0 The SSID field is not valid.

1 The SSID field is valid.

When the value of FLOW is ATST, this bit must be 0.

When MMUV is 0, SSV is Reserved, SBZ.

SEC_SID[0], bit [20]

To see the encodings of SEC_SID[1:0], please refer to SEC_SID[1], bit [26].

PERM[0], bit [19]

See PERM[1], bit [23].

InD, bit [18]

This bit indicates whether the transaction is an instruction access or data access.

0 Data access

1 Instruction access
3-40 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
When the value of PERM[1:0] is W, RW, or SPEC, this bit must be 0.

When MMUV is 0, InD is Reserved, SBZ.

When FLOW is ATST, this bit must be 0.

PnU, bit [17]

This bit indicates whether this transaction represents privileged or unprivileged access.

0 Unprivileged

1 Privileged

When the value of PERM[1:0] is SPEC, this bit must be 0.

When MMUV is 0, PnU is Reserved, SBZ.

When FLOW is ATST, this bit must be 0.

PROTOCOL, bit [16]

This bit indicates the protocol that is used for this message.

0 DTI-TBU

This bit must be 0.

TRANSLATION_ID[7:0], bits [15:8]

See TRANSLATION_ID[11:8], bits [31:28].

QOS, bits [7:4]

This field indicates the Quality of Service priority level.

Translation requests with a high QOS value are likely to be responded to before the
requests with a lower QOS value.

This field is a hint.

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-25.

0b0010 DTI_TBU_TRANS_REQ

3.2.2 DTI_TBU_TRANS_RESP

The DTI_TBU_TRANS_RESP message is used to respond to a successful translation request.

The TCU can only return this message when permission is granted for the transaction that is described in the
translation request. If permission is not granted, a DTI_TBU_TRANS_FAULT response must be issued. For more
information, see Faulting expressions of the translation request message on page 3-59.

Description

A DTI translation response.

Source

TCU

Usage constraints

The TBU must have previously issued a translation request that has not yet generated either a
translation response or a fault message with FAULT_TYPE != TranslationStall.

Flow control result

The TCU returns a translation token to the TBU.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-41
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Field descriptions

The DTI_TBU_TRANS_RESP bit assignments are:

IMPLEMENTATION DEFINED, bits [159:156]

IMPLEMENTATION DEFINED

PARTID[3:0], bits [155:152]

MPAM PARTID[3:0]

When DTI_TBU_TRANS_REQ.MMUV is 0, PARTID must be 0.

PARTID[7:4], bits [151:148]

MPAM PARTID[7:4].
When DTI_TBU_TRANS_REQ.MMUV is 0, PARTID must be 0.

OA, bits [147:108]

This field holds the output address, OA[51:12], of the translated address.

Bits within the range given by TRANS_RNG must match
DTI_TBU_TRANS_REQ.IA. For example, if the value of TRANS_RNG is 2, then
OA[15:12] must match DTI_TBU_TRANS_REQ.IA[15:12].

When the value of BYPASS is 1, this field must equal the value of IA in the translation
request.

The address in this field must be within the range indicated by the OAS field of the
DTI_TBU_CONDIS_ACK message received during the connection sequence.

PARTID[8], bit [107]

MPAM PARTID[8].
When DTI_TBU_TRANS_REQ.MMUV is 0, PARTID must be 0.

PMG, bit [106]

MPAM PMG.
When DTI_TBU_TRANS_REQ.MMUV is 0, PMG must be 0.

SH, bits [105:104]

This field indicates the Shareability of the translation.

0b00 Non-shareable

0b01 Reserved

0b10 Outer Shareable

0b11 Inner Shareable

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32

24
16
8
0

IMP DEF

INVAL_RNG TRANS_RNG

OA[51:48]

HWATTR

TRANSLATION_ID[3:0]

OA[15:12] SH

OA[47:16]

ASID or ATTR_OVR

VMID

ATTR

S_MSG_TYPE
TRANSLATION_ID[7:4]

ALLOCCFG

CONT[2:0]
PRIVCFG STRW or BP_TYPE

INSTCFG
DCP

ALLOW_URALLOW_UXALLOW_PX or
ALLOW_NSXNS

DRE
COMB_MT

GLOBAL

DO_NOT_CACHE

ALLOW_UWALLOW_PW ALLOW_PRTBI

ASET
BYPASS CONT[3]

MPAMNS

PARTID[3:0]
PARTID[7:4]

PARTID[8] PMG

TRANSLATION_ID[11:8] COMB_SHCOMB_ALLOC

NSEMPAMNSEPARTID[9] Reserved
3-42 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
Note
This value represents the Shareability attribute that is stored in the translation tables. In
some cases, the resulting Shareability of the translation might be different from the
value that is shown here. For more information, see Consistency check on combination
of translation attributes on page 3-64.

When the value of BYPASS is 1, this field is Reserved, SBZ.

ATTR, bits [103:96]

This field indicates the translation attributes.

Bits [103:100] are encoded as:

0b0000 Device memory. See encoding of bits [99:96] for the device memory type.

0b00RW When RW is not 00, this field is Normal Memory, Outer Write-Through
transient.

0b0100 Normal Memory, Outer Non-cacheable

0b01RW When RW is not 00 this field is Normal Memory, Outer Write-back
transient.

0b10RW Normal Memory, Outer Write-Through non-transient

0b11RW Normal Memory, Outer Write-back non-transient

Where R is the Outer Read-Allocate Policy and W is the Outer Write-Allocate Policy.

The meaning of bits [99:96] depends on the value of bits [103:100]:

Where R is the Inner Read-Allocate Policy and W is the Inner Write-Allocate Policy.

The R and W bits have the following encoding:

0 Do not allocate.

1 Allocate

When the value of BYPASS is 1, this field is Reserved, SBZ.

HWATTR, bits [95:92]

This field gives IMPLEMENTATION DEFINED hardware attributes from the translation
tables. These are otherwise known as Page-Based Hardware Attributes (PBHA).

Bits that are not enabled for use by hardware must be 0.

If a TCU does not support this feature, it can return 0 for this field.

Table 3-1 ATTR encoding bits [99:96]

Bits [99:96] When [103:100] is 0b0000 When [103:100] is not 0b0000

0b0000 Device-nGnRnE memory Reserved

0b00RW, RW is not 0b00 Reserved Normal Memory, Inner Write-Through transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW is not 0b00 Reserved Normal Memory, Inner Write-back transient

0b1000 Device-nGRE memory Normal Memory, Inner Write-Through
non-transient (RW = 00)

0b10RW, RW is not 0b00 Reserved Normal Memory, Inner Write-Through
non-transient

0b1100 Device-GRE memory Normal Memory, Inner Write-back
non-transient (RW = 00)

0b11RW, RW is not 0b00 Reserved Normal Memory, Inner Write-back
non-transient
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-43
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
When DTI_TBU_TRANS_REQ.MMUV is 0, HWATTR is Reserved, SBZ.

Bit [91]

DTI-TBUv3

Reserved, SBZ

DTI-TBUv4

MPAM PARTID[9]
When DTI_TBU_TRANS_REQ.MMUV is 0, PARTID must be 0.

Bit [90]

Reserved, SBZ

MPAMNSE, bit [89]

{MPAMNSE, MPAMNS} indicates the PARTID space. For more information, see
MPAMNS, bit [73].

NSE, bit [88]

{NSE, NS} indicates the physical address space of the translated transaction. For more
information, see NS, bit [70].

INVAL_RNG, bits [87:84]

This field indicates the range of addresses for invalidation.

0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b1010 64GB

0b1011 512GB

0b1000 4TB

All other values are Reserved.

The value of this field might be different from the value of the TRANS_RNG field in
either of the following cases:

• When two stage translation is used, and the range of the stage 1 translation is
larger than the range of the stage 2 translation range. In this case, this field
represents the stage 1 translation range and TRANS_RNG represents the stage 2
translation range.

• When the CONT bit is set in a translation table entry. The CONT bit increases
the address range of the translation but is not required to affect the address range
that is used by invalidations.

If an invalidation request is received, this translation must be invalidated when both of
the following conditions exist:

• The properties of this transaction match the invalidation request properties.

• The address to be invalidated falls inside the range that is specified by this field.

When the value of the BYPASS field is 1, this field is Reserved, SBZ.

The range given by this field must not be greater than the size indicated by the OAS field
of the DTI_TBU_CONDIS_ACK message. For example, if the OAS is 4GB, this field
must indicate a range of 1GB or less.

TRANS_RNG, bits [83:80]

The meaning of TRANS_RNG does not depend on BYPASS.

This field indicates the aligned range of addresses that this translation is
valid for:

0b0000 4KB

0b0001 16KB
3-44 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b0111 16GB

0b1010 64GB

0b1011 512GB

0b1000 4TB

0b1111 The full address range provided in
DTI_TBU_CONDIS_ACK.OAS.

All other values are Reserved.

When BYPASS is 1 and BP_TYPE is DPTBypass, TRANS_RNG must not be 0b1111.

When BYPASS is 0, TRANS_RNG must not be 0b1111.
When DTI_TBU_CONDIS_REQ.STAGES is M and BYPASS is 1, then TRANS_RNG
must be 0b1111.

A cache entry matches future transactions irrespective of input PAS if TRANS_RNG
== 0b1111, and BP_TYPE == GlobalBypass.

A cache entry matches future transactions with the same input PAS as
DTI_TBU_TRANS_REQ.{NSE,NS} if either of the following is true:

• TRANS_RNG != 0b1111

• BYPASS == 1 and BP_TYPE == StreamBypass

This field must not be greater than the size indicated by the OAS field of the
DTI_TBU_CONDIS_ACK message received during the connecting sequence. For
example, if the value of the OAS field is 4GB, this field must indicate a range of 1GB
or less.

TRANSLATION_ID [11:8], bits [79:76]

This field gives the identification number for the translation. This field must have a
value corresponding to an outstanding translation request.

COMB_ALLOC, bit [75]

This field indicates how the translation allocation hints should be handled:

0 The allocation hints in the ATTR field override the transaction attributes.

1 The allocation hints in the ATTR field are combined with the transaction
attributes.

When BYPASS is 0 and STRW is EL1_S2, COMB_ALLOC must be 1.

When BYPASS is 1, COMB_ALLOC is Reserved, SBZ.

For more information, see Calculating transaction attributes on page 3-60.

COMB_SH, bit [74]

This field indicates how the translation Shareability should be handled:

0 The Shareability in the SH field overrides the transaction attributes.

1 The Shareability in the SH field is combined with the transaction attributes.

When BYPASS is 0 and STRW is EL1, EL2, or EL3, COMB_SH must be 0.

When BYPASS is 0 and STRW is EL1_S2, COMB_SH must be 1.

When BYPASS is 1, COMB_SH is Reserved, SBZ.

For more information, see Calculating transaction attributes on page 3-60.

MPAMNS, bit [73]

{MPAMNSE, MPAMNS} indicates the PARTID space. The encodings of
{MPAMNSE, MPAMNS} are as follows:

0b00 Secure

0b01 Non-secure
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-45
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
0b10 Root

0b11 Realm

When DTI_TBU_TRANS_REQ.MMUV is 0, {MPAMNSE,MPAMNS} must match
DTI_TBU_TRANS_REQ.{NSE, NS}.
When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID
is Non-secure, {MPAMNSE,MPAMNS} must be Non-secure.
When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID
is Secure, {MPAMNSE,MPAMNS} must be Non-secure or Secure.
When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID
is Realm, {MPAMNSE,MPAMNS} must be Non-secure or Realm.

For more information, see MPAMNSE, bit [89].

GLOBAL, bit [72]

This bit indicates that this result is valid for any ASID.

0 Non-global

1 Global

This bit might be 1 for either of the following reasons:

• The stage 1 translation table global attribute is set.

• Stage 1 translation is disabled or not supported.

When the value of STRW is EL3, this bit must be 1.

When the value of BYPASS is 1, this bit is Reserved, SBZ.

TBI, bit [71]

This bit indicates whether this translation applies to future transactions where the top
byte of the input address is different.

0 Subsequent transactions can only use this translation if IA[63:56] matches.

1 Subsequent transactions can use this translation regardless of the value of
IA[63:56].

When the value of BYPASS is 1, this bit is Reserved, SBZ.

NS, bit [70]

This bit indicates the physical address space (PAS) to be used for downstream
transactions. For more information, see NSE, bit [88].

The encodings of {NSE, NS} are as follows:

0b00 Secure

0b01 Non-secure

0b10 Root

0b11 Realm

When DTI_TBU_TRANS_REQ.MMUV is 1, DTI_TBU_TRANS_REQ.SEC_SID is
Non-secure, {NSE, NS} must be Non-secure.

When DTI_TBU_TRANS_REQ.MMUV is 1, DTI_TBU_TRANS_REQ.SEC_SID is
Secure, {NSE, NS} must be Non-secure or Secure.

When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID
is Realm, {NSE, NS} must be Non-secure or Realm.

When DTI_TBU_TRANS_REQ.MMUV is 1, DTI_TBU_TRANS_REQ.SEC_SID is
Secure, and BYPASS is 1:

• When NSCFG is Use Incoming, {NSE,NS} must equal
DTI_TBU_TRANS_REQ.{NSE,NS}.

• When NSCFG is Secure, {NSE,NS} must be Secure.

• When NSCFG is Non-secure, {NSE,NS} must be Non-secure.

When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID
is Realm and BYPASS is 1 and BP_TYPE is StreamBypass:

• When NSCFG = Use incoming, {NSE,NS} must equal
DTI_TBU_TRANS_REQ.{NSE,NS}.
3-46 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
• When NSCFG = Realm, {NSE,NS} must be Realm.

• When NSCFG = Non-secure, {NSE,NS} must be Non-secure.

When DTI_TBU_TRANS_REQ.MMUV is 0, then {NSE,NS} must match
DTI_TBU_TRANS_REQ.{NSE,NS}.

Note
When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID
is Realm and BYPASS is 1 and BP_TYPE is DPTBypass, {NSE,NS} is not affected by
NSCFG.

ALLOW_PX, bit [69] when BYPASS = 0

This bit indicates permissions for privileged instruction reads.

0 Not permitted

1 Permitted

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_NSX, bit [69] when BYPASS = 1

This bit indicates permissions for Non-secure instruction reads.

0 Not permitted

1 Permitted

Data accesses and Secure instruction reads are always permitted when the value of
BYPASS is 1.

This bit is related to the Secure Instruction Fetch (SIF) setting in the SMMU.

When the value of SEC_SID in the translation request message is Non-secure or Realm,
this field is Reserved, SBZ.

When DTI_TBU_TRANS_REQ.MMUV is 0, ALLOW_NSX is Reserved, SBZ.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_PW, bit [68]

This bit indicates permissions for privileged data write accesses.

0 Not permitted

1 Permitted

DTI-TBUv3

When BYPASS is 1, this field is Reserved, SBZ.

DTI-TBUv4

• When BYPASS is 1 and BP_TYPE != DPTBypass, this field is
Reserved, SBZ.

• When BYPASS is 1 and BP_TYPE = DPTBypass, ALLOW_UW
must be equal to the value of ALLOW_PW.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_PR, bit [67]

This bit indicates permissions for privileged data read accesses.

0 Not permitted

1 Permitted

When BYPASS is 1, this field is Reserved, SBZ.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_UX, bit [66]

This bit indicates permissions for unprivileged instruction reads.

0 Not permitted

1 Permitted
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-47
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
When the value of STRW is EL3, this bit must be equal to the value of ALLOW_PX.

When BYPASS is 1, this field is Reserved, SBZ.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_UW, bit [65]

This bit indicates permissions for unprivileged data write accesses.

0 Not permitted

1 Permitted

When the value of STRW is EL3, this bit must be equal to the value of ALLOW_PW.

DTI-TBUv3

When BYPASS is 1, this field is Reserved, SBZ.

DTI-TBUv4

• When BYPASS is 1 and BP_TYPE != DPTBypass, this field is
Reserved, SBZ.

• When BYPASS is 1 and BP_TYPE = DPTBypass, ALLOW_UW
must be equal to the value of ALLOW_PW.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_UR, bit [64]

This bit indicates permissions for unprivileged data read accesses.

0 Not permitted

1 Permitted

When the value of STRW is EL3, this bit must be equal to the value of ALLOW_PR.

When BYPASS is 1, this field is Reserved, SBZ.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ASID/ATTR_OVR, bits [63:48]

This field is ASID when the value of BYPASS is 0, and the value of STRW is not
EL1-S2.

Note
When the ASID field is valid, stage 1 translation is enabled, which overrides the
incoming attributes. Therefore, the ATTR_OVR field is unnecessary when the ASID
field is valid.

This field is ATTR_OVR when either of the following conditions are met:

• The value of BYPASS is 1.

• The value of BYPASS is 0 and the value of STRW is EL1-S2.

ASID

This field holds the ASID to be used for stage 1 translation.

When the value of STRW is EL3, this field must be 0.

ATTR_OVR

This field is used to override the incoming attributes.

When the value of FLOW is ATST in the DTI_TBU_TRANS_REQ
message, ATTR_OVR.MTCFG must be 0 and ATTR_OVR.SHCFG must
be 0b01. The effect of this encoding is to cause the incoming attributes to be
used, as stage 1 translation has already been performed.

This field might be combined with the ATTR and SH field to give different
values for the attributes of this translation. For more information about this
and the subfields of this field, see Calculating transaction attributes on
page 3-60.
3-48 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
When the value of MTCFG is 0, the MemAttr component of this field is
ignored.

When DTI_TBU_TRANS_REQ.MMUV is 0, ATTR_OVR is Reserved,
SBZ. The corresponding fields all behave according to the Use Incoming
encoding.

VMID, bits [47:32]

This field indicates the VMID value that is used for the translation.

When BYPASS is 0 and the value of STRW is either EL2 or EL3, this field must be 0.

When BYPASS is 1, this field is Reserved, SBZ.

ALLOCCFG, bits [31:28]

This field indicates the override for the allocation hints of incoming transactions.

For the encoding and the effects of this field Calculating transaction attributes on
page 3-60.

When DTI_TBU_TRANS_REQ.MMUV is 0, ALLOCCFG is Reserved, SBZ. The
corresponding fields all behave according to the Use Incoming encoding.

COMB_MT, bit [27]

This field indicates how the translation memory type and Cacheability should be
handled.

0 The memory type and Cacheability in the ATTR field override the
transaction attributes.

1 The memory type and Cacheability in the ATTR field are combined with the
transaction attributes.

When BYPASS is 1, COMB_MT is Reserved, SBZ.

When BYPASS is 0 and STRW is EL1, EL2, or EL3, COMB_MT must be 0. For more
information, see Calculating transaction attributes on page 3-60.

ASET, bit [26]

This bit indicates the Shareability of the ASID set.

0 Shared set

1 Non-shared set

Note
This field is still valid when the ASID value is not valid.

When BYPASS is 1, this field is Reserved, SBZ.

INSTCFG, bits [25:24]

This field is used to override the incoming InD values for the transaction.

0b00 Use incoming

0b01 Reserved

0b10 Data

0b11 Instruction

This field only applies to incoming reads. The overridden value is used for the
permission check and downstream transaction.

When DTI_TBU_TRANS_REQ.MMUV is 0, INSTCFG is Reserved, SBZ. The
corresponding fields all behave according to the Use Incoming encoding.

PRIVCFG, bits [23:22]

This field is used to override the incoming PnU values for the transaction.

0b00 Use incoming

0b01 Reserved

0b10 Unprivileged

0b11 Privileged

The overridden value is used for the permission check and downstream transaction.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-49
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
When DTI_TBU_TRANS_REQ.MMUV is 0, PRIVCFG is Reserved, SBZ. The
corresponding fields all behave according to the Use Incoming encoding.

DCP, bit [21]

This bit indicates whether directed cache prefetch hints are permitted.

0 Not permitted

1 Permitted

A directed cache prefetch hint is an operation that changes the cache allocation in a part
of the cache hierarchy that is not on the direct path to memory. For example, the
AMBA 5 WriteUniquePtlStash, WriteUniqueFullStash, StashOnceShared, and
StashOnceUnique transactions all perform a directed cache prefetch hint operation.

A directed cache prefetch without write data is permitted if the value of this bit is 1, and
any of read, write, or execute permissions are given by the appropriate fields in this
message at the appropriate privilege level.

A directed cache prefetch with write data is permitted if the value of this bit is 1, and
write permission is given by the appropriate fields in this message at the appropriate
privilege level.

If directed cache prefetch hints are not permitted, directed cache prefetch hints are
stripped from the transaction being translated. A directed cache prefetch with write data
is converted into an ordinary write, and a directed cache prefetch without write data is
terminated with a response indicating successful completion of the transaction. There is
no communication with the TCU to indicate that this conversion has occurred.

DTI-TBUv3

When the value of BYPASS is 1, this field is Reserved, SBZ, and directed
cache prefetches are permitted.

DTI-TBUv4

When the value of BYPASS is 1 and any of the following is true, this field
is Reserved, SBZ, and directed cache prefetches are permitted.

• BP_TYPE is GlobalBypass.

• BP_TYPE is StreamBypass and DTI_TBU_TRANS_REQ.FLOW
!= ATST.

DRE, bit [20]

This bit indicates whether destructive reads are permitted.

0 Not permitted

1 Permitted

A destructive read is permitted if the value of this bit is 1 and read and write permission
is given by the appropriate fields in this message at the appropriate privilege level.

Note
As there is no concept of an instruction write, destructive instruction reads are never
permitted.

If a destructive read is not permitted, and reads are permitted, then the read must be
converted into a non-destructive read.

For example, a MakeInvalid transaction must be converted into a CleanInvalid
transaction and a ReadOnceMakeInvalid transaction must be converted into a
ReadOnceCleanInvalid or ReadOnce transaction. There is no communication with the
TCU to indicate that this conversion has occurred.

DTI-TBUv3

When the value of BYPASS is 1, this field is Reserved, SBZ, and
destructive reads are permitted.
3-50 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
DTI-TBUv4

When the value of BYPASS is 1 and any of the following is true, this field
is Reserved, SBZ, and destructive reads are permitted.

• BP_TYPE is GlobalBypass.

• BP_TYPE is StreamBypass and DTI_TBU_TRANS_REQ.FLOW
!= ATST.

STRW, bits [19:18] when BYPASS = 0

These bits indicate the SMMU StreamWorld, which is the Exception level that is used
by the translation context.

0b00 EL1

0b01 EL1-S2

0b10 EL2

0b11 EL3

The permitted encodings of this field depend on the values of the
DTI_TBU_TRANS_REQ.SEC_SID and DTI_TBU_TRANS_REQ.FLOW fields in
the translation request:

• When DTI_TBU_TRANS_REQ.SEC_SID is Non-secure or Realm, this field is
not permitted to be EL3.

• When the value of DTI_TBU_TRANS_REQ.FLOW is ATST, this field must be
EL1-S2.

• When the value of DTI_TBU_TRANS_REQ.SSV is 1, this field must not be
EL1-S2.

• When DTI_TBU_CONDIS_REQ.STAGES is MG, STRW must not be EL3.

BP_TYPE, bits [19:18] when BYPASS = 1

This field has the following encodings:

• 0b00:

— DTI-TBUv3: Reserved

— DTI-TBUv4: DPTBypass

— Only permitted if DTI_TBU_TRANS_REQ.SEC_SID == Realm
and DTI_TBU_TRANS_REQ.FLOW == ATST.

— The translation can be used for future transactions with the same
values of DTI_TBU_TRANS_REQ.SEC_SID,
DTI_TBU_TRANS_REQ.SID, and
DTI_TBU_TRANS_REQ.FLOW == ATST.

• 0b01: GlobalBypass:

— Not permitted if DTI_TBU_TRANS_REQ.SEC_SID == Realm.

— The translation can be used for future transactions with the same values of
DTI_TBU_TRANS_REQ.SEC_SID and
DTI_TBU_TRANS_REQ.FLOW == ATST.

• 0b10: StreamBypass:

— Not permitted when DTI_TBU_TRANS_REQ.SSV == 1. The translation
can be used for future transactions with the same values of
DTI_TBU_TRANS_REQ.SEC_SID, DTI_TBU_TRANS_REQ.SID,
DTI_TBU_TRANS_REQ.SSV, and DTI_TBU_TRANS_REQ.FLOW ==
ATST.

• 0b11: Reserved

All Bypass translations are subject to the address range defined in TRANS_RNG.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-51
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Table 3-2 shows the fields of the translation request that must match for this translation
to apply to future transactions:

The GlobalBypass encoding might be used when either:

• A translation is requested when the value of SMMUEN in the SMMU is LOW
for the corresponding security level.

• A translation is requested with FLOW set to ATST and with the ATSCHK bit of
the SMMU set to clear for the corresponding security level.

• A translation is requested with MMUV set to LOW.

When DTI_TBU_TRANS_REQ.MMUV is 0, BP_TYPE must be GlobalBypass.

Summary of permitted translation response contexts

For each translation response, one of the following fields is valid that gives a context for
the response:

• DTI_TBU_TRANS_RESP.STRW

• DTI_TBU_TRANS_RESP.BPTYPE

• DTI_TBU_TRANS_FAULT.FAULT_TYPE

Table 3-3, Table 3-4 on page 3-53, and Table 3-5 on page 3-53 describe which of the
cacheable response contexts are permitted depending on the value of
DTI_TBU_TRANS_REQ.SEC_SID and whether DTI_TBU_TRANS_REQ.FLOW
== ATST.

When DTI_TBU_CONDIS_REQ.STAGES == MG &&
DTI_TBU_CONDIS_ACK.VERSION == DTI-TBUv3:

Table 3-2 Matching field values for future transactions

BP_TYPE MMUV SEC_SID FLOW = ATST SID SSV SSID

GlobalBypass with MMUV = 0 Yes No No No No No

GlobalBypass with MMUV = 1 Yes Yes Yes No No No

StreamBypass Yes - always 1 Yes Yes Yes Yes - always 0 No

DPTBypass Yes - always 1 Yes - always Realm Yes - always 1 Yes No No

Table 3-3 Summary of DTI-TBUv3 permitted translation response contexts when
DTI_TBU_CONDIS_REQ.STAGES = MG

SEC_SID Non-secure Secure Realm Non-secure Realm

FLOW Not ATST Not ATST Not ATST ATST ATST

EL1 Yes Yes Yes - -

EL1-S2 Yes Yes Yes Yes Yes

EL2 Yes Yes Yes - -

StreamBypass Yes Yes Yes Yes Yes

StreamDisabled Yes Yes Yes Yes Yes

GlobalBypass Yes Yes - Yes -

GlobalDisabled Yes Yes Yes - -
3-52 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
When DTI_TBU_CONDIS_REQ.STAGES == MG &&
DTI_TBU_CONDIS_ACK.VERSION == DTI-TBUv4:

When DTI_TBU_CONDIS_REQ.STAGES == M:

Device Permission Table support

The Device Permission Table (DPT) and associated behavior provides a mechanism to
enforce the association between granules of Physical Address Space and the memory
footprint of virtual machines. This means that the physical memory pages of a virtual
machine can be protected from accesses by a malicious virtual machine when both
virtual machines are required for DPT check. DTI-TBUv4 only supports DPT for Realm
state although the SMMUv3 architecture supports an independent DPT for each of
Non-secure and Realm states.

Table 3-4 Summary of DTI-TBUv4 permitted translation response contexts when
DTI_TBU_CONDIS_REQ.STAGES = MG

SEC_SID Non-secure Secure Realm Non-secure Realm

FLOW Not ATST Not ATST Not ATST ATST ATST

EL1 Yes Yes Yes - -

EL1-S2 Yes Yes Yes Yes Yes

EL2 Yes Yes Yes - -

DPTBypass - - - - Yes

StreamBypass Yes Yes Yes Yes Yes

StreamDisabled Yes Yes Yes Yes Yes

GlobalBypass Yes Yes - Yes -

GlobalDisabled Yes Yes Yes - -

Table 3-5 Summary of permitted translation response contexts when
DTI_TBU_CONDIS_REQ.STAGES = M

SEC_SID Non-secure Secure Non-secure

FLOW Not ATST Not ATST ATST

EL1 Yes Yes -

EL1-S2 Yes Yes Yes

EL2 Yes Yes -

EL3 - Yes -

StreamBypass Yes Yes Yes

StreamDisabled Yes Yes Yes

GlobalBypass Yes Yes Yes

GlobalDisabled Yes Yes -
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-53
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
BYPASS, bit [17]

This field indicates whether translation is bypassed.

0 Normal translation

1 Translation bypassed

When the value of this field is 1, the VA and the PA of the translation are the same.

This bit must be 0 if the value of IA in the translation request is greater than the range
shown in the OAS field of the DTI_TBU_CONDIS_ACK message that was received
during the connection sequence.

When DTI_TBU_TRANS_REQ.MMUV is 0, BYPASS must be 1.

When DTI_TBU_TRANS_REQ.IDENT is 1, BYPASS must be 1.

CONT, bits [16:13]

This field indicates the number of contiguous StreamIDs that the result of this
transaction applies to.

This field is encoded to give the span of the contiguous block as 2CONT StreamIDs. The
block must start at a StreamID for which the bits SID[CONT-1:0] are 0.

When this field is nonzero, SID[CONT-1:0] in the translation request can be ignored
when determining whether this translation matches future transactions.

If the value of the BYPASS bit is 1 and the BP_TYPE is GlobalBypass, this field is
Reserved, SBZ.

Note
This field is not the same as the CONT bit in the translation table entry which affects
the range of address this translation applies to which is reflected in TRANS_RNG. This
field affects the range of StreamIDs this translation applies to. In another word, this field
affects the number of translation contexts rather than the size of memory region.

DO_NOT_CACHE, bit [12]

This bit indicates to the TBU when not to cache a translation.

0 The translation has not been invalidated before this message was sent.

1 The translation might have been invalidated before this message was sent.
Any transactions using this translation must be completed before the next
invalidation synchronization operation is completed.

Note
A TBU can use this field to simplify invalidation, by not caching any translations that
have a value of 1 for this field.

TRANSLATION_ID [7:0], bits [11:4]

See TRANSLATION_ID [11:8], bits [79:76].

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-25.

0b0010 DTI_TBU_TRANS_RESP

Determination of IPA space

When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID is Secure, the TBU uses
DTI_TBU_TRANS_REQ.NS and DTI_TBU_TRANS_RESP.ATTR_OVR.NSCFG to determine whether the
translation is for a Secure IPA or Non-secure IPA.

This information is used when determining the scope of invalidation operations. NSCFG is not used by cache
lookups during translation.
3-54 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
Table 3-6 shows the information required for invalidation operations.

If DTI_TBU_TRANS_REQ.SEC_SID is Realm, the IPA space is always Realm.
If DTI_TBU_TRANS_REQ.SEC_SID is Non-secure, the IPA space is always Non-secure.

3.2.3 DTI_TBU_TRANS_RESPEX

DTI_TBU_TRANS_RESPEX encapsulates DTI_TBU_TRANS_RESP message and adds new fields.

Description

A DTI translation response with extended message length.

Source

TCU

Usage constraints

The TBU must have previously issued a translation request that has not yet generated either a
translation response or a fault message with FAULT_TYPE != TranslationStall.

Flow control result

The TCU returns a translation token to the TBU.

Table 3-6 Determination of IPA space in DTI-TBU

DTI_TBU_TRANS_REQ.{NSE,NS} NSCFG IPA space

Secure Use Incoming Secure

Non-secure Use Incoming Non-secure

- Secure Secure

- Non-secure Non-secure
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-55
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Field descriptions

The DTI_TBU_TRANS_RESPEX bit assignments are:

Bits [191:178]

Reserved, SBZ

Bits [177:176]

DTI-TBUv3

Reserved, SBZ

DTI-TBUv4

PARTID [11:10].

When DTI_TBU_TRANS_REQ.MMUV is 0, PARTID must be 0.

If DTI_TBU_TRANS_REQ.REQEX = 1 and DTI_TBU_TRANS_RESP is
returned, it is equivalent to a DTI_TBU_TRANS_RESPEX with all bits 0
in [177:176].

Note
If an implementation uses more than 10 bits of PARTID, it must always set
DTI_TBU_TRANS_REQ.REQEX and the TCU is recommended to always return
DTI_TBU_TRANS_RESPEX.

MECID, bits [175:160]

Memory Encryption Context Identifier (MECID) to support Realm Management
Extension (RME) and RME-Device Assignment (RME-DA).

When DTI_TBU_TRANS_REQ.SEC_SID != Realm, MECID must be 0.

When the translated output PAS is Non-secure, a MECID of 0 must be used for
translated transaction regardless of the MECID value returned in the translation
response.

When DTI_TBU_TRANS_REQ.MMUV = 0, MECID must be 0.

If DTI_TBU_TRANS_REQ.REQEX = 1 and DTI_TBU_TRANS_RESP is returned, it
is equivalent to a DTI_TBU_TRANS_RESPEX with all bits 0 in [175:160].

Bits [159:4]

Same as DTI_TBU_TRANS_RESP. See DTI_TBU_TRANS_RESP on page 3-41.

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is 0x3.

7 6 5 4 3 2 1 0 LSB

152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0DTI_TBU_TRANS_RESP S_MSG_TYPE

MECID

DTI_TBU_TRANS_RESP

160
168
176
184Reserved

Reserved PARTID[11:10]
3-56 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
Note

All protocol rules for DTI_TBU_TRANS_RESP apply to DTI_TBU_TRANS_RESPEX unless stated otherwise.

3.2.4 DTI_TBU_TRANS_FAULT

The DTI_TBU_TRANS_FAULT message is used to provide a fault response to a translation request.

Description

A translation fault response.

Source

TCU

Usage constraints

The TBU must have previously issued a translation request that has not yet generated either a
translation response or a fault message.

This message must be used in the case of a translation request that has failed a permission check.

Flow control result

The TCU returns a translation token to the TBU if FAULT_TYPE != TranslationStall.

Field descriptions

The DTI_TBU_TRANS_FAULT bit assignments are:

TRANSLATION_ID[11:8], bits [31:28]

TRANSLATION_ID[7:0] is bits [11:4].

This field gives the identification number for the translation.

This field must have a value corresponding to an outstanding translation request.

Bits [27:20]

Reserved, SBZ

FAULT_TYPE, bits [19:17]

This bit indicates to the TBU how to handle the fault.

0b000 NonAbort
The translation has failed and the transaction must be terminated, depending
on the value of DTI_TBU_TRANS_REQ.PERM[1:0]:

R Return read data of 0.

RW Return read data of 0 and ignore write data.

W Ignore write data.

SPEC Notify the TBU that the speculative read was unsuccessful, for
example by returning an abort.

0b001 Abort
The translation has failed and the transaction must be terminated with an
abort.

FAULT_TYPE must not be Abort when
DTI_TBU_TRANS_REQ.PERM[1:0] = SPEC.

0b010 StreamDisabled

The translation has failed and the transaction must be terminated with an
abort.

7 6 5 4 3 2 1 0 LSB

CONT[2:0]
S_MSG_TYPE

24
16
8
0

CONT[3]
TRANSLATION_ID[7,4]

TRANSLATION_ID[3:0]
DO_NOT_CACHE

FAULT_TYPEReserved
ReservedTRANSLATION_ID[11:8]
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-57
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
The TBU can abort subsequent transactions, if all the following are true:

• The value of DTI_TBU_TRANS_REQ.SEC_SID is the same for
both transactions.

• The value of DTI_TBU_TRANS_REQ.SID is the same for both
transactions, when masked with CONT.

• Either

— DTI_TBU_TRANS_REQ.FLOW is ATST for both
transactions.

— DTI_TBU_TRANS_REQ.FLOW is not ATST for either
transaction.

• DO_NOT_CACHE is not 1.

0b011 GlobalDisabled

The translation has failed and the transaction must be terminated with an
abort.

The TBU can abort subsequent transactions, if all the following are true:

• The value of DTI_TBU_TRANS_REQ.SEC_SID is the same for
both transactions.

• DTI_TBU_TRANS_REQ.FLOW is not ATST for either transaction.

• DO_NOT_CACHE is not 1.

FAULT_TYPE must not be GlobalDisabled when
DTI_TBU_TRANS_REQ.FLOW = ATST.

0b100 TranslationPRI

This response is only permitted when DTI_TBU_TRANS_REQ.FLOW =
PRI and DTI_TBU_TRANS_REQ.PERM != SPEC. A translation-related
fault has occurred, which might be resolved by a PRI request.

0b101 TranslationStall

The purpose of this response is to simplify deadlock handling when a
DTI_TBU_SYNC_REQ message is received.

This response is only permitted when DTI_TBU_TRANS_REQ.FLOW =
Stall and DTI_TBU_TRANS_REQ.PERM != SPEC. A translation fault has
occurred, which has resulted in the transaction being stalled.

This does not complete the translation. The translation token is not returned,
and the translation request is still outstanding.

A TranslationStall response must not occur more than once for the same
translation request.

0b110 Reserved

0b111 Reserved

When DTI_TBU_TRANS_REQ.MMUV is 0, FAULT_TYPE must be NonAbort if
DTI_TBU_TRANS_REQ.PERM is SPEC, and Abort otherwise.

Note
A TBU implementation might have mechanisms to re-transmit the translation request
for the same transaction after it has received a translation response. If it receives a
DTI_TBU_TRANS_FAULT message with FAULT_TYPE != TranslationStall and
DO_NOT_CACHE = 1, then the TBU is not expected to re-transmit the translation
request again in order to avoid the possibility of multiple event reports for the same
transaction.

CONT, bits [16:13]

This field indicates the number of contiguous StreamIDs that the result of this
transaction applies to.
3-58 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
This field is encoded to give the span of the contiguous block as 2CONT StreamIDs.
When this field is nonzero, SID[CONT-1:0] in the translation request can be ignored
when determining whether this translation matches future transactions.

When the value of FAULT_TYPE is not StreamDisabled, this field is Reserved, SBZ.

DO_NOT_CACHE, bit [12]

This bit indicates to the TBU when not to cache a fault response.

0 Can be cached.

1 Must not be cached.

When the value of FAULT_TYPE is not StreamDisabled or not GlobalDisabled, the
value of this field must be 1.

TRANSLATION_ID[7:0], bits [11:4]

See TRANSLATION_ID[11:8], bits [31:28].

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-25.

0b0001 DTI_TBU_TRANS_FAULT

3.2.5 Additional rules on permitted translation responses

Rules when IA out of range

The following rules limit the legal translation responses when the IA is out of range:

• If a TCU receives a translation request with DTI_TBU_TRANS_REQ.IA[55:52] != 0x0 and
DTI_TBU_TRANS_REQ.IA[55:52] != 0xF, then the TCU must complete the translation with a
DTI_TBU_TRANS_FAULT message.

• If a TCU receives a translation request with DTI_TBU_TRANS_REQ.IA[63:52] != 0x000 and
DTI_TBU_TRANS_REQ.IA[63:52] != 0xFFF, it must complete the translation with either:

— A DTI_TBU_TRANS_FAULT message.

— A DTI_TBU_TRANS_RESP message with BYPASS = 0 and TBI = 1.

A DTI_TBU_TRANS_FAULT message with TYPE = TranslationStall does not complete the transaction and
therefore is not affected by the rules above.

For example, if the TCU receives a translation request with DTI_TBU_TRANS_REQ.IA[55:52] != 0x0:

• The TCU is permitted to return a DTI_TBU_TRANS_FAULT message with TYPE = TranslationStall,
followed by a DTI_TBU_TRANS_FAULT message with TYPE = Abort.

• The TCU is not permitted to return a DTI_TBU_TRANS_FAULT message with TYPE = TranslationStall,
followed by a DTI_TBU_TRANS_RESP message.

Though these rules were not specified in the DTI-TBUv1 specification, they do not change the behavior of
DTI-TBUv1 systems because the SMMUv3 architecture requires this behavior.

Faulting expressions of the translation request message

The TCU can only return a DTI_TBU_TRANS_RESP message (denoted as resp) when permission is granted for
the transaction that is described in the translation request (denoted as req). It is a protocol error if
PermissionCheck(req, resp) is False.

In addition to the requested permissions in the translation request, TCU is expected to return all permissions granted
by the translation. This not only avoids unnecessary misses in TBU cache lookup by future transactions but also it
might be relied upon by some transactions to function correctly, such as transactions related to cache maintenance
or cache stash.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-59
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
3.2.6 Calculating transaction attributes

This section describes how the translated attributes of a transaction are calculated.

The set of possible transaction attributes is the same as those described in the Arm Architecture Reference Manual
for A-profile architecture. The transaction attributes are composed of:

• Memory type

• Shareability

• Allocation hints

Fields used to calculate the attributes

To calculate the translated transaction attributes, the attributes of the untranslated transaction are used with the
following fields of the translation response:

• BYPASS

• STRW

• ATTR

• SH

• ATTR_OVR

• ALLOCCFG

Note

The ATTR_OVR field is not always present because it uses the same bits as the ASID field.

The ATTR_OVR field is composed of subfields that are shown in Table 3-7.

Steps used to calculate the attributes

The TBU computes a translated transaction’s attributes using the following process:

1. If the untranslated transaction does not have allocation hints, then they are treated as Read-Allocate,
Write-Allocate, non-transient.

2. If ATTR_OVR is valid and MTCFG is set, then the memory type is replaced by the values in the
ATTR_OVR.MemAttr field. For more information, see The MemAttr and MTCFG fields on page 3-61.

3. The allocation hints are modified based on the value of ALLOCCFG. For more information, see The
ALLOCCFG field on page 3-62.

4. The Shareability domain is modified based on the value of SHCFG. For more information, see The SHCFG
field on page 3-63.

5. The attributes are combined with the attributes in the ATTR and SH fields. For more information, see
Combining the translation response attributes on page 3-63.

Table 3-7 ATTR_OVR subfields

Field bits Field name

[3:0] MemAttr

[4] MTCFG

[6:5] SHCFG

[8:7] NSCFG

[15:9] Reserved, SBZ
3-60 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
6. A consistency check is applied to eliminate illegal attribute combinations. For more information, see
Consistency check on combination of translation attributes on page 3-64.

The precise algorithm is:

MemoryAttributes MemoryAttributesOverride(MemoryAttributes attr_in, DTI_TBU_TRANS_RESP resp, bit
is_cmo_trans)

 MemoryAttributes attr_out;

 attr_out = attr_in;

 // The is_cmo_trans bit is set if the transaction is a Destructive Hint or Cache Maintenance
 // Operation (CMO) as defined in SMMUv3.
 // This does not include transactions which combine a CMO with a read or write transaction.
 if (is_cmo_trans) then
 attr_out = ApplyCMOAttributes(attr_out);
 attr_out = ConsistencyCheck(attr_out);

 if (resp.BYPASS == '1' || resp.STRW == EL1_S2) then
 if (resp.ATTR_OVR.MTCFG == '1') then
 attr_out = ModifyMemoryType(attr_out, resp.ATTR_OVR.MemAttr);
 ModifyAllocHints(attr_out, resp.ALLOCCFG);
 ModifyShareability(attr_out, resp.ATTR_OVR.SHCFG);
 attr_out = ConsistencyCheck(attr_out);
 else
 ModifyAllocHints(attr_out, resp.ALLOCCFG);

 attr_out = CombineAttributes(attr_out, resp);
 attr_out = ConsistencyCheck(attr_out);

 if (is_cmo_trans) then
 attr_out = ApplyCMOAttributes(attr_out);

 return attr_out;

MemoryAttributes ApplyCMOAttributes(MemoryAttributes current_attr)

 current_attr.type = MemType_Normal;
 current_attr.inner.attrs = MemAttr_WB;
 current_attr.inner.ReadAllocate = ‘1’;
 current_attr.inner.WriteAllocate = ‘1’;
 current_attr.inner.Transient = ‘0’;
 current_attr.outer.attrs = MemAttr_WB;
 current_attr.outer.ReadAllocate = ‘1’;
 current_attr.outer.WriteAllocate = ‘1’;
 current_attr.outer.Transient = ‘0’;

 return current_attr;

The MemAttr and MTCFG fields

If the value of MTCFG is 1, then the MemAttr field provides the memory type override for incoming transactions.
Table 3-8 shows the encoding of this field:

Table 3-8 Encoding of the MemAttr field

Field encoding Memory type Inner Cacheability Outer Cacheability

0b0000 Device-nGnRnE - -

0b0001 Device-nGnRE - -

0b0010 Device-nGRE - -

0b0011 Device-GRE - -
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-61
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
The MemAttr field is used to modify transaction memory type as follows:

MemoryAttributes ModifyMemoryType(MemoryAttributes current_attr, bits(4) mem_attr)
MemoryAttributes memattr_attributes = DecodeMemAttr(mem_attr);

// Override type
current_attr.type = memattr_attributes.type;

// Override cacheability
current_attr.inner.attrs = memattr_attributes.inner.attrs;
current_attr.outer.attrs = memattr_attributes.outer.attrs;

// And leave allocation hints untouched
return current_attr;

The ALLOCCFG field

The ALLOCCFG field overrides the allocation hints according to the following algorithm:

MemoryAttributes ModifyAllocHints(MemoryAttributes current_attr, bits(4) alloccfg)

// Don’t override allocation hints
if alloccfg<3> == ‘0’ then

return current_attr;

// ALLOCCFG is packed as:
bit T = alloccfg<0>; // Transient
bit WA = alloccfg<1>; // Write allocate
bit RA = alloccfg<2>; // Read allocate

current_attr.inner.Transient = T;
current_attr.inner.ReadAllocate = RA;
current_attr.inner.WriteAllocate = WA;
current_attr.outer.Transient = T;
current_attr.outer.ReadAllocate = RA;
current_attr.outer.WriteAllocate = WA;

return current_attr;

0b0100 Reserved Reserved Reserved

0b0101 Normal Non-cacheable Non-cacheable

0b0110 Normal Write-Through Cacheable Non-cacheable

0b0111 Normal Write-Back Cacheable Non-cacheable

0b1000 Reserved Reserved Reserved

0b1001 Normal Non-cacheable Write-Through Cacheable

0b1010 Normal Write-Through Cacheable Write-Through Cacheable

0b1011 Normal Write-Back Cacheable Write-Through Cacheable

0b1100 Reserved Reserved Reserved

0b1101 Normal Non-cacheable Write-Back Cacheable

0b1110 Normal Write-Through Cacheable Write-Back Cacheable

0b1111 Normal Write-Back Cacheable Write-Back Cacheable

Table 3-8 Encoding of the MemAttr field (continued)

Field encoding Memory type Inner Cacheability Outer Cacheability
3-62 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
The SHCFG field

The SHCFG field overrides the Shareability of the translation.

0b00 Non-shareable

0b01 Use incoming Shareability attribute

0b10 Outer Shareable

0b11 Inner Shareable

See ModifyShareability() in Memory attributes on page A-130 for an example implementation.

The NSCFG field

NSCFG indicates when the NS bit of the incoming transaction is overridden before translation.

When DTI_TBU_TRANS_REQ.SEC_SID == Secure, the encodings of NSCFG are:

0b00 Use incoming

0b01 Reserved

0b10 Secure

0b11 Non-secure

When DTI_TBU_TRANS_REQ.SEC_SID == Realm, the encodings of NSCFG are:

0b00 Use incoming

0b01 Reserved

0b10 Realm

0b11 Non-secure

If DTI_TBU_TRANS_REQ.MMUV == 1 and DTI_TBU_TRANS_REQ.SEC_SID == Non-secure,
DTI_TBU_TRANS_RESP.ATTR_OVR.NSCFG is Reserved, SBZ.

When DTI_TBU_TRANS_REQ.MMUV is 1 and DTI_TBU_TRANS_REQ.SEC_SID is Realm and BYPASS is 1
and BP_TYPE is DPTBypass, then NSCFG is Reserved, SBZ.

Combining the translation response attributes

The memory attributes of an incoming transaction and a translation response are combined according to the
following algorithms:

MemoryAttributes CombineAttributes(MemoryAttributes attr_txn, DTI_TBU_TRANS_RESP resp)
MemoryAttributes attr_resp = DecodeAttr(resp.ATTR);

if (resp.BYPASS == ‘0’) then
if (resp.COMB_MT == ‘0’) then

attr_txn = ReplaceMemoryType(attr_txn, attr_resp);
elsif (resp.COMB_MT == ‘1’) then

attr_txn = CombineMemoryType(attr_txn, attr_resp);

if (resp.COMB_ALLOC == ‘0’) then
attr_txn = ReplaceAllocHints(attr_txn, attr_resp);

elsif (resp.COMB_ALLOC == ‘1’) then
attr_txn = CombineAllocHints(attr_txn, attr_resp);

if (resp.COMB_SH == ‘0’) then
attr_txn.SH = resp.SH;

elsif (resp.COMB_SH == ‘1’) then
attr_txn.SH = CombineShareability(attr_txn.SH, resp.SH);

return attr_txn;
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-63
ID062824 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
When memory type, Shareability and allocation hints are combined, the result is the strongest of each, as shown in
Table 3-9:

See Memory attributes on page A-130 for the pseudocode implementation of this table.

Consistency check on combination of translation attributes

Between each step, the following additional conversions are performed to ensure that the attributes are consistent:

MemoryAttributes ConsistencyCheck(MemoryAttributes current_attr)

 if (current_attr.type != MemType_Normal ||
 (current_attr.inner.attrs == MemAttr_NC &&
 current_attr.outer.attrs == MemAttr_NC)) then
 current_attr.SH = OuterShareable;

 if (current_attr.type != MemType_Normal ||
 (current_attr.type == MemType_Normal &&
 current_attr.inner.attrs == MemAttr_NC)) then
 current_attr.inner.ReadAllocate = ‘1’;
 current_attr.inner.WriteAllocate = ‘1’;
 current_attr.inner.Transient = ‘0’;

 if (current_attr.type != MemType_Normal ||
 (current_attr.type == MemType_Normal &&
 current_attr.outer.attrs == MemAttr_NC)) then
 current_attr.outer.ReadAllocate = ‘1’;
 current_attr.outer.WriteAllocate = ‘1’;
 current_attr.outer.Transient = ‘0’;

 if (current.attr.inner.ReadAllocate == ‘0’ && current.attr.inner.WriteAllocate == ‘0’) then
 current.attr.inner.Transient == ‘0’;

 if (current.attr.outer.ReadAllocate == ‘0’ && current.attr.outer.WriteAllocate == ‘0’) then
 current.attr.outer.Transient == ‘0’;

 return current_attr;

In addition to these architectural attribute consistency rules, an implementation might include interconnect-specific
consistency rules.

3.2.7 Speculative transactions and translations

A translation that is marked as speculative can be used for the following:

• Translating a speculative transaction

• Prefetching a translation for a non-speculative transaction

Table 3-9 Combining the translation response attributes

Weakest Strongest

Normal
Write-Back

Normal
Write-Through

Normal
Non-cacheable

Device-GRE Device-nGRE Device-nGnRE Device-nGnRnE

Non-shareable Inner
Shareable

Outer Shareable

Read-Allocate Read no-allocate

Write-Allocate Write no-allocate

Non-transient Transient
3-64 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.2 Translation request message group
As a speculative translation request never results in a fault that is visible to software, it is permitted to be used for
the prefetching of translations. A successful speculative translation request that is marked as cacheable can be used
for future non-speculative transactions.

Note

A translation is permitted to be cached when the value of the DO_NOT_CACHE bit in the translation response
message is 0.

When a speculative translation is not successful or it is non-cacheable, no translation is cached, and future
non-speculative transactions will generate a new non-speculative translation request.

A speculative read transaction is permitted to use the cached translations of previous non-speculative translation
requests but is not permitted to cause a non-speculative translation request. When a speculative read transaction
cannot be translated with cached translations that pass their permission check, then the TBU must either terminate
the transaction with an abort or request a new speculative translation.

Speculative write transactions are not supported.

Note

A speculative translation request does not have a specific transaction that is associated with it. As such, the PnU and
InD fields in DTI_TBU_TRANS_REQ of the speculative translation request are not used and no permission check
is performed as part of the translation. If a speculative translation is requested as a result of a speculative read
transaction, the TBU must ensure that the transaction that caused it passes the permission check.

A speculative read transaction is never terminated as read 0, write ignored, even though the
DTI_TBU_TRANS_FAULT.FAULT_TYPE field is always NonAbort for a speculative translation. A faulting
speculative read transaction is always terminated with an abort.

3.2.8 Cache lookup process

When there is a hit on a cache lookup, the TBU must ensure that the stored translation matches the permission
requirements of the new transaction. If the permission check fails, then the cached translation is not a match for the
transaction. In this case, the TBU must request a new translation. The TCU might return a successful translation or
might return a translation fault for the transaction.

It is possible for multiple translations to match a transaction. In this case, a TBU can use any matching translation
that has not been invalidated. The TBU is not required to use the most recent matching translation.

If a GlobalDisabled or StreamDisabled entry matches a transaction, then the transaction is always aborted.

See MatchTranslation on page A-136 and MatchFault on page A-137 for precise cache lookup matching functions.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-65
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
3.3 Invalidation and synchronization message group

Invalidation operations are used by the TCU to indicate to the TBU that certain information must no longer be
cached.

This section contains the following subsections:

• DTI_TBU_INV_REQ

• DTI_TBU_INV_ACK on page 3-69

• DTI_TBU_SYNC_REQ on page 3-69

• DTI_TBU_SYNC_ACK on page 3-70

• DTI-TBU invalidation sequence on page 3-70

• DTI-TBU invalidation operations on page 3-73

3.3.1 DTI_TBU_INV_REQ

The DTI_TBU_INV_REQ message is used to request the invalidation of data that is stored in a cache.

Description

An invalidation request.

Source

TCU

Usage constraints

The TCU must have at least one invalidation token.

Flow control result

The TCU consumes an invalidation token.

Field descriptions

The DTI_TBU_INV_REQ bit assignments are:

ADDR, bits [127:76]

This field indicates the address to be invalidated. The address can be VA[63:12],
IPA[51:12], or PA[51:12] where ADDR[63:52] must be 0 if it represents IPA or PA.

The encoding of the OPERATION field might cause this field to be invalid. When no
OPERATION is using this field, it is Reserved, SBZ.

Bits [75:72]

Reserved, SBZ

7 6 5 4 3 2 1 0 LSB

120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

ADDR[63:16]

ASID or SID[31:16]

VMID or SID[15:0]

ADDR[15:12] Reserved
RANGEINC_ASET1

S_MSG_TYPE
OPERATION[7:4]

OPERATION[3:0]
TTL or SSID[1:0] or SIZE[1:0]TG or SSID[3:2] or SIZE[3:2]

SSID[19:14]
NUM[4:0] or SSID[8:4]SCALE[2:0] or SSID[11:9]

SCALE[4:3] or SSID[13:12]

SCALE[5] OPERATION[8]
3-66 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
SCALE[5], bit [71]

Extends the SCALE field to 6 bits to enable larger ranges to be specified for
invalidation. See SCALE[4:0], bits [25:21].

OPERATION[8], bit [70]

See OPERATION[7:0], bits [11:4].

INC_ASET1, bit [69]

This bit indicates whether the ASET value of a translation affects its invalidation.

0 Translations with an ASET value of 0 are invalidated, only the shared set is
invalidated.

1 The value of ASET has no effect, the shared and non-shared sets are
invalidated.

Note
It is intended that this bit is 0 if the invalidation originates from a shared invalidate of
the appropriate type. Some TLB invalidation operations always set this bit. This bit is
always set for TLB invalidations originating from an explicit invalidate command to the
SMMU.

This field is valid for all TLB invalidate operations apart from TLBI_PA. For all other
invalidate operations, this field is ignored and is Reserved, SBZ.

This field must be 1 for the following TLB invalidate operations:

• TLBI_S_EL1_ALL

• TLBI_S_EL1_VAA

• TLBI_NS_EL1_ALL

• TLBI_NS_EL1_S1_VMID

• TLBI_NS_EL1_S12_VMID

• TLBI_NS_EL1_VAA

• TLBI_NS_EL1_S2_IPA

• TLBI_NS_EL2_ALL

• TLBI_NS_EL2_VAA

• TLBI_S_EL3_ALL

• TLBI_S_EL1_S1_VMID

• TLBI_S_EL1_S12_VMID

• TLBI_S_EL1_S2_S_IPA

• TLBI_S_EL1_S2_NS_IPA

• TLBI_S_EL2_ALL

• TLBI_S_EL2_VAA

• TLBI_RL_EL1_ALL

• TLBI_RL_EL1_S1_VMID

• TLBI_RL_EL1_S12_VMID

• TLBI_RL_EL1_VAA

• TLBI_RL_EL1_S2_IPA

• TLBI_RL_EL2_ALL

• TLBI_RL_EL2_VAA

RANGE, bits [68:64]

This field indicates the range of SIDs or VMIDs for invalidation.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-67
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
When the value of the OPERATION field identifies this message as a CFGI_SID
invalidate operation, the bottom RANGE number of bits of the SID field are ignored in
both this message and the translations being considered for invalidation.

When the value of the OPERATION field identifies this message as a translation
invalidate operation, and the VMID field is valid for the operation:

• The bottom RANGE number of bits of the VMID field are ignored in both this
message and the translations being considered for invalidation.

• The value of this field must not be greater than four.

The encoding of the OPERATION field might cause this field to be invalid. When no
OPERATION is using this field, it is Reserved, SBZ.

ASID, bits [63:48], when OPERATION is a TLB invalidate operation.

This field indicates the ASID value to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When no
OPERATION is using this field, it is Reserved, SBZ.

VMID, bits [47:32], when OPERATION is a TLB invalidate operation.

This field indicates the VMID value to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When no
OPERATION is using this field, it is Reserved, SBZ.

SID, bits [63:32], when OPERATION is a configuration invalidate operation.

This field indicates the StreamID to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When no
OPERATION is using this field, it is Reserved, SBZ.

SSID, bits [31:12], when OPERATION is a configuration invalidate operation.

This field indicates the SubstreamID to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When no
OPERATION is using this field, it is Reserved, SBZ.

SCALE[4:0], bits [25:21], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. The encoding of the OPERATION
field might cause this field to be invalid. When no OPERATION is using this field, it is
Reserved, SBZ. For more information, see DTI-TBU invalidation operations on
page 3-73.

NUM, bits [20:16], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. The encoding of the OPERATION
field might cause this field to be invalid. When no OPERATION is using this field, it is
Reserved, SBZ. For more information, see DTI-TBU invalidation operations on
page 3-73.

TG, bits 15:14], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. The encoding of the OPERATION
field might cause this field to be invalid. When no OPERATION is using this field, it is
Reserved, SBZ. For more information, see DTI-TBU invalidation operations on
page 3-73.

SIZE, bits [15:12], when OPERATION is a TLBI_PA or DPT invalidate operation.

The SIZE field overlaps with TG, TTL, and SSID fields.
This field relates to GPC invalidate operations. The encoding of the OPERATION field
might cause this field to be invalid. When no OPERATION is using this field, it is
Reserved, SBZ. For more information, see GPC invalidate operations on page 3-79.

TTL, bits [13:12], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. The encoding of the OPERATION
field might cause this field to be invalid. When no OPERATION is using this field, it is
Reserved, SBZ. For more information, see DTI-TBU invalidation operations on
page 3-73.
3-68 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
OPERATION[7:0], bits [11:4]

This field identifies the type of invalidation operation being performed.

When a TBU receives a message with an unrecognized OPERATION field value, it is
recommended that the TBU acknowledges the invalidation without performing any
operation. For the encoding of this field and information on the effects of the invalidate
operations, see DTI-TBU invalidation operations on page 3-73.

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-25.

0b0100 DTI_TBU_INV_REQ

3.3.2 DTI_TBU_INV_ACK

The DTI_TBU_INV_ACK message is used to acknowledge an invalidation request.

Description

An invalidation acknowledgment.

Source

TBU

Usage constraints

The TCU must have previously issued an invalidation request that has not yet been acknowledged.

Flow control result

The TBU returns an invalidation token to the TCU.

Field descriptions

The DTI_TBU_INV_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26.

0b0100 DTI_TBU_INV_ACK

3.3.3 DTI_TBU_SYNC_REQ

The DTI_TBU_SYNC_REQ message is used to request synchronization of the TBU and TCU.

Description

A synchronization request.

Source

TCU

Usage constraints

There must be no currently unacknowledged synchronization requests.

7 6 5 4 3 2 1 0 LSB
0M_MSG_TYPEReserved
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-69
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Note

It is legal to receive the message even when there are no prior invalidation requests to synchronize.

Flow control result

None

Field descriptions

The DTI_TBU_SYNC_REQ bit assignments are:

Bits [7:4]

Reserved, SBZ

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-25.

0b0101 DTI_TBU_SYNC_REQ

3.3.4 DTI_TBU_SYNC_ACK

The DTI_TBU_SYNC_ACK message is used to acknowledge a synchronization request.

Description

A synchronization acknowledge.

Source

TBU

Usage constraints

There must currently be an unacknowledged synchronization request.

Flow control result

None

Field descriptions

The DTI_TBU_SYNC_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-25.

0b0101 DTI_TBU_SYNC_ACK

3.3.5 DTI-TBU invalidation sequence

The invalidation sequence describes how individual invalidate messages interact with translation messages.

7 6 5 4 3 2 1 0 LSB
0Reserved S_MSG_TYPE

7 6 5 4 3 2 1 0 LSB
0M_MSG_TYPEReserved
3-70 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
For all translations that are affected by the invalidation, the order in which they arrive at the TBU determines how
they are handled. Figure 3-1 shows the invalidation phases in which an affected DTI_TBU_TRANS_RESP can
arrive.

Figure 3-1 Phases of the invalidation sequence

The invalidation phases of the invalidation sequence are delimited by the following events:

1. A DTI_TBU_INV_REQ message

2. The following DTI_TBU_SYNC_REQ

3. The following DTI_TBU_SYNC_ACK

Note
Each DTI_TBU_INV_REQ message is followed by a DTI_TBU_INV_ACK message. The
DTI_TBU_INV_ACK message is only used for flow control, it does not affect the invalidation sequence or
indicate completion of the invalidate operation.

When a DTI_TBU_SYNC_REQ message is received, the TBU must ensure both:

• Translations within the scope of previous invalidations have been invalidated.

• Transactions that use them have completed downstream.

Note

If a transaction receives a DTI_TBU_TRANS_FAULT message with FAULT_TYPE != TranslationStall, then it is
considered as having completed downstream.

Can issue affected
DTI_TBU_TRANS_RESP

messages

DTI_TBU_SYNC_REQ

DTI_TBU_SYNC_ACK

DTI_TBU_INV_REQ

DTI TBUDTI TCU

Phase 1

Phase 2

Phase 3
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-71
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
When both are ensured, the TBU can return a DTI_TBU_SYNC_ACK message. The actions that must be taken
depend upon in what phase of the invalidation sequence, the affected DTI_TBU_TRANS_RESP messages arrived.
Table 3-10 describes the phases and required actions.

Overlapping invalidations

New DTI_TBU_INV_REQ messages can be sent after the DTI_TBU_SYNC_REQ has been sent even if this is
before the expected DTI_TBU_SYNC_ACK response is received. In all cases, an invalidation is only included in
a synchronization if it is sent before the DTI_TBU_SYNC_REQ message.

A DTI_TBU_SYNC_REQ message can be sent after a DTI_TBU_INV_REQ is sent but before a
DTI_TBU_INV_ACK is received.

In this case, the invalidation is within scope of the synchronization operation. The DTI_TBU_INV_ACK message
is solely for the purposes of returning invalidation tokens and does not affect synchronization operations.

Deadlock avoidance in the invalidation sequence

To avoid deadlocks, the following rules must be followed for DTI-TBU:

• A TBU must not wait for an outstanding translation that has returned a fault with FAULT_TYPE
TranslationStall to complete before returning a DTI_TBU_SYNC_ACK message. A TBU can wait for
completion of an outstanding transaction that has not returned a fault with FAULT_TYPE TranslationStall.
If the transaction returns a TranslationStall after the DTI_TBU_SYNC_REQ is received, it must be able to
return a DTI_TBU_SYNC_ACK without waiting for the completion of that translation.

Example 3-1 shows a case where failure to obey this rule will create a deadlock.

• The DTI_TBU_INV_REQ and DTI_TBU_INV_ACK messages must not wait for an outstanding
DTI_TBU_SYNC_ACK message to be returned. Invalidation operations must be able to proceed without
waiting for downstream transactions to complete, this is because those transactions might not be able to
complete until the invalidation has been accepted.

Example 3-1 Deadlock caused by incorrect invalidation behavior in the TBU

Consider the following sequence:

1. Transaction A is received and a translation request is issued.

Table 3-10 Phases and actions of an invalidation sequence

Sequence phase Actions

Before the corresponding
DTI_TBU_INV_REQ

The TBU must identify which translations must be invalidated and
which transactions must be completed before returning the
DTI_TBU_SYNC_ACK message. These translations might or might
not be marked as DO_NOT_CACHE.

After the corresponding
DTI_TBU_INV_REQ but before
the DTI_TBU_SYNC_REQ

If the translation is based on invalidated data, then it is marked as
DO_NOT_CACHE.
The TBU must invalidate translations marked as DO_NOT_CACHE
and complete transactions using those translations before returning a
DTI_TBU_SYNC_ACK.

After the DTI_TBU_SYNC_REQ These translations are out of scope of the current invalidation
synchronization operation and play no part in the timing of the
DTI_TBU_SYNC_ACK.
The TCU delays issuing the DTI_TBU_SYNC_REQ if necessary to
ensure this.
3-72 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
2. Transaction B is received, which must be ordered behind transaction A according to the bus protocol, and a
translation request is issued.

3. The translation request for transaction A results in a stalling fault in the TCU, which cannot progress further
until system software instructs the TCU to either retry or abort the translation. No response can be returned
to the TBU until this occurs.

4. A translation response is received for transaction B, which is marked as DO_NOT_CACHE.

5. A DTI_TBU_SYNC_REQ is received.

In this case, the DTI_TBU_SYNC_ACK cannot be returned until the transaction B completes. This cannot occur
until transaction A is issued, which cannot occur until the translation is received for transaction A, which would
break the above requirement. Instead, the TBU should discard the translation for transaction B so that the
DTI_TBU_SYNC_ACK can be returned, and re-request the translation for transaction B.

3.3.6 DTI-TBU invalidation operations

This section describes the DTI-TBU cache invalidation operations.

Types of invalidation operation

Table 3-11 specifies the OPERATION field encodings for DTI-TBU. It describes how the type of invalidation being
performed affects the scope of the DTI_TBU_INV_REQ message. Other encodings of the OPERATION field are
Reserved.

Table 3-11 DTI-TBU list of invalidation operations

Code Invalidation operation
StreamWorld

affected
SEC_SID
affected

Valid fields

0x80 TLBI_S_EL1_ALL EL1, EL1-S2 Secure INC_ASET1

0x81 TLBI_S_EL1_VAA EL1 Secure VMID, ADDR, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0x82 TLBI_S_EL1_S1_VMID EL1 Secure VMID, RANGE, INC_ASET1

0x85 TLBI_S_EL1_S2_NS_IPAa EL1-S2 Secure VMID, ADDR, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0x88 TLBI_S_EL1_ASID EL1 Secure VMID, ASID, RANGE, INC_ASET1

0x89 TLBI_S_EL1_VA EL1 Secure VMID, ASID, ADDR, RANGE,
INC_ASET1, SCALE, NUM, TG, TTL

0x90 TLBI_S_EL1_S12_VMID EL1, EL1-S2 Secure VMID, RANGE, INC_ASET

0x95 TLBI_S_EL1_S2_S_IPAb EL1-S2 Secure VMID, ADDR, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0xA0 TLBI_NS_EL1_ALL EL1, EL1-S2 Non-secure INC_ASET1

0xB2 TLBI_NS_EL1_S1_VMID EL1 Non-secure VMID, RANGE, INC_ASET1

0xB0 TLBI_NS_EL1_S12_VMID EL1, EL1-S2 Non-secure VMID, RANGE, INC_ASET1

0xB1 TLBI_NS_EL1_VAA EL1 Non-secure VMID, ADDR, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0xB8 TLBI_NS_EL1_ASID EL1 Non-secure VMID, ASID, RANGE, INC_ASET1
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-73
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
0xB9 TLBI_NS_EL1_VA EL1 Non-secure VMID, ASID, ADDR, RANGE,
INC_ASET1, SCALE, NUM, TG, TTL

0xB5 TLBI_NS_EL1_S2_IPA EL1-S2 Non-secure VMID, ADDR, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0x180 TLBI_RL_EL1_ALL EL1, EL1-S2 Realm INC_ASET1

0x192 TLBI_RL_EL1_S1_VMID EL1 Realm VMID, RANGE, INC_ASET1

0x190 TLBI_RL_EL1_S12_VMID EL1, EL1-S2 Realm VMID, RANGE, INC_ASET1

0x191 TLBI_RL_EL1_VAA EL1 Realm VMID, ADDR, RANGE, INC_ASET1,

SCALE, NUM, TG, TTL

0x198 TLBI_RL_EL1_ASID EL1 Realm VMID, ASID, RANGE, INC_ASET1

0x199 TLBI_RL_EL1_VA EL1 Realm VMID, ASID, ADDR, RANGE,
INC_ASET1, SCALE, NUM, TG, TTL

0x195 TLBI_RL_EL1_S2_IPA EL1-S2 Realm VMID, ADDR, RANGE, INC_ASET1,

SCALE, NUM, TG, TTL

0xC0 TLBI_S_EL2_ALL EL2 Secure INC_ASET1

0xC1 TLBI_S_EL2_VAA EL2 Secure ADDR, INC_ASET1, SCALE, NUM, TG,
TTL

0xC8 TLBI_S_EL2_ASID EL2 Secure ASID, INC_ASET1

0xC9 TLBI_S_EL2_VA EL2 Secure ASID, ADDR, INC_ASET1, SCALE,
NUM, TG, TTL

0xE0 TLBI_NS_EL2_ALL EL2 Non-secure INC_ASET1

0xE1 TLBI_NS_EL2_VAA EL2 Non-secure ADDR, INC_ASET1, SCALE, NUM, TG,
TTL

0xE8 TLBI_NS_EL2_ASID EL2 Non-secure ASID, INC_ASET1

0xE9 TLBI_NS_EL2_VA EL2 Non-secure ASID, ADDR, INC_ASET1, SCALE,
NUM, TG, TTL

0x1C0 TLBI_RL_EL2_ALL EL2 Realm INC_ASET1

0x1C1 TLBI_RL_EL2_VAA EL2 Realm ADDR, INC_ASET1, SCALE, NUM, TG,
TTL

0x1C8 TLBI_RL_EL2_ASID EL2 Realm ASID, INC_ASET1

0x1C9 TLBI_RL_EL2_VA EL2 Realm ASID, ADDR, INC_ASET1, SCALE,
NUM, TG, TTL

0x40 TLBI_S_EL3_ALL EL3 Secure INC_ASET1

0x41 TLBI_S_EL3_VA EL3 Secure ADDR, INC_ASET1, SCALE, NUM, TG,
TTL

0x00 CFGI_S_ALL - Secure -

Table 3-11 DTI-TBU list of invalidation operations (continued)

Code Invalidation operation
StreamWorld

affected
SEC_SID
affected

Valid fields
3-74 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
When DTI_TBU_CONDIS_ACK.VERSION is DTI-TBUv3, then the following encodings are Reserved:

• 0x104

• 0x105

If the value of the GLOBAL bit in the translation response is 1, the ASID field in that translation is ignored during
invalidate operations. Invalidate operations that include an ASID are treated as follows:

• Invalidate operations including an ASID, but without a VA, do not invalidate the translation.

• Invalidate operations, including a VA and ASID, invalidate the translation regardless of the ASID being
invalidated.

The following invalidation operations will invalidate GlobalBypass translations with
DTI_TBU_TRANS_REQ.MMUV = 1 and GlobalDisabled translations of the appropriate security level:

• CFGI_NS_ALL

• CFGI_RL_ALL

• CFGI_S_ALL

• INV_ALL

Note

Invalidation operations can be issued without a corresponding SMMUv3 invalidate command. A TCU issues
CFGI_NS_ALL and CFGI_S_ALL, and CFGI_RL_ALL invalidation and sync operations to invalidate
GlobalBypass translations with DTI_TBU_TRANS_REQ.MMUV = 1, and GlobalDisable translations as part of
the process for changing certain SMMUv3 control registers.

Translations with DTI_TBU_TRANS_RESP.TRANS_RNG = 0b1111 are not invalidated by TLBI_PA.

Translations with DTI_TBU_TRANS_RESP.TRANS_RNG != 0b1111 are invalidated by TLBI_PA irrespective of
the value of MMUV.

0x10 CFGI_S_SID - Secure SID, RANGE

0x18 CFGI_S_SID_SSID - Secure SID, SSID

0x20 CFGI_NS_ALL - Non-secure -

0x30 CFGI_NS_SID - Non-secure SID, RANGE

0x38 CFGI_NS_SID_SSID - Non-secure SID, SSID

0x100 CFGI_RL_ALL - Realm -

0x110 CFGI_RL_SID - Realm SID, RANGE

0x118 CFGI_RL_SID_SSID - Realm SID, SSID

0x047 TLBI_PA ALL - ADDR, SIZE

0x104 DPTI_RL_ALLc ALL Realm -

0x105 DPTI_RL_PAc ALL Realm ADDR, SIZE

0x06 INV_ALL All All -

a. Only matches translations with a Non-secure IPA. For more information, see Determination of IPA space.

b. Only matches translations with a Secure IPA. For more information, see Determination of IPA space.

c. Invalidation operations DPTI_RL_ALL and DPTI_RL_PA are only legal when DTI_TBU_CONDIS_ACK.VERSION >
DTI-TBUv3.

Table 3-11 DTI-TBU list of invalidation operations (continued)

Code Invalidation operation
StreamWorld

affected
SEC_SID
affected

Valid fields
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-75
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
GlobalBypass translations with DTI_TBU_TRANS_REQ.MMUV = 0 can only be invalidated by TLBI_PA or
INV_ALL.

The INV_ALL operation invalidates all caches, including Secure, Non-secure, and Realm translations and
translations with DTI_TBU_TRANS_REQ.MMUV = 0.

DTI_TBU_TRANS_RESPEX.MECID is invalidated by INV_ALL and matching CFGI invalidation operations.

Table 3-12 shows the representation of invalidation operations:

Table 3-13 shows the which invalidation operation applies to which type of translation.

Range Invalidate operations

DTI-TBU supports Range Invalidation operations. These operations do not involve any RANGE fields specified in
messages. The operations in this section refer to TLBI-not-by-pa.

The range of addresses in scope of the invalidation operation is given by:

Range = ((NUM+1)*2SCALE)*Translation_Granule_Size

Table 3-12 Representation of invalidation operations

Specification use Represents collectively

CFGI-all CFGI_S_ALL, CFGI_NS_ALL, CFGI_RL_ALL

CFGI-by-context CFGI_S_SID, CFGI_NS_SID, CFGI_RL_SID,
CFGI_S_SID_SSID, CFGI_NS_SID_SSID, CFGI_RL_SID_SSID

TLBI-not-by-pa TLBI_S_*, TLBI_NS_*, TLBI_RL_*

Table 3-13 Translation type and applicable invalidation operations

BYPASS BP_TYPE MMUV TRANS_RNG

IN
V

_A
L

L

C
F

G
I-

al
l

C
F

G
I-

b
y-

c
o

n
te

xt

T
L

B
I-

n
o

t-
b

y-
p

a

D
P

T
I

T
L

B
I_

P
A

1 GlobalBypass 0 = 0b1111 Y N N N N N

1 GlobalBypass 0 != 0b1111 Y N N N N Y

1 GlobalBypass 1 = 0b1111 Y Y N N N N

1 GlobalBypass 1 != 0b1111 Y Y N N N Y

1 GlobalDisabled 1 - Y Y N N N N

1 StreamBypass 1 = 0b1111 Y Y Y N N N

1 StreamBypass 1 != 0b1111 Y Y Y N N Y

1 DPTBypass 1 != 0b1111 Y Y Y N Y Y

1 StreamDisabled 1 - Y Y Y N N N

0 - 1 != 0b1111 Y Y Y Y N Y
3-76 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Table 3-14 shows the Translation_Granule_Size mapping:

The set of addresses A to be invalidated is given by:

Address <= A < Address + Range

An invalidation affects a translation if any address to be invalidated is within the range of the translation, as defined
by DTI_TBU_TRANS_RESP.INVAL_RNG in the translation response.

When TG == 0b00:

• The range is a single address.

• The SCALE and NUM fields are Reserved, SBZ.

An invalidation might be limited to translations with specific values of DTI_TBU_TRANS_RESP.INVAL_RNG in
the translation response. Table 3-15 indicates encodings of DTI_TBU_TRANS_RESP.INVAL_RNG that are within
scope of an invalidation, dependent upon the TG and TTL fields:

All other combinations of TG and TTL are Reserved:

• The combination TG == 0b00, TTL != 0b00 is legal in SMMUv3.2 invalidation commands but not legal in
DTI, and must be mapped to TG == 0b00, TTL == 0b00 in DTI.

Table 3-14 Translation_Granule_Size mapping

TG Translation_Granule_Size

0b01 4KB

0b10 16KB

0b11 64KB

Table 3-15 DTI-TBU encodings of DTI_TBU_TRANS_RESP.INVAL_RNG

TG TTL INVAL_RNG affected

0b00 0b00 All

0b01 0b00 4KB, 2MB, 1GB, 512GB

0b01 0b01 1GB

0b01 0b10 2MB

0b01 0b11 4KB

0b10 0b00 16KB, 32MB, 64GB

0b10 0b01 64GB

0b10 0b10 32MB

0b10 0b11 16KB

0b11 0b00 64KB, 512MB, 4TB

0b11 0b01 4TB

0b11 0b10 512MB

0b11 0b11 64KB
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-77
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
A TCU must return DTI_TBU_TRANS_RESP.INVAL_RNG values that ensure correct invalidation by a TBU
implementing the above rules. That means that DTI_TBU_TRANS_RESP.INVAL_RNG must correctly identify the
translation granule and level of the translation at the first encountered stage of translation and its value must not
depend on the Contiguous bit in the leaf translation table entry.

When the fields of the invalidation operation match any of the following, no invalidation is required to occur.
Although not required, an implementation is permitted to perform invalidation as a result of such malformed
invalidation operations.

• TG == 0b01 && TTL == 0b01 && Address[29:12] != 0

• TG == 0b01 && TTL == 0b10 && Address[20:12] != 0

• TG == 0b10 && TTL == 0b01 && Address[35:14] != 0

• TG == 0b10 && TTL == 0b10 && Address[24:14] != 0

• TG == 0b10 && Address[13:12] != 0

• TG == 0b11 && TTL == 0b01 && Address[41:16] != 0

• TG == 0b11 && TTL == 0b10 && Address[28:16] != 0

• TG == 0b11 && Address[15:12] != 0

The following combination of field values is illegal:
TG != 0b00 && TTL == 0b00 && NUM == 0 && SCALE == 0. A single address without TTL or range information
should instead be encoded with TG == 0b00.

DTI_TBU_INV_REQ[71] is SCALE[5]. This extends the SCALE field to 6 bits, to enable larger ranges to be
specified for invalidation.

Stage 1 translations can be defined for low from address 0 upwards, and high address ranges from address (2^64)-1
downwards. A range invalidation never crosses from one range to the other:

• A range invalidation operation whose upper address exceeds (2^64)-1 does not wrap around to cover
addresses from address 0.

• A range invalidation operation starting at an address with ADDR[63] == 0 is not required to invalidate any
entries with ADDR[63] == 1.

Configuration invalidate operations

Configuration invalidate operations invalidate StreamDisabled translation and translations with
DTI_TBU_TRANS_RESP.BYPASS = 0 or DTI_TBU_TRANS_RESP.BP_TYPE = StreamBypass.

Table 3-16 shows the SMMUv3 commands that map that to DTI configuration invalidate operations.

For any translation that has 0 as the value of DTI_TBU_TRANS_REQ.SSV, the value of
DTI_TBU_TRANS_REQ.SSID is treated as being 0 for CFGI_S_SID_SSID, CFGI_RL_SID_SSID, and
CFG_NS_SID_SSID operations.

Realm Invalidation

Each code operates on SEC_SID = Realm. The operations are otherwise identical to the corresponding Non-secure
invalidation operation. See Table 3-11 for the list of DTI-TBUv3 invalidation operations.

Table 3-16 Mappings of SMMUv3 commands onto DTI invalidate operations

SMMUv3 command DTI invalidate operation

CMD_CFGI_ALL CFGI_S_ALL, CFGI_NS_ALL, CFGI_RL_ALL

CMD_CFGI_STE CFGI_S_SID, CFGI_NS_SID, CFGI_RL_SID

CMD_CFGI_STE_RANGE CFGI_S_SID, CFGI_NS_SID, CFGI_RL_SID

CMD_CFGI_CD_ALL CFGI_S_SID, CFGI_NS_SID, CFGI_RL_SID

CMD_CFGI_CD CFGI_S_SID_SSID, CFGI_NS_SID_SSID, CFGI_RL_SID_SSID
3-78 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Realm invalidation operations are only permitted when DTI_TBU_CONDIS_REQ.STAGES is MG.

GPC invalidate operations

The only invalidation operation added is TLBI_PA. For TLBI_PA:

• These operation fields are valid: ADDR and SIZE.

• It invalidates all translations with DTI_TBU_TRANS_RESP.TRANS_RNG != 0b1111 and a translated
address that matches the given address and size, with any value of DTI_TBU_TRANS_RESP.NS or
DTI_TBU_TRANS_RESP.NSE.

• OPERATION is 0x47.

The SIZE field is DTI_TBU_INV_REQ[15:12]. It overlaps with TG, TTL, and SSID[3:0].

Note

The TLBI_PA operation invalidates previous translations based on their output address in the
DTI_TBU_TRANS_RESP.OA field, not the input address.

The encodings of SIZE are:

 0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b0111 16GB

0b1000 64GB

0b1001 512GB

All other values are Reserved.

Note

The encodings here do not match those used in DTI_TBU_TRANS_RESP. The encodings here are chosen to match
DVM.

TLBI_PA operation performs range-based invalidation and invalidates translations starting from the address in
ADDR, within the range as specified in the SIZE field.

The set of addresses A to be invalidated is given by: ADDR <= A < ADDR + "region size given by SIZE".

Note

The TLBI_PA invalidate range is given by SIZE which is different than the range calculation for TLBI_S_*,
TLBI_NS_*, and TLBI_RL_*.

TLBI_PA operation affects a translation if any address to be invalidated is within the range of the translation, as
defined by DTI_TBU_TRANS_RESP.TRANS_RNG in the translation response.

Note

It is DTI_TBU_TRANS_RESP.TRANS_RNG instead of DTI_TBU_TRANS_RESP.INVAL_RNG because
DTI_TBU_TRANS_RESP.TRANS_RNG reflects the size of GPC performed for this translation.

If ADDR is not aligned to the size of the value of SIZE field, no translations are required to be invalidated.

When DTI_TBU_CONDIS_REQ.STAGES is M, TLBI_PA invalidation operations are not permitted.

When DTI_TBU_CONDIS_REQ.STAGES is G, the only invalidation operations permitted are TLBI_PA and
INV_ALL.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-79
ID062824 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Note

There is no TLBI_PA_ALL operation required by the TBU because the existing INV_ALL operation can be used.

DPT invalidation

DPTI_RL_PA invalidates all TLB entries allocated with DTI_TBU_TRANS_REQ.SEC_SID == Realm,
DTI_TBU_TRANS_RESP.BYPASS == 1, and DTI_TBU_TRANS_RESP.BP_TYPE == DPTBypass with an input
address that matches the given address and size.

DPTI_RL_ALL invalidates all TLB entries allocated with DTI_TBU_TRANS_REQ.SEC_SID == Realm,
DTI_TBU_TRANS_RESP.BYPASS == 1, and DTI_TBU_TRANS_RESP.BP_TYPE == DPTBypass.

DPTI_RL_PA and DPTI_RL_ALL are only permitted when DTI_TBU_CONDIS_ACK.VERSION > DTI-TBUv3
and DTI_TBU_CONDIS_REQ.STAGES is MG.

DPTI_RL_PA operation performs range-based invalidation and invalidates translations starting from the address in
ADDR, within the range as specified in the SIZE field.

A translation only guaranteed to be invalidated by DPTI_RL_PA operation if SIZE selects a value equal to or greater
than DTI_TBU_TRANS_RESP.TRANS_RNG.

If ADDR is not aligned to the the size of the value of SIZE field, no translations are required to be invalidated.

DPTBypass translation is invalidated by INV_ALL, TLBI_PA, DPTI_RL_PA, DPTI_RL_ALL, and configuration
invalidate operations of the appropriate security level.
3-80 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.4 Register access message group
3.4 Register access message group

The TBU provides IMPLEMENTATION DEFINED registers, which can be accessed using these messages. These
registers provide information and control for the features of the TBU.

The DTI protocol supports 32-bit register accesses only. If 64-bit registers are implemented, they must be updated
using multiple 32-bit accesses. A TBU can implement up to 512KB of register space.

This section contains the following subsections:

• DTI_TBU_REG_WRITE

• DTI_TBU_REG_WACK on page 3-82

• DTI_TBU_REG_READ on page 3-82

• DTI_TBU_REG_RDATA on page 3-83

• Deadlock avoidance in register accesses on page 3-84

3.4.1 DTI_TBU_REG_WRITE

The DTI_TBU_REG_WRITE message is used to request a write to a register.

Description

A register write request.

Source

TCU

Usage constraints

• The TCU must have no outstanding register reads or writes.

• DTI_TBU_CONDIS_REQ.SUP_REG was 1 during the connect sequence.

Flow control result

None

Field descriptions

The DTI_TBU_REG_WRITE bit assignments are:

DATA, bits [63:32]

This field holds the data to be written.

Bits [31:25]

Reserved, SBZ

NSE, bit [24]

{NSE, NS} indicates the physical address space of the register access. For more
information, see NS, bit [23].

NS, bit [23]

This bit indicates the physical address space of the register access. The encodings of
{NSE, NS} are as follows:

0b00 Secure

0b01 Non-secure

7 6 5 4 3 2 1 0 LSB

DATA

56
48
40
32
24
16
8
0

Reserved

ADDR[11:4]
S_MSG_TYPEADDR[3:2] Reserved

NS
NSE

ADDR[18:12]
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-81
ID062824 Non-Confidential

3 DTI-TBU Messages
3.4 Register access message group
0b10 Root

0b11 Realm

For more information, see NSE, bit [24].

ADDR, bits [22:6]

This field indicates the address of the register to be written to. Writes to unimplemented
registers must be ignored.

Bits [5:4]

Reserved, SBZ

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-25.

0b0110 DTI_TBU_REG_WRITE

3.4.2 DTI_TBU_REG_WACK

The DTI_TBU_REG_WACK message is used to acknowledge a register write request. Receipt of this message
indicates a write has taken effect.

Description

A register write acknowledgment.

Source

TBU

Usage constraints

The TCU must have previously issued a register write request that has not yet been acknowledged.

Flow control result

None

Field descriptions

The DTI_TBU_REG_WACK bit assignments are:

Bits [7:4]

Reserved, SBZ

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-25.

0b0110 DTI_TBU_REG_WACK

3.4.3 DTI_TBU_REG_READ

The DTI_TBU_REG_READ message is used to request a read from a register.

Description

A register read request.

Source

TCU

7 6 5 4 3 2 1 0 LSB
0M_MSG_TYPEReserved
3-82 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.4 Register access message group
Usage constraints

• The TCU must have no outstanding register reads or writes.

• DTI_TBU_CONDIS_REQ.SUP_REG was 1 during the connect sequence.

Flow control result

None

Field descriptions

The DTI_TBU_REG_READ bit assignments are:

Bits [31:25]

Reserved, SBZ

NSE, bit [24]

{NSE, NS} indicates the physical address space of the register access. For more
information, see NSE, bit [23].

NS, bit [23]

{NSE, NS} indicates the physical address space of the register access. The encodings
of {NSE, NS} are as follows:

0b00 Secure

0b01 Non-secure

0b10 Root

0b11 Realm

ADDR, bits [22:6]

This field indicates the address of the register to be written to. Reads from
unimplemented registers must return 0 and have no other effect.

Bits [5:4]

Reserved, SBZ

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-25.

0b0111 DTI_TBU_REG_READ

3.4.4 DTI_TBU_REG_RDATA

The DTI_TBU_REG_RDATA message is used to return the data from a register read request.

Description

A register read response.

Source

TBU

Usage constraints

The TCU must have previously issued a register read request that has not yet received a response.

Flow control result

None

7 6 5 4 3 2 1 0 LSB

NS
24
16
8
0ADDR[3:2] Reserved

ADDR[11:4]
S_MSG_TYPE

Reserved NSE
ADDR[18:12]
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-83
ID062824 Non-Confidential

3 DTI-TBU Messages
3.4 Register access message group
Field descriptions

The DTI_TBU_REG_RDATA bit assignments are:

DATA, bits [63:32]

This field holds the read data.

Bits [31:4]

Reserved, SBZ

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-25.

0b0111 DTI_TBU_REG_RDATA

3.4.5 Deadlock avoidance in register accesses

A TBU must be able to respond to register access messages without requiring the completion of downstream
transactions, or the progress of other DTI transactions.

M_MSG_TYPE

56
48
40
32
24
16
8
0Reserved

Reserved

DATA

7 6 5 4 3 2 1 0 LSB
3-84 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

3 DTI-TBU Messages
3.5 Message dependencies for DTI-TBU
3.5 Message dependencies for DTI-TBU

The message dependencies for the DTI-TBU protocol are shown in Figure 3-2.

In this dependency diagram:

• The light gray box indicates the messages originated from the TCU.

• The dark gray box indicates the messages originated from the TBU.

• The dotted line box indicates the translated transaction that is not a DTI message but is useful for analyzing
the dependency.

• An arrow starting from message A and ending with message B represents a dependency on the DTI-TBU link
between TBU and TCU.
— When two messages travel in the same direction, the “must not overtake” rules mean that if the

message B is observed before message A by the sender, then the same order must be observed by the
receiver.

— When two messages travel in the opposite directions, the “must wait” rules mean that the sender of
message A expects to receive message B, and message B must arrive before message A can be
presented on DTI.

• A message dependency could be any of the following:

— Messages that are credit controlled. For example, the maximum number of DTI_TBU_INV_ACK
messages before another DTI_TBU_INV_REQ message can be issued, is
DTI_TBU_CONDIS_REQ.TOK_INV_GNT.

— The messages with order requirements defined in this protocol.

— Any dependency because of an external protocol, for example, DVM dependency.

Figure 3-2 DTI-TBU message dependency sequence

The message dependencies rules are as follows:

• DTI_TBU_REG_WRITE message must wait for any outstanding DTI_TBU_REG_WACK or
DTI_TBU_REG_RDATA message.

• DTI_TBU_REG_READ message must wait for any outstanding DTI_TBU_REG_WACK or
DTI_TBU_REG_RDATA message.

• DTI_TBU_CONDIS_REQ message must wait for any outstanding DTI_TBU_CONDIS_ACK message.

• DTI_TBU_CONDIS_REQ message must wait for any outstanding DTI_TBU_TRANS_RESP,
DTI_TBU_TRANS_RESPEX or DTI_TBU_TRANS_FAULT messages.

• DTI_TBU_CONDIS_REQ message must wait for all translated transactions to complete in the TBU.

• DTI_TBU_INV_REQ, DTI_TBU_SYNC_REQ, DTI_TBU_REG_READ, and DTI_TBU_REQ_WRITE
messages must not overtake DTI_TBU_CONDIS_ACK message.

• DTI_TBU_TRANS_REQ message must wait for outstanding DTI_TBU_TRANS_RESP,
DTI_TBU_TRANS_RESPEX or DTI_TBU_TRANS_FAULT messages to return tokens when there is no
translation token left.

TRANS_REQ
TRANS_RESP

TRANS_RESPEX
TRANS_FAULT

INV_REQ INV_ACK

SYNC_REQ SYNC_ACK

REG_WRITE
REG_READ

REG_WACK
REG_RDATA

CONDIS_REQ CONDIS_ACK

TBU
translated
transaction
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 3-85
ID062824 Non-Confidential

3 DTI-TBU Messages
3.5 Message dependencies for DTI-TBU
• DTI_TBU_INV_REQ message must wait for outstanding DTI_TBU_INV_ACK messages to return tokens
when there is no invalidation token left.

• DTI_TBU_INV_REQ message must not overtake any DTI_TBU_TRANS_RESP,
DTI_TBU_TRANS_RESPEX or DTI_TBU_TRANS_FAULT messages which are invalidated by this
DTI_TBU_INV_REQ message, unless DO_NOT_CACHE is set to 1.

• DTI_TBU_SYNC_REQ message must wait for any outstanding DTI_TBU_SYNC_ACK message.

• DTI_TBU_SYNC_REQ message must not overtake any DTI_TBU_INV_REQ messages.

• DTI_TBU_SYNC_REQ message must not overtake any DTI_TBU_TRANS_RESP,
DTI_TBU_TRANS_RESPEX or DTI_TBU_TRANS_FAULT messages that were invalidated by any
preceding DTI_TBU_INV_REQ message.

• DTI_TBU_SYNC_ACK message can wait for translated transactions to complete in the TBU.

• TBU translated transaction can wait for DTI_TBU_TRANS_REQ message when the TBU translated
transaction has order dependency with another TBU translated transaction still requiring translation.

• TBU translated transaction can wait for DTI_TBU_INV_REQ message. If the translated transaction requires
cache coherent memory access, it might result in dependency with DVM invalidate messages sharing the
same snooping interface.
3-86 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 4
DTI-ATS Messages

This chapter describes the message groups of the DTI-ATS protocol.

It contains the following sections:

• Connection and disconnection message group on page 4-88

• Translation request message group on page 4-94

• Invalidation and synchronization message group on page 4-107

• Page request message group on page 4-117
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-87
ID062824 Non-Confidential

4 DTI-ATS Messages
4.1 Connection and disconnection message group
4.1 Connection and disconnection message group

The DTI-ATS protocol is designed to enable a TCU to simultaneously support DTI-ATSv1, DTI-ATSv2,
DTI-ATSv3, and DTI-ATSv4 connections from different PCIe RPs.

This section contains the following subsections:

• DTI_ATS_CONDIS_REQ

• DTI_ATS_CONDIS_ACK on page 4-90

4.1.1 DTI_ATS_CONDIS_REQ

The DTI_ATS_CONDIS_REQ message is used to initiate a connection or disconnection handshake.

Description

Connection state change request.

Source

PCIe RP

Usage constraints

The PCIe RP can only send a disconnect request when:

• The channel is in the CONNECTED state.

• There are no outstanding translation requests.

• There are no outstanding page requests.

• The conditions for completing any future invalidation and sync are already met. In practice,
the result is that all downstream transactions must be complete and all ATCs must be disabled
and invalidated.

The PCIe RPs can only send a connect request when:

• The channel is in the DISCONNECTED state.

Flow control result

None

Field descriptions

The DTI_ATS_CONDIS_REQ bit assignments are:

TOK_TRANS_REQ [11:8], bits [31:28]

The size of TOK_TRANS_REQ field is dependent on the version of the DTI-ATS
protocol.

DTI-ATSv1, DTI-ATSv2, DTI-ATSv3

TOK_TRANS_REQ[11:8] is Reserved, SBZ.

TOK_TRANS_REQ[7:0] is bits [19:12].

DTI-ATSv4

TOK_TRANS_REQ[11:8] is bits [31:28].

TOK_TRANS_REQ[7:0] is bits [19:12].

The meaning of this field depends on the values of the STATE and NO_TRANS fields.

When (NO_TRANS == 0 or DTI_ATS_CONDIS_REQ.VERSION == DTI-ATSv1)
and STATE == 0:

This field indicates the number of translation tokens returned.

7 6 5 4 3 2 1 0 LSB

TOK_TRANS_REQ[3:0]

TOK_TRANS_REQ[11:8] 24
16
8
0

TOK_INV_GNT TOK_TRANS_REQ[7:4]
VERSION

M_MSG_TYPEReserved PROTOCOL STATE

NO_TRANSSUP_TReserved
4-88 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.1 Connection and disconnection message group
The number of translation tokens returned is equal to the value of this field
plus one.

This field must be the value of the TOK_TRANS_GNT field that was
received in the DTI_ATS_CONDIS_ACK message that acknowledged the
connection of the channel.

TOK_TRANS is equal to the encoded value of this field plus one.

When (NO_TRANS == 0 or DTI_ATS_CONDIS_REQ.VERSION == DTI-ATSv1)
and STATE == 1:

This field indicates the number of translation tokens that are requested.

The number of translation tokens requested is equal to the value of this field
plus one.

When NO_TRANS == 1 and DTI_ATS_CONDIS_REQ.VERSION > DTI-ATSv1:

Reserved, SBZ

Bits [27:26]

Reserved, SBZ

SUP_T, bit [25]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

• When DTI_ATS_CONDIS_REQ.STATE == 1, this bit indicates the
requested T bit usage in DTI_ATS_TRANS_REQ,
DTI_ATS_INV_REQ, DTI_ATS_PAGE_REQ, and
DTI_ATS_PAGE_RESP messages.

— 0: T must be 0.

— 1: T can be 0 or 1.

• When DTI_ATS_CONDIS_REQ.STATE == 0:

— This field is ignored.

NO_TRANS, bit [24]

DTI-ATSv1

Reserved, SBZ

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

When this bit is 1 and DTI_ATS_CONDIS_ACK.VERSION >
DTI-ATSv1:

• The number of translation tokens requested is zero.

• The number of invalidation tokens granted is zero.

• None of the following messages are permitted to be sent:

— DTI_ATS_TRANS_*

— DTI_ATS_INV_*

— DTI_ATS_SYNC_*

When STATE is 0 and the VERSION field in the DTI_ATS_CONDIS_ACK
message that established the connection was greater than DTI-ATSv1, then
the value of this field must match with the value of NO_TRANS in the
previous connect request with STATE == 1.

When STATE is 0 and the VERSION field in the DTI_ATS_CONDIS_ACK
message that established the connection was DTI-ATSv1, then the value of
this field must be 0.

TOK_INV_GNT, bits [23:20]

The meaning of this field depends on the value of the NO_TRANS field.

When NO_TRANS == 0 or DTI_ATS_CONDIS_REQ.VERSION == DTI-ATSv1:

This field indicates the number of invalidation tokens granted.

The number of invalidation tokens granted is equal to the value of this field
plus one.

This field is ignored when the STATE field has a value of 0.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-89
ID062824 Non-Confidential

4 DTI-ATS Messages
4.1 Connection and disconnection message group
When NO_TRANS == 1 and DTI_ATS_CONDIS_REQ.VERSION > DTI-ATSv1:

Reserved, SBZ

TOK_TRANS_REQ [7:0], bits [19:12]

See the description for TOK_TRANS_REQ [11:8], bits [31:28].

VERSION, bits [11:8]

This field indicates the requested protocol version.

0b0000 DTI-ATSv1

0b0001 DTI-ATSv2

0b0010 DTI-ATSv3

0b0011 DTI-ATSv4

All other encodings are for future protocol versions and are currently not defined.

A PCIe RP can request any protocol version it supports. A TCU must accept requests
for later protocol versions, including those not yet defined. The
DTI_ATS_CONDIS_ACK message indicates the protocol version to use.

Bits [7:6]

Reserved, SBZ

PROTOCOL, bit [5]

This bit indicates the protocol that is used by this PCIe RP.

1 DTI-ATS

This bit must be 1.

STATE, bit [4]

This bit indicates the new channel state requested.

0 Disconnect request

1 Connect request

A Disconnect request can only be issued when the channel is in the CONNECTED state.

A Connect request can only be issued when the channel is in the DISCONNECTED
state.

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26.

0b0000 DTI_ATS_CONDIS_REQ

4.1.2 DTI_ATS_CONDIS_ACK

The DTI_ATS_CONDIS_ACK message is used to accept or deny a request as part of the connect or disconnect
handshake process.

Description

A connection state change acknowledgment.

Source

TCU

Usage constraints

The PCIe RP must have previously issued an unacknowledged DTI_ATS_CONDIS_REQ message.

Flow control result

None
4-90 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.1 Connection and disconnection message group
Field descriptions

The DTI_ATS_CONDIS_ACK bit assignments are:

TOK_TRANS_GNT [11:8], bits [31:28]

The size of this field is dependent on the version of the DTI-ATS protocol. The meaning
of this field depends on the value of DTI_ATS_CONDIS_REQ.NO_TRANS.

DTI-ATSv1, DTI-ATSv2, DTI-ATSv3

TOK_TRANS_GNT[11:8] is Reserved, SBZ.
TOK_TRANS_GNT[7:0] is bits [19:12].

DTI-ATSv4

TOK_TRANS_GNT[11:8] is bits [31:28].
TOK_TRANS_GNT[7:0] is bits [19:12].

When DTI_ATS_CONDIS_REQ.NO_TRANS == 0 or
DTI_ATS_CONDIS_ACK.VERSION == DTI-ATSv1:

Indicates the number of preallocated tokens for translation requests that
have been granted. The number of translation tokens granted is equal to the
encoded value of this field plus one.

DTI-ATSv1, DTI-ATSv2:

When STATE is 1, the value of this field must not be greater
than the value of the TOK_TRANS_REQ field in the
DTI_ATS_CONDIS_REQ message that initiated the
connection.

DTI-ATSv3, DTI-ATSv4:

When STATE is 1, the value of this field must equal the value
of the TOK_TRANS_REQ field in the
DTI_ATS_CONDIS_REQ message that initiated the
connection.

When STATE is 0, this field is ignored.

When DTI_ATS_CONDIS_REQ.NO_TRANS == 1 and
DTI_ATS_CONDIS_ACK.VERSION > DTI-ATSv1:

Reserved, SBZ

Bits [27:26]

Reserved, SBZ

SUP_T, bit [25]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

• When DTI_ATS_CONDIS_ACK.STATE == 1 and
DTI_ATS_CONDIS_REQ.SUP_T == 1, this bit indicates the
granted T bit usage in DTI_ATS_TRANS_REQ,
DTI_ATS_INV_REQ, DTI_ATS_PAGE_REQ, and
DTI_ATS_PAGE_RESP messages.

— 0: T must be 0.

— 1: T can be 0 or 1.

7 6 5 4 3 2 1 0 LSB

Reserved
TOK_TRANS_GNT[3:0]

24
16
8
0

TOK_TRANS_GNT[7:4]
VERSION

S_MSG_TYPESTATE

SUP_PRI
TOK_TRANS_GNT[11:8]

OAS[2:0]/Reserved
OAS[3]/ReservedSUP_TReserved
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-91
ID062824 Non-Confidential

4 DTI-ATS Messages
4.1 Connection and disconnection message group
• When DTI_ATS_CONDIS_ACK.STATE == 1 and
DTI_ATS_CONDIS_REQ.SUP_T == 0:

— This field is Reserved, SBZ.

• When DTI_ATS_CONDIS_ACK.STATE == 0:

— This field is Reserved, SBZ.

OAS, bits [24:21]

DTI-ATSv1

Indicates the output address size, which is the maximum address size
permitted for translated addresses.

0b0000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are Reserved.

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

Reserved, SBZ

SUP_PRI, Bit [20]

Indicates that the PCIe ATS PRI messages are supported.

If the value of this bit is 0, then DTI_ATS_PAGE_REQ messages must not be issued.

When the value of STATE is 0, this bit is ignored.

DTI-ATSv1

The DTI_ATS_PAGE_RESP message is permitted to be issued regardless
of the value of this bit. A PCIe RP must be able to accept
DTI_ATS_PAGE_RESP messages but does not have to process them.

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

If this bit is 0, then DTI_ATS_PAGE_RESP messages must not be issued.

TOK_TRANS_GNT [7:0], bits [19:12]

See the description for TOK_TRANS_GNT [11:8], bits [31:28].

VERSION, bits [11:8]

This bit indicates the protocol version that the TCU has granted.

0b0000 DTI-ATSv1

0b0001 DTI-ATSv2

0b0010 DTI-ATSv3

0b0011 DTI-ATSv4

All other encodings are Reserved.
The value of this field must not be greater than the value of the VERSION field in the
DTI_ATS_CONDIS_REQ message.

Bits [7:5]

Reserved, SBZ

STATE, bit [4]

This bit indicates the new DTI connection state. The possible values of this bit are:

0 DISCONNECTED

1 CONNECTED

When the value of STATE in the unacknowledged DTI_ATS_CONDIS_REQ message
is 0, the value of this bit must be 0.
4-92 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.1 Connection and disconnection message group
When the value of STATE in the unacknowledged DTI_ATS_CONDIS_ REQ message
is 1, this field can be 0 or 1. For example, it can be 0 if there are no translation tokens
available. This normally indicates a serious system configuration failure.

S_MSG_TYPE, bits [3:0]

Identifies the message type. The value of this field is taken from the list of encodings
for upstream messages, see DTI-ATS protocol upstream message on page 2-26.

0b0000 DTI_ATS_CONDIS_ACK
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-93
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
4.2 Translation request message group

This section contains the following subsections:

• DTI_ATS_TRANS_REQ

• DTI_ATS_TRANS_RESP on page 4-97

• DTI_ATS_TRANS_FAULT on page 4-103

• The ATS translation sequence on page 4-105

4.2.1 DTI_ATS_TRANS_REQ

The DTI_ATS_TRANS_REQ message is used to initiate a translation request.

Description

A translation request.

Source

PCIe RP

Usage constraints

The PCIe RP must have at least one translation token.

Flow control result

The PCIe RP consumes a translation token.

Field descriptions

The DTI_ATS_TRANS_REQ bit assignments are:

IA, bits [159:108]

This field holds the input address, IA[63:12], to be used in the translation.

Bits [107:96]

Reserved, SBZ

SSID, bits [95:76]

This field indicates the SubstreamID value that is used for the translation.

When the value of SSV is 0, this field is Reserved, SBZ.

Bits [75:64]

Reserved, SBZ

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

IA[63:16]

ReservedIA[15:12]
Reserved

SSID[19:4]

ReservedSSID[3:0]
Reserved

SID

TRANSLATION_ID[11:8]
SSV T nW InD PnU Protocol

TRANSLATION_ID[7:0]
M_MSG_TYPEQOS

Reserved CXL
Reserved
4-94 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.2 Translation request message group
SID, bits [63:32]

This field indicates the StreamID value that is used for the translation.

TRANSLATION_ID[11:8], bits [31:28]

The size of this field is dependent on the version of the DTI-ATS protocol being used.

DTI-ATSv1, DTI-ATSv2, DTI-ATSv3

TRANSLATION_ID[11:8] is Reserved, SBZ.

TRANSLATION_ID[7:0], bits [15:8].
Any 8-bit translation ID in TRANSLATION_ID[7:0] can be used if the
maximum number of outstanding translation requests is not exceeded.

DTI-ATSv4

TRANSLATION_ID[11:8], bits [31:28].

TRANSLATION_ID[7:0], bits [15:8].
Any 12-bit translation ID can be used if the maximum number of
outstanding translation requests is not exceeded.

This field gives the identification number for the translation.

The value of this field must not be in use by any translation request that has not yet
received a DTI_ATS_TRANS_RESP or DTI_ATS_TRANS_FAULT response.

Bits [31:23]

Reserved, SBZ

CXL, bit [22]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

This is set to the value of the Source_CXL bit in the ATS request.

SSV, bit [21]

This bit indicates whether a valid SubstreamID is associated with this translation.

0 The SSID field is not valid.

1 The SSID field is valid.

T, bit [20]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

When DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are both 1 for the connection, various
messages include a T bit to indicate that the message corresponds to a
trusted entity. In each case:

0 Indicates a Non-secure StreamID.

1 Indicates a Realm StreamID.

If DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are not both 1 during the connection
sequence, this field must be 0.

nW, bit [19]

This bit indicates whether write access is requested.

0 Read and write access

1 Read-only access

When HTTU is enabled, a value of 0 in this field marks the translation table entry as
Dirty.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-95
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
InD, bit [18]

This bit indicates whether execute (instruction) access is requested.

0 The translation will only be used for data accesses.

1 The translation might be used for instruction and data accesses.

When the value of SSV is 0, this bit must be 0.

PnU, bit [17]

This bit indicates whether this translation represents privileged or unprivileged access.

0 Unprivileged

1 Privileged

When the value of SSV is 0, this bit must be 0.

PROTOCOL, bit [16]

This bit indicates the protocol that is used for this message.

1 DTI-ATS

This bit must be 1.

TRANSLATION_ID [7:0], bits [15:8]

See TRANSLATION_ID[11:8], bits [31:28].

QOS, bits [7:4]

This field indicates the Quality of Service priority level. Translation requests with a high
QOS value are likely to be responded to before requests with a lower QOS value.
This field is a hint.

M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26

0b0010 DTI_ATS_TRANS_REQ

PCIe Translation Request mapping to DTI_ATS_TRANS_REQ

When a PCIe Translation Request is received, the DTI_ATS_TRANS_REQ fields should be driven as shown in
Table 4-1:

Table 4-1 PCIe Translation Request mapping to DTI_ATS_TRANS_REQ

DTI_ATS_TRANS_REQ field Value

SID SID[15:0] is the Requester ID, otherwise known as BDF (Bus, Device,
Function).
Higher-order bits of SID uniquely identify the PCIe segment in the
StreamID space that is used by the SMMU.

CXLa This field is CXL_src.

nW This field is NW.

SSV If the PCIe Translation Request has a PASID, this field is 1. Otherwise, this
field is 0.

PnU If the PCIe Translation Request has a PASID, this field is Priv. Otherwise,
this field is 0.
4-96 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.2 Translation request message group
4.2.2 DTI_ATS_TRANS_RESP

The DTI_ATS_TRANS_RESP message is used to respond to a translation request.

Description

A DTI translation response.

Source

TCU

Usage constraints

The PCIe RP must have previously issued a translation request that has not yet generated either a
response or a fault message.

Flow control result

The TCU returns a translation token to the PCIe RP.

InD If the PCIe Translation Request has a PASID, this field is Exe. Otherwise,
this field is 0.

SSID If the PCIe Translation Request has a PASID, this field is PASID.
Otherwise, this field is 0.

Ta T

a. This is only applicable to DTI-ATSv3 and DTI-ATSv4.

Table 4-1 PCIe Translation Request mapping to DTI_ATS_TRANS_REQ (continued)

DTI_ATS_TRANS_REQ field Value
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-97
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
Field descriptions

The DTI_ATS_TRANS_RESP bit assignments are:

OA, bits [159:108]

This field holds the output address, OA[63:12], of the translated address.

DTI-ATSv1

The address in this field must be within the larger of the following address
sizes:

• The size indicated by the OAS field of the
DTI_ATS_CONDIS_ACK message received during the connection
sequence.

• 40 bits

This address must be to the first byte in a region of the size that is given by
TRANS_RNG. For example, if the value of TRANS_RNG is 2, then
OA[15:12] must be zero.

When BYPASS is 1, this field must be zero.

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

Bits within the range given by the TRANS_RNG field must match
DTI_ATS_TRANS_REQ.IA.

For example, if the value of TRANS_RNG is 2, then OA[15:12] must equal
DTI_ATS_TRANS_REQ.IA[15:12].

When the value of BYPASS is 1, this field must equal the value of IA in the
translation request.

When the value of UNTRANSLATED is 1, this field is Reserved, SBZ.

Bits [107:95]

Reserved, SBZ

AMA, bits [94:92]

DTI-ATSv1

Reserved, SBZ

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

This field indicates the translation attributes in a form that is designed for
use by the PCIe ATS Memory Attributes field.

0b000 Normal-WB-RA-WA

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

OA[63:16]

ReservedOA[15:12]

Reserved TRANS_RNG

ALLOW_X ALLOW_W ALLOW_R

Reserved

Reserved ReservedBYPASS

S_MSG_TYPETRANSLATION_ID[3:0]
TRANSLATION_ID[7:4]Reserved UNTRANSLATED

Reserved

Reserved

CXL_IO

AMAReserved Reserved

Reserved TE Reserved
TRANSLATION_ID [11:8]
4-98 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.2 Translation request message group
0b001 Normal-WB-nRA-WA

0b010 Normal-WB-RA-nWA

0b011 Normal-WB-nRA-nWA

0b100 Device-nRnE

0b101 Device-nRE

0b110 Device-RE

0b111 Normal-NC

Bits [91:84]

Reserved, SBZ

TRANS_RNG, bits [83:80]

The meaning of this field depends on the value of the
DTI_ATS_TRANS_RESP.BYPASS field:

BYPASS = 0

DTI-ATSv1, DTI-ATSv2

This field indicates the aligned range of addresses translation is
valid for.

0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b0111 16GB

0b1000 4TB

0b1001 128TB

All other values are Reserved.

Note
When DTI-ATSv1 or DTI-ATSv2 is used and translated page
size is 64GB or 512GB, the TCU uses a value of 0b0111 instead,
indicating a 16GB range.

DTI-ATSv3, DTI-ATSv4

This field indicates the aligned range of addresses translation is
valid for.

0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b0111 16GB

0b1010 64GB

0b1011 512GB

0b1000 4TB

0b1001 128TB

All other values are Reserved.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-99
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
BYPASS = 1

DTI-ATSv1

This field indicates the maximum output address size of the
system.

0b000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are Reserved.

This information is also given in the OAS field of the
DTI_ATS_CONDIS_ACK message and uses the same
encodings. When BYPASS = 1, this field must match
DTI_ATS_CONDIS_ACK.OAS.

This value is a static property of the system; every transaction
in which the value of the BYPASS field is 1 must return the
same value for this field.

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

Reserved, SBZ

TRANSLATION_ID[11:8], bits [79:76]

The size of this field is dependent on the version of the DTI-ATS protocol being used.

DTI-ATSv1, DTI-ATSv2, DTI-ATSv3

TRANSLATION_ID[11:8] is Reserved, SBZ.

TRANSLATION_ID[7:0] is bits [11:4].

DTI-ATSv4

TRANSLATION_ID[11:8] is bits [79:76].

TRANSLATION_ID[7:0] is bits [11:4].

This field gives the identification number for the translation.

This field must have a value corresponding to an outstanding translation request.

Bits [75:71]

Reserved, SBZ

TE, bit [70]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

Indicates the security space of the address.

0 OA is a Non-secure address.

1 OA is a Realm address.

When DTI_ATS_TRANS_REQ.T is 0, TE is Reserved, SBZ.

Bits [69:67]

Reserved, SBZ

ALLOW_X, bit [66]

This bit indicates permissions for instruction reads.

0 Not permitted

1 Permitted

When the value of ALLOW_R is 0, this bit must be 0.
4-100 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.2 Translation request message group
When the value of InD in the DTI_ATS_TRANS_REQ translation request message was
0, this bit must be 0.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_W, bit [65]

This bit indicates permissions for data write accesses.

0 Not permitted

1 Permitted

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

ALLOW_R, bit [64]

This bit indicates permissions for data read accesses.

0 Not permitted

1 Permitted

If the value of ALLOW_W is 0, the value of this field must be 1.

It is expected that TCU should drive this field to 1 if the permission is granted by the
translation.

Bits [63:18]

Reserved, SBZ

BYPASS, bit [17]

This field indicates that translation for this StreamID is bypassed. When the value of this
field is 1, the VA and the PA of the translation are the same.

0 Normal translation

1 Translation bypassed

DTI-ATSv1

This bit must be 0 if the value of IA in the translation request is greater than
the range shown in the OAS field of the DTI_ATS_CONDIS_ACK
message that was received during the connection sequence.

Bits [16:14]

Reserved, SBZ

CXL_IO, bit [13]

DTI-ATSv1

Reserved, SBZ

DTI-ATSv2, DTI-ATSv3, DTI-ATSv4

Used by root ports implementing CXL:

0 The translation response can be used by CXL.cache or CXL.io
transactions.

1 The translation response cannot be used by CXL.cache
transactions and must only be used by CXL.io translated
transactions.

DTI-ATSv3, DTI-ATSv4

Reserved, SBZ when DTI_ATS_TRANS_REQ.CXL= 0.

UNTRANSLATED, bit [12]

Indicates whether ATS translations should be used for this page.

0 The U bit in the PCIe ATS Translation Completion Data message must be 0.

1 The U bit in the PCIe ATS Translation Completion Data message must be 1.

This bit might be set when the TCU is not able to provide an ATS translation for the
page, for example, because of the memory attributes of the translated page.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-101
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
When the value of this bit is 1, the PCIe Endpoint must access the page using
untranslated transactions.

The ALLOW_R, ALLOW_W, and ALLOW_X values are unaffected by the value of
this bit.

TRANSLATION_ID [7:0], bits [11:4]

See TRANSLATION_ID[11:8], bits [79:76].

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-26.

0b0010 DTI_ATS_TRANS_RESP

DTI_ATS_TRANS_RESP mapping to PCIe Translation Completion

When a DTI_ATS_TRANS_RESP message is received, the PCIe Translation Completion Data fields should be
driven as follows:

Table 4-2 DTI_ATS_TRANS_RESP mapping to PCIe Translation Completion

PCIe TLP field Value

Translated
Address and S

Depends on the OA, TRANS_RNG, and BYPASS fields of DTI_ATS_TRANS_RESP

N 0b0

Global 0b0a

a. Previous versions (Edition 0 to Edition 3) of this specification included a GLOBAL field in
DTI_ATS_TRANS_RESP. This was an error since the SMMUv3 architecture requires the Global field in a
Translation Completion to be 0.

Exe DTI_ATS_TRANS_RESP.ALLOW_X

Priv DTI_ATS_TRANS_REQ.PnU

U DTI_ATS_TRANS_RESP.UNTRANSLATED

R DTI_ATS_TRANS_RESP.ALLOW_R

W DTI_ATS_TRANS_RESP.ALLOW_W

CXL.io DTI-ATSv2
— If Source_CXL set in PCIe translation request: DTI_ATS_TRANS_RESP.CXL_IO

— Else: 0b0

DTI-ATSv3 and DTI-ATSv4
— DTI_ATS_TRANS_RESP.CXL_IO

AMAb

b. DTI-ATSv2, DTI-ATSv3, and DTI-ATSv4

DTI_ATS_TRANS_RESP.AMA

Tc

c. DTI-ATSv3 and DTI-ATSv4

DTI_ATS_TRANS_REQ.T
4-102 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.2 Translation request message group
4.2.3 DTI_ATS_TRANS_FAULT

The DTI_ATS_TRANS_FAULT message is used to provide a fault response to a translation request.

Description

A translation fault response.

Source

TCU

Usage constraints

The PCIe RP must have previously issued a translation request that has not yet generated either a
response or a fault message.

Flow control result

The TCU returns a translation token to the PCIe RP.

Field descriptions

The DTI_ATS_TRANS_FAULT bit assignments are:

TRANSLATION_ID[11:8], bits [31:28]

The size of this field is dependent on the version of the DTI-ATS protocol.

DTI-ATSv1, DTI-ATSv2, DTI-ATSv3

TRANSLATION_ID[11:8] is Reserved, SBZ.

TRANSLATION_ID[7:0] is bits [11:4].

DTI-ATSv4

TRANSLATION_ID[11:8] is bits [31:28].

TRANSLATION_ID[7:0] is bits [11:4].

This field gives the identification number for the translation.

This field must have a value corresponding to an outstanding translation request.

Bits [31:19]

Reserved, SBZ

FAULT_TYPE, bits [18:17]

This field is used to tell the PCIe RP how to handle the fault.

0b00 InvalidTranslation

0b01 CompleterAbort

0b10 UnsupportedRequest

0b11 Reserved

When the value of this field is InvalidTranslation, this field indicates that ATS requests
are permitted but that the translation resulted in a fault. The PCIe RP returns a
Translation Completion message with the status value as Success and with the Read and
Write bits clear.

When the value of this field is CompleterAbort, this field indicates that there was an
error during the translation process. The PCIe RP returns a Translation Completion
message with the status value as Completer Abort (CA).

When the value of this field is UnsupportedRequest, this field indicates that ATS is
disabled for this or all StreamIDs. The PCIe RP returns a Translation Completion
message with a status value as Unsupported Request (UR).

Bits [16:12]

Reserved, SBZ

7 6 5 4 3 2 1 0 LSB
24
16
8
0

TRANSLATION_ID[11:8]
Reserved

S_MSG_TYPE

Reserved FAULT_TYPE

TRANSLATION_ID[3:0]
TRANSLATION_ID[7:4]Reserved

Reserved
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-103
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
TRANSLATION_ID [7:0], bits [11:4]

See TRANSLATION_ID[11:8], bits [31:28].

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-26.

0b0001 DTI_ATS_TRANS_FAULT
4-104 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.2 Translation request message group
4.2.4 The ATS translation sequence

A PCIe root complex must convert ATS translation requests from the PCIe world into DTI-ATS translation requests
that the SMMU can respond to.

Figure 4-1 shows the steps required in a full ATS translation process that is supported by DTI.

Figure 4-1 Example complete ATS translation sequence in DTI

The steps in Figure 4-1 are:

1. A PCIe Endpoint sends an ATS translation request to the Root Complex.

2. The Root Complex converts this to a DTI-ATS translation request and passes it to the TCU.

3. The TCU sends a DTI-ATS translation response to the Root Complex.

4. The Root Complex forwards the translation response to the Endpoint.

5. The Endpoint sends a translated transaction using the ATS translation.

6. The Root Complex sends this to a TBU, marked as ATS-translated.

7. The TBU, if it does not already have a suitable translation, sends a DTI-TBU translation request to the TCU.

8. The TCU sends a DTI-TBU translation response to the TBU.

9. The TBU handles the transaction, by either:

a. Forwarding it downstream with the same address.

b. Forwarding it downstream with additional stage 2 translation.

c. Aborting the transaction if ATS is not supported for this stream.

The SMMU can be configured to:

• Prohibit ATS translation for individual streams. In this case, the TBU translation check prevents untrusted
Endpoints from issuing physically addressed transactions into the system.

TBUPCIe Root ComplexPCIe Endpoint TCU Memory

1

4

ATS
translation

ATS
translated

check

Downstream
transaction

2

5

6

7

8

9a / 9b
9c

3

ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-105
ID062824 Non-Confidential

4 DTI-ATS Messages
4.2 Translation request message group
• Return stage 1 translation over ATS and perform stage 2 translation in the TBU. In this case, the TBU
translation fetched in steps 7 and 8 performs stage 2 translation.

• Perform all translation using ATS. In this case, the TBU translation step is performed once to ensure that ATS
is permitted for this stream and can then be cached for all future transactions. This can be done per-stream or
globally for all streams depending on the SMMU configuration.

Requests for multiple translations

Only one translation can be requested with each DTI_ATS_TRANS_REQ message. If a PCIe Root Complex
receives an ATS translation request for multiple sequential pages, then it can either:

• Convert it into multiple individual DTI_ATS_TRANS_REQ messages and combine the responses.

• Convert it into a single DTI_ATS_TRANS_REQ message and respond with a single translation. This is legal
behavior in PCIe ATS, in effect the Root Complex has denied the request to prefetch additional translations.
4-106 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
4.3 Invalidation and synchronization message group

This section describes the ATS invalidation and synchronization message group.

ATS Invalidation operations are passed to the PCIe Endpoints to invalidate their ATC.

Invalidation SYNC operations ensure that the invalidation and transactions associated with them are complete.

This section contains the following subsections:

• DTI_ATS_INV_REQ

• DTI_ATS_INV_ACK on page 4-109

• DTI_ATS_INV_COMP on page 4-110

• DTI_ATS_SYNC_REQ on page 4-111

• DTI_ATS_SYNC_ACK on page 4-112

• The DTI-ATS invalidation sequence on page 4-113

• DTI-ATS invalidation operations on page 4-114

4.3.1 DTI_ATS_INV_REQ

The DTI_ATS_INV_REQ message is used to request the invalidation of data that is stored in a cache.

Description

An invalidation request.

Source

TCU

Usage constraints

The TCU must have at least one invalidation token.

Flow control result

The TCU consumes an invalidation token.

Field descriptions

The DTI_ATS_INV_REQ bit assignments are:

VA, bits [127:76]

The Virtual Address or Intermediate Physical Address to be invalidated.

7 6 5 4 3 2 1 0 LSB
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

SSID[3:0] OPERATION[7:4]
OPERATION[3:0] S_MSG_TYPE

ITAGVA[15:12]

SID

SSID[19:4]

RANGEITAG

VA[63:16]

T

ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-107
ID062824 Non-Confidential

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
ITAG, bits [75:71]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

This can be any value which does not match a prior DTI_ATS_INV_REQ
message with the same SID that has not yet received a corresponding
DTI_ATS_INV_COMP message.

T, bit [70]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

When DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are both 1 for the connection, various
messages include a T bit to indicate that the message corresponds to a
trusted entity. In each case:

0 Indicates a Non-secure StreamID.

1 Indicates a Realm StreamID.

When DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are not both 1 for the connection then
DTI_ATS_INV_REQ messages with T == 1 must not be sent to Root Ports.

RANGE, bits [69:64]

This field identifies a range of Virtual Addresses for invalidation.

The range is calculated as 2RANGE addresses, in multiples of 4KB pages. The bottom
RANGE bits of the VA[63:12] field are ignored in this message, and the bottom
RANGE bits of the IA[63:12] field are ignored in the translations being considered for
invalidation. If RANGE is 52, all addresses are invalidated, and the VA field is ignored.

SID, bits [63:32]

This field indicates the StreamID to be invalidated.

The receiving PCIe RP must check to see if the value of this field is a StreamID that it
uses. In the case that the StreamID is not used by this PCIe RP, the PCIe RP must
acknowledge this message without performing an operation.

Note
The PCIe RP must be aware of the StreamID range which it occupies. When the
StreamID is outside of its range, the PCIe RP must generate a DTI_ATS_INV_ACK
message instead of trying to issue an invalidate request message to an endpoint. This is
not an error case and must not cause ERROR bit set in the DTI_ATS_INV_COMP
message or DTI_ATS_SYNC_ACK message.

SSID, bits [31:12]

This field indicates the SubstreamID to be invalidated.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.

OPERATION, bits [11:4]

This field identifies the type of invalidation operation being performed.

When a PCIe RP receives a message with an unrecognized OPERATION field value, it
is recommended that the PCIe RP acknowledges the invalidation without performing
any operation.

The encoding of this field might cause other fields in this message to be invalid, for
more information see DTI-ATS invalidation operations on page 4-114.
4-108 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-26.

0b1100 DTI_ATS_INV_REQ

DTI_ATS_INV_REQ mapping to PCIe Invalidate Request

When a DTI_ATS_INV_REQ message is received, the PCIe Invalidate Request fields should be driven as shown
in Table 4-3:

4.3.2 DTI_ATS_INV_ACK

The DTI_ATS_INV_ACK message is used to acknowledge a cache invalidation request.

Description

A cache data invalidate acknowledgment.

Source

PCIe RP

Usage constraints

The TCU must have previously issued an invalidation request that has not yet been acknowledged.

Flow control result

The PCIe RP returns an invalidation token to the TCU.

Field descriptions

The DTI_ATS_INV_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ

Table 4-3 DTI_ATS_INV_REQ mapping to PCIe Invalidate Request

PCIe TLP field Value

Untranslated Address, and S Depends on VA and RANGE fields of DTI_ATS_INV_REQ

PASID When DTI_ATS_INV_REQ.OPERATION is ATCI_PASID or ATCI_PASID_GLOBAL, the
PCIe Invalidate Request has a PASID and the PASID value is DTI_ATS_INV_REQ.SSID.
Otherwise, PCIe Invalidate Request does not have a PASID.

Ta DTI_ATS_INV_REQ.T

ITaga DTI_ATS_INV_REQ.ITAG

Global Invalidate When DTI_ATS_INV_REQ.OPERATION is ATCI_PASID_GLOBAL, this is 1.

Otherwise, this is 0.

Destination ID This field is DTI_ATS_INV_REQ.SID[15:0].

Higher-order bits of DTI_ATS_INV_REQ.SID uniquely identify the PCIe segment in the
StreamID space that is used by the SMMU.

a. DTI-ATSv3 and DTI-ATSv4

7 6 5 4 3 2 1 0 LSB
0M_MSG_TYPEReserved
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-109
ID062824 Non-Confidential

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26.

0b1100 DTI_ATS_INV_ACK

4.3.3 DTI_ATS_INV_COMP

When RP receives all PCIe invalidate completion messages from the EP for a PCIe invalidate request, the RP
must return a DTI_ATS_INV_COMP message.

Description

A cache data invalidate completion.

Source

PCIe RP

Usage constraints

Protocol version is DTI-ATSv3 or greater.

The TCU must have previously issued a DTI_ATS_INV_REQ that has not yet had a corresponding
DTI_ATS_INV_COMP.

Flow control result

None

Field descriptions

The DTI_ATS_INV_COMP bit assignments are:

Bits [95:76]

Reserved, SBZ

ITAG, bits [75:71]

Must match the corresponding DTI_ATS_INV_REQ

T, bit [70]

Must match the corresponding DTI_ATS_INV_REQ

Bits [69:64]

Reserved, SBZ

SID, bits [63:32]

Must match the corresponding DTI_ATS_INV_REQ

72
64
56
48
40
32
24
16
8
0Reserved M_MSG_TYPE

ITAGReserved

Reserved

ReservedITAG T

ERROR

SID

Reserved

LSB7 6 5 4 3 2 1 0

80
88
4-110 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
Bits [31:5]

Reserved, SBZ

ERROR, bit [4]

0 Invalidation completion return successfully.

1 Invalidation could not be completed.

Note
The PCIe RP must be aware of the StreamID range which it occupies. When
the StreamID is outside of its range, it is not an error case and must not cause
this bit to be 1.

M_MSG_TYPE, bits [3:0]

This field identifies the message type. It must be 0xB.

The DTI_ATS_INV_COMP is corresponding to a DTI_ATS_INV_REQ if their ITAG and SID both fields are
matching.

There can only be one DTI_ATS_INV_COMP message for each DTI_ATS_INV_REQ message.

There must be one DTI_ATS_INV_COMP message for each DTI_ATS_INV_REQ message.

A DTI_ATS_INV_COMP message is permitted to arrive before a DTI_ATS_INV_ACK corresponding to a
DTI_ATS_INV_REQ.

If multiple PCIe invalidate completion messages are sent for the same invalidation to cover multiple Traffic Classes,
these must be coalesced by the Root Port into a single DTI_ATS_INV_COMP message, which sets ERROR if any
error occurred.

A DTI_ATS_INV_COMP does not require any invalidation tokens.

It is possible to have more DTI_ATS_INV_COMP messages outstanding than available invalidation tokens.

4.3.4 DTI_ATS_SYNC_REQ

The DTI_ATS_SYNC_REQ message is used to request synchronization between the PCIe RP and TCU.

Description

A synchronization request.

Source

TCU

Usage constraints

DTI-ATSv1, DTI-ATSv2

The TCU must have received a DTI_ATS_INV_ACK for all previous
DTI_ATS_INV_REQ messages.

The TCU must have received a DTI_ATS_SYNC_ACK for all previous
DTI_ATS_SYNC_REQ messages.

DTI-ATSv3, DTI-ATSv4

The TCU must have received a DTI_ATS_SYNC_ACK for all previous
DTI_ATS_SYNC_REQ messages.

Note
It is legal to receive the message even when there are no prior invalidation requests to synchronize.

Flow control result

None
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-111
ID062824 Non-Confidential

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
Field descriptions

The DTI_ATS_SYNC_REQ bit assignments are:

Bits [7:4]

Reserved, SBZ

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-26.

0b1101 DTI_ATS_SYNC_REQ

4.3.5 DTI_ATS_SYNC_ACK

The DTI_ATS_SYNC_ACK message is used to acknowledge a synchronization request.

Description

A synchronization acknowledge.

Source

PCIe RP

Usage constraints

There must currently be an outstanding synchronization request.

Flow control result

None

Field descriptions

The DTI_ATS_SYNC_ACK bit assignments are:

Bits [7:5]

Reserved, SBZ

ERROR, bit [4]

DTI-ATSv1, DTI-ATSv2

This bit indicates that a PCIe error has occurred.

0 Success

1 Error

Note
The PCIe RP must be aware of the StreamID range which it occupies. When
the StreamID is outside of its range, it is not an error case and must not cause
this bit to be 1.

DTI-ATSv3, DTI-ATSv4

Reserved, SBZ

7 6 5 4 3 2 1 0 LSB
0S_MSG_TYPEReserved

7 6 5 4 3 2 1 0 LSB
Reserved M_MSG_TYPEERROR 0
4-112 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26.

0b1101 DTI_ATS_SYNC_ACK

4.3.6 The DTI-ATS invalidation sequence

ATS invalidation messages are used only to invalidate ATCs in a PCIe Endpoint. They are not used to invalidate
TBU caches.

SMMUv3 requires that a TCU that intends to invalidate entries in an ATC must first invalidate the equivalent TBU
entries. This results in an invalidation sequence shown in Figure 4-2.

Figure 4-2 DTI-ATS invalidation sequence

The invalidation sequence in Figure 4-2 has the following steps:

1. The TCU issues a TLB invalidate operation to the TBU and waits for it to complete.

2. The TCU issues an invalidation synchronization operation to the TBU and waits for it to complete.

3. The TCU issues an ATS invalidation operation to the PCIe Root Complex and waits for it to complete.

4. The TCU issues an invalidation synchronization to the PCIe Root Complex and waits for it to complete.

Note
In step 3, the DTI_ATS_INV_COMP message is only applicable to DTI-ATSv3 or later version.

In DTI-ATSv1 and DTI-ATSv2, the return of a DTI_ATS_SYNC_ACK message indicates that:

• Responses have been received from the appropriate Endpoints for DTI_ATS_INV_REQ messages that were
received before the corresponding DTI_ATS_SYNC_REQ was received.

DTI-TBU invalidation
sequence

DTI_TBU_INV_ACK

DTI_TBU_SYNC_REQ

DTI_TBU_SYNC_ACK

DTI_TBU_INV_REQ

PCIe Root ComplexTBUTCU

DTI_ATS_SYNC_REQ

DTI_ATS_SYNC_ACK

DTI_ATS_INV_ACK

DTI_ATS_INV_REQ

DTI_ATS_INV_COMP
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-113
ID062824 Non-Confidential

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
• No further accesses to memory are made using those translations, that is, transactions using those translations
are complete.

In DTI-ATSv3 or later, the return of a DTI_ATS_SYNC_ACK message instead indicates that:

• No further accesses to memory are made using translations invalidated by DTI_ATS_INV_REQ messages
which returned a DTI_ATS_INV_COMP message before the DTI_ATS_SYNC_REQ was received.

Note

A DTI_ATS_SYNC_ACK message is likely to be dependent on completion of outstanding translations in the
downstream TBU. This does not cause deadlocks because SMMUv3 stalling faults are not permitted for PCIe RPs.
This dependency is likely because DTI_ATS_SYNC_ACK depends on the Root Complex receiving invalidation
completion messages from Endpoints, and those completion messages are ordered behind posted writes that might
need translating.

Handling outstanding invalidations

PCIe requires that Endpoints support a minimum of 32 outstanding invalidation operations that must be accepted
whether downstream transactions are able to make forward progress or not.

However, not all Endpoints can consume this number of invalidation operations without back pressure. For
performance reasons, the number of invalidate operations that should be outstanding in an Endpoint at one time
might be less.

A PCIe RPs indicates in DTI_ATS_CONDIS_REQ.TOK_INV_GNT how many invalidation messages it can accept
without giving back pressure on the DTI interface. It should buffer these locally so that the DTI interface is not
stalled waiting for an Endpoint to progress an invalidation.

DTI-ATS invalidation tokens are only used for flow control of invalidation messages on the DTI channel. The Root
Complex does not need to receive an Invalidation Completion message from an Endpoint before it returns a
DTI_ATS_INV_ACK message on DTI-ATS. It can return a DTI_ATS_INV_ACK message as soon as it has
successfully sent an Invalidation Request message to the Endpoint and is able to buffer a new DTI_ATS_INV_REQ
message.

The Endpoint must return all Invalidation Completion messages before the Root Complex returns a
DTI_ATS_SYNC_ACK message. If a new DTI_ATS_INV_REQ message is received after a
DTI_ATS_SYNC_REQ, the Root Complex must do both of the following:

• Issue an Invalidation Request message to the Endpoint without waiting for the DTI_ATS_SYNC_ACK to be
returned.

• Not wait for a corresponding Invalidation Completion message from the Endpoint for this invalidation before
returning the currently outstanding DTI_ATS_SYNC_ACK message.

Ensuring downstream transaction completion

When an Endpoint returns an Invalidation Completion message, it guarantees that:

• All outstanding read requests that use the invalidated translations are complete.

• All posted write requests are pushed ahead of the Invalidation Completion message.

It does not guarantee that the posted write requests are complete, as memory writes in PCIe do not receive a
response.

To ensure correct ordering, the Root Complex must ensure that posted writes intended for the AMBA system that
were received before the Invalidation Completion, have been issued downstream and are complete. A Root
Complex can only return a DTI_ATS_SYNC_ACK message when this requirement has been met. The Root
Complex is not required to ensure that reads are complete because this has already been ensured by the Endpoint.

4.3.7 DTI-ATS invalidation operations

This section gives information about the DTI-ATS cache invalidation operations.
4-114 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
Types of invalidation operation

Table 4-4 specifies the OPERATION field encodings and describes how the type of invalidation being performed
affects the scope of the DTI_ATS_INV_REQ message. Other encodings of the OPERATION field are Reserved.

Note

Arm recommends that the ATCI_PASID_GLOBAL operation is not used.

• PCIe endpoints are only required to support Invalidation Requests that have the Global Invalidate bit set if
the Global Invalidate Supported bit is set in the PCIe ATS Capability Register. The PCIe specification
strongly recommends that this bit is clear, that is, the Global Invalidate bit is ignored in all Invalidate
Requests.

• DTI-ATS does not create ATS global translations.

• The DTI-ATS protocol does not provide a PASID with ATCI_PASID_GLOBAL invalidation operations.

• The PCIe specification requires that a PASID is provided for any Invalidation Request with the Global

Invalidate bit set.

Software is not expected to issue ATC global invalidation operations.

Arm recommends that:

• If a PCIe RP receives ATCI_PASID_GLOBAL, it always issues the ATS Invalidate Request with Global
Invalid bit set and including a PASID. The PASID value is recommended to be SSID or otherwise 0.

Mapping DTI-ATS to SMMUv3 invalidate operations

DTI-ATS invalidation operations are generated as a result of commands in the SMMU Command queue. Table 4-5
shows how these are mapped to DTI-ATS invalidate operations.

Table 4-4 List of invalidation operations

Field encoding Invalidation operations Substream Valid Valid fields

0x31 ATCI_NOPASID SSV = 0 SID, VA, RANGE

0x33 ATCI_PASID_GLOBAL Global SID, VA, RANGE

0x39 ATCI_PASID SSV = 1 SID, SSID, VA, RANGE

Table 4-5 Mapping DTI-ATS operation to SMMUv3 command

SMMUv3 Command SSV field value Global field value DTI-ATS Operation

CMD_ATC_INV 0 - ATCI_NOPASID

CMD_ATC_INV 1 0 ATCI_PASID

CMD_ATC_INV 1 1 ATCI_PASID_GLOBAL
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-115
ID062824 Non-Confidential

4 DTI-ATS Messages
4.3 Invalidation and synchronization message group
Table 4-6 provides additional information for mapping the SMMUv3 CMD_ATC_INV command to the
DTI_ATS_INV_REQ message.

For more information, see the Arm® System Memory Management Unit Architecture Specification, SMMU
architecture version 3.

Table 4-6 CMD_ATC_INV command mapping to DTI_ATS_INV_REQ

DTI_ATS_INV_REQ field Value

VA Address

Ta

a. T mapping only applies to DTI-ATSv3 and DTI-ATSv4.

If the CMD_ATC_INV command is issued on a Realm command queue,
this is 1.
Otherwise, this is 0.

RANGE Size

SID StreamID

SSID SubstreamID
4-116 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.4 Page request message group
4.4 Page request message group

The messages of this section enable a PCIe RPs to directly request software makes pages available. The messages
of this group implement the PCIe ATS PRI.

The full details of the PCIe ATS PRI operations are not described here. For further information, see the PCIe
Address Translation Service specification.

This section contains the following subsections:

• DTI_ATS_PAGE_REQ

• DTI_ATS_PAGE_ACK on page 4-119

• DTI_ATS_PAGE_RESP on page 4-120

• DTI_ATS_PAGE_RESPACK on page 4-122

• Generating the page response on page 4-123

4.4.1 DTI_ATS_PAGE_REQ

The DTI_ATS_PAGE_REQ message is used to request that a page is made available.

Description

A speculative page request.

Source

PCIe RP

Usage constraints

• There must be no current outstanding unacknowledged DTI_ATS_PAGE_REQ message.

• DTI_ATS_CONDIS_ACK.SUP_PRI was 1 during the connect sequence.

Flow control result

None

Field descriptions

The DTI_ATS_PAGE_REQ bit assignments are:

ADDR, bits [127:76]

This field holds the Page address[63:12] that is requested.

Bits [75:73]

Reserved, SBZ

PRG_INDEX, bits [72:64]

This field identifies the Page Request group index.

7 6 5 4 3 2 1 0 LSB
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

ADDR[63:16]

ADDR[15:12]

SSID[19:4]

SSID[3:0]

SID

PRG_INDEX[7:0]

SSV LAST WRITE READ
PRIV PROTOCOL M_MSG_TYPE

PRG_INDEX[8]Reserved

INST T
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-117
ID062824 Non-Confidential

4 DTI-ATS Messages
4.4 Page request message group
SID, bits [63:32]

This field indicates the StreamID used for this transaction.

SSID, bits [31:12]

This field holds the SubstreamID used for this transaction.

If the value of SSV is 0, this field is Reserved, SBZ.

SSV, bits [11]

This bit indicates whether a valid SubstreamID is associated with this transaction.

0 The SSID field is not valid.

1 The SSID field is valid.

LAST, bit [10]

This bit indicates whether this message is the last request in a page request group.

Note
The “Stop PASID” marker is indicated by SSV = 1, LAST = 1, READ = 0, WRITE = 0.

WRITE, bit [9]

This bit indicates whether write access is requested.

0 Write access is not requested.

1 Write access is requested.

A page request does not set the Dirty flag.

READ, bit [8]

This bit indicates whether read access is requested.

0 Read access is not requested.

1 Read access is requested.

INST, bit [7]

This bit indicates whether execute access is requested.

0 Execute access is not requested.

1 Execute access is requested.

If the value of READ is 0, the value of this bit must be 0.

PRIV, bit [6]

This bit indicates whether privileged access is requested.

0 Unprivileged

1 Privileged

T, bit [5]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

When DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are both 1 for the connection, various
messages include a T bit to indicate that the message corresponds to a
trusted entity. In each case:

0 Indicates a Non-secure StreamID.

1 Indicates a Realm StreamID.

If DTI_ATS_CONDIS_REQ.SUP_T and DTI_ATS_CONDIS_ACK.SUP_T are not
both 1 during the connection sequence, this field must be 0.

PROTOCOL, bit [4]

This bit indicates the protocol that is used for this message.

1 DTI-ATS

This bit must be 1.
4-118 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.4 Page request message group
M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26.

0b1000 DTI_ATS_PAGE_REQ

PCIe Page Request mapping to DTI_ATS_PAGE_REQ

When a PCIe Page Request is received, the DTI_ATS_PAGE_REQ fields should be driven as shown in Table 4-7:

4.4.2 DTI_ATS_PAGE_ACK

The DTI_ATS_PAGE_ACK message is used to acknowledge a page request.

Description

A page request acknowledgment.

Source

TCU

Usage constraints

The PCIe RP must have previously issued a DTI_ATS_PAGE_REQ message that has not yet been
acknowledged.

Flow control result

None

Table 4-7 PCIe Page Request mapping to DTI_ATS_PAGE_REQ

DTI_ATS_PAGE_REQ Field Value

ADDR This is Page Address.

PRG_INDEX This is Page Request Group Index.

SID SID[15:0] is the Requester ID, otherwise known as BDF (Bus, Device,
Function).Higher-order bits of SID uniquely identify the PCIe segment in
the StreamID space that is used by the SMMU.

SSID If the PCIe Translation Request has a PASID, this field is PASID.
Otherwise, this field is 0.

SSV If the PCIe Translation Request has a PASID, this field is 1. Otherwise, this
field is 0.

Inst If the PCIe Translation Request has a PASID, this field is Exe. Otherwise,
this field is 0.

Priv If the PCIe Translation Request has a PASID, this field is Priv. Otherwise,
this field is 0.

Last This is L.

Write This is W.

Read This is R.

Ta

a. DTI-ATSv3 and DTI-ATSv4 only

This is T.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-119
ID062824 Non-Confidential

4 DTI-ATS Messages
4.4 Page request message group
Field descriptions

The DTI_ATS_PAGE_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-26.

0b1000 DTI_ATS_PAGE_ACK

4.4.3 DTI_ATS_PAGE_RESP

The DTI_ATS_PAGE_RESP message is used to respond to an ATS page request.

Description

An ATS page response.

Source

TCU

Usage constraints

• DTI-ATSv1: None

• DTI-ATSv2, DTI-ATSv3, DTI-ATSv4: There must be no current unacknowledged
DTI_ATS_PAGE_RESP message.

Flow control result

None

Field descriptions

The DTI_ATS_PAGE_RESP bit assignments are:

Bits [95:78]

Reserved, SBZ

RESP, bits [77:76]

This field indicates the response code to the page request.

0b00 ResponseFailure

0b01 InvalidRequest

0b10 Success

7 6 5 4 3 2 1 0 LSB
0S_MSG_TYPEReserved

7 6 5 4 3 2 1 0 LSB
88
80
72
64
56
48
40
32
24
16
8
0

SSID[19:4]

SSID[3:0]

SID

PRG_INDEX[7:0]

SSV
S_MSG_TYPE

PRG_INDEX[8]Reserved

Reserved

Reserved RESP

Reserved
Reserved T Reserved
4-120 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.4 Page request message group
0b11 Reserved

When the value of this field is ResponseFailure, a permanent error is indicated.

When the value of this field is InvalidRequest, the page-in was unsuccessful for at least
one of the pages in the group.

When the value of this field is Success, the page-in was successful for all pages. This
does not guarantee the success of a subsequent translation request to this page.

Bits [75:73]

Reserved, SBZ

PRG_INDEX, bits [72:64]

This field holds the page request group index.

SID, bits [63:32]

This field holds the StreamID used for this page request.

The receiving TBU or PCIe RP must check to see if the value of this field is a StreamID
that it uses. In the case that the StreamID is not used by this TBU or PCIe RP, the TBU,
or PCIe RP must ignore this message.

Note
The PCIe RP must be aware of the StreamID range that it occupies. When the StreamID
is outside of its range, the PCIe RP must generate a DTI_ATS_PAGE_RESPACK
message instead of trying to issue a PRI response message to an endpoint.

SSID, bits [31:12]

This field holds the SubstreamID used for this page request.

If the value of SSV is 0, this field is 0.

SSV, bits [11]

This bit indicates whether a valid SubstreamID is associated with this transaction.

0 The SSID field is not valid.

1 The SSID field is valid.

Bits [10:7]

Reserved, SBZ

T, bit [6]

DTI-ATSv1, DTI-ATSv2

Reserved, SBZ

DTI-ATSv3, DTI-ATSv4

When DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are both 1 for the connection, various
messages include a T bit to indicate that the message corresponds to a
trusted entity. In each case:

0 Indicates a Non-secure StreamID.

1 Indicates a Realm StreamID.

When DTI_ATS_CONDIS_REQ.SUP_T and
DTI_ATS_CONDIS_ACK.SUP_T are not both 1 for the connection then
DTI_ATS_PAGE_RESP messages with T == 1 must not be sent to Root
Ports.

Bits, bit [5:4]

Reserved, SBZ

S_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-26.

0b1001 DTI_ATS_PAGE_RESP
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-121
ID062824 Non-Confidential

4 DTI-ATS Messages
4.4 Page request message group
DTI_ATS_PAGE_RESP mapping to PCIe PRG Response

When a DTI_ATS_PAGE_RESP message is received, the PCIe PRG Response fields should be driven as shown in
Table 4-8:

The mapping of DTI_ATS_PAGE_RESP.RESP with the PCIe PRG Response is shown in Table 4-9:

4.4.4 DTI_ATS_PAGE_RESPACK

The DTI_ATS_PAGE_RESPACK message is used to acknowledge DTI_ATS_PAGE_RESP messages.

Description

Acknowledges DTI_ATS_PAGE_RESP messages.

Source

PCIe RP

Usage constraints

There must be at least one current outstanding unacknowledged DTI_ATS_PAGE_RESP message.
Protocol version is DTI-ATSv2 or greater.

Flow control result

None

Field descriptions

The DTI_ATS_PAGE_RESPACK bit assignments are:

Bits [7:4]

Reserved, SBZ

Table 4-8 DTI_ATS_PAGE_RESP mapping to PCIe PRG Response

PCIe TLP field Value

PRG Index DTI_ATS_PAGE_RESP.PRG_INDEX

PASID If DTI_ATS_PAGE_RESP.SSV is 1, the PCIe PRG Response has a PASID and the
PASID value is DTI_ATS_PAGE_RESP.SSID.

Otherwise, the PCIe PRG Response does not have a PASID.

Ta

a. DTI-ATSv3 and DTI-ATSv4 only

DTI_ATS_PAGE_RESP.T

Destination ID This field is DTI_ATS_PAGE_RESP.SID[15:0].
Higher-order bits of DTI_ATS_PAGE_RESP.SID uniquely identify the PCIe
segment in the StreamID space that is used by the SMMU.

Table 4-9 Response code for PCIe PRG Response

DTI_ATS_PAGE_RESP.RESP Response Code in PCIe PRG Response

ResponseFailure Response Failure

InvalidRequest Invalid Request

Success Success

7 6 5 4 3 2 1 0 LSB
Reserved 0M_MSG_TYPE
4-122 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.4 Page request message group
M_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-26.

0b1001 DTI_ATS_PAGE_RESPACK

4.4.5 Generating the page response

If the DTI_ATS_PAGE_REQ was a PCIe PRI message, it is intended that it should result in a
DTI_ATS_PAGE_RESP. However, the DTI_ATS_PAGE_RESP is generated by a software operation and cannot be
guaranteed by the DTI protocol.

It is a software-level protocol error if a DTI_ATS_PAGE_RESP message with a StreamID used by the TBU or PCIe
RP does not match an unanswered DTI_ATS_PAGE_REQ, when the value of LAST is 1, with the same
PRG_INDEX value that is not a Stop PASID marker.

DTI_ATS_PAGE_RESP messages can be broadcast to all DTI_ATS TBU or PCIe RPs. As such, a
DTI_ATS_PAGE_RESP message might be received with a StreamID that is not used by the TBU or PCIe RP and
that does not match any of the StreamIDs from its unanswered DTI_ATS_PAGE_REQ messages.

Note

If a DTI_ATS_PAGE_RESP message is received with its RESP field as ResponseFailure, this requirement is
suspended for the StreamID until the Page Request Interface can be re-enabled for that StreamID. For more
information, see PCI Express Address Translation Services Revision 1.1.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-123
ID062824 Non-Confidential

4 DTI-ATS Messages
4.5 Message dependencies for DTI-ATS
4.5 Message dependencies for DTI-ATS

The message dependencies for the DTI-ATS protocol are shown in Figure 4-3.

In this dependency diagram:

• The light gray box indicates the messages originated from the TCU.

• The dark gray box indicates the messages originated from PCIe RP.

• The dotted line box indicates the translated transaction that is not a DTI message but is useful for analyzing
the dependency.

• An arrow is a dependency from the message at the start of the arrow to the message at the end of the arrow.

• An arrow starting from message A and ending with message B represents a dependency on the DTI-ATS link
between PCIe RP and TCU.
— When two messages travel in the same direction, the “must not overtake” rules mean that if the

message B is observed before message A by the sender, then the same order must be observed by the
receiver.

— When two messages travel in the opposite directions, the “must wait” rules mean that message B is
expected by the sender of message A, and message B must be received by this sender before message
A can be presented on DTI.

• A message dependency could be any of the following:

— Messages that are credit controlled. For example, the maximum number of DTI_ATS_INV_ACK
messages before another DTI_ATS_INV_REQ message can be issued is
DTI_ATS_CONDIS_REQ.TOK_INV_GNT.

— The messages with order requirements defined in this protocol.

Figure 4-3 DTI-ATS message dependency sequence

The message dependencies rules are as follows:

• DTI_ATS_PAGE_REQ message must wait for any outstanding DTI_ATS_PAGE_ACK message.

• DTI_ATS_CONDIS_REQ message must wait for any outstanding DTI_ATS_CONDIS_ACK message.

• DTI_ATS_CONDIS_REQ message must wait for any outstanding DTI_ATS_PAGE_ACK messages.

• DTI_ATS_CONDIS_REQ message must wait for any outstanding DTI_ATS_TRANS_RESP or any
outstanding DTI_ATS_TRANS_FAULT messages.

• DTI_ATS_CONDIS_REQ message must wait for all translated transactions to complete in the PCIe RP.

• DTI_ATS_PAGE_RESP, DTI_ATS_INV_REQ, and DTI_ATS_SYNC_REQ messages must not overtake
DTI_ATS_CONDIS_ACK message.

• DTI_ATS_TRANS_REQ message must wait for outstanding DTI_ATS_TRANS_RESP and
DTI_ATS_TRANS_FAULT messages to return tokens when there is no translation token left.

• DTI_ATS_INV_REQ message must wait for outstanding DTI_ATS_INV_ACK messages to return tokens
when there is no invalidation token left.

TRANS_REQ TRANS_RESP
TRANS_FAULT

INV_ACK

SYNC_REQ SYNC_ACK

PAGE_REQ PAGE_ACK

CONDIS_REQ CONDIS_ACK

ATS
translated
transaction

ATSv3+

ATSv3+

PAGE_RESP PAGE_RESPACK

INV_COMP

ATSv2+

INV_REQ

ATSv3+

ATSv2-
4-124 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

4 DTI-ATS Messages
4.5 Message dependencies for DTI-ATS
• DTI_ATS_SYNC_REQ message must wait for any outstanding DTI_ATS_SYNC_ACK message.

• DTI_ATS_SYNC_ACK message can wait for translated transactions using translations obtained from
DTI-ATS.

• DTI-ATSv2 or later

— DTI_ATS_PAGE_RESP message must wait for any outstanding DTI_ATS_PAGE_RESPACK
message.

• DTI-ATSv1, DTI-ATSv2

— DTI_ATS_SYNC_REQ message must not overtake any DTI_ATS_INV_REQ messages.

• DTI-ATSv3 or later

— DTI_ATS_INV_REQ message must wait for outstanding DTI_ATS_INV_COMP messages when it
runs out of ITAG value to use. The ITAG value is required to be unique for outstanding
DTI_ATS_INV_COMP messages with the same SID.

— DTI_ATS_SYNC_REQ message must wait for any outstanding DTI_ATS_INV_COMP messages for
invalidates that are in scope of the SYNC.

— DTI_ATS_INV_COMP message can wait for translated transactions using translations obtained from
DTI-ATS.
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 4-125
ID062824 Non-Confidential

4 DTI-ATS Messages
4.5 Message dependencies for DTI-ATS
4-126 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 5
Transport Layer

This chapter describes the transport layer of the DTI protocol.

It contains the following sections:

• Introduction on page 5-128

• AXI4-Stream transport protocol on page 5-129
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 5-127
ID062824 Non-Confidential

5 Transport Layer
5.1 Introduction
5.1 Introduction

The DTI protocol can be conveyed over different transport layer mediums. This specification uses AXI4-Stream as
an example transport medium.

The transport layer is responsible for:

• Indicating the source or destination of the message.

• Managing the link-level flow control.

The transport layer is not permitted to:

• Reorder the messages in the DTI protocol.

• Interleave messages in the DTI protocol.
5-128 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

5 Transport Layer
5.2 AXI4-Stream transport protocol
5.2 AXI4-Stream transport protocol

This section defines the use of AXI4-Stream as a transport protocol.

This section contains the following subsections:

• AXI4-Stream signals

• Interleaving on page 5-130

• Usage of the TID and TDEST signals on page 5-130

5.2.1 AXI4-Stream signals

An AXI4-Stream link for DTI consists of two AXI4-Stream interfaces, one for each direction.

Table 5-1 shows the mapping of AXI4-Stream signals for the DTI protocol.

Table 5-1 Mapping of AXI4-Stream to the DTI protocol

Signal Usage Notes

TVALID Flow control -

TREADY Flow control -

TDATA Message data Multi-cycle messages are permitted if the data is larger than the
width of TDATA.

A new message must always start on TDATA[0].

It is recommended that TDATA is driven to zero for null bytes
indicated by TKEEP being LOW.

TKEEP Indicates valid bytes Indicates which bytes contain valid data, with one bit for each byte
of TDATA.

Valid bytes must be packed towards the least significant byte. The
least significant byte must always be valid.

All bytes must be valid if TLAST is LOW.

TSTRB Not implemented Uses default value of all bits equal to the corresponding bit of
TKEEP.

TLAST Last cycle of message Each DTI message is transported as a number of AXI4-Stream
transfers. This signal is used to indicate the last transfer of a
message.

Even if this interface is wide enough to carry all messages in a single
cycle, this signal must be implemented.

TID Originator node ID or
not implemented

The meaning of this signal depends on the direction of the interface:

• For a downstream interface, this signal indicates the source of
the message.

• For an upstream interface, this signal is not implemented.
There is only one TCU in the network.

TDEST Destination node ID
or not implemented

The meaning of this signal depends on the direction of the interface:

• For a downstream interface, this signal is not implemented.
There is only one TCU in the network.

• For an upstream interface, this signal indicates the destination
of the message.

TUSER Not implemented The DTI protocol does not require this signal.

TWAKEUP Interface activity
indication

Wakeup signal
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 5-129
ID062824 Non-Confidential

5 Transport Layer
5.2 AXI4-Stream transport protocol
The signal names of the AXI4-Stream interface are given a suffix to indicate the direction of the interface they are
using. Table 5-2 shows how the signals are suffixed.

For example, the downstream TDATA signal is TDATA_DTI_DN.

Components can add a further suffix to distinguish between multiple interfaces.

5.2.2 Interleaving

Message of the DTI protocol must not be interleaved when TID and TDEST are different. When an AXI4-Stream
transfer is received with TLAST LOW, subsequent AXI4-Stream transfers must continue the same message with
the same TID, and TDEST until TLAST is HIGH. After TLAST is HIGH, a new message is permitted.

5.2.3 Usage of the TID and TDEST signals

In some cases, a TBU or PCIe RP might not be aware of what value to use for the TID signal. This specification
does not require the TID signal to be generated at the source. It is recommended that:

• A TBU or PCIe RP interface does not implement the following:

— TID_DTI_DN

— TDEST_DTI_UP

• An interconnect that connects multiple DTI interfaces to a single TCU adds additional bits, as required, to
the TID signal. The interconnect accepts messages from the TCU and redirects them to the appropriate
component by IMPLEMENTATION DEFINED mapping of the TID signal.

This scheme can be extended to support hierarchical interconnects, with each layer of interconnect adding additional
ID bits to the TID signal if necessary.

Table 5-2 Suffixes appended to the AXI4-Stream signals

Direction Suffix

Downstream (TBU or PCIe RP to TCU) *_DTI_DN

Upstream (TCU to TBU or PCIe RP) *_DTI_UP
5-130 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Chapter 6
Pseudocode

This appendix provides example implementations of the requirements specified in this document.

The pseudocode language is as described in the Arm Architecture Reference Manual for A-profile architecture.

It contains the following sections:

• Memory attributes on page 6-132

• Cache lookup on page 6-138
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 6-131
ID062824 Non-Confidential

6 Pseudocode
6.1 Memory attributes
6.1 Memory attributes

This section details the decoding and processing of memory attributes in DTI.

This section contains the following subsections:

• Memory attribute types

• Memory attribute decoding on page 6-133

• Memory attribute processing on page 6-134

6.1.1 Memory attribute types

These types are used to describe propagating, modifying, combining, and overriding memory attributes.

enumeration MemoryType {
MemType_Normal,
MemoryType_GRE,
MemoryType_nGRE,
MemoryType_nGnRE,
MemoryType_nGnRnE

};

type MemAttrHints is (
bits(2) attrs, // The possible encodings for each attributes field are as below
bit ReadAllocate,
bit WriteAllocate,
bit Transient

)
constant bits(2) MemAttr_NC = ‘00’; // Non-cacheable
constant bits(2) MemAttr_WT = ‘10’; // Write-through
constant bits(2) MemAttr_WB = ‘11’; // Write-back

type MemoryAttributes is (
MemoryType type,
MemAttrHints inner, // Inner hints and attributes
MemAttrHints outer, // Outer hints and attributes
SH_e SH

)

6-132 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

6 Pseudocode
6.1 Memory attributes
F.1.2 Memory attribute decoding

These functions unpack encoded memory attributes from messages into their conceptual component properties.

MemAttrHintsDecode()

// MemAttrHintsDecode()
// ====================
// Converts the attribute fields for Normal memory as used in stage 2
// descriptors to orthogonal attributes and hints.
MemAttrHints MemAttrHintsDecode(bits(2) attr)

MemAttrHints result;

case attr of
when ‘01’ // Non-cacheable (no allocate)

 result.attrs = MemAttr_NC;
 result.ReadAllocate = ‘0’;
 result.WriteAllocate = ‘0’;

when ‘10’ // Write-through
 result.attrs = MemAttr_WT;
 result.ReadAllocate = ‘1’;
 result.WriteAllocate = ‘1’;

when ‘11’ // Write-back
 result.attrs = MemAttr_WB;
 result.ReadAllocate = ‘1’;
 result.WriteAllocate = ‘1’;
 result.Transient = ‘0’;
return result;

DecodeMemAttr()

// DecodeMemAttr()
// ===============
// Converts the MemAttr short-from field from stage 2 descriptors
// into the unpacked MemoryAttributes type.

MemoryAttributes DecodeMemAttr(bits(4) memattr)

MemoryAttributes memattrs;
if memattr<3:2> == ‘00’ then // Device

case memattr<1:0> of
when ‘00’ memattrs.type = MemoryType_nGnRnE;
when ‘01’ memattrs.type = MemoryType_nGnRE;
when ‘10’ memattrs.type = MemoryType_nGRE;
when ‘11’ memattrs.type = MemoryType_GRE;

memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.SH = OuterShareable;

elsif memattr<1:0> != ‘00’ then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = MemAttrHintsDecode(memattr<3:2>);
memattrs.inner = MemAttrHintsDecode(memattr<1:0>);
if (memattrs.inner.attrs == MemAttr_NC

&& memattrs.outer.attrs == MemAttr_NC) then
memattrs.SH = OuterShareable;

else
// Unreachable
assert(FALSE);

return memattrs;
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 6-133
ID062824 Non-Confidential

6 Pseudocode
6.1 Memory attributes
LongConvertAttrsHints()

// LongConvertAttrsHints()
// =======================
// Decodes the attribute fields for Normal memory as used in stage 1
// descriptors to orthogonal attributes and hints.
MemAttrHints LongConvertAttrsHints(bits(4) attrfield)

MemAttrHints result;

if attrfield<3:2> == ‘00’ then // Write-through transient
result.attrs = MemAttr_WT;
result.ReadAllocate = attrfield<1>;
result.WriteAllocate = attrfield<0>;
result.Transient = ‘1’;

elsif attrfield<3:0> == ‘0100’ then // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.ReadAllocate = ‘0’;
result.WriteAllocate = ‘0’;
result.Transient = ‘0’;

elsif attrfield<3:2> == ‘01’ then // Write-back transient
result.attrs = MemAttr_WB;
result.ReadAllocate = attrfield<1>;
result.WriteAllocate = attrfield<0>;
result.Transient = ‘1’;

else // Write-through/Write-back non-transient
result.attrs = attrfield<3:2>;
result.ReadAllocate = attrfield<1>;
result.WriteAllocate = attrfield<0>;
result.Transient = ‘0’;

return result;

DecodeAttr()

// DecodeAttr()
// ============
// Converts the long-from ATTR field from stage 1 descriptors
// into the unpacked MemoryAttributes type.
MemoryAttributes DecodeAttr(bits(8) attrfield)

MemoryAttributes memattrs;

assert !(attrfield<7:4> != ‘0000’ && attrfield<3:0> == ‘0000’);
assert !(attrfield<7:4> == ‘0000’ && attrfield<3:0> != ‘xx00’);

if attrfield<7:4> == ‘0000’ then // Device
case attrfield<3:0> of

when ‘0000’ memattrs.type = MemoryType_nGnRnE;
when ‘0100’ memattrs.type = MemoryType_nGnRE;
when ‘1000’ memattrs.type = MemoryType_nGRE;
when ‘1100’ memattrs.type = MemoryType_GRE;

memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.SH = OuterShareable;

elsif attrfield<3:0> != ‘0000’ then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = LongConvertAttrsHints(attrfield<7:4>);
memattrs.inner = LongConvertAttrsHints(attrfield<3:0>);

return memattrs;

6.1.3 Memory attribute processing

This section details the procedures for combining memory type information.
6-134 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

6 Pseudocode
6.1 Memory attributes
DefaultMemAttrHints()

// DefaultMemAttrHints()
// =====================
// Populate MemoryAttribute sub-fields with default values that might be
// required later in combine/modify operations.
MemoryAttributes DefaultMemAttrHints(MemoryAttributes current_attr)

if (current_attr.type != MemType_Normal
|| current_attr.inner.attrs == MemAttr_NC) then

current_attr.inner.ReadAllocate = ‘1’;
current_attr.inner.WriteAllocate = ‘1’;
current_attr.inner.Transient = ‘0’;

if (current_attr.type != MemType_Normal
|| current_attr.outer.attrs == MemAttr_NC) then

current_attr.outer.ReadAllocate = ‘1’;
current_attr.outer.WriteAllocate = ‘1’;
current_attr.outer.Transient = ‘0’;

return current_attr;

CombineMemoryType()

// CombineMemoryType()
// ===================
// Return the stronger of two memory types.

MemoryAttributes CombineMemoryType(MemoryAttributes attr_a, MemoryAttributes attr_b)

if attr_a.type == MemoryType_nGnRnE || attr_b.type == MemoryType_nGnRnE then
attr_a.type = MemoryType_nGnRnE;

elsif attr_a.type == MemoryType_nGnRE || attr_b.type == MemoryType_nGnRE then
attr_a.type = MemoryType_nGnRE;

elsif attr_a.type == MemoryType_nGRE || attr_b.type == MemoryType_nGRE then
attr_a.type = MemoryType_nGRE;

elsif attr_a.type == MemoryType_GRE || attr_b.type == MemoryType_GRE then
attr_a.type = MemoryType_GRE;

else
attr_a.type = MemType_Normal;
attr_a.inner.attrs = (attr_a.inner.attrs AND attr_b.inner.attrs);
attr_a.outer.attrs = (attr_a.outer.attrs AND attr_b.outer.attrs);

return attr_a;

CombineShareability()

// CombineShareability()
// =====================
// Return the stronger of two shareability values.
SH_e CombineShareability(SH_e sh_a, SH_e sh_b)

if sh_a == OuterShareable || sh_b == OuterShareable then
return OuterShareable;

elsif sh_a == InnerShareable || sh_b == InnerShareable then
return InnerShareable;

elsif sh_a == NonShareable || sh_b == NonShareable then
return NonShareable;
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 6-135
ID062824 Non-Confidential

6 Pseudocode
6.1 Memory attributes
CombineAllocHints()

// CombineAllocHints()
// ===================
// Return the stronger transient, read, and write allocation hints of
// two sets of memory attributes.

MemoryAttributes CombineAllocHints(MemoryAttributes attr_a, MemoryAttributes attr_b)

// Combine the allocation hints. The strongest (encoded as 0) should take
// precedence over the weakest (encoded as 1).
attr_a.inner.WriteAllocate = (attr_a.inner.WriteAllocate AND attr_b.inner.

WriteAllocate);
attr_a.inner.ReadAllocate = (attr_a.inner.ReadAllocate AND attr_b.inner.

ReadAllocate);
attr_a.outer.WriteAllocate = (attr_a.outer.WriteAllocate AND attr_b.outer.

WriteAllocate);
attr_a.outer.ReadAllocate = (attr_a.outer.ReadAllocate AND attr_b.outer.

ReadAllocate);

// Combine the transient hints. The strongest (encoded as 1) should take
// precedence over the weakest (encoded as 0).
attr_a.inner.Transient = (attr_a.inner.Transient OR attr_b.inner.

Transient);
attr_a.outer.Transient = (attr_a.outer.Transient OR attr_b.outer.

Transient);
return attr_a;

ModifyShareability()

// ModifyShareability()
// ====================
// Override shareability using the SHCFG field.

MemoryAttributes ModifyShareability(MemoryAttributes current_attr, SHCFG_e shcfg)
case shcfg of

when SHCFG_NonShareable
current_attr.SH = NonShareable;

when SHCFG_UseIncoming
current_attr.SH = current_attr.SH;

when SHCFG_OuterShareable
current_attr.SH = OuterShareable;

when SHCFG_InnerShareable
current_attr.SH = InnerShareable;

return current_attr;

ReplaceMemoryType()

// ReplaceMemoryType()
// ===================
// Replace the memory type and Cacheability in the first parameter
// with that from the second parameter.

MemoryAttributes ReplaceMemoryType(MemoryAttributes current_attr, MemoryAttributes new_attr)
current_attr.type = new_attr.type;
current_attr.inner.attrs = new_attr.inner.attrs;
current_attr.outer.attrs = new_attr.outer.attrs;

return current_attr;
6-136 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

6 Pseudocode
6.1 Memory attributes
ReplaceAllocHints()

// ReplaceAllocHints()
// ===================
// Replace the allocation hints in the first parameter
// with that from the second parameter.

MemoryAttributes ReplaceAllocHints(MemoryAttributes current_attr, MemoryAttributes new_attr)
current_attr.inner.ReadAllocate = new_attr.inner.ReadAllocate;
current_attr.inner.WriteAllocate = new_attr.inner.WriteAllocate;
current_attr.inner.Transient = new_attr.inner.Transient;
current_attr.outer.ReadAllocate = new_attr.outer.ReadAllocate;
current_attr.outer.WriteAllocate = new_attr.outer.WriteAllocate;
current_attr.outer.Transient = new_attr.outer.Transient;

return current_attr;
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 6-137
ID062824 Non-Confidential

6 Pseudocode
6.2 Cache lookup
6.2 Cache lookup

This section contains the following subsections:

• MatchTranslation

• MatchFault on page 6-139

• Shared pseudocode on page 6-140

• PermissionCheck on page 6-139

6.2.1 MatchTranslation

This section provides an example implementation for matching an incoming translation request against a translation
in cache.

// MatchTranslation()
// ==================
// Match an incoming translation request reqIN with a cached translation formed by
// (reqC,respC). The incoming request can use the translation if the result is True.

boolean MatchTranslation(
 DTI_TBU_TRANS_REQ reqIN, // Incoming request to match with the cached translation
 DTI_TBU_TRANS_REQ reqC, // Translation request for the cached translation
 DTI_TBU_TRANS_RESP respC // Translation response for the cached translation
)

 transrngbits = DecodeTransRng(respC.TRANS_RNG);

 bit secsid_match = MatchSECSID(reqIN, reqC);
 bit sid_match = MatchSID(reqIN, reqC, respC.CONT);
 bit ssid_match = MatchSSID(reqIN, reqC);
 bit flow_match = MatchFlow(reqIN, reqC);
 bit pas_match = reqIN.{NSE,NS} == reqC.{NSE,NS};
 bit oas_match = reqIN.IA <= OAS;
 bit addr_match = reqIN.IA[51:transrngbits] == reqC.IA[51:transrngbits];
 bit tbi_addr_match = reqIN.IA[55:transrngbits] == reqC.IA[55:transrngbits] &&
 (respC.TBI || reqIN.IA[63:56] == reqC.IA[63:56]);

 bit hit_gpc_only_bypass_full_rng = !reqIN.MMUV && !reqC.MMUV &&
 TRANS_RNG == 0b1111 && oas_match;
 bit hit_gpc_only_bypass_not_full = !reqIN.MMUV && !reqC.MMUV &&
 TRANS_RNG != 0b1111 && oas_match &&
 pas_match && addr_match;

 bit hit_non_gpc_glblbyp_full_rng = reqIN.MMUV && reqC.MMUV && respC.BYPASS &&
 respC.BP_TYPE == GlobalBypass &&
 PermissionCheck(reqIN,respC) &&
 respC.TRANS_RNG == 0b1111 && secsid_match &&
 flow_match && oas_match;
 bit hit_non_gpc_glblbyp_not_full = reqIN.MMUV && reqC.MMUV && respC.BYPASS &&
 respC.BP_TYPE == GlobalBypass &&
 PermissionCheck(reqIN,repsC) &&
 respC.TRANS_RNG != 0b1111 && secsid_match &&
 flow_match && oas_match &&
 pas_match && addr_match;

 bit hit_streambypass_full_rng = reqIN.MMUV && reqC.MMUV && respC.BYPASS &&
 respC.BP_TYPE == StreamBypass &&
 PermissionCheck(reqIN,respC) &&
 respC.TRANS_RNG == 0b1111 && secsid_match &&
 flow_match && sid_match && ssid_match &&
 oas_match && pas_match;
 bit hit_streambypass_not_full = reqIN.MMUV && reqC.MMUV && respC.BYPASS &&
 respC.BP_TYPE == StreamBypass &&
 PermissionCheck(reqIN,respC) &&
 respC.TRANS_RNG != 0b1111 && secsid_match &&
 flow_match && sid_match && ssid_match &&
6-138 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

6 Pseudocode
6.2 Cache lookup
 oas_match && pas_match && addr_match;

 bit hit_dptbypass_not_full = reqIN.MMUV && reqC.MMUV && respC.BYPASS &&
 respC.BP_TYPE == DPTBypass &&
 PermissionCheck(reqIN,respC) &&
 secsid_match && flow_match && sid_match &&
 oas_match && pas_match && addr_match;

 bit hit_non_bypass = reqIN.MMUV && reqC.MMUV && !respC.BYPASS && !reqIN.IDENT &&
 PermissionCheck(reqIN,respC) &&
 secsid_match && flow_match && sid_match && ssid_match &&
 pas_match && tbi_addr_match;

 if hit_gpc_only_bypass_full_rng ||
 hit_gpc_only_bypass_not_full ||
 hit_non_gpc_glblbyp_full_rng ||
 hit_non_gpc_glblbyp_not_full ||
 hit_streambypass_full_rng ||
 hit_streambypass_not_full ||
 hit_dptbypass_not_full ||
 hit_non_bypass then

 return True
 else
 return False

6.2.2 MatchFault

This section provides an example implementation for matching an incoming translation request against a fault
transaction in cache.

// MatchFault()
// ==================
// Match an incoming translation request reqIN with a cached fault
// formed by (reqC,respC). The incoming request can use the fault
// translation if the result is True.

boolean MatchFault(DTI_TBU_TRANS_REQ reqIN, // Incoming request to match with the cached fault
 DTI_TBU_TRANS_REQ reqC, // Translation request for the cached fault
 DTI_TBU_TRANS_FAULT respC) // Translation response for the cached fault

 bit secsid_match = MatchSECSID(reqIN, reqC);
 bit sid_match = MatchSID(reqIN, reqC, respC.CONT);
 bit flow_match = MatchFlow(reqIN, reqC);

 bit hit_globaldisabled = reqIN.MMUV && reqC.MMUV && respC.FAULT_TYPE == GlobalDisabled &&
 secsid_match && flow_match;
 bit hit_streamdisabled = reqIN.MMUV && reqC.MMUV && respC.FAULT_TYPE == StreamDisabled &&
 secsid_match && flow_match && sid_match;

 if hit_globaldisabled || hit_streamdisabled then
 return True
 else
 return False

6.2.3 PermissionCheck

// PermissionCheck()

// =================
// Check Non-secure instruction read permission for GlobalBypass or StreamBypass
// translations when MMUV=1. And check the RWX permissions for Non-bypass
// translation. No permission check required for a translation with MMUV=0.
boolean PermissionCheck(DTI_TBU_TRANS_REQ req, DTI_TBU_TRANS_RESP resp)
 bit effective_InD = ((resp.INSTCFG == "Use incoming") && req.InD) ||
 (resp.INSTCFG == "Instruction")
 bit effective_PnU = ((resp.PRIVCFG == "Use incoming") && req.PnU) ||
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 6-139
ID062824 Non-Confidential

6 Pseudocode
6.2 Cache lookup
 (resp.PRIVCFG == "Privileged")
 bit s_byp_eff_ns_pas = ((resp.ATTR_OVR.NSCFG == "Use incoming") && req.NS) ||
 (resp.ATTR_OVR.NSCFG == "Non-secure");
 bit rl_byp_eff_ns_pas = (resp.BYPASS && resp.BP_TYPE == StreamBypass) ?
 ((resp.ATTR_OVR.NSCFG == "Use incoming") && !req.NSE) ||
 (resp.ATTR_OVR.NSCFG == "Non-secure") :
 !resp.NSE;
 bit req_R = ((req.PERM == "R") && !effective_InD) || (req.PERM == "RW")
 bit req_W = (req.PERM == "W") || (req.PERM == "RW")
 bit req_X = (req.PERM == "R") && effective_InD

 if (resp.BYPASS && (req.SEC_SID == Secure) && !resp.ALLOW_NSX && req_X &&
 s_byp_eff_ns_pas) ||
 (resp.BYPASS && (req.SEC_SID == Realm) && req_X && rl_byp_eff_ns_pas) ||
 (resp.BYPASS && (resp.BP_TYPE == DPTBypass) &&
 ((!resp.ALLOW_UW && req_W && !effective_PnU) ||
 (!resp.ALLOW_PW && req_W && effective_PnU))) ||
 (!resp.BYPASS && (
 ((req.SEC_SID == Realm) && !resp.NSE && (resp.ALLOW_UX || resp.ALLOW_PX)) ||
 (!resp.ALLOW_UR && req_R && !effective_PnU) ||
 (!resp.ALLOW_UW && req_W && !effective_PnU) ||
 (!resp.ALLOW_UX && req_X && !effective_PnU) ||
 (!resp.ALLOW_PR && req_R && effective_PnU) ||
 (!resp.ALLOW_PW && req_W && effective_PnU) ||
 (!resp.ALLOW_PX && req_X && effective_PnU))) then
 return False
 else
 return True

6.2.4 Shared pseudocode

This section describes the common pseudocode.

// DecodeTransRng()
// =================
// Decode the address size indicated by DTI_TBU_TRANS_RESP.TRANS_RNG
int DecodeTransRng(bits(4) trans_rng)
 case trans_rng of
 when ‘0000’
 page_sz = 12
 when ‘0001’
 page_sz = 14
 when ‘0010’
 page_sz = 16
 when ‘0011’
 page_sz = 21
 when ‘0100’
 page_sz = 25
 when ‘0101’
 page_sz = 29
 when ‘0110’
 page_sz = 30
 when ‘0111’
 page_sz = 34
 when ‘1010’
 page_sz = 36
 when ‘1011’
 page_sz = 39
 when ‘1000’
 page_sz = 42

 return page_sz

// MatchSECSID()
// ==================
// Match SECSID in two translation requests
6-140 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

6 Pseudocode
6.2 Cache lookup
boolean MatchSECSID(DTI_TBU_TRANS_REQ req1, DTI_TBU_TRANS_REQ req2)
 return (req1.SEC_SID == req2.SEC_SID)

// MatchSID()
// ==================
// Match SID between translation request1 and translation2 considering CONT field
boolean MatchSID(DTI_TBU_TRANS_REQ req1, DTI_TBU_TRANS_REQ req2, bits (4) cont)
 return (req1.SID[31:cont] == req2.SID[31:cont])

// MatchSSID()
// ==================
// Match SSID and SSV in two translation requests
boolean MatchSSID(DTI_TBU_TRANS_REQ req1, DTI_TBU_TRANS_REQ req2)
 return (req1.SSV == req2.SSV && (!req1.SSV || (req1.SSID == req2.SSID)))

// MatchFlow()
// ==================
// Match FLOW=ATST in two translation requests
boolean MatchFlow(DTI_TBU_TRANS_REQ req1, DTI_TBU_TRANS_REQ req2)
 return ((req1.FLOW != ATST && req2.FLOW != ATST) || (req1.FLOW == ATST && req2.FLOW == ATST))
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. 6-141
ID062824 Non-Confidential

6 Pseudocode
6.2 Cache lookup
6-142 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Appendix A
Revisions

This appendix describes the technical changes between released issues of this specification.

Table A-1 Differences between Issue E.b and Issue E

Change Location

Addition of DTI_ATS_PAGE_RESPACK
message to the DTI-ATS protocol downstream
message table

DTI-ATS protocol downstream message on page 2-26

Correction to the FLOW[1] bit of the
DTI_TBU_TRANS_REQ message

DTI_TBU_TRANS_REQ on page 3-37

DTI_TBU_SYNC_REQ usage constraints

clarification

DTI_TBU_SYNC_REQ on page 3-69

Clarification of the SID bits of the
DTI_ATS_INV_REQ message

DTI_ATS_INV_REQ on page 4-107

DTI_ATS_SYNC_REQ usage constraints

clarification

DTI_ATS_SYNC_REQ on page 4-111

DTI_ATS_PAGE_RESP usage constraints

clarification

DTI_ATS_PAGE_RESP on page 4-120
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. A-143
ID062824 Non-Confidential

Appendix A Revisions

Clarification of the SID bits of the
DTI_ATS_PAGE_RESP message

DTI_ATS_PAGE_RESP on page 4-120

DTI_ATS_PAGE_RESPACK usage constraints

clarification

DTI_ATS_PAGE_RESPACK on page 4-122

Correction to the M_MSG_TYPE bits of the
DTI_ATS_PAGE_RESPACK message

DTI_ATS_PAGE_RESPACK on page 4-122

Table A-1 Differences between Issue E.b and Issue E (continued)

Change Location

Table A-2 Differences between Issue F and Issue E.b

Change Location

This issue describes only DTI-TBUv3, DTI-ATSv1, DTI-ATSv2,
and DTI-ATSv3. For information on DTI-TBUv1 and DTI-TBUv2,
see Arm Developer, https://developer.arm.com/documentation.

Throughout the specification

New message: DTI_TBU_TRANS_RESPEX message DTI_TBU_TRANS_RESPEX on page 3-55

New message: DTI_ATS_INV_COMP message DTI_ATS_INV_COMP on page 4-110

New feature: Granule Protection Checks Message groups of the DTI Protocol on
page 2-24

Update: Message type field names

• Changed MST_MSG_TYPE to M_MSG_TYPE

• Changed SLV_MSG_TYPE to S_MSG_TYPE

Throughout the specification

Update: DTI_TBU_CONDIS_REQ message DTI_TBU_CONDIS_REQ on page 3-32

Update: DTI_TBU_CONDIS_ACK message DTI_TBU_CONDIS_ACK on page 3-34

Update: DTI_TBU_TRANS_REQ message DTI_TBU_TRANS_REQ on page 3-37

Update: DTI_TBU_TRANS_RESP message DTI_TBU_TRANS_RESP on page 3-41

Update: DTI_TBU_TRANS_FAULT message DTI_TBU_TRANS_FAULT on page 3-57

Update: DTI_TBU_INV_REQ message DTI_TBU_INV_REQ on page 3-66

Update: DTI_TBU_SYNC_REQ message DTI_TBU_SYNC_REQ on page 3-69

Update: DTI-TBU invalidation operations table DTI-TBU list of invalidation operations on
page 3-73

Update: Range Invalidate operations section Range Invalidate operations on page 3-76

Update: DTI-TBU encodings of INVAL_RNG table DTI-TBU encodings of
DTI_TBU_TRANS_RESP.INVAL_RNG on
page 3-77

New feature: Realm Invalidation Realm Invalidation on page 3-78

New feature: GPC invalidate operations GPC invalidate operations on page 3-79

Update: DTI_TBU_REG_WRITE message DTI_TBU_REG_WRITE on page 3-81

Update: DTI_TBU_REG_READ message DTI_TBU_REG_READ on page 3-82

Update: DTI_ATS_CONDIS_REQ message DTI_ATS_CONDIS_REQ on page 4-88
A-144 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

Appendix A Revisions

Update: DTI_ATS_CONDIS_ACK message DTI_ATS_CONDIS_ACK on page 4-90

Update: DTI_ATS_TRANS_REQ message DTI_ATS_TRANS_REQ on page 4-94

Update: DTI_ATS_TRANS_RESP message DTI_ATS_TRANS_RESP on page 4-97

Update: DTI_ATS_INV_REQ message DTI_ATS_INV_REQ on page 4-107

Update: DTI_ATS_SYNC_REQ message DTI_ATS_SYNC_REQ on page 4-111

Update: DTI_ATS_SYNC_ACK message DTI_ATS_SYNC_ACK on page 4-112

Update: DTI-ATS invalidation sequence diagram The DTI-ATS invalidation sequence on
page 4-113

Update: DTI_ATS_PAGE_REQ message DTI_ATS_PAGE_REQ on page 4-117

Update: DTI_ATS_PAGE_RESP message DTI_ATS_PAGE_RESP on page 4-120

Update: Mapping of AXI4-Stream to the DTI protocol table Mapping of AXI4-Stream to the DTI
protocol on page 5-129

Update: Pseudocode appendix Memory attributes on page 6-132 and
Cache lookup on page 6-138

Removed: DTI-TBU Caching Model chapter -

Addition: DTI-TBU message dependencies Message dependencies for DTI-TBU on
page 3-85

Addition: DTI-ATS message dependencies Message dependencies for DTI-ATS on
page 4-124

Addition: DTI-ATS and PCIe TLP mappings for
DTI_ATS_TRANS_REQ, DTI_ATS_INV_REQ,
DTI_ATS_PAGE_REQ, and DTI_ATS_PAGE_RESP

• DTI_ATS_TRANS_REQ on
page 4-94

• DTI_ATS_INV_REQ on page 4-107

• DTI_ATS_PAGE_REQ on
page 4-117

• DTI_ATS_PAGE_RESP on
page 4-120

Addition:

• Cache lookup process

Cache lookup process on page 3-65

Table A-2 Differences between Issue F and Issue E.b (continued)

Change Location
ARM IHI 0088G Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. A-145
ID062824 Non-Confidential

Appendix A Revisions

Table A-3 Differences between Issue G and Issue F

Change Location

This issue describes only DTI-TBUv3, DTI-TBUv4,
DTI-ATSv1, DTI-ATSv2, DTI-ATSv3, and DTI-ATSv4.
For information on DTI-TBUv1 and DTI-TBUv2, see Arm
Developer, https://developer.arm.com/documentation.

Throughout the specification

Support for DTI-TBUv4 • DTI_TBU_CONDIS_REQ on page 3-32

• DTI_TBU_CONDIS_ACK on page 3-34

Support for DTI-ATSv4 • DTI_ATS_CONDIS_REQ on page 4-88

• DTI_ATS_CONDIS_ACK on page 4-90

• DTI_ATS_TRANS_REQ on page 4-94

• DTI_ATS_TRANS_RESP on page 4-97

• DTI_ATS_TRANS_FAULT on page 4-103

Update

• ALLOW_PW, ALLOW_UW, and BP_TYPE bits for
DPTBypass response support

• DCP, DRE bits for bypass response

• Addition of the following table:

— Summary of DTI-TBUv4 permitted translation
response contexts when
DTI_TBU_CONDIS_REQ.STAGES = MG

• Physical Address Space constraints

• NSCFG field

• DTI_TBU_TRANS_RESP on page 3-41

• Matching field values for future transactions on
page 3-52

• Summary of DTI-TBUv3 permitted translation
response contexts when
DTI_TBU_CONDIS_REQ.STAGES = MG on
page 3-52

• Summary of DTI-TBUv4 permitted translation
response contexts when
DTI_TBU_CONDIS_REQ.STAGES = MG on
page 3-53

• The NSCFG field on page 3-63

Update:

• Relaxation of MECID constraint

• PARTID extension

• DTI_TBU_TRANS_RESPEX on page 3-55

• DTI_TBU_TRANS_RESP on page 3-41

Correction: DTI_TBU_TRANS_REQ.IA upper bits check Additional rules on permitted translation responses on
page 3-59

Addition: DPT invalidation section • DPT invalidation on page 3-80

• DTI-TBU list of invalidation operations on page 3-73

Clarification on rules when IA is out of range Rules when IA out of range on page 3-59

Correction and clarification on ATS global invalidate • DTI_ATS_INV_REQ mapping to PCIe Invalidate
Request on page 4-109

• CMD_ATC_INV command mapping to
DTI_ATS_INV_REQ on page 4-116

Correction and clarification: Message dependencies for
DTI-TBU section

Message dependencies for DTI-TBU on page 3-85

Clarification: SUP_PRI bit of DTI_ATS_CONDIS_ACK
message

DTI_ATS_CONDIS_ACK on page 4-90

Correction and clarification: Message dependencies for
DTI-ATS section

Message dependencies for DTI-ATS on page 4-124

Pseudocode changes • MatchTranslation on page 6-138

• PermissionCheck on page 6-139
A-146 Copyright © 2016-2018, 2020-2024 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088G
Non-Confidential ID062824

	AMBA DTI Protocol Specification
	Contents
	Preface
	About this specification
	Intended audience
	Using this specification
	Conventions
	Typographic conventions
	Signals
	Numbers

	Additional reading
	Arm publications
	Other publications

	Feedback on this specification
	Inclusive language commitment

	1: Introduction�
	1.1 About the DTI protocols
	1.1.1 Protocol interaction
	1.1.2 Field references

	1.2 DTI protocol specification terminology

	2: DTI Protocol Overview�
	2.1 DTI protocol messages
	2.1.1 Message groups
	2.1.2 Message listing
	2.1.3 Flow control
	2.1.4 Reserved fields
	2.1.5 Reserved encodings
	2.1.6 IMPLEMENTATION DEFINED fields
	2.1.7 Ignored fields

	2.2 Managing DTI connections
	2.2.1 Channel states
	2.2.2 Handshaking
	2.2.3 Initialization and disconnection
	2.2.4 Connecting multiple TBUs or PCIe RPs to a TCU

	3: DTI-TBU Messages�
	3.1 Connection and disconnection message group
	3.1.1 DTI_TBU_CONDIS_REQ
	3.1.2 DTI_TBU_CONDIS_ACK

	3.2 Translation request message group
	3.2.1 DTI_TBU_TRANS_REQ
	3.2.2 DTI_TBU_TRANS_RESP
	3.2.3 DTI_TBU_TRANS_RESPEX
	3.2.4 DTI_TBU_TRANS_FAULT
	3.2.5 Additional rules on permitted translation responses
	3.2.6 Calculating transaction attributes
	3.2.7 Speculative transactions and translations
	3.2.8 Cache lookup process

	3.3 Invalidation and synchronization message group
	3.3.1 DTI_TBU_INV_REQ
	3.3.2 DTI_TBU_INV_ACK
	3.3.3 DTI_TBU_SYNC_REQ
	3.3.4 DTI_TBU_SYNC_ACK
	3.3.5 DTI-TBU invalidation sequence
	3.3.6 DTI-TBU invalidation operations

	3.4 Register access message group
	3.4.1 DTI_TBU_REG_WRITE
	3.4.2 DTI_TBU_REG_WACK
	3.4.3 DTI_TBU_REG_READ
	3.4.4 DTI_TBU_REG_RDATA
	3.4.5 Deadlock avoidance in register accesses

	3.5 Message dependencies for DTI-TBU

	4: DTI-ATS Messages�
	4.1 Connection and disconnection message group
	4.1.1 DTI_ATS_CONDIS_REQ
	4.1.2 DTI_ATS_CONDIS_ACK

	4.2 Translation request message group
	4.2.1 DTI_ATS_TRANS_REQ
	4.2.2 DTI_ATS_TRANS_RESP
	4.2.3 DTI_ATS_TRANS_FAULT
	4.2.4 The ATS translation sequence

	4.3 Invalidation and synchronization message group
	4.3.1 DTI_ATS_INV_REQ
	4.3.2 DTI_ATS_INV_ACK
	4.3.3 DTI_ATS_INV_COMP
	4.3.4 DTI_ATS_SYNC_REQ
	4.3.5 DTI_ATS_SYNC_ACK
	4.3.6 The DTI-ATS invalidation sequence
	4.3.7 DTI-ATS invalidation operations

	4.4 Page request message group
	4.4.1 DTI_ATS_PAGE_REQ
	4.4.2 DTI_ATS_PAGE_ACK
	4.4.3 DTI_ATS_PAGE_RESP
	4.4.4 DTI_ATS_PAGE_RESPACK
	4.4.5 Generating the page response

	4.5 Message dependencies for DTI-ATS

	5: Transport Layer�
	5.1 Introduction
	5.2 AXI4-Stream transport protocol
	5.2.1 AXI4-Stream signals
	5.2.2 Interleaving
	5.2.3 Usage of the TID and TDEST signals

	6: Pseudocode�
	6.1 Memory attributes
	6.1.1 Memory attribute types
	F.1.2 Memory attribute decoding
	6.1.3 Memory attribute processing

	6.2 Cache lookup
	6.2.1 MatchTranslation
	6.2.2 MatchFault
	6.2.3 PermissionCheck
	6.2.4 Shared pseudocode

	A: Revisions�

