

Arm® Cortex®-A75 Core

Revision: r3p1

Software Optimization Guide
Non-Confidential Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates).
All rights reserved.

109757

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 2 of 64

Arm® Cortex®-A75 Core

Software Optimization Guide

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 14 May 2018 Confidential First release

2.0 31 May 2018 Non-Confidential Editorial changes and confidentiality status change

3.0 06 June 2024 Non-Confidential Editorial changes and document ID change

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm Limited ("Arm"). No license, express or implied, by estoppel or otherwise to any
intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether the subject matter of this
document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further
assist the recipient and does not represent Arm’s view of the scope of its obligations. You acknowledge and
agree that you possess the necessary expertise in system security and functional safety and that you shall be
solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition,
you are responsible for any applications which are used in conjunction with any Arm technology described in
this document, and to minimize risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED
"AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH
RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, any patents, copyrights,
trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied
approval or endorsement of the use thereof.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 3 of 64

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted
use, duplication, or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any
partnership relationship with any other company. Arm may make changes to this document at any time and
without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this
document. If you find offensive terms in this document, please email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://developer.arm.com/
mailto:terms@arm.com

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 64

Contents

1 Introduction ... 6

1.1 Product revision status ... 6

1.2 Intended audience ... 6

1.3 Scope ... 6

1.4 Conventions .. 6

1.4.1 Glossary ... 6

1.4.2 Terms and abbreviations ... 6

1.4.3 Typographical conventions .. 8

1.5 Useful resources ... 9

1.6 Feedback .. 10

1.6.1 Feedback on this product ... 10

1.6.2 Feedback on content ... 10

2 Pipeline ... 11

2.1 Overview ... 11

3 Instruction characteristics ... 13

3.1 Instruction tables .. 13

3.2 Branch instructions .. 14

3.3 Arithmetic and logical instructions ... 15

3.4 Move and shift instructions ... 16

3.5 Saturating and parallel arithmetic instructions ... 17

3.6 Divide and multiply instructions ... 18

3.7 Miscellaneous data-processing instructions ... 20

3.8 Load instructions ... 22

3.9 Store instructions ... 25

3.10 Floating-point data processing instructions ... 28

3.11 Floating-point miscellaneous instructions ... 30

3.12 Floating-point load instructions .. 31

3.13 Floating-point store instructions .. 33

3.14 Advanced SIMD integer instructions .. 35

3.15 Advanced SIMD floating-point instructions ... 41

3.16 Advanced SIMD miscellaneous instructions .. 46

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 5 of 64

3.17 Advanced SIMD load instructions .. 50

3.18 Advanced SIMD store instructions .. 54

3.19 Cryptographic Extension ... 57

3.20 CRC .. 59

4 Special considerations ... 60

4.1 Dispatch constraints ... 60

4.2 Conditional ASIMD .. 60

4.3 Optimizing memory copy ... 60

4.4 Load/store alignment.. 61

4.5 AES encryption and decryption .. 61

4.6 Branch instruction alignment ... 62

4.7 Region-based fast forwarding .. 62

4.8 FPCR self-synchronization .. 62

4.9 Special register access .. 62

4.10 IT blocks .. 64

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 6 of 64

1 Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example,
r1p2, where:

rx

 Identifies the major revision of the product, for example, r1.

py

 Identifies the minor revision or modification status of the product, for example, p2.

1.2 Intended audience

This document is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses an Arm core.

1.3 Scope

This document describes aspects of the Cortex-A75 core micro-architecture that influence software
performance so that software and compilers can be optimized accordingly. Micro-architectural detail
is limited to that which is useful for software optimization.

Documentation extends only to software visible behavior of the Cortex-A75 core and not to the
hardware rationale behind the behavior.

1.4 Conventions

The following subsections describe conventions used in Arm documents.

1.4.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

1.4.2 Terms and abbreviations

This document uses the following terms and abbreviations.

https://developer.arm.com/glossary

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 7 of 64

Term Meaning

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

MAC Multiply-Accumulate

SQRT Square Root

FP Floating-point

CRC Cyclic Redundancy Check

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 64

1.4.3 Typographical conventions

Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace bold Denotes language keywords when used outside example code.

monospace

underline
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in
the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or
damage.

This represents a requirement for the system that, if not followed, might result in system
failure or damage.

This represents a requirement for the system that, if not followed, will result in system
failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 9 of 64

1.5 Useful resources

This document contains information that is specific to this product. See the following resources for
other relevant information.

• Arm Non-Confidential documents are available on developer.arm.com/documentation. Each
document link in the tables below provides direct access to the online version of the document.

• Arm Confidential documents are available to licensees only through the product package.

Arm products Document ID Confidentiality

Arm® Cortex®-A75 Core Technical Reference Manual 100403 Non-Confidential

Arm architecture and specifications Document ID Confidentiality

Arm® Architecture Reference Manual for A-profile architecture DDI 0487 Non-Confidential

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the quality of
its documents when used with any other PDF reader.
Adobe PDF reader products can be downloaded at http://www.adobe.com.

https://developer.arm.com/documentation
https://developer.arm.com/documentation/100403/latest/
https://developer.arm.com/documentation/ddi0487/latest/
http://www.adobe.com/

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 64

1.6 Feedback

Arm welcomes feedback on this product and its documentation.

1.6.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

1.6.2 Feedback on content

If you have comments on content, send an email to errata@arm.com and give:

• The title Arm® Cortex®-A75 Core Software Optimization Guide.

• The number 109757.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality of
the represented document when used with any other PDF reader.

mailto:errata@arm.com?subject=Feedback%20on%20content

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 64

2 Pipeline

2.1 Overview

The following figure shows a high-level Cortex-A75 instruction processing pipeline. Instructions are
fetched and then decoded into internal micro-operations. From there, the micro-operations proceed
through register renaming and dispatch stages. Once they are dispatched, the micro-operations wait
for their operands and issue out of order to one of the execution pipelines. Each execution pipeline
can accept and complete one micro-operation per cycle.

Figure 2-1 Cortex-A75 core pipeline

The following table shows the different types of operations that the execution pipelines support.

Table 2-1: Cortex-A75 core supported types of operations

Pipeline mnemonic Supported functionality

Branch (B) Branch micro-operations

Fetch

Decode,

Rename, and

Dispatch

Integer 1

FP/ASIMD 0

FP/ASIMD 1

Load/Store 0

Load/Store 1

Store data

Is
su

e

IN ORDER OUT OF ORDER

FP/ASIMD data

Branch

Integer 0

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 12 of 64

Pipeline mnemonic Supported functionality

Integer 0 (I0) • Single-cycle integer ALU micro-operations

• Two-cycle integer shift-ALU micro-operations

• System register micro-operations

• Multiply

• MAC0

• CRC

• Sum-of-absolute-differences micro-operations

Integer 1 (I1) • Single-cycle integer ALU micro-operations

• Two-cycle integer shift-ALU micro-operations

• MAC1

• Divide

• Sum-of-absolute-differences micro-operations

Load/Store 0/1 (LS) • Load

• Store address micro-operations

• Special memory micro-operations

Store data (D) • Store data micro-operations

• Register transfer

FP/ASIMD-0 (F0) • ASIMD ALU

• ASIMD miscellaneous

• ASIMD integer multiply

• FP convert

• FP miscellaneous

• FP add

• FP multiply

• Crypto micro-operations

FP/ASIMD-1 (F1) • ASIMD ALU

• ASIMD miscellaneous

• FP miscellaneous

• FP add

• FP multiply

• FP divide

• FP sqrt

• ASIMD shift micro-operations

FP/ASIMD data (FD) • ASIMD store data micro-operations

• FP store data micro-operations

Note:

• Most of branch instructions are decoded in one branch micro-operation and one ALU micro-
operation going through I0/I1.

• MAC instructions are decoded in two micro-operations. The first one, MAC0, always goes
through I0, and the second one, MAC1, always goes through I1. The ordering is kept between
MAC0 and MAC1 in issue cycles.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 64

3 Instruction characteristics

3.1 Instruction tables

This chapter describes high-level performance characteristics for most Armv8-A, Armv8.1-A, and
Armv8.2-A A32, T32, and A64 instructions. It includes a series of tables that summarize the effective
execution latency and throughput, pipelines used, and special behaviors associated with each group of
instructions.

In the following tables:

• Execution latency, unless otherwise specified, is defined as the minimum latency seen by an
operation dependent on an instruction in the described group.

• Execution throughput is defined as the maximum throughput (in instructions per cycle) of the
specified instruction group that can be achieved in the entirety of the Cortex-A75 micro-
architecture.

• Used pipelines correspond to the execution pipelines described in Pipeline.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 64

3.2 Branch instructions

Table 3-1: AArch32 branch instructions

Instruction group AArch32 instructions Execution
latency

Execution
throughput

Used pipelines Notes

Branch, immed B 1 1 B -

Branch, register BX 1 1 I0/I1 + B -

Branch and link, immed BL, BLX 1 1 I0/I1 + B -

Branch and link, register BLX 1 1 I0/I1 + B -

Compare and branch CBZ, CBNZ 1 1 I0/I1 + B -

Table 3-2: AArch64 branch instructions

Instruction group AArch64 instructions Execution
latency

Execution
throughput

Used pipelines Notes

Branch, immed B 1 1 B -

Branch, register BR, RET 1 1 I0/I1 + B -

Branch and link, immed BL 1 1 I0/I1 + B -

Branch and link, register BLR 1 1 I0/I1 + B -

Compare and branch CBZ, CBNZ, TBZ, TBNZ 1 1 I0/I1 + B -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15 of 64

3.3 Arithmetic and logical instructions

Table 3-3: AArch32 arithmetic and logical instructions

Instruction group AArch32 instructions Execution
latency

Execution
throughput

Used pipelines Notes

ALU, basic ADD{S}, ADC{S}, ADR, 1 2 I0/I1 -

AND{S}, BIC{S}, CMN,
ALU, shift by immed 2 2 I0/I1

CMP, EOR{S}, ORN{S}, See1

ORR{S}, RSB{S}, RSC{S}, ALU, shift by register 2 1 I0/I1

SUB{S}, SBC{S}, TEQ, TST

ALU, branch forms - +2 2 +B See2

Table 3-4: AArch64 arithmetic and logical instructions

Instruction group AArch64 instructions Execution
latency

Execution
throughput

Used pipelines Notes

ALU, basic, include flag setting ADD{S}, ADC{S}, AND{S},

BIC{S}, EON, EOR, ORN, ORR,

SUB{S}, SBC{S}

1 2 I0/I1 -

ALU, extend and/or shift ADD{S}, AND{S}, BIC{S}, EON,

EOR, ORN, ORR, SUB{S}

2 2 I0/I1 See1

Conditional compare CCMN, CCMP 1 2 I0/I1 -

Conditional select CSEL, CSINC, CSINV, CSNEG 1 2 I0/I1 -

1 Late forwarding allows having once-cycle latency for back-to-back instructions with dependency on unshifted operands.
2 Branch forms are possible when the instruction destination register is the Program Counter (PC). In this case, an additional
branch micro-operation is required, which adds two cycles to latency.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 64

3.4 Move and shift instructions

Table 3-5: AArch32 move and shift instructions

Instruction group AArch32 instructions Execution
latency

Execution
throughput

Used pipelines Notes

Move, basic MOV{S}, MOVW, MOVT, MVN{S} 1 2 I0/I1 See3

Move, shift by immed ASR{S}, LSL{S}, LSR{S},

ROR{S}, RRX{S}

1 2 I0/I1 -

MVN, shift by immed MVN{S} 2 2 I0/I1 -

Move, shift by register ASR{S}, LSL{S}, LSR{S},

ROR{S}, RRX{S}

1 2 I0/I1 -

MVN, shift by register MVN{S} 2 1 I0/I1 -

(Move, branch forms) - +2 2 +B See4

Table 3-6: AArch64 move and shift instructions

Instruction group AArch64 instructions Execution
latency

Execution
throughput

Used pipelines Notes

Address generation ADR, ADRP 1 2 I0/I1 See5

Move immed MOVN, MOVK, MOVZ 1 2 I0/I1 See3

Variable shift ASRV, LSLV, LSRV, RORV 1 2 I0/I1 -

3 Sequential MOVW/MOVT (AArch32) instruction pairs and some MOVZ/MOVK and MOVK/MOVK (AArch64) instruction
pairs can be executed with one-cycle execute latency and four instructions per cycle execution throughput in I0/I1. See IT
blocks for more information on the instruction pairs that can be merged.
4 Branch forms are possible when the instruction destination register is the Program Counter (PC). In this case, an additional
branch micro-operation is required, which adds two cycles to latency.
5 Sequential ADRP/ADD instruction pairs can be executed with one-cycle execute latency and four-instruction-per-cycle
execution throughput in I0/I1. See IT blocks for more information on the instruction pairs that can be merged.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 64

3.5 Saturating and parallel arithmetic instructions

Table 3-7: AArch32 saturating and parallel arithmetic instructions

Instruction group AArch32 instructions Execution latency Execution throughput Used pipelines Notes

Parallel arith with

exchange, unconditional

SADD16, SADD8,

SSUB16, SSUB8,

UADD16, UADD8,

USUB16, USUB8

2 2 I0/I1 -

Parallel arith with

exchange, conditional

SADD16, SADD8,

SSUB16, SSUB8,

UADD16, UADD8,

USUB16, USUB8

2 2 I0/I1 -

Parallel halving arith SASX, SSAX, UASX, USAX 2 2 I0/I1 -

Parallel halving arith

with exchange

SASX, SSAX, UASX, USAX 3 2 I0/I1 -

Parallel saturating arith SHADD16, SHADD8,
SHSUB16, SHSUB8,

UHADD16, UHADD8,

UHSUB16, UHSUB8

2 2 I0/I1 -

Parallel saturating arith

with exchange

SHASX, SHSAX, UHASX,

UHSAX

3 2 I0/I1 -

Saturate, basic QADD16, QADD8,

QSUB16, QSUB8,

UQADD16, UQADD8,

UQSUB16, UQSUB8

1 2 I0/I1 -

Saturate, shift by immed QASX, QSAX, UQASX, UQSAX 2 2 I0/I1 -

Saturating arith SSAT, SSAT16, USAT,

USAT16

2 2 I0/I1 -

Saturating doubling arith SSAT, USAT 3 2 I0/I1 -

Parallel arith with

exchange, unconditional

QADD, QSUB 2 2 I0/I1 -

Parallel arith with

exchange, conditional

QDADD, QDSUB 2 2 I0/I1 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 64

3.6 Divide and multiply instructions

Table 3-8: AArch32 divide and multiply instructions

Instruction group AArch32 instructions Execution latency Execution throughput Used pipelines Notes

Divide SDIV, UDIV 4 - 12 1/12 - 1/4 I1 See6

Multiply MUL, SMULBB, SMULBT,

SMULTB, SMULTT, SMULWB,

SMULWT, SMMUL{R},

SMUAD{X}, SMUSD{X}

3 1 I0 -

Multiply accumulate MLA, MLS, SMLABB,

SMLABT, SMLATB, SMLATT,

SMLAWB, SMLAWT,

SMLAD{X}, SMLSD{X},

SMMLA{R}, SMMLS{R}

3 (1) 1 I0/I1 See7

Multiply accumulate long SMLAL, SMLALBB, SMLALBT,
SMLALTB, SMLALTT,

SMLALD{X}, SMLSLD{X},

UMLAL

4 (2) 1/2 I0/I1 See 7

and 8

Multiply long SMULL, UMULL 4 1/2 I0/I1 See8

(Multiply, setflags forms) - +3 1/4 - 1/5 +I1 See9

Table 3-9: AArch64 divide and multiply instructions

Instruction group AArch64 instructions Execution latency Execution throughput Used pipelines Notes

Divide, W-form SDIV, UDIV 4 - 12 1/12 - 1/4 I1 See6

Divide, X-form SDIV, UDIV 4 - 20 1/20 - 1/4 I1

Multiply accumulate, W-

form

MADD, MSUB 3 (1) 1 I0+I1 See7

6 Integer divides are performed using an iterative algorithm and block any subsequent divide operations until they are
complete. Early termination is possible depending on the data values.
7 Multiply-accumulate pipelines support late forwarding of accumulate operands from similar micro-operations, allowing a
typical sequence of multiply-accumulate micro-operations to issue one every N cycle (accumulate latency N is shown
between brackets).
8 Long-form multiplies, which produce two result registers, stall the multiplier pipeline for one extra cycle.
9 Multiplies that set the condition flags require three additional cycles.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 64

Multiply accumulate, X-

form, non-null Rm most

significant 32 bits

MADD, MSUB 5 (3) 1/3 I0+I1 See7 and 10

Multiply accumulate, X-

form, null Rm most

significant 32 bits

MADD, MSUB 4 (2) 1/2 I0+I1

Multiply accumulate

long

SMADDL, SMSUBL,

UMADDL, UMSUBL

3 (1) 1 I0+I1 See7

Multiply high SMULH, UMULH 6 (4) 1/4 I0+I1 See11

10 X-form multiply accumulates stall the multiplier pipeline for two extra cycles, except if the Rm highest 32 bits are zero
(four-cycle latency instead of five-cycle latency).
11 Multiply-high operations stall the multiplier pipeline for N extra cycles before any other M-type micro-operation can be
issued to that pipeline (N is shown between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 20 of 64

3.7 Miscellaneous data-processing instructions

Table 3-10: AArch32 miscellaneous data-processing instructions

Instruction group AArch32 instructions Execution latency Execution throughput Used pipelines Notes

Bit field extract SBFX, UBFX 1 2 I0/I1 -

Bit field insert/clear BFI, BFC 1 2 I0/I1 -

Count leading zeros CLZ 2 2 I0/I1 -

Pack halfword PKH 2 2 I0/I1 -

Reverse bits/bytes RBIT, REV, REV16, REVSH 1 2 I0/I1 -

Select bytes,

unconditional

SEL 1 2 I0/I1 -

Sign/zero extend, normal SXTB, SXTH, UXTB, UXTH 1 2 I0/I1

Sign/zero extend, parallel SXTB16, UXTB16 1 2 I0/I1 -

Sign/zero extend and

add, normal

SXTAB, SXTAH, UXTAB,

UXTAH

2 1 I0/I1 See12

Sign/zero extend and

add, parallel

SXTAB16, UXTAB16 2 1 I0/I1

Sum of absolute

differences

USAD8, USADA8 3 1 I0+I1 -

Table 3-11: AArch64 miscellaneous data-processing instructions

Instruction group AArch64 instructions Execution latency Execution throughput Used pipelines Notes

Bitfield extract, one reg EXTR 1 2 I0/I1 -

Bitfield extract, two regs EXTR 2 2 I0/I1 -

Bitfield move BFM, SBFM, UBFM 1 2 I0/I1 -

12 Instruction is decoded as two micro-operations.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 of 64

Count leading CLS, CLZ 2 2 I0/I1 -

Reverse bits/bytes RBIT, REV, REV16, REV32 1 2 I0/I1 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 64

3.8 Load instructions

Latencies shown in the following table assume that memory access hits in the Level 1 data cache.

Notes:

• All forms of load that imply write back of the baser register also require a micro-operation that
makes use of the I0/I1 pipeline, which is not shown in the following tables.

• The Cortex-A75 core can return two registers (both X-form and W-form) per cycle, sustained. In a
single cycle, it can return four registers (both forms) from a maximum of two micro-operations.

• Load instructions with execution latency of four cycles and returning a single register might
expose latency of three cycles if:

o It executes in Load/Store unit 0.

o The consuming instruction is either a data processing instruction or a load or store
instruction, which depends on the load instruction for the base address register.

Table 3-12: AArch32 load instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

Load, immed offset LDR{T}, LDRB{T}, LDRD,

LDRH{T}, LDRSB{T},

LDRSH{T}

4 2 LS -

Load, register offset, plus LDR, LDRB, LDRD, LDRH,

LDRSB, LDRSH

4 2 LS -

Load, register offset, minus LDR, LDRB, LDRD, LDRH,

LDRSB, LDRSH

4 2 LS -

Load, scaled register offset, plus,

scale by 4/8

LDR, LDRB 4 2 LS -

Load, scaled register offset, other LDR, LDRB, LDRH,

LDRSB, LDRSH

5 1 LS See13

Load, immed pre-indexed LDR, LDRB, LDRD, LDRH,

LDRSB, LDRSH

4 2 LS -

Load, register pre-indexed, shift Rm,

plus and minus

LDR, LDRB, LDRH,

LDRSB, LDRSH

5 1 LS See13

Load, register pre-indexed LDRD 4 2 LS -

13 These instructions iterate two cycles in the load/store pipeline. Two of these instructions can be dispatched at the same
cycle to Load/Store 0 and Load/Store 1, however the sustained throughput is one every other cycle on each LS.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 23 of 64

Load, register pre-indexed, cond LDRD 4 2 LS -

Load, scaled register pre-indexed,

plus, scale by 4/8

LDR, LDRB 4 2 LS -

Load, scaled register pre-indexed,

unshifted

LDR, LDRB 4 2 LS -

Load, immed post-indexed LDR{T}, LDRB{T}, LDRD,

LDRH{T}, LDRSB{T},

LDRSH{T}

4 2 LS -

Load, register post-indexed LDR, LDRB, LDRH{T},

LDRSB{T}, LDRSH{T}

4 2 LS -

Load, register post-indexed LDRD 4 2 LS -

Load, register post-indexed LDRT, LDRBT 4 2 LS -

Load, scaled register post-indexed LDR, LDRB 4 2 LS -

Load, scaled register post-indexed LDRT, LDRBT 4 2 LS -

Preload, all forms PLD, PLDW 4 1 I0 -

Load multiple, no writeback, base

reg not in list

LDMIA, LDMIB, LDMDA,

LDMDB

N 2/R LS See14

Load multiple, no writeback, base

reg in list

LDMIA, LDMIB, LDMDA,

LDMDB

N 2/R LS

Load multiple, writeback LDMIA, LDMIB, LDMDA,

LDMDB, POP

N 2/R LS

(Load, all branch forms) - +1 - + B See15

Table 3-13: AArch64 load instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

Load register, literal LDR, LDRSW 4 2 LS -

Load register, unscaled immed LDUR, LDURB, LDURH,

LDURSB, LDURSH, LDURSW

4 2 LS -

14 N is floor((num_reg+3)/4) and R is floor((num_reg +1)/2).
15 Branch forms are possible when the instruction destination register is the Program Counter (PC). In this case, an additional
branch micro-operation is required, which adds one cycle to latency.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 24 of 64

Load register, immed post- index LDR, LDRB, LDRH,

LDRSB, LDRSH, LDRSW

4 2 LS -

Load register, immed pre- index LDR, LDRB, LDRH,

LDRSB, LDRSH, LDRSW

4 2 LS -

Load register, immed unprivileged LDTR, LDTRB, LDTRH,

LDTRSB, LDTRSH, LDTRSW

4 2 LS -

Load register, unsigned immed LDR, LDRB, LDRH,

LDRSB, LDRSH, LDRSW

4 2 LS -

Load register, register offset, basic LDR, LDRB, LDRH,

LDRSB, LDRSH, LDRSW

4 2 LS -

Load register, register offset, scale

by 4/8

LDR, LDRSW 4 2 LS -

Load register, register offset, scale

by 2

LDRH, LDRSH 5 1 LS See13

Load register, register offset, extend LDR, LDRB, LDRH,
LDRSB, LDRSH, LDRSW

4 2 LS -

Load register, register offset,

extend, scale by 4/8

LDR, LDRSW 4 2 LS -

Load register, register offset,

extend, scale by 2

LDRH, LDRSH 5 1 LS See13

Load pair, signed immed offset,

normal, W-form

LDP, LDNP 4 2 LS -

Load pair, signed immed offset,

normal, X-form

LDP, LDNP 5 1 LS See13

Load pair, signed immed offset,

signed words, base != SP

LDPSW 4 1 LS See16

Load pair, signed immed offset,

signed words, base = SP

LDPSW 4 1 LS

Load pair, immed post-index, normal LDP 5 1 LS See13

Load pair, immed post-index, signed

words

LDPSW 4 1 LS See16

Load pair, immed pre-index, normal LDP 5 1 LS See13

16 These instructions are split into two micro-operations which can be sent to both Load/Store units. If both micro-
operations are dispatched at the same cycle, then execution latency is four cycles. If only one Load/Store unit is available,
then latency is five cycles.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 25 of 64

Load pair, immed pre-index, signed

words

LDPSW 4 1 LS See16

Preload, all forms PRFM, PRFUM 4 1 I0 -

3.9 Store instructions

The following tables describe performance characteristics for standard store instructions. Store
micro-operations can issue after their address operands become available and do not need to wait for
data operands. Once executed, stores are buffered and committed in the background.

Note:

The Cortex-A75 core features two store units for address generation and one store data unit. This is
shown in the following tables with the micro-operations throughput provided for both address and
data in the Execution throughput column.

Table 3-14: AArch32 store instructions

Instruction group AArch32 instructions Execution
latency

Execution
throughput
(Store address/

store data)

Used pipelines Notes

Store, immed offset STR{T}, STRB{T}, STRD,

STRH{T}

1 2/1 LS, D -

Store, register offset, plus STR, STRB, STRD, STRH 1 2/1 LS, D -

Store, register offset, minus STR, STRB, STRD, STRH 1 2/1 LS, D -

Store, register offset, no shift, plus STR, STRB 1 2/1 LS, D -

Store, scaled register offset, plus LSL2,

LSL3

STR, STRB 1 2/1 LS, D -

Store, scaled register offset, other STR, STRB 2 1/1 LS, D See17

Store, scaled register offset, minus STR, STRB 2 1/1 LS, D

Store, immed pre-indexed STR, STRB, STRD, STRH 1 2/1 LS, D -

Store, register pre-indexed, plus, no

shift

STR, STRB, STRD, STRH 1 2/1 LS, D -

Store, register pre-indexed, minus STR, STRB, STRD, STRH 2 1/1 LS, D See17

17 These instructions iterate two cycles in the load/store pipeline. Two of these instructions can be dispatched at the same
cycle to Load/Store 0 and Load/Store 1, however the sustained throughput is one every other cycle on each LS.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 64

Store, scaled register pre-indexed, plus

LSL2, LSL3

STR, STRB 1 2/1 LS, D -

Store, scaled register pre- indexed,

other

STR, STRB 2 1/1 LS, D See17

Store, immed post-indexed STR{T}, STRB{T}, STRD,

STRH{T}

1 2/1 LS, D -

Store, register post-indexed STRH{T}, STRD 1 2/1 LS, D -

Store, register post-indexed STR{T}, STRB{T} 1 2/1 LS, D -

Store, scaled register post- indexed STR{T}, STRB{T} 1 2/1 LS, D -

Store multiple, no writeback STMIA, STMIB, STMDA,

STMDB

N 1/N LS, D See18

Store multiple, writeback STMIA, STMIB, STMDA,

STMDB, PUSH

N 1/N LS, D

Table 3-15: AArch64 store instructions

Instruction group AArch64 instructions Execution
latency

Execution
throughput

Used pipelines Notes

Store register, unscaled immed STUR, STURB, STURH 1 2/1 LS, D -

Store register, immed post-index STR, STRB, STRH 1 2/1 LS, D -

Store register, immed pre-index STR, STRB, STRH 1 2/1 LS, D -

Store register, immed unprivileged STTR, STTRB, STTRH 1 2/1 LS, D -

Store register, unsigned immed STR, STRB, STRH 1 2/1 LS, D -

Store register, register offset, basic STR, STRB, STRH 1 2/1 LS, D -

Store register, register offset, scaled by

4/8

STR 1 2/1 LS, D -

Store register, register offset, scaled by

2

STRH 2 1/1 LS, D See17

Store register, register offset, extend STR, STRB, STRH 1 2/1 LS, D -

Store register, register offset, extend,

scale by 4/8

STR 1 2/1 LS, D -

18 For store multiple instructions, N=floor((num_regs+3)/4).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 27 of 64

Store register, register offset, extend,

scale by 2

STRH 2 1/1 LS, D See17

Store pair, immed offset, W-form STP, STNP 1 2/1 LS, D -

Store pair, immed offset, X-form STP, STNP 1 2/1 LS, D -

Store pair, immed post-index, W- form STP 1 2/1 LS, D -

Store pair, immed post-index, X- form STP 1 2/1 LS, D -

Store pair, immed pre-index, W- form STP 1 2/1 LS, D -

Store pair, immed pre-index, X- form STP 1 2/1 LS, D -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 28 of 64

3.10 Floating-point data processing instructions

Table 3-16: AArch32 floating-point data processing instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

FP absolute value VABS 2 2 F0/F1 -

FP arith VADD, VSUB 3 2 F0/F1 See19

FP compare VCMP, VCMPE 4 1 F0 See20

FP compare and write flags VCMP, VCMPE

followed by VMRS APSR_nzcv,
FPSCR

6 1 F0 See21

FP convert VCVT{R}, VCVTB, VCVTT,

VCVTA, VCVTM, VCVTN,

VCVTP

3 1 F0 -

FP round to integral VRINTA, VRINTM, VRINTN,

VRINTP, VRINTR, VRINTX,

VRINTZ

3 1 F0 -

FP divide, H-form VDIV 6-8 1/4-1/3 F1 See22

FP divide, S-form VDIV 6-10 1/5-1/3 F1

FP divide, D-form VDIV 6-15 1/15-1/6 F1

FP max/min VMAXNM, VMINNM 3 2 F0/F1

FP multiply VMUL, VNMUL 3 2 F0/F1 See19 and
23

FP multiply non-fused accumulate VMLA, VMLS, VNMLA,

VNMLS

6 (3) 2 F0/F1 See19and 24

19 FP add and multiply pipelines use 2.5 cycles to calculate the results, which allows 0-cycle forward. Execution latency can
reach three only with 0-cycle forward. Similarly, the combined multiply-accumulate pipelines would have one more cycle in
execution latency without 0-cycle forward.
20 Latency corresponds to FPSCR flags forward to a VMRS APSR_nzcv, FPSCR instruction.
21 Latency corresponds to the sequence FCMP, VMRS APSR_nzcv, FPSCR to a conditional instruction.
22 FP divide and square root operations are performed using an iterative algorithm and block subsequent similar operations
to the same pipeline until complete. The minimum execution latency and maximum execution throughput are achieved by
power-of-two early termination. In a normal case, the minimum execution latency is 6 for H-form, 8 for S-form, and 13 for D-
form, and the maximum execution throughput is 1/3 for H-form, 1/4 for S-form, and 1/13 for D-form.
23 FP multiply-accumulate pipelines support late forwarding of the result from FP multiply micro-operations to the
accumulate operands of an FP multiply-accumulate micro-operation. The latter can be issued one cycle after the FP multiply
micro-operation is issued.
24 FP multiply-accumulate pipelines support late forwarding of accumulate operands from similar micro-operations, allowing
a typical sequence of multiply-accumulate micro-operations to issue one every N cycles (accumulate latency N is shown
between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 29 of 64

FP multiply fused accumulate VFMA, VFMS, VFNMA,

VFNMS

5 (3) 2 F0/F1 See19 and
24

FP negate VNEG 2 2 F0/F1 -

FP select VSELEQ, VSELGE, VSELGT,

VSELVS

2 2 F0/F1 -

FP square root, H-form VSQRT 6-7 2/7-1/3 F1 See22

FP square root, S-form VSQRT 6-11 2/11-1/3 F1

FP square root, D-form VSQRT 6-18 1/18-1/6 F1

Table 3-17: AArch64 floating-point data processing instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

FP absolute value FABS 2 2 F0/F1 -

FP arithmetic FADD, FSUB 3 2 F0/F1 See19

FP compare FCCMP{E}, FCMP{E} 3 1 F0 -

FP divide, H-form FDIV 6-8 1/4-1/3 F1 See22

FP divide, S-form FDIV 6-10 1/5-1/3 F1

FP divide, D-form FDIV 6-15 1/15-1/6 F1

FP min/max FMIN, FMINNM, FMAX,

FMAXNM

3 2 F0/F1 -

FP multiply FMUL, FNMUL 3 2 F0/F1 See19 and
23

FP multiply accumulate FMADD, FMSUB, FNMADD,

FNMSUB

5 (3) 2 F0/F1 See19 and
24

FP negate FNEG 2 2 F0/F1 -

FP round to integral FRINTA, FRINTI, FRINTM,

FRINTN, FRINTP, FRINTX,

FRINTZ

3 1 F0 -

FP select FCSEL 2 2 F0/F1 -

FP square root, H-form FSQRT 6-7 2/7-1/3 F1 See22

FP square root, S-form FSQRT 6-11 2/11-1/3 F1

FP square root, D-form FSQRT 6-18 1/18-1/6 F1

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 30 of 64

3.11 Floating-point miscellaneous instructions

Table 3-18: AArch32 floating-point miscellaneous instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

FP move, immed VMOV 3 2 F0/F1 -

FP move, register VMOV 3 2 F0/F1 -

FP move, extraction or insertion VMOVX, VINS 3 2 F0/F1 -

FP transfer, vfp to core reg VMOV 3 1 F0 -

FP transfer, core reg to upper or lower

half of vfp D-reg

VMOV 4 1 LS0, F0/F1 -

Table 3-19: AArch64 floating-point miscellaneous instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

FP transfer, core reg to vfp VMOV 4 1 LS0 -

FP convert, from vec to vec reg FCVT, FCVTXN 3 1 F0 -

FP convert, from gen to vec reg SCVTF, UCVTF 6 1 LS0, F0 -

FP convert, from vec to gen reg FCVTAS, FCVTAU,

FCVTMS, FCVTMU,

 FCVTNS, FCVTNU,

FCVTPS, FCVTPU,

FCVTZS, FCVTZU

5 1 F0 -

FP move, immed FMOV 3 2 F0/F1 -

FP move, register FMOV 3 2 F0/F1 -

FP transfer, from gen to vec reg FMOV 4 1 LS0 -

FP transfer, from vec to gen reg FMOV 4 1 F0 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 31 of 64

3.12 Floating-point load instructions

The latencies shown assume that memory access hits in the Level 1 data cache. Compared to
standard loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Latencies also assume that 64-bit element loads are 64-bit aligned. If this is not the case, an extra
cycle is required.

Table 3-20: AArch32 floating-point load instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

FP load, register, unconditional VLDR 5 2 LS0/LS1 -

FP load, register, conditional VLDR 5 2 LS0/LS1

F0/F1

-

FP load multiple, unconditional VLDMIA, VLDMDB, VPOP 4 + N 2/N LS0/LS1 See25

FP load multiple, conditional VLDMIA, VLDMDB, VPOP 4 + N 2/N LS0/LS1

 F0/F1

See26

(FP load, writeback forms) - (1) Same as before +I0/I1 See27

Table 3-21: AArch64 floating-point load instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

Load vector reg, literal LDR 5 2 LS0/LS1 -

Load vector reg, unscaled immed LDUR 5 2 LS0/LS1 -

Load vector reg, immed post-

index

LDR 5 (1) 2 LS0/LS1

I0/I1

See27

Load vector reg, immed pre-

index

LDR 5 (1) 2 LS0/LS1

I0/I1

Load vector reg, unsigned immed LDR 5 2 LS0/LS1 -

25 N=num_regs for Double-precision registers and N=floor((num_regs+1)/2) for Single-precision registers.
26 This is assuming that the condition is resolved maximum once cycle after the Issue stage.
27 Writeback forms of load instructions require an extra micro-operation to update the base address. This update is typically
performed in parallel with or prior to the load micro-operation (update latency is shown between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 32 of 64

Load vector reg, register offset,

basic

LDR 5 2 LS0/LS1 -

Load vector reg, register offset,

scale, S/D-form

LDR 4 2 LS0/LS1 -

Load vector reg, register offset,

scale, H-form

LDR 6 1 LS0/LS1

I0/I1

-

Load vector reg, register offset,

scale, Q-form

LDR 7 1 LS0/LS1

I0/I1

-

Load vector reg, register offset,

extend

LDR 5 2 LS0/LS1 -

Load vector reg, register offset,

extend, scale, S/D- form

LDR 5 2 LS0/LS1 -

Load vector reg, register offset,

extend, scale, H- form

LDR 6 1 LS0/LS1

I0/I1

-

Load vector reg, register offset,

extend, scale, Q- form

LDR 7 1 LS0/LS1

I0/I1

-

Load vector pair, immed offset,

S-form

LDP, LDNP 5 2 L -

Load vector pair, immed offset,

D-form

LDP, LDNP 6 1 L -

Load vector pair, immed offset,

Q-form

LDP, LDNP 6 1/2 L -

Load vector pair, immed post-

index, S-form

LDP 5 (1) 2 LS0/LS1

I0/I1

See27

Load vector pair, immed post-

index, D-form

LDP 6 (1) 1 LS0/LS1

I0/I1

Load vector pair, immed post-

index, Q-form

LDP 6 (1) 1/2 LS0/LS1

I0/I1

Load vector pair, immed pre-

index, S-form

LDP 5 (1) 1 LS0/LS1

I0/I1

Load vector pair, immed pre-

index, D-form

LDP 6 (1) 1 LS0/LS1

I0/I1

Load vector pair, immed pre-

index, Q-form

LDP 6 (1) 1/2 LS0/LS1

I0/I1

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 33 of 64

3.13 Floating-point store instructions

Stores micro-operations can issue after their address operands become available and do not need to
wait for data operands. After they are executed, stores are buffered and committed in the
background.

Table 3-22: AArch32 floating-point store instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

FP store, immed offset VSTR 1 2 LS0/LS1 -

FP store multiple, S-form VSTMIA, VSTMDB, VPUSH N 2/N LS0/LS1 See28

FP store multiple, D-form VSTMIA, VSTMDB, VPUSH N 2/N LS0/LS1 See29

(FP store, writeback forms) - (1) Same as before +I0/I1 See30

Table 3-23: AArch64 floating-point store instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

Store vector reg, unscaled immed,

B/H/S/D-form

STUR 1 2 LS0/LS1 -

Store vector reg, unscaled immed, Q-

form

STUR 2 1 LS0/LS1 -

Store vector reg, immed post- index,

B/H/S/D-form

STR 1 (1) 2 LS0/LS1,

I0/I1

See30

Store vector reg, immed post- index, Q-

form

STR 2 (1) 1 LS0/LS1,

I0/I1

Store vector reg, immed pre- index,

B/H/S/D-form

STR 1 (1) 2 S, I0/I1

Store vector reg, immed pre- index, Q-

form

STR 2 (1) 1 LS0/LS1

Store vector reg, unsigned immed,

B/H/S/D-form

STR 1 2 LS0/LS1 -

28 N=floor((num_regs+1)/2).
29 N=(num_regs).
30 Writeback forms of store instructions require an extra micro-operation to update the base address. This update is
typically performed in parallel with, or prior to, the store micro-operation (address update latency is shown between
brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 34 of 64

Store vector reg, unsigned immed, Q-

form

STR 2 1 I0/I1,

LS0/LS1

-

Store vector reg, register offset, basic,

B/H/S/D-form

STR 1 2 LS0/LS1 -

Store vector reg, register offset, basic,

Q-form

STR 2 1 LS0/LS1,

I0/I1

-

Store vector reg, register offset, scale, H-

form

STR 2 1 LS0/LS1,

I0/I1

-

Store vector reg, register offset, scale,

S/D-form

STR 1 2 LS0/LS1 -

Store vector reg, register offset, scale,

Q-form

STR 2 1 LS0/LS1,

I0/I1

-

Store vector reg, register offset, extend,

B/H/S/D-form

STR 1 2 LS0/LS1 -

Store vector reg, register offset, extend,

Q-form

STR 2 1 LS0/LS1 -

Store vector reg, register offset, extend,

scale, H-form

STR 2 1 LS0/LS1 -

Store vector reg, register offset, extend,

scale, S/D-form

STR 1 2 LS0/LS1 -

Store vector reg, register offset, extend,

scale, Q-form

STR 2 1 LS0/LS1,

I0/I1

-

Store vector pair, immed offset, S-form STP 1 2 LS0/LS1 -

Store vector pair, immed offset, D-form STP 2 1 LS0/LS1 -

Store vector pair, immed offset, Q-form STP 2 1/2 LS0/LS1,

I0/I1

-

Store vector pair, immed post- index, S-

form

STP 1 (1) 2 LS0/LS1,

I0/I1

See30

Store vector pair, immed post- index, D-

form

STP 2 (1) 1 LS0/LS1,

I0/I1

Store vector pair, immed post- index, Q-

form

STP 2 (1) 1/2 LS0/LS1,

I0/I1

Store vector pair, immed pre- index, S-

form

STP 1 (1) 2 LS0/LS1,

I0/I1

Store vector pair, immed pre- index, D-

form

STP 2 (1) 1 LS0/LS1,

I0/I1

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 35 of 64

Store vector pair, immed pre- index, Q-

form

STP 2 (1) 1/2 LS0/LS1,

I0/I1

3.14 Advanced SIMD integer instructions

Table 3-24: AArch32 advanced SIMD integer instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD absolute diff, D-form VABD 3 2 F0/F1 -

ASIMD absolute diff, Q-form VABD 3 3/2 F0/F1 -

ASIMD absolute diff accum, D- form VABA 4 (1) 2 F0/F1 See31

ASIMD absolute diff accum, Q- form VABA 4 (1) 3/2 F0/F1

ASIMD absolute diff accum long VABAL 4 (1) 3/2 F0/F1

ASIMD absolute diff long VABDL 3 3/2 F0/F1 -

ASIMD arith, basic, D-form VADD, VNEG, VPADD,

VSUB

3 2 F0/F1 -

ASIMD arith, basic, Q-form VADD, VNEG, VPADD,

VSUB

3 3/2 F0/F1 -

ASIMD arith, basic, long or wide VADDL, VADDW, VSUBL,

VSUBW

3 3/2 F0/F1 -

ASIMD arith, Vector Pairwise Add Long,

D-form

VPADDL 3 2 F0/F1 -

ASIMD arith, Vector Pairwise Add Long,

Q-form

VPADDL 3 3/2 F0/F1 -

ASIMD arith, complex, D-form VABS, VHADD, VHSUB,

VQABS, VQADD, VQNEG,

VQSUB, VRHADD

3 2 F0/F1 -

ASIMD arith, complex, Q-form VABS, VHADD, VHSUB,

VQABS, VQADD, VQNEG,

VQSUB, VRADDHN,

VRHADD, VRSUBHN

3 3/2 F0/F1 -

ASIMD arith, complex, narrow VADDHN, VRADDHN,

VRSUBHN, VSUBHN

3 2 F0/F1 -

31 Other accumulate pipelines also support late forwarding of accumulate operands from similar micro-operations, allowing
a typical sequence of such micro-operations to issue one every cycle (accumulate latency is shown between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 36 of 64

ASIMD compare, D-form VCEQ, VCGE, VCGT,

VCLE, VTST

3 2 F0/F1 -

ASIMD compare, Q-form VCEQ, VCGE, VCGT,

VCLE, VTST

3 3/2 F0/F1 -

ASIMD logical, D-form VAND, VBIC, VMVN,

VORR, VORN, VEOR

3 2 F0/F1 -

ASIMD logical, Q-form VAND, VBIC, VMVN,

VORR, VORN, VEOR

3 3/2 F0/F1 -

ASIMD max/min, D-form VMAX, VMIN, VPMAX,

VPMIN

3 2 F0/F1 -

ASIMD max/min, Q-form VMAX, VMIN, VPMAX,

VPMIN

3 3/2 F0/F1 -

ASIMD multiply, D-form VMUL, VQDMULH,

VQRDMULH

4 1 F0 -

ASIMD multiply, Q-form VMUL, VQDMULH,

VQRDMULH,

5 1/2 F0 -

ASIMD multiply accumulate, D- form VMLA, VMLS 4 (1) 1 F0 See32

ASIMD multiply accumulate, Q- form VMLA, VMLS 5 (2) 1/2 F0

ASIMD multiply accumulate long VMLAL, VMLSL 4 (1) 1 F0

ASIMD multiply accumulate saturating

long

VQDMLAL, VQDMLSL 4 (2) 1 F0

ASIMD multiply long VMULL.S, VMULL.I,

VQDMULL

4 1 F0 -

ASIMD multiply long, polynomial VMULL.P8 3 1 F0 -

ASIMD pairwise add and accumulate VPADAL 4 (1) 1 F1 See31

ASIMD rounding double multiply

accumulate, D-form

VQRDMLAH, VQRDMLSH 4 1 F0 -

ASIMD rounding double multiply

accumulate, Q-form

VQRDMLAH, VQRDMLSH 5 1/2 F0 -

ASIMD shift accumulate VSRA, VRSRA 4 (1) 1 F1 See31

ASIMD shift by immed, basic VMOVL, VSHL, VSHLL,

VSHR, VSHRN

3 1 F1 -

32 Multiply-accumulate pipelines support late forwarding of accumulate operands from similar micro-operations, allowing a
typical sequence of integer multiply-accumulate micro-operations to issue one every cycle or one every other cycle
(accumulate latency is shown between brackets, and might be further limited to throughput according to destination
register size).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 37 of 64

ASIMD shift by immed, complex VQRSHRN, VQRSHRUN,

VQSHL{U}, VQSHRN,

VQSHRUN, VRSHR, VRSHRN

4 1 F1 -

ASIMD shift by immed and insert, basic,

D-form

VSLI, VSRI 3 1 F1 -

ASIMD shift by immed and insert, basic,

Q-form

VSLI, VSRI 4 1/2 F1 -

ASIMD shift by register, basic, D- form VSHL 3 1 F1 -

ASIMD shift by register, basic, Q- form VSHL 4 1/2 F1 -

ASIMD shift by register, complex, D-

form

VQRSHL, VQSHL, VRSHL 4 1 F1 -

ASIMD shift by register, complex, Q-

form

VQRSHL, VQSHL, VRSHL 5 1/2 F1 -

Table 3-25: AArch64 advanced SIMD integer instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD absolute diff, D-form SABD, UABD 3 2 F0/F1 -

ASIMD absolute diff, Q-form SABD, UABD 3 2 F0/F1 -

ASIMD absolute diff accum, D-form SABA, UABA 4 (1) 2 F0/F1 See31

ASIMD absolute diff accum, Q-form SABA, UABA 5 (2) 3/2 F0/F1

ASIMD absolute diff accum long SABAL(2), UABAL(2) 4 (1) 3/2 F0/F1

ASIMD absolute diff long SABDL, UABDL 3 3/2 F0/F1 -

ASIMD arith, basic, D-form ABS, ADD, ADDP, NEG,

SADDLP, SHADD, SHSUB,

SUB, UADDLP, UHADD,

UHSUB

3 2 F0/F1 -

ASIMD arith, basic, Q-form ABS, ADD, ADDP, NEG,

SADDLP, SHADD, SHSUB,

SUB, UADDLP, UHADD,

UHSUB

3 3/2 F0/F1 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 38 of 64

ASIMD arith, basic, long or wide SADDL(2),

SADDW(2),

SSUBL(2),

SSUBW(2),

UADDL(2),

UADDW(2),

USUBL(2),

USUBW(2)

3 2 F0/F1 -

ASIMD arith, complex, D-form SQABS, SQADD, SQNEG,

SQSUB, SRHADD, SUQADD,

UQADD, UQSUB, URHADD,

USQADD

3 2 F0/F1 -

ASIMD arith, complex, Q-form SQABS, SQADD, SQNEG,

SQSUB, SRHADD, SUQADD,

UQADD, UQSUB, URHADD,

USQADD

3 3/2 F0/F1 -

ASIMD arith, complex, narrow ADDHN(2),

RADDHN(2),

RSUBHN(2),

SUBHN(2)

3 2 F0/F1 -

ASIMD arith, reduce, 4H/4S SADDLV, UADDLV 3 1 F1 -

ASIMD arith, reduce, 8B/8H SADDLV, UADDLV 6 1 F1, F0/F1 -

ASIMD arith, reduce, 16B SADDLV, UADDLV 6 1/2 F1 -

ASIMD compare, D-form CMEQ, CMGE, CMGT,

CMHI, CMHS, CMLE,

CMLT, CMTST

3 2 F0/F1 -

ASIMD compare, Q-form CMEQ, CMGE, CMGT,

CMHI, CMHS, CMLE,

CMLT, CMTST

3 3/2 F0/F1 -

ASIMD logical, D-form AND, BIC, EOR, MOV,

MVN, ORN, ORR

3 2 F0/F1 -

ASIMD logical, Q-form AND, BIC, EOR, MOV,

MVN, ORN, ORR

3 3/2 F0/F1 -

ASIMD max/min, basic, D-form SMAX, SMAXP, SMIN,

SMINP, UMAX, UMAXP,

UMIN, UMINP

3 2 F0/F1 -

ASIMD max/min, basic, Q-form SMAX, SMAXP, SMIN,

SMINP, UMAX, UMAXP,

UMIN, UMINP

3 3/2 F0/F1 -

ASIMD max/min, reduce, 4H/4S SMAXV, SMINV, UMAXV,

UMINV

3 1 F1 -

ASIMD max/min, reduce, 8B/8H SMAXV, SMINV, UMAXV,

UMINV

6 1 F1, F0/F1 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 39 of 64

ASIMD max/min, reduce, 16B SMAXV, SMINV, UMAXV,

UMINV

6 1/2 F1 -

ASIMD multiply, D-form MUL, PMUL, SQDMULH,

SQRDMULH

4 1 F0 -

ASIMD multiply, Q-form MUL, PMUL, SQDMULH,

SQRDMULH

5 1/2 F0 -

ASIMD multiply accumulate, D- form MLA, MLS 4 (1) 1 F0 See32

ASIMD multiply accumulate, Q- form MLA, MLS 5 (2) 1/2 F0

ASIMD multiply accumulate long SMLAL(2),

SMLSL(2),

UMLAL(2),

UMLSL(2)

4 (1) 1 F0

ASIMD multiply accumulate saturating

long

SQDMLAL(2),

SQDMLSL(2)

4 (2) 1 F0

ASIMD multiply long SMULL(2),

UMULL(2),

SQDMULL(2)

4 1 F0 -

ASIMD rounding double multiply

accumulate, D-form

SQRDMLAH, SQRDMLSH 4 1 F0 -

ASIMD rounding double multiply

accumulate, Q-form

SQRDMLAH, SQRDMLSH 5 1/2 F0 -

ASIMD polynomial (8x8) multiply long PMULL.8B, PMULL2.16B 3 1 F0 See33

ASIMD pairwise add and accumulate SADALP, UADALP 4 (1) 1 F1 See31

ASIMD shift accumulate SRA, SRSRA, USRA,

URSRA

4 (1) 1 F1

ASIMD shift by immed, basic SHL, SHLL(2),

SHRN(2), SLI,

SRI, SSHLL(2),

SSHR, SXTL(2),

USHLL(2), USHR,

UXTL(2)

3 1 F1 -

ASIMD shift by immed and insert, basic,

D-form

SLI, SRI 3 1 F1 -

ASIMD shift by immed and insert, basic,

Q-form

SLI, SRI 4 1/2 F1 -

ASIMD shift by immed, complex RSHRN(2),

SRSHR,

4 1 F1 -

33 This category includes instructions of the form PMULL Vd.8H, Vn.8B, Vm.8B and PMULL2 Vd.8H, Vn.16B,
Vm.16B.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 40 of 64

SQSHL{U},

SQRSHRN(2),

SQRSHRUN(2),

SQSHRN(2),

SQSHRUN(2),

URSHR,

UQSHL,

UQRSHRN(2),

UQSHRN(2)

ASIMD shift by register, basic, D-form SSHL, USHL 3 1 F1 -

ASIMD shift by register, basic, Q-form SSHL, USHL 4 1/2 F1 -

ASIMD shift by register, complex, D-

form

SRSHL, SQRSHL, SQSHL,

URSHL, UQRSHL, UQSHL

4 1 F1 -

ASIMD shift by register, complex, Q-

form

SRSHL, SQRSHL, SQSHL,

URSHL, UQRSHL, UQSHL

5 1/2 F1 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 41 of 64

3.15 Advanced SIMD floating-point instructions

Table 3-26: AArch32 advanced SIMD floating-point instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD FP absolute value, D- form VABS 2 2 F0/F1 -

ASIMD FP absolute value, Q- form VABS 2 3/2 F0/F1 -

ASIMD FP arith, D-form VABD, VADD, VPADD,

VSUB

3 2 F0/F1 See34

ASIMD FP arith, Q-form VABD, VADD, VSUB 3 1 F0/F1

ASIMD FP compare, D-form VACGE, VACGT, VACLE,

VACLT, VCEQ, VCGE,

VCGT, VCLE

3 2 F0/F1 -

ASIMD FP compare, Q-form VACGE, VACGT, VACLE,

VACLT, VCEQ, VCGE,

VCGT, VCLE

3 1 F0/F1 -

ASIMD FP convert, integer, D- form, 16-

bit elements

VCVT, VCVTA, VCVTM,

VCVTN, VCVTP

4 1/2 F0 -

ASIMD FP convert, integer, D- form, non

16-bit elements

VCVT, VCVTA, VCVTM,

VCVTN, VCVTP

3 1 F0 -

ASIMD FP convert, integer, Q- form, 16-

bit elements

VCVT, VCVTA, VCVTM,

VCVTN, VCVTP

6 1/4 F0 -

ASIMD FP convert, integer, Q- form, 32-

bit elements

VCVT, VCVTA, VCVTM,

VCVTN, VCVTP

4 1/2 F0 -

ASIMD FP convert, integer, Q- form, 64-

bit elements

VCVT, VCVTA, VCVTM,

VCVTN, VCVTP

3 1 F0 -

ASIMD FP convert, fixed, D- form, 16-bit

elements

VCVT 4 1/2 F0 -

ASIMD FP convert, fixed, D- form, non-

16-bit elements

VCVT 3 1 F0 -

ASIMD FP convert, fixed, Q- form, 16-bit

elements

VCVT 6 1/4 F0 -

34 FP add and multiply pipelines uses 2.5 cycles to calculate the results, which allows 0-cycle forward. Execution latency can
reach 3 only with 0-cycle forward. Similarly, all other instructions using these pipelines would have a corresponding
execution latency increase without 0-cycle forward.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 42 of 64

ASIMD FP convert, fixed, Q- form, 32-bit

elements

VCVT 4 1/2 F0 -

ASIMD FP convert, fixed, Q- form, 64-bit

elements

VCVT 3 1 F0 -

ASIMD FP convert, between single-

precision and half- precision

VCVT 7 1/2 F0, F0/F1 -

ASIMD FP max/min, D-form VMAX, VMIN, VPMAX,

VPMIN, VMAXNM, VMINNM

3 2 F0/F1 See34

ASIMD FP max/min, Q-form VMAX, VMIN, VMAXNM,

VMINNM

3 1 F0/F1

ASIMD FP multiply, D-form VMUL 3 2 F0/F1 See34 and
35

ASIMD FP multiply, Q-form VMUL 3 1 F0/F1

ASIMD FP non-fused multiply

accumulate, D-form

VMLA, VMLS 6 (3) 2 F0/F1 See34 and
36

ASIMD FP fused multiply accumulate, D-

form

VFMA, VFMS 5 (3) 2 F0/F1

ASIMD FP non-fused multiply

accumulate, Q-form

VMLA, VMLS 6 (3) 1 F0/F1

ASIMD FP fused multiply accumulate, Q-

form

VFMA, VFMS 5 (3) 1 F0/F1

ASIMD FP negate, D-form VNEG 2 2 F0/F1 -

ASIMD FP negate, Q-form VNEG 2 3/2 -

ASIMD FP round to integral, D- form,

16-bit elements

VRINTA, VRINTM,

VRINTN, VRINTP,

VRINTX, VRINTZ

4 1/2 F0 -

ASIMD FP round to integral, D- form,

32-bit elements

VRINTA, VRINTM,

VRINTN, VRINTP,

VRINTX, VRINTZ

3 1 F0 -

ASIMD FP round to integral, Q- form,

16-bit elements

VRINTA, VRINTM,

VRINTN, VRINTP,

VRINTX, VRINTZ

6 1/4 F0 -

35 ASIMD multiply-accumulate pipelines support late forwarding of the result from ASIMD FP multiply micro-operations to
the accumulate operands of an ASIMD FP multiply-accumulate micro-operation. The latter can be issued one cycle after the
ASIMD FP multiply micro-operation is issued.
36 ASIMD multiply-accumulate pipelines support late forwarding of accumulate operands from similar micro-operations,
allowing a typical sequence of floating-point multiply-accumulate micro-operations to issue one every N cycles (accumulate
latency N is shown between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 43 of 64

ASIMD FP round to integral, Q- form,

32-bit elements

VRINTA, VRINTM,

VRINTN, VRINTP,

VRINTX, VRINTZ

4 1/2 F0 -

Table 3-27: AArch64 advanced SIMD floating-point instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD FP absolute value, D- form FABS 2 2 F0/F1 -

ASIMD FP absolute value, Q- form FABS 2 3/2 F0/F1 -

ASIMD FP arith, normal, D-form FABD, FADD, FSUB 3 2 F0/F1 See34

ASIMD FP arith, normal, Q-form FABD, FADD, FSUB 3 1 F0/F1

ASIMD FP arith, pairwise, D- form FADDP 3 2 F0/F1

ASIMD FP arith, pairwise, Q- form FADDP 5 1 F0/F1

ASIMD FP compare, D-form FACGE, FACGT, FCMEQ,

FCMGE, FCMGT, FCMLE,

FCMLT

3 2 F0/F1 -

ASIMD FP compare, Q-form FACGE, FACGT, FCMEQ,

FCMGE, FCMGT, FCMLE,

FCMLT

3 1 F0/F1 -

ASIMD FP convert, long (F16 to F32) FCVTL(2) 7 1/2 F0, F0/F1 -

ASIMD FP convert, long (F32 to F64) FCVTL(2) 3 1 F0 -

ASIMD FP convert, narrow (F32 to F16) FCVTN(2), FCVTXN(2) 7 1/2 F0, F0/F1 -

ASIMD FP convert, narrow (F64 to F32) FCVTN(2), FCVTXN(2) 3 1 F0 -

ASIMD FP convert, other, D- form F32

and Q-form F64

FCVTAS, VCVTAU,

FCVTMS, FCVTMU,

FCVTNS, FCVTNU,

FCVTPS, FCVTPU,

FCVTZS, FCVTZU, SCVTF,

UCVTF

3 1 F0 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 44 of 64

ASIMD FP convert, other, Q- form F32

and D-form F16

FCVTAS, VCVTAU,

FCVTMS, FCVTMU,

FCVTNS, FCVTNU,

FCVTPS, FCVTPU,

FCVTZS, FCVTZU, SCVTF,

UCVTF

4 1/2 F0 -

ASIMD FP convert, other, Q- form F16 FCVTAS, VCVTAU,

FCVTMS, FCVTMU,

FCVTNS, FCVTNU,

FCVTPS, FCVTPU,

FCVTZS, FCVTZU, SCVTF,

UCVTF

6 1/4 F0 -

ASIMD FP divide, D-form, F16 FDIV 12-16 1/16-1/12 F1 See37

and 38 ASIMD FP divide, Q-form, F16 FDIV 24-32 1/32-1/24 F1

ASIMD FP divide, D-form, F32 FDIV 6-10 1/10-1/6 F1

ASIMD FP divide, Q-form, F32 FDIV 12-20 1/20-1/12 F1

ASIMD FP divide, Q-form, F64 FDIV 6-15 1/15-1/6 F1

ASIMD FP max/min, normal, D- form FMAX, FMAXNM, FMIN,

FMINNM

3 2 F0/F1 -

ASIMD FP max/min, normal, Q- form FMAX, FMAXNM, FMIN,

FMINNM

3 3/2 F0/F1 -

ASIMD FP max/min, pairwise, D-form FMAXP, FMAXNMP, FMINP,

FMINNMP

3 2 F0/F1 -

ASIMD FP max/min, pairwise, Q-form FMAXP, FMAXNMP, FMINP,

FMINNMP

5 1 F0/F1 -

ASIMD FP max/min, reduce, D- form,

F16

FMAXV, FMAXNMV, FMINV,

FMINNMV

6 2/3 F0/F1 -

ASIMD FP max/min, reduce, Q- form,

F16

FMAXV, FMAXNMV, FMINV,

FMINNMV

9 1 F0/F1 -

ASIMD FP max/min, reduce, Q- form,

F32

FMAXV, FMAXNMV, FMINV,

FMINNMV

6 2/3 F0/F1 -

ASIMD FP multiply, D-form FMUL, FMULX 3 2 F0/F1 See34 and
35

ASIMD FP multiply, Q-form FMUL, FMULX 3 1 F0/F1

37 ASIMD divide operations are performed using an iterative algorithm and block subsequent similar operations to the same
pipeline until complete.
38 FP divide and square root operations are performed using an iterative algorithm and block subsequent similar operations
to the same pipeline until complete. Minimum execution latency and maximum execution throughput are achieved by
power-of-two early termination. In a normal case, minimum execution latency is 6 for H-form, 8 for S-form, and 13 for D-
form. It would also be possible to execute 2 H-form, 2 S-form, or only 1 D-form in parallel.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 45 of 64

ASIMD FP multiply accumulate, D-form FMLA, FMLS 5 (3) 2 F0/F1 See34 and

36 ASIMD FP multiply accumulate, Q-form FMLA, FMLS 5(3) 1 F0/F1

ASIMD FP negate, D-form FNEG 2 2 F0/F1 -

ASIMD FP negate, Q-form FNEG 2 3/2 F0/F1 -

ASIMD FP round, D-form F32 and Q-

form F64

FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX, FRINTZ

3 1 F0 -

ASIMD FP round, Q-form F32 and D-

form F16

FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX, FRINTZ

4 1/2 F0 -

ASIMD FP round, Q-form F16 FRINTA, FRINTI,

FRINTM, FRINTN,

FRINTP, FRINTX, FRINTZ

6 1/4 F0 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 46 of 64

3.16 Advanced SIMD miscellaneous instructions

Table 3-28: AArch32 advanced SIMD miscellaneous instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD bitwise insert, D-form VBIF, VBIT, VBSL 3 2 F0/F1 -

ASIMD bitwise insert, Q-form VBIF, VBIT, VBSL 3 3/2 F0/F1 -

ASIMD count, D-form VCLS, VCLZ, VCNT 3 2 F0/F1 -

ASIMD count, Q-form VCLS, VCLZ, VCNT 3 3/2 F0/F1 -

ASIMD duplicate, core reg VDUP 7 1 LS0,

F0/F1

-

ASIMD duplicate, scalar, D-form VDUP 2 2 F0/F1 See39

ASIMD duplicate, scalar, Q-form VDUP 2 3/2 F0/F1

ASIMD extract, D-form VEXT 2 2 F0/F1

ASIMD extract, Q-form VEXT 2 3/2 F0/F1

ASIMD move, immed, D-form VMOV 2 2 F0/F1

ASIMD move, immed, Q-form VMOV 2 3/2 F0/F1

ASIMD move, register, D-form VMOV 2 2 F0/F1

ASIMD move, register, Q-form VMOV 2 3/2 F0/F1

ASIMD move, narrowing VMOVN 2 2 F0/F1 -

ASIMD move, saturating VQMOVN, VQMOVUN 4 1 F1 -

ASIMD reciprocal estimate, D- form, 16-

bit elements

VRECPE, VRSQRTE 4 1/2 F0 -

ASIMD reciprocal estimate, D- form, 32-

bit elements

VRECPE, VRSQRTE 3 1 F0 -

ASIMD reciprocal estimate, Q- form, 16-

bits elements

VRECPE, VRSQRTE 6 1/4 F0 -

39 FP add and multiply pipelines uses 2.5 cycles to calculate the results, which allows 0-cycle forward. These instructions are
treated as multiply-accumulate which uses the FP add and multiply pipelines. Similarly, some permutation instructions can
be 0-cycle forward to all permutation modules. Without 0-cycle forward, they would have one more cycle in execution
latency.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 47 of 64

ASIMD reciprocal estimate, Q- form, 32-

bits elements

VRECPE, VRSQRTE 4 1/2 F0 -

ASIMD reciprocal step, D-form VRECPS, VRSQRTS 6 2 F0/F1 See39

ASIMD reciprocal step, Q-form VRECPS, VRSQRTS 6 1 F0/F1

ASIMD reverse, D-form VREV16, VREV32,

VREV64

2 2 F0/F1

ASIMD reverse, Q-form VREV16, VREV32,

VREV64

2 3/2 F0/F1

ASIMD swap, D-form VSWP 2 2 F0/F1

ASIMD swap, Q-form VSWP 2 1 F0/F1

ASIMD table lookup, 1 reg VTBL, VTBX 3 2 F0/F1 -

ASIMD table lookup, 2 reg VTBL, VTBX 3 2 F0/F1 -

ASIMD table lookup, 3 reg VTBL, VTBX 6 2 F0/F1 -

ASIMD table lookup, 4 reg VTBL, VTBX 6 2 F0/F1 -

ASIMD transfer, scalar to core reg, word VMOV 4 1 F0 -

ASIMD transfer, scalar to core reg,

byte/hword

VMOV 4 1 F0 -

ASIMD transfer, core reg to scalar VMOV 7 1 LS0,

F0/F1
-

ASIMD transpose, D-form VTRN 2 2 F0/F1 See39

ASIMD transpose, Q-form VTRN 2 1 F0/F1

ASIMD unzip/zip, D-form VUZP, VZIP 2 2 F0/F1

ASIMD unzip/zip, Q-form VUZP, VZIP 6 2/3 F0/F1

Table 3-29: AArch64 advanced SIMD miscellaneous instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD bit reverse, D-form RBIT 2 2 F0/F1 See39

ASIMD bit reverse, Q-form RBIT 2 3/2 F0/F1

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 48 of 64

ASIMD bitwise insert, D-form BIF, BIT, BSL 3 2 F0/F1 -

ASIMD bitwise insert, Q-form BIF, BIT, BSL 3 1 F0/F1 -

ASIMD count, D-form CLS, CLZ, CNT 3 2 F0/F1 -

ASIMD count, Q-form CLS, CLZ, CNT 3 1 F0/F1 -

ASIMD duplicate, gen reg DUP 8 1 L, F0/F1 -

ASIMD duplicate, element, D- form DUP 2 2 F0/F1 See39

ASIMD duplicate, element, Q- form DUP 2 3/2 F0/F1

ASIMD extract, D-form EXT 2 2 F0/F1

ASIMD extract, Q-form EXT 2 3/2 F0/F1

ASIMD extract narrow XTN 3 2 F0/F1 -

ASIMD extract narrow, saturating SQXTN(2),

SQXTUN(2),

UQXTN(2)

4 1 F1 -

ASIMD insert, element to element INS 2 2 F0/F1 See39

ASIMD move, integer immed, D- form MOVI 2 2 F0/F1

ASIMD move, integer immed, Q- form MOVI 2 3/2 F0/F1

ASIMD move, FP immed, D-form FMOV 2 2 F0/F1

ASIMD move, FP immed, Q-form FMOV 2 3/2 F0/F1

ASIMD reciprocal estimate, D- form, 16-

bit elements

FRECPE,

FRECPX,

FRSQRTE

4 1/2 F0 -

ASIMD reciprocal estimate, D- form, 32-

bit elements

FRECPE,

FRECPX,

FRSQRTE,

URECPE,

URSQRTE

3 1 F0 -

ASIMD reciprocal estimate, Q- form, 16-

bit elements

FRECPE,

FRECPX,

FRSQRTE

6 1/4 F0 -

ASIMD reciprocal estimate, Q- form, 32-

bit elements

FRECPE,

FRECPX,

FRSQRTE,

URECPE,

URSQRTE

4 1/2 F0 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 49 of 64

ASIMD reciprocal estimate, Q- form, 64-

bit elements

FRECPE,

FRECPX,

FRSQRTE

3 1 F0 -

ASIMD reciprocal step, D-form FRECPS,

FRSQRTS

5 2 F0/F1 See39

ASIMD reciprocal step, Q-form FRECPS,

FRSQRTS

5 1 F0/F1

ASIMD reverse, D-form REV16, REV32, REV64 2 2 F0/F1

ASIMD reverse, Q-form REV16, REV32, REV64 2 3/2 F0/F1

ASIMD table lookup, D-form TBL, TBX 3xN F0/F1 See40

ASIMD table lookup, Q-form TBL, TBX 3xN + 3 F0/F1 See40

ASIMD transfer, element to gen reg, word

or dword

UMOV 4 1 F0 -

ASIMD transfer, element to gen reg,

others

SMOV, UMOV 4 1 F0 -

ASIMD transfer, gen reg to element INS 7 1 LS0,

F0/F1

-

ASIMD transpose, D-form TRN1, TRN2 2 2 F0/F1 See39

ASIMD unzip/zip, D-form UZP1, UZP2, ZIP1,

ZIP2

2 2 F0/F1

40 For table branches (TBL and TBX), N shows the number of registers in the table.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 50 of 64

3.17 Advanced SIMD load instructions

Advanced SIMD has a load to use four-cycle latency. The latency numbers shown indicate the worst-
case load-use latency from the load data to a dependent instruction. The latencies shown assume the
memory access hits in the L1 data cache.

Table 3-30: AArch32 advanced SIMD load instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD load, 1 element, multiple, 1 reg VLD1 5 2 LS0/LS1 -

ASIMD load, 1 element, multiple, 2 reg VLD1 6 1 LS0/LS1 -

ASIMD load, 1 element, multiple, 3 reg VLD1 6 2/3 LS0/LS1 -

ASIMD load, 1 element, multiple, 4 reg VLD1 6 1/2 LS0/LS1 -

ASIMD load, 1 element, one lane VLD1 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 1 element, all lanes VLD1 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, multiple, 2 reg VLD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, multiple, 4 reg VLD2 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, one lane, size 32 VLD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, one lane, size 8/16 VLD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, all lanes VLD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, multiple, 3 reg VLD3 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, one lane, size 32 VLD3 8 1 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, one lane, size 8/16 VLD3 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, all lanes VLD3 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, multiple, 4 reg VLD4 9 1 LS0/LS1,

F0/F1

-

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 51 of 64

ASIMD load, 4 element, one lane, size 32 VLD4 8 1 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, one lane, size 8/16 VLD4 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, all lanes VLD4 8 1 LS0/LS1,

F0/F1

-

(ASIMD load, writeback form) - (1) Same as before +I0/I1 See41

Table 3-31: AArch64 advanced SIMD load instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD load, 1 element, multiple, 1 reg, D-

form

LD1 5 2 LS0/LS1 -

ASIMD load, 1 element, multiple, 1 reg, Q-

form

LD1 6 1 LS0/LS1 -

ASIMD load, 1 element, multiple, 2 reg, D-

form

LD1 6 1 LS0/LS1 -

ASIMD load, 1 element, multiple, 2 reg, Q-

form

LD1 6 1 LS0/LS1 -

ASIMD load, 1 element, multiple, 3 reg, D-

form

LD1 7 2/3 LS0/LS1 -

ASIMD load, 1 element, multiple, 3 reg, Q-

form

LD1 7 1/3 LS0/LS1 -

ASIMD load, 1 element, multiple, 4 reg, D-

form

LD1 6 1/2 LS0/LS1 -

ASIMD load, 1 element, multiple, 4 reg, Q-

form

LD1 8 1/4 LS0/LS1 -

ASIMD load, 1 element, one lane, B/H/S LD1 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 1 element, one lane, D LD1 5 2 LS0/LS1 -

ASIMD load, 1 element, all lanes, D-form,

B/H/S

LD1R 8 2 LS0/LS1,

F0/F1

-

41 Writeback forms of load instructions require an extra micro-operation to update the base address. This update is typically
performed in parallel with the load micro-operation (update latency is shown between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 52 of 64

ASIMD load, 1 element, all lanes, D-form,

D

LD1R 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 1 element, all lanes, Q-form LD1R 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, multiple, D-form,

B/H/S

LD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, multiple, Q-form,

B/H/S

LD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, multiple, Q-form,

D

LD2 8 2 LS0/LS1 -

ASIMD load, 2 element, one lane, B/H LD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, one lane, S LD2 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, one lane, D LD2 6 1 LS0/LS1 -

ASIMD load, 2 element, all lanes, D-form,

B/H/S

LD2R 8 2 LS0/LS1,

F0/F1

-

ASIMD load, 2 element, all lanes, D-form,

D

LD2R 5 2 LS0/LS1 -

ASIMD load, 2 element, all lanes, Q-form LD2R 9 2 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, multiple, D-form,

B/H/S

LD3 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, multiple, Q-form,

B/H/S

LD3 10 2/3 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, multiple, Q-form,

D

LD3 6 2/3 LS0/LS1 -

ASIMD load, 3 element, one lane, B/H LD3 9 2/3 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, one lane, S LD3 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, one lane, D LD3 6 2/3 LS0/LS1 -

ASIMD load, 3 element, all lanes, D-form,

B/H/S

LD3R 9 2/3 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, all lanes, D-form,

D

LD3R 6 2/3 LS0/LS1 -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 53 of 64

ASIMD load, 3 element, all lanes, Q-form,

B/H/S

LD3R 10 1/2 LS0/LS1,

F0/F1

-

ASIMD load, 3 element, all lanes, Q-form,

D

LD3R 9 2/3 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, multiple, D-form,

B/H/S

LD4 10 1/2 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, multiple, Q-form,

B/H/S

LD4 12 1/4 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, multiple, Q-form,

D

LD4 9 1/2 LS0/LS1 -

ASIMD load, 4 element, one lane, B/H LD4 9 1/2 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, one lane, S LD4 9 1 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, one lane, D LD4 7 1/2 LS0/LS1 -

ASIMD load, 4 element, all lanes, D-form,

B/H/S

LD4R 9 1/2 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, all lanes, D-form,

D

LD4R 7 1/2 LS0/LS1 -

ASIMD load, 4 element, all lanes, Q-form,

B/H/S

LD4R 9 1/2 LS0/LS1,

F0/F1

-

ASIMD load, 4 element, all lanes, Q-form,

D

LD4R 8 1/2 LS0/LS1,

F0/F1

-

(ASIMD load, writeback form) - (1) Same as before +I0/I1 See41

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 54 of 64

3.18 Advanced SIMD store instructions

Stores micro-operations can issue after their address operands are available and do not need to wait
for data operands. After they are executed, stores are buffered and committed in the background.

Table 3-32: AArch32 advanced SIMD store instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD store, 1 element, multiple, 1 reg VST1 1 2 LS01,FD -

ASIMD store, 1 element, multiple, 2 reg VST1 2 1 LS01,FD -

ASIMD store, 1 element, multiple, 3 reg VST1 3 2/3 LS01,FD -

ASIMD store, 1 element, multiple, 4 reg VST1 4 1/2 LS01,FD -

ASIMD store, 1 element, one lane VST1 3 2 F0/F1, LS0/1,FD -

ASIMD store, 2 element, multiple, 2 reg VST2 3 1 F0/F1, LS0/1,FD -

ASIMD store, 2 element, multiple, 4 reg VST2 4 1/2 F0/F1, LS0/1,FD -

ASIMD store, 2 element, one lane VST2 3 1 F0/F1, LS0/1,FD -

ASIMD store, 3 element, multiple, 3 reg VST3 3 2/3 F0/F1, LS0/1,FD -

ASIMD store, 3 element, one lane, size 32 VST3 3 1 F0/F1, LS0/1,FD -

ASIMD store, 3 element, one lane, size

8/16

VST3 3 2 F0/F1, LS0/1,FD -

ASIMD store, 4 element, multiple, 4 reg VST4 4 1/2 F0/F1, LS0/1,FD -

ASIMD store, 4 element, one lane, size 32 VST4 3 1 F0/F1, LS0/1,FD -

ASIMD store, 4 element, one lane, size

8/16

VST4 3 2 F0/F1, LS0/1,FD -

(ASIMD store, writeback form) - - +1 +I0/I1 See42

42 Writeback forms of store instructions require an extra micro-operation to update the base address. This update is
typically performed in parallel with the store micro-operation (update latency is shown between brackets).

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 55 of 64

Table 3-33: AArch64 advanced SIMD store instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

ASIMD store, 1 element, multiple, 1 reg,

D-form

ST1 1 2 LS0/LS1/D -

ASIMD store, 1 element, multiple, 1 reg,

Q-form

ST1 2 1 LS0/LS1/D -

ASIMD store, 1 element, multiple, 2 reg,

D-form

ST1 2 1 LS0/LS1/D -

ASIMD store, 1 element, multiple, 2 reg,

Q-form

ST1 4 1/2 LS0/LS1/D -

ASIMD store, 1 element, multiple, 3 reg,

D-form

ST1 3 2/3 LS0/LS1/D -

ASIMD store, 1 element, multiple, 3 reg,

Q-form

ST1 6 1/3 LS0/LS1/D -

ASIMD store, 1 element, multiple, 4 reg,

D-form

ST1 4 1/2 LS0/LS1/D -

ASIMD store, 1 element, multiple, 4 reg,

Q-form

ST1 8 1/4 LS0/LS1/D -

ASIMD store, 1 element, one lane, B/H/S ST1 3 2 F0/F1, LS0/1,FD -

ASIMD store, 1 element, one lane, D ST1 1 2 LS0/LS1/D -

ASIMD store, 2 element, multiple, D-form,

B/H/S

ST2 3 1 F0/F1, LS0/1,FD -

ASIMD store, 2 element, multiple, Q-form,

B/H/S

ST2 4 1/2 F0/F1, LS0/1,FD -

ASIMD store, 2 element, multiple, Q-form,

D

ST2 1 1 LS0/LS1/D -

ASIMD store, 2 element, one lane, B/H/S ST2 3 2 F0/F1, LS0/1,FD -

ASIMD store, 2 element, one lane, D ST2 2 1 LS0/LS1/D -

ASIMD store, 3 element, multiple, D-form,

B/H/S

ST3 3 2/3 F0/F1, LS0/1,FD -

ASIMD store, 3 element, multiple, Q-form,

B/H/S

ST3 6 1/3 F0/F1, LS0/1,FD -

ASIMD store, 3 element, multiple, Q-form,

D

ST3 6 1/3 LS0/LS1/D -

ASIMD store, 3 element, one lane, B/H ST3 3 2 F0/F1, LS0/1,FD -

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 56 of 64

ASIMD store, 3 element, one lane, S ST3 3 1 F0/F1, LS0/1,FD -

ASIMD store, 3 element, one lane, D ST3 3 2/3 LS0/LS1/D -

ASIMD store, 4 element, multiple, D-form,

B/H/S

ST4 4 1/2 F0/F1, LS0/1,FD -

ASIMD store, 4 element, multiple, Q-form,

B/H/S

ST4 8 1/4 F0/F1, LS0/1,FD -

ASIMD store, 4 element, multiple, Q-form,

D

ST4 8 1/4 LS0/LS1/D -

ASIMD store, 4 element, one lane, B/H ST4 3 2 F0/F1, LS0/1,FD -

ASIMD store, 4 element, one lane, S ST4 3 1 F0/F1, LS0/1,FD -

ASIMD store, 4 element, one lane, D ST4 4 1/2 LS0/LS1/D -

(ASIMD store, writeback form) - (1) Same as before +I0/I1 See42

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 57 of 64

3.19 Cryptographic Extension

Table 3-34: AArch32 Cryptographic Extension instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

Crypto AES ops AESD, AESE, AESIMC,

AESMC

2 1 F0 See43, 44,

and 45

Crypto polynomial (64x64) multiply long VMULL.P64 2 1 F0 See44 and
45

Crypto SHA1 xor ops SHA1SU0 6 3/2 F0/F1 -

Crypto SHA1 fast ops SHA1H, SHA1SU1 2 1 F0 See44 and
45

 Crypto SHA1 slow ops SHA1C, SHA1M, SHA1P 4 1/2 F0

Crypto SHA256 fast ops SHA256SU0 2 1 F0

Crypto SHA256 slow ops SHA256H,

SHA256H2,

SHA256SU1

4 1/2 F0

Table 3-35: AArch64 Cryptographic Extension instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

Crypto AES ops AESD, AESE, AESIMC,

AESMC

2 1 F0 See43, 44,

and 45

Crypto polynomial (64x64) multiply long PMULL(2) 2 1 F0 See44 and
45

Crypto SHA1 xor ops SHA1SU0 6 3/2 F0/F1 -

Crypto SHA1 schedule acceleration ops SHA1H, SHA1SU1 2 1 F0 See44 and
45

Crypto SHA1 hash acceleration ops SHA1C, SHA1M, SHA1P 4 1/2 F0

43 Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs exhibit the described
performance characteristics. See AES encryption and decryption for more information.
44 Cryptographic execution supports late forwarding of the result from a producer micro-operation to a consumer micro-
operation. This results in a reduction of one cycle in latency, as seen by the consumer.
45 Some cryptographic instructions use two or four cycles to calculate their results, which allows 0-cycle forward. Without 0-
cycle forward, they would have one more cycle in execution latency.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 58 of 64

Crypto SHA256 schedule acceleration op

(1 µop)

SHA256SU0 2 1 F0

Crypto SHA256 schedule acceleration op

(2 µops)

SHA256SU1 4 1/2 F0

Crypto SHA256 hash acceleration ops SHA256H,

SHA256H2

4 1/2 F0

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 59 of 64

3.20 CRC

Table 3-36: AArch32 CRC instructions

Instruction group AArch32 instructions Execution latency Execution
throughput

Used pipelines Notes

CRC checksum ops CRC32, CRC32C 2 1 I0 See46

Table 3-37: AArch64 CRC instructions

Instruction group AArch64 instructions Execution latency Execution
throughput

Used pipelines Notes

CRC checksum ops CRC32, CRC32C 2 1 I0 See46

46 CRC execution supports late forwarding of the result from a producer CRC micro-operation to a consumer CRC micro-
operation. This results in a reduction of one cycle in latency, as seen by the consumer.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 60 of 64

4 Special considerations

4.1 Dispatch constraints

Dispatch of micro-operations from the in-order portion to the out-of-order portion of the micro-
architecture includes some constraints. It is important to consider these constraints during code
generation to maximize the effective dispatch bandwidth and subsequent execution bandwidth of the
Cortex-A75 core.

The dispatch stage can process up to eight micro-operations per cycle, with the following limitations
on the number of micro- operations of each type that might be simultaneously dispatched:

• Up to two micro-operations using the I0 pipelines.

• Up to two micro-operations using the I1 pipelines.

• Up to three micro-operations using the LS pipelines.

• Up to three micro-operations using the F0/F1 pipelines.

• Up to three micro-operations using the Branch pipeline.

If there are more micro-operations available to be dispatched in a given cycle than the constraints
above can support, then the micro-operations are dispatched in oldest-to-youngest age order, to the
extent allowed by the constraints above.

4.2 Conditional ASIMD

Conditional execution is architecturally possible for some ASIMD instructions in Thumb state using
IT blocks. However, this type of encoding is considered abnormal and is not recommended for the
Cortex-A75 core. It is likely to perform worse than the equivalent unconditional encodings.

4.3 Optimizing memory copy

The Cortex-A75 core features two load/store pipelines able to execute two micro-operations per
cycle of either type. To achieve maximum throughput for memory copy (or similar loops), you must:

• Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.

• Use discrete, non-writeback forms of load and store instructions (such as LDP and STP),

interleaving them so that two load operations and one store operation might be performed each
cycle.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 61 of 64

The following example shows a recommended instruction sequence for a long memory copy in
AArch64 state:
Loop_start:

 SUBS X2,X2,#192

 LDP Q3,Q4,[x1,#0]

 LDP Q5,Q6,[x1,#32]

 LDP Q7,Q8,[x1,#64]

 STP Q3,Q4,[x0,#0]

 STP Q5,Q6,[x0,#32]

 STP Q7,Q8,[x0,#64]

 LDP Q3,Q4,[x1,#96]

 LDP Q5,Q6,[x1,#128]

 LDP Q7,Q8,[x1,#160]

 STP Q3,Q4,[x0,#96]

 STP Q5,Q6,[x0,#128]

 STP Q7,Q8,[x0,#160]

 ADD X1,X1,#192

 ADD X0,X0,#192

 BGT Loop_start

A recommended copy routine for AArch32 would look like the sequence above but would use
LDRD/STRD instructions. Avoid load- multiple/store-multiple instruction encodings (such as LDM and

STM).

4.4 Load/store alignment

The Armv8.2-A architecture allows many types of load and store accesses to be arbitrarily aligned. On
the Cortex-A75 core, the following cases reduce bandwidth or incur additional latency:

• Load operations that cross a 64-bit boundary.

• In AArch64, all stores that cross a 128-bit boundary.

• In AArch32, all stores that cross a 64-bit boundary.

4.5 AES encryption and decryption

The Cortex-A75 core can issue one AESE, AESMC, AESD, or AESIMC instruction every cycle (fully

pipelined) with an execution latency of two cycles. This means encryption or decryption for at least
two data chunks should be interleaved for maximum performance:
AESE data0, key0

AESMC data0, data0

AESE data1, key0

AESMC data1, data1

AESE data0, key0

AESMC data0, data0

AESE data1, key1

AESMC data1, data1

...

Pairs of dependent AESE/AESMC or AESD/AESIMC instructions provide higher performance when

they are adjacent and in the described order in the program code.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 62 of 64

4.6 Branch instruction alignment

Branch instruction and branch target instruction alignment and density can affect performance. For
best-case performance, consider the following guidelines:

• Avoid placing more than three branch instructions within an aligned 16-byte instruction memory
region.

• When possible, a branch and its target should be located within the same 4MB-aligned memory
region.

• Consider aligning subroutine entry points and branch targets to 16-byte boundaries, within the
bounds of the code-density requirements of the program. This ensures that the subsequent fetch
can maximize bandwidth following the taken branch by bringing in all useful instructions.

• For loops which comprise 16 or fewer instruction bytes, it is preferred that the loop is located
entirely within a single aligned 16-byte instruction memory region.

4.7 Region-based fast forwarding

Forwarding logic in the F0/F1 pipelines is such that it allows optimal latency for the most frequent
instruction pairs. These optimized forwarding regions are defined as follows:

• From all FADD, FMUL, and FMLA 32-bit instructions to all FADD, FMUL, and FMLA 32-bit

instructions.

• From all FADD, FMUL, and FMLA 64-bit instructions to all FADD, FMUL, and FMLA 64-bit

instructions.

• From PERM instructions to all FADD, FMUL, or FMLA 32-bit or 64-bit instructions.

• From all CRYPT to all CRYPT instructions (AES, polynomial (64x64) multiply long, and SHA).

• From all PERM and CRYPT instructions to all PERM, iALU, and iSHF instructions.

4.8 FPCR self-synchronization

Programmers and compiler writers should note that writes to the FPCR register are self-

synchronizing. This implies that writes to the FPCR register do not need a context synchronizing

operation to have a visible effect on subsequent instructions.

4.9 Special register access

The Cortex-A75 core performs register renaming for general purpose registers to enable speculative
and out-of-order instruction execution. However, most special-purpose registers are not renamed.
Instructions that read or write non-renamed registers are subject to one or more of the following
additional execution constraints:

• Non-speculative execution

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 63 of 64

• Instructions might only execute non-speculatively.

• In-order execution

• Instructions must execute in-order with respect to other similar instructions or in some cases all
instructions.

• Flush side-effects

• Instructions trigger a flush side-effect after executing for synchronization.

The following table shows various special-purpose register read accesses and the associated
execution constraints or side-effects.

Table 4-1: Special-purpose register read accesses

Register read Non-speculative In-order Flush side-effect Notes

APSR Yes Yes No See47

CurrentEL No Yes No -

DAIF No Yes No -

DLR_EL0 No Yes No -

DSPSR_EL0 No Yes No -

ELR_* No Yes No -

FPCR No Yes No -

FPSCR Yes Yes No See48

FPSR Yes Yes No

NZCV No No No See49

SP_* No No No

SPSel No Yes No -

SPSR_* No Yes No -

The following table shows various special-purpose register write accesses and the associated
execution constraints or side-effects.

47 APSR reads must wait for all prior instructions that might set the Q bit to execute and retire.
48 FPSR and FPSCR reads must wait for all prior instructions that might update the status flags to execute and retire.
49 The NZCV and SP registers are fully renamed.

Arm® Cortex®-A75 Core Software Optimization Guide 109757

Issue 3.0

Copyright © 2018, 2024 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 64 of 64

Table 4-2: Special-purpose register write accesses

Register write Non-speculative In-order Flush side-effect Notes

APSR Yes Yes No See50

DAIF Yes Yes No -

DLR_EL0 Yes Yes No -

DSPSR_EL0 Yes Yes No -

ELR_* Yes Yes No -

FPCR Yes Yes Maybe See51

FPSCR

Yes

Yes Maybe See51 and 52

FPSR Yes Yes No See52

NZCV No No No See49

SP_* No No No

SPSel Yes Yes Yes -

SPSR_* Yes Yes No -

4.10 IT blocks

The Armv8-A architecture performance deprecates some uses of the IT instruction in such a way that
software might be written using multiple naïve single instruction IT blocks. Instead, it is preferred that
software generates multi-instruction IT blocks.

50 APSR writes that set the Q bit introduce a barrier which prevents subsequent instructions from executing until the write

completes.
51 If the FPCR or FPSCR write is predicted to change the control field values, then it introduces a barrier which prevents

subsequent instructions from executing. If the FPCR or FPSCR write is not predicted to change the control field values, then

it executes without a barrier but triggers a flush if the values change.
52 If another FPSR or FPSCR write is still pending, then FPSR and FPSCR writes must stall at dispatch.

	1 Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Scope
	1.4 Conventions
	1.4.1 Glossary
	1.4.2 Terms and abbreviations
	1.4.3 Typographical conventions

	1.5 Useful resources
	1.6 Feedback
	1.6.1 Feedback on this product
	1.6.2 Feedback on content

	2 Pipeline
	2.1 Overview

	3 Instruction characteristics
	3.1 Instruction tables
	3.2 Branch instructions
	3.3 Arithmetic and logical instructions
	3.4 Move and shift instructions
	3.5 Saturating and parallel arithmetic instructions
	3.6 Divide and multiply instructions
	3.7 Miscellaneous data-processing instructions
	3.8 Load instructions
	3.9 Store instructions
	3.10 Floating-point data processing instructions
	3.11 Floating-point miscellaneous instructions
	3.12 Floating-point load instructions
	3.13 Floating-point store instructions
	3.14 Advanced SIMD integer instructions
	3.15 Advanced SIMD floating-point instructions
	3.16 Advanced SIMD miscellaneous instructions
	3.17 Advanced SIMD load instructions
	3.18 Advanced SIMD store instructions
	3.19 Cryptographic Extension
	3.20 CRC

	4 Special considerations
	4.1 Dispatch constraints
	4.2 Conditional ASIMD
	4.3 Optimizing memory copy
	4.4 Load/store alignment
	4.5 AES encryption and decryption
	4.6 Branch instruction alignment
	4.7 Region-based fast forwarding
	4.8 FPCR self-synchronization
	4.9 Special register access
	4.10 IT blocks

