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Arm Mali-T760 GPU performance counters

1. Arm® Mali™-T760 GPU performance
counters

This guide explains the GPU performance counters presented in the Arm® Streamline profiling
template for the Mali™-T760 GPU, which is part of the Midgard architecture family.

The counter template in Streamline follows a step-by-step analysis workflow. Analysis starts with
high-level workload triage that allows you to classify the type of problem that needs investigating.
Measurements of CPU usage, GPU usage, and memory bandwidth allow you to select the correct
type of detailed analysis to perform next. For issues related to GPU throughput, the template then
proceeds with a detailed analysis of the application rendering workload. A set of data views are
presented that systematically show how efficiently the available hardware resources are being used
by your application.

For each counter in the template, this guide documents the meaning of the counter and provides
the Streamline variable name or expression associated with it.

The Streamline template only shows a subset of the available performance counters.
However, it covers the most common types of GPU performance analysis.

1.1 Counter handling
Arm GPU hardware emits unique counters per shader core and per cache slice. The data presented
in Streamline, and the expression equations defined in this document, use the summed value of all
of the counter instances.

This behavior changed in Streamline 8.7. In earlier releases, Streamline showed
the averaged value for shader core counters and the summed value for cache slice
counters.

1.2 Guide content
This guide contains the following sections:

• CPU performance: analyze the overall usage of the CPU by observing the activity on the CPU
clusters and cores in the system.

• GPU activity: analyze the overall usage of the GPU by observing the activity on the GPU work
queues, and the workload split between non-fragment and fragment processing
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Non-Confidential

Page 8 of 33



Arm® Mali™-T760 Performance Counters Reference Guide Document ID: 108063_0103_en
1.3
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• Content behavior: analyze content efficiency by observing the number of vertices being
processed, the number of primitives being culled, and the number of pixels being processed.

• Shader core data path: analyze the shader core workload scheduling, and data path throughput.

• Shader core functional units: analyze the overall usage of the shader core. Observe the
effectiveness of fragment depth and stencil testing, the number of threads spawned for
shading, and the relative loading of the programmable core processing pipelines.

• Shader core texture unit: analyze performance of the texture filtering unit, and how the unit
is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as texture-bound in the shader core functional units
section.

• Shader core load/store unit: analyze performance of the load/store unit, and how the unit
is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as load-store-bound in the shader core functional units
section.

• GPU configuration: these utility counters expose the GPU configuration of the platform,
allowing Streamline to create expressions based on the specific configuration of the connected
device.

Copyright © 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 33



Arm® Mali™-T760 Performance Counters Reference Guide Document ID: 108063_0103_en
1.3

CPU performance

2. CPU performance
High CPU load or poor scheduling of workloads can cause many graphics performance issues. The
first part of the analysis template looks at the CPU workloads, allowing you to identify regions
where CPU performance impacts the overall application performance.

The default view for the CPU charts shows the activity of each cluster of CPUs. To see individual
CPUs, expand the chart group to show the cores present inside each cluster.

2.1 CPU activity
CPU activity charts show the usage of each processor cluster, displaying the percentage of each
time slice that the CPUs in the cluster were running. This percentage allows you to assess how
busy the CPUs were. Note that this metric is only a time-based measure and does not factor in the
CPU frequency that was used.

For CPU-bound applications, it is common for a single thread to run all the time and become the
bottleneck for overall application performance. The process and thread activity panel, found below
the counter charts, shows when each application thread was running. To filter the CPU activity and
CPU counter charts by specific processes or threads, select one or more threads in this view.

For scheduling-bound applications, it is common for both CPU and GPU to go idle due to poor
synchronization. The CPU goes idle when it is waiting for the GPU to complete work. The GPU
goes idle when waiting for the CPU to submit new work. To identify scheduling-bound applications
in this view, look for activity that is oscillating between the impacted CPU thread and the GPU
work queues.

$CPUActivityUser.Cluster[0..N]

2.2 CPU cycles
The CPU cycle charts show the activity of each processor cluster, presented as the number of
processor clock cycles used. Combining this data with the CPU activity information can indicate the
CPU operating frequency.

$CyclesCPUCycles.Cluster[0..N]
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3. GPU activity
The workloads running on this GPU are coordinated by the Job Manager, the hardware unit that
is responsible for scheduling workloads onto the GPU. The Job Manager exposes two FIFO work
queues to the graphics driver. One queue is used for non-fragment workloads, which include
compute shading and vertex shading, and one queue is used for fragment workloads.

These two queues run asynchronously to the CPU and can run in parallel to each other, provided
that sufficient non-dependent work is available to run. Keeping the CPU and GPU processing in
parallel, and the two queues processing in parallel, is an important goal when optimizing content for
Arm GPUs.

The following diagram shows the processing pipeline data paths through the GPU for different
kinds of workload. It also shows the performance counters available for each data path or major
block in the hierarchy.

Figure 3-1: Midgard GPU top-level
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The “active” counters show that a data path or hardware unit processed some workload, but do not
necessarily indicate that it was fully utilized. For example, the Fragment queue active cycles counter
increments every cycle that there is any fragment workload queued to run anywhere in the GPU.

Some counters are common to multiple data paths. For example, both non-fragment and fragment
shader programs run on the same unified shader core. If these different workload types are
overlapping in the same counter sample, then shader core counter data includes contributions from
both.
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The following swim lane diagram shows how the top-level GPU counters increment for overlapping
render passes.

Figure 3-2: Midgard GPU top-level timeline
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This diagram shows two render passes per frame, shown in different shades of blue. Each render
pass consists of a single piece of non-fragment work that must be run before its fragment shading
can start. An interrupt is raised back to the CPU at the end of each piece of work on each queue.
The GPU active cycles counter increments whenever any queue contains work.

3.1 GPU usage
GPU usage counters monitor the overall load on the GPU by measuring the workload submitted to
the Job Manager queues. These counters can indicate the dominant workload type submitted by
the application, which is a good target for optimization. They can also indicate the effectiveness of
workload scheduling at keeping the hardware queues running in parallel.

3.1.1 GPU active cycles

This counter increments every clock cycle when the GPU has any pending workload present in one
of its processing queues. It shows the overall GPU processing load requested by the application.

This counter increments when any workload is present in any processing queue, even if the GPU
is stalled waiting for external memory. These cycles are counted as active time even though no
progress is being made.

$MaliGPUCyclesGPUActive
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3.1.2 Non-fragment queue active cycles

This counter increments every clock cycle when the GPU has any workload present in the non-
fragment queue. This queue is used for vertex shaders, tessellation shaders, geometry shaders,
fixed-function tiling, and compute shaders. This counter can not disambiguate between these
workloads.

In content achieving good parallelism, which is important for overall efficiency of rendering, the
highest queue active cycle counter must be similar to the GPU active counter.

This counter increments when any workload is present in the non-fragment processing queue, even
if the GPU is stalled waiting for external memory. These cycles are counted as active time even
though no progress is being made.

$MaliGPUCyclesNonFragmentQueueActive

3.1.3 Fragment queue active cycles

This counter increments every clock cycle when the GPU has any workload present in the fragment
queue.

In content achieving good parallelism, which is important for overall efficiency of rendering, the
highest queue active cycle counter must be similar to the GPU active counter.

This counter increments when any workload is present in the fragment queue, even if the GPU
is stalled waiting for external memory. These cycles are counted as active time even though no
progress is being made.

$MaliGPUCyclesFragmentQueueActive

3.1.4 Tiler active cycles

This counter increments every cycle the tiler has a workload in its processing queue. The tiler is
responsible for coordinating geometry processing and providing the fixed-function tiling needed for
the Mali tile-based rendering pipeline. It can run in parallel to vertex shading and fragment shading.

A high cycle count here does not necessarily imply a bottleneck, unless the Non-fragment active
cycles counter in the shader core is comparatively low.

$MaliGPUCyclesTilerActive
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3.1.5 GPU interrupt pending cycles

This counter increments every cycle when the GPU has an interrupt pending and is waiting for the
CPU to process it.

Cycles with a pending interrupt do not necessarily indicate lost performance because the GPU
can process other queued work in parallel. However, if GPU interrupt pending cycles are a high
percentage of GPU active cycles, an underlying problem might be preventing the CPU from
efficiently handling interrupts. This problem is normally a system integration issue, which an
application developer cannot work around.

$MaliGPUCyclesGPUInterruptActive

3.2 GPU utilization
The GPU utilization counters provide an alternative view of the data path activity cycles,
normalizing the queue usage against the total GPU active cycle count. These metrics provide a
clearer view of breakdown by workload type, and the effectiveness of queue scheduling.

For GPU-bound content that is achieving good parallelism, one of the queues is close to 100%
utilization, with the other running in parallel to it. Prioritize the most heavily loaded queue for
content optimization, as it is the critical path workload.

If the GPU is always busy, but the queues are running serially for all or part of the frame,
application API usage might prevent parallel processing. Serial processing reduces the achievable
performance. The following actions can cause serial processing:

• The application blocking and waiting for GPU activity to complete, for example, by waiting on a
query object result which is not yet available. Waiting on an unavailable query object result can
cause one or more of the hardware queues to drain and run out of work to process.

• The application using conservative Vulkan pipeline barriers. For example, submitting using a
STAGE_TOP_OF_PIPE destination when a STAGE_FRAGMENT_SHADER destination would have been
sufficient.

• The application submitting rendering workloads that have data dependencies across the queues
which prevent parallel processing. For example, if only dependent work is available, a fragment-
compute-fragment data flow might mean no processing occurs in the fragment queue while the
compute shader is running.

Mobile systems improve energy efficiency by using Dynamic Voltage and Frequency Scaling (DVFS)
to reduce voltage and clock frequency for light workloads. When seeing a workload with high
percentage utilization, check the GPU active cycles counter to confirm the frequency. A highly
utilized GPU might look like a problem, but it can be caused by a light workload running at a low
clock frequency.
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3.2.1 Non-fragment queue utilization

This expression defines the non-fragment queue utilization compared against the GPU active
cycles. For GPU bound content, it is expected that the GPU queues process work in parallel. The
dominant queue must be close to 100% utilized. If no queue is dominant, but the GPU is close to
100% utilized, then there might be a serialization or dependency problem preventing better overlap
across the queues.

max(min(($MaliGPUCyclesNonFragmentQueueActive / $MaliGPUCyclesGPUActive) * 100,
 100), 0)

3.2.2 Fragment queue utilization

This expression defines the fragment queue utilization compared against the GPU active cycles.
For GPU bound content, the GPU queues are expected to process work in parallel. Aim to keep
the dominant queue close to 100% utilized. If no queue is dominant, but the GPU is close to
100% utilized, then there might be a serialization or dependency problem preventing better queue
overlap.

max(min(($MaliGPUCyclesFragmentQueueActive / $MaliGPUCyclesGPUActive) * 100, 100),
 0)

3.2.3 Tiler utilization

This expression defines the tiler utilization compared to the total GPU active cycles.

Note that this metric measures the overall processing time for the tiler geometry pipeline. The
metric includes aspects of vertex shading, in addition to the fixed-function tiling process.

max(min(($MaliGPUCyclesTilerActive / $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.3 External memory bandwidth
The external memory bandwidth counters show the total memory bandwidth between the
GPU and the downstream memory system. Accessing external DRAM is one of the most
energy-intensive operations that the GPU can perform, so reducing memory bandwidth is a key
optimization goal.

These performance counters measure the memory accesses that are external to the GPU. If there
are layers of system cache between the GPU and external DRAM, these accesses might not be
external to the system-on-a-chip.
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Figure 3-3: Midgard GPU memory system
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Memory accesses to external DRAM are very power intensive. A good guideline is that external
DRAM access costs between 80mW and 100mW per GB/s of bandwidth used. Assuming a typical
650mW power budget for DRAM access, an application can only sustainably use a total of 100MB
per frame at 60FPS. Optimizations that help to minimize GPU memory bandwidth are a high
priority for mobile application development.

3.3.1 Output external read bytes

This expression defines the total output read bandwidth for the GPU.

$MaliExternalBusBeatsReadBeats * ($MaliConstantsBusWidthBits / 8)

3.3.2 Output external write bytes

This expression defines the total output write bandwidth for the GPU.

$MaliExternalBusBeatsWriteBeats * ($MaliConstantsBusWidthBits / 8)
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3.4 External memory stalls
The external memory stall rate counters measure the back-pressure seen by the GPU when it is
attempting to make external memory accesses.

A high stall rate is indicative of content which is requesting more data than the downstream
memory system can provide. To optimize the workload, try to reduce memory bandwidth.

3.4.1 Output external read stall percentage

This expression defines the percentage of GPU cycles with a memory stall on an external read
transaction.

Stall rates can be reduced by reducing the size of data resources, such as buffers or textures.

max(min(($MaliExternalBusStallCyclesReadStall / $MaliConstantsL2SliceCount /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.4.2 Output external write stall percentage

This expression defines the percentage of GPU cycles with a memory stall on an external write
transaction.

Stall rates can be reduced by reducing geometry complexity, or the size of framebuffers in memory.

max(min(($MaliExternalBusStallCyclesWriteStall / $MaliConstantsL2SliceCount /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)
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4. Content behavior
Optimal rendering performance requires both efficient content, and efficient handling of that
content by the GPU. The content behavior metrics help you to supply the GPU with efficiently
structured content.

Slow rendering performance has three common causes:

• Content which is efficiently written, but doing too much processing given the capabilities of the
target device.

• Content which is inefficiently written, with redundancy in the workload submitted for
rendering.

• Content or API usage which triggers high workload, or causes idle bubbles, due to GPU-specific
or driver-specific behaviors.

This section of the Streamline template aims to focus on the first two of these causes. It looks at
the size and efficiency of the submitted workload.

4.1 Geometry usage
The vertex stream is the first application input processed by the GPU rendering pipeline. These
counters monitor the amount of geometry being processed, and how much is discarded due to
culling.

High complexity geometry is one of the most expensive inputs to the GPU, because vertices are
much larger than compressed texels, typically each needing approximately 32 bytes of input data
each. Optimizing geometry to minimize mesh complexity and reduce redundant processing is a key
optimization goal for mobile graphics.

4.1.1 Total input primitives

This expression defines the total number of input primitives to the rendering process.

High complexity geometry is one of the most expensive inputs to the GPU, because vertices are
much larger than compressed texels. Optimize your geometry to minimize mesh complexity, using
dynamic level-of-detail and normal maps to reduce the number of primitives required.

$MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives
 + $MaliPrimitiveCullingZPlaneTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives
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4.1.2 Culled primitives

This expression defines the number of primitives that were culled during the rendering process, for
any reason.

For efficient 3D content, it is expected that only 50% of primitives are visible because back-face
culling is used to remove half of each model.

$MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives +
 $MaliPrimitiveCullingZPlaneTestCulledPrimitives

4.1.3 Visible primitives

This counter increments for every visible primitive that survives all culling stages.

All fragments of the primitive might be occluded by other primitives closer to the camera, and so
produce no visible output.

$MaliPrimitiveCullingVisiblePrimitives

4.2 Geometry culling
The GPU must compute positions of primitives before they can enter the culling stages. Culled
geometry can have a significant processing and bandwidth cost, even though it contributes no
useful visual output. These counters help to identify the reasons why primitives are culled, allowing
you to target optimizations at the area causing problems.

The culling pipeline for this GPU runs in the order shown in the following diagram. The counters for
this pipeline show the percentage of the primitives entering a stage that the stage culls. Because
these percentages are relative to the per-stage input, not the total geometry input, they do not add
up to 100%.

Figure 4-1: Midgard GPU culling pipeline
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4.2.1 Visible primitive percentage

This expression defines the percentage of primitives that are visible after culling.

For efficient 3D content, it is expected that only 50% of primitives are visible because back-face
culling is used to remove half of each model.

• A significantly higher visibility rate indicates that the facing test might not be enabled.

• A significantly lower visibility rate indicates that geometry is being culled for other reasons,
which is often possible to optimize. Use the individual culling counters for a more detailed
breakdown.

max(min(($MaliPrimitiveCullingVisiblePrimitives /
 ($MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives
 + $MaliPrimitiveCullingZPlaneTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)

4.2.2 Facing or XY plane test cull percentage

This expression defines the percentage of primitives entering the facing and XY plane test that are
culled by it. Primitives that are outside of the view frustum in the XY axis, or that are back-facing
inside the frustum, are culled by this stage.

For efficient 3D content, it is expected that 50% of primitives are culled by the facing test. If more
than 50% of primitives are culled it might be because they are out-of-frustum, which can often be
optimized with better software culling or batching granularity.

max(min(($MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives /
 ($MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives
 + $MaliPrimitiveCullingZPlaneTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)

4.2.3 Z plane test cull percentage

This expression defines the percentage of primitives entering the Z plane culling test that are culled
by it. Primitives that are closer than the frustum near clip plane, or further away than the frustum
far clip plane, are culled by this stage.

Seeing a significant proportion of triangles culled at this stage can be indicative of insufficient
application software culling.

max(min(($MaliPrimitiveCullingZPlaneTestCulledPrimitives /
 (($MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives
 + $MaliPrimitiveCullingZPlaneTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives) -
 $MaliPrimitiveCullingFacingOrXYPlaneTestCulledPrimitives)) * 100, 100), 0)
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4.3 Fragment overview
Fragment overview counters look at the requested pixel processing workload. These counters can
show the total number of output pixels shaded, the average number of cycles spent per pixel, and
the average overdraw factor.

It is a useful exercise to set a cycle budget for an application, measured in terms of cycles per pixel.
Compute the maximum cycle budget using this equation:

  shaderCyclesPerSecond = MaliCoreCount MaliFrequency
  pixelsPerSecond = Screen_Resolution * Target_FPS
  // Maximum cycle budget assuming perfect scheduling
  maxBudget = shaderCyclesPerSecond / pixelsPerSecond
  // Real-world cycle budget assuming 85% utilization
  realBudget = 0.85 * maxBudget

Setting a cycle budget helps manage expectations of what is possible. For example, consider a
mass-market device with a 3 core GPU running at 500MHz. At 1080p60 this device has a cycle
budget of just 10 cycles per pixel. This budget must cover all processing costs, including vertex
shading and fragment shading. If you want to achieve the best graphics fidelity, you must ensure
you spend each cycle wisely.

4.3.1 Pixels

This expression defines the total number of pixels that are shaded by the GPU, including on-screen
and off-screen render passes.

This measure can be a slight overestimate because it assumes all pixels in each active 16x16 pixel
region are shaded. If the rendered region does not align with 16 pixel aligned boundaries, then this
metric includes pixels that are not actually shaded.

$MaliGPUTasksFragmentTasks * 256

4.3.2 Average cycles per pixel

This expression defines the average number of GPU cycles being spent per pixel rendered. This
includes the cost of all shader stages.

It is a useful exercise to set a cycle budget for each render pass in your application, based on your
target resolution and frame rate. Rendering 1080p60 is possible with an entry-level device, but you
have a small number of cycles per pixel to work so must use them efficiently.

$MaliGPUCyclesGPUActive / ($MaliGPUTasksFragmentTasks * 256)
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4.3.3 Fragments per pixel

This expression computes the number of fragments shaded per output pixel.

GPU processing cost per pixel accumulates with the layer count. High overdraw can build up to a
significant processing cost, especially when rendering to a high-resolution framebuffer. Minimize
overdraw by rendering opaque objects front-to-back and minimizing use of blended transparent
layers.

$MaliShaderThreadsFragmentThreads / ($MaliGPUTasksFragmentTasks * 256)

4.4 Fragment depth and stencil testing
It is important that as many fragments as possible are early ZS (depth and stencil) tested before
shading. Removing redundant work at this stage is more efficient than testing and killing fragments
later using late ZS. These counters monitor the number of early and late test and kill operations
performed.

To maximize the efficiency of early ZS testing, Arm recommends drawing opaque objects starting
with the objects closest to camera and then working further away. Render transparent objects from
back-to-front after you have finished drawing the opaque objects.

4.4.1 Early ZS tested quad percentage

This expression defines the percentage of rasterized quads that were subjected to early depth and
stencil testing.

To achieve the best early test rates, enable depth testing, and avoid draw calls with modifiable
coverage or draw calls with fragment shader programs that write to their depth value.

max(min(($MaliFragmentZSQuadsEarlyZSTestedQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

4.4.2 Early ZS killed quad percentage

This expression defines the percentage of rasterized quads that are killed by early depth and stencil
testing.

Quads killed at this stage are killed before shading, so a high percentage here is not generally a
performance problem. However, it can indicate an opportunity to use software culling techniques
such a portal culling to avoid sending occluded geometry to the GPU.

max(min(($MaliFragmentZSQuadsEarlyZSKilledQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)
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4.4.3 Late ZS tested thread percentage

This expression defines the percentage of rasterized threads that are tested by late depth and
stencil testing.

A high percentage of fragments performing a late ZS update can cause slow performance, even if
fragments are not killed. This occurs because younger fragments cannot complete early ZS until all
older fragments at the same coordinate have completed their late ZS operations.

Shaders with mutable coverage, mutable depth, or side-effects on shared resources in memory, use
late ZS testing.

The driver also generates late ZS updates to preload a depth or stencil attachment at the start of a
render pass. This is needed if the render pass does not start from a cleared depth value.

max(min(($MaliShaderThreadsLateZSTestedThreads /
 ($MaliFragmentQuadsRasterizedFineQuads * 4)) * 100, 100), 0)

4.4.4 Late ZS killed thread percentage

This expression defines the percentage of rasterized threads that are killed by late depth and stencil
testing. Threads killed by late ZS testing run at least some of their fragment program before being
killed. A significant number of threads being killed at late ZS testing indicates a potential overhead.
Aim to minimize the number of threads using and being killed by late ZS testing.

Shaders with mutable coverage, mutable depth, or side-effects on shared resources in memory, use
late ZS testing.

The driver also generates late ZS updates to preload a depth or stencil attachment at the start of
a render pass. This is needed if the render pass does not start from a cleared depth value. These
fragments show as a late ZS kill, as no shader is needed after the depth or stencil value has been
set.

max(min(($MaliShaderThreadsLateZSKilledThreads /
 ($MaliFragmentQuadsRasterizedFineQuads * 4)) * 100, 100), 0)
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5. Shader core data path
Each shader core has two parallel data paths for issuing threads to the core, one for non-fragment
workloads and one for fragment workloads. These counters track the thread issue for each path,
and their relative scheduling.

Figure 5-1: Midgard GPU shader core
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5.1 Shader core workload
The thread counters count the number of shader threads issued for the two workload types.
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5.1.1 Non-fragment threads

This expression defines the number of non-fragment threads started.

$MaliShaderThreadsNonFragmentThreads

5.1.2 Fragment threads

This expression defines the number of fragment threads started.

$MaliShaderThreadsFragmentThreads

5.2 Shader core throughput
The throughput metrics show the average number of cycles it takes to get a single thread shaded
by the shader core. These metrics show average throughput, not average computational cost,
including the impact of processing latency, memory latency, and any resource sharing inside the
shader core.

5.2.1 Average cycles per non-fragment thread

This expression defines the average number of shader core cycles per non-fragment thread.

This measurement captures the overall shader core throughput, not the shader processing cost. It
will be impacted by cycles lost to stalls that could not be hidden by other processing. In addition, it
will be impacted by any fragment workloads that are running concurrently in the shader core.

$MaliShaderCoreCyclesNonFragmentActive / $MaliShaderThreadsNonFragmentThreads

5.2.2 Average cycles per fragment thread

This expression defines the average number of shader core cycles per fragment thread.

This measurement captures the overall shader core throughput, not the shader processing cost. It
will be impacted by cycles lost to stalls that could not be hidden by other processing. In addition, it
will be impacted by any fragment workloads that are running concurrently in the shader core.

$MaliShaderCoreCyclesFragmentActive / $MaliShaderThreadsFragmentThreads
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5.3 Shader core data path utilization
The data path utilization counters show the total activity level of the major data paths in the shader
core. Identifying the dominant workload type helps to target optimizations. Identifying lack of
parallelism can confirm that there are scheduling problems.

5.3.1 Non-fragment utilization

This expression defines the percentage utilization of the shader core non-fragment path. This
counter measures any cycle that a non-fragment workload is active in the fixed-function front-end
or programmable core.

max(min(($MaliShaderCoreCyclesNonFragmentActive / $MaliConstantsShaderCoreCount /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)

5.3.2 Fragment utilization

This expression defines the percentage utilization of the shader core fragment path. This counter
measures any cycle that a fragment workload is active in the fixed-function front-end, fixed-
function back-end, or programmable core.

max(min(($MaliShaderCoreCyclesFragmentActive / $MaliConstantsShaderCoreCount /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)

5.3.3 Fragment FPK buffer utilization

This expression defines the percentage of cycles where the Forward Pixel Kill (FPK) quad
buffer contains at least one fragment quad. This buffer is located after early ZS but before the
programmable core.

During fragment shading this counter must be close to 100%. This indicates that the fragment
front-end is able to keep up with the shader core shading performance. This counter commonly
drops below 100% for three reasons:

• The running workload has many empty tiles with no geometry to render. Empty tiles are
common in shadow maps, corresponding to a screen region with no shadow casters, so this
might not be avoidable.

• The application consists of simple shaders but a high percentage of microtriangles. This
combination causes the shader core to shade fragments faster than they are rasterized, so the
quad buffer drains.
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• The application consists of geometry which stalls at early ZS because of a dependency on an
earlier fragment layer which is still in flight. Stalled layers prevent new fragments entering the
quad buffer, so the quad buffer drains.

max(min(($MaliShaderCoreCyclesFragmentFPKBufferActive /
 $MaliShaderCoreCyclesFragmentActive) * 100, 100), 0)

5.3.4 Execution core utilization

This expression defines the percentage utilization of the programmable core, measuring cycles
where the shader core contains at least one warp. A low utilization here indicates lost performance,
because there are spare shader core cycles that are unused.

In some use cases an idle core is unavoidable. For example, a clear color tile that contains no
shaded geometry, or a shadow map that is resolved entirely using early ZS depth updates.

Improve programmable core utilization by parallel processing of the non-fragment and fragment
queues, running overlapping workloads from multiple render passes. Also aim to keep the FPK
buffer utilization as high as possible, ensuring constant forward-pressure on fragment shading.

max(min(($MaliShaderCoreCyclesExecutionCoreActive / $MaliConstantsShaderCoreCount /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)
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6. Shader core functional units
A shader core consists of multiple parallel processing units. Performance counters can track
utilization and workload characteristics for all the major processing units, allowing developers to
find both bottlenecks and content inefficiencies to optimize.

For shader-bound content, the functional unit with the highest loading is likely to be the
bottleneck. To improve performance, you can reduce the number of operations of that type in
the shader. Alternatively, reduce the precision of the operations to use 8 and 16-bit types so that
multiple operations are performed in parallel.

For thermally bound content, reducing the critical path load gives the biggest gain as allows use of
a lower operating frequency. However, reducing load on any functional unit helps improve energy
efficiency.

Figure 6-1: Midgard GPU shader core
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6.1 Functional unit utilization
Functional unit utilization counters provide normalized views of the functional unit activity inside
the shader core. The functional units run in parallel. To improve performance, target the most
heavily utilized functional unit for optimization. Although it might not help performance, reducing
the load of any unit improves energy efficiency.
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6.1.1 Arithmetic unit utilization

This expression defines the percentage utilization of the arithmetic unit in the programmable core.

The most effective technique for reducing arithmetic load is reducing the complexity of your shader
programs. Using narrower 8 and 16-bit data types can also help, as it allows multiple operations to
be processed in parallel.

max(min(($MaliALUInstructionsExecutedInstructions /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.1.2 Texture unit utilization

This expression defines the percentage utilization of the texturing unit.

The most effective technique for reducing texturing unit load is reducing the number of texture
samples read by your shaders. Using 32bpp color formats, and the ASTC decode mode extensions
to select a 32bpp intermediate precision, can reduce cache access cost. Using simpler texture filters
can reduce filtering cost. Using a 16bit per component sampler result can reduce data return cost.

max(min(($MaliTextureUnitCyclesFilteringActive /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.1.3 Load/store unit utilization

This expression defines the percentage utilization of the load/store unit. The load/store unit is used
for general-purpose memory accesses, including vertex attribute access, buffer access, work group
shared memory access, and stack access. This unit also implements imageLoad/Store and atomic
access functionality.

For traditional graphics content the most significant contributor to load/store usage is vertex data.
Arm recommends simplifying mesh complexity, using fewer triangles, fewer vertices, and fewer
bytes per vertex.

Shaders that spill to stack are also expensive, as any spilling is multiplied by the large number of
parallel threads that are running. You can use the Mali Offline Compiler to check your shaders for
spilling.

max(min(($MaliLoadStoreUnitCyclesLoadStoreUnitIssue /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)
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6.2 Shader workload properties
Shader workload property counters track multiple properties of the running workload that can
impact efficiency. These counters are used to identify sources of inefficiency that are not related to
the shader program code.

6.2.1 Helper thread percentage

This expression defines the percentage of fragment threads that are helper threads with no
coverage. A high percentage can indicate that the content has a high density of small triangles,
which are expensive to process. To avoid this, use mesh level-of-detail algorithms to select simpler
meshes as objects move further from the camera.

max(min(($MaliShaderThreadsFragmentThreads /
 $MaliShaderThreadsFragmentHelperThreads) * 100, 100), 0)

6.2.2 Unchanged tile kill percentage

This expression defines the percentage of tiles that are killed by the transaction elimination CRC
check because the content of a tile matches the content already stored in memory.

A high percentage of tile writes being killed indicates that a significant part of the framebuffer is
static from frame to frame. Consider using scissor rectangles to reduce the area that is redrawn.
To help manage the partial frame updates for window surfaces consider using the EGL extensions
such as:

• EGL_KHR_partial_update

• EGL_EXT_swap_buffers_with_damage

max(min(($MaliShaderCoreTilesKilledUnchangedTiles / $MaliShaderCoreTilesTiles) *
 100, 100), 0)
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7. Shader core texture unit
The texture unit counters show use of all texture sampling and filtering in shaders. If the
shader core utilization counters show that this unit is a bottleneck, these counters can indicate
optimization opportunities.

7.1 Texture unit usage
These counters show the usage of the texturing unit, and the average number of cycles per
instruction. For Midgard GPUs the maximum performance, using bilinear filtered samples, is 1 cycle
per sample.

7.1.1 Texture filtering cycles

This counter increments for every texture filtering issue cycle. This GPU can do 1x 2D bilinear
texture samples per clock. More complex filtering operations are composed of multiple 2D bilinear
samples, and take proportionally more filtering time to complete. The costs per sample are:

• 2D bilinear filtering takes one cycle.

• 2D trilinear filtering takes two cycles.

• 3D bilinear filtering takes two cycles.

• 3D trilinear filtering takes four cycles.

• Sampling from multi-plane YUV takes one cycle per plane.

$MaliTextureUnitCyclesFilteringActive

7.1.2 Texture filtering cycles per instruction

This expression defines the average number of texture filtering cycles per instruction. For texture-
limited content that has a CPI higher than the optimal throughout of this core (1 samples per
cycle), consider using simpler texture filters. See Texture unit issue cycles for details of the expected
performance for different types of operation.

$MaliTextureUnitCyclesFilteringActive / $MaliTextureUnitRequestsTextureRequests
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8. Shader core load/store unit
The load/store unit counters show the use of the general-purpose L1 data cache. This unit is used
for all shader data accesses except for texturing, and end-of-tile framebuffer write-back.

8.1 Load/store unit usage
The unit usage counters show the content behavior in the load/store unit. These counters show
the number of reads and writes being made.

8.1.1 Load/store unit issue cycles

This expression defines the total number of load/store cache access cycles. This counter ignores
secondary effects such as cache misses, so provides the minimum possible cycle usage.

$MaliLoadStoreUnitCyclesLoadStoreUnitIssue

8.1.2 Load/store unit read issues

This expression defines the total number of load/store read cycles.

$MaliLoadStoreUnitCyclesRead

8.1.3 Load/store unit write issues

This counter defines the total number of load/store write cycles.

$MaliLoadStoreUnitCyclesWrite
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9. GPU configuration
The GPU configuration counters show the hardware product configuration in the target device. For
example, showing the number of shader cores present in the design.

9.1 GPU configuration counters
The configuration counters are virtual counters that you can use to scale performance results
and create alternative data visualizations. For example, multiplying the per shader core workload
counter series by $MaliConstantsShaderCoreCount would give a GPU-wide total.

9.1.1 Shader core count

This configuration constant defines the number of shader cores in the design.

$MaliConstantsShaderCoreCount

9.1.2 L2 cache slice count

This configuration constant defines the number of L2 cache slices in the design.

$MaliConstantsL2SliceCount

9.1.3 External bus beat size

This configuration constant defines the number of bytes transferred per external bus beat.

($MaliConstantsBusWidthBits / 8)
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