
Arm® Mali™-G615 Performance Counters
1.6

Reference Guide

Non-Confidential
Copyright © 2022–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue
107775_0106_en

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Arm® Mali™-G615 Performance Counters
Reference Guide

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.6 13 June 2024 Non-Confidential Updated counter guide

1.5 18 April 2024 Non-Confidential Updated counter guide

1.4 30 November 2023 Non-Confidential Updated counter guide

1.3 10 August 2023 Non-Confidential Updated counter guide

1.2 15 June 2023 Non-Confidential Updated counter guide

1.1 23 February 2023 Non-Confidential Updated counter guide

1.0 27 October 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. conjunction with any Arm technology described in this document, and to minimize
risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 57

https://www.arm.com/company/policies/trademarks

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

Inclusive language commitment
We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 57

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Contents

Contents

1. Arm Mali-G615 GPU performance counters...10
1.1 Counter handling.. 10
1.2 Guide content..10

2. CPU performance...12
2.1 CPU activity... 12
2.2 CPU cycles... 12

3. GPU activity...13
3.1 GPU usage... 14
3.1.1 GPU active cycles... 15
3.1.2 MCU active cycles..15
3.1.3 Vertex queue active cycles...15
3.1.4 Fragment queue active cycles... 15
3.1.5 Compute queue active cycles..15
3.1.6 GPU interrupt pending cycles..16
3.2 GPU utilization.. 16
3.2.1 Microcontroller utilization... 17
3.2.2 Vertex queue utilization...17
3.2.3 Fragment queue utilization... 17
3.2.4 Compute queue utilization... 17
3.3 External memory bandwidth..18
3.3.1 Output external read bytes.. 19
3.3.2 Output external write bytes...19
3.4 External memory stalls..19
3.4.1 Output external read stall percentage... 19
3.4.2 Output external write stall percentage..19
3.5 External memory read latency.. 20
3.5.1 Output external read latency 0-127 cycles..20
3.5.2 Output external read latency 128-191 cycles...20
3.5.3 Output external read latency 192-255 cycles...20
3.5.4 Output external read latency 256-319 cycles...20
3.5.5 Output external read latency 320-383 cycles...21

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Contents

3.5.6 Output external read latency 384+ cycles... 21

4. Content behavior..22
4.1 Geometry usage..22
4.1.1 Total input primitives..22
4.1.2 Culled primitives..23
4.1.3 Visible primitives... 23
4.2 Geometry culling.. 23
4.2.1 Visible primitive percentage... 24
4.2.2 Facing plane test cull percentage..24
4.2.3 Frustum test cull percentage..24
4.2.4 Sample test cull percentage... 25
4.3 Vertex shading...25
4.3.1 Position shader thread invocations...26
4.3.2 Varying shader thread invocations..26
4.4 Vertex shading efficiency..26
4.4.1 Position threads per input primitive... 26
4.4.2 Varying threads per input primitive.. 26
4.5 Fragment overview...27
4.5.1 Pixels...27
4.5.2 Average cycles per pixel..28
4.5.3 Fragments per pixel..28
4.6 Fragment depth and stencil testing... 28
4.6.1 Early ZS tested quad percentage..28
4.6.2 Early ZS updated quad percentage.. 29
4.6.3 Early ZS killed quad percentage..29
4.6.4 FPK killed quad percentage..29
4.6.5 Late ZS tested quad percentage...29
4.6.6 Late ZS killed quad percentage... 30
4.7 Fragment shader invocation rate..30
4.7.1 Fragment shading rate... 30

5. Shader core data path...31
5.1 Shader core workload..31
5.1.1 Non-fragment warps.. 32
5.1.2 Fragment warps...32
5.2 Shader core throughput..32

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Contents

5.2.1 Average cycles per non-fragment thread..32
5.2.2 Average cycles per fragment thread.. 33
5.3 Shader core data path utilization..33
5.3.1 Shader core usage.. 33
5.3.2 Non-fragment utilization... 33
5.3.3 Fragment utilization.. 34
5.3.4 Fragment FPK buffer utilization.. 34
5.3.5 Execution core utilization..34

6. Shader core functional units..36
6.1 Functional unit utilization... 37
6.1.1 Arithmetic unit utilization..37
6.1.2 Varying unit utilization... 37
6.1.3 Texture unit utilization... 37
6.1.4 Load/store unit utilization...38
6.1.5 Ray tracing unit utilization.. 38
6.2 Shader program properties...38
6.2.1 Narrow arithmetic percentage... 39
6.2.2 Warp divergence percentage... 39
6.2.3 All registers warp percentage.. 39
6.2.4 Shader blend percentage.. 39
6.3 Shader workload properties...40
6.3.1 Partial coverage percentage... 40
6.3.2 Fragment warp occupancy..40
6.3.3 Full warp percentage..40
6.3.4 Fragment shading rate... 41
6.3.5 Unchanged tile kill percentage...41

7. Shader core varying unit.. 42
7.1 Varying unit usage..42
7.1.1 Varying unit issue cycles... 42
7.1.2 16-bit interpolation active cycles..42
7.1.3 32-bit interpolation active cycles..42

8. Shader core texture unit...43
8.1 Texture unit usage..43
8.1.1 Texture filtering cycles... 43

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Contents

8.1.2 Texture filtering cycles using full bilinear.. 43
8.1.3 Texture filtering cycles using full trilinear..44
8.1.4 Texture filtering cycles per instruction...44
8.2 Texture unit workload properties... 44
8.2.1 Texture full speed filtering percentage.. 44
8.3 Texture unit bus utilization...44
8.3.1 Texture input bus utilization...45
8.3.2 Texture output bus utilization.. 45
8.4 Texture unit memory usage... 45
8.4.1 Texture unit bytes read from L2 per texture cycle... 45
8.4.2 Texture unit bytes read from external memory per texture cycle... 46

9. Shader core load/store unit...47
9.1 Load/store unit usage..47
9.1.1 Load/store unit issue cycles...47
9.1.2 Load/store unit full read issues... 47
9.1.3 Load/store unit partial read issues..47
9.1.4 Load/store unit full write issues..48
9.1.5 Load/store unit partial write issues.. 48
9.1.6 Load/store unit atomic issues..48
9.2 Load/store unit memory usage...48
9.2.1 Load/store unit bytes read from L2 per access cycle.. 49
9.2.2 Load/store unit bytes read from external memory per access cycle.. 49
9.2.3 Load/store unit bytes written to L2 per access cycle..49

10. Shader core ray tracing unit..50
10.1 Ray tracing unit usage.. 50
10.1.1 Ray tracing box tester issue cycles.. 50
10.1.2 Ray tracing triangle tester issue cycles... 50
10.2 Ray tracing unit workload properties..51
10.2.1 Ray tracing started rays.. 51
10.2.2 Ray tracing opaque triangle hits... 51
10.2.3 Ray tracing non-opaque triangle hits...51
10.2.4 Ray tracing ray misses...51
10.2.5 Ray tracing first hit terminations.. 52
10.3 Ray tracing box test coherency..52
10.3.1 Ray tracing box nodes with 13-16 rays..52

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Contents

10.3.2 Ray tracing box nodes with 9-12 rays.. 52
10.3.3 Ray tracing box nodes with 5-8 rays.. 52
10.3.4 Ray tracing box nodes with 1-4 rays.. 53
10.4 Ray tracing triangle test coherency...53
10.4.1 Ray tracing triangle batches with 13-16 rays..53
10.4.2 Ray tracing triangle batches with 9-12 rays.. 53
10.4.3 Ray tracing triangle batches with 5-8 rays.. 53
10.4.4 Ray tracing triangle batches with 1-4 rays.. 54

11. Shader core memory traffic...55
11.1 Read access from L2 cache...55
11.1.1 Front-end unit read bytes from L2 cache.. 55
11.1.2 Load/store unit read bytes from L2 cache...55
11.1.3 Texture unit read bytes from L2 cache...55
11.2 Read access from external memory.. 55
11.2.1 Front-end unit read bytes from external memory..56
11.2.2 Load/store unit read bytes from external memory.. 56
11.2.3 Texture unit read bytes from external memory...56
11.3 Write access..56
11.3.1 Load/store unit write bytes... 56
11.3.2 Tile unit write bytes...56

12. GPU configuration... 57
12.1 GPU configuration counters..57
12.1.1 Shader core count..57
12.1.2 L2 cache slice count..57
12.1.3 External bus beat size... 57

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Arm Mali-G615 GPU performance counters

1. Arm® Mali™-G615 GPU performance
counters

This guide explains the GPU performance counters presented in the Arm® Streamline profiling
template for the Mali™-G615 GPU, which is part of the Valhall architecture family.

The counter template in Streamline follows a step-by-step analysis workflow. Analysis starts with
high-level workload triage that allows you to classify the type of problem that needs investigating.
Measurements of CPU usage, GPU usage, and memory bandwidth allow you to select the correct
type of detailed analysis to perform next. For issues related to GPU throughput, the template then
proceeds with a detailed analysis of the application rendering workload. A set of data views are
presented that systematically show how efficiently the available hardware resources are being used
by your application.

For each counter in the template, this guide documents the meaning of the counter and provides
the Streamline variable name or expression associated with it.

The Streamline template only shows a subset of the available performance counters.
However, it covers the most common types of GPU performance analysis.

1.1 Counter handling
Arm GPU hardware emits unique counters per shader core and per cache slice. The data presented
in Streamline, and the expression equations defined in this document, use the summed value of all
of the counter instances.

This behavior changed in Streamline 8.7. In earlier releases, Streamline showed
the averaged value for shader core counters and the summed value for cache slice
counters.

1.2 Guide content
This guide contains the following sections:

• CPU performance: analyze the overall usage of the CPU by observing the activity on the CPU
clusters and cores in the system.

• GPU activity: analyze the overall usage of the GPU by observing the activity on the GPU work
queues, and the workload split between non-fragment and fragment processing

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Arm Mali-G615 GPU performance counters

• Content behavior: analyze content efficiency by observing the number of vertices being
processed, the number of primitives being culled, and the number of pixels being processed.

• Shader core data path: analyze the shader core workload scheduling, and data path throughput.

• Shader core functional units: analyze the overall usage of the shader core. Observe the
effectiveness of fragment depth and stencil testing, the number of threads spawned for
shading, and the relative loading of the programmable core processing pipelines.

• Shader core varying unit: analyze performance of the varying interpolation unit, and how the
unit is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as varying-bound in the shader core functional units
section.

• Shader core texture unit: analyze performance of the texture filtering unit, and how the unit
is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as texture-bound in the shader core functional units
section.

• Shader core load/store unit: analyze performance of the load/store unit, and how the unit
is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as load-store-bound in the shader core functional units
section.

• Shader core ray tracing unit: analyze performance of the ray tracing unit, and how the unit
is being used by the shader ray traversals that are running. Use this data to find optimization
opportunities for content identified as ray-tracing-bound in the shader core functional units
section.

• Shader core memory traffic: analyze the breakdown of the memory traffic between the shader
core and the L2 cache, and the shader core and the external memory system. Use this data to
find which type of workload is causing GPU memory accesses, helping you to determine where
to apply bandwidth optimizations.

• GPU configuration: these utility counters expose the GPU configuration of the platform,
allowing Streamline to create expressions based on the specific configuration of the connected
device.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

CPU performance

2. CPU performance
High CPU load or poor scheduling of workloads can cause many graphics performance issues. The
first part of the analysis template looks at the CPU workloads, allowing you to identify regions
where CPU performance impacts the overall application performance.

The default view for the CPU charts shows the activity of each cluster of CPUs. To see individual
CPUs, expand the chart group to show the cores present inside each cluster.

2.1 CPU activity
CPU activity charts show the usage of each processor cluster, displaying the percentage of each
time slice that the CPUs in the cluster were running. This percentage allows you to assess how
busy the CPUs were. Note that this metric is only a time-based measure and does not factor in the
CPU frequency that was used.

For CPU-bound applications, it is common for a single thread to run all the time and become the
bottleneck for overall application performance. The process and thread activity panel, found below
the counter charts, shows when each application thread was running. To filter the CPU activity and
CPU counter charts by specific processes or threads, select one or more threads in this view.

For scheduling-bound applications, it is common for both CPU and GPU to go idle due to poor
synchronization. The CPU goes idle when it is waiting for the GPU to complete work. The GPU
goes idle when waiting for the CPU to submit new work. To identify scheduling-bound applications
in this view, look for activity that is oscillating between the impacted CPU thread and the GPU
work queues.

$CPUActivityUser.Cluster[0..N]

2.2 CPU cycles
The CPU cycle charts show the activity of each processor cluster, presented as the number of
processor clock cycles used. Combining this data with the CPU activity information can indicate the
CPU operating frequency.

$CyclesCPUCycles.Cluster[0..N]

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

3. GPU activity
The workloads running on this GPU are coordinated by the Command Stream Front-end (CSF). The
front-end schedules command streams submitted by the driver on to three hardware work queues,
which dispatch processing tasks to the shader cores and tiling unit. There are three work queues,
one for general-purpose compute shading, one for vertex shading and tiling, and one for fragment
shading.

The CSF runs asynchronously to the CPU, allowing CPU and GPU to run in parallel. If sufficient
work is available, the three GPU work queues can also run in parallel to each other, allowing
different types of GPU work to run in parallel. Achieving good parallelism is an important
optimization goal for Arm GPUs.

The following diagram shows the processing pipeline data paths through the GPU for different
kinds of workload. It also shows the performance counters available for each data path or major
block in the hierarchy.

Figure 3-1: Valhall CSF GPU top level

Command Stream Front-end

Shader Core

Tiler

Command Stream
Processor

Compute
Iterator

Vertex
Iterator

Fragment
Iterator

Non-fragment
Front-end

Fragment
Front-end

Execution
Core

Fragment
Back-end

GPU active

MCU active
IRQ active

IRQ

Tiler
active

Execution
core active

N
on

-f
ra

g
ac

tiv
e

Ve
rt

ex
 it

er
at

or
 a

ct
iv

e
Co

m
pu

te
 it

er
at

or
 a

ct
iv

e

Fr
ag

m
en

t a
ct

iv
e

Fr
ag

m
en

t i
te

ra
to

r a
ct

iv
e

The “active” counters show that a data path or hardware unit processed some workload, but do not
necessarily indicate that it was fully utilized. For example, the Fragment work queued cycles counter
increments every cycle that there is a fragment workload queued to run.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

Some counters are common to multiple data paths. For example, all types of shader programs run
on the same unified shader core. If different workload types are overlapping in the same counter
sample, then shader core counter data might include contributions from all of them.

The following swim lane diagram shows how the top-level GPU counters increment for overlapping
render passes.

Figure 3-2: Valhall CSF GPU top-level timeline

Processing swimlanes

Counter activity

CPU IRQ
delay

Vertex
iterator

Fragment
iterator

GPU active

Vertex iter active

Frag iter active

IRQ active

This diagram shows two render passes per frame, shown in different shades of blue. Each render
pass consists of a single piece of non-fragment work that must be run before its fragment shading
can start. An interrupt is raised back to the CPU at the end of each piece of work on each queue.
The GPU active cycles counter increments whenever any queue contains work.

3.1 GPU usage
GPU usage counters monitor the overall load on the GPU by measuring the workload submitted
to the front-end queues. These counters can indicate the dominant workload type submitted by
the application, which is a good target for optimization. They can also indicate the effectiveness of
workload scheduling at keeping the hardware queues running in parallel.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

3.1.1 GPU active cycles

This counter increments every clock cycle when the GPU has any pending workload present in one
of its processing queues. It shows the overall GPU processing load requested by the application.

This counter increments when any workload is present in any processing queue, even if the GPU
is stalled waiting for external memory. These cycles are counted as active time even though no
progress is being made.

$MaliGPUCyclesAnyQueueActive

3.1.2 MCU active cycles

This counter increments every clock cycle when the GPU command stream management
microcontroller is executing. Cycles waiting for interrupts or events are not counted.

$MaliCSFCyclesMCUActive

3.1.3 Vertex queue active cycles

This expression increments every clock cycle when the command stream vertex queue has at least
one task issued for processing.

$MaliGPUQueuedCyclesVertexQueued - $MaliGPUWaitCyclesVertexQueueEndpointStall

3.1.4 Fragment queue active cycles

This expression increments every clock cycle when the command stream fragment queue has at
least one task issued for processing.

$MaliGPUQueuedCyclesFragmentQueued - $MaliGPUWaitCyclesFragmentQueueEndpointStall

3.1.5 Compute queue active cycles

This expression increments every clock cycle when the command stream compute queue has at
least one task issued for processing.

$MaliGPUQueuedCyclesComputeQueued - $MaliGPUWaitCyclesComputeQueueEndpointStall

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

3.1.6 GPU interrupt pending cycles

This counter increments every cycle when the GPU has an interrupt pending and is waiting for the
CPU to process it.

Cycles with a pending interrupt do not necessarily indicate lost performance because the GPU
can process other queued work in parallel. However, if GPU interrupt pending cycles are a high
percentage of GPU active cycles, an underlying problem might be preventing the CPU from
efficiently handling interrupts. This problem is normally a system integration issue, which an
application developer cannot work around.

$MaliGPUCyclesGPUInterruptActive

3.2 GPU utilization
GPU utilization counters provide an alternative view of the data path activity cycles, normalizing
the queue usage against the total GPU active cycle count. These metrics provide a clearer view of
breakdown by workload type, and the effectiveness of queue scheduling.

For GPU-bound content that is achieving good parallelism, one of the queues is close to 100%
utilization, with the other running in parallel to it. Prioritize the most heavily loaded queue for
content optimization, as it is the critical path workload.

If the GPU is always busy, but the queues are running serially for all or part of the frame,
application API usage might prevent parallel processing. Serial processing reduces the achievable
performance. The following actions can cause serial processing:

• The application blocking and waiting for GPU activity to complete, for example, by waiting on a
query object result which is not yet available. Waiting on an unavailable query object result can
cause one or more of the hardware queues to drain and run out of work to process.

• The application using conservative Vulkan pipeline barriers. For example, submitting using a
STAGE_TOP_OF_PIPE destination when a STAGE_FRAGMENT_SHADER destination would have been
sufficient.

• The application submitting rendering workloads that have data dependencies across the queues
which prevent parallel processing. For example, if only dependent work is available, a fragment-
compute-fragment data flow might mean no processing occurs in the fragment queue while the
compute shader is running.

Mobile systems improve energy efficiency by using Dynamic Voltage and Frequency Scaling (DVFS)
to reduce voltage and clock frequency for light workloads. When seeing a workload with high
percentage utilization, check the GPU active cycles counter to confirm the frequency. A highly
utilized GPU might look like a problem, but it can be caused by a light workload running at a low
clock frequency.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

3.2.1 Microcontroller utilization

This expression defines the microcontroller utilization compared against the GPU active cycles.

High microcontroller load can be indicative of content using many emulated commands, such as
command stream scheduling and synchronization operations.

max(min(($MaliCSFCyclesMCUActive / $MaliGPUCyclesAnyQueueActive) * 100, 100), 0)

3.2.2 Vertex queue utilization

This expression defines the vertex queue utilization compared against the GPU active cycles.

For GPU bound content, it is expected that the GPU queues process work in parallel. The dominant
queue must be close to 100% utilized to get the best performance. If no queue is dominant, but
the GPU is fully utilized, then a serialization or dependency problem might be preventing queue
overlap.

max(min((($MaliGPUQueuedCyclesVertexQueued -
 $MaliGPUWaitCyclesVertexQueueEndpointStall) / $MaliGPUCyclesAnyQueueActive) * 100,
 100), 0)

3.2.3 Fragment queue utilization

This expression defines the fragment queue utilization compared against the GPU active cycles. For
GPU bound content, it is expected that the GPU queues process work in parallel. The dominant
queue must be close to 100% utilized to get the best performance. If no queue is dominant,
but the GPU is fully utilized, then a serialization or dependency problem might be preventing
scheduling overlap.

max(min((($MaliGPUQueuedCyclesFragmentQueued -
 $MaliGPUWaitCyclesFragmentQueueEndpointStall) / $MaliGPUCyclesAnyQueueActive) *
 100, 100), 0)

3.2.4 Compute queue utilization

This expression defines the compute queue utilization compared against the GPU active cycles.

For GPU bound content, it is expected that the GPU queues process work in parallel. The dominant
queue must be close to 100% utilized to get the best performance. If no queue is dominant, but

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

the GPU is fully utilized, then a serialization or dependency problem might be preventing queue
overlap.

max(min((($MaliGPUQueuedCyclesComputeQueued -
 $MaliGPUWaitCyclesComputeQueueEndpointStall) / $MaliGPUCyclesAnyQueueActive) * 100,
 100), 0)

3.3 External memory bandwidth
The external memory bandwidth counters show the total memory bandwidth between the
GPU and the downstream memory system. Accessing external DRAM is one of the most
energy-intensive operations that the GPU can perform, so reducing memory bandwidth is a key
optimization goal.

These performance counters measure the memory accesses that are external to the GPU. If there
are layers of system cache between the GPU and external DRAM, these accesses might not be
external to the system-on-a-chip.

Figure 3-3: Valhall GPU memory system

Internal
Read Port

Internal
Write Port

L2 Cache
RAM

External
Read Port

External
Write Port

External read

External read stall

External read latency histogram

External read bytes External write

External write stall

External write bytes

From shader cores, etc.

To external
DRAM memory

Memory accesses to external DRAM are very power intensive. A good guideline is that external
DRAM access costs between 80mW and 100mW per GB/s of bandwidth used. Assuming a typical
650mW power budget for DRAM access, an application can only sustainably use a total of 100MB

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

per frame at 60FPS. Optimizations that help to minimize GPU memory bandwidth are a high
priority for mobile application development.

3.3.1 Output external read bytes

This expression defines the total output read bandwidth for the GPU.

$MaliExternalBusBeatsReadBeats * ($MaliConstantsBusWidthBits / 8)

3.3.2 Output external write bytes

This expression defines the total output write bandwidth for the GPU.

$MaliExternalBusBeatsWriteBeats * ($MaliConstantsBusWidthBits / 8)

3.4 External memory stalls
The external memory stall rate counters measure the back-pressure seen by the GPU when it is
attempting to make external memory accesses.

A high stall rate is indicative of content which is requesting more data than the downstream
memory system can provide. To optimize the workload, try to reduce memory bandwidth.

3.4.1 Output external read stall percentage

This expression defines the percentage of GPU cycles with a memory stall on an external read
transaction.

Stall rates can be reduced by reducing the size of data resources, such as buffers or textures.

max(min(($MaliExternalBusStallCyclesReadStall / $MaliConstantsL2SliceCount /
 $MaliGPUCyclesAnyQueueActive) * 100, 100), 0)

3.4.2 Output external write stall percentage

This expression defines the percentage of GPU cycles with a memory stall on an external write
transaction.

Stall rates can be reduced by reducing geometry complexity, or the size of framebuffers in memory.

max(min(($MaliExternalBusStallCyclesWriteStall / $MaliConstantsL2SliceCount /
 $MaliGPUCyclesAnyQueueActive) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

3.5 External memory read latency
The external memory read latency counters present a histogram of access latencies. This metric
shows how many GPU cycles it takes to fetch data from the downstream memory system, where
data might be stored in either system cache or external DRAM.

High latency accesses can reduce performance, and are normally an indication that the application
is requesting more data than the memory system can provide. To reduce memory latency, try to
reduce application memory bandwidth.

3.5.1 Output external read latency 0-127 cycles

This counter increments for every data beat that is returned between 0 and 127 cycles after the
read transaction started. This latency is considered a fast access response speed.

$MaliExternalBusReadLatency0127Cycles

3.5.2 Output external read latency 128-191 cycles

This counter increments for every data beat that is returned between 128 and 191 cycles after the
read transaction started. This latency is considered a normal access response speed.

$MaliExternalBusReadLatency128191Cycles

3.5.3 Output external read latency 192-255 cycles

This counter increments for every data beat that is returned between 192 and 255 cycles after the
read transaction started. This latency is considered a normal access response speed.

$MaliExternalBusReadLatency192255Cycles

3.5.4 Output external read latency 256-319 cycles

This counter increments for every data beat that is returned between 256 and 319 cycles after the
read transaction started. This latency is considered a slow access response speed.

$MaliExternalBusReadLatency256319Cycles

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU activity

3.5.5 Output external read latency 320-383 cycles

This counter increments for every data beat that is returned between 320 and 383 cycles after the
read transaction started. This latency is considered a slow access response speed.

$MaliExternalBusReadLatency320383Cycles

3.5.6 Output external read latency 384+ cycles

This expression increments for every read beat that is returned at least 384 cycles after the
transaction started. This latency is considered a very slow access response speed.

$MaliExternalBusBeatsReadBeats - $MaliExternalBusReadLatency0127Cycles -
 $MaliExternalBusReadLatency128191Cycles - $MaliExternalBusReadLatency192255Cycles -
 $MaliExternalBusReadLatency256319Cycles - $MaliExternalBusReadLatency320383Cycles

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

4. Content behavior
Optimal rendering performance requires both efficient content, and efficient handling of that
content by the GPU. The content behavior metrics help you to supply the GPU with efficiently
structured content.

Slow rendering performance has three common causes:

• Content which is efficiently written, but doing too much processing given the capabilities of the
target device.

• Content which is inefficiently written, with redundancy in the workload submitted for
rendering.

• Content or API usage which triggers high workload, or causes idle bubbles, due to GPU-specific
or driver-specific behaviors.

This section of the Streamline template aims to focus on the first two of these causes. It looks at
the size and efficiency of the submitted workload.

4.1 Geometry usage
The vertex stream is the first application input processed by the GPU rendering pipeline. These
counters monitor the amount of geometry being processed, and how much is discarded due to
culling.

High complexity geometry is one of the most expensive inputs to the GPU, because vertices are
much larger than compressed texels, typically each needing approximately 32 bytes of input data
each. Optimizing geometry to minimize mesh complexity and reduce redundant processing is a key
optimization goal for mobile graphics.

4.1.1 Total input primitives

This expression defines the total number of input primitives to the rendering process.

High complexity geometry is one of the most expensive inputs to the GPU, because vertices are
much larger than compressed texels. Optimize your geometry to minimize mesh complexity, using
dynamic level-of-detail and normal maps to reduce the number of primitives required.

$MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

4.1.2 Culled primitives

This expression defines the number of primitives that were culled during the rendering process, for
any reason.

For efficient 3D content, it is expected that only 50% of primitives are visible because back-face
culling is used to remove half of each model.

$MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives

4.1.3 Visible primitives

This counter increments for every visible primitive that survives all culling stages.

All fragments of the primitive might be occluded by other primitives closer to the camera, and so
produce no visible output.

$MaliPrimitiveCullingVisiblePrimitives

4.2 Geometry culling
The GPU must compute positions of primitives before they can enter the culling stages. Culled
geometry can have a significant processing and bandwidth cost, even though it contributes no
useful visual output. These counters help to identify the reasons why primitives are culled, allowing
you to target optimizations at the area causing problems.

The culling pipeline for this GPU runs in the order shown in the following diagram. The counters for
this pipeline show the percentage of the primitives entering a stage that the stage culls. Because
these percentages are relative to the per-stage input, not the total geometry input, they do not add
up to 100%.

Figure 4-1: Valhall GPU culling pipeline

Position
Shading

Varying
Shading

Visible primitivesInput primitives

Primitive
Assembly

Facing Test
Culling

Frustum Test
Culling

Sample Test
Culling

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

4.2.1 Visible primitive percentage

This expression defines the percentage of primitives that are visible after culling.

For efficient 3D content, it is expected that only 50% of primitives are visible because back-face
culling is used to remove half of each model.

• A significantly higher visibility rate indicates that the facing test might not be enabled.

• A significantly lower visibility rate indicates that geometry is being culled for other reasons,
which is often possible to optimize. Use the individual culling counters for a more detailed
breakdown.

max(min(($MaliPrimitiveCullingVisiblePrimitives /
 ($MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)

4.2.2 Facing plane test cull percentage

This expression defines the percentage of primitives entering the facing test that are culled by it.
Back-facing triangles that are inside the frustum are culled by this stage.

For efficient 3D content, it is expected that 50% of primitives are culled by the facing test. If you
see a significantly lower percentage, check that the facing test is properly enabled.

max(min(($MaliPrimitiveCullingFacingTestCulledPrimitives /
 ($MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)

4.2.3 Frustum test cull percentage

This expression defines the percentage of primitives entering the frustum test that are culled by it.
Primitives that are outside of the view frustum are culled by this stage.

If a significant percentage of triangles are culled by this test we recommend reviewing application
culling and batching. Test draw call bounding boxes against the frustum to cull draws that are
completely out-of-frustum. Reduce the size of static batches to reduce the bounding volume of
each batch, enabling better culling.

max(min(($MaliPrimitiveCullingFrustumTestCulledPrimitives /
 (($MaliPrimitiveCullingFacingTestCulledPrimitives
 + $MaliPrimitiveCullingFrustumTestCulledPrimitives
 + $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives) -
 $MaliPrimitiveCullingFacingTestCulledPrimitives)) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

4.2.4 Sample test cull percentage

This expression defines the percentage of primitives entering the sample coverage test that are
culled by it. This stage culls primitives that are so small that they hit no rasterizer sample points.

If a significant number of triangles are culled at this stage, the application is using geometry meshes
that are too complex for their screen coverage. Use schemes such as mesh level-of-detail to select
simplified meshes as objects move further away from the camera.

max(min(($MaliPrimitiveCullingSampleTestCulledPrimitives /
 (($MaliPrimitiveCullingFacingTestCulledPrimitives
 + $MaliPrimitiveCullingFrustumTestCulledPrimitives
 + $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives) -
 $MaliPrimitiveCullingFacingTestCulledPrimitives -
 $MaliPrimitiveCullingFrustumTestCulledPrimitives)) * 100, 100), 0)

4.3 Vertex shading
This GPU uses an optimized vertex processing pipeline. In this pipeline, the vertex position is
computed before culling. The remaining varyings for any visible vertices are computed after culling.
To determine mesh encoding efficiency, use the performance counters to measure the average
number of position threads and varying threads per primitive.

Figure 4-2: Valhall GPU tiling pipeline

Index
Reader

Position
Cache Fetch

Position
Shading

Primitive
Assembly

Culling

Varying
Shaded Check

Varying
Shading

Position shading requests

Varying shading requests
Visible primitives

Input primitives

This pipeline uses a post-transform vertex cache, which contains the positions of recently shaded
vertices, to avoid reshading vertices that are common to multiple primitives. Poor temporal locality
of index reuse can result in a vertex being shaded multiple times, because it is evicted from the
cache before it is reused.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

This pipeline submits shading requests in groups of 4 contiguous index values. Unused index
locations might be shaded if they are near used index locations. Reduce redundant shading by
ensuring that every index between the minimum and maximum index is used.

4.3.1 Position shader thread invocations

This expression defines the number of position shader thread invocations.

$MaliTilerShadingRequestsPositionShadingRequests * 4

4.3.2 Varying shader thread invocations

This expression defines the number of varying shader thread invocations.

$MaliTilerShadingRequestsVaryingShadingRequests * 4

4.4 Vertex shading efficiency
Normalized versions of these vertex shading counters show the amount of shading per primitive,
which gives a direct measure of mesh encoding efficiency.

4.4.1 Position threads per input primitive

This expression defines the number of position shader threads per input primitive.

Efficient meshes with a good vertex reuse have average less than 1.5 vertices shaded per triangle,
as vertex computation is shared by multiple primitives. Minimize this number by reusing vertices
for nearby primitives, improving temporal locality of index reuse, and avoiding unused values in the
active index range.

($MaliTilerShadingRequestsPositionShadingRequests *
 4) / ($MaliPrimitiveCullingFacingTestCulledPrimitives
 + $MaliPrimitiveCullingFrustumTestCulledPrimitives
 + $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)

4.4.2 Varying threads per input primitive

This expression defines the number of varying shader invocations per visible primitive.

Efficient meshes with a good vertex reuse have average less than 1.5 vertices shaded per triangle,
as vertex computation is shared by multiple primitives. Minimize this number by reusing vertices

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

for nearby primitives, improving temporal locality of index reuse, and avoiding unused values in the
active index range.

($MaliTilerShadingRequestsVaryingShadingRequests * 4) /
 $MaliPrimitiveCullingVisiblePrimitives

4.5 Fragment overview
Fragment overview counters look at the requested pixel processing workload. These counters can
show the total number of output pixels shaded, the average number of cycles spent per pixel, and
the average overdraw factor.

It is a useful exercise to set a cycle budget for an application, measured in terms of cycles per pixel.
Compute the maximum cycle budget using this equation:

 shaderCyclesPerSecond = MaliCoreCount MaliFrequency
 pixelsPerSecond = Screen_Resolution * Target_FPS
 // Maximum cycle budget assuming perfect scheduling
 maxBudget = shaderCyclesPerSecond / pixelsPerSecond
 // Real-world cycle budget assuming 85% utilization
 realBudget = 0.85 * maxBudget

Setting a cycle budget helps manage expectations of what is possible. For example, consider a
mass-market device with a 3 core GPU running at 500MHz. At 1080p60 this device has a cycle
budget of just 10 cycles per pixel. This budget must cover all processing costs, including vertex
shading and fragment shading. If you want to achieve the best graphics fidelity, you must ensure
you spend each cycle wisely.

4.5.1 Pixels

This expression defines the total number of pixels that are shaded by the GPU, including on-screen
and off-screen render passes.

This measure can be a slight overestimate because it assumes all pixels in each active 32x32 pixel
region are shaded. If the rendered region does not align with 32 pixel aligned boundaries, then this
metric includes pixels that are not actually shaded.

$MaliGPUTasksFragmentTasks * 1024

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

4.5.2 Average cycles per pixel

This expression defines the average number of GPU cycles being spent per pixel rendered. This
includes the cost of all shader stages.

It is a useful exercise to set a cycle budget for each render pass in your application, based on your
target resolution and frame rate. Rendering 1080p60 is possible with an entry-level device, but you
have a small number of cycles per pixel to work so must use them efficiently.

$MaliGPUCyclesAnyQueueActive / ($MaliGPUTasksFragmentTasks * 1024)

4.5.3 Fragments per pixel

This expression computes the number of fragments shaded per output pixel.

GPU processing cost per pixel accumulates with the layer count. High overdraw can build up to a
significant processing cost, especially when rendering to a high-resolution framebuffer. Minimize
overdraw by rendering opaque objects front-to-back and minimizing use of blended transparent
layers.

$MaliShaderThreadsFragmentThreads / ($MaliGPUTasksFragmentTasks * 1024)

4.6 Fragment depth and stencil testing
It is important that as many fragments as possible are early ZS (depth and stencil) tested before
shading. Removing redundant work at this stage is more efficient than testing and killing fragments
later using late ZS. These counters monitor the number of early and late test and kill operations
performed.

To maximize the efficiency of early ZS testing, Arm recommends drawing opaque objects starting
with the objects closest to camera and then working further away. Render transparent objects from
back-to-front after you have finished drawing the opaque objects.

4.6.1 Early ZS tested quad percentage

This expression defines the percentage of rasterized quads that were subjected to early depth and
stencil testing.

To achieve the best early test rates, enable depth testing, and avoid draw calls with modifiable
coverage or draw calls with fragment shader programs that write to their depth value.

max(min(($MaliFragmentZSQuadsEarlyZSTestedQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

4.6.2 Early ZS updated quad percentage

This expression defines the percentage of rasterized quads that update the framebuffer during
early depth and stencil testing.

To achieve the best early test rates, enable depth testing, and avoid draw calls with modifiable
coverage or draw calls with fragment shader programs that write to their depth value.

max(min(($MaliFragmentZSQuadsEarlyZSUpdatedQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

4.6.3 Early ZS killed quad percentage

This expression defines the percentage of rasterized quads that are killed by early depth and stencil
testing.

Quads killed at this stage are killed before shading, so a high percentage here is not generally a
performance problem. However, it can indicate an opportunity to use software culling techniques
such a portal culling to avoid sending occluded geometry to the GPU.

max(min(($MaliFragmentZSQuadsEarlyZSKilledQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

4.6.4 FPK killed quad percentage

This expression defines the percentage of rasterized quads that are killed by the Forward Pixel Kill
(FPK) hidden surface removal scheme.

Quads killed at this stage are killed before shading, so a high percentage here is not generally a
performance problem. However, it can indicate an opportunity to use software culling techniques
such a portal culling to avoid sending occluded geometry to the GPU.

max(min((($MaliFragmentQuadsRasterizedFineQuads -
 $MaliFragmentZSQuadsEarlyZSKilledQuads - (($MaliShaderWarpsFragmentWarps * 16) /
 4)) / $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

4.6.5 Late ZS tested quad percentage

This expression defines the percentage of rasterized quads that are tested by late depth and stencil
testing.

A high percentage of fragments performing a late ZS update can cause slow performance, even if
fragments are not killed. Younger fragments cannot complete early ZS until all older fragments at
the same coordinate have completed their late ZS operations, which can cause stalls.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Content behavior

You achieve the lowest late test rates by avoiding draw calls with modifiable coverage,, or with
shader programs that write to their depth value or that have memory-visible side-effects

max(min(($MaliFragmentZSQuadsLateZSTestedQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

4.6.6 Late ZS killed quad percentage

This expression defines the percentage of rasterized quads that are killed by late depth and stencil
testing. Quads killed by late ZS testing run at least some of their fragment program before being
killed.

A high percentage of fragments being killed by ZS can be a source of redundant processing. You
achieve the lowest late test rates by avoiding draw calls with modifiable coverage, or with shader
programs that write to their depth value or that have memory-visible side-effects.

The driver uses a late ZS update and kill sequence to preload a depth or stencil attachment at
the start of a render pass, which is needed if the render pass does not start from a cleared value.
Always start from a cleared value whenever possible.

max(min(($MaliFragmentZSQuadsLateZSKilledQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

4.7 Fragment shader invocation rate
Applications can use sample-rate shading and variable-rate shading to increase or reduce the
number of fragment shader invocations per covered pixel. This counter measures the average
shading rate seen in the application.

4.7.1 Fragment shading rate

This expression defines the percentage of coarse quads generated relative to the number of fine
quads that were rasterized. Coarse quads cover a 2x2 fragment region. Fine quads cover a 2x2
pixel region.

The fragment shading rate is lower than 100% if the application uses variable-rate shading to
reduce shading rate.

The fragment shading rate is higher than 100% if the application uses sample-rate shading to
increase shading rate for a multi-sampled render.

max(min(($MaliFragmentQuadsRasterizedCoarseQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core data path

5. Shader core data path
Each shader core has two parallel data paths for issuing threads to the core, one for non-fragment
workloads and one for fragment workloads. These counters track the thread issue for each path,
and their relative scheduling.

Figure 5-1: Valhall GPU shader core

Polygon
List Reader

Rasterizer

Early
ZS Test

Non-frag
Front-end FPK Buffer

Execution
Core

Blender

Tile RAM

Tile write

Transaction
Elimination

Framebuffer
Compression

Quads rasterized

Quads early-ZS tested

Non-fragment warps

Quads early-ZS killed

N
on

-f
ra

g
ac

tiv
e

FPK buffer active

Fr
ag

m
en

t a
ct

iv
e

Quads FPK killed

Fragment warps

Full warps

Execution core active

Fragment tiles

Unchanged tiles killed

Tile write bytes

Partial quads rasterized

Quads early-ZS updated

5.1 Shader core workload
The warp counters count the number of shader warps issued for the two workload types.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core data path

5.1.1 Non-fragment warps

This counter increments for every created non-fragment warp. For this GPU, a warp contains 16
threads.

For compute shaders, to ensure full utilization of the warp capacity, work groups must be a multiple
of warp size.

$MaliShaderWarpsNonFragmentWarps

5.1.2 Fragment warps

This counter increments for every created fragment warp. For this GPU, a warp contains 16
threads.

Fragment warps are populated with fragment quads, where each quad corresponds to a
2x2 fragment region from a single triangle. Threads in a quad which correspond to a sample
point outside of the triangle still consume shader resource, which makes small triangles
disproportionately expensive.

$MaliShaderWarpsFragmentWarps

5.2 Shader core throughput
The throughput metrics show the average number of cycles it takes to get a single thread shaded
by the shader core. These metrics show average throughput, not average computational cost,
including the impact of processing latency, memory latency, and any resource sharing inside the
shader core.

5.2.1 Average cycles per non-fragment thread

This expression defines the average number of shader core cycles per non-fragment thread.

This measurement captures the overall shader core throughput, not the shader processing cost. It
will be impacted by cycles lost to stalls that could not be hidden by other processing. In addition, it
will be impacted by any fragment workloads that are running concurrently in the shader core.

$MaliShaderCoreCyclesNonFragmentActive / ($MaliShaderWarpsNonFragmentWarps * 16)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core data path

5.2.2 Average cycles per fragment thread

This expression defines the average number of shader core cycles per fragment thread.

This measurement captures the overall shader core throughput, not the shader processing cost. It
will be impacted by cycles lost to stalls that could not be hidden by other processing. In addition, it
will be impacted by any fragment workloads that are running concurrently in the shader core.

$MaliShaderCoreCyclesFragmentActive / $MaliShaderThreadsFragmentThreads

5.3 Shader core data path utilization
The data path utilization counters show the total activity level of the major data paths in the shader
core. Identifying the dominant workload type helps to target optimizations. Identifying lack of
parallelism can confirm that there are scheduling problems.

5.3.1 Shader core usage

This expression defines the percentage usage of the shader core, relative to the top-level GPU
clock. This counter increments every shader core clock cycle when any of the shader core queues
contain work.

To improve energy efficiency, some systems clock the shader cores at a lower frequency than the
GPU top-level components. In these systems, the maximum achievable usage value is the clock
ratio between the GPU top-level clock and the shader clock. For example, a GPU with an 800MHz
top-level clock and a 400MHz shader clock can achieve a maximum usage of 50%.

max(min(($MaliShaderCoreCyclesAnyWorkloadActive / $MaliConstantsShaderCoreCount /
 $MaliGPUCyclesAnyQueueActive) * 100, 100), 0)

5.3.2 Non-fragment utilization

This expression defines the percentage utilization of the shader core non-fragment path. This
counter measures any cycle that a non-fragment workload is active in the fixed-function front-end
or programmable core.

max(min(($MaliShaderCoreCyclesNonFragmentActive /
 $MaliShaderCoreCyclesAnyWorkloadActive) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core data path

5.3.3 Fragment utilization

This expression defines the percentage utilization of the shader core fragment path. This counter
measures any cycle that a fragment workload is active in the fixed-function front-end, fixed-
function back-end, or programmable core.

max(min(($MaliShaderCoreCyclesFragmentActive /
 $MaliShaderCoreCyclesAnyWorkloadActive) * 100, 100), 0)

5.3.4 Fragment FPK buffer utilization

This expression defines the percentage of cycles where the Forward Pixel Kill (FPK) quad
buffer contains at least one fragment quad. This buffer is located after early ZS but before the
programmable core.

During fragment shading this counter must be close to 100%. This indicates that the fragment
front-end is able to keep up with the shader core shading performance. This counter commonly
drops below 100% for three reasons:

• The running workload has many empty tiles with no geometry to render. Empty tiles are
common in shadow maps, corresponding to a screen region with no shadow casters, so this
might not be avoidable.

• The application consists of simple shaders but a high percentage of microtriangles. This
combination causes the shader core to shade fragments faster than they are rasterized, so the
quad buffer drains.

• The application consists of geometry which stalls at early ZS because of a dependency on an
earlier fragment layer which is still in flight. Stalled layers prevent new fragments entering the
quad buffer, so the quad buffer drains.

max(min(($MaliShaderCoreCyclesFragmentFPKBufferActive /
 $MaliShaderCoreCyclesFragmentActive) * 100, 100), 0)

5.3.5 Execution core utilization

This expression defines the percentage utilization of the programmable core, measuring cycles
where the shader core contains at least one warp. A low utilization here indicates lost performance,
because there are spare shader core cycles that are unused.

In some use cases an idle core is unavoidable. For example, a clear color tile that contains no
shaded geometry, or a shadow map that is resolved entirely using early ZS depth updates.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core data path

Improve programmable core utilization by parallel processing of the GPU work queues, running
overlapping workloads from multiple render passes. Also aim to keep the FPK buffer utilization as
high as possible, ensuring constant forward-pressure on fragment shading.

max(min(($MaliShaderCoreCyclesExecutionCoreActive /
 $MaliShaderCoreCyclesAnyWorkloadActive) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core functional units

6. Shader core functional units
A shader core consists of multiple parallel processing units. Performance counters can track
utilization and workload characteristics for all the major processing units, allowing developers to
find both bottlenecks and content inefficiencies to optimize.

For shader-bound content, the functional unit with the highest loading is likely to be the
bottleneck. To improve performance, you can reduce the number of operations of that type in
the shader. Alternatively, reduce the precision of the operations to use 8 and 16-bit types so that
multiple operations are performed in parallel.

For thermally bound content, reducing the critical path load gives the biggest gain as it allows
use of a lower operating frequency. However, reducing load on any functional unit helps improve
energy efficiency.

Figure 6-1: Valhall GPU shader core

Front-ends

Fragment
Back end

Execution
CoreWarp

Manager

Varying
Unit

Load/Store
Unit

Texture
Unit

Late ZS
Unit

Blend
Unit

FMA
Pipe

CVT
Pipe

SFU
Pipe

MSG
Pipe

Processing Unit

Warps with all regs

Warps with all quads

Texture read bytes from L2

Texture read bytes from external

Texture samples

Texture filtering active

2x Trilinear path active

4x Bilinear path active

FMA instructions

CVT instructions

SFU instructions

MSG instructions

Diverged instructions

L/S write bytes
Varying active

Varying 16-bit active

Varying 32-bit active

L/S partial writes

L/S full writes

L/S partial reads

L/S full reads

L/S active

L/S atomics

L/S read bytes from L2

L/S read bytes from external

Quads late ZS tested

Quads late ZS killed

Ray Tracing
Unit

Box test cycles

Tri test cycles

Tri test warp coherency

Tri test hit results

Box test warp coherency

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core functional units

6.1 Functional unit utilization
Functional unit utilization counters provide normalized views of the functional unit activity inside
the shader core. The functional units run in parallel. To improve performance, target the most
heavily utilized functional unit for optimization. Although it might not help performance, reducing
the load of any unit improves energy efficiency.

6.1.1 Arithmetic unit utilization

This expression estimates the percentage utilization of the arithmetic unit in the programmable
core.

The most effective technique for reducing arithmetic load is reducing the complexity of your shader
programs. Using narrower 8 and 16-bit data types can also help, as it allows multiple operations to
be processed in parallel.

max(min((max($MaliALUInstructionsCVTPipeInstructions +
 $MaliALUInstructionsSFUPipeInstructions + (($MaliALUInstructionsFMAPipeInstructions
 - min($MaliALUInstructionsFMAPipeInstructions,
 $MaliALUInstructionsCVTPipeInstructions +
 $MaliALUInstructionsSFUPipeInstructions)) / 2),
 $MaliALUInstructionsSFUPipeInstructions * 4) /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.1.2 Varying unit utilization

This expression defines the percentage utilization of the varying unit.

The most effective technique for reducing varying load is reducing the number of interpolated
values read by the fragment shading. Increasing shader usage of 16-bit input variables also helps,
as they can be interpolated as twice the speed of 32-bit variables.

max(min(((($MaliVaryingUnitIssues32BitInterpolationIssues /
 4) + ($MaliVaryingUnitIssues16BitInterpolationIssues / 4)) /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.1.3 Texture unit utilization

This expression defines the percentage utilization of the texturing unit.

The most effective technique for reducing texturing unit load is reducing the number of texture
samples read by your shaders. Using 32bpp color formats, and the ASTC decode mode extensions

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core functional units

to select a 32bpp intermediate precision, can reduce cache access cost. Using simpler texture filters
can reduce filtering cost. Using a 16bit per component sampler result can reduce data return cost.

max(min(($MaliTextureUnitCyclesTextureFilteringActive /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.1.4 Load/store unit utilization

This expression defines the percentage utilization of the load/store unit. The load/store unit is used
for general-purpose memory accesses, including vertex attribute access, buffer access, work group
shared memory access, and stack access. This unit also implements imageLoad/Store and atomic
access functionality.

For traditional graphics content the most significant contributor to load/store usage is vertex data.
Arm recommends simplifying mesh complexity, using fewer triangles, fewer vertices, and fewer
bytes per vertex.

Shaders that spill to stack are also expensive, as any spilling is multiplied by the large number of
parallel threads that are running. You can use the Mali Offline Compiler to check your shaders for
spilling.

max(min((($MaliLoadStoreUnitCyclesFullRead + $MaliLoadStoreUnitCyclesPartialRead
 + $MaliLoadStoreUnitCyclesFullWrite + $MaliLoadStoreUnitCyclesPartialWrite +
 $MaliLoadStoreUnitCyclesAtomicAccess) / $MaliShaderCoreCyclesExecutionCoreActive) *
 100, 100), 0)

6.1.5 Ray tracing unit utilization

This expression defines the percentage utilization of the ray tracing unit.

The most effective technique for reducing ray tracing load is reducing the amount of geometry in
the acceleration structure, and ensuring that rays issued in each warp are spatially coherent.

max(min((max($MaliRayTracingUnitCyclesBoxTesterActive,
 $MaliRayTracingUnitCyclesTriangleTesterActive) /
 $MaliShaderCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.2 Shader program properties
Shader program property counters track multiple properties related to the running shader program
instructions. These counters are used to identify sources of program inefficiency.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core functional units

6.2.1 Narrow arithmetic percentage

This expression defines the percentage of arithmetic instructions that operate on 8/16-bit types.
These are more energy efficient, and require fewer registers for variable storage, than 32-bit
operations.

max(min(($MaliALUInstructionsNarrowInstructions /
 ($MaliALUInstructionsFMAPipeInstructions + $MaliALUInstructionsCVTPipeInstructions
 + $MaliALUInstructionsSFUPipeInstructions)) * 100, 100), 0)

6.2.2 Warp divergence percentage

This expression defines the percentage of instructions that have control flow divergence across the
warp.

max(min(($MaliALUInstructionsDivergedInstructions /
 ($MaliALUInstructionsFMAPipeInstructions + $MaliALUInstructionsCVTPipeInstructions
 + $MaliALUInstructionsSFUPipeInstructions)) * 100, 100), 0)

6.2.3 All registers warp percentage

This expression defines the percentage of warps that use more than 32 registers, requiring the full
register allocation of 64 registers. Warps that require more than 32 registers halve the peak thread
occupancy of the shader core, and can make shader performance more sensitive to cache misses
and memory stalls.

max(min(($MaliShaderWarpsAllRegisterWarps / ($MaliShaderWarpsNonFragmentWarps +
 $MaliShaderWarpsFragmentWarps)) * 100, 100), 0)

6.2.4 Shader blend percentage

This expression defines the percentage of fragments that use shader-based blending, rather than
the fixed-function blend path. These fragments are caused by the application using color formats,
or advanced blend equations, which the fixed-function blend path does not support.

Vulkan shaders that use software blending do not show up in this data, because the blend is inlined
in to the main body of the shader program.

max(min((($MaliALUInstructionsBlendShaderCalls * 4) / $MaliShaderWarpsFragmentWarps)
 * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core functional units

6.3 Shader workload properties
Shader workload property counters track multiple properties of the running workload that can
impact efficiency. These counters are used to identify sources of inefficiency that are not related to
the shader program code.

6.3.1 Partial coverage percentage

This expression defines the percentage of fragment quads that contain samples with no coverage.
A high percentage can indicate that the content has a high density of small triangles, which are
expensive to process. To avoid this, use mesh level-of-detail algorithms to select simpler meshes as
objects move further from the camera.

max(min(($MaliFragmentQuadsPartialRasterizedFineQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

6.3.2 Fragment warp occupancy

This expression measures the thread occupancy of the fragment warps in percent. Threads are
counted as active if they are part of a coarse quad, even if they have no sample coverage.

max(min(($MaliShaderThreadsFragmentThreads / ($MaliShaderWarpsFragmentWarps * 16)) *
 100, 100), 0)

6.3.3 Full warp percentage

This expression defines the percentage of warps that have a full thread slot allocation. Note that
allocated thread slots might not contain a running thread if the workload cannot fill the whole
allocation.

If a high percentage of warps are not fully allocated then performance is reduced. Fully allocated
warps are more likely if:

• Draw calls avoid late ZS dependency hazards.

• Draw calls use meshes with a low percentage of tiny primitives.

• Compute dispatches use work groups that are a multiple of warp size.

max(min(($MaliShaderWarpsFullWarps / ($MaliShaderWarpsNonFragmentWarps +
 $MaliShaderWarpsFragmentWarps)) * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core functional units

6.3.4 Fragment shading rate

This expression defines the percentage of coarse quads generated relative to the number of fine
quads that were rasterized. Coarse quads cover a 2x2 fragment region. Fine quads cover a 2x2
pixel region.

The fragment shading rate is lower than 100% if the application uses variable-rate shading to
reduce shading rate.

The fragment shading rate is higher than 100% if the application uses sample-rate shading to
increase shading rate for a multi-sampled render.

max(min(($MaliFragmentQuadsRasterizedCoarseQuads /
 $MaliFragmentQuadsRasterizedFineQuads) * 100, 100), 0)

6.3.5 Unchanged tile kill percentage

This expression defines the percentage of tiles that are killed by the transaction elimination CRC
check because the content of a tile matches the content already stored in memory.

A high percentage of tile writes being killed indicates that a significant part of the framebuffer is
static from frame to frame. Consider using scissor rectangles to reduce the area that is redrawn.
To help manage the partial frame updates for window surfaces consider using the EGL extensions
such as:

• EGL_KHR_partial_update

• EGL_EXT_swap_buffers_with_damage

max(min(($MaliShaderCoreTilesKilledUnchangedTiles / (4 * $MaliShaderCoreTilesTiles))
 * 100, 100), 0)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core varying unit

7. Shader core varying unit
The varying unit counters monitor the varying interpolation in fragment shaders. If the shader core
utilization counters show that this unit is a bottleneck, these counters can indicate optimization
opportunities.

The interpolator has one or more 32-bit data paths per thread. Each data path can interpolate a
scalar 32-bit value or a vec2 16-bit value in a single cycle. Arm recommends using 16-bit varying
inputs to fragment shaders whenever possible. We also recommend packing 16-bit values into
vec2 or vec4 values. For example, a single vec4 interpolates faster than a separate vec3 and scalar
float pair.

7.1 Varying unit usage
These counters show the usage of the varying interpolation unit, and the breakdown by data type
size.

7.1.1 Varying unit issue cycles

This expression defines the total number of cycles where the varying interpolator is issuing
operations.

($MaliVaryingUnitIssues32BitInterpolationIssues / 4) +
 ($MaliVaryingUnitIssues16BitInterpolationIssues / 4)

7.1.2 16-bit interpolation active cycles

This counter increments for every 16-bit interpolation cycle processed by the varying unit.

$MaliVaryingUnitIssues16BitInterpolationIssues / 4

7.1.3 32-bit interpolation active cycles

This counter increments for every 32-bit interpolation cycle processed by the varying unit. 32-bit
interpolation is half the performance of 16-bit interpolation, so if content is varying bound consider
reducing precision of varying inputs to fragment shaders.

$MaliVaryingUnitIssues32BitInterpolationIssues / 4

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core texture unit

8. Shader core texture unit
The texture unit counters show use of all texture sampling and filtering in shaders. If the
shader core utilization counters show that this unit is a bottleneck, these counters can indicate
optimization opportunities.

8.1 Texture unit usage
These counters show the usage of the texturing unit, and the average number of cycles per
instruction.

8.1.1 Texture filtering cycles

This counter increments for every texture filtering issue cycle. This GPU can do 8x 2D bilinear
texture samples per clock. More complex filtering operations are composed of multiple 2D bilinear
samples, and take proportionally more filtering time to complete. The scaling factors for more
expensive operations are:

• 2D trilinear filtering runs at half speed.

• 3D bilinear filtering runs at half speed.

• 3D trilinear filtering runs at quarter speed.

Anisotropic filtering makes up to MAX_ANISOTROPY filtered subsamples of the current base
filter type. For example, using trilinear filtering with a MAX_ANISOTROPY of 3 will require up to 6
bilinear filters.

$MaliTextureUnitCyclesTextureFilteringActive

8.1.2 Texture filtering cycles using full bilinear

This counter increments for every cycle when the filtering unit data path is running full speed
bilinear filtering.

Filtering will run at half rate for formats that are stored in the cache at more than 32-bits per
decompressed texel.

$MaliTextureUnitCyclesFullBilinearFilterActive

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core texture unit

8.1.3 Texture filtering cycles using full trilinear

This counter increments for every cycle when the filtering unit data path is running full speed
trilinear filtering.

Filtering will run at half rate for formats that are stored in the cache at more than 32-bits per
decompressed texel.

$MaliTextureUnitCyclesFullTrilinearFilterActive

8.1.4 Texture filtering cycles per instruction

This expression defines the average number of texture filtering cycles per instruction. For texture-
limited content that has a CPI higher than the optimal throughout of this core (8 samples per
cycle), consider using simpler texture filters. See Texture unit issue cycles for details of the expected
performance for different types of operation.

$MaliTextureUnitCyclesTextureFilteringActive / ($MaliTextureUnitQuadsTextureMessages
 * 8)

8.2 Texture unit workload properties
This counter shows how efficiently the application workload is at filling the filtering data path with
useful work.

8.2.1 Texture full speed filtering percentage

This expression defines the percentage of texture filtering cycles using the full width of the texture
filtering data path.

Filtering will run at half rate for formats that are stored in the cache at more than 32-bits per
decompressed texel. When using the ASTC texture format, use the decode mode extensions to
opt-in to a 32-bit per pixel intermediate format to ensure you can use the full filtering performance.

max(min((($MaliTextureUnitCyclesFullBilinearFilterActive
 + $MaliTextureUnitCyclesFullTrilinearFilterActive) /
 $MaliTextureUnitCyclesTextureFilteringActive) * 100, 100), 0)

8.3 Texture unit bus utilization
This counter shows how heavily loaded the input and output interface between the shader core
and the texture unit is.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core texture unit

8.3.1 Texture input bus utilization

This expression defines the percentage load on the texture message input bus.

If bus utilization is higher than the filtering unit utilization, your content might be limited by texture
operation parameter passing. Requests that require more input parameters, such as 3D accesses,
array accesses, and accesses using an explicit level-of-detail, place a higher load on the bus than
basic 2D texture operations.

max(min(($MaliTextureUnitBusInputBeats / $MaliShaderCoreCyclesExecutionCoreActive) *
 100, 100), 0)

8.3.2 Texture output bus utilization

This expression defines the percentage load on the texture message output bus.

If bus utilization is higher than the filtering unit utilization, your content might be limited by texture
result return. Requests that require higher precision sampler return type place a higher load on the
bus, so it is recommended to use a 16-bit sampler precision whenever possible.

max(min(($MaliTextureUnitBusOutputBeats / $MaliShaderCoreCyclesExecutionCoreActive)
 * 100, 100), 0)

8.4 Texture unit memory usage
These counters show the average number of bytes read from the L2 cache or external memory per
texture sample.

8.4.1 Texture unit bytes read from L2 per texture cycle

This expression defines the average number of bytes read from the L2 memory system by the
texture unit per filtering cycle. This metric indicates how effectively textures are being cached in
the L1 texture cache.

If more bytes are being requested per access than you would expect for the format you are using,
review your texture settings. Arm recommends:

• Using mipmaps for offline generated textures.

• Using ASTC or ETC compression for offline generated textures.

• Replacing runtime framebuffer formats with narrower formats.

• Reducing use of imageLoad/Store to allow framebuffer compression.

• Reducing use of negative LOD bias used for texture sharpening.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core texture unit

• Reducing use of anisotropic filtering, or reducing the level of MAX_ANISOTROPY used.

($MaliShaderCoreL2ReadsTextureL2ReadBeats * 16) /
 $MaliTextureUnitCyclesTextureFilteringActive

8.4.2 Texture unit bytes read from external memory per texture cycle

This expression defines the average number of bytes read from the external memory system by the
texture unit per filtering cycle. This metric indicates how effectively textures are being cached in
the L2 cache.

If more bytes are being requested per access than you would expect for the format you are using,
review your texture settings. Arm recommends:

• Using mipmaps for offline generated textures.

• Using ASTC or ETC compression for offline generated textures.

• Replacing runtime framebuffer formats with narrower formats.

• Reducing use of imageLoad/Store to allow framebuffer compression.

• Reducing use of negative LOD bias used for texture sharpening.

• Reducing use of anisotropic filtering, or reducing the level of MAX_ANISOTROPY used.

($MaliShaderCoreExternalReadsTextureExternalReadBeats * 16) /
 $MaliTextureUnitCyclesTextureFilteringActive

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core load/store unit

9. Shader core load/store unit
The load/store unit counters show the use of the general-purpose L1 data cache. This unit is used
for all shader data accesses except for texturing, programmatic framebuffer read/write, and end-of-
tile framebuffer write-back.

9.1 Load/store unit usage
The unit usage counters show the content behavior in the load/store unit. These counters show
the number of reads and writes being made, and whether the accesses use the full width of the
available data path.

9.1.1 Load/store unit issue cycles

This expression defines the total number of load/store cache access cycles. This counter ignores
secondary effects such as cache misses, so provides the minimum possible cycle usage.

$MaliLoadStoreUnitCyclesFullRead + $MaliLoadStoreUnitCyclesPartialRead +
 $MaliLoadStoreUnitCyclesFullWrite + $MaliLoadStoreUnitCyclesPartialWrite +
 $MaliLoadStoreUnitCyclesAtomicAccess

9.1.2 Load/store unit full read issues

This counter increments for every full-width load/store cache read.

$MaliLoadStoreUnitCyclesFullRead

9.1.3 Load/store unit partial read issues

This counter increments for every partial-width load/store cache read. Partial data accesses do not
make full use of the load/store cache capability. Merging short accesses together to make fewer
larger requests improves efficiency. To do this in shader code:

• Use vector data loads.

• Avoid padding in strided data accesses.

• Write compute shaders so that adjacent threads in a warp access adjacent addresses in
memory.

$MaliLoadStoreUnitCyclesPartialRead

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core load/store unit

9.1.4 Load/store unit full write issues

This counter increments for every full-width load/store cache write.

$MaliLoadStoreUnitCyclesFullWrite

9.1.5 Load/store unit partial write issues

This counter increments for every partial-width load/store cache write. Partial data accesses do not
make full use of the load/store cache capability. Merging short accesses together to make fewer
larger requests improves efficiency. To do this in shader code:

• Use vector data loads.

• Avoid padding in strided data accesses.

• Write compute shaders so that adjacent threads in a warp access adjacent addresses in
memory.

$MaliLoadStoreUnitCyclesPartialWrite

9.1.6 Load/store unit atomic issues

This counter increments for every atomic access.

Atomic memory accesses are typically multicycle operations per thread in the warp, so they are
exceptionally expensive. Minimize the use of atomics in performance critical code. For some
types of atomic operation, it can be beneficial to perform a warp-wide reduction using subgroup
operations and then use a single thread to update the atomic value.

$MaliLoadStoreUnitCyclesAtomicAccess

9.2 Load/store unit memory usage
The memory usage counters show the average number of bytes read or written to the L2 cache
per load/store read or write. Use these metrics to see how effectively your workloads are using the
L1 and L2 data caches.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core load/store unit

9.2.1 Load/store unit bytes read from L2 per access cycle

This expression defines the average number of bytes read from the L2 memory system by the load/
store unit per read cycle. This metric gives some idea how effectively data is being cached in the L1
load/store cache.

If more bytes are being requested per access than you would expect for the data layout you are
using, review your data layout and access patterns.

($MaliShaderCoreL2ReadsLoadStoreL2ReadBeats * 16) /
 ($MaliLoadStoreUnitCyclesFullRead + $MaliLoadStoreUnitCyclesPartialRead)

9.2.2 Load/store unit bytes read from external memory per access cycle

This expression defines the average number of bytes read from the external memory system by the
load/store unit per read cycle. This metric indicates how effectively data is being cached in the L2
cache.

If more bytes are being requested per access than you would expect for the data layout you are
using, review your data layout and access patterns.

($MaliShaderCoreExternalReadsLoadStoreExternalReadBeats * 16) /
 ($MaliLoadStoreUnitCyclesFullRead + $MaliLoadStoreUnitCyclesPartialRead)

9.2.3 Load/store unit bytes written to L2 per access cycle

This expression defines the average number of bytes written to the L2 memory system by the
load/store unit per write cycle.

If more bytes are being written per access than you would expect for the data layout you are using,
review your data layout and access patterns to improve cache locality.

(($MaliShaderCoreWritesLoadStoreWriteBackWriteBeats +
 $MaliShaderCoreWritesLoadStoreOtherWriteBeats) * 16) /
 ($MaliLoadStoreUnitCyclesFullWrite + $MaliLoadStoreUnitCyclesPartialWrite)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core ray tracing unit

10. Shader core ray tracing unit
Ray tracing unit counters show the shader use of the ray hit testing unit. This unit is used for all
bounding box and triangle hit testing during ray traversal.

10.1 Ray tracing unit usage
The unit usage counters show the processing load on the box test unit and the triangle test unit.
These units run in parallel, so the overall loading is the maximum of these two values.

10.1.1 Ray tracing box tester issue cycles

This counter increments for every cycle the ray tracing unit issues a box intersection operation. If
this counter is a high percentage of shader core active, then shader performance might be limited
by acceleration structure traversal.

The main workload for ray tracing is traversing the acceleration structure so this counter is
expected to be high. If the counter is not high, and a significant number of rays are being used, it
indicates that a bottleneck exists elsewhere.

$MaliRayTracingUnitCyclesBoxTesterActive

10.1.2 Ray tracing triangle tester issue cycles

This counter increments for every cycle the ray tracing unit issues a triangle intersection test. If this
counter is a high percentage of shader core active, then shader performance might be limited by
triangle testing.

A good acceleration structure culls most triangles using box tests higher up the tree, so that rays
do not need to be tested against them. If this counter is high it might indicate an issue with either
geometry complexity or acceleration structure efficiency.

$MaliRayTracingUnitCyclesTriangleTesterActive

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core ray tracing unit

10.2 Ray tracing unit workload properties
Acceleration structure traversal can handle different types of traversal for opaque geometry,
and transparent geometry. These counters give information about the types of traversal being
encountered during ray tracing.

Improve ray tracing performance by minimizing the use of transparent geometry and using
traversals that terminate on first hit.

10.2.1 Ray tracing started rays

This counter increments for every ray that is started and tested against the root node in the
acceleration structure.

$MaliRayTracingUnitRaysStartedRays

10.2.2 Ray tracing opaque triangle hits

This counter increments for every ray intersection with an opaque triangle.

$MaliRayTracingUnitTriangleWorkloadOpaqueTriangleHits

10.2.3 Ray tracing non-opaque triangle hits

This counter increments for every ray intersection with a non-opaque triangle.

Non-opaque triangles are more expensive to process than opaque triangles, so Arm recommends
using opaque triangles in acceleration structures.

$MaliRayTracingUnitTriangleWorkloadNonOpaqueTriangleHits

10.2.4 Ray tracing ray misses

This counter increments for every ray that misses and fails to intersect during a triangle
intersection test.

Most triangles that a ray misses are culled by the acceleration structure, so if this number is high try
improving the acceleration structure quality. A high number for this counter might also might also
indicate a programming error, such as using opaque triangles and requesting that opaque hits be
culled.

$MaliRayTracingUnitRaysMissedRays

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core ray tracing unit

10.2.5 Ray tracing first hit terminations

This counter increments for every ray that terminates on its first triangle hit. Rays that terminate on
first hit are more efficient to process, as they do not need to keep testing to find the closest hit.

First-hit tests are well suited to techniques that determine occlusion, such as shadow mapping. In
these use cases you don’t need to know which object is hit, just that an object was hit between the
ray source and destination.

$MaliRayTracingUnitRaysFirstHitTerminatedRays

10.3 Ray tracing box test coherency
The ray tracing unit tests a single warp against a single bounding box. Divergent rays that do not
require the current test are masked, reducing the efficiency of the walk. This histogram gives the
number of active lanes per warp per box batch.

Improve ray tracing performance by ensuring rays in each warp are spatially coherent.

10.3.1 Ray tracing box nodes with 13-16 rays

This count increments for every acceleration structure box node tested when there are between 13
and 16 active rays in the warp.

$MaliRayTracingUnitBoxTestBoxNodesWith1316Rays

10.3.2 Ray tracing box nodes with 9-12 rays

This count increments for every acceleration structure box node tested when there are between 9
and 12 active rays in the warp. A high percentage of tests with low warp occupancy can indicate an
issue with ray coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingUnitBoxTestBoxNodesWith912Rays

10.3.3 Ray tracing box nodes with 5-8 rays

This count increments for every acceleration structure box node tested when there are between 5
and 8 active rays in the warp. A high percentage of tests with low warp occupancy can indicate an
issue with ray coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingUnitBoxTestBoxNodesWith58Rays

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core ray tracing unit

10.3.4 Ray tracing box nodes with 1-4 rays

This count increments for every acceleration structure box node tested when there are between 1
and 4 active rays in the warp. A high percentage of tests with low warp occupancy can indicate an
issue with ray coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingUnitBoxTestBoxNodesWith14Rays

10.4 Ray tracing triangle test coherency
The ray tracing unit test a single warp against a single triangle. Divergent rays that do not require
the current triangle test are masked, reducing the efficiency of the walk. This histogram gives the
number of active rays per warp.

Improve ray tracing performance by ensuring rays in each warp are spatially coherent.

10.4.1 Ray tracing triangle batches with 13-16 rays

This count increments for every triangle batch tested when there are between 13 and 16 active
rays in the warp.

$MaliRayTracingUnitTriangleTestTriangleBatchesWith1316Rays

10.4.2 Ray tracing triangle batches with 9-12 rays

This count increments for every triangle batch tested when there are between 9 and 12 active rays
in the warp. A high percentage of tests with low warp occupancy can indicate an issue with ray
coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingUnitTriangleTestTriangleBatchesWith912Rays

10.4.3 Ray tracing triangle batches with 5-8 rays

This count increments for every triangle batch tested when there are between 5 and 8 active rays
in the warp. A high percentage of tests with low warp occupancy can indicate an issue with ray
coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingUnitTriangleTestTriangleBatchesWith58Rays

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core ray tracing unit

10.4.4 Ray tracing triangle batches with 1-4 rays

This count increments for every triangle batch tested when there are between 1 and 4 active rays
in the warp. A high percentage of tests with low warp occupancy can indicate an issue with ray
coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingUnitTriangleTestTriangleBatchesWith14Rays

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core memory traffic

11. Shader core memory traffic
The shader core memory traffic counters show the total amount of memory access a shader core
makes to the L2 cache and external memory system. If you have bandwidth issues, use the data
breakdown to identify the unit making the most accesses, and target that unit for optimization.

11.1 Read access from L2 cache
The L2 memory read counters show the shader core memory read traffic that is fetched from the
GPU L2 cache.

11.1.1 Front-end unit read bytes from L2 cache

This expression defines the total number of bytes read from the L2 memory system by the
fragment front-end unit.

$MaliShaderCoreL2ReadsFragmentL2ReadBeats * 16

11.1.2 Load/store unit read bytes from L2 cache

This expression defines the total number of bytes read from the L2 memory system by the load/
store unit.

$MaliShaderCoreL2ReadsLoadStoreL2ReadBeats * 16

11.1.3 Texture unit read bytes from L2 cache

This expression defines the total number of bytes read from the L2 memory system by the texture
unit.

$MaliShaderCoreL2ReadsTextureL2ReadBeats * 16

11.2 Read access from external memory
The external memory read counters show the shader core memory read traffic that misses in the
GPU cache and that is fetched from the external memory system. This data is either fetched from a
layer of system cache external to the GPU, or from the main system DRAM.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

Shader core memory traffic

11.2.1 Front-end unit read bytes from external memory

This expression defines the total number of bytes read from the external memory system by the
fragment front-end unit.

$MaliShaderCoreExternalReadsFragmentExternalReadBeats * 16

11.2.2 Load/store unit read bytes from external memory

This expression defines the total number of bytes read from the external memory system by the
load/store unit.

$MaliShaderCoreExternalReadsLoadStoreExternalReadBeats * 16

11.2.3 Texture unit read bytes from external memory

This expression defines the total number of bytes read from the external memory system by the
texture unit.

$MaliShaderCoreExternalReadsTextureExternalReadBeats * 16

11.3 Write access
The memory write counters show the shader core memory traffic that is written into the memory
system. These writes can be buffered by the GPU L2, or sent to external memory.

11.3.1 Load/store unit write bytes

This expression defines the total number of bytes written to the L2 memory system by the load/
store unit.

($MaliShaderCoreWritesLoadStoreWriteBackWriteBeats +
 $MaliShaderCoreWritesLoadStoreOtherWriteBeats) * 16

11.3.2 Tile unit write bytes

This expression defines the total number of bytes written to the L2 memory system by the tile
write-back unit.

$MaliShaderCoreWritesTileUnitWriteBeats * 16

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 57

Arm® Mali™-G615 Performance Counters Reference Guide Document ID: 107775_0106_en
1.6

GPU configuration

12. GPU configuration
The GPU configuration counters show the hardware product configuration in the target device. For
example, showing the number of shader cores present in the design.

12.1 GPU configuration counters
The configuration counters are virtual counters that you can use to scale performance results
and create alternative data visualizations. For example, multiplying the per shader core workload
counter series by $MaliConstantsShaderCoreCount would give a GPU-wide total.

12.1.1 Shader core count

This configuration constant defines the number of shader cores in the design.

$MaliConstantsShaderCoreCount

12.1.2 L2 cache slice count

This configuration constant defines the number of L2 cache slices in the design.

$MaliConstantsL2SliceCount

12.1.3 External bus beat size

This configuration constant defines the number of bytes transferred per external bus beat.

($MaliConstantsBusWidthBits / 8)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 57

	Arm® Mali™-G615 Performance Counters Reference Guide
	Contents
	1. Arm® Mali™-G615 GPU performance counters
	1.1 Counter handling
	1.2 Guide content

	2. CPU performance
	2.1 CPU activity
	2.2 CPU cycles

	3. GPU activity
	3.1 GPU usage
	3.1.1 GPU active cycles
	3.1.2 MCU active cycles
	3.1.3 Vertex queue active cycles
	3.1.4 Fragment queue active cycles
	3.1.5 Compute queue active cycles
	3.1.6 GPU interrupt pending cycles

	3.2 GPU utilization
	3.2.1 Microcontroller utilization
	3.2.2 Vertex queue utilization
	3.2.3 Fragment queue utilization
	3.2.4 Compute queue utilization

	3.3 External memory bandwidth
	3.3.1 Output external read bytes
	3.3.2 Output external write bytes

	3.4 External memory stalls
	3.4.1 Output external read stall percentage
	3.4.2 Output external write stall percentage

	3.5 External memory read latency
	3.5.1 Output external read latency 0-127 cycles
	3.5.2 Output external read latency 128-191 cycles
	3.5.3 Output external read latency 192-255 cycles
	3.5.4 Output external read latency 256-319 cycles
	3.5.5 Output external read latency 320-383 cycles
	3.5.6 Output external read latency 384+ cycles

	4. Content behavior
	4.1 Geometry usage
	4.1.1 Total input primitives
	4.1.2 Culled primitives
	4.1.3 Visible primitives

	4.2 Geometry culling
	4.2.1 Visible primitive percentage
	4.2.2 Facing plane test cull percentage
	4.2.3 Frustum test cull percentage
	4.2.4 Sample test cull percentage

	4.3 Vertex shading
	4.3.1 Position shader thread invocations
	4.3.2 Varying shader thread invocations

	4.4 Vertex shading efficiency
	4.4.1 Position threads per input primitive
	4.4.2 Varying threads per input primitive

	4.5 Fragment overview
	4.5.1 Pixels
	4.5.2 Average cycles per pixel
	4.5.3 Fragments per pixel

	4.6 Fragment depth and stencil testing
	4.6.1 Early ZS tested quad percentage
	4.6.2 Early ZS updated quad percentage
	4.6.3 Early ZS killed quad percentage
	4.6.4 FPK killed quad percentage
	4.6.5 Late ZS tested quad percentage
	4.6.6 Late ZS killed quad percentage

	4.7 Fragment shader invocation rate
	4.7.1 Fragment shading rate

	5. Shader core data path
	5.1 Shader core workload
	5.1.1 Non-fragment warps
	5.1.2 Fragment warps

	5.2 Shader core throughput
	5.2.1 Average cycles per non-fragment thread
	5.2.2 Average cycles per fragment thread

	5.3 Shader core data path utilization
	5.3.1 Shader core usage
	5.3.2 Non-fragment utilization
	5.3.3 Fragment utilization
	5.3.4 Fragment FPK buffer utilization
	5.3.5 Execution core utilization

	6. Shader core functional units
	6.1 Functional unit utilization
	6.1.1 Arithmetic unit utilization
	6.1.2 Varying unit utilization
	6.1.3 Texture unit utilization
	6.1.4 Load/store unit utilization
	6.1.5 Ray tracing unit utilization

	6.2 Shader program properties
	6.2.1 Narrow arithmetic percentage
	6.2.2 Warp divergence percentage
	6.2.3 All registers warp percentage
	6.2.4 Shader blend percentage

	6.3 Shader workload properties
	6.3.1 Partial coverage percentage
	6.3.2 Fragment warp occupancy
	6.3.3 Full warp percentage
	6.3.4 Fragment shading rate
	6.3.5 Unchanged tile kill percentage

	7. Shader core varying unit
	7.1 Varying unit usage
	7.1.1 Varying unit issue cycles
	7.1.2 16-bit interpolation active cycles
	7.1.3 32-bit interpolation active cycles

	8. Shader core texture unit
	8.1 Texture unit usage
	8.1.1 Texture filtering cycles
	8.1.2 Texture filtering cycles using full bilinear
	8.1.3 Texture filtering cycles using full trilinear
	8.1.4 Texture filtering cycles per instruction

	8.2 Texture unit workload properties
	8.2.1 Texture full speed filtering percentage

	8.3 Texture unit bus utilization
	8.3.1 Texture input bus utilization
	8.3.2 Texture output bus utilization

	8.4 Texture unit memory usage
	8.4.1 Texture unit bytes read from L2 per texture cycle
	8.4.2 Texture unit bytes read from external memory per texture cycle

	9. Shader core load/store unit
	9.1 Load/store unit usage
	9.1.1 Load/store unit issue cycles
	9.1.2 Load/store unit full read issues
	9.1.3 Load/store unit partial read issues
	9.1.4 Load/store unit full write issues
	9.1.5 Load/store unit partial write issues
	9.1.6 Load/store unit atomic issues

	9.2 Load/store unit memory usage
	9.2.1 Load/store unit bytes read from L2 per access cycle
	9.2.2 Load/store unit bytes read from external memory per access cycle
	9.2.3 Load/store unit bytes written to L2 per access cycle

	10. Shader core ray tracing unit
	10.1 Ray tracing unit usage
	10.1.1 Ray tracing box tester issue cycles
	10.1.2 Ray tracing triangle tester issue cycles

	10.2 Ray tracing unit workload properties
	10.2.1 Ray tracing started rays
	10.2.2 Ray tracing opaque triangle hits
	10.2.3 Ray tracing non-opaque triangle hits
	10.2.4 Ray tracing ray misses
	10.2.5 Ray tracing first hit terminations

	10.3 Ray tracing box test coherency
	10.3.1 Ray tracing box nodes with 13-16 rays
	10.3.2 Ray tracing box nodes with 9-12 rays
	10.3.3 Ray tracing box nodes with 5-8 rays
	10.3.4 Ray tracing box nodes with 1-4 rays

	10.4 Ray tracing triangle test coherency
	10.4.1 Ray tracing triangle batches with 13-16 rays
	10.4.2 Ray tracing triangle batches with 9-12 rays
	10.4.3 Ray tracing triangle batches with 5-8 rays
	10.4.4 Ray tracing triangle batches with 1-4 rays

	11. Shader core memory traffic
	11.1 Read access from L2 cache
	11.1.1 Front-end unit read bytes from L2 cache
	11.1.2 Load/store unit read bytes from L2 cache
	11.1.3 Texture unit read bytes from L2 cache

	11.2 Read access from external memory
	11.2.1 Front-end unit read bytes from external memory
	11.2.2 Load/store unit read bytes from external memory
	11.2.3 Texture unit read bytes from external memory

	11.3 Write access
	11.3.1 Load/store unit write bytes
	11.3.2 Tile unit write bytes

	12. GPU configuration
	12.1 GPU configuration counters
	12.1.1 Shader core count
	12.1.2 L2 cache slice count
	12.1.3 External bus beat size

