
Cortex-M7 (AT610) and Cortex-M7 with FPU
(AT611)

Software Developer Errata Notice

Date of issue: May 28, 2024

Non-Confidential Document version: 11.0

Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited (or its
affiliates). All rights reserved.

Document ID: SDEN-1068427

This document contains all known errata since the r0p1 release of the product.

This document is Non-Confidential.

Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited (or its affiliates). All rights reserved.

This document is protected by copyright and other intellectual property rights.

Arm only permits use of this document if you have reviewed and accepted Arm's Proprietary notice found at the end of
this document.

This document (SDEN_1068427_11.0_en) was issued on May 28, 2024.

There might be a later issue at http://developer.arm.com/documentation/SDEN-1068427

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that
can be offensive. Arm strives to lead the industry and create change.

If you find offensive language in this document, please email terms@arm.com.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Cortex-M7
(AT610) and Cortex-M7 with FPU (AT611), create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey:
https://developer.arm.com/documentation-feedback-survey.

http://developer.arm.com/documentation/SDEN-1068427
mailto:terms@arm.com
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey

Contents
Introduction

Scope

Categorization of errata

Change Control

Errata summary table

Errata descriptions
Category A

1259864  Data corruption in a sequence of Write-Through stores and loads

Category A (rare)

Category B
412512  Cortex-M7 TPIU might lose trace data in configurations with an ETM but no ITM

426115  Interrupting a FAULTMASK-setting instruction might cause incorrect MPU
instruction attributes

440977  Increasing priority using a write to BASEPRI does not take effect immediately

565285  Core can send AXI transactions that permit reordering when it should not

1013783  PLD might perform linefill to address that would generate a MemManage Fault

2328489  TCM bandwidth sharing between AHBS writes and software stores might not
function correctly when using TCM wait states

Category B (rare)
443753  A sequence of cacheable stores to memory locations that always return bus faults

might cause deadlock

Category C
399743  The Fault Address Register (FAR) might be corrupted when BFHFNMIGN is set

408519  Incorrect GTS packet generation when global timestamps are enabled during debug
using the ITM

416915  HFSR.FORCED bit is not set for configurable priority faults which result in
LOCKUP

421025  Early forwarding from load is incorrectly cancelled inside IT block

422825  MPU fetch attributes might transiently be incorrect after an exception return

423541  Interrupts on a bus-aborting strongly-ordered or device load to the stack pointer
might cause incorrect exception stacking

431216  Unimplemented bits of BASEPRI do not read-as-zero

449383  Write to FPCCR.ASPEN while a Single-precision FP MAC is completing might
corrupt the FP register bank

486321  Incorrect behavior of profiling counters

505438  TPIU cannot be flushed in Debug state if Cortex-M7 TPIU is used

5

5

5

6

9

11

11

11

12

13

13

15

17

19

21

23

25

25

27

27

29

31

33

35

37

39

41

43

45

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 3 of 63

Non-Confidential

513195  Lock Status Indication incorrectly reads as one for debugger reads

636315  Software programming errors might not be reported for on-line MBIST access to
the I-Cache

702596  Single stepping Cortex-M7 enters pending exception handler

1267980  ECC error causes data corruption when the data cache error bank registers are
locked

1313001  Store after cache invalidate without intervening barrier might cause inconsistent
memory view

1315869  Data corruption for load following Store-Exclusive

1518990  Value used for DWT Data Value Comparison is in memory-endianness format, not
little-endian

3092511  Cortex-M7 can halt in an incorrect address when breakpoint and exception occurs
simultaneously

Proprietary notice

Product and document information
Product status

Product completeness status

Product revision status

47

49

51

53

54

56

58

59

61

63

63

63

63

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 4 of 63

Non-Confidential

Introduction
Scope
This document describes errata categorized by level of severity. Each description includes:

The current status of the erratum.
Where the implementation deviates from the specification and the conditions required for erroneous
behavior to occur.
The implications of the erratum with respect to typical applications.
The application and limitations of a workaround where possible.

Categorization of errata
Errata are split into three levels of severity and further qualified as common or rare:

Category A A critical error. No workaround is available or workarounds are impactful. The error is likely to be common
for many systems and applications.

Category A (Rare) A critical error. No workaround is available or workarounds are impactful. The error is likely to be rare for
most systems and applications. Rare is determined by analysis, verification and usage.

Category B A significant error or a critical error with an acceptable workaround. The error is likely to be common for
many systems and applications.

Category B (Rare) A significant error or a critical error with an acceptable workaround. The error is likely to be rare for most
systems and applications. Rare is determined by analysis, verification and usage.

Category C A minor error.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 5 of 63

Non-Confidential

Change Control
Errata are listed in this section if they are new to the document, or marked as "updated" if there has
been any change to the erratum text. Fixed errata are not shown as updated unless the erratum text has
changed. The errata summary table identifies errata that have been fixed in each product revision.

May 28, 2024: Changes in document version v11.0

ID Status Area Category Summary

412512 Updated Programmer Category B Cortex-M7 TPIU might lose trace data in configurations with an ETM
but no ITM

426115 Updated Programmer Category B Interrupting a FAULTMASK-setting instruction might cause incorrect
MPU instruction attributes

440977 Updated Programmer Category B Increasing priority using a write to BASEPRI does not take effect
immediately

565285 Updated Programmer Category B Core can send AXI transactions that permit reordering when it should
not

443753 Updated Programmer Category B (rare) A sequence of cacheable stores to memory locations that always
return bus faults might cause deadlock

399743 Updated Programmer Category C The Fault Address Register (FAR) might be corrupted when
BFHFNMIGN is set

408519 Updated Programmer Category C Incorrect GTS packet generation when global timestamps are enabled
during debug using the ITM

416915 Updated Programmer Category C HFSR.FORCED bit is not set for configurable priority faults which
result in LOCKUP

421025 Updated Programmer Category C Early forwarding from load is incorrectly cancelled inside IT block

422825 Updated Programmer Category C MPU fetch attributes might transiently be incorrect after an exception
return

423541 Updated Programmer Category C Interrupts on a bus-aborting strongly-ordered or device load to the
stack pointer might cause incorrect exception stacking

431216 Updated Programmer Category C Unimplemented bits of BASEPRI do not read-as-zero

449383 Updated Programmer Category C Write to FPCCR.ASPEN while a Single-precision FP MAC is
completing might corrupt the FP register bank

486321 Updated Programmer Category C Incorrect behavior of profiling counters

505438 Updated Programmer Category C TPIU cannot be flushed in Debug state if Cortex-M7 TPIU is used

513195 Updated Programmer Category C Lock Status Indication incorrectly reads as one for debugger reads

3092511 New Programmer Category C Cortex-M7 can halt in an incorrect address when breakpoint and
exception occurs simultaneously

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 6 of 63

Non-Confidential

October 25, 2021: Changes in document version v10.0

ID Status Area Category Summary

2328489 New Programmer Category B TCM bandwidth sharing between AHBS writes and software stores might not
function correctly when using TCM wait states

December 04, 2019: Changes in document version v9.0

ID Status Area Category Summary

1518990 New Programmer Category C Value used for DWT Data Value Comparison is in memory-endianness
format, not little-endian

November 28, 2018: Changes in document version v8.0

ID Status Area Category Summary

1013783 Updated Programmer Category B PLD might perform linefill to address that would generate a MemManage
Fault

1267980 New Programmer Category C ECC error causes data corruption when the data cache error bank registers
are locked

1313001 New Programmer Category C Store after cache invalidate without intervening barrier might cause
inconsistent memory view

1315869 New Programmer Category C Data corruption for load following Store-Exclusive

November 09, 2018: Changes in document version v7.0

ID Status Area Category Summary

1259864 New Programmer Category A Data corruption in a sequence of Write-Through stores and loads

565285 New Programmer Category B Core can send AXI transactions that permit reordering when it should not

1013783 New Programmer Category B PLD might perform linefill to address that would generate a MemManage
Fault

636315 New Programmer Category C Software programming errors might not be reported for on-line MBIST access
to the I-Cache

702596 New Programmer Category C Single stepping Cortex-M7 enters pending exception handler

July 16, 2015: Changes in document version v6.0

ID Status Area Category Summary

443753 Updated Programmer Category B (rare) A sequence of cacheable stores to memory locations that always return
bus faults might cause deadlock

416915 Updated Programmer Category C HFSR.FORCED bit is not set for configurable priority faults which
result in LOCKUP

421025 Updated Programmer Category C Early forwarding from load is incorrectly cancelled inside IT block

486321 New Programmer Category C Incorrect behavior of profiling counters

505438 New Programmer Category C TPIU cannot be flushed in Debug state if Cortex-M7 TPIU is used

513195 New Programmer Category C Lock Status Indication incorrectly reads as one for debugger reads

March 29, 2015: Changes in document version v5.0
No new or updated errata in this document version.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 7 of 63

Non-Confidential

December 04, 2014: Changes in document version v4.0

ID Status Area Category Summary

412512 New Programmer Category B Cortex-M7 TPIU might lose trace data in configurations with an ETM but
no ITM

440977 New Programmer Category B Increasing priority using a write to BASEPRI does not take effect
immediately

443753 New Programmer Category B (rare) A sequence of cacheable stores to memory locations that always return
bus faults might cause deadlock

408519 New Programmer Category C Incorrect GTS packet generation when global timestamps are enabled
during debug using the ITM

449383 New Programmer Category C Write to FPCCR.ASPEN while a Single-precision FP MAC is completing
might corrupt the FP register bank

November 11, 2014: Changes in document version v3.0

ID Status Area Category Summary

426115 New Programmer Category B Interrupting a FAULTMASK-setting instruction might cause incorrect MPU
instruction attributes

416915 New Programmer Category C HFSR.FORCED bit is not set for configurable priority faults which result in
LOCKUP

422825 New Programmer Category C MPU fetch attributes might transiently be incorrect after an exception return

423541 New Programmer Category C Interrupts on a bus-aborting strongly-ordered or device load to the stack
pointer might cause incorrect exception stacking

431216 New Programmer Category C Unimplemented bits of BASEPRI do not read-as-zero

September 12, 2014: Changes in document version v2.0

ID Status Area Category Summary

399743 New Programmer Category C The Fault Address Register (FAR) might be corrupted when BFHFNMIGN is set

421025 New Programmer Category C Early forwarding from load is incorrectly cancelled inside IT block

April 28, 2014: Changes in document version v1.0
No errata in this document version.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 8 of 63

Non-Confidential

Errata summary table
The errata associated with this product affect the product versions described in the following table.

ID Area Category Summary Found in versions Fixed in
version

1259864 Programmer Category A Data corruption in a sequence of
Write-Through stores and loads r0p1, r0p2, r1p0, r1p1 r1p2

412512 Programmer Category B
Cortex-M7 TPIU might lose trace
data in configurations with an
ETM but no ITM

r0p1 r0p2

426115 Programmer Category B

Interrupting a FAULTMASK-
setting instruction might cause
incorrect MPU instruction
attributes

r0p1 r0p2

440977 Programmer Category B
Increasing priority using a write to
BASEPRI does not take effect
immediately

r0p1 r0p2

565285 Programmer Category B
Core can send AXI transactions
that permit reordering when it
should not

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

1013783 Programmer Category B
PLD might perform linefill to
address that would generate a
MemManage Fault

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

2328489 Programmer Category B

TCM bandwidth sharing between
AHBS writes and software stores
might not function correctly when
using TCM wait states

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

443753 Programmer Category B (rare)

A sequence of cacheable stores to
memory locations that always
return bus faults might cause
deadlock

r0p1 r0p2

399743 Programmer Category C
The Fault Address Register (FAR)
might be corrupted when
BFHFNMIGN is set

r0p1 r0p2

408519 Programmer Category C

Incorrect GTS packet generation
when global timestamps are
enabled during debug using the
ITM

r0p1 r0p2

416915 Programmer Category C
HFSR.FORCED bit is not set for
configurable priority faults which
result in LOCKUP

r0p1 r0p2

421025 Programmer Category C
Early forwarding from load is
incorrectly cancelled inside IT
block

r0p1 r0p2

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 9 of 63

Non-Confidential

422825 Programmer Category C
MPU fetch attributes might
transiently be incorrect after an
exception return

r0p1 r0p2

423541 Programmer Category C

Interrupts on a bus-aborting
strongly-ordered or device load to
the stack pointer might cause
incorrect exception stacking

r0p1 r0p2

431216 Programmer Category C Unimplemented bits of BASEPRI
do not read-as-zero r0p1 r0p2

449383 Programmer Category C

Write to FPCCR.ASPEN while a
Single-precision FP MAC is
completing might corrupt the FP
register bank

r0p1 r0p2

486321 Programmer Category C Incorrect behavior of profiling
counters r0p1, r0p2, r1p0 r1p1

505438 Programmer Category C TPIU cannot be flushed in Debug
state if Cortex-M7 TPIU is used r0p2, r1p0 r1p1

513195 Programmer Category C Lock Status Indication incorrectly
reads as one for debugger reads r0p1, r0p2, r1p0 r1p1

636315 Programmer Category C
Software programming errors
might not be reported for on-line
MBIST access to the I-Cache

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

702596 Programmer Category C Single stepping Cortex-M7 enters
pending exception handler r0p1 r0p2

1267980 Programmer Category C
ECC error causes data corruption
when the data cache error bank
registers are locked

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

1313001 Programmer Category C
Store after cache invalidate
without intervening barrier might
cause inconsistent memory view

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

1315869 Programmer Category C Data corruption for load following
Store-Exclusive

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

1518990 Programmer Category C

Value used for DWT Data Value
Comparison is in memory-
endianness format, not little-
endian

r0p1, r0p2, r1p0, r1p1,
r1p2 Open

3092511 Programmer Category C
Cortex-M7 can halt in an incorrect
address when breakpoint and
exception occurs simultaneously

REL, r0px , r1p0, r1p1 Open

ID Area Category Summary Found in versions Fixed in
version

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 10 of 63

Non-Confidential

Errata descriptions
Category A

1259864 
Data corruption in a sequence of Write-Through stores and loads

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category A
Fault Status: Present in r0p1, r0p2, r1p0 and r1p1. Fixed in r1p2.

Description

If a particular sequence of stores and loads is performed to Write-Through memory, and some timing-
based internal conditions are met, then a load might not get the last data stored to that address.

Configurations Affected

All configurations with a data cache are affected.

Conditions

This erratum can only occur if the loads and stores are to Write-Through memory. This could be because
of any of the following:

1. The Memory Protection Unit (MPU) has been programmed to set this address as Write-Through.
2. The default memory map is being used, and this address is Write-Through in the default memory

map.
3. The memory is cacheable, and the CM7_CACR.FORCEWT bit is set.
4. The memory is cacheable, shared, and the CM7_CACR.SIWT bit is set.

The following sequence is required for this erratum to occur:

1. The address of interest must be in the data cache.
2. A Write-Through store is performed to the same double-word as the address of interest.
3. One of the following:

A linefill is started (to a different cacheline to the address of interest) that allocates to the same
set and way as the address of interest.
An Error Correcting Code (ECC) error is observed anywhere in the data cache.
A data cache maintenance operation without a following Data Synchronization Barrier (DSB).

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 11 of 63

Non-Confidential

4. A store to the address of interest.
5. A load to the address of interest.

If certain specific timing conditions are met, the load gets the data from the first store, or from what was
in the cache at the start of the sequence instead of the data from the second store.

Implications

A load can return incorrect data.

Workaround

There is no direct workaround for this erratum.

Where possible, Arm recommends that you use the MPU to change the attributes on any Write-Through
memory to Write-Back memory. If this is not possible, it might be necessary to disable the cache for
sections of code that access Write-Through memory.

Category A (rare)
There are no errata in this category.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 12 of 63

Non-Confidential

Category B

412512 
Cortex-M7 TPIU might lose trace data in configurations with an ETM but no
ITM

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category B
Fault Status: Present in r0p1. Fixed in r0p2.

Description

The Cortex-M7 TPIU outputs ETM and ITM trace data in 16-byte frames as specified by the CoreSight
architecture. To complete each frame the TPIU must either wait for sufficient trace data or must receive
a DSYNC signal from the DWT. The DSYNC signal is intended to force the TPIU to complete partial
frames periodically or whenever the processor halts.

Because of this erratum, the DSYNC signal is inactive, thereby preventing the completion and output of
trace data for partial frames.

Configurations affected

This affects configurations with:

an ETM present AND
an ITM not present AND
the Cortex-M7 TPIU.

Conditions

An affected configuration will always suffer from this erratum when the TPIU is enabled.

Implications

This erratum can cause loss of the final bytes of trace data in a tracing session. This applies to a
maximum of 15 bytes.

Additionally, when the processor enters halt, it is possible that all the trace packets generated before the
halt entry will not be presented to the debug tools when expected. This might cause misinterpretation of
the trace data but is not expected to cause decompression errors.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 13 of 63

Non-Confidential

Workaround

There is no workaround for this erratum.

Please note that this erratum is now published as ID 412512. The previous ID 839170 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 14 of 63

Non-Confidential

426115 
Interrupting a FAULTMASK-setting instruction might cause incorrect MPU
instruction attributes

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category B
Fault Status: Present in r0p1. Fixed in r0p2.

Description

When the MPU_CTRL.HFNMIENA is clear the MPU uses the default memory map instead of the
programmed regions when executing at HardFault or NMI priority. This includes code where
FAULTMASK is set.

Because of this erratum, if an instruction attempting to set FAULTMASK is interrupted, all fetch MPU
lookups in the interrupt handler might incorrectly be performed at HardFault or NMI priority.

Configurations affected

This erratum affects all configurations of the processor that include an MPU.

Conditions

The following conditions are required for this erratum to occur:

The MPU is enabled and the MPU_CTRL.HFNMIENA bit is b0.
The processor is executing at priority >0.
Execution of a CPS or MSR instruction to set FAULTMASK is attempted.
An asynchronous exception (that is not NMI) is recognised while this instruction is executing such
that it is killed and FAULTMASK is not set.

In this situation, the processor will incorrectly consider all fetch MPU lookups for the interrupt handler to
be at HardFault or NMI priority. This effect will continue until either the handler completes and performs
a return, or until another exception is taken.

Implications

This erratum only affects instruction fetches.
The MPU attributes returned will be incorrect. This could result in:

xN faults not taken when they should be
Spurious xN faults

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 15 of 63

Non-Confidential

Incorrect attributes on the AXI interface that could cause system-specific effects, for example, if
system caching is implemented. Note however that since this issue only applies to instruction
fetches, system caches are unlikely to return incorrect instruction data in the absence of self-
modifying code. If self-modifying code is used, appropriate use of clean and invalidate operations can
be used to work around this issue.

Note that this erratum does not represent a privilege violation because the affected code will be still be
executed with the correct privilege.

Workaround

The instruction to attempt to set FAULTMASK should only be executed with PRIMASK set.

So the sequence:
<CPS/MSR to set FAULTMASK>

should be replaced by:

CPSID i
<CPS/MSR to set FAULTMASK>

Please note that this erratum is now published as ID 426115. The previous ID 834922 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 16 of 63

Non-Confidential

440977 
Increasing priority using a write to BASEPRI does not take effect immediately

Status

Affects:Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category B
Fault Status: Present in r0p1. Fixed in r0p2.

Description

An MSR to BASEPRI or BASEPRI_MAX can be used to boost current execution priority.

This update is required to be serialised to the instruction stream meaning that after this update
completes, it takes effect immediately and no exceptions of lower priority than the new boosted priority
can pre-empt execution.

Because of this erratum, the priority boosting does not take place immediately, allowing the instruction
after the MSR to be interrupted by an exception of lower priority than the new boosted priority.

This effect is only limited to the next instruction. Subsequent instructions are guaranteed to see the new
boosted priority.

Configurations affected

This erratum affects all configurations of the processor.

Conditions

The following scenario is required to hit this erratum:

1. An MSR to BASEPRI or BASEPRI_MAX is executed to increase current execution priority.
2. An asynchronous exception (interrupt, asynchronous bus fault, SysTick, PendSV) becomes pending

around the time that the MSR is being executed. The priority of this exception is higher than the
execution priority before the MSR and lower than the priority after it.

Under these conditions, the asynchronous exception might be taken after the MSR completes. In this
situation, the return address stacked will point to the instruction after the MSR.

The window for this erratum ends when the instruction after the MSR completes. After this, this erratum
cannot occur.

Implications

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 17 of 63

Non-Confidential

This erratum means that the instruction after an MSR to boost BASEPRI might incorrectly be pre-empted
by an insufficiently high priority exception.

Note that this erratum only affects MSR to BASEPRI or BASEPRI_MAX.
MSR or CPS to PRIMASK or FAULTMASK work correctly.

Workaround

To work around this problem, the MSR to boost BASEPRI can be replaced by the following code
sequence:

CPSID i
MSR to BASEPRI
CPSIE i
<critical region code>

Please note that this erratum is now published as ID 440977. The previous ID 837070 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 18 of 63

Non-Confidential

565285 
Core can send AXI transactions that permit reordering when it should not

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category B
Fault Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open

Description

The AXI protocol allows transactions on different write IDs to be reordered with respect to one another.
Because of this erratum, the core might output a write transaction using the ID for cacheable data
before the slave asserts BVALID for a write transaction that is the same address and uses the ID for
evictions. If the slave or interconnect were to reorder these transactions, then this can result in storing
the wrong data in memory. The store data is always output on WDATA in the correct order.

Configurations Affected

All configurations that include a data cache are affected.

Conditions

This erratum requires an eviction followed by a cacheable store to an address that was present in the
eviction.

There are two scenarios when this can happen.
In the first scenario, the eviction and write are not directly related.

1. An eviction occurs for any reason
2. A cacheable store, to an address present in the eviction, that causes a write on AXI, not a linefill. This

could be caused by any of the following reasons:
The store has memory attributes that are Write-Back no Write-Allocate
The core has entered dynamic read allocate mode
A write-after-write hazard between the store and another AXI write caused the memory system
to not start a linefill for that store

In the second scenario, the eviction has been caused by the store.

1. A cacheable store attempts to write to a line that is in the cache and dirty
2. The store looks up in the cache and gets an ECC error, which always (except fatal error on the tag)

causes an eviction of a full line, and the store is sent out on AXI regardless of its memory attributes.
This could be caused by either:

The ECC error being fatal error in the data cache
The ECC error being correctable, but both data cache error bank registers are locked

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 19 of 63

Non-Confidential

In order for the lookup to get an ECC error, the core must be configured with cache ECC, and it must be
enabled.

Implications

If the slave or interconnect does reorder the transactions, the older eviction will overwrite the result of
the younger store, causing data corruption.

Workaround

If the core is operating in an system that is susceptible to this erratum, and the core is not configured
with cache ECC, or cache ECC is disabled, the following workaround can be used:

1. Avoid the use of Write-Back no Write-Allocate memory programmed in the MPU, and
2. Disable Dynamic Read Allocate mode by setting ACTLR.DISRAMODE to 1

Note: If the core is configured without an MPU, or the MPU is disabled, none of the memory is Write-
Back no Write-Allocate.

This workaround might have a small performance impact.

If the core is configured with cache ECC, and it is enabled, then the workaround must also include:

3. Do not lock both data cache error bank registers

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 20 of 63

Non-Confidential

1013783 
PLD might perform linefill to address that would generate a MemManage Fault

Status
Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Cat B
Fault Status: Present in r0p1, r0p2, r1p0, r1p1, and r1p2. Open.

Description

If the MPU is present and enabled, then it can be programmed so that loads to certain addresses
generate a MemManage Fault. This could be because:

The address is unmapped, that is, it is not in an enabled region and the default memory map is not
being used.
The address cannot be accessed at the current privilege level.
The address cannot be accessed at any privilege level.

Because of this erratum, a PLD to such an address might incorrectly cause a data cache linefill.

Configurations Affected

This erratum affects all configurations that include an MPU and a data cache.

Conditions

1. The data cache is enabled and the MPU is enabled.
2. A PLD is executed, and either:

a. The PLD is to an address not mapped in the MPU, which requires that:
i. The MPU is enabled
ii. The default memory map is not being used
iii. The default memory map is cacheable at that address
iv. The PLD does not hit an enabled MPU region.

b. The PLD is to a region that has permission requirements that the PLD does not meet, which
requires that:

i. The MPU is enabled.
ii. The default memory map is not being used.
iii. The region that the PLD hits is cacheable.
iv. The region that the PLD hits would generate a MemManage fault for a load. This requires

either:
i. The region cannot be accessed by a read at any privilege level.
ii. The region only has read access for privileged code and the PLD is unprivileged.

Note that in rare cases, a PLD instruction can be speculatively executed in the shadow of a mispredicted
branch. This can even theoretically be a literal value that decodes to a PLD.

Implications

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 21 of 63

Non-Confidential

Processor execution is not affected by this erratum. The data returned from the linefill is not directly
consumed by the PLD. Any subsequent load to that address can only access the data if it has
permissions to do so. This erratum does not permit software to access data that it does not have
permissions for.

The only implications of this erratum are the access itself which should not have been performed. This
might have an impact on memory regions with side-effects on reads or on memory which never returns
a response on the bus.

Workaround

Accesses to memory that is not mapped in the MPU can be avoided by using MPU region 0 to cover all
unmapped memory and make this region execute-never and inaccessible. That is, MPU_RASR0 should be
programmed with:

MPU_RASR0.ENABLE = 1 ; MPU region 0 enable
MPU_RASR0.SIZE = b11111 ; MPU region 0 size = 2^32 bytes to cover entire memory
MPU_RASR0.SRD = b00000000 ; All sub-regions enabled
MPU_RASR0.XN = 1; Execute-never to prevent instruction fetch
MPU_RASR0.AP = b000; No read or write access for any privilege level
MPU_RASR0.TEX = b000 ; Attributes = Strongly-ordered
MPU_RASR0.C = b0 ; Attributes = Strongly-ordered
MPU_RASR0.B = b0 ; Attributes = Strongly-ordered

Accesses to memory that is mapped in the MPU, but should not be accessed at the current privilege
level can be avoided by making the region non-cacheable. That is, MPU_RASR0 should be programmed
with:

MPU_RASR0.TEX = b000 ; Attributes = Strongly-ordered
MPU_RASR0.C = b0 ; Attributes = Strongly-ordered
MPU_RASR0.B = b0 ; Attributes = Strongly-ordered

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 22 of 63

Non-Confidential

2328489 
TCM bandwidth sharing between AHBS writes and software stores might not
function correctly when using TCM wait states

Status

Affects: Cortex-M7
Fault Type: Programmer Category B
Fault Status: Present in r0p1, r0p2, r1p0, r1p1, r1p2. Open.

Description

The TCM Control Unit (TCU) contains a Store Queue (SQ) FIFO that buffers Tightly Coupled Memory (TCM)
writes. Software stores and AHBS writes both go through the SQ. A round-robin scheme is used to fairly
share the SQ ingress bandwidth between software stores and AHBS writes when contention occurs.
Due to this erratum, AHBS writes might take priority over 64-bit software stores, which can stall
processor instruction execution while the AHBS writes are ongoing. Software stores take priority over
AHBS writes and therefore this erratum does not occur when there is adequate TCM bandwidth
available.

Configurations affected

This erratum affects all configurations of the Cortex-M7 processor.

Conditions

This erratum can occur when either an STRD, STM, PUSH, VPUSH, VSTR.64, or VSTM instruction is
executed targeting TCM during a long stream of back-to-back AHBS write transfers and TCM wait states
are used.

Also, if a load instruction closely follows after a 64-bit store instruction to TCM that stalls the execution
pipeline, then this will further exacerbate the issue. If the pipeline is stalled, the read will still go ahead
but the data returned will be discarded. Hence, a TCM read will be repeated until the stall ends.

Implications

This erratum only affects the performance of the Cortex-M7 processor. It can cause the processor's
execution pipeline to stall when executing a 64-bit store instruction while back-to-back AHBS writes are
ongoing. When the AHBS back-to-back write stream ends, the 64-bit store will be accepted into the SQ
and the pipeline will stop stalling.

Workaround

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 23 of 63

Non-Confidential

Either one of the following workarounds can be used:

1. Use AHBS priority demotion by setting the CM7_AHBSCR register CTL field to 0b00 and set the
INIT field value to N.

2. Ensure that there are N consecutive BUSY or IDLE transfers on the AHBS interface for every
sequence of 16 SEQ or NONSEQ back-to-back write transfers.

Where, N >= (T/2) + 1 and T is the maximum number of cycles it takes to perform a sequence of two
read and one write transaction on a TCM interface.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 24 of 63

Non-Confidential

Category B (rare)

443753 
A sequence of cacheable stores to memory locations that always return bus
faults might cause deadlock

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category B (rare)
Fault Status: Present in r0p1. Fixed in r0p2.

Description

Because of this erratum, after a specific sequence of cacheable stores, the processor might deadlock.

Configurations affected

This erratum affects all configurations of the processor that include a D-cache.

Conditions

The following code sequence is required to hit this erratum:

1. A cacheable WBWA store, that misses in the cache.
2. At least one of the following:

A LDREX, STREX, DSB, or AHBD load that is interrupted by an exception.
The MPU is reprogrammed, and there is no DSB between that and the next store.

3. Three cacheable WBWA stores, all of which must:
Be to locations such that the linefill that is triggered will always get a bus fault.
Not get a memory management fault.

After this sequence, provided certain timing specific conditions are met, there will be four stores that will
never drain from the STB. If the processor attempts to execute another store to AXI, DSB or DMB, the
processor will deadlock.

Implications

This erratum results in the processor deadlocking.

An exception will break the deadlock, but cannot prevent the processor from deadlocking again if
another store to AXI, DSB or DMB, is executed. If the stack is in AXI, the processor will deadlock when it
attempts to perform stacking.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 25 of 63

Non-Confidential

When in this deadlock state, the processor will not be able to enter halt state or service debugger
accesses to memory.

Workaround

Systems that do not implement permanently bus-aborting regions of the AXI interface are not affected
by this erratum and need no workaround.

For systems that are affected, the recommended workaround is for SW to program the MPU such that
no accesses to these permanently aborting regions are allowed.

If this workaround is not possible, then the CACR.FORCEWT bit can be set to force all cacheable stores
to be treated as write-through. Note that this might cause some performance degradation.

Code should avoid accesses to areas generating bus faults.

Please note that this erratum is now published as ID 443753. The previous ID 838169 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 26 of 63

Non-Confidential

Category C

399743 
The Fault Address Register (FAR) might be corrupted when BFHFNMIGN is set

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

Cortex-M7 implements a single physical register (FAR) for both the Bus Fault Address Register (BFAR)
and the MemManage Fault Address Register (MMFAR).

Because of this erratum this register might become corrupted in rare cases.

Configurations affected

This erratum affects all configurations of the processor.

Conditions

There are two sets of conditions for this erratum.

The first set is:

1. The CCR.BFHFNMIGN bit is set.
2. The processor is executing at HardFault or NMI priority - that is, either FAULTMASK is set or the

processor is executing the HardFault or NMI handlers.
3. A load-to-PC instruction is executed that is subject to a bus fault.

In this situation the value in the FAR should be the load address used by the faulting load-to-PC
instruction. Because of this erratum the FAR might incorrectly be updated with a random value.

The second set is:

1. The CCR.BFHFNMIGN bit is set.
2. The processor is executing in unprivileged Thread mode with FAULTMASK set.
3. A load is executed that is subject to a bus fault. This load can be to any destination register.
4. The instruction following the load is executed on the same cycle and is a VFP load/store instruction

that is subject to all of the following conditions:
a. Causes a NOCP UsageFault exception to be raised because the CPACR is configured to enable

privileged access only to the FPU. Note that if the CPACR is configured in any other way,

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 27 of 63

Non-Confidential

including all access disabled, then this failure mode cannot occur.
b. The MPU is set up such that the load/store address defined by the instruction is not allowed

access by unprivileged requests.

In this situation the value in the FAR should be the load address used by the first load instruction.
Because of this erratum however, the FAR might incorrectly be updated with a random value.

Implications

Corruption of the FAR can cause confusion in the fault handling code as to what the source of the fault
was, but is not otherwise expected to affect SW operation.

Additionally, the CCR.BFHFNMIGN bit is expected to be set in a very restricted set of scenarios, which
are unlikely to include:

1. A load-to-PC subject to a bus fault. Note that this would, even without this erratum, potentially
result in unpredictable program flow because the PC is being written with potentially random data
on the bus.

2. Execution in unprivileged thread mode.

Therefore it is expected that this erratum will not affect the majority of systems.

Workaround

To work around this erratum, SW should ensure that the CCR.BFHFNMIGN bit is only set when
executing in privileged mode and should avoid executing load-to-PC instructions to addresses that could
potentially fault when CCR.BFHFNMIGN is set.

Please note that this erratum is now published as ID 399743. The previous ID 830969 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 28 of 63

Non-Confidential

408519 
Incorrect GTS packet generation when global timestamps are enabled during
debug using the ITM

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

A full global timestamp packet sequence should be generated whenever the GTS feature is enabled in
the ITM. This packet sequence consists of a GTS1 packet followed by a GTS2 packet.

Because of this erratum, enabling the GTS feature in the ITM can cause GTS1 packets to be
continuously output without a subsequent GTS2 packet.

Configurations affected

This erratum affects all configurations of the processor that include an ITM.

Conditions

The following condition is required to hit this erratum:

A write to the ITM_TCR register setting the GTSFREQ bits to a non-zero value.

This should cause a single request for a full GTS packet to be output. Because of this erratum however,
the request for a GTS packet is incorrectly held high until the next write to the PPB space of the memory
map.

This causes GTS1 packets to be continuously output and prevents the output of the required GTS2
packet.

Implications

This erratum results in wastage of ITM trace bandwidth because of the unnecessary GTS1 packets
output, together with the loss of global timestamp information because of the failure to output a GTS2
packet.

Workaround

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 29 of 63

Non-Confidential

To work around this erratum, a dummy write to the ITM_TCR register should be performed immediately
after the GTS feature is enabled. The simplest way to do this is to perform the write to enable the GTS
feature twice, back-to-back.

This workaround is required for both SW and debugger writes.

Please note that this erratum is now published as ID 408519. The previous ID 839169 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 30 of 63

Non-Confidential

416915 
HFSR.FORCED bit is not set for configurable priority faults which result in
LOCKUP

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

Configurable priority faults can escalate to HardFault when they are not high enough priority to preempt
the current executing context. In this situation, they should set the HFSR.FORCED bit to indicate that
they have been escalated to HardFault. This should also apply when these faults occur at NMI or
HardFault priority, thus resulting in LOCKUP.

Because of this erratum, the HFSR.FORCED bit is not set when configurable-priority faults cause
LOCKUP.

Configurations affected

This erratum affects all configurations of the processor.

Conditions

The following conditions are required to hit this erratum.

1. The processor should be executing at HardFault or NMI priority.
2. Any of the following faults are raised:

MemManage
Usage
Synchronous BusFault - that is, a BusFault on an instruction fetch or load.

In these situations, the processor fails to set the HFSR.FORCED bit but in every other respect, correctly
handles the fault by:

1. Setting the appropriate FSR bit for the original fault exception.
2. Entering LOCKUP.

Implications

This erratum only affects the value of the HFSR.FORCED bit in an unrecoverable scenario and has no
other effects on processor operation.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 31 of 63

Non-Confidential

This bit has no internal function in the processor and is only used to help handler SW or a debugger to
understand the source of LOCKUP. Therefore, this erratum can make debug of a faulty system more
difficult.

Workaround

There is no workaround for this erratum.
In general, it is not anticipated that the conditions and sequence described will occur in real code.

Please note that this erratum is now published as ID 416915. The previous ID 834971 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 32 of 63

Non-Confidential

421025 
Early forwarding from load is incorrectly cancelled inside IT block

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

Because of this erratum, a specific sequence of instructions inside an IT block might cause an incorrect
result to be computed in the integer registers.

Configurations affected

This erratum affects all configurations of the processor.

Conditions

The following code sequence is required to hit this erratum:

1. ITTTE with the first three instructions passing their condition code checks.
2. A word-aligned single word load to register Rd.
3. A word aligned single word load to register Rd with no operand dependency on the previous load.
4. A flag setting data processing instruction with a destination register different to Rd.
5. A data processing operation that:

Passes its condition code check only because of the flag setting operation in step 4 changing the
flags.
Uses Rd as a source operand.

Under these and other code-alignment and timing specific conditions, the last data processing instruction
might incorrectly use the data from the first load instead of the second and therefore generate an
incorrect result.

Implications

This erratum results in data corruption of the integer registers.

Note that this code sequence is not expected to be generated by C compilers because the first load in
the code sequence is completely redundant.
ARM C Compiler 5.03 , gcc 4.9-2015-q1-update (and gcc 5.0 trunk) and IAR EWARM 7.40 have been
verified as not generating this code sequence.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 33 of 63

Non-Confidential

Workaround

The code sequence must be amended to remove the redundant load operation.

Please note that this erratum is now published as ID 421025. The previous ID 833872 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 34 of 63

Non-Confidential

422825 
MPU fetch attributes might transiently be incorrect after an exception return

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

When the MPU_CTRL.HFNMIENA is clear, the MPU uses the default memory map instead of the
programmed regions when executing at HardFault or NMI priority.

Because of this erratum, this setting might cause instruction fetches to return incorrect attributes from
the MPU.

Configurations affected

This erratum affects all configurations of the processor that include an MPU.

Conditions

The following conditions are required for this erratum to occur:

The MPU is enabled and the MPU_CTRL.HFNMIENA bit is b0.
An exception return is executed in a handler at HardFault or NMI priority.
The exception return target is not at HardFault priority.
During the exception return, the processor's fetch unit is stalled sufficiently to prevent the first fetch
from the exception return target from being performed at the correct priority.

If the ITCM is implemented and enabled, at least 4 cycles of wait states on the ITCM interface
are required to hit this erratum. Alternatively, either the MBIST or AHBS interface should be
accessing the ITCM around the time the exception return executes.
If the ITCM is not implemented or not enabled, the MBIST interface should be accessing the I-
cache near the time the exception return executes.

While the processor is running, if the MBIST interface is not in use and there is no AHBS traffic to the
ITCM, then this set of conditions cannot occur provided the ITCM interface is guaranteed to insert no
more than 3 cycles of wait-states.

In these scenarios, the MPU lookup for the first few instructions at the exception return target might
incorrectly be performed at HardFault or NMI priority and therefore return incorrect MPU attributes.

Note that this erratum only affects the MPU lookups and does not affect other aspects of execution.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 35 of 63

Non-Confidential

Implications

If the affected instructions are on ITCM, then all MPU attributes are ignored except for the xN attribute.
If the affected instructions are on AXI, then the attributes on the AXI interface might be incorrect,
causing other effects in the system, if for example, system caches are implemented.

If the xN attribute is returned incorrectly, the instructions at the target might either be subject to
spurious faults, or they might execute instead of faulting. Note that if they do execute, they will do so at
the correct privilege level and therefore cannot themselves circumvent their privilege setting in the
processor.

Workaround

No workaround is required for this erratum.

Please note that this erratum is now published as ID 422825. The previous ID 834923 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 36 of 63

Non-Confidential

423541 
Interrupts on a bus-aborting strongly-ordered or device load to the stack pointer
might cause incorrect exception stacking

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

A load-single instruction subject to a bus-abort should leave the processor in a state that allows the load
to be re-executed on return from the bus-abort handler.

Because of this erratum, if another asynchronous exception is recognized on such a load instruction, the
state of the processor might be incorrect.

Configurations affected

The erratum affects all configurations of the processor that include an FPU.

Conditions

The following scenario is required to hit this erratum:

A data processing VFP instruction is dual-issued with a load-single instruction.
The load instruction needs to be immediately after the VFP instruction in the code image.

The load is to Strongly-ordered or Device memory.
The load must update the currently active stack pointer.

This can either be by directly loading the stack pointer or by using the stack pointer as the base
register and using base write-back.

The load is subject to a bus-abort on either the AHBP, AXI, TCM, or EPPB interface.
The internal PPB address space is not subject to this erratum.

A separate asynchronous exception (external interrupt, NMI, SysTick, asynchronous bus-abort, and
PendSV) is recognized while the load is executing.

Under these and other specific timing conditions, the automatic exception entry stacking might be
performed to the wrong address. This includes the final update made to the stack pointer and, if lazy
stacking is enabled, the update made to the FPCAR.

Implications

This erratum might result in data corruption in memory and in the integer register file.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 37 of 63

Non-Confidential

Note that loads to Device and Strongly-ordered memory are unlikely to update the stack pointer in real
code. Loads that do not update the stack pointer are not subject to this erratum.

Workaround

This erratum is not considered to need a workaround. Code should avoid this scenario.

Please note that this erratum is now published as ID 423541. The previous ID 834924 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 38 of 63

Non-Confidential

431216 
Unimplemented bits of BASEPRI do not read-as-zero

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

The number of implemented bits of BASEPRI is configurable with all unimplemented bits defined as
read-as-zero.

Because of this erratum, unimplemented bits do not read as zero and instead read with the value written
to them. This applies to both BASEPRI and its alias BASEPRI_MAX.

Note that this erratum is limited to the read value of BASEPRI and BASEPRI_MAX. For all other aspects
of operation including exception priority processing, the unimplemented bits of BASEPRI are correctly
treated as zero.

Configurations affected

This erratum affects all configurations of the processor where the number of supported exception
priority bits is less than 8.

Conditions

The following sequence is required to hit this erratum:

1. A write to BASEPRI or BASEPRI_MAX, either by debugger or MSR instruction.
A 1 must be written to any of the unimplemented, lower order bits.

2. A read of BASEPRI or BASEPRI_MAX, either by debugger or MRS instruction.

Implications

The read value of BASEPRI and BASEPRI_MAX is incorrect and software using either of these registers
to identify how many priority bits are implemented will get the wrong result.

There are no other implications for this erratum. All other aspects of BASEPRI operation correctly treat
the unimplemented bits as zero.

Workaround

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 39 of 63

Non-Confidential

SW should use another priority register to deduce how many priority bits are implemented and should
mask unimplemented bits on BASEPRI and BASEPRI_MAX reads.

Please note that this erratum is now published as ID 431216. The previous ID 837069 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 40 of 63

Non-Confidential

449383 
Write to FPCCR.ASPEN while a Single-precision FP MAC is completing might
corrupt the FP register bank

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

Single-precision floating-point multiply-accumulates (MACs) require a number of cycles to execute. If
during this time, the FPCCR.ASPEN is changed to enable automatic FP state preservation, and the
default rounding controls differ from the current settings, a subsequent FP instruction might cause the
wrong value to be written to the FP register file.

Configurations affected

This erratum affects all configurations of the processor that include the floating-point unit (FPU).

Conditions

The following sequence is required to hit this erratum:

1. The processor is not currently in automatic FP state-preservation mode and the default and current
FP rounding, NaN or flush-to-zero modes differ.

CONTROL.FPCA = 0, FPCCR.ASPEN = 0, and FPDSCR differs from FPSCR.
2. A single-precision FP MAC (VMLA, VMLS, VNMLA, VNMLS, VFMA, VFNMS, VFNMA, VFNMS).
3. Within the next eight instructions, and before any exception occurs, there is:

A software write that sets the FPCCR.ASPEN bit.
Any subsequent FP instruction.

This erratum can occur even if there is a single DSB between the FPCCR.ASPEN write and the next FP
instruction. But in this case, the MAC, the write to FPCCR, and the DSB must occur back-to-back.

Implications

After this sequence, provided certain timing specific conditions are met, the result of either of the FP
instructions might be incorrect.

Workaround

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 41 of 63

Non-Confidential

In general, it is not anticipated that the conditions and sequence described will occur in real code.
In the case where a workaround is required, ensuring the FPCCR write is followed by a DSB, ISB
sequence before executing the subsequent FP instruction will avoid this erratum.

Please note that this erratum is now published as ID 449383. The previous ID 839269 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 42 of 63

Non-Confidential

486321 
Incorrect behavior of profiling counters

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1, r0p2 and r1p0. Fixed in r1p1.

Description

The profiling counters are provided to enable non-intrusive counting of events with limited accuracy.
Due to this erratum, some events update the wrong event counter.

The DWT_LSUCNT counter should be incremented for all extra cycles that the processor spends
executing normal load-store instructions. Because of this erratum, stall cycles in the memory system will
cause the DWT_CPICNT to be incremented instead of the DWT_LSUCNT. The DWT_LSUCNT will only
count non-stalled extra cycles spent handling load-store instructions.

The DWT_EXCCNT counter should be incremented whilst lazy VFP state preservation is being
performed. Because of this erratum, these cycles increment the DWT_LSUCNT counter and, on stall
cycles, the DWT_CPICNT instead.

Note that no cycles are missed entirely or double counted. This erratum only means that the cycles are
counted in the wrong counter.

Configurations affected

This erratum affects all configurations of the processor.

Conditions

The following conditions are required to hit this erratum:

The DEMCR.TRCENA bit is set
Any or all of the following bits are set:

DWT_CTRL.LSUEVTENA to enable the DWT_LSUCNT counter
DWT_CTRL.CPICNT to enable the DWT_CPICNT counter
DWT_CTRL.EXCCNT to enable the DWT_EXCCNT counter

Implications

This erratum results in incorrect values in the profiling counters.
It has no other functional impact.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 43 of 63

Non-Confidential

Workaround

There is no workaround for this erratum.

Please note that this erratum is now published as ID 486321. The previous ID 850724 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 44 of 63

Non-Confidential

505438 
TPIU cannot be flushed in Debug state if Cortex-M7 TPIU is used

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p2 and r1p0. Fixed in r1p1.

Description

The Cortex-M7 TPIU requires a DSYNC to flush any trace data that does not form a full frame and to
allow trace synchronization.
A write to the DWT_CYCCNT register in the DWT is specified to generate this DSYNC to the Cortex-
M7 TPIU.
This mechanism provides a means to flush out any buffered trace data in the TPIU.
Because of this erratum, a write to the DWT_CYCCNT register does not generate this DSYNC.

Configurations affected

This affects configurations with:

An ITM present, or an ETM present, or both present, and
The Cortex-M7 TPIU.

Conditions

An affected configuration will always suffer from this erratum when the TPIU is enabled.

Implications

This erratum can cause loss of the final bytes in a trace session. This applies to a maximum of 14 bytes.
Additionally, it leaves an external debugger no way to flush out any buffered trace data.
This affects the standard step and trace model such that data generated during a step event will not be
visible until a subsequent entry into halt mode.

Workaround

The DSYNC signal can be manually triggered, under the same conditions as the disabled method, by
causing the processor to leave halted state and then halting the processor a second time.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 45 of 63

Non-Confidential

Please note that this erratum is now published as ID 505438. The previous ID 850725 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 46 of 63

Non-Confidential

513195 
Lock Status Indication incorrectly reads as one for debugger reads

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in: r0p1, r0p2 and r1p0. Fixed in r1p1.

Description

The FPB, DWT, and ITM components each implement a CoreSight lock mechanism.
This lock is intended to prevent accidental software writes to control registers and is not required for
external debugger accesses.

For an external debugger:

LSR.LSI should RAZ to show that the lock is not implemented.
LSR.SLK should RAZ to show that the component is not locked.

Because of this erratum, the LSR.LSI bit incorrectly reads as one for debugger accesses.

Configurations affected

This erratum affects all configurations of Cortex-M7.

Conditions

An external debugger read to any of the following registers will observe this erratum:

FPB_LSR
DWT_LSR
ITM_LSR

Implications

An external debugger reading the LSR might be mislead by the incorrect LSR.LSI value and attempt to
obtain the lock. If the debugger polls until LSR.SLK reads as one, then the debugger could livelock. If the
debugger does not poll on LSR.SLK, and instead assumes it has the lock and carries on, then there are no
implications of this erratum.

Workaround

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 47 of 63

Non-Confidential

External debuggers should ignore the SLI field of the FPB_LSR, DWT_LSR and ITM_LSR registers.
External tools should not attempt to lock or unlock the lock by writing to FPB_LAR, DWT_LAR and
ITM_LAR registers.

Please note that this erratum is now published as ID 513195. The previous ID 851031 is deprecated.
This is done to work around a document generation issue.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 48 of 63

Non-Confidential

636315 
Software programming errors might not be reported for on-line MBIST access to
the I-Cache

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Cat C
Fault Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open.

Description

The on-line MBIST interface provides access to the cache and TCM RAMs to allow in-field memory
testing during normal operation of the processor. Because of this erratum, errors in the software that
works in conjunction with the memory testing might not be indicated on the MBISTERR output signal as
intended for I-Cache tests.

Note that this erratum does not affect the detection of faults in the memories under test, but affects
only the feature that helps to indicate errors in software used during testing.

There are two on-line MBIST use cases: software transparent and software assisted.

In the software transparent use case, software running on the processor is not involved in or aware of
the memory testing being carried out. See the Cortex-M7 Safety Manual for more details. In this case
the target memory is automatically locked by the MBIST controller, which causes the processor pipeline
to stall if it attempts to access this memory. Testing is carried out using short bursts of accesses which
last for less than 20 clock cycles and do not corrupt the memory contents. For this reason the memory is
locked only for a very short period of time and the gap between bursts is very large.

In the software assisted use case the target memory is still locked by the MBIST controller but software
running on the processor disables the target memory before testing commences. This prevents any
software access to this memory during testing. See the Cortex-M7 Safety Manual for more details. For
this reason, software accesses will go to another memory instead of the target memory and the pipeline
will not stall. This is important because the software assisted use case is intended to be used for
production MBIST algorithms, which take a long time to run. For example, if the I-Cache were disabled
then software might still execute using the main memory or the TCMs.

This erratum only affects the software assisted use case, when the I-Cache RAMs are tested. An error
indication is sent back to the MBIST controller if software attempts to access the target memory while it
is locked for testing. Because of this erratum, an error is not indicated back to the MBIST controller on
the MBISTERR[0] output signal when software performs a lookup to the I-Cache during MBIST testing.
The error indication is correctly asserted for all the other type of I-Cache access during MBIST testing:

A cache line invalidate because of ECC error.
A cache invalidate by MVA.
A cache invalidate all operation.
A cache line-fill allocation.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 49 of 63

Non-Confidential

Note that this erratum only affects the MBIST software assisted use case error indication for the I-Cache
and the MBISTERR[0] signal functions correctly for the D-Cache, ITCM and DTCM.

Configurations affected

This erratum affects configurations of the processor that include I-Cache RAMs.

Conditions

The following conditions are required to cause this erratum:

The software intends to use the software assisted on-line MBIST use case.
The I-Cache is not disabled by software running on the Cortex-M7 before testing commences.
The MBIST controller selects an I-Cache memory array for testing, locks the target memory and
testing commences.
The software running on the Cortex-M7 causes an instruction fetch from the I-Cache when it
expected to fetch from main memory.

Implications

This erratum could result in an error not being indicated back to the MBIST controller on the
MBISTERR[0] output signal when software assisted use case is used and the I-Cache is not disabled by
software before testing commences. This could result in the processor unexpectedly stalling for a long
period of time during MBIST testing of the I-Cache memories, without there being a clear indication of
the cause of the stall. For this reason, the processor might not make progress as expected, because of
the software error, during I-Cache testing.

Workaround

There is no workaround for this erratum.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 50 of 63

Non-Confidential

702596 
Single stepping Cortex-M7 enters pending exception handler

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Cat C
Fault Status: Present in r0p1. Fixed in r0p2.

Description

Setting the DHCSR.C_MASKINTS bit to 1 by the debugger should prevent the interrupts from being
taken. This functionality can be used by the debugger to prevent the processor from entering an
interrupt handler while single stepping.

As the result of this erratum an interrupt that should be masked by DHCSR.C_MASKINTS can be taken
when the processor leaves Debug state.

Configurations affected

All configurations are affected.

Conditions

An enabled interrupt is either pending when the processor enters Debug state, or becomes pending
while the processor is in Debug state. This includes PendSV, SysTick and external configurable
interrupts.
At some point while the processor is in Debug state and the interrupt is pending,
DHCSR.C_MASKINTS is zero. This might be because either DHCSR.C_MASKINTS was zero when
the processor entered Debug state, or the debugger has cleared DHCSR.C_MASKINTS after the
processor entered Debug state.
The processor exits Debug state.

Implications

Because of this erratum the debugger will enter the exception handler of a pending interrupt while single
stepping through the code regardless of the value of DHCSR.C_MASKINTS. New interrupts will not be
invoked while the C_MASKINTS bit is kept high.

Workaround

There is no complete workaround for this erratum.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 51 of 63

Non-Confidential

The debugger can reduce the likelihood of an interrupt being taken when DHCSR.C_MASKINTS is set
by:

On detecting that the processor has entered the halted state:

Setting DHCSR.C_MASKINTS as soon as possible, if DHCSR.C_MASKINTS was previously clear.

Avoid clearing DHCSR.C_MASKINTS.

Subsequently only clearing DHCSR.C_MASKINTS when leaving Debug state if the user requests
execution with DHCSR.C_MASKINTS clear.

If the user performs a sequence of steps with DHCSR.C_MASKINTS set following these rules, then only
the window between the processor first entering Debug state and the debugger first setting
DHCSR.C_MASKINTS will be prone to this erratum.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 52 of 63

Non-Confidential

1267980 
ECC error causes data corruption when the data cache error bank registers are
locked

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open.

Description

The data cache contains two error bank registers, DEBR0 and DEBR1. These registers store the
locations in the cache that Error Correcting Code (ECC) errors affect and prevent future allocations to
those locations.

Software can lock each DEBR and this prevents the DEBR from being automatically updated when a
data cache ECC error is detected.

Because of this erratum, if both DEBR0 and DEBR1 are locked and an ECC error is detected on a
cacheable store, then the store data is written onto the bus but not written into the data cache. This
might result in the data cache containing stale data.

Configurations Affected

All configurations with a data cache and ECC are affected.

Conditions

DEBR0 and DEBR1 are locked.
The wanted address has been allocated to the cache.
A cacheable store to the wanted address looks up in the cache, and an ECC error is found in the
cache set that the store addresses.

Implications

This erratum can cause data corruption in the data cache.

Workaround

Software must avoid locking both error bank registers.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 53 of 63

Non-Confidential

1313001 
Store after cache invalidate without intervening barrier might cause inconsistent
memory view

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open.

Description

If a cache invalidate operation is followed by a Write-Through store to an address affected by that
operation and a linefill to that address occurs, then the linefill might allocate to the cache without the
data from the store. Subsequently, that store writes to the bus and leaves the cache with stale data.

Configurations Affected

All configurations with a data cache and without Error Correcting Code (ECC) are affected.

Conditions

The following sequence is required for this erratum to occur:

1. The address of interest is in the cache.
2. One of the following data cache maintenance operations that affects the same cache line as the

wanted address is performed.
DCCIMVAC.
DCCISW.
DCIMVAC.
DCISW.

3. A Write-Through store is performed to the wanted address
4. A linefill to the same cache line of the wanted address occurs for any reason.

There must be no DSB or DMB between the maintenance operation and the store.

If this sequence occurs and certain very specific internal timing conditions are met, then the store data is
not merged into the linefill, but it writes out to the bus. After this has occurred, the linefill buffer or
cache contains stale data.

Implications

A subsequent load to the same address of the store might observe stale data in the cache.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 54 of 63

Non-Confidential

Workaround

A DMB must be inserted between the cache maintenance operation and the store.

It is expected that all code should already have this DMB or DSB because there is no implicit ordering
between cache maintenance operations and stores.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 55 of 63

Non-Confidential

1315869 
Data corruption for load following Store-Exclusive

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open.

Description

A load that follows a Store-Exclusive to the same address might forward data from an earlier store,
situated between the Load-Exclusive and the Store-Exclusive, and not the data from the Store-Exclusive.

Configurations Affected

All configurations are affected.

Conditions

The following sequence is required for this erratum to occur:

1. A load exclusive sets the local monitor.
2. A store to the wanted address
3. Any of the following instructions to the wanted address. This instruction must not fail either the local

or global monitor check.
STREXB.
STREXH.
STREX.

4. A load to the wanted address.

There must be at most one instruction between the Store-Exclusive and the load. All accesses must be
to Shareable memory.

Implications

Data corruption occurs when the load returns data from the older store instead of the newer Store-
Exclusive.

Stores between a Load-Exclusive and Store-Exclusive are not expected in real code because such stores
can always clear the local monitor in some implementations.

Workaround

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 56 of 63

Non-Confidential

No workaround is necessary.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 57 of 63

Non-Confidential

1518990 
Value used for DWT Data Value Comparison is in memory-endianness format,
not little-endian

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault: Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open.

Description

The DWT comparators can be configured to match, and generate a trace event, when data is loaded or
stored, and the value of the data matches the value programmed into the DWT_COMPn registers.

Due to this erratum, when in a big-endian system, the data value in DWT_COMPn is considered to be in
big-endian format, not little-endian.

Configurations affected

Only big-endian configurations with a DWT are affected.

Conditions

A DWT comparator must be:

Enabled and either generating a trace packet or triggering a watchpoint
(DWTFUNCTIONn.FUNCTIOn is 0b0101, 0b0110, 0b0111, 0b1001, 0b1010 or 0b1011)
Performing a data value comparison (DWTFUNCTIONn.DATAVMATCH is 0b1)
The size of the comparison is halfword or word (DWTFUNCTIONn.DATAVMATCH is 0b01 or 0b10)

The core must perform a memory access that the DWT comparator is sensitive to.

Implications

The DWT might not generate a match when it should, or generate a match when it should not. This
might result in incorrect data trace, or incorrect watchpoint generation.

Workaround

In a big-endian system, the value programmed into DWT_COMPn should be in the big-endian format,
that is the order of bytes in each chunk should be swapped, with the size of each chunk given by
DWT_FUNCTIONn.DATAVSIZE.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 58 of 63

Non-Confidential

3092511 
Cortex-M7 can halt in an incorrect address when breakpoint and exception
occurs simultaneously

Status

Affects: Cortex-M7, Cortex-M7 with FPU
Fault Type: Programmer Category C
Fault Status: Present in r0p1, r0p2, r1p0, r1p1 and r1p2. Open

Description

When an asynchronous exception occurs at the same time as a breakpoint event (either hardware
breakpoint or software breakpoint), it is possible for the processor to halt at the beginning of the
exception handler instead of the instruction address pointed by the breakpoint.

Configurations Affected

This erratum affects all configurations of Cortex-M7.

When this happens:

The BKPT bit in Debug Fault Status Register (DFSR) is set, indicating that a breakpoint event has
occurred.
The return address of the exception is the breakpoint address. As a result, if the debugger clears the
halting control bit in the processor at this point, the processor will reach the breakpoint again after
servicing the exception.

The correct behavior should be one of the followings:
1. Execute BKPT instruction and halt at BKPT before taking the asynchronous exception
2. Take the asynchronous exception before BKPT and return to BKPT instruction and then halt on BKPT
instruction.
In both cases, the debugger should see the processor halt on the BKPT instruction.

Conditions:

The following conditions are required:
1. Halt mode debug is enabled and is permitted by debug authentication configuration
2. The processor reaches the breakpoint as the same time that the asynchronous exception is invoked

Implications

A debugger connected to the Cortex-M7 can detect the processor is halted after a breakpoint is hit, but
might not be able to determine which breakpoint has triggered the halting.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 59 of 63

Non-Confidential

Workaround:

This issue only affect the debugger's operation. The debugger could report the halting reason as an
unknown breakpoint, and optionally resume operation. If the processor's operation is resumed, it is likely
to be halted again immediately after the interrupt is serviced and returns to the breakpoint address.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 60 of 63

Non-Confidential

Proprietary notice
This document is protected by copyright and other related rights and the use or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
No part of this document may be reproduced in any form by any means without the express prior written
permission of Arm Limited ("Arm"). No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether the subject matter of this
document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further assist
the recipient and does not represent Arm's view of the scope of its obligations. You acknowledge and agree that
you possess the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements concerning your
products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are
responsible for any applications which are used in conjunction with any Arm technology described in this
document, and to minimize risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED "AS
IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and and has undertaken
no analysis to identify or understand the scope and content of, any patents, copyrights, trade secrets, trademarks,
or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Reference by Arm to any third party's products or services within this document is not an express or implied
approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version of this
document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 61 of 63

Non-Confidential

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(PRE-1121-V1.0)

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 62 of 63

Non-Confidential

https://www.arm.com/company/policies/trademarks

Product and document information
Read the information in these sections to understand the release status of the product and documentation, and
the conventions used in the Arm documents.

Product status
All products and Services provided by Arm require deliverables to be prepared and made available at different
levels of completeness. The information in this document indicates the appropriate level of completeness for the
associated deliverables.

Product completeness status

The information in this document is Final, that is for a developed product.

Product revision status

The [0x0y] identifier indicates the revision status of the product described in this manual, where:

rx

Identifies the major revision of the product.

py

Identifies the minor revision or modification status of the product.

Date of issue: May 28, 2024 Cortex-M7 (AT610) and Cortex-M7 with FPU (AT611)
Software Developer Errata Notice

Version: 11.0

SDEN-1068427 Copyright © 2014, 2015, 2018, 2019, 2021, 2024 Arm® Limited or its affiliates. All rights reserved. Page 63 of 63

Non-Confidential

	Contents
	Introduction
	Scope
	Categorization of errata

	Change Control
	Errata summary table
	Errata descriptions
	Category A
	1259864  Data corruption in a sequence of Write-Through stores and loads

	Category A (rare)
	Category B
	412512  Cortex-M7 TPIU might lose trace data in configurations with an ETM but no ITM
	426115  Interrupting a FAULTMASK-setting instruction might cause incorrect MPU instruction attributes
	440977  Increasing priority using a write to BASEPRI does not take effect immediately
	565285  Core can send AXI transactions that permit reordering when it should not
	1013783  PLD might perform linefill to address that would generate a MemManage Fault
	2328489  TCM bandwidth sharing between AHBS writes and software stores might not function correctly when using TCM wait states

	Category B (rare)
	443753  A sequence of cacheable stores to memory locations that always return bus faults might cause deadlock

	Category C
	399743  The Fault Address Register (FAR) might be corrupted when BFHFNMIGN is set
	408519  Incorrect GTS packet generation when global timestamps are enabled during debug using the ITM
	416915  HFSR.FORCED bit is not set for configurable priority faults which result in LOCKUP
	421025  Early forwarding from load is incorrectly cancelled inside IT block
	422825  MPU fetch attributes might transiently be incorrect after an exception return
	423541  Interrupts on a bus-aborting strongly-ordered or device load to the stack pointer might cause incorrect exception stacking
	431216  Unimplemented bits of BASEPRI do not read-as-zero
	449383  Write to FPCCR.ASPEN while a Single-precision FP MAC is completing might corrupt the FP register bank
	486321  Incorrect behavior of profiling counters
	505438  TPIU cannot be flushed in Debug state if Cortex-M7 TPIU is used
	513195  Lock Status Indication incorrectly reads as one for debugger reads
	636315  Software programming errors might not be reported for on-line MBIST access to the I-Cache
	702596  Single stepping Cortex-M7 enters pending exception handler
	1267980  ECC error causes data corruption when the data cache error bank registers are locked
	1313001  Store after cache invalidate without intervening barrier might cause inconsistent memory view
	1315869  Data corruption for load following Store-Exclusive
	1518990  Value used for DWT Data Value Comparison is in memory-endianness format, not little-endian
	3092511  Cortex-M7 can halt in an incorrect address when breakpoint and exception occurs simultaneously

	Proprietary notice
	Product and document information
	Product status
	Product completeness status
	Product revision status

