
ACPI for the Armv8-A RAS Extension and RAS System
Architecture 2.0 BET1

Platform Design Document
Non-confidential

Notice
This document is a Beta version of a specification undergoing review by Arm partners. It is

provided to give advanced information only.

Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0085

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Page 2 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Contents

Release information 4
Arm Non-Confidential Document License (“License”) 5

About this document 7
Terms and abbreviations 7
References 7
Feedback 8

1 Introduction 9

2 The Arm Error Source Table 10
2.1 Component types 12

2.1.1 Processor structure 12
2.1.2 Memory Controller structure 15
2.1.3 SMMU structure 15
2.1.4 Vendor-defined structure 16
2.1.5 GIC structure 16
2.1.6 PCIe Root Complex structure 16
2.1.7 Proxy error structure 17

2.2 Interface 17
2.3 Interrupts 22

3 Representation of Error Nodes in DSDT 23
3.1 ACPI Hardware Identifier for the ACPI Arm Error Node Device 23
3.2 MSI Support 23

4 CPER Format for Arm RAS System Architecture 24
4.1 Representing RAS error nodes in the BERT 24
4.2 Representing Arm error nodes in CPER 24

4.2.1 CPER section for error nodes 24

Page 3 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited. All rights reserved.

Release information

Date Version Changes

2024/May/30 2.0 BET1 • Introduced CPER format for error nodes
• Add timebase offset description

2023/May/30 2.0 BET0 • New AEST node type for proxy error nodes.
• Introduced Error Mapping concept
• (Section 2.1.5) Updated GIC structure to reference various structures using

identifiers instead of offsets.
• (Section 2.1.1.1) Updated the cache substructure to include reference to the

Cache Identifier field in the PPTT Type 1 structures.
• (Section 2.1.3.1) Updated the processor generic substructure to include a

reference to any generic data that might apply to the error node being described.
• (Section 2.2) Added field in the Node Interface structure to specify the addressing

mode used for reporting addresses in ERR<n>_ADDR.
• Added flag to indicate whether an error node can generate an FHI for UCs.
• Fixed miscellaneous editorial issues.
• Added new section on ACPI device object definition for error nodes. This is to

support MSI programming requirements.
• New AEST node type for PCIe root complex.
• Updated language with correct terminology.
• Added field for describing processor affinity of error nodes.
• Added field for discovery of common error group-level registers, to support error

nodes with > 4K blocks and to support the RASv2 RAS agent concept.
• Introduced new interface type for single error record memory-mapped view.
• Added clarifications on the base address field for various interface types.
• Added an interface flag to indicate validity of the error group level register set base

address field.
• Updated CPER record format to include description of component type.
• Add explicit support for large error groups and proxy nodes
• Allow error injection and interrupt configuration registers to be disjoint from the

main group register set.

2020/Sep/28 1.1 • External Release version 1.1.
• (Section 2.1.5) Updated GIC structure to reference various structures using

identifiers instead of offsets.
• (Section 2.1.1.1) Updated the cache substructure to include reference to the

Cache Identifier field in the PPTT Type 1 structures.
• (Section 2.1.3.1) Updated the processor generic substructure to include a

reference to any generic data that might apply to the error node being described.
• (Section 2.2) Added field in the Node Interface structure to specify the addressing

mode used for reporting addresses in ERR_ADDR.

2020/Aug/28 1 • External Release version 1.0.

Page 4 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this License
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to
the terms of this License. By using or copying the Document you indicate that you agree to be bound by the
terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control
exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to
the terms of this License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply
with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of
a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further
assist the recipient and does not represent Arm’s view of the scope of its obligations. You acknowledge
and agree that you possess the necessary expertise in system security and functional safety and that you
shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by Arm herein. In
addition, you are responsible for any applications which are used in conjunction with any Arm technology
described in this document, and to minimize risks, adequate design and operating safeguards should be
provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied
approval or endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the
Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT,
TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING
WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF

Page 5 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE
OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this License then Arm may terminate this
License immediately upon giving written notice to Licensee. Licensee may terminate this License at any time.
Upon termination of this License by Licensee or by Arm, Licensee shall stop using the Document and destroy
all copies of the Document in its possession. Upon termination of this License, all terms shall survive except
for the License grants.

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party
in breach. Any termination of this License shall be effective in respect of all Subsidiaries. Any rights granted
to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to
assure that the Document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this License and any translation, the terms of the English version of
this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners. No license, express, implied or otherwise, is
granted to Licensee under this License, to use the Arm trade marks in connection with the Document or any
products based thereon. Visit Arm’s website at http://www.arm.com/company/policies/trademarks for more
information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

Page 6 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

http://www.arm.com/company/policies/trademarks

ACPI for the Armv8-A RAS Extension and RAS System Architecture

About this document

Terms and abbreviations

Term Meaning

ACPI Advanced Configuration and Power Interface

APIC Advanced Programmable Interrupt Controller. This is a generic term used in ACPI
for an interrupt controller.

ASL ACPI Source Language

CPER Common Platform Error Record. See [1].

GIC Arm Generic Interrupt Controller

GSIV Global System Interrupt Vector

IORT I/O Remapping Table

MADT Multiple APIC Description Table. The MADT describes an interrupt controller.

PE Processing Element

PPTT Processor Properties Topology Table

RAS Reliability, Availability and Serviceability

SMMU Arm System Memory Management Unit

SRAT System Resource Affinity Table

TLB Translation Lookaside Buffer

UE Uncorrectable error

UID Unique Identifier

References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Unified Extensible Firmware Interface. UEFI Forum.

[2] Advanced Configuration and Power Interface Specification. UEFI Forum.

[3] Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture
profile: DDI 0587C.c. Arm Limited.

[4] Arm® System Memory Management Unit Architecture Specification versions 3.0, 3.1 and 3.2: IHI
0070C.a. Arm Limited.

[5] Arm I/O Remapping Table: DEN0049. Arm Limited.

[6] Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4:
IHI 0069E (ID012119). Arm Limited.

[7] Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile: Arm DDI 0487E.a
(ID070919). Arm Limited.

Page 7 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (ACPI for the Armv8-A RAS Extension and RAS System Architecture).
• The document ID and version (DEN0085 2.0 BET1).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 8 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

1 Introduction
This specification provides a detailed description of ACPI [2] extensions required to enable kernel-first handling
of errors in a system that supports the Armv8-A RAS extension and the RAS System Architecture defined
by the Arm Architecture Reference Manual Supplement Reliability, Availability and Serviceability (RAS) for
A-profile Architecture specification [3].

Page 9 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

2 The Arm Error Source Table
The the Arm Architecture Reference Manual Supplement Reliability, Availability and Serviceability (RAS) for
A-profile Architecture specification defines the term node to refer to a component that implements the RAS
System Architecture defined in [3].

This document describes the Arm Error Source Table (AEST) in ACPI. The AEST provides an ACPI
representation of nodes in a system that is based on [3].

The remainder of this document uses the term error node to refer to a node in [3], and the term AEST node to
refer to the ACPI representation of the error node.

The AEST is described in Table 3.

Table 3: AEST format

Field Byte length Byte offset Description

Header

Signature 4 0 ‘AEST’, Arm error source table

Length 4 4 Length of table in bytes

Revision 1 8 For this version of the specification, this field
must be 2.

Checksum 1 9 The entire table must sum to zero.

OEM ID 6 10 OEM ID

OEM Table ID 8 16 For AEST, the table ID is the manufacturer model
ID.

OEM Revision 4 24 OEM revision of the AEST table for the supplied
OEM Table ID

Creator ID 4 28 The vendor ID of the utility that created the table.

Creator Revision 4 32 The revision of the utility that created the table.

Body

Array of AEST node
structures

– 36 Array of AEST node structures that are described
in Table 4.

The format of the AEST node structure, or simply AEST node, is described in Table 4.

Table 4: AEST node structure

Field Byte Length Byte Offset Description

Header

Page 10 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Field Byte Length Byte Offset Description

Type 1 0 AEST node type:
0x00 - Processor error node
0x01 - Memory error node
0x02 - SMMU error node
0x03 - Vendor-defined error node
0x04 - GIC error node
0x05 - PCIe error node
All other values are reserved.

Length 2 1 Length of structure in bytes.

Reserved 1 3 Must be zero.

Offset to AEST
node-specific data

4 4 Offset from the start of the AEST node to
AEST node-specific data.

Offset to AEST node
interface

4 8 Offset from the start of the AEST node to the
AEST node interface structure.

Offset to AEST node
interrupt array

4 12 Offset from the start of the AEST node to
AEST node interrupt array.

AEST node interrupt
array size

4 16 Number of entries in the interrupt array.

AEST node generic
data

Timestamp Rate 8 20 If the timestamp extension is implemented,
and does not use the timebase of the system
Generic Timer, as indicated by
ERR<n>FR.TS== 0b10, this field indicates
the timestamp frequency of the counter in
Hertz. Else this field must be zero and the OS
must ignore its contents.

Timebase offset 8 28 If the timestamp extension is implemented,
and does not use the timebase of the Generic
Timer, as indicated by ERR<n>FR.TS==
0b10, this field contains a signed 64-bit
integer that represents the offset, in ns ,
between the timebase of the node timer and
the timebase of the Generic Timer.
The conversion between a reading in the
node time axis into the Generic Timer time
axis is achieved by the following equation:
timestamp_generic_axis =
node_counter_reading . (109 /
timestamp_rate) + timebase_offset
This field is ignored if ERR<n>FR.TS ̸= 0b10

Error injection
countdown rate

8 36 If Common Fault Injection Model Extension is
supported as indicated by ERR<n>FR.INJ !=
0b00, this field provides the rate in Hertz at
which the Error Generation Counter
decrements. Otherwise this field must be zero
and the OS must ignore its contents.

Page 11 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Field Byte Length Byte Offset Description

AEST node-specific
data

– Offset for AEST
node- specific
data

AEST node interface – Offset for AEST
node interface

AEST node interrupt
array

– Offset for AEST
node interrupt
array

AEST nodes provide a description of error nodes that are based on the Arm RAS System Architecture
described in [3]. The AEST node is composed of the following parts:

• A header that is described in Table 4.
• A set of common fields that is described in Table 4.
• A component-specific section that associates the AEST node to the component in the system that is

associated with the error node.
• A section that describes the interfaces that are associated with the error node.
• A section describing interrupts that are associated with the error node.

2.1 Component types

Each error node in a system is associated with a component. The AEST node that represents an error node
must provide information in its AEST node-specific data section to describe both the error node and the
component that the error node is associated with. This information enables the OS to discover this association.
The following components are currently supported:

• PE (Processor structure)
• Memory (Memory controller structure)
• SMMU (SMMU structure)
• Vendor-specific (Vendor-defined structure)
• GIC (GIC structure)
• PCIe root complex (PCIe Root Complex structure)
• Proxy error node (Proxy error structure)

The tables that are described in these sections provide the structure for the AEST node-specific data section
of an AEST node.

2.1.1 Processor structure

The Processor structure describes error nodes that are related to the processor and its internal components.
The Processor structure is described in Table 5. The ACPI Processor Properties Topology Table (PPTT) table
is used to identify processors whose error nodes are described in the processor structures. This specification
works with PPTT table revision 3 or later.

Page 12 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Table 5: Processor structure

Field
Byte
Length

Byte
offset Description

ACPI processor ID 4 0 Processor ID of node. For this revision of this specification, this
field represents the _UID of the processor.
This field must be set to 0 and ignored if this is a global or
shared error node, as specified by the Flags field.

Resource Type 1 4 Specifies which resource within the processor this error node
pertains to.
0x0 - Cache
0x1 - TLB
0x2 - Generic
Other values are reserved.

Reserved 1 5 Reserved, must be zero.

Flags 1 6 Flags associated with this structure. See Table 6.

Revision 1 7 For this version of the spec, this field must be set to 0.

Processor affinity level
indicator

8 8 Processor affinity descriptor for the resource that this error
node pertains to.
This field is only valid if the interface type of this AEST node is
set to SR (see Section 2.2).
This field must be ignored if the shared resource flag is set to 0.
See Table 6.
This field must match the ERRDEVAFF register defined in [3].
This field has been deprecated in version 2.0 of this
specification and must be set to 0 by the platform and ignored
by the OS. The OS should instead use the Processor affinity
field in the AEST node interface sub-structure described in
Table 17 to determine the processor affinity of this error node.

Resource-specific
data

Resource substructure – 16 Processor resource whose error node is being described by
this AEST node.

Table 6: Processor structure flags

Field
Bit
Length

Bit
offset Description

Global 1 0 This flag is an indication that this error node is global for this
resource type. A global error node is a single representative of
error nodes of this resource type for all processors in the
system.
0b - This is a dedicated error node. 1b - This is a global error
node.

Page 13 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Field
Bit
Length

Bit
offset Description

Shared 1 1 This flag is an indication that this AEST node represents an
error node present on a resource that is shared by multiple
processors in the system.
The identity of the processors that are sharing this resource is
specified in the processor affinity level indicator field.
0b - This AEST node represents a resource that is private to
the specified processor.
1b - This AEST node represents a resource that is shared by
multiple processors.

Reserved 6 2 Reserved, must be zero.

2.1.1.1 Processor cache resource substructure

The cache resource substructure describes a cache within the processor whose error node is being defined
in the parent processor structure. The cache substructure provides a reference to the Type 1 structure in the
PPTT table that describes the cache.

Table 7: Processor Cache resource substructure

Field
Byte
Length Byte offset Description

Cache
reference

4 0 Reference to the cache structure in
the PPTT table that describes this
cache.
This field must match the Cache ID
field of the cache structure.
The PPTT table must support valid
Cache IDs for this substructure to
be supported.

Reserved 4 4 Reserved, must be zero.

2.1.1.2 Processor TLB resource substructure

This substructure is intended for describing error nodes associated with TLBs.

Table 8: Processor TLB resource substructure

Field
Byte
Length Byte offset Description

TLB reference 4 0 Reference to the TLB where this
error node is present. This field
must be set to the level of the TLB.

Reserved 4 4 Reserved, must be zero.

2.1.1.3 Processor generic resource substructure

This substructure is intended for implementations that have a generic, processor-wide error node that caters
to multiple resources in the processor. The exact interpretation of the error record information is left to the OS

Page 14 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

drivers that are specific to the processor. Software must consult the MIDR register of the current processor
implementation to understand which resources are being handled by the error node that is being described.

Table 9: Processor generic resource substructure

Field
Byte
Length Byte offset Description

Data 4 0 Vendor-defined supplementary data.
Set to zero if not used.

2.1.2 Memory Controller structure

The Memory controller structure is described in Table 10.

Table 10: Memory Controller structure

Field
Byte
Length

Byte
Offset Description

Proximity
domain

4 0 SRAT proximity domain.
Must be set to 0 and ignored if the SRAT table is not present.

2.1.3 SMMU structure

The SMMU [4] structure is described in Table 11. An SMMU implementation can have one or more error
nodes associated with it. The error node might be associated with a discrete internal component or unit
within the SMMU, for example the central control unit or a TLB. Some of these units, for example a TLB,
might also be associated with the Stream IDs that define a device or a set of devices that interface with the
SMMU, for example Root Complexes. Therefore, the ACPI description of the SMMU error node must include
references to the SMMU, and the device or devices that interface with the internal unit of the SMMU that is
being described in this AEST node. The reference to the device or devices serves as a proxy for the SMMU
internal unit or component.

This structure only works with IORT tables with nonzero revision numbers.

Table 11: SMMU structure format

Field
Byte
Length

Byte
Offset Description

IORT node reference 4 0 Reference to the IORT [5] table node that describes this
SMMU. The reference must match the Identifier field of the
SMMU node.

SMMU-specific data

Subcomponent
reference

4 4 Reference to the IORT table node that is associated with the
sub-component within this SMMU. This reference must point to
a Root Complex or Named Component node that is associated
with this SMMU subcomponent. If this subcomponent is a part
of the SMMU itself, then this field is a reference to the IORT
table node that describes the SMMU.
The reference must match the Identifier field of the IORT node.

Page 15 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

2.1.4 Vendor-defined structure

The Vendor-defined structure is described in Table 12. An OSPM might log this structure as raw data, or offer
them to vendor-specific drivers where appropriate.

Table 12: Vendor-defined structure format

Field
Byte
Length

Byte
Offset Description

Hardware ID 8 0 ACPI Hardware ID of the component.

Unique ID 4 8 The ACPI Unique identifier of the component. If there are
multiple instances of this component, this field helps to identify
a specific instance.

Vendor- specific data 16 12 Vendor-specific data, for example to identify this error source.

2.1.5 GIC structure

The GIC [6] structure is described in Table 13. A GIC implementation might have one or more internal error
nodes on one or more internal interfaces.

Table 13: GIC structure format

Field
Byte
Length

Byte
Offset Description

Interface type 4 0 Type of GIC interface that associated with this error node.
0x0 - GIC CPU (GICC)
0x1 - GIC Distributor (GICD)
0x2 - GIC Redistributor (GICR)
0x3 - GIC ITS (GITS)
Other values are reserved.

Instance Identifier 4 4 Identifier for the interface instance.
If the interface type is GICC, then this field represents the
ACPI UID of the processor that this GICC interface is
associated with.
If the interface type is GICD, then this field represents the GIC
ID of the GICD structure in the ACPI MADT table that
describes this GIC Distributor.
If the interface type is GITS, then this field represents the GIC
ITS ID field of the GIC ITS structure in the ACPI MADT table
that describes this GIC ITS interface.
If the interface type is GICR, then this field represents the
ACPI UID of the processor that this GIC Redistributor is
associated with.

2.1.6 PCIe Root Complex structure

The PCIe Root Complex structure is described in Table 14, and is used to describe error nodes on PCIe
Root Complexes in the system. A PCIe Root Complex is defined as any logical unit that operates as a bridge
between the system and the PCIe sub-system. This specification assumes that PCIe Root Complexes are
always associated with an SMMU and thus described in the ACPI IORT table [5].

Page 16 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Table 14: PCIe Root Complex structure format

Field
Byte
Length

Byte
Offset Description

IORT node reference 4 0 Reference to the IORT [5] table node that describes this PCIe
Root Complex.
For IORT tables implementations based on IORT specification
issues E and later, this field must match the Identifier field of
the RC node in the IORT.
For IORT tables implementations based on earlier issues of
the IORT specification, this field must be set to the offset of the
RC node from the start of the IORT table.

2.1.7 Proxy error structure

In the RASv2 architecture [3], the status of the records within a Group G1 can be subsumed as a node N2
with a single record in a group from an upstream RAS Agent. The node N2 is a proxy of G1. The status of
N2 is equal to the logical AND of all records in G1. The status of N2 is represented as a single bit in the
ERRGSR (with index equal to start error record index) of the group where N2 is present

The proxy node is described in the AEST via Table 15. The proxy node entry contains the required information
for the AEST entry of the proxied node to be located.

Note that an AEST node entry is uniquely identified by the {Base address, Start error record index} tuple.

Table 15: Proxy node structure format

Field
Byte
Length

Byte
Offset Description

node address 8 0 The address of the first error record in the group that the
proxied node belongs to.

2.2 Interface

The AEST Interface structure describes the interface that the error node supports and the properties of that
interface. The interface structure is present at the interface offset field that is defined in the AEST node
header. The AEST node header is described in Table 4.

Error node interfaces can have the System register (SR), the memory mapped (MMIO) , or the single record
memory-mapped view, as described in [3].

Error nodes with the memory-mapped view can be of two types, depending on the location of the error group
level registers:

1. Legacy type, where the error group level registers are located in the same 4KiB block as the error
records.

2. Detached register type, where sections of the register interface may be absent, or at a location separate
from the error group. These can represent error nodes from large error groups (of 16KiB or 64KiB group
format).

The RASv2 Architecture [3] mandates the fault injection registers to be separate from the error group.
For the memory-mapped view, the RASv2 Architecture mandates the Group status register and interrupt

Page 17 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

configuration register to be at a particular offset (which is a function of the Group format) from the start of
the memory-mapped view. For convenience, the Table 17 optionally lists the addresses of the Group Status
register set and Interrupt Configuration register set. Note that some IP may deviate from the RASv2 mandate
and present the Group Status register set and Interrupt Configuration register set at offsets that differ from the
RASv2 specification, in that case the base address fields in Table 17 are mandatory.

The AEST interface node describes all of these properties to the OS.

Table 17 describes the format of the interface entries.

The RASv2 architecture [3] allows for Error Group with a 4KiB, 16KiB, or 64KiB format. The size of the
interface structure depends on the Error Group format. The interface structure (Table 17) has 3 fields with
size dependant on the Error Group format, these are:

• Error record implemented,
• Error group-based status reporting supported,
• Addressing mode.

Bit[n] of these bit-fields represents the error record n in the error group that this node is part of. Only error
records that are part of this node are representable in the bit-fields, all other bits must be zero. The size of the
bit-fields depends on the Group format:

Group format bit-field size maximum number of error records

4KiB 64bit (8B) 56

16KiB 256bits (32B) 224

64KiB 896bits (112B) 896

As a consequence, the size of Table 17 will vary with the Group format. Note the gf parameter, defined in the
Group format field description, that parametrizes the size of Table 17.

Table 17: AEST node interface structure

Field
Byte
Length Byte Offset Description

Interface type 1 0 Interface type:
0x0 – SR view
0x1 – Memory-mapped view
0x2 – Single record Memory-mapped view
All other values are reserved.

Group format 1 1 Group size:
0x0 – 4KiB: gf = 1
0x1 – 16KiB: gf = 4
0x2 – 64KiB: gf = 14
All other values are reserved. This field must be set to
0x0 for interface type 0x2.

Reserved 2 2 Must be zero.

Flags 4 4 Flags associated with this AEST node interface. See
Table 18.

Page 18 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Field
Byte
Length Byte Offset Description

Base Address 8 8 Base address of the first error record of the error group
that this node belongs to, if the interface type is 0x01.
If the interface type is 0x02, this field represents the base
address of the only error record of the error node.
This field is not valid if interface type is 0x0.

Start error record
index

4 16 Zero-based index of first standard error record that
belongs to this error node.
This value must lie in the range 0-(N-1). If the interface
type is 0x0, N is the value read from the ERRIDR_EL1
register. If the interface type is 0x1, then N is the value
read from the ERRDEVID register.
If interface type is 0x02, this field must be set to 0, and
the OS should ignore it.

Number of error
records

4 20 Number of error records in this error node. This includes
both implemented and unimplemented error records.
This field must be set to 1 for the single record
memory-mapped view.

Error record
implemented

8.gf
(see
Group
format
)

24 This bitmap indicates which of the error records within
this error node are implemented and must be polled for
error status.
Bit[n] of this field pertains to error record corresponding
to index n in this error group.
Bit[n] = 0b: Error record at index n is implemented.
Bit[n] = 1b: Error record at index n is not implemented.
If interface type is 0x02, this field must be set to 0, and
the OS should ignore it.

Error group-based
status reporting
supported

8.gf
(see
Group
format
)

24 + 8.gf
(see Group
format)

This bitmap indicates which error records within this error
node support error status reporting using ERRGSR
register.
Bit[n] of this field pertains to error record corresponding
to index n in this error group.
Bit[n] = 0b: Error record at index n supports error status
reporting through ERRGSR.S.
Bit[n] = 1b: Error record at index n does not support error
reporting through the ERRGSR.S bit If this error record is
implemented, then it must be polled explicitly for error
events.
This field only applies to interface type 0x0 when the PE
implements FEAT_RASv2.
The field is present for interface types 0x1 and 0x2 ,with
its size defined by gf, the OS must ignore its contents

Page 19 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Field
Byte
Length Byte Offset Description

Addressing mode 8.gf
(see
Group
format
)

24 + 16.gf
(see Group
format)

This bitmap specifies the addressing mode used by each
error record within this error node to populate the
ERR<n>_ADDR register.
Bit[n] of this field pertains to error record corresponding
to index n in the error group.
Bit[n] = 0b: Error record at index n reports System
Physical Addresses (SPA) in the ERR<n>_ADDR
register.
Bit[n] = 1b: Error record at index n reports error
node-specific Logical Addresses (LA) in the
ERR<n>_ADD register.
OS must use other means to translate the reported LA
into SPA.

ACPI Arm error node
device

4 24 + 24.gf
(see Group
format)

This field must be set to the ACPI _UID field of the Arm
error node device in DSDT that describes this error node.
This field must be ignored if the ACPI device valid flag is
set to 0.

Processor affinity 4 28 + 24.gf
(see Group
format)

Indicates the processor or group of processors that this
error node is associated with.
This field must be set to the ACPI _UID of the processor
or processor container that this error node has affinity
with.
The affinity type flag indicates whether the _UID value
belongs to a processor or group of processors.

Base address of Error
group level register set

8 32 + 24.gf
(see Group
format)

Address of the group status registers . The group status
registers are defined in [3].
This address points to the ERRGSR register.
This field must be ignored if:

• flags[4] is set to 0b, or
• interface type is 0x0 or 0x2.

Fault injection
registers base

8 40 + 24.gf
(see Group
format)

Address of the fault injection registers. These registers
are defined in [3].
This address points to the base of the Fault injection
group, which starts with the register ERR0PFGF, see [3] .
This field must be ignored if:

• flags[5] is set to 0b, or
• interface type is 0x0.

Interrupt configuration
registers base

8 48 + 24.gf
(see Group
format)

Address of the interrupt registers for this node.
This address points to the ERRFHICR0 register, see [3].
This field must be ignored if:

• flags[6] is set to 0b, or
• interface type is 0x0 or 0x2.

Page 20 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Table 18: AEST node interface flags

Field
Bit
Length

Bit
Offset Description

Shared interface 1 0 0b - This AEST node interface is private to an error node.
1b - This AEST node interface is shared. For error nodes on
processor caches, the sharing is restricted to the processors
that share the indicated cache.
This flag only applies when interface type = 0x0.

Clear MISCx after
logging

1 1 Indicates whether the MISCx registers must be cleared after
their contents have been logged.
0b - Do not clear MISCx after logging.
1b - Clear MISCx after logging.

Arm error node device
valid

1 2 This fields indicates whether there is an ACPI Arm error node
device object in DSDT for this error node. Section Section 3
provides details on the Arm error node device.
0b - This error node does not have an ACPI Arm error node
device in DSDT.
1b - This error node has an ACPI Arm error node device in
DSDT.

Affinity type 1 3 Specifies whether the _UID value set in the Processor affinity
field identifies a processor or a group of processors.
0b: This node is associated with a single processor whose
_UID is specified in the Processor affinity field.
1b: This node is associated with a group of processors, and
the Processor affinity field points to a processor container.

Error group address
field valid

1 4 Indicates whether the base address of the error group level
register set is valid.
0b: The base address is invalid.
1b: The base address is valid.
If the base address is invalid, the OS must consider the offset
of the group status registers to be in the standard 4KiB error
group format of the memory-mapped view [3].

Fault injection address
valid

1 5 Indicates whether the base address of the fault injection
register set is valid.
0b: The base address is invalid.
1b: The base address is valid.
If the base address is invalid, the fault injection group is
nonexistent.

Interrupt configuration
address valid

1 6 Indicate whether the interrupt configuration registers base is
valid.
0b: The base address is invalid.
1b: The base address is valid.
If the base address is invalid, the OS must consider the offset
of the Interrupt configuration registers to be in the standard
4KiB error group format of the memory-mapped view [3].

Reserved 25 7 Reserved, must be zero.

Page 21 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

2.3 Interrupts

Error nodes can generate three kinds of interrupts:

• Error Recovery Interrupt (ERI)
• Fault Handling Interrupt (FHI)
• Critical Error Interrupt (CEI)

Only the first two types, ERI and FHI, are represented in ACPI. This is because critical error interrupts are
intended for notifying system controllers of the error event, instead of application processors under the control
of the OS.

If ERI and FHI are combined into the same interrupt, then the firmware must present one interrupt structure
each, and these structures must have identical GSIV values.

Table 19 describes the interrupt structures that are used to represent error node interrupts to the OS. These
structures form the entries of the AEST node interrupt array. The array can be found through the AEST
interrupt array offset that is defined in the AEST node header. The AEST node header is described in Table 4.

Table 19: AEST Node Interrupt structure

Field
Byte
Length

Byte
Offset Description

Interrupt type 1 0 Interrupt type:
0x0 – Fault Handling Interrupt
0x1 – Error Recovery Interrupt
All other values are reserved.

Reserved 2 1 Must be zero.

Interrupt Flags 1 3 Bits [31:2]: Must be zero.
Bit 0: Trigger type

• 0b – Interrupt is edge-triggered
• 1b – Interrupt is level-triggered

This field is valid only for wire-based interrupts.
Bit 1: FHI on UE

• 0b – This error node supports FHI for uncorrectable
errors (UEs).

• 1b – This node does not support FHI for uncorrectable
errors (UEs).

Interrupt GSIV 4 4 GSIV of interrupt, if interrupt is an SPI or a PPI. Must be zero if
the interrupt is not wire-based. If GSIV is 0, then MSI must be
used instead.

Reserved 4 8 Reserved, must be zero.

Page 22 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

3 Representation of Error Nodes in DSDT

The AEST describes generic properties of error nodes based on [3]. Error nodes might additionally be
described as ACPI device objects in the DSDT. The error node can be viewed as a pseudo-device as it has a
memory region and interrupts associated with it.

The ACPI device representation is useful for describing additional attributes and properties of the error node.

Note that the ACPI Arm error node device is an optinal extension to the mandatory description in the AEST. It
cannot be used for overriding the properties described in the AEST.

3.1 ACPI Hardware Identifier for the ACPI Arm Error Node Device

The ACPI Arm error node device is assigned an ACPI _HID value of “ARMHE000”.

Device(ERR0) { // Arm error node device instance

Name(_HID , "ARMHE000")

Name(_UID , 0)

Name(_STR , Unicode("Arm error node 0"))

}

3.2 MSI Support

The ACPI Arm error device object is useful for describing the MSI routing for error nodes. The Arm error
device object must also be described in the IO topology of the system, from where the MSI routing can be
obtained. The ACPI IORT table describes the IO topology of the system, where the error device object must
appear as a Named Component. See [5] for more details on the IORT table and the Named Component.

Page 23 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

4 CPER Format for Arm RAS System Architecture

This section describes how error nodes based on [3] are represented in ACPI BERT and CPER records.

4.1 Representing RAS error nodes in the BERT

Representing error node contents in BERT will require expressing them in the CPER first.

4.2 Representing Arm error nodes in CPER

CPER is described in the UEFI specification. (see Appendix N of [1]). CPER records are composed of a
header, and a set of sections. Each section describes information relevant to an error event. There is at least
one section, but there can be more. The CPER specification includes sections that are generic, such as the
generic processor error section, and sections that are architecture-specific, such as the Arm or IA64 error
sections.

CPER records are used by the system firmware at boot-time for specifying boot-time errors. When used in
this manner, the CPER records are presented using the ACPI BERT table. CPER records are also populated
and presented to the OS at runtime, for errors that are handled in firmware-first mode.

The CPER specification describes non-standard records, whose format is described in vendor-specific
documents.

4.2.1 CPER section for error nodes

The CPER section for error nodes provides the means for presenting error node information to the OS in the
form of a CPER record [1]. The section encapsulates the contents of an error node’s error records.

The error node section is described by the following Section Type:

Section Type: {0xBF32D4D5 , 0xB427 , 0x4025 , {0x84 , 0x95 , 0x8A , 0x9E , 0x5D , 0x40 ,

↪→ 0x30 , 0xE4}}

The contents of the section are described in Table 20.

Table 20: Arm RAS System Architecture node CPER

Field
Byte
Length

Byte
offset Description

Revision 4 0 This field must be set to 0 for this version of the specification.

Component type 1 4 This field must be set to the value of the Type field in the AEST
node that describes this error node. The Type field is defined
in Table 4.

Reserved 3 5 This field must be set to zero.

Number of error
record descriptors

4 8 Number of error records captured in the section.

Error record descriptor
array

– 12 Array of error record descriptors, where each descriptor
describes an error record based on [3].
The format of these entries is specified in Table 21.

Page 24 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

ACPI for the Armv8-A RAS Extension and RAS System Architecture

Field
Byte
Length

Byte
offset Description

Error node type-specifi
c data

Varies 12 +
sizeof(
Error
record
descriptor
array)

This field describes the component that the error node is
associated with. The format of this field is based on the value
of the Component type field and follows the structure outlined
in Section 2.1.

Table 21: Arm RAS System Architecture node CPER error record descriptor

Field
Byte
Length

Byte
offset Description

Error record number 4 0 RAS error record number within the error node.

RAS extension
revision

1 4 Describes the revision of the Arm Architecture Reference
Manual RAS Supplement [3] specification that this error node
is based on. This field takes the following format:

• bits[7:4] REVISION field of the ERRDEVARCH register
defined in [3].

• bits[3:0] ARCHVER field of the ERRDEVARCH register
defined in [3].

Note that registers ERR<n>MISC2 and ERR<n>MISC3 are
only valid if this value is non zero.

Reserved 3 5 Reserved must be zero

ERR<n>FR 8 8 Contents of the Error Record Feature Register.

ERR<n>CTLR 8 16 Contents of the Error Record Control Register

ERR<n>STATUS 8 24 Contents of the Error Record Primary Status Register.

ERR<n>ADDR 8 32 Contents of the Error Record Address Register.

ERR<n>MISC0 8 40 Contents of the Error Record Miscellaneous Register 0.

ERR<n>MISC1 8 48 Contents of the Error Record Miscellaneous Register 1.

ERR<n>MISC2 8 56 Content of the Error Record Miscellaneous Register 2.

ERR<n>MISC3 8 64 Content of the Error Record Miscellaneous Register 3.

Page 25 of 25 Copyright © 2019, 2020, 2021, 2022, 2023, 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0085
2.0 BET1

	Release information
	Arm Non-Confidential Document License (“License”)
	About this document
	Terms and abbreviations
	References
	Feedback

	1 Introduction
	2 The Arm Error Source Table
	2.1 Component types
	2.1.1 Processor structure
	2.1.1.1 Processor cache resource substructure
	2.1.1.2 Processor TLB resource substructure
	2.1.1.3 Processor generic resource substructure

	2.1.2 Memory Controller structure
	2.1.3 SMMU structure
	2.1.4 Vendor-defined structure
	2.1.5 GIC structure
	2.1.6 PCIe Root Complex structure
	2.1.7 Proxy error structure

	2.2 Interface
	2.3 Interrupts

	3 Representation of Error Nodes in DSDT
	3.1 ACPI Hardware Identifier for the ACPI Arm Error Node Device
	3.2 MSI Support

	4 CPER Format for Arm RAS System Architecture
	4.1 Representing RAS error nodes in the BERT
	4.2 Representing Arm error nodes in CPER
	4.2.1 CPER section for error nodes

