
SME Programmer’s Guide
Version 1.0

Non-Confidential
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
109246_0100_01_en

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Programmer’s Guide

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 23 May 2024 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. conjunction with any Arm technology described in this document, and to minimize
risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 112

https://www.arm.com/company/policies/trademarks

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 112

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Contents

Contents

1. Introduction.. 8
1.1 The Scalable Matrix Extensions...8
1.1.1 Streaming SVE mode and ZA storage.. 9

2. SME Overview.. 12
2.1 SME and SME2...12
2.1.1 If SME and SME2 are supported..13
2.1.2 SME2 lookup table... 13
2.1.3 SME2 multi-vector predication..15
2.2 Streaming SVE mode...15
2.3 SME ZA storage..16
2.3.1 ZA array vector access and ZA tile mapping... 16
2.4 SME2 multi-vector operands...30
2.4.1 Z multi-vector operands..31
2.4.2 ZA multi-slice operands...31
2.4.3 ZA multi-vector operands...31
2.5 SME context save restore.. 38
2.5.1 Context save restore on entry or exit from Streaming SVE mode.. 38
2.5.2 Context save restore in supervisory software... 38

3. Toolchains and model support.. 39
3.1 Quick start example for SME/SME2... 39
3.1.1 Step 1: Create a new project with SME/SME2 instruction.. 39
3.1.2 Step 2: Build the project...41
3.1.3 Step 3: Connect a Debugger and configure...42
3.2 Compiler support..42
3.2.1 Compiler options and pragmas..43
3.3 Calling conventions.. 44
3.3.1 Preparation for entering and exiting streaming mode..46
3.3.2 Controlling the use of streaming mode...47
3.3.3 Controlling the use of ZA storage.. 50
3.4 How to run an SME application...52
3.5 Debug tools... 53

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Contents

4. SME2 code examples.. 56

5. matmul_fp32: Single precision matrix-by-matrix multiplication... 57
5.1 Overview of the matmul_fp32 algorithm... 57
5.2 preprocess_l code...59
5.3 preprocess_l function overview.. 60
5.4 preprocess_l function details... 63
5.5 matmul_opt code..65
5.6 matmul_opt function overview... 67
5.7 matmul_opt function details.. 68

6. matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix multiplication...............................72
6.1 Overview of the matmul_int8 algorithm...72
6.2 preprocess_r code.. 74
6.3 preprocess_r function overview..75
6.4 preprocess_r function details...76
6.5 preprocess_l code...77
6.6 preprocess_l function overview.. 79
6.7 preprocess_l function details... 80
6.8 matmul_opt code..81
6.9 matmul_opt function overview... 84

7. gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector multiplication........................... 85
7.1 Overview of the gemv_cm_int8 algorithm... 85
7.2 gemv_opt code..86
7.3 gemv_opt function overview... 90
7.4 gemv_opt function details.. 92

8. lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer matrix-by-vector
multiplication.. 95
8.1 Overview of the lut_gemv_rm_int8 algorithm... 95
8.2 lut_gemv_opt code... 96
8.3 lut_gemv_opt function overview...99
8.4 lut_gemv_opt function details...100

9. cplx_matmul_fp16fp32: Complex-valued half-precision to single precision floating-point matrix-
by-matrix multiplication.. 102
9.1 Overview of the cplx_matmul_fp16fp32 algorithm...102

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Contents

9.2 preprocess_l code.. 103
9.3 preprocess_l function overview..104
9.4 preprocess_l function details...106
9.5 cplx_matmul_opt code.. 106
9.6 cplx_matmul_opt function overview..109
9.7 cplx_matmul_opt function details...110

10. Related information...112

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Introduction

1. Introduction
As the technology is evolving faster than ever before in the digital world, so is the demand for
accelerated computing. The Arm architecture is evolving continuously to cope with the ever-rising
demand for computing complex data, making it the perfect choice for emerging digital technology.
This guide describes the Scalable Matrix Extensions, SME and SME2. This extension is introduced
into Armv9-A to improve the efficiency and performance of matrix operations.

The Armv7-A Advanced SIMD Extension enabled parallel data-processing on multiple lanes within
the fixed length 64-bit and 128-bit vector registers. With SIMD, the explicit data parallelization
technique helped improve performance in applications involving large amounts of data processing.
Industry applications involving large amounts of data processing demanded a larger vector length.
Arm adopted a novel approach and created a unique instruction set that scaled to different vector
lengths called the Scalable Vector Extension (SVE). SVE is an architectural extension to Armv8-A.
SVE enabled implementation defined vector register length which must be a power of two, from
128 bits to 2048 bits.

The vector length agnostic (VLA) coding style of the SVE architecture enables binaries, built for
SVE, to be portable across systems with different vector lengths. The programs built for the SVE
architecture can be executed on any Arm-based systems with SVE and are able to use the full
vector length across different platforms with different vector lengths without the need to re-
compile the source code. The SVE architecture significantly enhanced the computing performance
for ‘High Performance Computing’, making Arm the perfect choice for HPC designs.

The SVE2 architecture (a superset of SVE), introduced as part of Armv9-A, further extended the
SVE ISA to support DSP/Media processing which expands its scope from supercomputers to
personal devices.

The vectorization techniques introduced in SVE and SVE2 improved the performance of complex
data computation workloads significantly. However, efficient matrix computation commonly used
in Artificial Intelligence (AI) and Computer Vision remained a challenge. The architectural challenge
for matrices computation is to enable efficient data parallelism with minimal memory bandwidth to
achieve the best balance of compute ability and memory bandwidth. The Scalable Matrix Extension
(SME) introduced in this guide is an architectural solution by Arm to accelerate matrix operations.

1.1 The Scalable Matrix Extensions
The Scalable Matrix Extensions (SME and SME2) define:

• Streaming SVE mode

• ZA storage

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Introduction

1.1.1 Streaming SVE mode and ZA storage

The features of Streaming SVE mode and ZA storage are as follows:

• When the Processing Element (PE) is in Streaming SVE mode, the Streaming SVE register state
is defined. The Streaming SVE register state consists of:

◦ Streaming vector registers Z0-Z31

◦ Streaming predicate registers P0-P15

• Streaming SVE mode supports execution of a subset of SVE2 instructions with SME defined
vector length known as Streaming SVE Vector Length (SVL). When the PE is in Streaming SVE
mode, the effective SVE Vector Length (VL) is equal to a power of two in the range 128-2048
bits inclusive.

In a vector of SVL bits:

◦ SVLB is the number of 8-bit elements

◦ SVLH is the number of 16-bit elements

◦ SVLS is the number of 32-bit elements

◦ SVLD is the number of 64-bit elements

◦ SVLQ is the number of 128-bit elements

• The ZA storage is an architectural register state consisting of a two-dimensional ZA array of
[SVLB x SVLB] bytes

• The ZA array can be accessed as vectors of SVL bits represented by ZA[N], where N is in the
range 0 to SVLB-1 inclusive

• An elementwise vector access to the ZA array is shown in this document by appending an
element size qualifier and a vector index “[N]” to the ZA array name where N is in the range 0
to SVLB-1 inclusive, as follows:

◦ ZA.B[N] represents an 8-bit element vector access to the ZA array

◦ ZA.H[N] represents an 16-bit element vector access to the ZA array

◦ ZA.S[N] represents an 32-bit element vector access to the ZA array

◦ ZA.D[N] represents an 64-bit element vector access to the ZA array

◦ ZA.Q[N] represents an 128-bit element vector access to the ZA array

A sub-array of elements within the ZA array can be accessed as a tile. A ZA tile is a square,
two-dimensional sub-array of elements within the ZA array. As the architecture defines ZA
tile as a square, the ZA array is treated as containing one or more ZA tiles depending on the
element size with which the ZA array is accessed. A ZA tile is represented by appending the tile
number to the ZA name followed by an element qualifier.

Also, a one-dimensional set of horizontally or vertically contiguous elements within a ZA tile
can be accessed as a ZA tile slice. An access to horizontal tile slices is indicated by an “H” suffix
on the ZA tile name. An access to vertical tile slices is indicated by a “V” suffix on the ZA tile
name.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Introduction

Accessing an 8-bit element ZA tile
There is a single tile ZA0.B which consists of [SVLB × SVLB] 8-bit elements and occupies all of
the ZA storage.

Accessing a 16-bit element ZA tile
There are two tiles, ZA0.H and ZA1.H. Each tile consists of [SVLH × SVLH] 16-bit elements
and occupies half of the ZA storage.

Accessing a 32-bit element ZA tile
There are four tiles, ZA0.S, ZA1.S, ZA2.S, and ZA3.S . Each tile consists of [SVLS × SVLS] 32-
bit elements and occupies a quarter of the ZA storage.

Accessing a 64-bit element ZA tile
There are eight tiles, ZA0.D, ZA1.D, ZA2.D, ZA3.D, ZA4.D, ZA5.D, ZA6.D, and ZA7.D. Each
tile consists of [SVLD × SVLD] 64-bit elements and occupies an eighth of ZA storage.

Accessing a 128-bit element ZA tile
There are sixteen tiles, ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q,
ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, and ZA15.Q. Each tile consists of [SVLQ
× SVLQ] 128-bit elements and occupies a sixteenth of ZA storage.

Figure 1-1 shows tile ZA0.B when SVL is 256 bits consisting of SVLB x SVLB 8-bit elements.

In Figure 1-1:

• ZA0H.B[0], ZA0H.B[15], ZA0H.B[31] indicates horizontal tile slice selection of 8-bit element
ZA tile

• ZA0V.B[0], ZA0V.B[15], ZA0V.B[31] indicates vertical 8-bit element ZA tile slice selection

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Introduction

Figure 1-1: 8-bit element ZA tile, SVL = 256 bits

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2. SME Overview
This chapter gives an overview of SME and SME2.

2.1 SME and SME2
The Scalable Matrix Extension (SME) is an extension to Armv9-A architecture. It adds a new
architecture state: ZA storage. It introduces a new execution mode: Streaming SVE mode in
which the new SME instructions and a subset of SVE2 instructions can be executed. The SME
instructions operating on ZA include:

• Outer product computation with results in ZA tile

• Insert/extract ZA tile slice from/to Z vector register

• Load and store of ZA tile slice

The above SME instructions enable matrix operations, such as multiplication, inversion, and on-
the-fly transposition. These instructions are useful in digital filtering, linear equation solvers, and
convolutions. SME further extends a PE’s Process state or PSTATE with the SM and ZA fields. For
more details refer sections Streaming SVE mode and SME ZA storage.

The Scalable Matrix Extension version 2 (SME2) extends the SME architecture by accelerating
vector operations to increase the number of applications that can benefit from the computational
efficiency of SME, beyond its initial focus on outer products and matrix-matrix multiplication.

SME2 extends SME by introducing multi-vector data-processing instructions, load to and store
from multi-vectors, and a multi-vector predication mechanism.

Additional architectural features of SME2 include:

• Multi-vector multiply-accumulate instructions, with Z vectors as multiplier and multiplicand
inputs and accumulating results into ZA array vectors, including widening multiplies that
accumulate into more vectors than they read

• Multi-vector load, store, move, permute, and convert instructions, that use multiple SVE Z
vectors as source and destination registers to pre-process inputs and post-process outputs of
the ZA-targeting SME2 instructions

• “Predicate-as-counter”, an alternative predication mechanism is added to the original SVE
predication mechanism, to control operations performed on multiple vector registers

• Compressed neural network capability using dedicated lookup table instructions and outer
product instructions that support binary neural networks

SME2 adds a 512-bit architectural register ZT0, that supports the lookup table feature.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.1.1 If SME and SME2 are supported

Implementation of SME is represented by the feature FEAT_SME which is an optional extension
from Armv9.2-A. The ID_AA64PFR1_EL1.SME system register field contains the value 1 or higher
to indicate the presence of FEAT_SME.

Implementation of SME2 is represented by the feature FEAT_SME2 which is an optional extension
from Armv9.2-A. The following fields show the presence of FEAT_SME2:

• ID_AA64PFR1_EL1.SME contains the value 2 or higher, and

• ID_AA64SMFR0_EL1.SMEver contains the 1 or higher

FEAT_SME2 requires FEAT_SME.

System registers (ID_AA64PFR1_EL1 and ID_AA64SMFR0_EL1) might not be
directly accessible by an application program. The operating system might provide
this information to an application via an alternative means, such as the Linux hwcap
mechanism.

2.1.2 SME2 lookup table

The 512-bit architectural register ZT0, supports the lookup table feature. The ZT0 contains a 16-
entry lookup table. Each entry is 32 bits wide and can hold an element that can be 8 bits, 16 bits,
or 32 bits. The ZT0 register can be loaded from memory and stored to memory.

Loading the ZT0 register
LDR (table), Load ZT0 register from the memory address provided in the 64-bit scalar base
register. For example: - LDR ZT0, [X0].

Storing the ZT0 register
STR (table), Store ZT0 register to the memory address provided in the 64-bit scalar base
register. For example: - STR ZT0, [X0].

Lookup in the ZT0 register
LUTI2 and LUTI4, Lookup table read instructions, copy 8-bit, 16-bit or 32-bit elements from
ZT0 to one or more of the destination vector registers using packed indices from a segment
of the source vector register. The indices can be 2 bits (LUTI2) or 4-bits (LUTI4). When using
2-bit indices, only the first four entries of the ZT0 table are accessible. When using 4-bit
indices, all sixteen entries of the ZT0 table are accessible.

Lookup table example
The following instruction decompresses a sequence of 2-bit index values from the second
segment of the Z0 register by extracting the indexed 16-bit entries from ZT0 and placing the
16-bit results into the Z5 vector:

- `LUTI2 Z5.H, ZT0, Z0[2]`

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Because the index is 2 bits, only the first four entries of the lookup table can be accessed by this
instruction. The element size in this instruction is 16 bits. The number of segments is determined
by the element size divided by product of index size and number of registers to be loaded. For
this example the number of segments is 8 and the segment size is 16 bits for an example 128-bit
SVL. Eight 2-bit indices are used from the second segment of the Z0 register (as indicated in the
instruction using Z0[2]) to index the first four table entries in ZT0 register. The indexed 16-bit table
entries are copied to Z5 register as Figure 2-1 shows.

Figure 2-1: Example LUTI2 instrcution operation

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.1.3 SME2 multi-vector predication

The SME2 architecture introduces multi-vector instructions that operate on groups of Z vector
registers and ZA array vectors. The multi-vector load and store instructions use an alternative
predication mechanism to the original SVE predication mechanism, to control operations performed
on a group of Z vector registers. The multi-vector predication concept is referred to as predicate-
as-counter.

Unlike predication in SVE, which is a bitmask based, predicate-as-counter uses an encoded element
count in the predicate register. The encoded value indicates the number of consecutive elements
starting from element 0 that are Active, with the remaining elements Inactive, or vice versa.

2.2 Streaming SVE mode
An implementation of SME supports Streaming SVE mode. The Streaming SVE mode is a dedicated
mode for SME operations that can be enabled or disabled by software by programming the
PSTATE.SM field.

When the PE is in Streaming SVE mode:

• The streaming vector registers Z0-Z31, streaming predicate registers P0-P15 and SME
architecture state are accessible by SME instructions and a subset of SVE2 instructions
executable in Streaming SVE mode.

• The effective vector length changes to streaming vector length. The SMCR_EL1, Streaming SVE
Mode Control Register for EL1 configures the Effective Streaming SVE vector length when the
PE is in Streaming SVE mode and executing at EL1 or EL0. For EL2 and EL3, corresponding
SMCR register configures the Effective Streaming SVE vector length.

SVL is independent of SVE Vector length (referred to as VL which is the vector length when not
in Streaming SVE mode). The Effective Streaming SVE vector length, SVL, is a power of two in the
range 128-2048 bits inclusive. SVL can vary between implementations. When streaming SVE mode
is disabled, the ZCR_ELx register determines the effective SVE vector length (VL).

Streaming SVE mode is enabled when PSTATE.SM=1. When PSTATE.SM is changed from 0 to 1,
Streaming SVE mode is entered and SVE registers Z0-Z31 and P0-P15 in the new mode are set to
0.

You cannot directly program the PSTATE.SM field. The PSTATE.SM field can be programmed
by using the SVCR register. You can use the following instruction to independently set or clear
PSTATE.SM field:

• MSR SVCRSM, #<imm1>

Also, you can use SMSTART SM instruction, alias of the MSR SVCRSM, #1 and SMSTOP SM instruction,
alias of the MSR SVCRSM, #0.

You can use the MRS instruction to read the SVCR register.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

When the PSTATE.SM is changed from 1 to 0, an exit from Streaming SVE mode is performed, and
each implemented bit of the SVE registers Z0-Z31 and P0-P15 in the new mode will set to zero.

SMSTART SM enters Streaming SVE mode, but does not enable the SME ZA
storage.

2.3 SME ZA storage
Streaming SVE mode permits access to the ZA array when ZA storage is enabled. When ZA storage
is enabled, the ZA-targeting instructions are available.

You can enable or disable the SME ZA storage in software by programming the PSTATE.ZA field.
The SME ZA storage is enabled when PSTATE.ZA is 1. When ZA storage is enabled:

• The content of ZA storage is valid and is retained by hardware irrespective of whether the PE is
in Streaming SVE mode.

• If SME2 is implemented ZT0 register is enabled.

You cannot directy program the PSTATE.ZA field. The PSTATE.ZA field can be programmed using
the SVCR register. You can use the following instruction to independently set or clear PSTATE.ZA
field: - MSR SVCRZA, #<imm1>

Also, you can use the SMSTART ZA instruction, an alias of the MSR SVCRZA, #1 and SMSTOP ZA
instruction, an alias of the MSR SVCRZA, #0.

You can use the MRS instruction to read the SVCR register.

You can use the SMSTART instruction to enable both Streaming SVE mode, and SME ZA array
storage. You can use the SMSTOP instruction to disable Streaming SVE mode, and SME ZA array
storage.

SMSTART ZA enables the SME ZA array storage, but does not cause an entry to
Streaming SVE mode.

2.3.1 ZA array vector access and ZA tile mapping

This section describes the ZA Storage, ZA array vector access, and ZA tile mappings for 8-bit, 16-
bit, and 32-bit data types in an example 128-bit SVL implementation.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.3.1.1 ZA storage access for 8-bit element size

Each small box in the figures of this section represents an 8-bit element.

ZA array vector access for 8-bit element size

Figure 2-2 shows ZA Storage with ZA array vector access for 8-bit element size.

Figure 2-2: ZA array vector access in ZA storage for 8-bit element size for an 128-bit SVL
implementation

Accessing ZA tile for 8-bit element size

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

When accessing 8-bit element ZA tile, there is a single tile ZA0.B which consists of [16 × 16] 8-bit
elements and occupies all of the ZA storage.

Figure 2-3 shows the horizontal slice of ZA0.B tile.

Figure 2-3: Horizontal slices in ZA0.B tile

Figure 2-4 shows the vertical slice of ZA0.B tile.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-4: Vertical slices in ZA0.B tile

Figure 2-2, Figure 2-3, and Figure 2-4 show ZA storage being accessible as:

• Vectors of 8-bit element size

• Horizontal and vertical slices in a tile of 8-bit element size

The subsequent sections depict ZA storage being accessible as:

• Vectors of 16-bit and 32-bit element sizes

• Horizontal and vertical slices in a tile of 16-bit and 32-bit element sizes

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.3.1.2 ZA storage access for 16-bit element size

Each small box in the figures of this section represents an 16-bit element.

ZA array vector access for 16-bit element size

Figure 2-5 shows ZA Storage with ZA array vector access for 16-bit element size. The color coding
used in the following figure shows how the vectors are mapped to different tiles that are described
in subsequent sections.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-5: ZA array vector access in ZA Storage for 16-bit element size for an 128-bit SVL
implementation

Accessing ZA tile for 16-bit element size

While accessing 16-bit element ZA tile, there are two tiles, ZA0.H and ZA1.H. Each tile consists of
[8 × 8] 16-bit elements and occupies half of the ZA storage.

Figure 2-6 shows the horizontal slices of ZA0.H tile in the ZA storage.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-6: Horizontal slices in ZA0.H tile in ZA storage

Figure 2-7 shows vertical slices in the ZA0.H tile.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-7: Vertical slices in ZA0.H tile

Figure 2-8 shows the horizontal slices of ZA1.H tile in the ZA storage.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-8: Horizontal slices in ZA1.H tile in ZA Storage

Figure 2-9 shows the horizontal slices in ZA1.H tile

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-9: Horizontal slices in ZA1.H tile

Figure 2-10 shows the vertical slices in ZA1.H tile.

Figure 2-10: Vertical slices in ZA1.H tile

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.3.1.3 ZA storage access for 32-bit element size

Each small box in the figures of this section represents an 32-bit element.

ZA array vector access for 32-bit element size

Figure 2-11 shows ZA Storage with ZA array vector access for 32-bit element size. The color
coding used in the following figure illustrates how the vectors are mapped to different tiles that are
described in subsequent sections.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-11: ZA array vector access in ZA Storage for 32-bit element size for an 128-bit SVL
implementation

Accessing ZA tile for 32-bit element size

While accessing 32-bit element ZA tile, there are four tiles, ZA0.S, ZA1.S, ZA2.S, and ZA3.S. Each
tile consists of [4 × 4] 32-bit elements and occupies a quarter of the ZA storage.

Figure 2-12 shows the horizontal slices of ZA0.S, ZA1.S, ZA2.S, and ZA3.S tiles in the ZA storage.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-12: Horizontal slices in ZA0.S, ZA1.S, ZA2.S and ZA3.S tiles in ZA storage

Figure 2-13 shows the vertical slices in ZA0.S.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-13: Vertical slice of ZA0.S tile

Similar to the above ZA1.S, ZA2.S, and ZA3.S tiles have ZA1V.S[0-3], ZA2V.S[0-3], ZA3V.S[0-3]
vertical slices correspondingly.

The above examples show the ZA Storage mapping for an SVL of 128-bits for 32-bit, 16-bit and 8-
bit element sizes. The following figure illustrates the ZA storage mapping for an SVL of 256 bits, for
various element size tiles, horizontal tile slices, and vertical tile slices. Each small square represents
8 bits.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-14: ZA Storage mapping for 256 bits SVL implementation

2.4 SME2 multi-vector operands
The SME2 adds instructions capable of supporting multi-vector operands, where the source and
destination operands can be one of the following:

• A group of one, two or four SVE Z vector registers

• A group of one, two or four ZA tile slices

• A group of one, two, four, eight, or sixteen ZA array vectors

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.4.1 Z multi-vector operands

A multi-vector operand consisting of two or four SVE Z vector registers is called a Z multi-vector
operand.

The Z multi-vector operand can be consecutive Z registers, or Z registers with strided numbering.

For example:

• Consecutively numbered Z register operands:

◦ FCVTZS { Z0.S-Z1.S }, { Z4.S-Z5.S }, converts each element of Z4 and Z5 to the
signed 32-bit integer nearer to zero from single-precision, and places the results in the
corresponding elements of the Z0 and Z1.

• Z register operands with strided numbering:

◦ LD1D { Z0.D, Z4.D, Z8.D, Z12.D }, P8/Z, [X0], contiguously loads unsigned
doublewords into the elements of vector registers Z0, Z4, Z8, and Z12 from the memory
pointed by X0.

2.4.2 ZA multi-slice operands

A multi-vector operand consisting of two or four ZA tile slices is called a ZA multi-slice operand.
A ZA multi-slice operand can be consecutively numbered horizontal ZA tile slices or consecutively
numbered vertical ZA tile slices.

For example:

MOVA ZA0H.B [W12, 0:3], { Z0.B-Z3.B }, copies Z0 to Z3 vector contents into the four horizontal
slices ZA0H.B[5] to ZA0H.B[8], assuming W12 value is 5.

2.4.3 ZA multi-vector operands

The ZA multi-vector operand consists of one, two, or four vector groups, where a vector group is
one of the following:

• ZA single-vector group, any one ZA array vector

• ZA double-vector group, two consecutively numbered vectors in the ZA array

• ZA quad-vector group, four consecutively numbered vectors in the ZA array

The vector group symbols, VGx2 and VGx4, are used to indicate two or four vector groups
respectively.

Example instruction that produces results to two ZA single-vector groups ZA.S[0] and ZA.S[8]

FMLA ZA.S[W8, 0, VGx2], {Z4.S-Z5.S}, Z6.S, multiplies each 32-bit floating point element of
Z6 with corresponding 32-bit floating point elements of Z4 and Z5 registers, and add the results

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

to corresponding 32-bit elements in ZA.S[0] and ZA.S[0+SVLb/2], assuming W8 value is 0. Figure
2-15 shows the FMLA instruction operation for an example 128-bit SVL.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-15: FMLA instrcution operation

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Example instruction that produces results to one ZA double-vector group that consists ZA.S[0] and
ZA.S[1]

FMLAL ZA.S[W8, 0:1], Z4.H, Z5.H, widens all 16-bit half-precision elements in Z4 and Z5, and
multiplies the corresponding elements, producing SVLb/2 number of 32-bit intermediate results.
The even numbered intermediate results are added to 32-bit elements in ZA.S[0] and the odd
numbered intermediate results are added to 32-bit elements in ZA.S[1], assuming W8 value is 0.
Figure 2-16 shows the FMLAL instruction operation for an example 128-bit SVL.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-16: FMLAL instrcution operation

Example instruction that produces results to two ZA quad-vector groups ZA.S[0-3] and ZA.S[8-11]

USMLALL ZA.S[W8, 0:3, VGx2], {Z0.B-Z1.B}, {Z8.B-Z9.B}, multiplies each unsigned 8-bit
element in the Z0.B and Z1.B source vectors with each signed 8-bit element in the Z8.B and

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Z9.B second source vectors, widens each product to 32-bits and destructively adds these values
to the corresponding 32-bit elements of two ZA quad-vector groups ZA.S[0] to ZA.S[3] and
ZA.S[SVLb/2+0] to SVLb/2+3], assuming W8 value is 0. Figure 2-17 shows the USMLALL
instruction operation for an example 128-bit SVL.

In Figure 2-17,

• The first set of four results are formed by elements i*4, where i is 0,1,2,3.

• The second set of four results are formed by elements (i*4)+1, where i is 0,1,2,3.

• The third set of four results are formed by elements (i*4)+2, where i is 0,1,2,3.

• The fourth set of four results are formed by elements (i*4)+3, where i is 0,1,2,3.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

Figure 2-17: USMLALL instrcution operation

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME Overview

2.5 SME context save restore
This section describes SME context save and restore operations.

2.5.1 Context save restore on entry or exit from Streaming SVE mode

On entry to Streaming SVE mode and on exit from Streaming SVE mode, each implemented bit
of SVE registers Z0-Z31 and P0-P15 is set to 0. In addition FPSR is set to a fixed value. Software
must save these registers before entering Streaming SVE mode and restore these registers after
exiting Streaming SVE mode.

2.5.2 Context save restore in supervisory software

To avoid data leakage between software bodies of different trust/security scope, supervisory
software must ensure context save restore for ZA Storage and ZT0 register when performing
context switch between the software bodies.

Supervisory software must not assume a lower value of SVL being used by the
software bodies it manages. The supervisory software must also save restore ZA
storage that is being exposed to the software bodies.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

3. Toolchains and model support
This chapter describes the software tools and execution model that support SME/SME2
application development.

3.1 Quick start example for SME/SME2
This section shows a quick start example based SME/SME2 assembler instructions and how to run
it on Arm Development Studio. It also describes the source code, compiling commands with Arm
compiler 6 and execution on the FVP model.

Download and install the Arm Development Studio by referring the Arm
Development Studio Getting Started Guide.

3.1.1 Step 1: Create a new project with SME/SME2 instruction

In the Arm Development Studio menus,

1. Click File -> New->Project -> C/C++ -> C/C++ project;

2. Choose C Manage build or C++ -> Empty Project with Arm Compiler for Embedded 6 (type
the custom project name);

3. Add the main source file in this project with the following code:

// SME_example.s
<...>
// <Definition of Initializing sequence about preparation to enter the streaming
 mode>
.macro sme_init
...

// <Definition of Initializing sequence about preparation to exit the streaming
 mode>
.macro sme_done
...

sme_funcs1:
 sme_init
 mov w12, #0x0
 mov x13, #0x80000000
 ptrue pn8.b
 // Contiguous load from memory address stored at x13 to Z registers
 ld1b {z0.b-z3.b}, pn8/z, [x13]
 // Move the value from Z registers to ZA tiles
 mova za0h.b[w12, 0:3], {z0.b-z3.b}
 sme_done
<...>

// main.c
<...>

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 112

https://developer.arm.com/documentation/101469/latest
https://developer.arm.com/documentation/101469/latest

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

#include <stdio.h>

extern sme_funcs1();

int main() {
 sme_funcs1();
 return 0;
}
<...>

The code shows a simple process that enables the streaming SVE mode and loads values to the
ZA register by inserting the SME/SME2 assembler instruction. Figure 3-1 shows the content of ZA
storage before executing the mova instruction.

Figure 3-1: Chart for ZA0 content before executing mova instruction

Figure 3-2 shows the content change of ZA0 tile through setting breakpoints after executing the
mova instruction.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

Figure 3-2: Chart for ZA0 content after executing mova instruction

See the details of macros sme_init and sme_done in Calling conventions.

3.1.2 Step 2: Build the project

In the Arm Development Studio menus,

1. Right-click the project and select properties;

2. Open the C/C++ Build -> Setting -> Tool Settings;

3. For all Tools Settings, select the Generic Armv9.2-A AArch64 as Target CPU, Armv8 (Neon) as
target FPU;

4. Build the project with the below setting.

<...>
// Arm C Compiler for Embedded 6 setting is below
--target=aarch64-arm-none-eabi -march=armv9.2-a+sme2 -O1 -g -fno-inline-functions

// Arm assembler 6 setting is below
--target=aarch64-arm-none-eabi -march=armv9.2-a+sme2 -g

// Arm Linker 6 setting is below
--ro_base=0x80000000 --info=sizes

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

<...>

This is the basic setting of tools with SME2 enablement. See more features in
Compiler options and pragmas.

3.1.3 Step 3: Connect a Debugger and configure

In the Arm Development Studio menus,

1. Right-click the project;

2. Select the debug configuration and create a new configuration;

3. In the connection selection box, select the FVP - Arm FVP (Installed with Arm DS) /
Base_AEMvA*1_SVE/Bare Metal Debug/AEM-A_MP with the following model parameters:

<...>
-C cluster0.NUM_CORES=0x1
-C bp.secure_memory=0
-C SVE.ScalableVectorExtension.has_sme=1
-C SVE.ScalableVectorExtension.has_sme2=1
<...>

Add the following options manually: -C bp.secure_memory=0
-C SVE.ScalableVectorExtension.has_sme=1 -C
SVE.ScalableVectorExtension.has_sme2=1

1. Load the executable file into the Files setting;

2. Select the Debug from main at Debugger setting;

3. Click debug, to build a Iris-compliant connection between the debugger and a FVP successfully;

4. Choose the Steping By Instruction debug mode, that allow viewing of the changes in the ZA
register.

3.2 Compiler support
As section 3.1 shows, to build an application that uses SME and SME2 instructions, you must
choose a compiler that supports these instructions. The following compilers support SME and
SME2:

• Arm Compiler for Embedded 6 is a cross-platform compiler for bare-metal application
development. Arm Compiler 6 first introduces support for SME from version 6.17. Then it adds

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

additional SME and SME2 functionality in subsequent releases. Arm compiler 6 versions greater
than 6.21 support SME and SME2. Arm recommends this or greater are used.

• Clang is an open-source C compiler based on LLVM. Clang version 18 and higher support SME
and SME2. From version 18, Clang can compile source code containing SME and SME2 ACLE
intrinsics which implement the SME and SME2 ACLE.

• GNU toolchain is a broad collection of programming tools. GNU toolchain, GCC version 14
starts to support the SME and SME2 ACLE intrinsics.

Whichever compiler you use, Arm recommends using the most recent version.

Both the Arm Compiler 6 and Clang enable:

• Assembly of source code containing SME and SME2 instructions

• Disassembly of ELF object files containing SME and SME2 instructions

For Clang, the compiler integrates the assembler, which is not the same as GCC. The GNU
toolchain uses a separate package called binutils to provide the assembler, linker and associated
utilities to assemble and link. For assembly of SME/SME2 instructions, the minimal required GNU
binutils version is 2.41.

3.2.1 Compiler options and pragmas

The following two ways describe how to write the source code and how to compile the code with
the above compilers.

• Writing assembly code is supported directly by the compiler. Both the Arm compiler and Clang
are capable of generating an executable file for SME/SME2 assembly code.

• The Arm C Language Extension (ACLE) makes the SME/SME2 instructions available as intrinsic
functions, which are supported by the compilers that replace the functions with corresponding
instructions. It also provides facilities for managing streaming mode and ZA storage. For details
about these extensions, see sme-language-extensions-and-intrinsics in ACLE. Now, only the
Clang compiler can compile the ACLE code; when GCC 14 is released, it can also compile ACLE
code.

When compiling the SME/SME2 instructions, the following settings are available:

1. Compiler options:

• To target SME/SME2, select the following -march features with different variant types.

The following table shows part of features to target SME/SME2.

Feature identifier Feature Description -march/-mcpu <feature> options

FEAT_SME Scalable Matrix Extension sme

FEAT_SME2 SME2 sme2

FEAT_SME_F64F64 SME with the double-precision variant sme-f64f64

FEAT_SME_I16I64 SME with 16-bit integer variant sme-i16i64

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 112

https://arm-software.github.io/acle/main/acle.html#sme-language-extensions-and-intrinsics

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

Feature identifier Feature Description -march/-mcpu <feature> options
… … …

SME is supported in Armv9.2-A architecture. There are more options, which
availability and support level differ in every compiler release. See the Arm Compiler
Reference Guide for the full set of supported options in each compiler release.

There is an example to compile the SME2 instruction in C language.

// Arm C/C++ compiler:
armclang --target=aarch64-arm-none-eabi -march=armv9.2-a+sme2 -o <Executable file>
 <source file>

// Clang compiler:
clang -target aarch64-none-elf -march=armv9.2-a+sme2 <Source files> -o <Executable
 files>

1. Include the relevant SME/SME2 header files and specify which target executes the code.

#ifdef __ARM_FEATURE_SME
#include <arm_sme.h>
#endif

<arm_sme.h> declares functions and defines intrinsics for SME and its extensions, also including
<arm_sve.h>.

Command line examples to compile the SME/SME2 intrinsics:

// Clang compiler:
clang -target aarch64-none-elf -march=armv9.2-a+sme <Source files> -o <Executable
 files>

Passing -march=armv9.2-a+sme defines the macro __ARM_FEATURE_SME.

Currently, GCC 14 which is the latest version to support the ACLE intrinsics for
SME, has not been released to public. The Clang compiles all examples with SME
intrinsics instead.

3.3 Calling conventions
To program in assembly, be aware of the latest updates to the Procedure Call Standard for the Arm
64-bit Architecture (AAPCS64) within the Application Binary Interface for the Arm Architecture

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 112

https://developer.arm.com/documentation/101754/0621/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0621/armclang-Reference/armclang-Command-line-Options/-march
https://github.com/ARM-software/abi-aa/releases

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

(ABI) document with SME support from release 2022Q3. Arm recommends that you use the latest
version.

The following example shows the AAPCS process and how the SME assembler function is called
and the related parameters are passed.

// main.c
<...>
int main(){
 // Initilization of two input matrices, one output matrix
 int M, N, K;
 ...

 uint16_t * matLeft = (uint16_t *) malloc(M*K*sizeof(uint16_t));
 uint16_t * matRight = (uint16_t *) malloc(K*N*sizeof(uint16_t));
 uint64_t * matResult = (uint64_t *) malloc(M*N*sizeof(uint64_t));
 ...

 matmul(M, K, N, matLeft, matRight, matResult);
}
<...>

// matmul.s
<...>
.text
.global matmul
.type matmul, %function

// <Definition of Initializing sequence about preparation to enter the streaming
 mode>
.macro sme_init
...

// <Definition of Initializing sequence about preparation to exit the streaming
 mode>
.macro sme_done
...

matmul:
 // matmul(M, K, N, matLeft, matRight, matResult);
 // x0 : M
 // x1 : K
 // x2 : N
 // x3 : &matLeft
 // x4 : &matRight
 // x5 : &matResult

 sme_init
 <The process of matrix-matrix multiplication>
 sme_done
<...>

According to the AAPCS64, the first 8 registers, r0-r7, pass argument values into a subroutine.
In this case, the x0-x5 pass the value of column and row for input matrices, and the pointer
for matrices. Next, use this information in the calculation of the matrix by matrix multiplication.
Registers r0-r7 also return the results from a function.

In addition to r0-r7, the AAPCS64 also defines the use of other general-purpose registers and
summarizes the use of general-purpose registers in the procedure call standard.

Also, SME defines several pieces of processor state: ZA storage, PSTATE.SM, PSTATE.ZA, and
TPIDR2_EL0. AAPCS64 describes the management of processor state across function boundaries.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 112

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#the-base-procedure-call-standard

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

Preparation for entering and exiting streaming mode shows the sequence
preparation on entry or exit from streaming mode.

3.3.1 Preparation for entering and exiting streaming mode

There are some preparation steps when entering streaming mode. The instruction syntax uses
qualified FP/SIMD/SVE register names. For instance, B presents the low byte, Q presents a 128-bit
quadword (Neon), and Z presents a full SVE register. The compiler needs to save the content of FP/
SIMD/SVE registers D8-D15 before entering streaming mode, because the AAPCS64 requires that
the low 64 bits of them are not changed by the call.

For ZA storage, AAPCS64 uses a cooperative Lazy saving scheme after entering streaming mode.
Functions that want to use ZA must check whether ZA already contains live contents first. Then
they must save those contents to a provided buffer if so. The owner of the saved contents can
restore them later. See details of committing-a-lazy-save in AAPCS64.

On exit from streaming mode, restore the old contents of D8-D15.

The following example shows sme_init and sme_done, the macro definitions of preparation steps.

<...>
 .macro sme_init
 // Store the frame pointer and link register to create a frame chain
 stp x29, x30, [sp, #-80]!
 // Point the frame pointer to the new frame chain
 mov x29, sp
 // Save the current contents of D8-D15, which must be preserved by the function
 stp d8, d9, [sp, #16]
 stp d10, d11, [sp, #32]
 stp d12, d13, [sp, #48]
 stp d14, d15, [sp, #64]
 // Enable streaming mode and ZA
 smstart
 // Check whether there are already some lazily-saved contents in ZA
 mrs x0, tpidr2_el0
 cbz x0, 1f
 // Commit the lazy save
 bl __arm_tpidr2_save
 // Indicate that there is no longer an active lazy save
 msr tpidr2_el0, xzr
1:
 .endm

 .macro sme_done
 // Disable ZA and exit streaming mode
 smstop
 // Restore the old contents of D8-D15
 ldp d8, d9, [sp, #16]
 ldp d10, d11, [sp, #32]
 ldp d12, d13, [sp, #48]
 ldp d14, d15, [sp, #64]
 // Restore the old frame pointer and link register
 ldp x29, x30, [sp], #80
 .endm

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 112

https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#666committing-a-lazy-save

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

<...>

If an algorithm depends on ZA starting out at zero, it should clear out ZA after
the call to __arm_tpidr2_save. Otherwise, the callee would inherit ZA contents
from the caller. The instruction to zero ZA is zero {za}. If ZA was previously off,
executing SMSTART ZA has the effect of zeroing the contents of ZA.

__arm_tpidr2_save is not something that C or C++ code should call. Instead, the
compiler emits a call to __arm_tpidr2_save where it is necessary. When writing
complete functions directly in asm rather than using inline asm in C/C++, functions
that want to use ZA must call __arm_tpidr2_save first. Also, __arm_tpidr2_save is
a function that is provided by the runtime library, rather than a compiler intrinsic.
Because the Arm Compiler 6 does not have the runtime library till now, it is better
to use the Clang to compile the function.

3.3.2 Controlling the use of streaming mode

The ABI defines which state PSTATE.SM is in on entry to a function and on a normal return, See
SME ZA storage. At any time, the processor is either in streaming mode (PSTATE.SM==1) or in non-
streaming mode (PSTATE.SM==0).

1. When writing directly in assembly code, use the instruction SMSTART SM to enter streaming
mode. Use SMSTOP SM to return to non-streaming mode.

2. When writing in C/C++ with ACLE intrinsics, ACLE provides 2 attributes that specify how the
program executes statements. The attributes are streaming and streaming-compatible.

• Streaming: shows that the function can only be executed in streaming mode. Entering
streaming mode is required, if PE is in non-streaming mode.

• Streaming-compatible: shows that the function can be executed in both streaming and non-
streaming modes.

Non-streaming is default, which shows that the function can only be executed in
non-streaming mode. An exit from streaming mode is required, if PE is in streaming
mode and you want to execute in non-streaming mode.

The following code example shows how to define the execution statements of a function with
attributes.

<...>
// "n" stands for "non-streaming"
// "s" stands for "streaming"
// "sc" stands for "streaming-compatible"

void n_callee(void); // The program is in non-streaming statements when calling this
 function

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

void s_callee(void) __arm_streaming; // The program is in streaming statements when
 calling this function
void sc_callee(void) __arm_streaming_compatible; // The program is in streaming-
compatible statements when calling this function
<...>

The code below shows how to use attributes to specify whether code can or must execute in
streaming mode. The code uses the SME intrinsic __arm_in_streaming_mode, which returns true if
the caller is executing in streaming mode. The program automatically switches mode as necessary
before calling a function and restores the previous mode on return.

<...>
#include <stdlib.h>
#include <stdio.h>
#include <arm_sme.h>

void n_print_sme_status(void){
 printf ("__arm_in_streaming_mode = %d \n", __arm_in_streaming_mode());
}

void s_print_sme_status(void) __arm_streaming{
 printf ("__arm_in_streaming_mode = %d \n", __arm_in_streaming_mode());
}

void sc_print_sme_status(void) __arm_streaming_compatible{
 printf ("__arm_in_streaming_mode = %d \n", __arm_in_streaming_mode());
}

int main(){
 n_print_sme_status();
 s_print_sme_status();
 sc_print_sme_status();
 return 0;
}
<...>

The following output is generated:

__arm_in_streaming_mode = 0
__arm_in_streaming_mode = 1
__arm_in_streaming_mode = 0

The caller s_print_sme_status, a function with streaming attribute, calls
__arm_in_streaming_mode. This returns true because the caller is streaming. While the caller
n_print_sme_status is without a streaming attribute, which means the caller is non-streaming, the
output shows false. Because the main() is non-streaming, the sc_print_sme_status runs in non-
streaming mode.

3.3.2.1 Managing streaming mode across function boundaries

ACLE provides attributes for managing streaming modes across function boundaries, which extend
to 3 function types - non-streaming types, streaming types and streaming-compatible type.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

The function type classification decides which mode the program is in on entry to the function and
which mode the program is in on return from the function.

For example in Controlling the use of streaming mode, if the non-streaming function is called
during a streaming function, the mode is streaming when entering into the s_print_sme_status()
and is then switched into non-streaming when branching into n_print_sme_status(). After
completing the non-streaming function, the mode returns to streaming.

<...>
void s_print_sme_status(void) __arm_streaming{
 n_print_sme_status();
 printf ("__arm_in_streaming_mode = %d \n", __arm_in_streaming_mode());
}

...
// Result of printf
//__arm_in_streaming_mode = 0
//__arm_in_streaming_mode = 1
<...>

Calls can be from a streaming caller to a non-streaming callee or from a non-streaming caller to
a streaming callee. In both cases, these changes of mode are automatic, and it is the compiler’s
responsibility to insert the necessary instructions. There are no intrinsics that map directly to
SMSTART and SMSTOP.

In addition to being changed across function boundaries, streaming mode can be
changed locally by adding an __arm_locally_streaming attribute to a function. The
program automatically puts the program into streaming mode before executing the
statements and restores the previous mode afterwards. This choice is internal to
the function definition. It is not visible to callers and so it can be changed without
affecting the function’s binary interface. Also, the __arm_locally_streaming
attribute can override the function type classification. See the specific description of
changing streaming mode locally at section 15.1.2 in ACLE.

Streaming mode has some effects on code:

• It can change the length of SVE vectors and predicates. The streaming vector length (SVL)
might be different from the normal non-streaming vector length (VL). When switching modes,
the undefined behavior needs to be worried except the SVL and VL are equal. For example, in
streaming-compatible code, when switching from streaming to non-streaming modes, Z and P
register states are not maintained. Therefore, it is not guaranteed to pass the values initialized
on Z with VL from non-streaming to streaming with SVL.

In the following code example, ptr is a pointer of non-streaming vector. Function s_add adds
1 to all the elements of x, which is a streaming vector. The call from a non-streaming function
ns_add() to a streaming function s_add() is undefined if the SVL and VL are not equal.

svint32_t s_add(svint32_t x) __arm_streaming {
 return svadd_x(svptrue_b8(), x, 1);
}

void ns_add(svint32_t *ptr) {

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 112

https://arm-software.github.io/acle/main/acle.html#changing-streaming-mode-locally

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

 *ptr = s_add(*ptr);
}

svint32_t defines the signed integer data type for single vector. svptrue_b8
returns a predicate in which every element is true. svadd_x adds 1 to every
active element of x.

• SME streaming intrinsics in ACLE can only be executed in streaming mode, while non-streaming
intrinsics can only be executed in non-streaming mode.

3.3.3 Controlling the use of ZA storage

ZA storage enablement is controlled by another processor state bit - PSTATE.ZA. Like the streaming
mode, there are two ways to enable ZA storage. The first one is through SMSTART instruction
written directly in assembly. The second one is to use the attributes with ACLE intrinsics. In C and
C++ code, access to ZA is controlled at the function granularity. AAPCS gives a one-in-three choice
for how a function handles ZA.

• The function does not use ZA. This is the default.

• The function uses ZA, which it shares with its caller. This is indicated by the __arm_shared_za
function type attribute with syntax __arm_inout("za").

• The function uses ZA that it creates from scratch and it does not share with its caller. This is
indicated by the __arm_new_za function type attribute with syntax __arm_new("za").

__arm_new("za") is at the beginning when functions is defined. While,
__arm_inout("za") should be at the end because it describes the type of
the function, that callers to the function are aware of. Adding or removing
__arm_inout("za") changes the interface of the function and the ABI, that would
require all callers to be recompiled. However, callees do not need to be recompiled
when calling the functions with __arm_new("za") attribute. See more explanation at
ACLE.

The following code example shows how to enable the ZA storage with __arm_new("za") attribute.

<...>
#include <stdio.h>

__arm_new("za") void SME_func1(void) __arm_streaming {
 __asm volatile(
 "mov w12, #0x0 \n"
 "mov x13, #0x80000000 \n"
 "ptrue pn8.b \n"
 "ld1b {z0.b-z3.b}, pn8/z, [x13] \n"
 "mova za0h.b[w12, 0:3], {z0.b-z3.b} \n"
 ::: "x12","x13","p8","z0","z1","z2","z3","za"
);
}

int main() {

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 112

https://arm-software.github.io/acle/main/acle.html

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

 SME_func1();
 return 0;
}
<...>

In this case, ZA storage is enabled by the attributes __arm_new("za"), which instructs the compiler
to insert a SMSTART ZA instruction at the beginning of the function.

The following example is a complex one to show the effect of ZA storage, when calling functions
with different ZA storage attributes.

<...>
#include <stdlib.h>
#include <stdio.h>
#include <arm_sme.h>

const int kMaxSVEVecLen = 2048;

static unsigned char zero_buffer[kMaxSVEVecLen] = { 0 };

unsigned long checksum_za(void) __arm_streaming __arm_inout("za") {
 unsigned long i;
 unsigned long svl = svcntsb();
 unsigned char buffer[svl];
 unsigned long sum = 0;

 for (i = 0; i < svl; i++) {
 unsigned long j;
 svstr_vnum_za(i, buffer, 0); // Store data to buffer with element of the
 i-th row of ZA with offset 0
 for (j = 0; j < svl; j++) {
 sum += buffer[j];
 }
 }

 return sum;
}

void assign_za_1(void) __arm_streaming __arm_inout("za") {
 svbool_t p_all = svptrue_b8(); // Set predicate elements to true
 svint8_t zn = svdup_n_s8(3); // Set all lanes to the same value that is 3
 svwrite_hor_za8_s8_m(0, 0, p_all, zn); // Write the vector zn into horizontal ZA
 slices with predication p_all
}

__arm_new("za") void assign_za_2(void) __arm_streaming {
 svbool_t p_all = svptrue_b8();
 svint8_t zn = svdup_n_s8(4);
 svwrite_hor_za8_s8_m(0, 0, p_all, zn);
}

void assign_za_3(void) __arm_streaming __arm_inout("za") {
 svbool_t p_all = svptrue_b8();
 svint8_t zn = svdup_n_s8(4);
 svwrite_hor_za8_s8_m(0, 0, p_all, zn);
}

unsigned long before[3], after[3];

__arm_new("za") void ZA_attribute_test(void) __arm_streaming {
 svzero_za(); // Clean ZA.

 before[0] = checksum_za(); // Check the sum of a vector in ZA. Since the ZA is
 cleaned, the sum is 0.
 assign_za_1(); // The first assignment of ZA. The value of each
 element is 3 with length of 8 bits.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

 after[0] = checksum_za(); // Check the sum of a vector in ZA. Since SVL is 512
 bit, each element is 3 with length of 8 bits, the sum of a vector is 192 (512/8*3).

 before[1] = after[0];
 assign_za_2(); // Another new ZA is created. The value of each
 element is 4 with length of 8 bits.
 after[1] = checksum_za(); // Checksum remains 192 for a SVL=512 bits since the
 original ZA state is not changed.

 before[2] = after[1];
 assign_za_3();
 after[2] = checksum_za(); // The sum of a vector is 256 (512/8*4).
}

int main() {
 ZA_attribute_test();
 printf("Called assign_za_1. Before = %ld, after = %ld\n", before[0], after[0]);
 printf("Called assign_za_2. Before = %ld, after = %ld\n", before[1], after[1]);
 printf("Called assign_za_3. Before = %ld, after = %ld\n", before[2], after[2]);
 return 0;
}
<...>

The following result is obtained:

Called assign_za_1. Before = 0, after = 192
Called assign_za_2. Before = 192, after = 192
Called assign_za_3. Before = 192, after = 256

In this example, the callees with __arm_inout("za") attribute like check_sum_za(), assign_za_1(),
and assign_za_2() have the ZA state, which they share with their caller ZA_attribute_test().
The result also shows that the functions with __arm_inout("za") have changed ZA register and
the sum result. The callee with __arm_new("za") like assign_za_2() creates another new ZA and
change its state. This does not affect the original ZA stated created by ZA_attribute_test().
Therefore, the sum does not change after executing assign_za_2().

Functions that use ZA can also use the SME instruction intrinsics to manipulate that state.
These intrinsics act as shared-ZA functions and share ZA state with their callers, such as
svwrite_hor_za8_s8_m() which change the ZA state created by assign_za_2()’s attribute.

svzero_za clears the ZA content. svldr_vnum_za does slice_offset filling of
horizontal ZA slices with data in a vector. svstr_vnum_za does slice_offset filling of
a vector with data in horizontal ZA slices. svdup_n_s8 sets all lanes of a SVE vector
with specific value. svwrite_hor_za8_s8_m writes the horizontal ZA slices with a
SVE vector. For more information about intrinsics, refer to the web page and ACLE.

3.4 How to run an SME application
Without access to SME hardware, you can use models or emulators to develop self-designed
application. For all the examples in chapter Toolchains and model support, you can use
the Fast Models FVP_Base_RevC-2xAEMvA, downloaded from Fixed Virtual Platforms, or the

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 112

https://developer.arm.com/architectures/instruction-sets/intrinsics
https://developer.arm.com/downloads/-/arm-ecosystem-models

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

Base_AEMvAx1_SVE, pre-installed at Arm Development Studio. Both options support modeling on
Arm AArch64 platforms with SME/SME2.

The following code shows the basic model parameters setting.

// Command to execute the executable file on FVP
<...>
$AEM/models/Linux64_GCC-9.3/FVP_Base_RevC-2xAEMvA \
--plugin=$AEM/plugins/Linux64_GCC-9.3/ScalableVectorExtension.so \
-C cluster0.NUM_CORES=1 \

-C cluster1.NUM_CORES=0 \

-C semihosting-enable=1 \

-C cluster0.has_arm_v9-2=1 \

-C SVE.ScalableVectorExtension.has_sme=1 \

-C SVE.ScalableVectorExtension.enable_at_reset=1 \

-C bp.secure_memory=false \

-a <executable file>
<...>

The table shows the meaning of each parameter, when setting the basic FVP model.

Parameter name Description

plugin Specify the plugin

cluster0.NUM_CORES Set number of cores in cluster 0

cluster1.NUM_CORES Set number of cores in cluster 1

semihosting-enable Enable semihosting for all cores

cluster0.has_arm_v9-2 Implement the ARMv9.2 Extension. FEAT_SME is implemented at Armv9.2-A

SVE.ScalableVectorExtension.has_sme Whether SME is implemented (SVE.ScalableVectorExtension.has_sme2 needs to
be 1 if SME2 is implemented)

SVE.ScalableVectorExtension.enable_at_reset Start with system registers set up for Scalable Vector Extension use

bp.secure_memory Disable security checking by TZC-400

You can download the application image directly into the fast model, execute, and debug
through debugger. See Debug tools. You need to set more parameters. For example,
SVE.ScalableVectorExtension.sme_veclens_implemented controls the SME vector lengths. For
more information, see Plugins for Fast Models in Fast Model Reference Guide .

3.5 Debug tools
Debug tools such as Arm Development Studio Debugger can provide visibility of vectors and ZA
tiles.

For Arm Development Studio debugger, you can debug the SME/SME2 application code because
the Arm Debugger is intended as a bare metal debugger to debug the bootloaders and kernels

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 112

https://developer.arm.com/documentation/100964/1124/Plug-ins-for-Fast-Models

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

including Linux and RTOS. Therefore, you can get information such as if the state is correctly saved,
restored on task switch or system calls, display the register contents such as Z vectors and ZA tile
elements and print the ZA tile contents as a matrix.

For application debugger GDB or LLDB, you can display the Z vectors and ZA tile elements in the
appropriate format. In addition, GDB’s python support can print the tile contents as a matrix or
export as JSON or CSV format for analysis in another tool.

The figure 3-3 shows how to set the debug configuration, and debug the example through Arm
Development Studio Debugger. The figure 3-4 shows to check the value changes of ZA tiles.

Figure 3-3: Chart for debug configuration of SME example

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Toolchains and model support

Figure 3-4: Chart for debug information example

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

SME2 code examples

4. SME2 code examples
The following sections show examples of assembly code written using SME2 instructions. These
examples can help you learn about SME2 so that you can apply the techniques in your own code.

The examples are:

• Matrix-by-matrix multiplication:

◦ matmul_fp32: Single precision matrix-by-matrix multiplication.

◦ matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix multiplication.

• Matrix-by-vector multiplication:

◦ gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector multiplication.

• Compressed matrix-by-vector multiplication:

◦ lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer matrix-by-vector
multiplication.

• Complex-valued matrix-by-matrix multiplication:

◦ cplx_matmul_fp16fp32: Complex-valued half-precision to single precision floating-point
matrix-by-matrix multiplication.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

5. matmul_fp32: Single precision matrix-by-
matrix multiplication

The matmul_fp32 example implements vector length agnostic, single-precision floating-point
matrix-by-matrix multiplication using the fmopa outer product instruction.

The explanation focuses on the SME2-specific parts of the example: the left-hand side (LHS) matrix
preprocessing function preprocess_l and the SME2-optimized matrix multiplication function
matmul_opt.

5.1 Overview of the matmul_fp32 algorithm
The matmul_fp32 example uses the fact that multiplying two matrices together is the same as
summing the outer products for each column of matLeft and each row of matRight in turn. The
code multiplies the matrices matLeft and matRight to produce the result matResult_opt:

Figure 5-1: Example matrices

• matLeft is an M x K LHS input matrix in row-major format.

• matRight is an K x N RHS input matrix in row-major format.

• matResult_opt is an M x N matrix containing the result of multiplying matLeft with matRight in
row-major format.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

The initial input matrices are stored in memory as row-major arrays. Matrix multiplication is
performed as the sum of the outer product of one column from matLeft and one row from
matRight. Because the outer product requires column elements from matLeft, the code rearranges
the matLeft data so that that the column elements are stored contiguously in memory.

The implementation therefore has two steps:

1. Rearrange the LHS matLeft matrix, using the function preprocess_l.

The matLeft matrix is transpose-like rearranged and stored to memory. More precisely, blocks
of SVLs (rows) x K (columns) are transposed by data tiling and contiguously stored to memory.
This rearranged matrix is called matLeft_mod.

2. Multiply the rearranged matLeft_mod matrix and matRight matrix using the function
matmul_opt.

This function contains three nested loops:

a. The outermost loops iterates over the rows of the result matrix.

b. The middle loop iterates over the columns of the result matrix.

c. The innermost loop iterates over the K dimension, producing result matrix elements as a
sum of products.

These operations are examined in more detail in the preprocess_l function details and matmul_opt
function details sections.

The outer product calculation uses the fmopa instruction. Figure 5-2: Outer product operation using
fmopa instructions on page 59 shows each fmopa instruction reading two SVE Z input vectors
and updating an entire SME ZA tile:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 112

https://en.wikipedia.org/wiki/Outer_product

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

Figure 5-2: Outer product operation using fmopa instructions

5.2 preprocess_l code
The following code shows the preprocess_l function with numbered lines. Subsequent sections
explain how the code operates.

1. preprocess_l: // x0: M, x1: K, x2: &matLeft, x3: &matLeft_mod
2. smstart
3.
4. // constants
5. cntw x4 // SVLs
6. mul x11, x4, x1 // SVLs*K
7. lsl x14, x1, #1 // 2*K
8. add x15, x14, x1 // 3*K
9.
10. mul x16, x4, x4 // SVLs*SVLs
11.
12. mov x7, #0
13. whilelt p0.s, x7, x0 // Tile predicate (M dimension)
14.
15. .Loop_outer:
16. mov x8, x2 // matLeft load base address
17. mov x9, x3 // matLeft_mod store base address
18. add x5, x2, x1, lsl #2 // Exit condition for inner loop
19.
20. add x10, x9 , x11, lsl #2 // 32b Tile0 store predicate condition
21. sub x13, x10, x16, lsl #2 // 32b Tile1 store predicate condition
22. whilelt pn8.b, x8, x5, vlx2 // Tile predicate-as-counter (K dimension)
23.
24. .Loop_inner:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

25. mov x6, x8 // matLeft
26.
27. mov w12, #0 // Load_loop counter
28.
29. .Load_loop:
30. psel pn10, pn8, p0.s[w12, 0]
31. psel pn11, pn8, p0.s[w12, 1]
32. psel pn12, pn8, p0.s[w12, 2]
33. psel pn13, pn8, p0.s[w12, 3]
34. ld1w {z20.s, z28.s}, pn10/z, [x6] // matLeft
35. ld1w {z21.s, z29.s}, pn11/z, [x6, x1, lsl #2] // matLeft + K
36. ld1w {z22.s, z30.s}, pn12/z, [x6, x14, lsl #2] // matLeft + K*2
37. ld1w {z23.s, z31.s}, pn13/z, [x6, x15, lsl #2] // matLeft + K*3
38. mova za0h.s[w12, 0:3], {z20.s-z23.s}
39. mova za1h.s[w12, 0:3], {z28.s-z31.s}
40.
41. add x6, x6, x1, lsl #4 // matLeft+=4*K FP32 elements (bytes)
42. add w12, w12, #4 // Increment counter
43. cmp w12, w4
44. b.mi .Load_loop
45.
46. mov w12, #0 // Store_loop counter
47.
48. .Store_loop:
49. whilelt pn10.b, x9, x10, vlx4
50. whilelt pn11.b, x9, x13, vlx4
51. mova {z0.s-z3.s}, za0v.s[w12, 0:3]
52. mova {z4.s-z7.s}, za1v.s[w12, 0:3]
53. st1w {z0.s-z3.s}, pn10, [x9] // Store 4 col vectors to matLeft_mod
54. st1w {z4.s-z7.s}, pn11, [x9, x16, lsl #2] // matLeft_mod+SVLs*SVLs
55. addvl x9, x9, #4 // matLeft_mod += 4*SVLb (bytes)
56. add w12, w12, #4 // Increment counter
57. cmp w12, w4
58. b.mi .Store_loop
59.
60. add x9, x9, x16, lsl #2
61. addvl x8, x8, #2 // matLeft+= 2*SVLb (bytes)
62. whilelt pn8.b, x8, x5, vlx2
63. b.first .Loop_inner
64.
65. add x3, x3, x11, lsl #2 // matLeft_mod+= SVLs*K FP32 elms (bytes)
66. add x2, x2, x11, lsl #2 // matLeft+= SVLs*K FP32 elms (bytes]
67. incw x7
68.
69. whilelt p0.s, x7, x0
70. b.first .Loop_outer
71.
72. smstop
73.
74. ret

5.3 preprocess_l function overview
The preprocess_l function rearranges the matLeft matrix so that blocks of SVLs (rows) x K
(columns) are transposed by data tiling and contiguously stored to memory. This rearrangement is
implemented by loading the matLeft matrix rows to horizontal slices of a 32-bit ZA tile and storing
vertical slices of that 32-bit ZA tile contiguously to memory. The input matrix is zero-padded to a
multiple of SVLs rows.

Rearranging the matrix data in memory in this way makes the subsequent memory accesses in
the matrix multiplication calculation more efficient, because all data is then read from contiguous
memory addresses.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

SVLs is the number of 32-bit elements in the Streaming SVE vector length, which
is IMPLEMENTATION DEFINED. By basing our calculations on this value rather than a
hard-coded value, the code is vector length agnostic to maximize efficiency on any
platform, regardless of the implemented vector length. That is, the code makes the
most efficient use of the vector registers regardless of their implemented size.

Figure 5-3: Matrix divided into blocks on page 61 shows how the entire M x K matLeft input
matrix is divided into SVLs x SVLs blocks, with elements outside of the matrix zeroed out.

Figure 5-3: Matrix divided into blocks

The following shows the overall structure of the preprocess_l function:

Loop_outer:
 // Iterate over the rows of the input matrix, the M dimension.
 // Each iteration of Loop_outer rearranges SVLs rows of the input
 // matrix.

 Loop_inner:
 // Iterate over the columns of the input matrix, the K dimension.
 // Each iteration of Loop_inner deals with a group of 2*SVLs
 // columns from the original matrix.

 Load_loop:
 // Loads a segment of SVLs (rows) x 2*SVLs (columns) from
 // the input matrix to two 32-bit ZA tiles.
 //
 // Each iteration of Load_loop loads 2*SVLs elements from
 // 4 rows horizontally into two 32-bit ZA tiles.
 //
 // In Load_loop, input matrix loads are predicated using
 // predicate-as-counter. This zeroes inactive elements in
 // the destination vector.

 Store_loop:
 // Stores vertical slices of the two 32-bit element ZA tiles to
 // memory.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

 //
 // Each iteration of Store_loop takes 4 vertical tile slices from
 // the 32-bit ZA tiles and stores the elements at consecutive
 // memory locations.
 //
 // In Store_loop, output matrix stores are predicated using
 // predicate-as-counter. If the input matrix rows were
 // zero-padded to a multiple of SVLs rows, those padded zeros
 // are also stored.

By repeatedly writing to horizontal slices of the ZA tile on load, but reading from vertical slices to
store, the matrix is rearranged in blocks as shown in Figure 5-4: Rearranging the matLeft matrix on
page 62:

Figure 5-4: Rearranging the matLeft matrix

The left-hand side of the figure shows the row-major input matrix in consecutive memory address
locations, with each element occupying 4 bytes. The right-hand side of the figure shows the
rearranged data, after processing by the preprocess_l function. Rearranging the data in this
way means that the matmul_opt function accesses matleft_mod data from contiguous memory
addresses when performing the matrix multiplication, improving the efficiency of the algorithm.

The example in this figure assumes that SVL is 128b, with 4x4 32-bit elements per ZA tile and that
the dimensions of the matLeft matrix are 6 rows by 10 columns.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

The preprocess_l function details section describes specific portions of the code in more detail.

5.4 preprocess_l function details
This section describes how the preprocess_l function operates, looking at sections of the code in
turn.

• On entry, function arguments are passed in registers as follows:

◦ x0: M, the number of rows in the matLeft matrix

◦ x1: K, the number of columns in the matLeft matrix

◦ x2: The base address of the input matrix, matLeft

◦ x3: The base address of the output matrix, matLeft_mod

• Line 2:

Enters Streaming SVE mode and enables the ZA array storage.

The smstart instruction is only required if you are not already in streaming
mode. This example assumes that streaming SVE mode is locally managed using
smstart and smstop instructions. This example requires streaming SVE mode to
enable access to ZA array storage.

• Lines 12-13:

Register x7 is used as the outer loop counter.

Predicate register p0 determines when the bounds of the input array matLeft are exceeded,
and therefore when to zero inactive elements in Load_loop.

• Lines 15-27 and 60-70 (Loop_outer and Loop_inner)

.Loop_outer iterates through the rows of the input matrix, the M dimension. Each iteration of

.Loop_outer rearranges SVLs rows of the input matrix and calculates the start and end address
in memory of a row to prepare to divide sub-sections processed by .Loop_inner. The end
address, x5, is calculated by taking the start address and adding the number of columns (K)
from x1 multiplied by 4, because each element contains 32 bits, or 4 bytes.

.Loop_inner iterates over column elements in groups of 2 x SVLs elements. That is, for a matrix
with K columns, if K is greater than 2 x SVLs, each row is processed using multiple iterations of
.Loop_inner.

Each iteration of .Loop_inner uses a predicate-as-counter register, pn8, to identify which
columns should be processed. If the number of columns, K, is not an exact multiple of 2 x SVLs,
then the final iteration of .Loop_inner uses partially full predicate registers to identify the
leftover columns. All other iterations use full predicate registers to process all elements. The
whilelt pn8.b, x8, x5, vlx2 instruction generates the predicate-as-counter, which identifies
the number of elements processed by the 2-vector load instructions in each Loop_inner

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

iteration. You can also think of x8 as a .Loop_inner loop counter in bytes. While this counter
is less than the end of the row address, then predicate elements are marked as true. Each
iteration processes a maximum of 2 x SVLb bytes. The loop counter is incremented by SVLs at
the end of each iteration in line 61.

Loop_outer uses a predicate-as-mask, or single vector predicate, to identify which rows to
process. The predicate-as-mask is set by the whilelt p0.s, x7, x0 instruction, where x7 is the
current Loop_outer counter and x0 is the number of rows, M. The loop counter is incremented
by SVLs at the end of each iteration in line 67, incw x7.

At the end of each iteration of Loop_inner, the base address is incremented by the maximum
number of bytes consumed in each iteration, which is 2 x SVLb. When the base address
becomes greater than the end address, the predicate becomes all false, and the loop ends.

The exit condition for Loop_inner is when all columns have been processed, and the exit
condition for Loop_outer is when all rows have been processed.

• Lines 29-44 (Load_loop)

Each iteration of Load_loop loads 2 x SVLs elements from four rows to consecutive horizontal
slices of a 32-bit ZA tile.

Vertical and horizontal matrix edges are carefully managed by the psel instructions in lines
30 to 33. The psel instructions in lines 30-33 set four predicate registers based on the value
of the four predicate elements in p0 starting at index w12. If the element at index w12 is
active, the predicate pn10 is set to the value of pn8. Otherwise, the predicate is set to all
false. The same process applies for the other three predicate registers, pn11, pn12, and pn13.
This is referred to as 2D predication. This allows unrolling of inner loops while keeping the
processing generalized and the code vector length agnostic. In this case, four consecutive rows
are processed in each iteration, as long as four rows are available for processing. When the
number of remaining rows is less than four, psel generates an all false predicate for the un-
needed rows, which prevents the load.

The ld1w instructions at lines 34 to 37 perform two-vector loads from four consecutive rows
of the input matrix data to a strided pair of vectors, predicated using the predicate-as-counter
registers set by the psel instructions above. Then the mova instructions at lines 38 and 39 move
a consecutively numbered group of four vectors to horizontal slices of the 32-bit tiles ZA0 and
ZA1. The first half of each loaded segment is moved to ZA0, and second half of the segment
is moved to ZA1, achieved by loading to strided vectors and moving consecutively numbered
vectors.

In Store_loop we will see that the store instructions use the v suffix to access the data in the
ZA tiles as vertical columns and rearrange the matrix.

Each iteration of Load_loop then increments the base address in x6 by 4 entire rows, and the
ZA tile horizontal slice counter in w12 by 4.

• Lines 46-58 (Store_loop)

Store_loop stores two ZA tiles (ZA0 ad ZA1) to memory. Each iteration stores 4 vertical tile
slices from each ZA tile into consecutive memory locations, using predication to determine
when the bounds of the array are exceeded.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

The whilelt instructions in lines 49-50 generate predicate-as-counters for four-vector
consecutive stores. The vlx4 in these instructions is the vector length specifier, and indicates
that the predicate can control four vectors. The predicates ensure that non-existent columns in
the ZA tile are not stored to memory, using the base address to calculate the store bounds for
each of the ZA tiles.

The mova instructions in lines 51-52 move four vertical slices of ZA0 and ZA1 to consecutive
group of Z vectors. The v suffix accesses the data in the ZA tile as columns, rearranging the
matrix.

The st1w instructions in lines 53-53 perform four vector contiguous stores from the Z vectors
to memory.

5.5 matmul_opt code
The following code shows the function matmul_opt with numbered lines. Subsequent sections
explain how the code operates.

1. matmul_opt: // x0: M, x1: K, x2: N, x3: matLeft_mod, x4: matRight, x5:
 matResult
2. stp x19, x20, [sp, #-48]!
3. stp x21, x22, [sp, #16]
4. stp x23, x24, [sp, #32]
5.
6. smstart
7.
8. // constants
9. cntw x6 // SVLs
10. mul x22, x6, x1 // SVLs*K
11. mul x23, x6, x2 // SVLs*N
12. add x18, x23, x2 // SVLs*N + N
13. add x11, x4, x2, lsl #2 // Exit condition for N loop
14. mov x12, #0
15. cntb x6 // SVLb
16. mov x14, #0
17. ptrue pn10.b // Predicate for SME2 VLx2 (a_ptr loads)
18. whilelt pn8.s, x12, x0, vlx2 // tiles predicate (M dimension)
19. sub w6, w6, #8 // SVLb-8
20.
21. .Loop_M:
22. // Extract tile 0/1 and tile 2/3 predicates (M) from vlx2 predicate.
23. pext { p2.s, p3.s }, pn8[0]
24. mov x16, x4 // b_base
25. mov x9, x5 // c_base
26. whilelt pn9.b, x16, x11, vlx2 // tiles predicate (N dimension)
27.
28. .Loop_N:
29. mov x7, x3 // a_ptr = a_base
30. mov x17, x16 // b_ptr = b_base
31. mov x10, x9 // c_ptr0 = c_base
32.
33. // Extract tile 0/2 and tile 1/3 predicates (N) from vlx2 predicate.
34. pext { p0.b, p1.b }, pn9[0]
35.
36. add x8, x3, x22, lsl #2 // a_base + SVLs*K FP32 elms (bytes)
37. addvl x15, x8, #-1 // Exit condition for K loop
38. ld1w {z1.s}, p2/z, [x7] // Load 1st vector from a_ptr
39.
40. zero {za}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

41. ld1w {z2.s-z3.s}, pn9/z, [x17] // Load 2 vectors from b_ptr
42.
43. fmopa za0.s, p2/m, p0/m, z1.s, z2.s // ZA0+=1st a_ptr vec OP 1st b_ptr vec
44. ld1w {z5.s}, p3/z, [x7, x22, lsl #2] // Load 2nd vector from a_ptr
45. addvl x7, x7, #1 // a_ptr += SVLb (bytes)
46.
47. .Loop_K:
48. fmopa za2.s, p3/m, p0/m, z5.s, z2.s // ZA2+=2nd a_ptr vec OP 1st b_ptr vec
49.
50. fmopa za1.s, p2/m, p1/m, z1.s, z3.s // ZA1+=1st a_ptr vec OP 2nd b_ptr vec
51. ld1w {z0.s-z1.s}, pn10/z, [x7] // Load next 2 vectors from a_ptr
52.
53. fmopa za3.s, p3/m, p1/m, z5.s, z3.s // ZA3+=2nd a_ptr vec OP 2nd b_ptr vec
54. ld1w {z6.s-z7.s}, pn9/z, [x17, x2, lsl #2] // Load next 2 vecs from b_ptr
55.
56. fmopa za0.s, p2/m, p0/m, z0.s, z6.s // ZA0+=1st a_ptr vec OP 1st b_ptr vec
57. psel pn11, pn10, p3.s[w14, 0] // Select predicate-as-counter
58. ld1w {z4.s-z5.s}, pn11/z, [x7, x22, lsl #2] // Load next 2 vecs from a_ptr
59.
60. fmopa za2.s, p3/m, p0/m, z4.s, z6.s // ZA2+=2nd a_ptr vec OP 1st b_ptr vec
61. add x17, x17, x2, lsl #3 // b_ptr += 2*N FP32 elms (bytes)
62.
63. fmopa za1.s, p2/m, p1/m, z0.s, z7.s // ZA1+=1st a_ptr vec OP 2nd b_ptr vec
64.
65. fmopa za3.s, p3/m, p1/m, z4.s, z7.s // ZA3+=2nd a_ptr vec OP 2nd b_ptr vec
66. ld1w {z2.s-z3.s}, pn9/z, [x17] // Load next 2 vectors from b_ptr
67.
68. fmopa za0.s, p2/m, p0/m, z1.s, z2.s // ZA0+=1st a_ptr vec OP 1st b_ptr vec
69. addvl x7, x7, #2 // a_ptr += 2*SVLb (bytes)
70.
71. cmp x7, x15
72. b.mi .Loop_K
73.
74. fmopa za2.s, p3/m, p0/m, z5.s, z2.s // ZA2+=2nd a_ptr vec OP 1st b_ptr vec
75.
76. fmopa za1.s, p2/m, p1/m, z1.s, z3.s // ZA1+=1st a_ptr vec OP 2nd b_ptr vec
77.
78. fmopa za3.s, p3/m, p1/m, z5.s, z3.s // ZA3+=2nd a_ptr vec OP 2nd b_ptr vec
79. add x17, x17, x2, lsl #2 // b_ptr += 2*N FP32 elms (bytes)
80.
81. cmp x7, x8
82. b.pl .Ktail_end
83.
84. .Ktail_start:
85. ld1w {z1.s}, p2/z, [x7]
86. ld1w {z2.s-z3.s}, pn9/z, [x17]
87.
88. fmopa za0.s, p2/m, p0/m, z1.s, z2.s
89. ld1w {z5.s}, p3/z, [x7, x22, lsl #2]
90.
91. fmopa za2.s, p3/m, p0/m, z5.s, z2.s
92.
93. fmopa za1.s, p2/m, p1/m, z1.s, z3.s
94.
95. fmopa za3.s, p3/m, p1/m, z5.s, z3.s
96.
97. .Ktail_end:
98. mov w13, #0
99. psel pn11, pn9, p2.b[w13, 0]
100. psel pn12, pn9, p3.b[w13, 0]
101. // ZA tiles to vecs: z0 = za0h[1], z1 = za1h[1], z2 = za2h[1], z3 = za3h[1]
102. mova { z0.b-z3.b }, za0h.b[w13, 0:3]
103. st1w { z0.s-z1.s }, pn11, [x10] // Store to c_ptr0
104. st1w { z2.s-z3.s }, pn12, [x10, x23, lsl #2] // Store to c_ptr0+(SVLs*N)
105. .Loop_store_ZA:
106. psel pn11, pn9, p2.b[w13, 4]
107. psel pn12, pn9, p3.b[w13, 4]
108. mova { z0.b-z3.b }, za0h.b[w13, 4:7]
109. st1w { z0.s-z1.s }, pn11, [x10, x2, lsl #2] // Store to c_ptr0+N
110. st1w { z2.s-z3.s }, pn12, [x10, x18, lsl #2] // Store to c_ptr0+(SVLs+1)*N
111.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

112. add x10, x10, x2, lsl #3 // c_ptr0 += 2*N FP32 elms (bytes)
113. add w13, w13, #8
114.
115. psel pn11, pn9, p2.b[w13, 0]
116. psel pn12, pn9, p3.b[w13, 0]
117. mova { z0.b-z3.b }, za0h.b[w13, 0:3]
118. st1w { z0.s-z1.s }, pn11, [x10] // Store to c_ptr0
119. st1w { z2.s-z3.s }, pn12, [x10, x23, lsl #2] // Store to c_ptr0+SVLs*N
120. cmp w13, w6
121. b.mi .Loop_store_ZA
122.
123. psel pn11, pn9, p2.b[w13, 4]
124. psel pn12, pn9, p3.b[w13, 4]
125. mova { z0.b-z3.b }, za0h.b[w13, 4:7]
126. st1w { z0.s-z1.s }, pn11, [x10, x2, lsl #2] // Store to c_ptr0+N
127. st1w { z2.s-z3.s }, pn12, [x10, x18, lsl #2] // Store to c_ptr0+(SVLs+1)*N
128.
129. addvl x9, x9, #2
130. addvl x16, x16, #2 // b_base += 2*SVLb (bytes)
131. whilelt pn9.b, x16, x11, vlx2 // tile predicate (N dimension)
132. b.first .Loop_N
133.
134. add x3, x3, x22, lsl #3 // a_base += 2*SVLs*K FP32 elms (bytes)
135. add x5, x5, x23, lsl #3 // c_base += 2*SVLs*N FP32 elms (bytes)
136. incw x12, all, mul #2 // M loop counter += 2* SVLs
137. whilelt pn8.s, x12, x0, vlx2 // tiles predicate (M dimension)
138. b.first .Loop_M
139.
140. smstop
141.
142. ldp x23, x24, [sp, #32]
143. ldp x21, x22, [sp, #16]
144. ldp x19, x20, [sp], #48
145.
146. ret

5.6 matmul_opt function overview
The matmul_opt function does the following:

1. Iterates over the columns of the matLeft matrix (matLeft_mod buffer) and the rows of the
matRight matrix (matRight buffer)

2. Calculates the outer products

3. Stores the result in matResult_opt.

The code in this example uses the fact that multiplying two matrices together is the same as
summing the outer products for each row and column in turn. That is, given a matrix matLeft with
dimensions M x K and a matrix matRight with dimensions K x N, the result of multiplying matLeft
and matRight produces a matrix matResult_opt with dimensions M x N. The result is calculated as
follows:

for k = 1 to K:
 // Partial products computation
 for m = 1 to M: // m+=2
 for n = 1 to N: // n+=2
 // Inner loops unrolled by 2
 // A OP B is equal to
 matResult_opt(m ,n) += matLeft(m,k) x matRight(k,n)
 matResult_opt(m+1,n) += matLeft(m+1,k) x matRight(k,n)

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

 matResult_opt(m ,n+1) += matLeft(m,k) x matRight(k,n+1)
 matResult_opt(m+1,n+1) += matLeft(m+1,k) x matRight(k,n+1)

OP represents the outer product operation.

The matmul_opt function uses SME2 functionality that calculates the outer product of two vectors
using a single instruction, storing the results in two-dimensional ZA matrix tiles as shown in Figure
5-5: Calculating outer product, 4 tiles at a time on page 68.

Figure 5-5: Calculating outer product, 4 tiles at a time

5.7 matmul_opt function details
This section describes how the matmul_opt function operates, looking at sections of the code in
turn.

• Lines 2-4:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

The code starts by saving registers x19 through x24 to the stack. These registers are restored
at the end of the matmul_opt function. The Procedure Call Standard for the Arm 64-bit
Architecture defines registers x19 through x28 as callee-saved registers, so the matmul_opt
function must preserve the values of the registers it uses in this range.

• Line 6:

Enters Streaming SVE mode and enables the ZA array storage.

• Line 18:

Sets a 32-bit element predicate-as-counter pn8. If the numerical value of x12 is less than the
value of base address of matLeft_mod with offset 2 * SVLs (because of vlx2), set the active
counter of pn8 as the value of x12, otherwise set as vlx2.

• Lines 21-26 and 134-138 (Loop_M)

Loop_M iterates over the M dimension in blocks of 2 x SVLs, that is rows in the original matLeft
matrix.

The pext instruction in line 23 creates predicate-as-mask equivalent predicates, p2 and p3,
from the predicate-as-counter register pn8. p2 corresponds to the first SVL, and p3 to the
second SVL. These predicate registers control which columns in matLeft_mod are processed in
each iteration.

At the end of Loop_M, lines 134-135 increment the pointers to the current rows in matLeft_mod
and matResult by the length of the processed data.

Successive iterations of Loop_M update the predicate-as-counter pn8 until all M rows have been
processed.

Because the matLeft_mod is rearranged from matLeft, the columns of matLeft_mod
are extracted from the rows of matLeft.

• Lines 28-45 and 129-132 (Loop_N)

Loop_N iterates over the N dimension by a block of 2 * SVLs column. N is the number of
columns in the matRight matrix.

The pext instruction sets a pair of predicate registers, p0 for the first SVLs columns and p1 for
the second SVLs columns, from the predicate-as-counter register pn9. These predicate registers
control which columns in matRight are processed in each iteration.

Each iteration of Loop_N clears the ZA array by zeroing all elements. The zero {za} instruction
in line 40 does this, with za indicating that the whole ZA array is zeroed.

At the end of Loop_N, lines 129-130 increment the pointers to the current columns in matRight
and matResult by the length of the processed data.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 112

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

Successive iterations of Loop_N update the predicate-as-counter pn9 until all N columns in
matRight have been processed.

• Lines 47-104 (Loop_K)

Loop_K iterates over the K dimension, that is rows in the matRight and matLeft_mod matrices,
computing a sub-block of the result matrix, measuring (2 * SVLs) x (2 * SVLs). These dimensions
fit the four 32-bit ZA tiles used to store the results.

The code uses loop unrolling to improve efficiency. Each Loop_K iteration processes two k
values, where k=1..K, so that two products are accumulated to each result for each loop
iteration.

The ld1w instructions load matrix data from memory to Z vector registers as follows:

◦ Z1 and Z0 contain the first SVLs elements from the M dimension of matLeft for k and k+1,
Z0.s = matLeft[k, 0:SVLs-1] and Z1.s = matLeft[k+1, 0:SVLs-1].

◦ Z5 and Z4 contain the second SVLs elements from the M dimension of matLeft for k and k
+1, Z4.s = matLeft[SVLs:2*SVLs-1, k] and Z5.s = matLeft[SVLs:2*SVLs-1, k+1].

◦ Z2 and Z3 contain the 2xSVLs elements from the N dimension of matRight for k, Z2.s =
matRight[k, 0:SVLs-1] and Z3.s = matRight[k, SVLs:2*SVLs-1].

◦ Z6 and Z7 contain the 2xSVLs elements from the N dimension of matRight for k+1, Z6.s =
matRight[k+1, 0:SVLs-1] and Z7.s = matRight[k+1, SVLs:2*SVLs-1].

These ld1w instructions use predicated 2-vector loads to load two Z registers at a time.

The single-precision floating-point fmopa instructions operate on the 32-bit ZA0, ZA1, ZA2, and
ZA3 tiles to compute the outer product of the left and right matrix subblocks as follows:

◦ ZA0 contains the outer product: 1st SVLs from M (OP) 1st SVLs from N

◦ ZA1 contains the outer product: 1st SVLs from M (OP) 2nd SVLs from N

◦ ZA2 contains the outer product: 2nd SVLs from M (OP) 1st SVLs from N

◦ ZA3 contains the outer product: 2nd SVLs from M (OP) 2nd SVLs from N

Each of these fmopa instructions are independently predicated, enabling 2D predication of tile
results.

Loads are reused, so that 8 fmopa instructions consume 8 loaded vectors (2 for each of left and
right matrix per one k), and the load-to-multiply ratio is perfectly balanced in the loop.

Accumulating these successive outer products takes advantage of the fact that multiplying two
matrices together is the same as summing the outer products for each row and column in turn.

In line 81, note that the function does not use a dedicated loop counter. The code uses the
value of left matrix pointer, x7, as both the left matrix load address, and also to determine the
Loop_k exit condition.

• Line 57

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_fp32: Single precision matrix-by-matrix multiplication

The psel pn11, pn10, p3.s[w14, 0] instruction sets the predicate-as-counter pn11 to either
all false or all true, depending on the value of the first element of p3. If the first element of
p3 is false, then the second SVLs of the matLeft column are all zero, so there is no need to
load the data. This situation can occur in the final iteration if the number of rows is not exactly
divisible by 2 x SVLs.

• Lines 105-127 (Loop_store_ZA)

Finally, all that is required is to store the results to the matResult array for each ZA tile.

The data in the ZA tiles is first transferred from the four tiles to four Z vector registers, using
the 8-bit indexed mova instruction. Results are stored to matResult by updating elements in a
segment of memory with size ((2 * SVLs) x (2 * SVLs)). Each row in this segment contains 2 *
SVLs elements, formed by combining consecutive slices from 2 tiles:

◦ The first half of the memory segment contains rows formed by combining slices from the
ZA0 and ZA1 tiles.

◦ The second half of the memory segment contains rows formed by combining slices from
the ZA2 and ZA3 tiles.

Consecutive vectors are stored to memory using the 2 vector store instruction st1w, predicated
using the vlx2 predicate-as-counter.

The mova instruction at line 108 (and elsewhere, due to loop unrolling) illustrates an SME2
coding optimization. The results were obtained in a ZA array using an outer product instruction
to 32-bit ZA tiles. However, the mova instructions operate on 8-bit tiles (ZA0.B). When 4
consecutive horizontal slices of an 8-bit tile ZA0.B are moved, these slices correspond to one
horizontal slice from 4 different 32-bit tiles ZA0.S, ZA1.S, ZA2.S, ZA3.S.

The psel instructions at lines 106-107 (and elsewhere, due to loop unrolling) enable
predication of the result matrix stores. This means that the Loop_store_ZA loop can cope with
situations where the number of rows is not an exact multiple of SVLs by ignoring the leftover
rows.

The Loop_store_ZA function iterates over SVLb horizontal row slices from the ZA0.b tile, with
each iteration extracting four row slices corresponding to the four ZAx.S 32b tiles.

• Line 140

Exit Streaming SVE mode, and disable the ZA storage.

• Lines 142-146

Restore the callee-saved registers and return from the matmul_opt function.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

6. matmul_int8: 8-bit integer to 32-bit
integer matrix-by-matrix multiplication

The matmul_int8 example implements vector length agnostic, unsigned 8-bit integer inputs matrix-
by-matrix multiplication. It returns a result matrix of unsigned 32-bit integers.

This guide focuses on the SME2-specific parts of the example:

• The matLeft matrix preprocessing function preprocess_l

• The matRight preprocessing function preprocess_r

• The SME2-optimized matrix multiplication function matmul_opt

6.1 Overview of the matmul_int8 algorithm
The matmul_int8 example uses the fact that multiplying two matrices together is the same as
summing the outer products for each column of matLeft and each row of matRight in turn, just
like the matmul_fp32 example. The code uses the four-way sum of outer products and accumulate
umopa instruction to multiply the 8-bit matLeft and matRight matrices and produce the 32-bit result
matrix matResult_opt.

Figure 6-1: The umopa instruction on page 73 shows how the umopa instruction accumulates
four 8-bit outer-products into a single 32-bit container:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 112

https://developer.arm.com/documentation/ddi0602/latest/SME-Instructions/UMOPA--4-way---Unsigned-integer-sum-of-outer-products-and-accumulate-

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

Figure 6-1: The umopa instruction

For example, consider a matrix multiplication C = A x B, with M = 7, K = 6, and N = 5. The first
umopa instruction sums four consecutive multiplications over the K dimension in a single instruction,
as follows:

ZA0.s[0][0] += A(0,0)*B(0,0) + A(0,1)*B(1,0) + A(0,2)*B(2,0) + A(0,3)*B(3,0)
ZA0.s[0][1] += A(0,0)*B(0,1) + A(0,1)*B(1,1) + A(0,2)*B(2,1) + A(0,3)*B(3,1)
ZA0.s[0][2] += A(0,0)*B(0,2) + A(0,1)*B(1,2) + A(0,2)*B(2,2) + A(0,3)*B(3,2)
ZA0.s[0][3] += A(0,0)*B(0,3) + A(0,1)*B(1,3) + A(0,2)*B(2,3) + A(0,3)*B(3,3)

These 32-bit results are then stored in the first horizontal slice of the ZA0 tile.

This specific example assumes that the hardware implementation uses a 128-bit
SVL, which gives an SVLs of 4. This means that each row in the ZA tile can contain
four 32-bit values. Implementations that use a bigger SVL have bigger ZA tiles
containing more results.

This widening umopa instruction requires matrix data to be prepared in advance. Specifically,
matrices must be padded with zeros. During re-arrangement the output matrices are allocated with
a modified K equal to K_mod = K*ceil(K/4), that is a multiple of four. This avoids calculation errors
that would result from using unknown values outside the matrix bounds.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

The initial input matrices are stored in memory as row-major arrays. Matrix multiplication is
performed as the sum of the outer product of one column from matLeft and one row from
matRight.

The code rearranges data in both the matLeft and matRight matrices. This rearrangement is
required because:

• A left matrix transposition is needed to implement a matrix multiplication with outer-products.
This example uses a per-block matrix transposition.

• Four-way interleaving is required because the four-way umopa instruction performs the sum of
four outer-products and accumulates the results.

The implementation therefore has the following steps:

1. Rearrange the matRight matrix, using the function preprocess_r.

Row elements from the matRight matrix are four-way interleaved and contiguously stored to
memory in blocks of 2 x SVLs columns. Each matrix row is zero-padded to 2 * SVLs elements.
The final block of matrix columns is zero-padded to a multiple of 4 rows, if required. This
rearranged data is called matRight_mod.

2. Rearrange the matLeft matrix, using the function preprocess_l.

Elements from the matLeft matrix transpose-like re-arranged and contiguously stored to
memory in blocks of SVLs rows x SVLs columns. Each block of SVLs rows is 32-bit width
transposed and contiguously stored to memory. Each 32-bit container of the re-arranged
matrix contains elements from 4 consecutive columns. This rearranged data is called
matLeft_mod.

3. Multiply the rearranged matLeft_mod and matRight_mod matrices using the outer product
instruction in the function matmul_opt.

This function contains three nested loops:

a. The outermost loops iterates over the rows (M) of the result matrix.

b. The middle loop iterates over the columns (N) of the result matrix.

c. The innermost loop iterates over the K dimension, producing result matrix elements as a
sum of products.

The following sections describe these operations in more detail.

6.2 preprocess_r code
The following code shows the function preprocess_r with numbered lines. Subsequent sections
explain how the code operates.

1. preprocess_r: // x0: K, x1: N, x2: matRight, x3: matRight_mod
2. smstart sm // Enable Streaming mode
3.
4. // constants
5. cntb x5

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 112

https://en.wikipedia.org/wiki/Outer_product

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

6. lsl x16, x1, #1 // 2*ldb
7. add x10, x16, x1 // 3*ldb
8. add x4, x0, #3
9. lsr x4, x4, #2 // nbr_mod/4 = ceil(nbr/4)
10. mul x11, x4, x5 // (nbr_mod/4)*SVLb
11. lsl x17, x11, #1 // 2*(nbr_mod/4)*SVLb
12. mov x15, #0 // psel variable
13. cnth x13 // SVLb/2
14.
15. ptrue pn9.b
16.
17. add x8, x2, x1 // N dimension exit condition
18. whilelt p2.b, x2, x8 // N dimension predicate
19.
20. .Loop_N:
21. mov x7, x2 // b_ptr
22. mov x9, x3 // b_mod_ptr
23. whilelt p1.b, xzr, x0 // K dimension predicate
24.
25. // Store predicates
26. psel pn11, pn9, p2.b[w15, 0]
27. psel pn12, pn9, p2.b[w13, 0]
28.
29. mov x6, xzr // Loop_K counter
30. .Loop_K:
31. psel p0, p2, p1.b[w15, 0]
32. psel p3, p2, p1.b[w15, 1]
33. ld1b {z0.b}, p0/z, [x7]
34. ld1b {z1.b}, p3/z, [x7, x1]
35.
36. psel p0, p2, p1.b[w15, 2]
37. psel p3, p2, p1.b[w15, 3]
38. ld1b {z2.b}, p0/z, [x7, x16]
39. ld1b {z3.b}, p3/z, [x7, x10]
40.
41. zip { z8.b - z11.b }, { z0.b - z3.b } // 4-way interleave from 4 vectors
42.
43. st1b { z8.b-z9.b }, pn11, [x9] // b_mod_ptr
44. st1b { z10.b-z11.b }, pn12, [x9, x17] // b_mod_ptr + 2*(nbr_mod/4)*SVLb
45.
46. add x7, x7, x1, lsl #2 // &b_ptr += 4*ldb
47. addvl x9, x9, #2 // &b_mod_ptr += 2*SVLb
48. add x6, x6, #4 // Loop_K counter increment
49. whilelt p1.b, x6, x0 // K dimension predicate
50. b.first .Loop_K
51.
52. add x3, x3, x17, lsl #1 // &b_mod += 4*ceil(nbr/4)*SVLb
53. addvl x2, x2, #1 // &b_base += SVLb
54. whilelt p2.b, x2, x8 // N dimension predicate
55. b.first .Loop_N
56.
57. smstop sm // Disable Streaming mode
58.
59. ret

6.3 preprocess_r function overview
The preprocess_r function rearranges the matRight matrix in blocks of (2 * SVLs) columns. Each
32-bit element in the rearranged matrix data contains elements from four consecutive rows. Each
matrix row is zero-padded to 2 * SVLs elements. The final block is padded to a multiple of 4 rows.
The rearranged data is called matRight_mod.

The following example shows how the preprocess_r function rearranges the data.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

Consider the following matRight matrix with 11 rows (K) and 29 columns (N), padded to 12 rows
(K) and 32 columns (N):

Figure 6-2: Example matRight matrix memory view

The preprocess_r function rearranges this example matRight matrix as shown in Figure 6-3:
Example matRight memory layout after preprocess_r on page 76, assuming that SVL is 128b. In
this example, four consecutive rows of four uint8 values are loaded into a single SME Z vector.

Figure 6-3: Example matRight memory layout after preprocess_r

The following sections examine specific portions of the code in more detail.

6.4 preprocess_r function details
This section describes how the preprocess_r function operates, looking at sections of the code in
turn.

• On entry, function arguments are passed in registers as follows:

◦ x0: K, the number of rows in the matRight matrix

◦ x1: N, the number of columns in the matRight matrix

◦ x2: The base address of the input matrix, matRight

◦ x3: The base address of the rearranged matrix, matRight_mod

• Lines 33-34 and 38-39

The ld1b instructions load four vectors from four consecutive matrix rows.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

• Line 41

The four vectors are four-way interleaved by the four-vector zip SME2 instruction.

• Lines 43-44

The two-vector st1b instructions store the resulting four vectors as follows:

◦ The first 2 vectors are consecutively stored to the first rearranged block, pointed to by
b_mod_ptr.

These vectors are consumed together first in matmul_opt for all K values, storing the first 2
x SVLs columns consecutively after rearrangement.

◦ The second 2 vectors are consecutively stored to the second rearranged block. This block
is at an offset of 2 x (K_mod / 4) x SVLb, which is equal to 2 x SVLs x K_mod (K_mod =
ceil(K/4) * 4).

These vectors are consumed by the next N dimension loop iteration in matmul_opt. This is
why they are stored with an offset.

6.5 preprocess_l code
The following code shows the preprocess_l function with numbered lines. Subsequent sections
explain how the code operates.

1. preprocess_l: // x0: M, x1: K, x2: matLeft, x3: matLeft_mod
2. stp x19, x20, [sp, #-32]!
3.
4. smstart // Enable Streaming mode & ZA
5.
6. // constants
7. cntw x5 // SVLs
8. mul x11, x5, x1 // SVLs*nbc
9. add x18, x1, #3
10. lsr x18, x18, #2 // ceil(nbc/4)
11. mul x15, x18, x5 // SVLs*ceil(nbc/4)
12. lsl x18, x15, #2 // SVLs*ceil(nbc/4)*4
13.
14. mul x4, x5, x5 // SVLs*SVLs
15. lsl x16, x4, #1 // 2*SVLs*SVLs
16. add x16, x16, x4 // 3*SVLs*SVLs
17. cntb x17 // SVLb
18.
19. mov x8, #0 // Loop_M counter
20. whilelt p0.s, x8, x0 // M dimension predicate
21.
22. .Loop_M:
23. mov x7, x3 // a_mod_base
24. mov x10, x2 // a_base
25. add x9, x2, x1 // Loop_K exit condition
26. whilelt pn12.b, x2, x9, vlx4 // K dimension predicate-as-counter
27. mov x13, #0 // offset0=0
28. mov x14, x4 // offset1=SVLs*SVLs
29. lsl x19, x4, #1 // offset2=2*SVLs*SVLs
30. mov x20, x16 // offset3=3*SVLs*SVLs
31.
32. .Loop_K:
33. mov x6, x10 // a_ptr

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

34.
35. mov w12, #0 // Loop_load counter
36. .Loop_load:
37. psel pn8, pn12, p0.b[w12, #0]
38. psel pn9, pn12, p0.b[w12, #4]
39. ld1b {z0.b-z3.b}, pn8/z, [x6] // Load 4 vectors from a_ptr
40. ld1b {z4.b-z7.b}, pn9/z, [x6, x1] // Load 4 vectors from a_ptr + nbc
41. mova za0h.b[w12, 0:3], {z0.b-z3.b} // za0h.s, za1h.s, za2h.s, za3h.s: row 1
42. mova za0h.b[w12, 4:7], {z4.b-z7.b} // za0h.s, za1h.s, za2h.s, za3h.s: row 2
43. add w12, w12, #8 // Loop_load counter increment
44. add x6, x6, x1, lsl #1 // a_ptr += 2*nbc INT8 elems
45. cmp w12, w17
46. b.mi .Loop_load
47.
48. mov w12, #0 // Loop_store counter
49. .Loop_store:
50. whilelt pn8.s, x13, x15, vlx4 // Tile0 store predicate-as-counter
51. whilelt pn9.s, x14, x15, vlx4 // Tile1 store predicate-as-counter
52. whilelt pn10.s, x19, x15, vlx4 // Tile2 store predicate-as-counter
53. whilelt pn11.s, x20, x15, vlx4 // Tile3 store predicate-as-counter
54. mova {z0.s-z3.s}, za0v.s[w12, 0:3]
55. mova {z4.s-z7.s}, za1v.s[w12, 0:3]
56. mova {z8.s-z11.s}, za2v.s[w12, 0:3]
57. mova {z12.s-z15.s}, za3v.s[w12, 0:3]
58. add w12, w12, #4 //Inc Loop_store counter
59. st1w {z0.s-z3.s},pn8,[x7, x13, lsl #2] //1st 4 cols Tile0: a_mod+offset0
60. st1w {z4.s-z7.s},pn9,[x7, x14, lsl #2] //1st 4 cols Tile1: a_mod+offset1
61. st1w {z8.s-z11.s},pn10,[x7, x19, lsl #2] //1st 4 cols Tile2: a_mod+offset2
62. st1w {z12.s-z15.s},pn11,[x7, x20, lsl #2]//1st 4 cols Tile3: a_mod+offset3
63. incw x13, all, mul #4 // Tile0 store pointer offset increment
64. incw x14, all, mul #4 // Tile1 store pointer offset increment
65. incw x19, all, mul #4 // Tile2 store pointer offset increment
66. incw x20, all, mul #4 // Tile3 store pointer offset increment
67. cmp w12, w5
68. b.mi .Loop_store
69.
70. add x13, x13, x16 // Tile0 store pointer offset += 3*SVLs*SVLs
71. add x14, x14, x16 // Tile1 store pointer offset += 3*SVLs*SVLs
72. add x19, x19, x16 // Tile2 store pointer offset += 3*SVLs*SVLs
73. add x20, x20, x16 // Tile3 store pointer offset += 3*SVLs*SVLs
74. addvl x10, x10, #4 // a_base += 4*SVLb INT8 elems
75. whilelt pn12.b, x10, x9, vlx4 // K dimension predicate-as-counter
76. b.first .Loop_K
77.
78. add x2, x2, x11 // &a += SVLs*nbc INT8 elems
79. add x3, x3, x18 // &a_mod += SVLs*ceil(nbc/4)*4 INT8 elems
80.
81. incw x8
82. whilelt p0.s, x8, x0
83. b.first .Loop_M
84.
85. smstop // Disable Streaming mode & ZA
86.
87. ldp x19, x20, [sp], #32
88.
89. ret

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

6.6 preprocess_l function overview
The preprocess_l function rearranges the matLeft matrix, so that blocks of SVLs rows x SVLb
columns from the matLeft matrix are transposed with 32-bit transpose width, taking 4 consecutive
8-bit elements from each row, and contiguously stored to memory.

Each 32-bit element in the rearranged matrix data contains elements from four consecutive
columns. Each matrix row is zero-padded to a multiple of four elements. The final block of matrix
rows is zero-padded to SVLs rows, if required. This rearranged data is called matLeft_mod.

The following example shows how the preprocess_l function rearranges data.

Consider the following matLeft matrix with 7 rows (M) and 6 columns (K):

Figure 6-4: Example matLeft matrix

The layout of matLeft_mod in memory after calling preprocess_l is shown in Figure 6-5: Example
matLeft memory layout after preprocess_l on page 80, with 32 bits or 4 bytes of memory per
row. In this example, four consecutive rows of four uint8 values are loaded into a single SME Z
vector. This example assumes SVL is 128b.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

Figure 6-5: Example matLeft memory layout after preprocess_l

The preprocess_l function details section describes specific portions of the code in more detail.

6.7 preprocess_l function details
This section describes how the preprocess_l function operates, looking at sections of the code in
turn.

• On entry, function arguments are passed in registers as follows:

◦ x0: M, the number of rows in the matLeft matrix

◦ x1: K, the number of columns in the matLeft matrix

◦ x2: The base address of the input matrix, matLeft

◦ x3: The base address of the rearranged matrix, matLeft_mod

• Lines 39-40:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

Each 4-vector ld1b instruction loads four vectors from a single row of the input matrix data.
Each block transposition uses four vector loads and four 32-bit ZA tiles.

• Lines 41-42:

The mova instructions move the data from Z vectors to horizontal slices of 8-bit element ZA
tiles, as follows:

mova za0h.b[w12, 0:3], { z0.b-z3.b }

ZA0h.s[0] = ZA0h.b[0] = Z0
ZA1h.s[0] = ZA0h.b[1] = Z1
ZA2h.s[0] = ZA0h.b[2] = Z2
ZA3h.s[0] = ZA0h.b[3] = Z3

This code loads horizontal slices of 8-bit ZA tiles, but stores vertical slices of 32-bit ZA tiles.
This leverages 4-vector length loads from memory and places them each in its own tile.

• Lines 49-68 (Store_loop)

Store_loop stores elements from 32-bit ZA tiles to memory. Each iteration stores 4 vertical
slices of a 32-bit ZA tile into consecutive memory locations, using predication to determine
when the bounds of the array are exceeded.

The whilelt instructions in lines 50-53 generate predicate-as-counters for four-vector
consecutive stores. The vlx4 in these instructions is the vector length specifier, and indicates
that the predicate can control four vectors. The predicates ensure that non-existent columns in
the ZA tiles are not stored to memory, using the base address to calculate the store bounds for
each of the ZA tiles.

The mova instructions in lines 54-57 move four vertical 32-bit slices of ZA0-ZA3 to consecutive
groups of Z vectors. The v suffix accesses the data in the ZA tile as columns, rearranging the
matrix.

The st1w instructions in lines 59-62 perform vector contiguous stores from the Z vectors to
memory.

6.8 matmul_opt code
The following code shows the matmul_opt function with numbered lines.

1. matmul_opt:
2. // x0: M, x1: K, x2: N, x3: matLeft_mod, x4: matRight_mod, x5: matResult_opt
3. stp x19, x20, [sp, #-48]!
4. stp x21, x22, [sp, #16]
5. str x23, [sp, #32]
6.
7. smstart // Enable Streaming mode & ZA
8.
9. // constants
10. cntb x6 // SVLb
11. cntw x15 // SVLs
12. lsl x11, x2, #2 // 4*N

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

13. mul x21, x15, x2 // SVLs*ldc
14. add x18, x21, x2 // (SVLs+1)*ldc
15. add x7, x1, #3
16. lsr x7, x7, #2 // ceil(K/4)
17. mul x7, x7, x6 // ceil(K/4)*SVLb
18. lsl x0, x0, #2 // 4*M
19. mov x12, #0 // Loop_M counter
20. mov x15, #0 // psel variable
21. sub w6, w6, #8 // SVLb-8
22. ptrue pn10.b // Predicate for SME2 VLx2 (a_ptr loads)
23. whilelt p2.b, x12, x0 // Tile 0/1 predicate (M dimension)
24.
25. .Loop_M:
26. addvl x12, x12, #1 // Loop_M counter increment
27. whilelt p3.b, x12, x0 // Tile 2/3 predicate (M dimension)
28.
29. mov x19, x4 // b_base
30. mov x22, x5 // c_base
31. mov x13, #0 // Loop_N counter
32. add x10, x3, x7 // a_base + 4*ceil(K/4)*SVLs
33. add x17, x3, x7 // matLeft row0 end address
34. addvl x9, x17, #-1 // Loop_K exit condition
35.
36.
37. .Loop_N:
38. mov x8, x3 // a_ptr = a_base
39. mov x20, x19 // b_ptr = b_base
40. mov x23, x22 // c_ptr = c_base
41.
42. pext { p0.b, p1.b }, pn9[0] // Tile 0/2 and tile 1/3 predicates
43.
44. zero {za}
45.
46. ld1b {z1.b}, p2/z, [x8] // Load 1st vector from a_ptr
47.
48. whilelt pn10.b, x8, x17, vlx2 // K dimension predicate-as-counter
49. ld1b {z2.b-z3.b}, pn9/z, [x20] // Load 2 vectors from b_ptr
50.
51. umopa za0.s, p2/m, p0/m, z1.b, z2.b // ZA0 += 1st a_ptr OP 1st b_ptr
52. ld1b {z5.b}, p3/z, [x8, x7] // Load 2nd vec from a_ptr+ceil(K/4)*SVLb
53. addvl x8, x8, #1 // a_ptr += SVLb
54.
55. .Loop_K:
56. umopa za2.s, p3/m, p0/m, z5.b, z2.b // ZA2 += 2nd a_ptr OP 1st b_ptr
57. umopa za1.s, p2/m, p1/m, z1.b, z3.b // ZA1 += 1st a_ptr OP 2nd b_ptr
58. psel pn11, pn10, p3.s[w15, #0]
59. ld1b {z0.b-z1.b}, pn10/z, [x8] // Load 2 vectors from a_ptr
60. umopa za3.s, p3/m, p1/m, z5.b, z3.b // ZA3 += 2nd a_ptr OP 2nd b_ptr
61. ld1b {z6.b-z7.b}, pn9/z, [x20, #2, mul vl] // 2 vecs from b_ptr+2*SVLb
62.
63. umopa za0.s, p2/m, p0/m, z0.b, z6.b // ZA0 += 1st a_ptr OP 1st b_ptr
64. ld1b {z4.b-z5.b}, pn11/z, [x8, x7] // 2 vecs from a_ptr+ceil(K/4)*SVLb
65.
66. umopa za2.s, p3/m, p0/m, z4.b, z6.b // ZA2 += 2nd a_ptr OP 1st b_ptr
67. addvl x20, x20, #4 // b_ptr += 4*SVLb
68.
69. umopa za1.s, p2/m, p1/m, z0.b, z7.b // ZA1 += 1st a_ptr OP 2nd b_ptr
70.
71. umopa za3.s, p3/m, p1/m, z4.b, z7.b // ZA3 += 2nd a_ptr OP 2nd b_ptr
72. ld1b {z2.b-z3.b}, pn9/z, [x20] // Load 2 vectors from b_ptr
73.
74. umopa za0.s, p2/m, p0/m, z1.b, z2.b // ZA0 += 1st a_ptr OP 1st b_ptr
75. addvl x8, x8, #2 // a_ptr += 2*SVLb
76.
77.
78. cmp x8, x9
79. b.mi .Loop_K
80.
81. umopa za2.s, p3/m, p0/m, z5.b, z2.b // ZA2 += 2nd a_ptr OP 1st b_ptr
82.
83. umopa za1.s, p2/m, p1/m, z1.b, z3.b // ZA1 += 1st a_ptr OP 2nd b_ptr

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

84.
85. umopa za3.s, p3/m, p1/m, z5.b, z3.b
86. addvl x20, x20, #2 // b_ptr += 2*SVLb
87.
88. cmp x8, x10
89. b.ge .Ktail_end
90.
91. .Ktail_start:
92. ld1b {z1.b}, p2/z, [x8]
93.
94. ld1b {z2.b-z3.b}, pn9/z, [x20]
95.
96. umopa za0.s, p2/m, p0/m, z1.b, z2.b
97. ld1b {z14.b}, p3/z, [x8, x7]
98.
99. umopa za2.s, p3/m, p0/m, z14.b, z2.b
100.
101. umopa za1.s, p2/m, p1/m, z1.b, z3.b
102. addvl x20, x20, #2 // b_ptr += 2*SVLb
103.
104. umopa za3.s, p3/m, p1/m, z14.b, z3.b
105.
106. .Ktail_end:
107. // store results
108. mov w14, #0 // Loop_store_ZA counter
109. psel pn8, pn9, p2.b[w14, 0]
110. psel pn11, pn9, p3.b[w14, 0]
111. // ZA tiles to vecs: z0=za0h.s[0], z1= za1h.s[0], z2=za2h.s[0], z3=za3h.s[0]
112. mova { z0.b-z3.b }, za0h.b[w14, 0:3]
113. st1w { z0.s-z1.s }, pn8, [x23] // Store to c_ptr
114. st1w { z2.s-z3.s }, pn11, [x23, x21, lsl #2] // Store to c_ptr+SVLs*ldc
115. .Loop_store_ZA:
116. psel pn8, pn9, p2.b[w14, 4]
117. psel pn11, pn9, p3.b[w14, 4]
118. mova { z0.b-z3.b }, za0h.b[w14, 4:7]
119. st1w { z0.s-z1.s }, pn8, [x23, x2, lsl #2] // to c_ptr+ldc
120. st1w { z2.s-z3.s }, pn11, [x23, x18, lsl #2] // to c_ptr+(SVLs+1)*ldc
121.
122. add x23, x23, x2, lsl #3 // c_ptr += 2*ldc INT32 elms
123. add w14, w14, #8 // Loop_store_ZA counter increment
124.
125. psel pn8, pn9, p2.b[w14, 0]
126. psel pn11, pn9, p3.b[w14, 0]
127. mova { z0.b-z3.b }, za0h.b[w14, 0:3]
128. st1w { z0.s-z1.s }, pn8, [x23] // Store to c_ptr
129. st1w { z2.s-z3.s }, pn11, [x23, x21, lsl #2] // Store to c_ptr+SVLs*ldc
130. cmp w14, w6
131. b.mi .Loop_store_ZA
132.
133. psel pn8, pn9, p2.b[w14, 4]
134. psel pn11, pn9, p3.b[w14, 4]
135. mova { z0.b-z3.b }, za0h.b[w14, 4:7]
136. st1w { z0.s-z1.s }, pn8, [x23, x2, lsl #2] // to c_ptr+ldc
137. st1w { z2.s-z3.s }, pn11, [x23, x18, lsl #2] // to c_ptr+(SVLs+1)*ldc
138.
139. addvl x22, x22, #2 // &c_base += 2*SVLb
140. addvl x13, x13, #2 // Loop_N counter increment
141. whilelt pn9.b, x13, x11, vlx2 // Tiles predicate-as-counter (N dimension)
142. add x19, x19, x7, lsl #1 // &b_base += 2*SVLs*4*ceil(K/4)
143. b.first .Loop_N
144.
145. add x3, x3, x7, lsl #1 // a_base += 2*SVLs*4*ceil(K/4)
146. add x5, x5, x21, lsl #3 // c_base += 2*SVLs*ldc INT32 elms
147. addvl x12, x12, #1 // Loop_M counter increment
148. whilelt p2.b, x12, x0 // Tile 0/1 predicate (M dimension)
149. b.first .Loop_M
150.
151. smstop // Disable Streaming mode & ZA
152.
153. ldr x23, [sp, #32]
154. ldp x21, x22, [sp, #16]

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix
multiplication

155. ldp x19, x20, [sp], #48
156.
157. ret

6.9 matmul_opt function overview
The matmul_opt function inner loop iterates over the rearranged columns of the matLeft matrix
(matLeft_mod buffer) and rearranged rows of the matRight matrix (matRight_mod buffer). The outer
products are calculated and stored in matResult_opt.

Results are accumulated into four 32-bit ZA tiles, with 2x2 tiling.

The matmul_opt function in this matmul_int8 example behaves in the same way as the matmul_fp32
example, but using umopa instructions rather than fmopa instructions.

See matmul_fp32 for details.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

7. gemv_cm_int8: 8-bit integer to 32-bit
integer matrix-by-vector multiplication

The gemv_cm_int8 example implements generalized matrix-by-vector multiplication (gemv), with
column-major unsigned 8-bit integer inputs and unsigned 32-bit integer outputs.

7.1 Overview of the gemv_cm_int8 algorithm
The gemv_cm_int8 example multiplies a matrix A by a vector X, to produce a result vector B.

• A is an M x N input matrix in column-major format containing unsigned 8-bit integer values

• X is an N x 1 input vector containing unsigned 8-bit integer values

• B is an M x 1 result vector containing unsigned 32-bit integer values

Figure 7-1: The gemv operation on page 85 shows the gemv operation:

Figure 7-1: The gemv operation

Each element B(i) in the result vector B is the result of the following calculation:

B(i) = A(i,0)*X(0)
 + A(i,1)*X(1)
 + A(i,2)*X(2)
 + A(i,3)*X(3)
 + A(i,4)*X(4)
 + ...
 + A(i,N-1)*X(N-1)

Figure 7-2: Memory layout of the input matrix on page 86 shows the memory layout of the
input matrix A in memory, in column-major format with each unsigned 8-bit value occupying a
single byte in memory:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

Figure 7-2: Memory layout of the input matrix

7.2 gemv_opt code
The following code shows the gemv_opt function with numbered lines. Subsequent sections explain
how the code operates.

For clarity, the code example consists of a function gemv_opt function which calls a
macro col_loop. The code below shows the col_loop macro first, followed by the
gemv_opt function.

1. // Input parameters
2. #define A x0 // Column-major matrix 'A' (const uint8_t *)
3. #define x x1 // Vector 'x' (const uint8_t *)
4. #define B x2 // Output vector 'B = Ax' (uint32_t *B)
5. #define a_rows x3 // Number of rows in 'A' (uint64_t)
6. #define a_cols x4 // Number of cols in 'A' (uint64_t)
7.
8. // Working registers
9. #define A_col_ptr x5 // Pointer to iterate through columns of 'A'
10. #define A_col_start_ptr x6 // Base pointer used to set 'A_col_ptr'
11. #define x_row_ptr x7 // Pointer to iterate through elements of 'x'
12. #define x_end_ptr x8 // End of the input vector 'x'
13. #define za_elems x9 // Number of words in ZA (4 * cntw * cntw)
14. #define a_row_ix x10 // Outer row loop counter for rows of 'A'
15. #define row_base w11 // Row group index (ZA vector select)
16. #define psel_base_ix w12 // Base index for PSEL (always zero)
17. #define row_offset x13 // Inner row loop counter for rows of 'A'
18. #define row_ix_target x14 // Index target for 'a_row_ix' and 'row_offset'
19. // to reach this iteration (# of rows to process)

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

20. #define a_col_stride a_rows // 'A' column stride
21. #define a_col_stride_2x x15 // 'A' two column stride
22. #define a_col_stride_3x x16 // 'A' three column stride
23.
24. // Predicates
25. #define row_pred p0 // Byte predicate for the K dimension
26. #define row_pred_count_mask p1 // Byte predicate with first granule all active
27. // aside from its very first element
28. #define tmp_pred p2 // Temporary predicate register
29. #define col_pred_n pn8 // Predicate-as-counter for column loads/stores
30. #define col_pred_p p8 // (Above in predicate-as-mask form)
31. #define col1_pred_n pn9 // Combined predicate for the first of 4 col loads
32. #define col1_pred_p p9 // (Above in predicate-as-mask form)
33. #define col2_pred_n pn10 // Combined predicate for the second of 4 col loads
34. #define col2_pred_p p10 // (Above in predicate-as-mask form)
35. #define col3_pred_n pn11 // Combined predicate for the third of 4 col loads
36. #define col3_pred_p p11 // (Above in predicate-as-mask form)
37. #define col4_pred_n pn12 // Combined predicate for the last of 4 col loads
38. #define col4_pred_p p12 // (Above in predicate-as-mask form)
39.
40. // Column loop: iterate through columns of A in groups of sixteen columns.
41. // Accumulate results for the current set of rows up to row_ix_target in ZA
42. .macro col_loop
43. whilelt row_pred.b, x_row_ptr, x_end_ptr
44. b.none ._col_loop_end
45. ._col_loop:
46. // Load-replicate up to sixteen 8-bit elements from 'x'
47. ld1rqb {z15.b}, row_pred/z, [x_row_ptr]
48.
49. // Inner row loop: iterate through elements in the current sixteen
50. // columns (associated with the loaded data from 'x') in 'row groups'
51. // of 4*SVL elements up to `row_ix_target`, using UVDOT to accumulate
52. // results into ZA.
53. mov row_base, #0
54. mov row_offset, a_row_ix
55. whilelt col_pred_n.b, a_row_ix, a_rows, vlx4
56. ._inner_row_loop:
57. // Get the pointer to the relevant part of the first column in the
58. // current group of sixteen for this row group
59. add A_col_ptr, A_col_start_ptr, row_offset
60.
61. // Iteration #1: process first four columns for this row group
62. // Combine row and column predicates to avoid loading beyond
63. // the end of the matrix (no awkward tail loops required!)
64. psel col1_pred_p, col_pred_p, row_pred.b[psel_base_ix, 0]
65. psel col2_pred_p, col_pred_p, row_pred.b[psel_base_ix, 1]
66. psel col3_pred_p, col_pred_p, row_pred.b[psel_base_ix, 2]
67. psel col4_pred_p, col_pred_p, row_pred.b[psel_base_ix, 3]
68.
69. // Load 4*SVLb elements from each of four columns in 'A'
70. ld1b {z16.b, z20.b, z24.b, z28.b}, col1_pred_n/z, [A_col_ptr]
71. ld1b {z17.b, z21.b, z25.b, z29.b}, col2_pred_n/z, [A_col_ptr,
 a_col_stride]
72. ld1b {z18.b, z22.b, z26.b, z30.b}, col3_pred_n/z, [A_col_ptr,
 a_col_stride_2x]
73. ld1b {z19.b, z23.b, z27.b, z31.b}, col4_pred_n/z, [A_col_ptr,
 a_col_stride_3x]
74.
75. // Take the 'vertical' dot product between the loaded elements of 'A'
76. // and elements of 'x', multiplying elements in rows of 'A' by columns
77. // of 'x' and reducing along the K dimension (accumulating widened
78. // 8-bit -> 32-bit results in ZA).
79. uvdot za.s[row_base, 0, vgx4], {z16.b - z19.b}, z15.b[0]
80. uvdot za.s[row_base, 1, vgx4], {z20.b - z23.b}, z15.b[0]
81. uvdot za.s[row_base, 2, vgx4], {z24.b - z27.b}, z15.b[0]
82. uvdot za.s[row_base, 3, vgx4], {z28.b - z31.b}, z15.b[0]
83.
84. // A_col_ptr += 4 cols
85. add A_col_ptr, A_col_ptr, a_col_stride, lsl #2
86.
87. // Iteration #2: process second four columns for this row group

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

88. // Combine row and column predicates to avoid loading beyond
89. // the end of the matrix (no awkward tail loops required!)
90. psel col1_pred_p, col_pred_p, row_pred.b[psel_base_ix, 4]
91. psel col2_pred_p, col_pred_p, row_pred.b[psel_base_ix, 5]
92. psel col3_pred_p, col_pred_p, row_pred.b[psel_base_ix, 6]
93. psel col4_pred_p, col_pred_p, row_pred.b[psel_base_ix, 7]
94.
95. // Load 4*SVL elements from each of four columns in 'A'
96. ld1b {z16.b, z20.b, z24.b, z28.b}, col1_pred_n/z, [A_col_ptr]
97. ld1b {z17.b, z21.b, z25.b, z29.b}, col2_pred_n/z, [A_col_ptr,
 a_col_stride]
98. ld1b {z18.b, z22.b, z26.b, z30.b}, col3_pred_n/z, [A_col_ptr,
 a_col_stride_2x]
99. ld1b {z19.b, z23.b, z27.b, z31.b}, col4_pred_n/z, [A_col_ptr,
 a_col_stride_3x]
100.
101. // Take the vertical dot product, much as in iteration #1 but
102. // selecting the second set of four 8-bit elements from z20
103. uvdot za.s[row_base, 0, vgx4], {z16.b - z19.b}, z15.b[1]
104. uvdot za.s[row_base, 1, vgx4], {z20.b - z23.b}, z15.b[1]
105. uvdot za.s[row_base, 2, vgx4], {z24.b - z27.b}, z15.b[1]
106. uvdot za.s[row_base, 3, vgx4], {z28.b - z31.b}, z15.b[1]
107.
108. // A_col_ptr += 4 cols
109. add A_col_ptr, A_col_ptr, a_col_stride, lsl #2
110.
111. // Iteration #3: process third four columns for this row group
112. // Combine row and column predicates to avoid loading beyond
113. // the end of the matrix (no awkward tail loops required!)
114. psel col1_pred_p, col_pred_p, row_pred.b[psel_base_ix, 8]
115. psel col2_pred_p, col_pred_p, row_pred.b[psel_base_ix, 9]
116. psel col3_pred_p, col_pred_p, row_pred.b[psel_base_ix, 10]
117. psel col4_pred_p, col_pred_p, row_pred.b[psel_base_ix, 11]
118.
119. // Load 4*SVL elements from each of four columns in 'A'
120. ld1b {z16.b, z20.b, z24.b, z28.b}, col1_pred_n/z, [A_col_ptr]
121. ld1b {z17.b, z21.b, z25.b, z29.b}, col2_pred_n/z, [A_col_ptr,
 a_col_stride]
122. ld1b {z18.b, z22.b, z26.b, z30.b}, col3_pred_n/z, [A_col_ptr,
 a_col_stride_2x]
123. ld1b {z19.b, z23.b, z27.b, z31.b}, col4_pred_n/z, [A_col_ptr,
 a_col_stride_3x]
124.
125. // Take the vertical dot product, much as in iteration #1 but
126. // selecting the third set of four 8-bit elements from z20
127. uvdot za.s[row_base, 0, vgx4], {z16.b - z19.b}, z15.b[2]
128. uvdot za.s[row_base, 1, vgx4], {z20.b - z23.b}, z15.b[2]
129. uvdot za.s[row_base, 2, vgx4], {z24.b - z27.b}, z15.b[2]
130. uvdot za.s[row_base, 3, vgx4], {z28.b - z31.b}, z15.b[2]
131.
132. // A_col_ptr += 4 cols
133. add A_col_ptr, A_col_ptr, a_col_stride, lsl #2
134.
135. // Iteration #4: process final four columns for this row group
136. // Combine row and column predicates to avoid loading beyond
137. // the end of the matrix (no awkward tail loops required!)
138. psel col1_pred_p, col_pred_p, row_pred.b[psel_base_ix, 12]
139. psel col2_pred_p, col_pred_p, row_pred.b[psel_base_ix, 13]
140. psel col3_pred_p, col_pred_p, row_pred.b[psel_base_ix, 14]
141. psel col4_pred_p, col_pred_p, row_pred.b[psel_base_ix, 15]
142.
143. // Load 4*SVL elements from each of four columns in 'A'
144. ld1b {z16.b, z20.b, z24.b, z28.b}, col1_pred_n/z, [A_col_ptr]
145. ld1b {z17.b, z21.b, z25.b, z29.b}, col2_pred_n/z, [A_col_ptr,
 a_col_stride]
146. ld1b {z18.b, z22.b, z26.b, z30.b}, col3_pred_n/z, [A_col_ptr,
 a_col_stride_2x]
147. ld1b {z19.b, z23.b, z27.b, z31.b}, col4_pred_n/z, [A_col_ptr,
 a_col_stride_3x]
148.
149. // Take the vertical dot product, much as in iteration #1 but

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

150. // selecting the final set of four 8-bit elements from z20
151. uvdot za.s[row_base, 0, vgx4], {z16.b - z19.b}, z15.b[3]
152. uvdot za.s[row_base, 1, vgx4], {z20.b - z23.b}, z15.b[3]
153. uvdot za.s[row_base, 2, vgx4], {z24.b - z27.b}, z15.b[3]
154. uvdot za.s[row_base, 3, vgx4], {z28.b - z31.b}, z15.b[3]
155.
156. // Update inner row loop variables
157. add row_base, row_base, #4 // row_base += 1 row group
158. addvl row_offset, row_offset, #4 // row_offset += 4 * SVL
159. whilelt col_pred_n.b, row_offset, row_ix_target, vlx4 // Update col pred
160. b.first ._inner_row_loop
161.
162. // Update column loop variables
163. add A_col_start_ptr, A_col_start_ptr, a_col_stride, lsl #4 // += 16 cols
164. add x_row_ptr, x_row_ptr, #16 // x_row_ptr += 16 elems
165. whilelt row_pred.b, x_row_ptr, x_end_ptr
166. b.first ._col_loop
167. ._col_loop_end:
168. .endm
169.
170. // void gemv_opt(const uint8_t *A, const uint8_t *x, uint32_t *B,
171. // uint64_t a_rows, uint64_t a_cols);
172. .text
173. .align 2
174. .global gemv_opt
175. .type gemv_opt, %function
176. gemv_opt:
177. // Spill callee-saved registers
178. stp d8, d9, [sp, #-64]!
179. stp d10, d11, [sp, #16]
180. stp d12, d13, [sp, #32]
181. stp d14, d15, [sp, #48]
182.
183. // Enter streaming mode
184. smstart
185.
186. // Bail out early for inputs with no columns
187. cmp a_cols, #0
188. b.le ._end
189.
190. // Initialise constants
191. mov row_base, #0
192. mov psel_base_ix, #0
193. cnth za_elems
194. mul za_elems, za_elems, za_elems
195. mov row_ix_target, za_elems
196. add x_end_ptr, x, a_cols
197. lsl a_col_stride_2x, a_col_stride, #1
198. add a_col_stride_3x, a_col_stride, a_col_stride, lsl #1
199.
200. // Outer row loop: iterate through rows of A in chunks of `za_elems` (up to
201. // a_row_ix = `row_ix_target`), aiming to accumulate as many result
202. // elements in B at each iteration as possible
203. mov a_row_ix, #0
204. ._row_loop:
205. // Zero all tiles (prepare to accumulate new results)
206. zero {za}
207.
208. // Calculate the number of rows to process this iteration
209. cmp row_ix_target, a_rows
210. csel row_ix_target, row_ix_target, a_rows, lt
211.
212. // Initialise variables for the inner loop
213. mov x_row_ptr, x // Reset x pointer (K = 0)
214. mov A_col_start_ptr, A // Reset A pointer (K = 0)
215.
216. // Column loop: iterate through the columns of A, accumulating results
217. // for the current set of rows up to `row_ix_target` in Z, processing
218. // in chunks of 16 columns at a time
219. col_loop
220.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

221. // Store loop: iterate through the current set of rows to process up to
222. // `row_ix_target` and store out results to B
223. mov row_base, #0
224. whilelt col_pred_n.s, a_row_ix, a_rows, vlx4
225. ._store_loop:
226. // Move results out of ZA and into Z
227. mova {z0.d - z3.d}, za.d[row_base, 0, vgx4]
228.
229. // Deinterleave results (arrange contiguously in vectors accounting
230. // for the output format of UVDOT)
231. zip {z0.s - z3.s}, {z0.s - z3.s}
232.
233. // Store
234. st1w {z0.s - z3.s}, col_pred_n, [B, a_row_ix, lsl #2]
235.
236. // Update store loop variables
237. add row_base, row_base, #1 // row_base += 1
238. addvl a_row_ix, a_row_ix, #1 // a_row_ix += 4 * SVLs
239. whilelt col_pred_n.s, a_row_ix, row_ix_target, vlx4 // Update col pred
240. b.first ._store_loop
241.
242. // Update outer row loop variables
243. add row_ix_target, row_ix_target, za_elems
244. cmp a_row_ix, a_rows
245. b.lt ._row_loop
246.
247. // Return
248. ._end:
249. // Exit streaming mode
250. smstop
251.
252. // Restore callee-saved registers and return
253. ldp d14, d15, [sp, #48]
254. ldp d12, d13, [sp, #32]
255. ldp d10, d11, [sp, #16]
256. ldp d8, d9, [sp], #64
257. ret

7.3 gemv_opt function overview
The gemv_opt function uses the 4-way unsigned vertical dot product uvdot instruction.

The uvdot instruction is a multi-vector instruction:

UVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

uvdot takes four vectors in the first operand, <Zn1>-<Zn4>, and a single vector <Zm> in the second
source.

The results are accumulated into a group of four ZA single-vectors. Each of these 4 vectors is
then stored at the same index in its corresponding ZA array quarter. The vector index within a ZA
quarter is determined by Wv+offs.

Figure 7-3: uvdot instruction register usage on page 91 shows how the calculation is performed
using the uvdot instruction:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 112

https://developer.arm.com/documentation/ddi0602/latest/SME-Instructions/UVDOT--4-way---Multi-vector-unsigned-integer-vertical-dot-product-by-indexed-element-

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

Figure 7-3: uvdot instruction register usage

The vectors where the results are stored are:

• ZA.s[0]

• ZA.s[SVLb/4+0]

• ZA.s[2*SVLb/4+0]

• ZA.s[3*SVLb/4+0]

The overall structure of the gemv_opt function is as follows:

_row_loop:
 // Iterate over the rows of the matrix (M dimension), in blocks
 // of SVLh x SVLh rows.

 col_loop:
 // Iterate over the columns of A, accumulating results for the current
 // set of rows in ZA tiles, processing in blocks of 16 columns at a time.

 _store_loop:
 // Move the results from ZA vectors to Z registers, de-interleave, and
 // store to memory.

Results are calculated as follows:

• The first four consecutive columns from matrix A are multiplied with the four first elements in X,
performing a dot product calculation for each of the four multiplications.

The register of the second operand (register Z15 in the example diagram above) has an
immediate index between 0 and 3 which selects a 32-bit block for every 128-bit chunk. The
32-bit block holds four unsigned 8-bit integer elements. Because we loaded Z15 with ld1rqb,
all 128-bit chunks in Z15 are the same. Because the index is also the same for all chunks, that
means all of Z15 will have the same 32-bit block, containing the same four elements of X.

• The result of the uvdot dot product of four unsigned 8-bit integer elements is widened from
unsigned 8-bit to unsigned 32-bit, indicated by the .B and .S suffixes. This means that the four
input vectors still result in 4 output vectors.

• To calculate result vector B, we accumulate dot products for all the matrix column-by-vector
element multiplications, accumulating over a_cols.

• The uvdot instruction produces deinterleaved data, as follows:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

The first ZA vector accumulates the multiplications of rows of A by X, where the row index in A
modulo 4 is 0. The second ZA vector accumulates the multiplications of rows of A by X, where the
row index in A modulo 4 is 1, and so on. That is:

• ZA.s[0] accumulates the multiplications of rows of A%4 = 0 by X

• ZA.s[SVLb/4+0] accumulates the multiplications of rows of A%4 = 1 by X

• ZA.s[2*SVLb/4+0] accumulates the multiplications of rows of A%4 = 2 by X

• ZA.s[3*SVLb/4+0] accumulates the multiplications of rows of A%4 = 3 by X

Subsequent iterations repeat over all rows of A, in blocks of SVLh by SVLh rows.

This corresponds to the ZA calculations shown in blue in the above diagram.

The gemv_opt function uses the uvdot instruction because the data of A is arranged as column
major. The four-way dot product multiplies four-by-four unsigned 8-bit integer elements and
accumulates into a single unsigned 32-bit integer element.

However, this example requires that consecutive matrix elements in memory are loaded into a
register. In column-major form, consecutive data values are the same column but different rows,
while the dot product calculation requires 4 numbers from the same row. So instead, we load
4 registers consecutively for a single column (Z16, Z20, Z24, Z28), then we load 4 consecutive
registers again but for the next column (z17, z21, z25, z29), and we do the same for the next two
columns too. At this point the first element of registers z16-z19 are four consecutive elements
of the same row. Therefore, the uvdot instruction is used here rather than the udot instruction,
because the uvdot instruction calculates the dot product of four unsigned 8-bit integers from the
same lane of the four first operand vectors by the 4 X values in the Z15 block that corresponds to
their location.

7.4 gemv_opt function details
This section describes how the gemv_opt function operates, looking at sections of the code in turn.

• Line 176 (gemv_opt):

The main gemv_opt function starts at line 176.

• Line 204 (row_loop):

The code iterates over all rows. Each iteration of row_loop deals with a block of SVLh x SVLh
rows. That is, for i=0; i< M; i+=SVLh*SVLh.

• Line 210:

There are SVLb vectors in a ZA array, and each can hold SVLs results. Each result corresponds
to one row of the input matrix. Each col_loop macro call processes SVLb x SVLs = SVLh x SVLh
rows. The csel instruction conditionally selects the total number of ZA vectors to be used for
accumulation before processing with the inner column loop, col_loop.

• Lines 213-214:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

For each iteration, initialize the pointers to the memory positions of the data in A and X.

• Line 219:

Call the col_loop macro, which loops over the number of columns, processing all columns of
SVLh * SVLh rows.

• Line 47:

The ld1rqb instruction loads 16 8-bit elements, or less if the predicate mask is not all true, from
X to a 128-bit vector, then replicates that 128-bit vector over all 128 bits segments in Z15.

• Lines 56-160 (_inner_row_loop):

The values loaded from X are multiplied by the elements of a matrix with (16 x SVLb) rows x
16 columns, or fewer if there are not enough rows remaining.

inner_row_loop iterates over all ZA array vectors using uvdot instructions to multiply A[16 x
SVLb rows x 16 columns] by X[16 x 1] and produce SVLh x SVLh results, before looping back
and loading a new set of values from X.

• Lines 64-67:

Two-dimensional predicate-as-counter for loads, built with the psel instruction.

row_pred shows how many rows are left by having a bit set for every existing row in the next
SVLb / 8 (bit per byte) rows. row_pred is filled with 1s until the final iteration, when the leftover
rows are dealt with. For example, if only five rows remain then five bits are set in row_pred.

The immediate index into row_pred in the psel instruction determines which bit is consulted.
If that bit is 1, then col_pred_p is used as the predicate for that column. col_pred_p indicates
how many columns are left. If the bit is 0, the predicate for that column is all false, which results
in no loads or calculations for that out-of-bounds column.

This 2D predication prevents overshoot for both columns and rows.

• Lines 70-73:

Load four vectors from each of the four consecutive columns. The first ld1b instruction, at line
70, populates four Z vector registers with strided numbering, as follows:

◦ Z16 = first SVLb bytes from the offset of column 0

◦ Z20 = second SVLb bytes from the offset of column 0

◦ Z24 = third SVLb bytes from the offset of column 0

◦ Z28 = fourth SVLb bytes from the offset of column 0

Because A is column-major, consecutively loading four register results in Z16, Z20, Z24, and
Z28 holding consecutive elements of that single column.

Similarly, the remaining ld1b instructions in lines 71-73 load Z vector registers as follows:

◦ Z17, Z21, Z25, and Z29 from column 1

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector
multiplication

◦ Z18, Z22, Z26, and Z30 from column 2

◦ Z19, Z23, Z27, and Z31 from column 3

Using a multi-vector load instruction to a strided numbered group of Z vector registers means
that Z registers are properly allocated for the uvdot instructions, with no need for additional mov
instructions. The uvdot instruction requires four consecutive Z registers for its first operand,
with the first register number being a multiple of 4. By contrast, the ld1b instruction does
not require consecutive register numbers. Because the uvdot instruction requires a register
from each of the 4 columns, the destination registers of the ld1b instruction are spaced four
registers apart. After executing the four ld1b instructions, we can call uvdot using registers
z16-19. And similarly for z20-z23, z24-z27, and z28-z31. By considering the destination
registers used for ld1b, we prevented having to use mov instructions to move values into
appropriately numbered registers for the uvdot instructions.

• Lines 79-82:

Four uvdot instructions are used to compute the vertical dot products of the 4 x SVLb column
elements loaded with the first four 8-bit elements from X, index 0 in z15.b.

The vertical dot product is calculated by accumulating the 4-way dot-product to each result,
where four contributing matrix elements are each from different first source operand vector
register. That is, each element is from a different column. For example, the uvdot instruction at
line 79 takes one element from each of z16, z17, z18, and z19.

This process is replicated four times in the code that follows, loading the next four vectors
from each of the next four consecutive columns and computing dot products using uvdot with
incrementing index values. In this way, 16 matrix columns are loaded and multiplied by 16 8-
bit X elements, because 128b/8b = 16. Therefore, col_loop performs a 16-way dot-product
accumulate per result, because 16 columns and 16 x elements are consumed. This is because
the ld1rqb instruction replicates 16 int8 elements, so unrolling the loop by a factor of four
means that we fully use the replicated 16 int8s.

• Lines 225-240 (_store_loop)

When all columns are processed for the SVLh x SVLh rows, the result is available in the ZA
array. The final step is to store the data from the ZA array to memory.

_store_loop does the following:

◦ Line 227 moves a group of four ZA single-vectors to four consecutive Z vector registers
using a four-vector mov instruction.

◦ Line 231 interleaves the four extracted vectors using a four-vector zip instruction. The
results were de-interleaved by the uvdot instruction, so now they are interleaved to recover
the order. The zip instruction takes vectors z0-z3 and interleaves them so that z0 becomes
z3[1],z2[1],z1[1],z0[1] z3[0],z2[0],z1[0],z0[0].

◦ Line 234 performs a contiguous four-vector st1w store to the current memory address for
result vector B.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

8. lut_gemv_rm_int8: Compressed 8-bit
integer to 32-bit integer matrix-by-
vector multiplication

The lut_gemv_rm_int8 example implements generalized matrix-by-vector multiplication (gemv) of
a compressed matrix A_compressed and an uncompressed vector, where values in the matrix are
compressed, or quantized, from 8 bits to 2 bits per matrix element.

8.1 Overview of the lut_gemv_rm_int8 algorithm
The lut_gemv_rm_int8 example shows how to use luti2 lookup table instructions to decompress
compressed elements in a matrix, and then perform a general row-major matrix-by-vector
multiplication using those decompressed values. Decompression is performed on-the-fly, in the
body of the inner-most loop, _inner_row_loop.

Each value in the matrix is compressed from 8 bits to 2 bits per matrix element. This means that
only four uint8 values are possible:

• 00 decompresses to 00000000

• 01 decompresses to 01000000

• 10 decompresses to 10000000

• 11 decompresses to 11000000

The compressed matrix is stored in a row-major format in memory.

Figure 8-1: Example 2-bit compressed matrix memory layout on page 95 shows an example
memory layout with 4 values per byte. Each row is a combination of four compressed 2-bit values
stored as a single byte in memory:

Figure 8-1: Example 2-bit compressed matrix memory layout

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 112

https://developer.arm.com/documentation/ddi0602/latest/SME-Instructions/LUTI2--four-registers---Lookup-table-read-with-2-bit-indexes-

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

8.2 lut_gemv_opt code
The following code shows the lut_gemv_opt function with numbered lines. Subsequent sections
explain how the code operates.

1. // Input parameters
2. #define A x0 // Row-major matrix of compressed data (const uint8_t *)
3. #define x x1 // Vector 'x' (const uint8_t *)
4. #define B x2 // Output vector 'B = Ax' (uint32_t *B)
5. #define lut x3 // Lookup table (const uint8_t *)
6. #define a_rows x4 // Number of rows in 'A' (uint64_t)
7. #define a_cols x5 // Number of cols in 'A' (uint64_t)
8.
9. // Working registers
10. #define A_row_ptr x6 // Pointer to iterate through rows of 'A'
11. #define A_col_ptr x7 // Pointer to iterate within rows of 'A'
12. #define A_end_ptr x8 // End of the input matrix 'A'
13. #define x_vec_ix x9 // Loop index for columns of A
14. #define row_base w10 // Loop index for row group (ZA vector select)
15. #define row_base_odd_vecs x11 // Index of the second of the four vectors in
16. // a row group (= row_base + cntw)
17. #define row_base_odd_vecs_w w11 // (Above as 32-bit register)
18. #define rows_remaining x12 // Number of rows remaining to process
19. #define slice_row_base w13 // Copy of `row_base` in range w12-w15
20. #define rows_to_process x14 // Number of rows to process in this iteration
21. #define rows_to_process_w w14 // (Above as 32-bit register)
22. #define tmp0 w15 // Temporary register
23. #define a_row_stride x16 // 'A' row stride
24. #define a_row_stride_2x x17 // 'A' two row stride
25. #define a_row_stride_3x x18 // 'A' three row stride
26. #define a_row_stride_4x x19 // 'A' four row stride
27. #define a_col_ix x20 // Loop index for columns of A
28.
29. // Predicates
30. #define all_bytes p0 // Byte predicate with mask: 111111111...
31. #define four_words p1 // Word predicate with mask: 1000100001000100000...
32. #define col_pred p2 // Byte predicate for the M dimension
33. #define store_pred p3 // Byte predicate used for storing results
34. #define x_pred_n pn8 // Predicate-as-counter for X loads
35. #define row_pred_p p9 // Predicate-as-mask for row loads
36. #define row_1_pred_p p4 // (Above in predicate-as-mask form)
37. #define row_2_pred_p p5 // (Above in predicate-as-mask form)
38. #define row_3_pred_p p6 // (Above in predicate-as-mask form)
39. #define row_4_pred_p p7 // (Above in predicate-as-mask form)
40.
41. // void lut_gemv_opt(const uint8_t *A, const uint8_t *x, uint32_t *B,
42. // const uint8_t *lut, uint64_t a_rows, uint64_t a_cols);
43. .text
44. .align 2
45. .global lut_gemv_opt
46. .type lut_gemv_opt, %function
47. lut_gemv_opt:
48. // Spill callee-saved registers
49. stp x19, x20, [sp, #-16]!
50.
51. // Enter streaming mode
52. smstart
53.
54. // Load LUT
55. ldr zt0, [lut]
56.
57. // Initialise constants
58. mov A_row_ptr, A // A_row_ptr = A
59. mov A_col_ptr, A // A_col_ptr = A
60. ptrue all_bytes.b
61. ptrue four_words.s, VL4
62. cntw rows_to_process // rows_to_process = SVLs

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

63. mov rows_remaining, a_rows // rows_remaining = a_rows
64. add a_row_stride, a_cols, #3
65. lsr a_row_stride, a_row_stride, #2 // a_row_stride = (a_cols+3) >> 2
66. lsl a_row_stride_2x, a_row_stride, #1 // 2*a_row_stride
67. add a_row_stride_3x, a_row_stride, a_row_stride, lsl #1 // 3*a_row_stride
68. lsl a_row_stride_4x, a_row_stride, #2 // 4*a_row_stride
69. madd A_end_ptr, a_rows, a_row_stride, A // A_end_ptr=A+a_rows*a_row_stride
70.
71. // Row loop: iterate through rows of A in chunks of `rows_to_process`,
72. // processing a minimum of four rows (and producing a minimum of four
73. // 8-bit result elements in 'B') at each iteration
74. cmp A_row_ptr, A_end_ptr
75. b.gt ._row_loop_end
76. ._row_loop:
77. // Zero all tiles (prepare to accumulate new results)
78. zero {za}
79.
80. // Calculate the number of rows to process this iteration
81. cmp rows_to_process, rows_remaining
82. csel rows_to_process, rows_to_process, rows_remaining, lt
83. whilelt col_pred.b, xzr, rows_remaining
84.
85. // Column loop: iterate through the columns of A, accumulating partial
86. // products from `rows_to_process` 8-bit result elements in ZA,
87. // processing in chunks of 4*SVL columns at a time
88. mov x_vec_ix, #0 // x_vec_ix = 0
89. whilelt x_pred_n.b, x_vec_ix, a_cols, vlx4 // Prepare 4*SVL X pred
90.
91. mov a_col_ix, #0 // a_col_ix = 0
92. whilelt row_pred_p.b, a_col_ix, a_row_stride // Prepare row pred
93.
94. ._col_loop:
95. // Load 4*SVL 8-bit elements from 'x'
96. ld1b { z28.b - z31.b }, x_pred_n/z, [x, x_vec_ix]
97.
98. // Inner row loop: iterate through `rows_to_process` in groups
99. // of four rows, loading data from the 4*SVL columns associated
100. // with the 'x' data in z28-z31 and using UDOT to accumulate
101. // results into ZA
102. mov row_base, #0 // row_base = 0
103. add A_col_ptr, A_row_ptr, a_col_ix // A_col_ptr = A_row_ptr + a_col_ix
104. ._inner_row_loop:
105. // Combine row and column predicates to avoid loading beyond
106. // the end of the matrix (no awkward tail loops required!)
107. mov slice_row_base, row_base
108. psel row_1_pred_p, row_pred_p, col_pred.b[slice_row_base, 0]
109. psel row_2_pred_p, row_pred_p, col_pred.b[slice_row_base, 1]
110. psel row_3_pred_p, row_pred_p, col_pred.b[slice_row_base, 2]
111. psel row_4_pred_p, row_pred_p, col_pred.b[slice_row_base, 3]
112.
113. // Load 4*SVLb uint2 elements from each of four columns in 'A'
114. ld1b { z24.b }, row_1_pred_p/z, [A_col_ptr]
115. ld1b { z25.b }, row_2_pred_p/z, [A_col_ptr, a_row_stride]
116. ld1b { z26.b }, row_3_pred_p/z, [A_col_ptr, a_row_stride_2x]
117. ld1b { z27.b }, row_4_pred_p/z, [A_col_ptr, a_row_stride_3x]
118.
119. // Expand uint2 elements to uint8
120. luti2 { z0.b - z3.b }, zt0, z24[0]
121. luti2 { z4.b - z7.b }, zt0, z25[0]
122. luti2 { z16.b - z19.b }, zt0, z26[0]
123. luti2 { z20.b - z23.b }, zt0, z27[0]
124.
125. // Take the dot product between groups of four elements in the
126. // loaded rows of 'A' and elements of 'x', calculating
127. // partially reduced results for each result element in 'B'
128. // (accumulating widened 8-bit -> 32-bit results in ZA).
129. udot za.s[row_base, 0, vgx4], { z0.b - z3.b }, { z28.b - z31.b }
130. udot za.s[row_base, 1, vgx4], { z4.b - z7.b }, { z28.b - z31.b }
131. udot za.s[row_base, 2, vgx4], { z16.b - z19.b }, { z28.b - z31.b }
132. udot za.s[row_base, 3, vgx4], { z20.b - z23.b }, { z28.b - z31.b }
133.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

134. // Update inner row loop variables
135. add row_base, row_base, #4 // row_base += 4 rows
136. add A_col_ptr, A_col_ptr, a_row_stride_4x // A_col_ptr += 4 rows
137. cmp row_base, rows_to_process_w
138. b.lt ._inner_row_loop
139.
140. // Update column loop variables
141. addvl x_vec_ix, x_vec_ix, #4 // x_vec_ix += 4*SVLb
142. whilelt x_pred_n.b, x_vec_ix, a_cols, vlx4 // Prepare 4*SVL X pred
143.
144. addvl a_col_ix, a_col_ix, #1 // a_col_ix += SVLb
145. whilelt row_pred_p.b, a_col_ix, a_row_stride // Prepare row pred
146.
147. b.first ._col_loop
148.
149. // Store loop: iterate through `rows_to_process` in groups of four
150. // rows, reducing partial products and storing results, writing out
151. // up to four result elements in 'B' at each iteration
152. mov row_base, #0 // row_base = 0
153. cntw row_base_odd_vecs // row_base_odd_vecs = SVLs
154. whilelt store_pred.s, wzr, rows_to_process_w // Prepare store pred
155. ._store_loop:
156. // Prepare predicate for storing up to four elements of 'B'
157. mov store_pred.b, four_words/z, store_pred.b
158.
159. // Move 'odd vector' results (vectors one and three out of the four
160. // per row group) out of ZA and into Z
161. mova { z2.d - z3.d }, za.d[row_base_odd_vecs_w, 0, vgx2]
162. mova { z6.d - z7.d }, za.d[row_base_odd_vecs_w, 1, vgx2]
163. mova { z18.d - z19.d }, za.d[row_base_odd_vecs_w, 2, vgx2]
164. mova { z22.d - z23.d }, za.d[row_base_odd_vecs_w, 3, vgx2]
165.
166. // Add 'odd vectors' to 'even vectors' to partially reduce
167. add za.s[row_base, 0, vgx2], { z2.s - z3.s }
168. add za.s[row_base, 1, vgx2], { z6.s - z7.s }
169. add za.s[row_base, 2, vgx2], { z18.s - z19.s }
170. add za.s[row_base, 3, vgx2], { z22.s - z23.s }
171.
172. // Reduce 'even vectors'
173. mova { z0.d - z1.d }, za.d[row_base, 0, vgx2]
174. mova { z4.d - z5.d }, za.d[row_base, 1, vgx2]
175. mova { z16.d - z17.d }, za.d[row_base, 2, vgx2]
176. mova { z20.d - z21.d }, za.d[row_base, 3, vgx2]
177. add z0.s, z0.s, z1.s
178. add z4.s, z4.s, z5.s
179. add z16.s, z16.s, z17.s
180. add z20.s, z20.s, z21.s
181. uaddv d0, all_bytes, z0.s
182. uaddv d1, all_bytes, z4.s
183. uaddv d2, all_bytes, z16.s
184. uaddv d3, all_bytes, z20.s
185.
186. // Pack results into the first four elements of z0.s
187. zip { z0.s - z3.s }, { z0.s - z3.s }
188.
189. // Store
190. st1w z0.s, store_pred, [B]
191.
192. // Update store loop variables
193. add B, B, #16 // B += 4 elements
194. add row_base, row_base, #4 // row_base+=4 rows
195. add row_base_odd_vecs, row_base_odd_vecs, #4 // row_base_odd_vecs+=4
196. whilelt store_pred.s, row_base, rows_to_process_w // Prepare store pred
197. b.first ._store_loop
198.
199. // Update outer row loop variables
200. madd A_row_ptr, a_row_stride, rows_to_process, A_row_ptr
 // A_row_ptr += `rows_to_process` rows
201. sub rows_remaining, rows_remaining, rows_to_process
 // rows_remaining -= `rows_to_process`
202. cmp A_row_ptr, A_end_ptr

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

203. b.lt ._row_loop
204. ._row_loop_end:
205.
206. // Exit streaming mode and return
207. smstop
208.
209. // Restore callee-saved registers and return
210. ldp x19, x20, [sp], #16
211.
212. ret

8.3 lut_gemv_opt function overview
The lut_gemv_opt function performs multiplication using a four-way dot-product-and-accumulate
computation with the four-vector udot instruction.

Figure 8-2: Four-way dot-product and accumulate computation on page 99 shows the process
where SVLb is 16 and therefore SVLs is 4.

Figure 8-2: Four-way dot-product and accumulate computation

The function does the following:

• Loads one vector of compressed data from a single row of matrix A and decompresses it to four
vectors

• Loads four consecutive vectors from vector X

• Performs the dot-product of row A and vector X.

• Accumulates the result in four vectors, one in each ZA array quarter.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

8.4 lut_gemv_opt function details
This section describes how the lut_gemv_opt function operates, looking at sections of the code in
turn.

• Line 47 (lut_gemv_opt)

lut_gemv_opt consumes a maximum of SVLb/4 rows per _row_loop iteration. The ZA array has
SVLb vectors available, and each group of four ZA single-vectors is used to perform the dot
product of four vectors from a single compressed row from A.

The function iterates over all rows (._row_loop in line 76) and columns (.col_loop in line 94).

• Line 55:

The ldr instruction loads the compressed data from memory to the lookup table register ZT0.

ZT0 is a dedicated 512-bit lookup table register for data decompression.

• Line 96:

The ld1b multi-vector instruction loads four consecutive vectors from X.

• Lines 108 to 111:

The psel instructions perform 2D predication to manage the vertical and horizontal matrix
edges for compressed matrix one-vector loads.

• Lines 114 to 123:

Each ld1b instruction loads a single vector from the compressed A matrix. Four rows are loaded
to four consecutive Z registers (Z24 to Z27). Each vector register is populated with compressed
2-bit row elements.

Each luti2 instruction decompresses matrix elements by looking up the decompressed value
from ZT0 using the 2-bit compressed elements in Z to obtain 8-bit inputs. Four Z vectors are
created from each compressed Z vector.

Index [0] in z24[0] indicates that the instruction uses the segment of z24 from bit 0. SVLs
(SVLb/4) 2-bit indices from z24 bits [0:SVL/4-1] are decompressed to z0, then the next SVLs
indices are decompressed to z1, and so on. The 2-bit indices address the first four entries of
the lookup table in ZT0.

• Lines 129-132

The four-vector udot instructions perform 4-way dot product accumulation per destination
element.

After the udot instructions, the following ZA array vectors contain 32-bit integer partial sums of
the B result:

◦ ZA.s[idx]

◦ ZA.s[SVLb/4+idx]

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer
matrix-by-vector multiplication

◦ ZA.s[2*SVLb/4+idx]

◦ ZA.s[3*SVLb/4+idx]

• Lines 155 to 197 (_store_loop):

The udot instructions at lines 129-132 produce partial sums of products in 4 ZA single-vectors.
To obtain the final inner product result, we need to sum these partial sums of products. The
_store_loop function performs the accumulation of partial sums, that is the sum of all A(I,:) *
X(:) multiplications.

For each of the four ZA single partial product (that is, the result of processing a single A row):

◦ Extract the second group of 2 vectors and add them to the first group of two vectors using
the multi-vector add instructions (lines 161 to 170). Reduce from four to two vectors.

◦ Extract the result of the above addition, and perform a single vector add to reduce the
result into a single vector (lines 173 to 180).

◦ Reduce the above result into a single 32-bit element using uaddv instructions. (lines 181 to
184).

• Lines 187 and 190:

Using the four-vector zip instruction, 32-bit results from consecutive rows are interleaved from
consecutive rows into the z0 vector register. A single vector store instruction stores four 32-bit
elements.

• Line 201:

The _row_loop outer loop is incremented by SVLb/4.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

9. cplx_matmul_fp16fp32: Complex-valued
half-precision to single precision floating-
point matrix-by-matrix multiplication

The cplx_matmul_fp16fp32 example implements complex-valued matrix-by-matrix multiplication
with half-precision floating-point complex-valued inputs and outputs.

9.1 Overview of the cplx_matmul_fp16fp32 algorithm
The cplx_matmul_fp16fp32 example operates on the following matrices:

• matLeft is an M x K LHS input matrix containing IQ interleaved half-precision floating-point
values.

• matRight is an K x N RHS input matrix containing IQ interleaved half-precision floating-point
values.

• matResult_opt is an M x N containing the result of multiplying matLeft with matRight with IQ
interleaved half-precision floating-point values.

The cplx_matmul_fp16fp32 example uses the sum of two outer-product widening fmopa
instructions, which accumulates half-precision floating-point two-way dot-products into single-
precision results in a 32-bit element ZA tile. The result is then down-converted to 16-bit half-
precision floating-point.

Consider the complex-valued matrix-by-matrix multiplication C = A x B.

The first accumulated results are as follows:

ZA0.s[0] = Re[A(0,0)*B(0,0) + A(0,1)*B(1,0)]
ZA1.s[0] = Im[A(0,0)*B(0,0) + A(0,1)*B(1,0)]

Two ZA tiles are required to compute the results of the complex-valued multiplications:

• one to accumulate the real results

• one to accumulate the imaginary results

In this example, even-numbered ZA tiles accumulate the real results, and odd-numbered ZA tiles
accumulate the imaginary results.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 112

https://developer.arm.com/documentation/ddi0602/latest/SME-Instructions/FMOPA--widening--2-way--FP16-to-FP32---Half-precision-floating-point-sum-of-outer-products-and-accumulate-?lang=en

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

9.2 preprocess_l code
The following code shows the preprocess_l function with numbered lines. Subsequent sections
explain how the code operates.

1. preprocess_l:
2. // cplx_mat_trans_opt(M, K, matLeft, matLeft_mod);
3. // x0 : M
4. // x1 : K, lda
5. // x2 : matLeft
6. // x3 : matLeft_mod
7. // x4 : SVLs
8. // x5 : SVLs*SVLs
9. // x6 : a_ptr
10. // x7 : store_offset0
11. // x8 : store_offset1
12. // x9 :
13. // x10: Loop_M exit condition
14. // x11: SVLs*lda
15. // x12: Loop_load/Loop_store loop counter
16. // x13: K loop exit condition
17. // x14: mat_base
18. // x15: c_ptr
19.
20. // Assumptions:
21. // nbr in matLeft (M): any
22. // nbc in matLeft, nbr in matRight (K): any K > 2
23. // nbc in matRight (N): any
24. //
25. // Left matrix rearrangement:
26. // The entire matrix is transposed by blocks of SVLs rows and contiguously
 stored in the memory.
27. // Output buffer is a multiple of SVLs cplx-FP16 elements
 (padded by zeros if applicable)
28.
29. smstart
30.
31. // constants
32. cntw x4 // SVLs
33. mul x5, x4, x4 // SVLs*SVLs
34. mul x11, x4, x1 // SVLs*lda
35. mov x10, #0 // Loop_M counter
36. whilelt p10.s, xzr, x0 // Load tile predicate (M dimension)
37.
38. .Loop_M:
39. mov x15, x3 // c_ptr = &matLeft_mod
40. mov x14, x2 // mat_base = &matLeft
41. add x13, x2, x1, lsl #2 // Loop_K exit condition
42.
43. whilelt pn12.b, x14, x13, vlx2 // K dimension predicate-as-counter
44.
45. mov x7, #0 // store_offset0
46. mov x8, x5 // store_offset1
47.
48. .Loop_K:
49. mov x6, x14 // a_ptr = mat_base
50. mov w12, #0 // Loop_load counter
51. .Loop_load:
52. psel pn8, pn12, p10.s[w12, #0]
53. psel pn9, pn12, p10.s[w12, #1]
54. ld1w {z0.s,z8.s}, pn8/z, [x6] // Load 1st row from mat_ptr
55. ld1w {z1.s,z9.s}, pn9/z, [x6, x1, lsl #2] // Load 2nd row from mat_ptr
56. mova za0h.s[w12, 0:1], { z0.s-z1.s }
57. mova za1h.s[w12, 0:1], { z8.s-z9.s }
58.
59. add w12, w12, #2 // Loop_load counter increment
60. add x6, x6, x1, lsl #3 // a_ptr += 2*lda Cplx-FP16 elems

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

61. cmp w12, w4
62. b.mi .Loop_load
63.
64. mov w12, #0 // Loop_store counter
65. .Loop_store:
66. whilelt pn8.s, x7, x11, vlx4 // Tile0 store predicate-as-counter
67. whilelt pn9.s, x8, x11, vlx4 // Tile1 store predicate-as-counter
68. mova {z0.s-z3.s}, za0v.s[w12, 0:3]
69. mova {z4.s-z7.s}, za1v.s[w12, 0:3]
70. st1w {z0.s-z3.s}, pn8, [x15, x7, lsl #2] // Store 4 cols of Tile0 to
 matLeft_mod +
 store_offset0
71. st1w {z4.s-z7.s}, pn9, [x15, x8, lsl #2] // Store 4 cols of Tile1 to
 matLeft_mod +
 store_offset1
72. addvl x7, x7, #1 // Tile0 store pointer offset += 4*SVLs
73. addvl x8, x8, #1 // Tile1 store pointer offset += 4*SVLs
74. add w12, w12, #4 // Loop_store counter increment
75. cmp w12, w4
76. b.mi .Loop_store
77.
78. add x7, x7, x5 // Tile0 store pointer offset += SVLs*SVLs
79. add x8, x8, x5 // Tile1 store pointer offset += SVLs*SVLs
80. addvl x14, x14, #2 // mat_base += 2*SVLs Cplx-FP16 elems
81. whilelt pn12.b, x14, x13, vlx2 // K dimension predicate-as-counter
82. b.first .Loop_K
83.
84. add x2, x2, x11, lsl #2 // &matLeft += SVLs*lda Cplx-FP16 elems
85. incw x10 // Loop_M counter increment
86. add x3, x3, x11, lsl #2 // &matLeft_mod += SVLs*lda Cplx-FP16 elems
87. whilelt p10.s, x10, x0 // M dimension predicate
88. b.first .Loop_M
89.
90. smstop
91.
92. ret

9.3 preprocess_l function overview
The preprocess_l function re-arranges the matLeft matrix such that blocks of SVLs (rows) x K
(columns) are transposed and contiguously stored to memory, in a similar way as the same function
in the matmul_fp32 example.

Each 32-bit transposed element is the combination of the real and imaginary part of a single matrix
element. Data is loaded as follows: {Re(0), Im(0), Re(1), Im(1), ...). The input matrix is zero-
padded to a multiple of SVLs rows.

For example, consider the complex-valued half-precision floating-point matLeft matrix with 7 rows
and 6 columns shown in Figure 9-1: Example matLeft matrix on page 105:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

Figure 9-1: Example matLeft matrix

After processing by the preprocess_l function, matLeft_mod contains the processed matrix. With
SVL=128b, blocks of 4 x 6 columns are transposed and contiguously stored to the memory. Figure
9-2: matLeft_mod memory layout on page 105 shows the memory layout of matLeft_mod, with
each row occupying 4 bytes:

Figure 9-2: matLeft_mod memory layout

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

9.4 preprocess_l function details
This section describes how the preprocess_l function operates, looking at sections of the code in
turn.

• Lines 54-57 (Loop_load):

In lines 54 and 55, the two-vector ld1w instruction loads contiguous elements from one row
into two vector registers with strided numbering.

In lines 56 and 57, the two-vector mova instruction moves elements of two matrix rows from
consecutively numbered Z vector registers to consecutive horizontal slices of one 32-bit ZA
tile.

These instructions, together with the instructions at lines 68-71, perform 32-bit width
transposition. 32-bit element granularity is used because each input occupies 32 bits: 16 bits
for the real part, and 16 bits for the imaginary part.

This transposition is very similar to the same function in the matmul_fp32 example.

• Lines 68-71 (Loop_store)

The mova instructions extract four consecutive vertical slices from 32-bit element ZA tiles
to four Z vector registers. The four-vector st1w instructions then store these vectors to
consecutive memory locations.

9.5 cplx_matmul_opt code
The following code shows the cplx_matmul_opt function with numbered lines. Subsequent sections
explain how the code operates.

1. cplx_matmul_opt:
2. // cplx_matmul_opt(M, K, N, matLeft, matRight, matResult_opt);
3. // x0 : M, lda
4. // x1 : K
5. // x2 : N, ldb, ldc
6. // x3 : matLeft
7. // x4 : matRight
8. // x5 : matResult_opt
9. // x6 : SVLs*ldc
10. // x7 : SVLb - 4
11. // x8 : a_ptr
12. // x9 : Loop_M counter
13. // x10: K*ldb
14. // x11: matRight end address
15. // x12: c_base
16. // x13: Loop_N exit condition
17. // x14: Loop_store counter
18. // x15: Loop_K exit condition
19. // x16: c_ptr
20. // x17: b_ptr
21. // x18: K*SVLb
22. // x19: b_base

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

23.
24. // Assumptions:
25. // nbr in matLeft (M): any
26. // nbc in matLeft, nbr in matRight (K): any K > 2
27. // nbc in matRight (N): any
28. //
29. // Left matrix is pre-arranged.
30. //
31. // 32-bit accumulator mapping with 2x2 tiles processing
32.
33. str x19, [sp, #-16]!
34.
35. smstart
36.
37. // constants
38. cntb x7 // SVLb
39. mul x10, x1, x2 // K*ldb
40. mul x6, x7, x2 // SVLs*ldc Cplx-FP16 elems
41.
42. mul x18, x1, x7 // K*SVLb
43. sub x7, x7, #4 // SVLb - 4
44.
45. ptrue p5.b
46. pfalse p6.b
47. trn1 p6.h, p6.h, p5.h // set even elems true, odd elems false
48.
49. mov x9, #0 // Loop_M counter
50. whilelt p2.s, x9, x0 // M dimension predicate
51. ptrue pn8.b // Predicate as counter for SME2 VLx2 LD1H
 (a_ptr loads)
52. add x13, x4, x2, lsl #2 // Loop_N exit condition
53.
54. .Loop_M:
55. mov x19, x4 // b_base = &matRight
56. mov x12, x5 // c_base = &matResult_opt
57.
58. whilelt pn9.b, x19, x13, vlx2 // N dimension predicate-as-counter
59.
60. .Loop_N:
61. mov x8, x3 // a_ptr = &matLeft
62. mov x17, x19 // b_ptr = b_base
63. mov x16, x12 // c_ptr = c_base
64.
65. pext { p0.b, p1.b }, pn9[0] // Tile0/2 predicates
66.
67. zero {za}
68. ld1w {z9.s}, p5/z, [x8] // Load 1st vector from a_ptr
69. addvl x8, x8, #1 // a_ptr += SVLb
70.
71. revh z1.s, p5/m, z9.s // z1 = {Im, Re, Im, Re, ...}
72. fneg z9.h, p6/m, z9.h // z9 = {Re,-Im, Re,-Im, ...}
73. add x11, x17, x10, lsl #2 // matRight end address
74.
75. ld1w {z2.s-z3.s}, pn9/z, [x17] // Load 2 vectors from b_ptr
76. sub x15, x11, x2, lsl #2 // Loop_K exit condition
77. add x17, x17, x2, lsl #2 // b_ptr += ldb Cplx-FP16 elems
78.
79. .Loop_K:
80. fmopa za0.s, p5/m, p0/m, z9.h, z2.h // ZA0 += {ReRe-ImIm, ReRe-ImIm, ...}
 1st part
81.
82. fmopa za2.s, p5/m, p1/m, z9.h, z3.h // ZA2 += {ReRe-ImIm, ReRe-ImIm, ...}
 2nd part
83. ld1w {z8.s-z9.s}, pn8/z, [x8] // Load next 2 vectors from a_ptr
84.
85. fmopa za1.s, p5/m, p0/m, z1.h, z2.h // ZA1 += {ImRe+ReIm, ImRe+ReIm, ...}
 1st part
86. ld1w {z6.s-z7.s}, pn9/z, [x17] // Load next 2 vectors from b_ptr
87. revh z5.s, p5/m, z8.s // z5 = {Im, Re, Im, Re, ...}
88.
89. fmopa za3.s, p5/m, p1/m, z1.h, z3.h // ZA3 += {ImRe+ReIm, ImRe+ReIm, ...}

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

 2nd part
90. fneg z8.h, p6/m, z8.h // z8 = {Re,-Im, Re, -Im, ...}
91.
92. fmopa za0.s, p5/m, p0/m, z8.h, z6.h // ZA0 += {ReRe-ImIm, ReRe-ImIm, ...}
 1st part
93. addvl x8, x8, #2 // a_ptr += 2*SVLb
94.
95. fmopa za2.s, p5/m, p1/m, z8.h, z7.h // ZA2 += {ReRe-ImIm, ReRe-ImIm, ...}
 2nd part
96.
97. fmopa za1.s, p5/m, p0/m, z5.h, z6.h // ZA1 += {ImRe+ReIm, ImRe+ReIm, ...}
 1st part
98. revh z1.s, p5/m, z9.s // z1 = {Im, Re, Im, Re, ...}
99.
100. fmopa za3.s, p5/m, p1/m, z5.h, z7.h // ZA3 += {ImRe+ReIm, ImRe+ReIm, ...}
 2nd part
101. ld1w {z2.s-z3.s}, pn9/z, [x17, x2, lsl #2] // Load 2 vecs from b_ptr+ldb
102. fneg z9.h, p6/m, z9.h // z9 = {Re,-Im, Re,-Im, ...}
103. add x17, x17, x2, lsl #3 // b_ptr += 2*ldb cplx-FP16 elems
104.
105. cmp x17, x15
106. b.lt .Loop_K
107.
108. fmopa za0.s, p5/m, p0/m, z9.h, z2.h // ZA0 += {ReRe-ImIm, ReRe-ImIm, ...}
 1st part
109.
110. fmopa za2.s, p5/m, p1/m, z9.h, z3.h // ZA2 += {ReRe-ImIm, ReRe-ImIm, ...}
 2nd part
111.
112. fmopa za1.s, p5/m, p0/m, z1.h, z2.h // ZA1 += {ImRe+ReIm, ImRe+ReIm, ...}
 1st part
113.
114. fmopa za3.s, p5/m, p1/m, z1.h, z3.h // ZA3 += {ImRe+ReIm, ImRe+ReIm, ...}
 2nd part
115.
116. cmp x17, x11
117. b.ge .Ktail_end
118.
119. .Ktail_start:
120. ld1w {z0.s}, p5/z, [x8] // Load 1 vector from a_ptr
121. ld1w {z2.s-z3.s}, pn9/z, [x17] // Load 2 vectors from b_ptr
122. revh z1.s, p5/m, z0.s // z1 = {Im, Re, Im, Re, ...}
123. fneg z0.h, p6/m, z0.h // z0 = {Re, -Im, Re, -Im, ...}
124.
125. fmopa za0.s, p5/m, p0/m, z0.h, z2.h // ZA0 += {ReRe-ImIm, ReRe-ImIm, ...}
 1st part
126.
127. fmopa za2.s, p5/m, p1/m, z0.h, z3.h // ZA2 += {ReRe-ImIm, ReRe-ImIm, ...}
 2nd part
128.
129. fmopa za1.s, p5/m, p0/m, z1.h, z2.h // ZA1 += {ImRe+ReIm, ImRe+ReIm, ...}
 1st part
130.
131. fmopa za3.s, p5/m, p1/m, z1.h, z3.h // ZA3 += {ImRe+ReIm, ImRe+ReIm, ...}
 2nd part
132.
133. .Ktail_end:
134. mov w14, #0 // Loop_store counter
135.
136. // Prologue
137. // Z0=ZA0H.S[0], Z1=ZA1H.S[0], Z2=ZA2H.S[0] and Z3=ZA3H.S[0]
138. // -- Z0, Z2 = {ReRe-ImIm; ReRe-ImIm; ...}
139. // -- Z1, Z3 = {ReIm+ImRe; ReIm+ImRe; ...}
140. mova {z0.b-z3.b}, za0h.b[w14, 0:3]
141.
142. .Loop_store:
143. fcvtn z8.h, {z0.s-z1.s} // Convert and interleave
144. fcvtn z9.h, {z2.s-z3.s} // Convert and interleave
145. psel pn10, pn9, p2.b[w14, 0]
146. st1w { z8.s-z9.s }, pn10, [x16] // Store 2 vectors to c_ptr
147. add x16, x16, x2, lsl #2 // c_ptr += ldc Cplx-FP16 elems

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

148. add w14, w14, #4 // Loop_store counter increment
149.
150. // Z0=ZA0H.S[n], Z1=ZA1H.S[n], Z2=ZA2H.S[n] and Z3=ZA3H.S[n]
151. // -- Z0, Z2 = {ReRe-ImIm; ReRe-ImIm; ...}
152. // -- Z1, Z3 = {ImRe+ReIm; ImRe+ReIm; ...}
153. mova {z0.b-z3.b}, za0h.b[w14, 0:3]
154. cmp w14, w7
155. b.mi .Loop_store
156.
157. // Epilogue
158. fcvtn z8.h, {z0.s, z1.s} // Convert and interleave
159. fcvtn z9.h, {z2.s, z3.s} // Convert and interleave
160.
161. psel pn10, pn9, p2.b[w14, 0]
162. st1w { z8.s-z9.s }, pn10, [x16] // Store 2 vectors to c_ptr
163.
164. addvl x12, x12, #2 // c_base += 2*SVLb
165. addvl x19, x19, #2 // b_base += 2*SVLb
166. whilelt pn9.b, x19, x13, vlx2 // N dimension predicate-as-counter
167. b.first .Loop_N
168.
169. add x3, x3, x18 // &matLeft += K*SVLs Cplx-FP16 elems
170. add x5, x5, x6 // &matResult_opt += SVLs*ldc Cplx-FP16 elems
171. incw x9 // Loop_M counter increment
172. whilelt p2.s, x9, x0 // M dimension predicate
173. b.first .Loop_M
174.
175. smstop
176.
177. ldr x19, [sp], #16
178.
179. ret

9.6 cplx_matmul_opt function overview
The matrix multiplication function uses widening half-precision to single-precision fmopa
instructions, accumulating to single-precision results in 32-bit ZA tiles, to perform the complex-
valued matrix-by-matrix multiplications. Two different 32-bit ZA tiles are used to compute the Real
and Imaginary parts of the result:

1. ZA0 and ZA2 accumulate the real part of the result, calculated as ReA*ReB - ImA*ImB.

2. ZA1 and ZA3 accumulate the imaginary part of the result, calculated as ReA*ImB + ImA*ReB.

Half-precision widening fmopa instructions accumulate two-way dot products to each single-
precision result, computed as above with one fmopa for each part of the result. To accomplish this,
the inputs need to be carefully manipulated by preprocessing. This results in a higher computation
intensity than was seen in the matmul_fp32 example.

Preprocessing data before the outer product is done using the revh and fneg instructions:

• revh: Reverse every two consecutive 16-bits elements. The resulting vector has the form {Im,
Re, Im, Re, …}.

• fneg: Predicated half-precision floating-point negate instruction. Predicates are generated at
the start of the function, with only even elements activated. The resulting vector has the form:
{Re, -Im, Re, -Im, …}.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

The code uses 1 x 2 tiling, consuming a maximum of 1xSVLs from the N dimension and 2xSVLs
from the M dimension in loop_k. Two ZA tiles are used for each vector consumed from each
dimension.

9.7 cplx_matmul_opt function details
This section describes how the cplx_matmul_opt function operates, looking at sections of the code
in turn.

• Lines 80, 82, 92, and 95 (Real part computation: ReA*ReB - ImA*ImB)

For the first part of the computation, ZA0.s produces the sum of two outer-products of the two
vectors:

◦ A negated vector loaded from the transposed matLeft_mod matrix in Z8 or Z9.

The fneg instructions at lines 72 and 102 negate only the odd 16-bit lanes of the source
vector (the Imaginary parts of the matLeft_mod matrix) keeping the even 16-bit lanes
unchanged (the Real parts of the matLeft_mod matrix). This is enabled by careful prediction
using p6 set at line 47.

◦ The first vector loaded from the matRight matrix in Z2 or Z6.

For example, the first row of ZA0.s contains the following value as a result of the first outer-
product instruction:

Z9.h = {ReA(0,0); -ImA(0,0) ; ReA(1,0) ; -ImA(1,0) ; ...} // 16-bits Z view
Z2.h = {ReB(0,0) ; ImB(0,0) ; ReB(1,0) ; ImB(1,0) ; ...} // 16-bits Z view
ZA0.s[0] = {ReA(0,0)* ReB(0,0) - ImA(0,0)*ImB(0,0); ...} // 32-bits view

Similarly, the second part of the computation in ZA2 uses the negated data from the
matLeft_mod transposed matrix with the second loaded vector from the matRight matrix in Z3
or Z7.

Therefore, tiles ZA0.s and ZA2.s accumulate the Real part of the complex-valued results.

• Lines 85, 89, 97, and 100 (Imaginary part computation: ReA*ImB + ImA*ReB)

For the first part of the computation, ZA1.s produces the sum of two outer-products of the two
vectors:

◦ 16-bit reversed vector loaded from the transposed matLeft_mod matrix in Z1 or Z5.

The rev instructions at lines 71 and 98 reverse the content of the 16-bit lanes within each
of 32-bit lanes.

◦ The first vector loaded from the matRight matrix in Z2 or Z6.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

cplx_matmul_fp16fp32: Complex-valued half-precision to single
precision floating-point matrix-by-matrix multiplication

For example, the first row of ZA1.s contains the following value as a result of the first outer-
product instruction:

Z1.h = {ImA(0,0); ReA(0,0) ; ImA(1,0) ; ReA(1,0) ; ...} // 16-bits Z view
Z2.h = {ReB(0,0) ; ImB(0,0) ; ReB(1,0) ; ImB(1,0) ; ...} // 16-bits Z view
ZA1.s[0] = {ImA(0,0)* ReB(0,0) + ReA(0,0)*ImB(0,0); ...} // 32-bits view

Similarly, the second part of the computation in ZA3 uses the 16-bit reversed data from the
matLeft_mod transposed matrix with the second loaded vector from the matRight matrix in Z3
or Z7.

Therefore, tiles ZA1.s and ZA3.s accumulate the Imaginary part of the complex-valued results.

• Line 142 (Loop_store):

The Real and Imaginary parts of each result are available in two different 32-bit ZA tiles:

◦ First N dimension SVLs into ZA0 (real part) and ZA1 (imaginary part).

◦ Second N dimension SVLs elements into ZA2 (real part) and ZA3 (imaginary part).

Loop_store does the following:

1. Extract the pair of real and imaginary parts from two consecutive 32b ZA tiles.

The 8-bit mova instructions in lines 140 and 153 move four vectors from the four ZA tiles.

2. Down-convert to half-precision floating point and interleave.

The fcvtn instructions in lines 143 and 144 convert and interleave each of the two
consecutive vectors:

Z8 and Z9 = {re, Im, re, Im, ...} // 16-bits Z containers

Each fcvtn instruction takes a group of two Z vector registers of single-precision elements
as input, converts these input elements to half-precision elements, and interleaves elements
from both source vectors into the destination vector. This groups the Real and Imaginary
parts of each result pair in the 32-bit Z vector registers.

3. Store the resulting two vectors to the memory.

The st1w instruction at line 146 stores the two consecutive vector results to the result
matrix, processing 2 x SVLs result values on the N dimension.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 112

SME Programmer’s Guide Document ID: 109246_0100_01_en
Version 1.0

Related information

10. Related information
The following resources are related to material in this guide:

• Arm Architecture Reference Manual for A-profile architecture, which contains a specification of
the SME Architecture.

• Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)

• Arm C Language Extension

• Fast Model Reference Guide

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 112

https://developer.arm.com/documentation/ddi0487
https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst
https://github.com/ARM-software/acle/releases/tag/r2023Q2
https://developer.arm.com/documentation/100964

	SME Programmer’s Guide
	Contents
	1. Introduction
	1.1 The Scalable Matrix Extensions
	1.1.1 Streaming SVE mode and ZA storage

	2. SME Overview
	2.1 SME and SME2
	2.1.1 If SME and SME2 are supported
	2.1.2 SME2 lookup table
	2.1.3 SME2 multi-vector predication

	2.2 Streaming SVE mode
	2.3 SME ZA storage
	2.3.1 ZA array vector access and ZA tile mapping
	2.3.1.1 ZA storage access for 8-bit element size
	2.3.1.2 ZA storage access for 16-bit element size
	2.3.1.3 ZA storage access for 32-bit element size

	2.4 SME2 multi-vector operands
	2.4.1 Z multi-vector operands
	2.4.2 ZA multi-slice operands
	2.4.3 ZA multi-vector operands

	2.5 SME context save restore
	2.5.1 Context save restore on entry or exit from Streaming SVE mode
	2.5.2 Context save restore in supervisory software

	3. Toolchains and model support
	3.1 Quick start example for SME/SME2
	3.1.1 Step 1: Create a new project with SME/SME2 instruction
	3.1.2 Step 2: Build the project
	3.1.3 Step 3: Connect a Debugger and configure

	3.2 Compiler support
	3.2.1 Compiler options and pragmas

	3.3 Calling conventions
	3.3.1 Preparation for entering and exiting streaming mode
	3.3.2 Controlling the use of streaming mode
	3.3.2.1 Managing streaming mode across function boundaries

	3.3.3 Controlling the use of ZA storage

	3.4 How to run an SME application
	3.5 Debug tools

	4. SME2 code examples
	5. matmul_fp32: Single precision matrix-by-matrix multiplication
	5.1 Overview of the matmul_fp32 algorithm
	5.2 preprocess_l code
	5.3 preprocess_l function overview
	5.4 preprocess_l function details
	5.5 matmul_opt code
	5.6 matmul_opt function overview
	5.7 matmul_opt function details

	6. matmul_int8: 8-bit integer to 32-bit integer matrix-by-matrix multiplication
	6.1 Overview of the matmul_int8 algorithm
	6.2 preprocess_r code
	6.3 preprocess_r function overview
	6.4 preprocess_r function details
	6.5 preprocess_l code
	6.6 preprocess_l function overview
	6.7 preprocess_l function details
	6.8 matmul_opt code
	6.9 matmul_opt function overview

	7. gemv_cm_int8: 8-bit integer to 32-bit integer matrix-by-vector multiplication
	7.1 Overview of the gemv_cm_int8 algorithm
	7.2 gemv_opt code
	7.3 gemv_opt function overview
	7.4 gemv_opt function details

	8. lut_gemv_rm_int8: Compressed 8-bit integer to 32-bit integer matrix-by-vector multiplication
	8.1 Overview of the lut_gemv_rm_int8 algorithm
	8.2 lut_gemv_opt code
	8.3 lut_gemv_opt function overview
	8.4 lut_gemv_opt function details

	9. cplx_matmul_fp16fp32: Complex-valued half-precision to single precision floating-point matrix-by-matrix multiplication
	9.1 Overview of the cplx_matmul_fp16fp32 algorithm
	9.2 preprocess_l code
	9.3 preprocess_l function overview
	9.4 preprocess_l function details
	9.5 cplx_matmul_opt code
	9.6 cplx_matmul_opt function overview
	9.7 cplx_matmul_opt function details

	10. Related information

