
Learn the architecture - Optimizing C code with
Neon intrinsics
2.1

Non-Confidential
Copyright © 2022–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102467_0201_02_en

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Learn the architecture - Optimizing C code with Neon intrinsics

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0201-
02

4 April 2024 Non-
Confidential

Minor update to acknowledge Neon availability in
Armv9

0201-
01

21 September
2023

Non-
Confidential

Added two new images about matrix multiplication

0200-
01

23 March 2023 Non-
Confidential

Added new chapter about collision detection

0100-
01

11 March 2022 Non-
Confidential

Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Arm herein. conjunction with any Arm technology described in this document, and to minimize
risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 40

https://www.arm.com/company/policies/trademarks

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

Inclusive language commitment
We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 40

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Contents

Contents

1. Overview...6

2. What is Neon?...7

3. Why use Neon intrinsics?...8

4. Example - RGB deinterleaving...9

5. Example - matrix multiplication..11

6. Example - collision detection.. 21

7. Program conventions...36

8. Check your knowledge... 39

9. Related information... 40

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Overview

1. Overview
This guide shows you how to use Neon intrinsics in your C, or C++, code to take advantage of the
Advanced SIMD technology in the Armv8 and Armv9 architectures. The simple examples show
how to use these intrinsics and provide an opportunity to explain their purpose.

Intended audience
Low-level software engineers, library writers, and other developers wanting to use Advanced SIMD
technology will find this guide useful.

At the end of this guide there is a Check Your Knowledge section to test whether you have
understood the following key concepts:

• To know what Neon is, and understand the different ways of using Neon

• To know the basics of using Neon intrinsics in the C language

• To know where to find the Neon intrinsics reference, and the Neon instruction set

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

What is Neon?

2. What is Neon?
Neon is the implementation of Arm’s Advanced SIMD architecture.

The purpose of Neon is to accelerate data manipulation by providing:

• Thirty-two 128-bit vector registers, each capable of containing multiple lanes of data.

• SIMD instructions to operate simultaneously on those multiple lanes of data.

Applications that can benefit from Neon technology include multimedia and signal processing,
3D graphics, speech, image processing, or other applications where fixed and floating-point
performance is critical.

As a programmer, there are a number of ways you can make use of Neon technology:

• Neon-enabled open source libraries such as the Arm Compute Library provide one of the
easiest ways to take advantage of Neon.

• Auto-vectorization features in your compiler can automatically optimize your code to take
advantage of Neon.

• Neon intrinsics are function calls that the compiler replaces with appropriate Neon instructions.
This gives you direct, low-level access to the exact Neon instructions you want, all from C, or C
++ code.

• For very high performance, hand-coded Neon assembler can be the best approach for
experienced programmers.

In this guide we focus on using the Neon intrinsics for AArch64, but they can also be compiled for
AArch32. For more information about AArch32 Neon see Introducing Neon for Armv8-A.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 40

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/introducing-neon-for-armv8-a

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Why use Neon intrinsics?

3. Why use Neon intrinsics?
Intrinsics are functions whose precise implementation is known to a compiler. The Neon intrinsics
are a set of C and C++ functions defined in arm_neon.h which are supported by the Arm compilers
and GCC. These functions let you use Neon without having to write assembly code directly, since
the functions themselves contain short assembly kernels which are inlined into the calling code.
Additionally, register allocation and pipeline optimization are handled by the compiler so many
difficulties faced by the assembly programmer are avoided.

See the Neon Intrinsics Reference for a list of all the Neon intrinsics. The Neon intrinsics
engineering specification is contained in the Arm C Language Extensions (ACLE).

Using the Neon intrinsics has a number of benefits:

• Powerful: Intrinsics give the programmer direct access to the Neon instruction set without the
need for hand-written assembly code.

• Portable: Hand-written Neon assembly instructions might need to be rewritten for different
target processors. C and C++ code containing Neon intrinsics can be compiled for a new target
or a new execution state (for example, migrating from AArch32 to AArch64) with minimal or no
code changes.

• Flexible: The programmer can exploit Neon when needed or use C/C++ when it isn’t needed,
while avoiding many low-level engineering concerns.

However, intrinsics might not be the right choice in all situations:

• There is a steeper learning curve to use Neon intrinsics than importing a library or relying on a
compiler.

• Hand-optimized assembly code might offer the greatest scope for performance improvement
even if it is more difficult to write.

We look at examples where we reimplement some C functions using Neon intrinsics. The examples
chosen do not reflect the full complexity of their application, but they illustrate the use of intrinsics
and act as a starting point for more complex code.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 40

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/system-architectures/software-standards/acle

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - RGB deinterleaving

4. Example - RGB deinterleaving
Consider a 24-bit RGB image where the image is an array of pixels, each with a red, blue, and green
element. In memory, this could appear as shown in the following diagram:

Figure 4-1: RGB image pixel array

Because the RGB data is interleaved, accessing and manipulating the three separate color channels
presents a problem to the programmer. In simple circumstances we could write our own single
color channel operations by applying the modulo 3 to the interleaved RGB values. However, for
more complex operations, such as Fourier transforms, it would make more sense to extract and
split the channels.

We have an array of RGB values in memory and we want to deinterleave them and place the
values in separate color arrays. A C procedure to do this might look like this:

void rgb_deinterleave_c(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *rgb, int
 len_color) {
 /*
 * Take the elements of "rgb" and store the individual colors "r", "g", and "b".
 */
 for (int i=0; i < len_color; i++) {
 r[i] = rgb[3*i];
 g[i] = rgb[3*i+1];
 b[i] = rgb[3*i+2];
 }
}

But there is an issue. Compiling with Arm Compiler 6 at optimization level -O3 (very high
optimization) and examining the disassembly shows no Neon instructions or registers are being
used. Each individual 8-bit value is stored in a separate 64-bit general registers. Considering the
full width Neon registers are 128 bits wide, which could each hold 16 of our 8-bit values in the
example, rewriting the solution to use Neon intrinsics should give us good results.

void rgb_deinterleave_neon(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *rgb, int
 len_color) {
 /*
 * Take the elements of "rgb" and store the individual colors "r", "g", and "b"
 */
 int num8x16 = len_color / 16;
 uint8x16x3_t intlv_rgb;

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - RGB deinterleaving

 for (int i=0; i < num8x16; i++) {
 intlv_rgb = vld3q_u8(rgb+3*16*i);
 vst1q_u8(r+16*i, intlv_rgb.val[0]);
 vst1q_u8(g+16*i, intlv_rgb.val[1]);
 vst1q_u8(b+16*i, intlv_rgb.val[2]);
 }
}

In this example we have used the following types and intrinsics:

Code element What is it? Why are we using it?

uint8x16_t An array of 16 8-bit unsigned integers. One uint8x16_t fits into a 128-bit register. We can
ensure there are no wasted register bits even in C code.

uint8x16x3_t A struct with three uint8x16_t elements. A temporary holding area for the current color values in
the loop.

vld3q_u8(…) A function which returns a uint8x16x3_t by loading
a contiguous region of 3*16 bytes of memory. Each byte
loaded is placed one of the three uint8x16_t arrays in an
alternating pattern.

At the lowest level, this intrinsic guarantees the
generation of an LD3 instruction, which loads the values
from a given address into three Neon registers in an
alternating pattern.

vst1q_u8(…) A function which stores a uint8x16_t at a given address. It stores a full 128-bit register full of byte values.

The full source code above can be compiled and disassembled on an Arm machine using the
following commands:

gcc -g -o3 rgb.c -o exe_rgb_o3
objdump -d exe_rgb_o3 > disasm_rgb_o3

If you don’t have access to Arm-based hardware, you can use Arm DS-5 Community Edition and
the Armv8-A Foundation Platform.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 40

https://developer.arm.com/utility/404?item=web%3a%7b33C722CF-C2FB-4140-9794-AC95F463E87A%7d%40en
https://developer.arm.com/utility/404?item=web%3a%7b33C722CF-C2FB-4140-9794-AC95F463E87A%7d%40en

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

5. Example - matrix multiplication
Matrix multiplication is an operation performed in many data intensive applications. It is made up
of groups of arithmetic operations which are repeated in a straightforward way, as the following
diagram shows:

Figure 5-1: Matrix multiplication

Aik

Bkj

Cij

A

B

C
=

k
AikBkj

The matrix multiplication process is as follows:

• A - Take a row in the first matrix

• B - Perform a dot product of this row with a column from the second matrix

• C - Store the result in the corresponding row and column of a new matrix

For matrices of 32-bit floats, the multiplication could be written as:

void matrix_multiply_c(float32_t *A, float32_t *B, float32_t *C, uint32_t n,
 uint32_t m, uint32_t k) {
 for (int i_idx=0; i_idx < n; i_idx++) {
 for (int j_idx=0; j_idx < m; j_idx++) {
 C[n*j_idx + i_idx] = 0;
 for (int k_idx=0; k_idx < k; k_idx++) {
 C[n*j_idx + i_idx] += A[n*k_idx + i_idx]*B[k*j_idx + k_idx];
 }
 }
 }
}

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

We have assumed a column-major layout of the matrices in memory. That is, an n x m matrix M is
represented as an array M_array where Mij = M_array[n*j + i].

This code is suboptimal, since it does not make full use of Neon. We can begin to improve it by
using intrinsics, but let’s tackle a simpler problem first by looking at small, fixed-size matrices before
moving on to larger matrices.

The following code uses intrinsics to multiply two 4x4 matrices. Since we have a small and fixed
number of values to process, all of which can fit into the processor’s Neon registers at once, we can
completely unroll the loops.

void matrix_multiply_4x4_neon(float32_t *A, float32_t *B, float32_t *C) {
 // these are the columns A
 float32x4_t A0;
 float32x4_t A1;
 float32x4_t A2;
 float32x4_t A3;

 // these are the columns B
 float32x4_t B0;
 float32x4_t B1;
 float32x4_t B2;
 float32x4_t B3;

 // these are the columns C
 float32x4_t C0;
 float32x4_t C1;
 float32x4_t C2;
 float32x4_t C3;

 A0 = vld1q_f32(A);
 A1 = vld1q_f32(A+4);
 A2 = vld1q_f32(A+8);
 A3 = vld1q_f32(A+12);

 // Zero accumulators for C values
 C0 = vmovq_n_f32(0);
 C1 = vmovq_n_f32(0);
 C2 = vmovq_n_f32(0);
 C3 = vmovq_n_f32(0);

 // Multiply accumulate in 4x1 blocks, i.e. each column in C
 B0 = vld1q_f32(B);
 C0 = vfmaq_laneq_f32(C0, A0, B0, 0);
 C0 = vfmaq_laneq_f32(C0, A1, B0, 1);
 C0 = vfmaq_laneq_f32(C0, A2, B0, 2);
 C0 = vfmaq_laneq_f32(C0, A3, B0, 3);
 vst1q_f32(C, C0);

 B1 = vld1q_f32(B+4);
 C1 = vfmaq_laneq_f32(C1, A0, B1, 0);
 C1 = vfmaq_laneq_f32(C1, A1, B1, 1);
 C1 = vfmaq_laneq_f32(C1, A2, B1, 2);
 C1 = vfmaq_laneq_f32(C1, A3, B1, 3);
 vst1q_f32(C+4, C1);

 B2 = vld1q_f32(B+8);
 C2 = vfmaq_laneq_f32(C2, A0, B2, 0);
 C2 = vfmaq_laneq_f32(C2, A1, B2, 1);
 C2 = vfmaq_laneq_f32(C2, A2, B2, 2);
 C2 = vfmaq_laneq_f32(C2, A3, B2, 3);
 vst1q_f32(C+8, C2);

 B3 = vld1q_f32(B+12);
 C3 = vfmaq_laneq_f32(C3, A0, B3, 0);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

 C3 = vfmaq_laneq_f32(C3, A1, B3, 1);
 C3 = vfmaq_laneq_f32(C3, A2, B3, 2);
 C3 = vfmaq_laneq_f32(C3, A3, B3, 3);
 vst1q_f32(C+12, C3);
}

We have chosen to multiply fixed size 4x4 matrices for a few reasons:

• Some applications need 4x4 matrices specifically, for example graphics or relativistic physics.

• The Neon vector registers hold four 32-bit values, so matching the program to the architecture
makes it easier to optimize.

• We can take this 4x4 kernel and use it in a more general one.

Let’s summarize the intrinsics that have been used here:

Code element What is it? Why are we using it?

float32x4_t An array of four 32-bit floats. One uint32x4_t fits into a 128-bit
register. We can ensure there are no
wasted register bits even in C code.

vld1q_f32(…) A function which loads four 32-bit floats into a float32x4_t. To get the matrix values we need from
A and B.

vfmaq_lane_f32(…) A function which uses the fused multiply accumulate instruction.
Multiplies a float32x4_t value by a single element of another
float32x4_t then adds the result to a third float32x4_t before
returning the result.

Since the matrix row-on-column dot
products are a set of multiplications
and additions, this operation fits quite
naturally.

vst1q_f32(…) A function which stores a float32x4_t at a given address. To store the results after they are
calculated.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

Figure 5-2: Matrix A multiplied by matrix B, using Neon

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

Now that we can multiply a 4x4 matrix, we can multiply larger matrices by treating them as blocks
of 4x4 matrices. A flaw with this approach is that it only works with matrix sizes which are a
multiple of four in both dimensions, but by padding any matrix with zeroes you can use this method
without changing it.

The code for a more general matrix multiplication is listed below. The structure of the kernel has
changed very little, with the addition of loops and address calculations being the major changes.
As in the 4x4 kernel we have used unique variable names for the columns of B, even though we
could have used one variable and reloaded. This acts as a hint to the compiler to assign different
registers to these variables, which enables the processor to complete the arithmetic instructions for
one column while waiting on the loads for another.

void matrix_multiply_neon(float32_t *A, float32_t *B, float32_t *C, uint32_t n,
 uint32_t m, uint32_t k) {
 /*
 * Multiply matrices A and B, store the result in C.
 * It is the user's responsibility to make sure the matrices are compatible.
 */

 int A_idx;
 int B_idx;
 int C_idx;

 // these are the columns of a 4x4 sub matrix of A
 float32x4_t A0;
 float32x4_t A1;
 float32x4_t A2;
 float32x4_t A3;

 // these are the columns of a 4x4 sub matrix of B
 float32x4_t B0;
 float32x4_t B1;
 float32x4_t B2;
 float32x4_t B3;

 // these are the columns of a 4x4 sub matrix of C
 float32x4_t C0;
 float32x4_t C1;
 float32x4_t C2;
 float32x4_t C3;

 for (int i_idx=0; i_idx<n; i_idx+=4 {
 for (int j_idx=0; j_idx<m; j_idx+=4){
 // zero accumulators before matrix op
 c0=vmovq_n_f32(0);
 c1=vmovq_n_f32(0);
 c2=vmovq_n_f32(0);
 c3=vmovq_n_f32(0);
 for (int k_idx=0; k_idx<k; k_idx+=4){
 // compute base index to 4x4 block
 a_idx = i_idx + n*k_idx;
 b_idx = k*j_idx k_idx;

 // load most current a values in row
 A0=vld1q_f32(A+A_idx);
 A1=vld1q_f32(A+A_idx+n);
 A2=vld1q_f32(A+A_idx+2*n);
 A3=vld1q_f32(A+A_idx+3*n);

 // multiply accumulate 4x1 blocks, i.e. each column C
 B0=vld1q_f32(B+B_idx);
 C0=vfmaq_laneq_f32(C0,A0,B0,0);
 C0=vfmaq_laneq_f32(C0,A1,B0,1);
 C0=vfmaq_laneq_f32(C0,A2,B0,2);
 C0=vfmaq_laneq_f32(C0,A3,B0,3);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

 B1=v1d1q_f32(B+B_idx+k);
 C1=vfmaq_laneq_f32(C1,A0,B1,0);
 C1=vfmaq_laneq_f32(C1,A1,B1,1);
 C1=vfmaq_laneq_f32(C1,A2,B1,2);
 C1=vfmaq_laneq_f32(C1,A3,B1,3);

 B2=vld1q_f32(B+B_idx+2*k);
 C2=vfmaq_laneq_f32(C2,A0,B2,0);
 C2=vfmaq_laneq_f32(C2,A1,B2,1);
 C2=vfmaq_laneq_f32(C2,A2,B2,2);
 C2=vfmaq_laneq_f32(C2,A3,B2,3);

 B3=vld1q_f32(B+B_idx+3*k);
 C3=vfmaq_laneq_f32(C3,A0,B3,0);
 C3=vfmaq_laneq_f32(C3,A1,B3,1);
 C3=vfmaq_laneq_f32(C3,A2,B3,2);
 C3=vfmaq_laneq_f32(C3,A3,B3,3);
 }
 //Compute base index for stores
 C_idx = n*j_idx + i_idx;
 vstlq_f32(C+C_idx, C0);
 vstlq_f32(C+C_idx+n,Cl);
 vstlq_f32(C+C_idx+2*n,C2);
 vstlq_f32(C+C_idx+3*n,C3);
 }
 }
}

Compiling and disassembling this function, and comparing it with our C function shows:

• Fewer arithmetic instructions for a given matrix multiplication, since we are leveraging the
Advanced SIMD technology with full register packing. Pure C code generally does not do this.

• FMLA instead of FMUL instructions. As specified by the intrinsics.

• Fewer loop iterations. When used properly intrinsics allow loops to be unrolled easily.

• However, there are unnecessary loads and stores due to memory allocation and initialization of
data types (for example, float32x4_t) which are not used in the pure C code.

Full source code example
The full source code for this example is as follows:

/*
 * Copyright (C) Arm Limited, 2019 All rights reserved.
 *
 * The example code is provided to you as an aid to learning when working
 * with Arm-based technology, including but not limited to programming tutorials.
 * Arm hereby grants to you, subject to the terms and conditions of this Licence,
 * a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
 * to use and copy the Software solely for the purpose of demonstration and
 * evaluation.
 *
 * You accept that the Software has not been tested by Arm therefore the Software
 * is provided "as is", without warranty of any kind, express or implied. In no
 * event shall the authors or copyright holders be liable for any claim, damages
 * or other liability, whether in action or contract, tort or otherwise, arising
 * from, out of or in connection with the Software or the use of Software.
 */

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

#include <math.h>

#include <arm_neon.h>

#define BLOCK_SIZE 4

void matrix_multiply_c(float32_t *A, float32_t *B, float32_t *C, uint32_t n,
 uint32_t m, uint32_t k) {
 for (int i_idx=0; i_idx<n; i_idx++) {
 for (int j_idx=0; j_idx<m; j_idx++) {
 C[n*j_idx + i_idx] = 0;
 for (int k_idx=0; k_idx<k; k_idx++) {
 C[n*j_idx + i_idx] += A[n*k_idx + i_idx]*B[k*j_idx +
 k_idx];
 }
 }
 }
}

void matrix_multiply_neon(float32_t *A, float32_t *B, float32_t *C, uint32_t n,
 uint32_t m, uint32_t k) {
 /*
 * Multiply matrices A and B, store the result in C.
 * It is the user's responsibility to make sure the matrices are compatible.
 */

 int A_idx;
 int B_idx;
 int C_idx;

 // these are the columns of a 4x4 sub matrix of A
 float32x4_t A0;
 float32x4_t A1;
 float32x4_t A2;
 float32x4_t A3;

 // these are the columns of a 4x4 sub matrix of B
 float32x4_t B0;
 float32x4_t B1;
 float32x4_t B2;
 float32x4_t B3;

 // these are the columns of a 4x4 sub matrix of C
 float32x4_t C0;
 float32x4_t C1;
 float32x4_t C2;
 float32x4_t C3;

 for (int i_idx=0; i_idx<n; i_idx+=4) {
 for (int j_idx=0; j_idx<m; j_idx+=4) {
 // Zero accumulators before matrix op
 C0 = vmovq_n_f32(0);
 C1 = vmovq_n_f32(0);
 C2 = vmovq_n_f32(0);
 C3 = vmovq_n_f32(0);
 for (int k_idx=0; k_idx<k; k_idx+=4) {
 // Compute base index to 4x4 block
 A_idx = i_idx + n*k_idx;
 B_idx = k*j_idx + k_idx;

 // Load most current A values in row
 A0 = vld1q_f32(A+A_idx);
 A1 = vld1q_f32(A+A_idx+n);
 A2 = vld1q_f32(A+A_idx+2*n);
 A3 = vld1q_f32(A+A_idx+3*n);

 // Multiply accumulate in 4x1 blocks, i.e. each
 column in C
 B0 = vld1q_f32(B+B_idx);
 C0 = vfmaq_laneq_f32(C0, A0, B0, 0);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

 C0 = vfmaq_laneq_f32(C0, A1, B0, 1);
 C0 = vfmaq_laneq_f32(C0, A2, B0, 2);
 C0 = vfmaq_laneq_f32(C0, A3, B0, 3);

 B1 = vld1q_f32(B+B_idx+k);
 C1 = vfmaq_laneq_f32(C1, A0, B1, 0);
 C1 = vfmaq_laneq_f32(C1, A1, B1, 1);
 C1 = vfmaq_laneq_f32(C1, A2, B1, 2);
 C1 = vfmaq_laneq_f32(C1, A3, B1, 3);

 B2 = vld1q_f32(B+B_idx+2*k);
 C2 = vfmaq_laneq_f32(C2, A0, B2, 0);
 C2 = vfmaq_laneq_f32(C2, A1, B2, 1);
 C2 = vfmaq_laneq_f32(C2, A2, B2, 2);
 C2 = vfmaq_laneq_f32(C2, A3, B2, 3);

 B3 = vld1q_f32(B+B_idx+3*k);
 C3 = vfmaq_laneq_f32(C3, A0, B3, 0);
 C3 = vfmaq_laneq_f32(C3, A1, B3, 1);
 C3 = vfmaq_laneq_f32(C3, A2, B3, 2);
 C3 = vfmaq_laneq_f32(C3, A3, B3, 3);
 }
 // Compute base index for stores
 C_idx = n*j_idx + i_idx;
 vst1q_f32(C+C_idx, C0);
 vst1q_f32(C+C_idx+n, C1);
 vst1q_f32(C+C_idx+2*n, C2);
 vst1q_f32(C+C_idx+3*n, C3);
 }
 }
}

void matrix_multiply_4x4_neon(float32_t *A, float32_t *B, float32_t *C) {
 // these are the columns A
 float32x4_t A0;
 float32x4_t A1;
 float32x4_t A2;
 float32x4_t A3;

 // these are the columns B
 float32x4_t B0;
 float32x4_t B1;
 float32x4_t B2;
 float32x4_t B3;

 // these are the columns C
 float32x4_t C0;
 float32x4_t C1;
 float32x4_t C2;
 float32x4_t C3;

 A0 = vld1q_f32(A);
 A1 = vld1q_f32(A+4);
 A2 = vld1q_f32(A+8);
 A3 = vld1q_f32(A+12);

 // Zero accumulators for C values
 C0 = vmovq_n_f32(0);
 C1 = vmovq_n_f32(0);
 C2 = vmovq_n_f32(0);
 C3 = vmovq_n_f32(0);

 // Multiply accumulate in 4x1 blocks, i.e. each column in C
 B0 = vld1q_f32(B);
 C0 = vfmaq_laneq_f32(C0, A0, B0, 0);
 C0 = vfmaq_laneq_f32(C0, A1, B0, 1);
 C0 = vfmaq_laneq_f32(C0, A2, B0, 2);
 C0 = vfmaq_laneq_f32(C0, A3, B0, 3);
 vst1q_f32(C, C0);

 B1 = vld1q_f32(B+4);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

 C1 = vfmaq_laneq_f32(C1, A0, B1, 0);
 C1 = vfmaq_laneq_f32(C1, A1, B1, 1);
 C1 = vfmaq_laneq_f32(C1, A2, B1, 2);
 C1 = vfmaq_laneq_f32(C1, A3, B1, 3);
 vst1q_f32(C+4, C1);

 B2 = vld1q_f32(B+8);
 C2 = vfmaq_laneq_f32(C2, A0, B2, 0);
 C2 = vfmaq_laneq_f32(C2, A1, B2, 1);
 C2 = vfmaq_laneq_f32(C2, A2, B2, 2);
 C2 = vfmaq_laneq_f32(C2, A3, B2, 3);
 vst1q_f32(C+8, C2);

 B3 = vld1q_f32(B+12);
 C3 = vfmaq_laneq_f32(C3, A0, B3, 0);
 C3 = vfmaq_laneq_f32(C3, A1, B3, 1);
 C3 = vfmaq_laneq_f32(C3, A2, B3, 2);
 C3 = vfmaq_laneq_f32(C3, A3, B3, 3);
 vst1q_f32(C+12, C3);
}

void print_matrix(float32_t *M, uint32_t cols, uint32_t rows) {
 for (int i=0; i<rows; i++) {
 for (int j=0; j<cols; j++) {
 printf("%f ", M[j*rows + i]);
 }
 printf("\n");
 }
 printf("\n");
}

void matrix_init_rand(float32_t *M, uint32_t numvals) {
 for (int i=0; i<numvals; i++) {
 M[i] = (float)rand()/(float)(RAND_MAX);
 }
}

void matrix_init(float32_t *M, uint32_t cols, uint32_t rows, float32_t val) {
 for (int i=0; i<rows; i++) {
 for (int j=0; j<cols; j++) {
 M[j*rows + i] = val;
 }
 }
}

bool f32comp_noteq(float32_t a, float32_t b) {
 if (fabs(a-b) < 0.000001) {
 return false;
 }
 return true;
}

bool matrix_comp(float32_t *A, float32_t *B, uint32_t rows, uint32_t cols) {
 float32_t a;
 float32_t b;
 for (int i=0; i<rows; i++) {
 for (int j=0; j<cols; j++) {
 a = A[rows*j + i];
 b = B[rows*j + i];

 if (f32comp_noteq(a, b)) {
 printf("i=%d, j=%d, A=%f, B=%f\n", i, j, a, b);
 return false;
 }
 }
 }
 return true;
}

int main() {
 uint32_t n = 2*BLOCK_SIZE; // rows in A

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - matrix multiplication

 uint32_t m = 2*BLOCK_SIZE; // cols in B
 uint32_t k = 2*BLOCK_SIZE; // cols in a and rows in b

 float32_t A[n*k];
 float32_t B[k*m];
 float32_t C[n*m];
 float32_t D[n*m];
 float32_t E[n*m];

 bool c_eq_asm;
 bool c_eq_neon;

 matrix_init_rand(A, n*k);
 matrix_init_rand(B, k*m);
 matrix_init(C, n, m, 0);

 print_matrix(A, k, n);
 print_matrix(B, m, k);
 //print_matrix(C, n, m);

 matrix_multiply_c(A, B, E, n, m, k);
 printf("C\n");
 print_matrix(E, n, m);
 printf("===============================\n");

 matrix_multiply_neon(A, B, D, n, m, k);
 printf("Neon\n");
 print_matrix(D, n, m);
 c_eq_neon = matrix_comp(E, D, n, m);
 printf("Neon equal to C? %d\n", c_eq_neon);
 printf("===============================\n");
}

The full source code above can be compiled and disassembled on an Arm machine using the
following commands:

gcc -g -o3 matrix.c -o exe_matrix_o3
objdump -d exe_ matrix _o3 > disasm_matrix_o3

If you don’t have access to Arm-based hardware, you can use Arm DS-5 Community Edition and
the Armv8-A Foundation Platform.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 40

https://developer.arm.com/utility/404?item=web%3a%7b33C722CF-C2FB-4140-9794-AC95F463E87A%7d%40en
https://developer.arm.com/utility/404?item=web%3a%7b33C722CF-C2FB-4140-9794-AC95F463E87A%7d%40en

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

6. Example - collision detection
This example shows how you can use Neon intrinsics to vectorize a simple collision detection
algorithm.

Collision detection algorithms let game software recognize when objects touch or collide.

Simple collision detection algorithm
To decide whether two objects have collided or not, we can simplify their shape to circles.

If we first consider collision detection along a single axis, we can see that collisions occur when
these circles overlap. The following diagram shows this:

Figure 6-1: Collision detection on a single axis

r1 r2

d

r1 r2

d

d > r1 + r2
No collision

d <= r1 + r2
Collision

When one circle has radius r1, and another circle has radius r2:

• Circles collide when the distance between the center of the circles, d, is greater than the sum
of r1 and r2.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

• Circles do not collide when the distance between the center of the circles, d, is less than or
equal to the sum of r1 and r2.

In two dimensions, each object has a pair of (x,y) coordinates specifying the center of the circle.
Consider the same two circles, c1 and c2, at positions (c1x,c1y) and (c2x,c2y) respectively, as the
following diagram shows:

Figure 6-2: Collision detection in two dimensions

r1

r2

d

c1
(c1x,c1y)

c2
(c2x,c2y)

Collision detection in two dimensions is the same as on a single axis:

• Circles collide when the distance between the center of the circles, d, is greater than the sum
of r1 and r2.

• Circles do not collide when the distance between the center of the circles, d, is less than or
equal to the sum of r1 and r2.

To calculate the distance between the centers of the circles, imagine a right-angle triangle
superimposed on the position of the circles as the following diagram shows:

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Figure 6-3: Using Pythagoras’ theorem to calculate the distance between circles

r1

r2

d

c1
(c1x,c1y)

c2
(c2x,c2y)

|c1y-c2y|

|c1x - c2x|

• The height of the triangle is the absolute difference between the y coordinates of the circles, |
c1y - c2y|

• The base of the triangle is the absolute difference between the x coordinates of the circles, |c1x
- c2x|

• The hypotenuse of the triangle, d, is the distance between the centers of the circles C1 and C2.

To calculate the hypotenuse, d, we use Pythagoras’ theorem. This states that the square on the
hypotenuse is equal to the sum of the squares on the other two sides:

d2 = (c1y - c2y)2 + (c1x - c2x)2

We can save ourselves having to calculate the square root, which can be a relatively
expensive operation, by calculating d2 instead of d. d2 works as well as d for our
collision detection algorithm: if d is less than the sum of the radii, then d2 is also less
than the sum of their squares. Using the squared values also means we do not need
to calculate absolute values for the x and y differences, because squared values are
always positive.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Algorithm implementation without vectorization
The collision detection algorithm takes the center points of two circles and checks the distance
between the center points. If this distance is less than the sum of their radii, the circles have
collided.

The following example shows the code without vectorization:

#include <stdio.h>

struct circle
{
 float radius;
 float x;
 float y;
};

bool does_collide(circle& c1, circle& c2)
{
 // Two circles collide if the distance from c1 to c2 is less
 // than the sum of their radii, or equivalently if the squared
 // distance is less than the square of the sum of the radii.
 float delta_x = c1.x - c2.x;
 float delta_y = c1.y - c2.y;
 float deltas_squared = (delta_x * delta_x) + (delta_y * delta_y);
 float radius_sum_squared = (c1.radius * c1.radius) + (c2.radius * c2.radius);
 return deltas_squared <= radius_sum_squared;
}

int main()
{
 circle c1;
 c1.radius = 2.0;
 c1.x = 2.0;
 c1.y = 4.0;

 circle c2;
 c2.radius = 1.0;
 c2.x = 6.0;
 c2.y = 1.0;

 if (does_collide(c1, c2)) {
 printf("Circles collide\n");
 } else {
 printf("Circles do not collide\n");
 }
 return (0);
}

This code creates two circles, as follows:

• c1, with radius 2 at coordinates (2,4)

• c2, with radius 1 at coordinates (6,1)

The difference between the x coordinates is 4 (6-2), and the difference between the y coordinates
is 3 (4-1). This means the distance between the centers of the circles is 5 (32 + 42 = 52). The
following diagram shows this calculation:

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Figure 6-4: Example collision detection

2

1

5

c1
(2,4)

c2
(6,1)

3

4

The circles do not collide because the distance between the circles (5) is greater than the sum of
the radii (3).

Compiling the C code with no vectorization produces the following assembly code:

ldr s0, [x0] // Load c1.x (first data at c1 base address)
ldr s1, [x1] // Load c2.x (first data at c2 base address)
fsub s0, s0, s1 // Calculate (c1.x - c2.x)
ldr s2, [x0, 4] // Load c1.y (offset 4 from c1 base address)
ldr s1, [x1, 4] // Load c2.y (offset 4 from c2 base address)
fsub s2, s2, s1 // Calculate (c1.y - c2.y)
ldr s1, [x0, 8] // Load c1.radius (offset 8 from c1 base address)
ldr s3, [x1, 8] // Load c2.radius (offset 8 from c2 base address)
fmul s0, s0, s0 // Calculate (c1.x - c2.x)^2
fmul s2, s2, s2 // Calculate (c1.y - c2.y)^2
fadd s0, s0, s2 // Calculate ((c1.x - c2.x)^2 + (c1.y - c2.y)^2)
fmul s1, s1, s1 // Calculate c1.radius^2
fmul s3, s3, s3 // Calculate c2.radius^2
fadd s1, s1, s3 // Calculate (c1.radius^2 + c2.radius^2)
fcmpe s0, s1 // Test ((c1.x - c2.x)^2 + (c1.y - c2.y)^2) against
 // (c1.radius^2 + c2.radius^2)
cset w0, mi // If the result is negative (mi),
 // set the result (w0) to 1
ret

Basic vectorization using Neon intrinsics
Neon instructions perform the same calculation on multiple data values simultaneously.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Our collision detection algorithm contains several instances where the same mathematical
operation is performed on different data values. These operations are candidates for optimization
using Neon intrinsics:

• Subtraction:

◦ We subtract c2.x from c1.x to calculate the difference in the x coordinates.

◦ We subtract c2.y from c1.x to calculate the difference in the y coordinates.

• Multiplication:

◦ We multiply c1.radius by itself to calculate the square.

◦ We multiply c2.radius by itself to calculate the square.

The following code uses Neon intrinsics to optimize the collision detection algorithm:

#include <arm_neon.h>
#include <stdio.h>

struct circle
{
 float x;
 float y;
 float radius;
} __attribute__((aligned (64)));

bool does_collide_neon(circle const& c1, circle const& c2)
{
 float32x2_t c1_coords = vld1_f32(&c1.x);
 float32x2_t c2_coords = vld1_f32(&c2.x);

 float32x2_t deltas = vsub_f32(c1_coords, c2_coords);
 float32x2_t deltas_squared = vmul_f32(deltas, deltas);

 float sum_deltas_squared = vpadds_f32(deltas_squared);

 float radius_sum = c1.radius + c2.radius;
 float radius_sum_squared = radius_sum * radius_sum;
 return sum_deltas_squared <= radius_sum_squared;
}

int main()
{
 circle c1;
 c1.radius = 2.0;
 c1.x = 2.0;
 c1.y = 4.0;

 circle c2;
 c2.radius = 1.0;
 c2.x = 6.0;
 c2.y = 1.0;

 if (does_collide_neon(c1, c2)) {
 printf("Circles collide\n");
 } else {
 printf("Circles do not collide\n");
 }
 return (0);
}

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

This code uses Neon intrinsics with 2-lane 64-bit Neon registers, each containing 32-bit floating-
point values to parallelize parts of the algorithm. The portions of the code that use Neon intrinsics
are as follows:

1. Load the x and y coordinates for each of the circles into different lanes of two separate Neon
registers:

float32x2_t c1_coords = vld1_f32(&c1.x);
float32x2_t c2_coords = vld1_f32(&c2.x);

The vld1_f32 intrinsic loads two 32-bit floating-point values into the Neon register, as the
following diagram shows:

Figure 6-5: vld1_f32

c1_coords c1y c1x

c2_coords c2y c2x

2. Subtract to obtain the deltas:

float32x2_t deltas = vsub_f32(c1_coords, c2_coords);

The vsub_f32 intrinsic subtracts the vector elements in the second Neon register from the
corresponding elements in the vector in the first register, and then places each result into
elements of a destination register. The following diagram shows this:

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Figure 6-6: vsub_f32

c1_coords c1y c1x

c2_coords c2y c2x

deltas c1y - c2y c1x - c2x

- -

==

3. Multiply the deltas with themselves to obtain the square:

float32x2_t deltas_squared = vmul_f32(deltas, deltas);

The vmul_f32 multiplies the 32-bit floating-point vector elements in the first Neon register by
the values in the second source, and places the results in a vector. In our example, we use the
same values to obtain the square of the deltas, as the following diagram shows:

Figure 6-7: vmul_f32

deltas c1y - c2y c1x - c2x

deltas c1y - c2y c1x - c2x

deltas_squared (c1y - c2y)2 (c1x - c2x)2

x x

==

4. Sum across the vector to obtain a single scalar value, the square of the distance between the
circles:

float sum_deltas_squared = vpadds_f32(deltas_squared);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

The vpadds_f32 adds the two floating-point vector elements in the Neon register to give a
single scalar result.

Compiling the C code produces the following assembly code:

ldr d0, [x0] // Load c1.x and c1.y into two lanes of vector d0
 // first two data values at c1 base address
ldr d1, [x1] // Load c2.x and c2.y into two lanes of vector d1
 // first two data values at c2 base address
fsub v0.2s, v0.2s, v1.2s // Vector subtract gets x and y deltas
fmul v0.2s, v0.2s, v0.2s // Square both deltas at the same time
faddp s0, v0.2s // Add across vector to get sum of squares
ldr s1, [x0, 8] // Code from here is scalar, same as before...
ldr s2, [x1, 8]
fadd s1, s1, s2
fmul s1, s1, s1
fcmpe s0, s1
cset w0, mi
ret

This code vectorizes the implementation of the algorithm by parallelizing the subtraction and
multiplication operations when computing the square of the distance.

Advanced vectorization using Neon intrinsics
The solution presented in Basic vectorization using Neon intrinsics may not be faster than the
original unvectorized implementation.

The performance gain from parallelizing the subtraction and multiplication operations is limited
by the memory layout of our input. Loading the vector registers from this memory layout requires
several instructions. Also, we only parallelized two operations, a subtraction and a multiplication,
before needing to perform a cross-lane addition operation.

The declaration of the circle structure means that the data is interleaved, which inhibits
vectorization.

An alternative approach is to change our data layout to provide deinterleaved data.

The following example shows this approach. It creates a new structure circles to hold pointers
to arrays containing deinterleaved x, y, and radius data. This approach lets us check for collisions
between a single collider circle and multiple input circles.

#include <arm_neon.h>
#include <stdio.h>

// Structure containing data for a single collider circle
struct circle
{
 float x;
 float y;
 float radius;
};

// Structure containing an array of pointers to data for multiple circles
struct circles
{
 size_t size;

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

 float* xs;
 float* ys;
 float* radii;
};

void does_collide_neon_deinterleaved(circles const& input, circle& collider, bool*
 out)
{
 // Duplicate the collider properties in 3 separate 4-lane vector registers
 float32x4_t c1_x = vdupq_n_f32(collider.x);
 float32x4_t c1_y = vdupq_n_f32(collider.y);
 float32x4_t c1_r = vdupq_n_f32(collider.radius);

 for (size_t offset = 0; offset != input.size; offset += 4)
 {
 // Perform 4 collision tests at a time
 float32x4_t x = vld1q_f32(input.xs + offset);
 float32x4_t y = vld1q_f32(input.ys + offset);

 float32x4_t delta_x = vsubq_f32(c1_x, x);
 float32x4_t delta_y = vsubq_f32(c1_y, y);
 float32x4_t delta_x_squared = vmulq_f32(delta_x, delta_x);
 float32x4_t delta_y_squared = vmulq_f32(delta_y, delta_y);
 float32x4_t sum_deltas_squared = vaddq_f32(delta_x_squared, delta_y_squared);

 float32x4_t r = vld1q_f32(input.radii + offset);
 float32x4_t radius_sum = vaddq_f32(c1_r, r);
 float32x4_t radius_sum_squared = vmulq_f32(radius_sum, radius_sum);
 uint32x4_t mask = vcltq_f32(sum_deltas_squared, radius_sum_squared);

 // Unpack the results in each lane
 out[offset] = 1 & vgetq_lane_u32(mask, 0);
 out[offset + 1] = 1 & vgetq_lane_u32(mask, 1);
 out[offset + 2] = 1 & vgetq_lane_u32(mask, 2);
 out[offset + 3] = 1 & vgetq_lane_u32(mask, 3);
 }
}

int main()
{
 int num_input = 4;
 float input_x[num_input] __attribute__((aligned (64)));
 float input_y[num_input] __attribute__((aligned (64)));
 float input_r[num_input] __attribute__((aligned (64)));
 bool output[num_input] __attribute__((aligned (64)));

 // Set up the data for multiple circles
 for (int i = 0; i < num_input; i++) {
 input_x[i] = i*2;
 input_y[i] = i*3;
 input_r[i] = i;
 output[i] = 0;
 }

 // Create input object containing pointers to array data for multiple circles
 circles c1;
 c1.size = num_input;
 c1.radii = input_r;
 c1.xs = input_x;
 c1.ys = input_y;

 // Create collider object containing data for a single circle
 circle c2;
 c2.radius = 5.0;
 c2.x = 10.0;
 c2.y = 10.0;

 // Test whether the collider circle collides with any of the input circles,
 returning results in output
 does_collide_neon_deinterleaved(c1, c2, output);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

 // Iterate over the returned output data and display results
 for (int i = 0; i < num_input; i++) {
 if (output[i]) {
 printf("Circle %d at (%.1f, %.1f) with radius %.1f collides\n", i, input_x[i],
 input_y[i], input_r[i]);
 } else {
 printf("Circle %d at (%.1f, %.1f) with radius %.1f does not collide\n", i,
 input_x[i], input_y[i], input_r[i]);
 }
 }
 return (0);
}

The portions of the code that use Neon intrinsics are as follows:

1. Duplicate the collider x, y, and radius properties into three separate Neon registers:

float32x4_t c1_x = vdupq_n_f32(collider.x);
float32x4_t c1_y = vdupq_n_f32(collider.y);
float32x4_t c1_r = vdupq_n_f32(collider.radius);

The vdupq_n_f32 intrinsic duplicates a single scalar value into all the lanes of a Neon register, as
the following diagram shows:

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Figure 6-8: vdupq_n_f32

collider

Memory

...

x

y

radius

radius radius radius radiusc1_r

y y y y

x x x x

c1_y

c1_x

vdupq_n_f32

vdupq_n_f32

vdupq_n_f32

2. Load the x and y data for the next four input circles into separate lanes of two different Neon
registers:

float32x4_t x = vld1q_f32(input.xs + offset);
float32x4_t y = vld1q_f32(input.ys + offset);

The vld1q_f32 intrinsic loads four 32-bit values from consecutive memory addresses into
four 32-bit lanes of a Neon register. The address is calculated by adding an offset to the base
address pointer for both the x and y data. The offset increments by four on each loop iteration,
because each loop deals with four circles.

The following diagram shows the second iteration of the loop, using an offset of 4:

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Figure 6-9: vld1q_f32

input.xs

Memory

...

x1

x2

x3

x4

x5

x6

x7

x8

...

x8 x7 x6 x5

vld1q_f32
+offset

x

3. Subtract the collider c1_x value from each of the four input x values to obtain the delta_x
value, and similar for delta_y:

float32x4_t delta_x = vsubq_f32(c1_x, x);
float32x4_t delta_y = vsubq_f32(c1_y, y);

The following diagram shows this:

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Figure 6-10: vsubq_f32

delta_x

x x x x

- - - -

x8 x7 x6 x5

= = = =

x-x8 x-x7 x-x6 x-x5

c1_x

x

4. Multiply the delta_x and delta_y values with themselves to obtain the squares:

float32x4_t delta_x_squared = vmulq_f32(delta_x, delta_x);
float32x4_t delta_y_squared = vmulq_f32(delta_y, delta_y);

5. Sum the lanes in the delta_x_squared and delta_y_squared separately to obtain the square of
the distance:

float32x4_t sum_deltas_squared = vaddq_f32(delta_x_squared, delta_y_squared);

6. Use a similar process to calculate the squares of the radii:

float32x4_t r = vld1q_f32(input.radii + offset);
float32x4_t radius_sum = vaddq_f32(c1_r, r);
float32x4_t radius_sum_squared = vmulq_f32(radius_sum, radius_sum);

7. Compare radius_sum_squared to sum_deltas_squared for each of the four circles.

uint32x4_t mask = vcltq_f32(sum_deltas_squared, radius_sum_squared);

The vcltq_f32 intrinsic compares each lane of the first value with the corresponding lane in
the second value. If the first value is less than the second, the intrinsic sets every bit of the
corresponding lane in the result to 1, or 0 otherwise.

8. Extract each lane from the result individually, and set the next value in the out array to either 1
or 0.

out[offset] = 1 & vgetq_lane_u32(mask, 0);
out[offset + 1] = 1 & vgetq_lane_u32(mask, 1);
out[offset + 2] = 1 & vgetq_lane_u32(mask, 2);
out[offset + 3] = 1 & vgetq_lane_u32(mask, 3);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Example - collision detection

Performance results
This section describes the performance results for the three different implementations described in
this guide.

When profiling performance, all functions were decorated with the GCC attribute noinline to
prevent auto-vectorization by the compiler. This lets us compare the performance gains arising
solely from our use of Neon intrinsics.

The following table summarizes the performance results:

Function Time-per-invocation Speedup

does_collide 2.724 ns 1x

does_collide_neon 2.717 ns 1.003x

does_collide_neon_deinterleaved 0.925 ns 2.945x

For each test above, the function in the left column performed 16,384 collision tests over 100,000
trials to compute the time-per-invocation in the center column. In all cases, the code was compiled
with -O3 and run on a Samsung S20.

The does_collide_neon speedup is nominal. However, restructuring the data in
does_collide_neon_deinterleaved gives an impressive performance speedup of nearly 3x.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Program conventions

7. Program conventions
Program conventions are a set of guidelines for a specific programming language.

Macros
In order to use the intrinsics the Advanced SIMD architecture must be supported, and some
specific instructions may or may not be enabled in any case. When the following macros are
defined and equal to 1, the corresponding features are available:

__ARM_NEON

Advanced SIMD is supported by the compiler. Always 1 for AArch64.

__ARM_NEON_FP

Neon floating-point operations are supported. Always 1 for AArch64.

__ARM_FEATURE_CRYPTO

Crypto instructions are available. Cryptographic Neon intrinsics are therefore available.

__ARM_FEATURE_FMA

The fused multiply-accumulate instructions are available. Neon intrinsics which use these are
therefore available.

This list is not exhaustive and further macros are detailed in the Arm C Language Extensions
document.

Types
There are three major categories of data type available in arm_neon.h which follow these patterns:

• baseW_t scalar data types

• baseWxL_t vector data types

• baseWxLxN_t vector array data types

Where:

• base refers to the fundamental data type.

• W is the width of the fundamental type.

• L is the number of scalar data type instances in a vector data type, for example an array of
scalars.

• N is the number of vector data type instances in a vector array type, for example a struct of
arrays of scalars.

Generally W and L are such that the vector data types are 64 or 128 bits long, and so fit completely
into a Neon register. N corresponds with those instructions which operate on multiple registers at
once.

In our earlier code we encountered an example of all three:

• uint8_t

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 40

https://developer.arm.com/architectures/system-architectures/software-standards/acle

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Program conventions

• uint8x16_t

• uint8x16x3_t

Functions
As per the Arm C Language Extensions, the function prototypes from arm_neon.h follow a
common pattern. At the most general level this is:

ret v[p][q][r]name[u][n][q][x][_high][_lane | laneq][_n][_result]_type(args)

Be wary that some of the letters and names are overloaded, but in the order above:

ret

the return type of the function.

v

short for vector and is present on all the intrinsics.

p

indicates a pairwise operation. ([value] means value may be present).

q

indicates a saturating operation (with the exception of vqtb[l][x] in AArch64 operations
where the q indicates 128-bit index and result operands).

r

indicates a rounding operation.

name

the descriptive name of the basic operation. Often this is an Advanced SIMD instruction, but
it does not have to be.

u

indicates signed-to-unsigned saturation.

n

indicates a narrowing operation.

q

postfixing the name indicates an operation on 128-bit vectors.

x

indicates an Advanced SIMD scalar operation in AArch64. It can be one of b, h, s or d (that is,
8, 16, 32, or 64 bits).

_high

In AArch64, used for widening and narrowing operations involving 128-bit operands. For
widening 128-bit operands, high refers to the top 64-bits of the source operand(s). For
narrowing, it refers to the top 64-bits of the destination operand.

_n

indicates a scalar operand supplied as an argument.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Program conventions

_lane

indicates a scalar operand taken from the lane of a vector. _laneq indicates a scalar operand
taken from the lane of an input vector of 128-bit width. (left | right means only left or
right would appear).

type

the primary operand type in short form.

args

the function’s arguments.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 40

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Check your knowledge

8. Check your knowledge
Read the following questions to check your knowledge.

What is Neon?
Neon is the implementation of the Advanced SIMD extension to the Arm architecture. All
processors compliant with the Armv8-A or Armv9-A architectures (for example, the Cortex-
A76 or Cortex-A57) include Neon. In the programmer’s view, Neon provides an additional
32 128-bit registers with instructions that operate on 8, 16, 32, or 64 bit lanes within these
registers.

Which header file must you include in a C file in order to use the Neon intrinsics?
arm_neon.h#include <arm_neon.h> must appear before the use of any Neon intrinsics.

What does this function do? int8x16_t vmulq_s8 (int8x16_t a, int8x16_t b)
The mul in the function name is a hint that this intrinsic uses the MUL instruction. Based on
the types of the arguments and return value, sixteen bytes of signed integers, we might guess
this intrinsic maps to the instruction MUL Vd.16B, Vn.16B, Vm.16B. So this function multiplies
corresponding elements of a and b and returns the result. Checking the definition shows this
is indeed true.

The deinterleave function defined in this tutorial can only operate on blocks of sixteen 8 bit
unsigned integers. If you had an array of uint8_t values that was not a multiple of sixteen in
length, how might you account for this while changing the arrays, but not the function and
changing the function, but not the arrays?

To change the arrays but not the function, pad the arrays with zeros. This would be the
simplest option, but this padding may have to be accounted for in other functions. To
changing the function but not the arrays, use the Neon deinterleave for every whole
multiple of sixteen values and then use the C deinterleave for the remainder.

What do the data types float64_t, poly64x2_t, and int8x8x3_t represent?
float64_t is a scalar type which is a 64-bit floating-point type. poly64x2_t is a vector type of
two 64-bit polynomial scalars. int8x8x3_t is a vector array type of three vectors of eight 8-
bit signed integers.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 40

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a76
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a76
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a57

Learn the architecture - Optimizing C code with Neon
intrinsics

Document ID: 102467_0201_02_en
2.1

Related information

9. Related information
Here are some resources related to material in this guide:

• Engineering specifications for the Neon intrinsics can be found in the Arm C Language
Extensions (ACLE).

• The Neon Intrinsics Reference provides a searchable reference of the functions specified by the
ACLE.

• The Architecture Exploration Tools let you investigate the Advanced SIMD instruction set.

• The Arm Architecture Reference Manual provides a complete specification of the Advanced
SIMD instruction set.

• Arm Cortex-A Software Development software training courses are designed to help engineers
working on new or existing Cortex-A system designs.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 40

https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/Training/Arm%20Cortex-A%20Software%20Development

	Learn the architecture - Optimizing C code with Neon intrinsics
	Contents
	1. Overview
	2. What is Neon?
	3. Why use Neon intrinsics?
	4. Example - RGB deinterleaving
	5. Example - matrix multiplication
	6. Example - collision detection
	7. Program conventions
	8. Check your knowledge
	9. Related information

