

Arm Security Article
Version: 1.0

CVE-2024-0151: Supporting
Information for Developers

Non-Confidential
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm Limited (“Arm”). No license, express or implied, by estoppel or otherwise to any
intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether the subject matter of this
document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further
assist the recipient and does not represent Arm’s view of the scope of its obligations. You acknowledge and
agree that you possess the necessary expertise in system security and functional safety and that you shall be
solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition,
you are responsible for any applications which are used in conjunction with any Arm technology described in
this document, and to minimize risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED
“AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH
RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, any patents, copyrights,
trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied
approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted
use, duplication, or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to
any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners.

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.

CVE-2024-0151: Supporting Information for Developers ASA-010v1.00

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 18

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-20349

Web Address

http://www.arm.com

Contact

psirt@arm.com

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 18

Contents

1 Introduction ... 5

2 Issue Description .. 6

3 Impact .. 8

4 Information for Toolchain Users ... 9

4.1. Is my program affected? .. 9

4.1.1 Required conditions .. 9

4.1.2 Impact of an out-of-range value ... 9

4.1.3 Out of bounds accesses .. 9

4.1.4 Overflow checks .. 10

4.1.5 Switch statement ... 10

4.2. Affected toolchains .. 11

4.3. Affected types ... 12

4.3.1 Enumerated types .. 12

4.3.2 Wide characters wchar_t ... 13

4.3.3 _BitInt(N) .. 13

4.3.4 Other type classes such as Floating Point and Aggregates 14

4.4. Software mitigations .. 14

4.4.1 Recompile secure state with updated tools .. 14

4.4.2 Change API between Secure and Non-Secure state ... 14

4.4.3 Inline assembly workaround .. 15

5 Information for Toolchain Developers .. 16

5.1. Is my toolchain affected? .. 16

5.2. Toolchain solutions .. 16

6 References .. 17

7 Revision History .. 18

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 18

1 Introduction
This document provides additional detail to the "Cortex-M Security Extensions (CMSE)
Security Bulletin".

Arm is aware of a potential software security issue in code that uses Cortex-M Security
Extensions (CMSE) and has been compiled with tools that implement Arm v8-M Security
Extensions Requirements on Development Tools before version 1.4. This issue potentially
allows an attacker who can pass out-of-range values to code executing in Secure state to
cause incorrect operation in Secure state.

The issue has been assigned the identifier CVE-2024-0151.

It is only possible to determine the potential impact of this weakness through an examination
of a program’s secure code and how it processes the affected type but you might be
affected if:

• Toolchain user: you develop code for Armv8-M secure state and use CMSE-compliant
procedure calls to or from non-secure state and you pass argument or return types of
size less than 32-bits. See Information for Toolchain Users for further details.

• Toolchain developer: your toolchain implements support for CMSE-compliant procedure
calls. See Information for Toolchain Developers for further details.

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 18

2 Issue Description
The Armv8-M architecture for microcontrollers defines an optional Security Extension. The
Security Extension is designed to combine code from multiple vendors without requiring
trust between them. It achieves this by partitioning processor state and memory into Secure
and Non-secure states and provides controlled mechanisms to transfer execution and data
between these.

To make the features of the Security Extension accessible to software developers,
the Cortex-M Security Extensions (CMSE) defines C language support to place code and data
in Secure and Non-secure states and to make function calls between states.

Software written to the guidelines in ARMv8-M Secure software guidelines 2.0 using tools that
implement Arm v8-M Security Extensions Requirements on Development Tools separate Secure
state and Non-secure state:

• Non-secure state can only call functions in Secure state that have veneers in the
Non-secure Callable region that forward control flow to an entry function in Secure
state. Non-secure state can pass data to Secure state via function parameters. The
Non-secure state code for a function call follows all the standard AAPCS32
procedure call standard rules.

• Secure state may call functions in Non-secure state via a BLXNS instruction. The
Non-secure state function may return a value to Secure state. The Non-secure state
functions called from Secure state follow all the standard AAPCS32 rules.

In normal operation, Non-secure state follows all the AAPCS32 rules when calling entry
functions. All integral types with a size less than a word must be zero or sign extended to a
word. Return values from Non-secure functions called by Secure state must be also zero or
sign extended when required by the AAPCS32. In versions of Arm v8-M Security Extensions
Requirements on Development Tools prior to 1.4, the Secure state code may assume that the
non-secure state respects this rule.

If Non-secure state is compromised by an attacker, then Secure state functions may be
called with arguments, or Non-secure functions may return values, that are not zero or sign
extended. To perform an attack via calling an entry function an attacker must have the
following capabilities:

• Ability to set the arguments of function calls. For example, via a gadget that sets one
of the 4 argument registers r0, r1, r2 or r3 to a value of the attacker’s choice.

• Ability to call the Non-secure gateway veneer for the entry function without
performing sign or zero extension of the values in the argument registers. For
example, via a ROP or JOP gadget using the address of the Non-secure gateway
veneer or targeting a direct function call to the Non-secure gateway after the sign or
zero extension of parameters.

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 18

To perform an attack via a return value requires the attacker to substitute a function that
Secure state is calling with a malicious implementation. This may occur if an attacker does
not have access to Secure state but has compromised the integrity of Non-secure state.

Arm has updated the Arm v8-M Security Extensions Requirements on Development Tools
specification to require development tools to mitigate this attack.

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 18

3 Impact
An attacker who can pass out-of-range values to code executing in Secure state might be
able to cause incorrect operation in Secure state, for example:

• An out-of-range value used as an array index might allow unbounded memory
accesses to occur (CWE-119).

• An out-of-range value used in a calculation might allow incorrect results to be
produced (CWE-682).

The exact impact cannot be determined without examination of the secure code and how it
processes the affected type. For this reason, Arm is not publishing a CVSS score for this
issue.

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 18

4 Information for Toolchain Users
This information is for toolchain users who are developing secure code using CMSE. It is
assumed the reader is familiar with the Armv8-M security model and how C source code
maps onto this using the procedure call standard.

4.1 Is my program affected?

4.1.1 Required conditions
The following conditions must all be met for the program to be at risk of being affected:

• The program runs in Secure state on an Arm Cortex-M CPU that implements the
Security Extension, also known as Arm TrustZone for Armv8-M.

• The program follows the Arm v8-M Security Extensions Requirements on Development
Tools, using Non-secure entry functions as entry points to Secure state, and Non-
secure calls for calls to Non-secure state from Secure state.

• Integral types of less than word size (32-bits) are passed as arguments to entry
functions or are returned from Non-secure functions called via Non-secure calls from
Secure state. See Affected types for further details.

• There is a path through Secure-state where having an out-of-range value in one of
the affected arguments or return values can cause a denial of service or incorrect
operation of Secure state.

• The toolchain has not been updated to match at least version 1.4 of Arm v8-M
Security Extensions Requirements on Development Tools. See affected toolchains for
details of Arm supported Toolchains.

4.1.2 Impact of an out-of-range value
In many cases an out-of-range parameter or return value will not lead to incorrect operation
of Secure state. For example, an existing bounds check may catch out-of-range values. Due
to the variability of compiler optimizations, such as those that remove bounds checks based
on the range of values a type can represent, Arm recommends that the disassembly of the
secure code is studied to trace the impact of out-of-range values.

The following is a non-exhaustive list of problems that could occur.

4.1.3 Out of bounds accesses
The compiler may use information about the type to optimize away bounds checks.

#include <arm_cmse.h>
#define ARRAY_SIZE (256)

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 18

char array[ARRAY_SIZE];

char __attribute__((cmse_nonsecure_entry))
secureFunction(unsigned char index) {
 // Compiler may optimize away bounds check as value is an unsigned char.
 // According to AAPCS32 caller will zero extend to ensure value is < 256.
 if (index >= ARRAY_SIZE)
 return 0;
 return array[index];
}

Bounds checks that cannot be inferred from the type are not optimized away. For example:

char __attribute__((cmse_nonsecure_entry))
secureFunction(unsigned char index) {
 // Out of range values are present within range of unsigned char, bounds
 // check cannot be removed based on type alone.
 if (index < 1 || index > 5) {
 // invalid value, report error message
 }
 ...
}

4.1.4 Overflow checks
The Cert C coding standard requires that integer expressions are guarded against overflow.
A modification of the Compliant Solution adapted for short types is:

#include <limits.h>

void f(signed short ss_a, signed short ss_b) {
 signed short sum;
 if (((ss_b > 0) && (ss_b > (SHRT_MAX – ss_b))) ||
 ((ss_b < 0) && (ss_a < (SHRT_MAX – ss_b)))) {
 // Overflow detected
 } else {
 sum = ss_a + ss_b;
 }
 ...
}

This overflow check depends on ss_a and ss_b being signed short values. Out of bounds
values can overflow the SHRT_MAX – ss_b and not get caught by the overflow check.

4.1.5 Switch statement
A switch statement with a case for each of the values in a type and no default value can be
implemented by a jump table. As every value permitted by the type has a case the range
check can be optimized away. For example:

unsigned char f(unsigned char x) {
 // All possible values of x according to the fundamental type of Unsigned
 // byte have a case statement.
 switch(x) {
 case 0:
 return 0;
 case 1:
 return 1;
 ..
 case 255:

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 18

 return 255;
 }
}

Such a switch statement may be implemented as a jump table, for example:

movw r1, :lower16:.Lswitch.table.f
movt r1, :upper16:.Lswitch.table.f
// r0 is parameter x r1 = base of table
ldrb r0, [r1, r0]

With an out-of range x, the table may read outside the bounds of the branch table,
potentially leaking information from Secure state or crashing the program leading to a denial
of service.

4.2 Affected toolchains
The table below shows the known toolchains that can generate code with the weakness in
the Affected Versions column. The Fixed Versions column includes version numbers of tools
that conform to at least version 1.4 of the Arm v8-M Security Extensions Requirements on
Development Tools document, do not generate code that is affected by the weakness.

Toolchain Affected Versions Fixed Versions

Arm Compiler for
Embedded

6.3 – 6.21 6.22 and above

Arm Compiler for
Embedded FuSa 6.16LTS

all versions The next Functional Safety
Release with the fix will be 6.22.1
(planned)

Arm Compiler for
Functional Safety 6.6

all versions The next Functional Safety
Release with the fix will be 6.22.1
(planned)

Arm GNU Toolchain /
Arm GNU Embedded
Toolchain

5 2016q1 - 13.2.Rel1 Fixes will be incorporated into
next scheduled release (13.3).

clang Clang 9 – Clang 18

Also includes any
compiler that supports
CMSE that is based on
LLVM technology from
LLVM 9 – LLVM 18

Arm has submitted patches to
LLVM for inclusion in future
releases

GCC GCC 5 – GCC 13 Arm has submitted patches to
GCC for inclusion in future
releases

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 18

Developers using toolchains that do not yet have a fixed version should refer to the
mitigations that do not require updating the toolchain.

Developers who are using other toolchains should contact their toolchain vendor to
determine whether they are impacted and about the availability fixes.

4.3 Affected types
This section describes the types that may be affected by this weakness.

The AAPCS32 in sections Data Types and Alignment has a table of Fundamental Data Types
giving the byte size and alignment of each of the types. For this weakness, all types have a
Type Class of Integral. The mapping of C and C++ built-in data types to the Fundamental
Data Types is given in another table Arithmetic Types. The table below shows the integral
Fundamental Data Types, their mapping to C and C++ built-in data types, and whether they
are affected by the weakness.

Fundamental Type Equivalent C/C++
Built-in Type

Size in bytes Affected

Unsigned byte char, unsigned
char, bool,
__Bool

1 Yes

Signed byte signed char 1 Yes

Unsigned half-
word

unsigned short 2 Yes

Signed half-word short 2 Yes

Unsigned word unsigned int,
unsigned long

4 No

Signed word int, long 4 No

Unsigned double-
word

unsigned long
long

8 No

Signed double-
word

long long 8 No

4.3.1 Enumerated types
Enumerated types like a C/C++ enum, when implemented to strictly conform to the
AAPCS32 use a signed word fundamental type. A common procedure call variant
implemented by armclang, clang and GCC is -fshort-enums which uses the smallest

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 18

possible integral data type that can represent the values of the enum. For example, an enum
with values between -128 and +127 can be represented by the Signed Byte integral type.

• Programs that use -fshort-enums must treat the enumerated type as the smallest
integral type that can represent the values in the enumeration.

• Programs that use -fno-short-enums do not need to consider enumerated types
as the smallest integral type used in this case is a Signed word.

4.3.2 Wide characters wchar_t
The AAPCS32 preferred integral type for wchar_t is Unsigned word. Like enumerated
types, armclang, clang and GCC have an option called -fshort-wchar that uses Unsigned
half-word instead.

Programs that use -fno-short-wchar do not need to consider wide characters as the
smallest integral type used in this case is an Unsigned word.

4.3.3 _BitInt(N)
_BitInt(N) is a C2X extension to provide a Fundamental Type for N-bit integers. Uses of
_BitInt(N) or usigned _BitInt(N) where N <=64 are mapped to the smallest
integral type where byte-size of the integral type * 8 >= N. Larger values of N are assigned
to arrays of fundamental types. The table below shows the mappings of _BitInt(N) where N
<= 64 to the integral types and whether they are affected by the weakness.

N-bit integer type Fundamental Type Size in Bytes Affected

_BitInt(N) : N <= 8 Signed byte 1 Yes

unsigned _BitInt(N) :
N <= 8

Unsigned byte 1 Yes

_BitInt(N) : 8 < N <=
16

Signed half-word 2 Yes

unsigned _BitInt(N) :
8 < N <= 16

Unsigned half-word 2 Yes

_BitInt(N) : 16 < N
<= 32

Signed word 4 No

unsigned _BitInt(N) :
16 < N <= 32

Unsigned word 4 No

_BitInt(N) : 32 < N
<= 64

Signed double-word 8 No

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 18

N-bit integer type Fundamental Type Size in Bytes Affected

unsigned _BitInt(N) :
32 < N <= 64

Unsigned double-
word

8 No

4.3.4 Other type classes such as Floating Point and Aggregates
Only integral types are affected. Other type classes are not affected, including those smaller
than a word. This includes half-precision floating point values which are smaller than a word.
It also includes aggregate types such as C++ structs and classes that contain integral types
that are smaller than a word.

4.4 Software mitigations

4.4.1 Recompile secure state with updated tools
Use updated versions of Arm Compiler for Embedded (armclang), clang, and GCC that
generate code conformant to at least version 1.4 of the specification in Arm v8-M Security
Extensions Requirements on Development Tools. Code-generation for entry functions has the
following changes:

• Parameters of entry functions that are of integral type and size less than a word are
narrowed so that values are within the range of the integral type.

• Return values of non-secure state functions called from secure state that are of
integral type and size less than a word are narrowed so that values are withing the
range of the integral type.

These changes do not change the API or ABI, and only need to be applied to Secure state.
No changes are required to Non-Secure state.

4.4.2 Change API between Secure and Non-Secure state
If updated tools are unavailable or cannot be used, the weakness can be avoided by changing
the API.

The weakness only applies to function parameters and return values of an integral type with
size less than a word. If the API between Secure and Non-secure state can be modified to
avoid the affected types then the secure state program will not be affected.

All integral Fundamental Data Types with a size less than a word must be changed to an
alternative word sized integral Fundamental Data Type. For example, a parameter of char
type must be changed to an int type.

If any enumeration types are used in the interface between Secure and Non-Secure state
then both Secure and Non-Secure state must strictly conform to the AAPCS32 on enum-

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 18

size. For armclang, clang and GCC this means compiling with the -fno-short-enums
option.

Changing the API also changes the ABI, both Secure and Non-secure state must be updated
to use the new API.

4.4.3 Inline assembly workaround
If updated tools are unavailable or cannot be used, and the API cannot be changed, then in
tools such as armclang, clang and GCC inline assembly can be used to force a zero or sign
extension by Secure state.

For a variable V the statement __asm(“” : “+r” (V)); will tell the compiler that the variable
in the register is being written to which prevents the compiler from assuming anything about
its value.

For example:

#include <arm_cmse.h>
#define ARRAY_SIZE (256)

char array[ARRAY_SIZE];

char __attribute__((cmse_nonsecure_entry))
secureFunction(unsigned char index) {
 // Inline assembly output operand tells compiler that index has been
 // written to. Compiler zero-extends to ensure value is within bounds
 // of type.
 __asm("" : "+r"(index));
 // Check is optimized away but value is now within bounds.
 if (index >= ARRAY_SIZE)
 return 0;
 return array[index];
}

Using the inline assembly workaround does not require Non-secure state to be rebuilt.

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 18

5 Information for Toolchain
Developers
This information is for toolchain developers who are implementing C language support for
CMSE. It is assumed the reader is familiar with the Armv8-M security model, how C source
code maps onto this using CMSE, and how function arguments and return values are passed
at machine level following the procedure call standard.

5.1 Is my toolchain affected?
Toolchains are affected if all the following conditions are met:

• The toolchain implements support for Cortex-M CPUs based on the Armv8
architecture or later.

• The toolchain supports generation of secure code following a version of Arm v8-M
Security Extensions Requirements on Development Tools prior to 1.4.

• The toolchain performs no sanitization in Secure state of arguments or return values
of less than word size that are passed from non-secure code.

5.2 Toolchain solutions
Affected toolchains should be modified to sanitize arguments and return values that are
passed from Non-secure to Secure state where their size is less than a word (see Affected
types). The critical change is to sanitize affected values in Secure state prior to first use. The
recommended approach to sanitizing values is to zero or sign-extend them to word size
following the same rules as used elsewhere in the procedure call standard. It might be
possible to optimize away sanitization if it can be determined that subsequent use of the
value cannot lead to adverse behavior.

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 18

6 References
1. Arm v8-M Security Extensions Requirements on Development Tools https://arm-

software.github.io/acle/cmse/cmse.html

2. ARMv8-M Secure software guidelines 2.0
https://developer.arm.com/documentation/100720/0200

3. AAPCS32 Procedure Call Standard for the Arm Architecture
https://github.com/ARM-software/abi-aa/blob/main/aapcs32/aapcs32.rst

4. SEI CERT C Coding Standard INT32-C
https://wiki.sei.cmu.edu/confluence/display/c/INT32-
C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

CVE-2024-0151: Supporting Information for Developers v1.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 18

7 Revision History
Revision Date Description

1.0 April 24, 2024 Initial Release

