
Get started with Arm Performance Libraries
(stand-alone Linux version)
Version 24.04

Non-Confidential
Copyright © 2022–2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
102620_2404_00_en

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Get started with Arm Performance Libraries (stand-alone Linux version)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

2404-00 4 April 2024 Non-Confidential Updates coinciding with Arm PL 24.04

2310-00 30 September 2023 Non-Confidential Updates coinciding with Arm PL 23.10

0100-04 30 May 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. conjunction with any Arm technology described in this document, and to minimize
risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 17

https://www.arm.com/company/policies/trademarks

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 17

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Contents

Contents

1. Overview...6

2. Installation...7

3. Environment configuration... 8

4. Compile and test the examples...9

5. Optimized math routines – libamath...13

6. Optimized string routines – libastring...14

7. Library selection..15

8. Further information..16

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Overview

1. Overview
Arm Performance Libraries provides optimized standard core math libraries for high-performance
computing applications on Arm processors. The library routines, which are available through both
Fortran and C interfaces, cover the following functionality:

• BLAS - Basic Linear Algebra Subprograms (including XBLAS, the Extra Precise BLAS).

• LAPACK 3.11.0 - a comprehensive package of higher level linear algebra routines.

• FFT functions - a set of Fast Fourier Transform routines for real and complex data using the
FFTW interface.

• Sparse linear algebra.

• RNG functions for generating integer and floating point random numbers.

• libamath - an optimized collection of math.h mathematical functions.

• libastring - an optimized collection of string.h memory functions.

Arm Performance Libraries is built with OpenMP across many BLAS, LAPACK, FFT, and sparse
routines in order to maximize your performance in multi-processor environments.

Arm Performance Libraries is available for Linux, macOS and Windows.

This tutorial describes how to get started with the stand-alone versions of Arm Performance
Libraries for Linux, which are compatible with GCC and the NVIDIA HPC compilers (NVHPC).
There is also a version of Arm Performance Libraries that is part of Arm Compiler for Linux. To learn
about how to get started with the version in Arm Compiler for Linux, see the Get started with Arm
Performance Libraries in Arm Compiler for Linux tutorial.

To learn about how to get started with the version of Arm Performance Libraries for macOS, see
the Get started with Arm Performance Libraries for macOS tutorial. To learn about how to get
started with the version of Arm Performance Libraries for Windows, see the Get started with Arm
Performance Libraries for Windows tutorial.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 17

https://developer.arm.com/documentation/102574/latest/
https://developer.arm.com/documentation/102574/latest/
https://developer.arm.com/documentation/109362/latest/
https://developer.arm.com/documentation/109361/latest/
https://developer.arm.com/documentation/109361/latest/

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Installation

2. Installation
The learn.arm.com install guide for Arm Performance Libraries covers the installation basics for all
platforms.

Arm Performance Libraries can be downloaded from developer.arm.com.

Following installation you should have the environment variable ARMPL_DIR set to point to the
directory in the Arm Performance Libraries installation which contains (amongst other things) the
include and lib directories containing the header and library files.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 17

https://learn.arm.com/install-guides/armpl/
https://developer.arm.com/downloads/-/arm-performance-libraries

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Environment configuration

3. Environment configuration
This section describes how to set up your environment before using Arm Performance Libraries
with Linux.

Prerequisites
• You or your administrator has installed Arm Performance Libraries (see Installation).

• You have a compatible compiler installed on your system. The stand-alone versions of Arm
Performance Libraries for Linux are compatible with one of:

◦ GCC compilers (gcc, g++ and gfortran), versions 7 to 13.

◦ NVHPC compilers (nvc, nvc++ and nvfortran), version 24.1.

Setup
To configure your environment for Arm Performance Libraries:

1. Check which environment modules are available:

module avail

If you do not see the Arm Performance Libraries armpl* modulefiles, configure
your MODULEPATH environment variable to include the installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

2. Load the module for the compiler (GCC or NVHPC) that you are using.

For example:

module load armpl/24.04.0_gcc

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Compile and test the examples

4. Compile and test the examples
Arm Performance Libraries includes a number of example programs to compile and run.

The examples are located in ${ARMPL_DIR}/examples*.

Multiple examples directories are provided in the installation. The suffix of the directory name
indicates whether the examples inside link to the 32-bit (_lp64) or 64-bit (_ilp64) integer variants,
and sequential (no suffix indicator) or OpenMP (_mp) multi-threaded variants, of Arm Performance
Libraries.

For more information about the examples provided, see the Arm Performance Libraries Reference
Guide.

The default set of examples in the examples directory link to the sequential, 32-bit integers variant
of Arm Performance Libraries.

Each examples* directory contains the following:

• A Makefile to build and execute all of the example programs.

• A number of different C examples, *.c.

• A number of different Fortran examples, *.f90.

• Expected output for each example, *.expected.

The Makefile compiles and runs each example, and compares the generated output to the expected
output. Any differences are flagged as errors.

Assuming you have first setup your environment to use Arm Performance Libraries (see
Environment configuration), then to compile the examples and run the tests:

1. Copy the examples* directory somewhere writeable.

2. Change into the examples* directory in the writeable location and run make:

cd path/to/examples*
make

The examples Makefile for a gcc version of Arm Performance Libraries produces output similar to
the following sample:

Compiling program armplinfo.f90:
gfortran -c -mcpu=native -I/opt/arm/armpl_24.04_gcc/include armplinfo.f90 -o
 armplinfo.o
Linking program armplinfo.exe:
gfortran -mcpu=native armplinfo.o -L/opt/arm/armpl_24.04_gcc/lib -larmpl -lamath -lm
 -o armplinfo.exe
Running program armplinfo.exe:
LD_LIBRARY_PATH=/opt/arm/armpl_24.04_gcc/lib:/opt/arm/gcc/lib64:/opt/arm/gcc-12.2.0/
lib:/opt/arm/armpl_24.04_gcc/lib ./armplinfo.exe > armplinfo.res
ARMPL (ARM Performance Libraries)
Version 24.04.0-release (Sat Apr 30 12:44:33 AM UTC 2024)

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 17

https://developer.arm.com/documentation/101004/latest/General-information/Arm-Performance-Libraries-example-programs
https://developer.arm.com/documentation/101004/latest/General-information/Arm-Performance-Libraries-example-programs

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Compile and test the examples

...

Testing: no example difference files were generated.
Test passed OK

Example: fftw_dft_r2c_1d_c_example.c
The fftw_dft_r2c_1d_c_example.c example does the following:

• Creates an FFT plan for a one-dimensional, real-to-Hermitian Fourier transform, and a plan for
its inverse, Hermitian-to-real transform.

• Executes the first plan to output the transformed values in y.

• Destroys the first plan.

• Prints the components of the transform.

• Executes the second plan to get the original data, unscaled.

• Destroys the second plan.

• Outputs the original and restored values, scaled (they should be identical).

/*
 * fftw_dft_r2c_1d: FFT of a real sequence
 *
 * ARMPL version 24.04 Copyright ARM 2024
 */

#include <armpl.h>
#include <fftw3.h>
#include <math.h>
#include <stdio.h>

#include "round_eps_to_zero.h"

int main(void) {
#define NMAX 20
 double xx[NMAX];
 double x[NMAX];
 // The output vector is of size (n/2)+1 as it is Hermitian
 fftw_complex y[NMAX / 2 + 1];

 printf("ARMPL example: FFT of a real sequence using fftw_plan_dft_r2c_1d\n");
 printf("--\n");
 printf("\n");

 /* The sequence of double data */
 int n = 7;
 x[0] = 0.34907;
 x[1] = 0.54890;
 x[2] = 0.74776;
 x[3] = 0.94459;
 x[4] = 1.13850;
 x[5] = 1.32850;
 x[6] = 1.51370;

 // Use dcopy to copy the values into another array (preserve input)
 cblas_dcopy(n, x, 1, xx, 1);

 // Initialise a plan for a real-to-complex 1d transform from x->y
 fftw_plan forward_plan = fftw_plan_dft_r2c_1d(n, x, y, FFTW_ESTIMATE);
 // Initialise a plan for a complex-to-real 1d transform from y->x (inverse)
 fftw_plan inverse_plan = fftw_plan_dft_c2r_1d(n, y, x, FFTW_ESTIMATE);

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Compile and test the examples

 // Execute the forward plan and then deallocate the plan
 /* NOTE: FFTW does NOT compute a normalised transform -
 * returned array will contain unscaled values */
 fftw_execute(forward_plan);
 fftw_destroy_plan(forward_plan);

 printf("Components of discrete Fourier transform:\n");
 printf("\n");
 int j;
 for (j = 0; j <= n / 2; j++) {
 // Scale factor of 1/sqrt(n) to output normalised data
 double y_real = round_eps_to_zero_d(creal(y[j]) / sqrt(n));
 double y_imag = round_eps_to_zero_d(cimag(y[j]) / sqrt(n));
 printf("%4d (%7.4f%7.4f)\n", j + 1, y_real, y_imag);
 }

 // Execute the reverse plan and then deallocate the plan
 /* NOTE: FFTW does NOT compute a normalised transform -
 * returned array will contain unscaled values */
 fftw_execute(inverse_plan);
 fftw_destroy_plan(inverse_plan);

 printf("\n");
 printf("Original sequence as restored by inverse transform:\n");
 printf("\n");
 printf(" Original Restored\n");
 for (j = 0; j < n; j++) {
 double xx_j = round_eps_to_zero_d(xx[j]);
 // Scale factor of 1/n to output normalised data
 double x_j = round_eps_to_zero_d(x[j] / n);
 printf("%4d %7.4f %7.4f\n", j + 1, xx_j, x_j);
 }
 return 0;
}

To compile and run the example take a copy of the code from one of the examples directories and
follow the steps below:

1. To generate an object file, compile the source fftw_dft_r2c_1d_c_example.c:

Compiler Command

gcc gcc -c -I${ARMPL_DIR}/include fftw_dft_r2c_1d_c_example.c -o
fftw_dft_r2c_1d_c_example.o

nvc nvc -c -I${ARMPL_DIR}/include fftw_dft_r2c_1d_c_example.c -o
fftw_dft_r2c_1d_c_example.o

2. Link the object code into an executable:

Compiler Command

gcc gcc fftw_dft_r2c_1d_c_example.o -L${ARMPL_DIR}/lib -o fftw_dft_r2c_1d_c_example.exe -
larmpl_lp64 -lm

nvc nvc fftw_dft_r2c_1d_c_example.o -L${ARMPL_DIR}/lib -o fftw_dft_r2c_1d_c_example.exe -
larmpl_lp64 -lm -fortranlibs

The linker and compiler options are:

• -I${ARMPL_DIR}/include adds the Arm Performance Libraries location to the include
directory search path.

• -L${ARMPL_DIR}/lib adds the Arm Performance Libraries location to the library search path.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Compile and test the examples

• -larmpl_lp64 links against Arm Performance Libraries (serial, 32-bit integer interfaces).

• -lm links against the standard math libraries.

• -fortranlibs links against the NVHPC Fortran runtime library.

3. Run the executable on your Arm system:

./fftw_dft_r2c_1d_c_example.exe

The executable produces output as follows:

ARMPL example: FFT of a real sequence using fftw_plan_dft_r2c_1d
--

Components of discrete Fourier transform:

 1 (2.4836 0.0000)
 2 (-0.2660 0.5309)
 3 (-0.2577 0.2030)
 4 (-0.2564 0.0581)

Original sequence as restored by inverse transform:

 Original Restored
 1 0.3491 0.3491
 2 0.5489 0.5489
 3 0.7478 0.7478
 4 0.9446 0.9446
 5 1.1385 1.1385
 6 1.3285 1.3285
 7 1.5137 1.5137

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Optimized math routines – libamath

5. Optimized math routines – libamath
libamath contains AArch64-optimized versions of the following scalar math.h functions:

• cosf, sinf, sincosf, tanf, acos(f), asin(f), atan(f), atan2(f),

• exp(f), exp2(f), expm1(f), log(f), log2(f), log10(f), log1p(f),

• cosh(f), sinh(f), tanh(f), acosh(f), asinh(f), atanh(f),

• pow(f), erf(f), erfc(f), and cbrt(f).

Suffix f indicates a single precision implementation, while no suffix indicates double precision and
suffix (f) indicates that both precisions are available.

Linking to libamath ahead of libm will ensure use of these optimized functions.

libamath also contains vectorized versions (Neon and SVE) of all of the common math.h functions
in libm. It is provided as a static library, libamath.a, and as a dynamic library, libamath.so.

libamath is located in ${ARMPL_DIR}/lib and function prototypes are given in the header file
$ARMPL_DIR/include/amath.h. There is also an example showing how to call vector functions in
$ARMPL_DIR/examples_lp64/amath.c. To benefit from the performance increase given by libamath,
you must explicitly link to the libamath library before linking to libm. For example, with GCC
compilers:

gcc code_with_math_routines.c -lamath -lm

gfortran code_with_math_routines.f -lamath -lm

For more information about using the vectorized functions in libamath, see this
community.arm.com blog.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 17

https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/using-vector-math-functions-on-arm

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Optimized string routines – libastring

6. Optimized string routines – libastring
libastring provides a set of replacement string.h functions which are optimized for AArch64:
bcmp, memchr, memcpy, memmove, memset, strchr, strchrnul, strcmpstrcpy, strlen, strncmp, strnlen.
Linking to libastring ahead of libc ensures use of these optimized functions.

libastring is located in ${ARMPL_DIR}/lib. To benefit from the performance increase given by
libastring, you must explicitly link to the libastring library before linking to libc. For example, with
GCC compilers:

gcc code_with_string_routines.c -lastring

gfortran code_with_string_routines.f -lastring

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Library selection

7. Library selection
Arm Performance Libraries contains multiple different types of library. Your installation contains
both dynamic and static libraries, and, in each case, there are serial and multi-threaded libraries.
Furthermore, for each of those combinations there are also libraries which take 32-bit integer
arguments in function interfaces, and also libraries which take 64-bit integer arguments.

Here we show the options needed to use the different types of library.

Compile Link Description

-I${ARMPL_DIR}/include -larmpl_lp64 Use 32-bit integers, single-threaded library.

-DINTEGER64 -I${ARMPL_DIR}/include -DINTEGER64

-larmpl_ilp64

Use 64-bit integers, single-threaded library.

-I${ARMPL_DIR}/include -larmpl_lp64 Use 32-bit integers, multi-threaded (OpenMP) library.

-I${ARMPL_DIR}/include -larmpl_lp64_mp Use 64-bit integers, multi-threaded (OpenMP) library.

Linking against static libraries
The libraries are supplied in both static and dynamic versions, libarmpl_lp64.a and
libarmpl_lp64.so. By default, the commands given above link to the dynamic version of the
library, libarmpl_lp64.so, if that version exists in the specified directory.

To force linking with the static library, either:

• Use the compiler flag -static, for example:

gcc driver.c -L${ARMPL_DIR}/lib -static -larmpl_lp64 -lm

nvc driver.c -L${ARMPL_DIR}/lib -static -larmpl_lp64 -lm -fortranlibs

• Insert the name of the static library in the command line:

gcc driver.c ${ARMPL_DIR}/lib/libarmpl_lp64.a -lm

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 17

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Further information

8. Further information
The following links contain detailed documentation about different aspects of using Arm
Performance Libraries:

• The learn.arm.com install guide shows how to install Arm Performance Libraries on all
supported platforms.

• See the developer.arm.com downloads page for stand-alone versions of Arm Performance
Libraries for the full list of supported platforms.

• Arm Compiler for Linux, which includes Arm Performance Libraries, can also be downloaded
from developer.arm.com.

• Arm Performance Libraries Reference Guide provides comprehensive documentation for all
functions.

• If you have any questions or queries about using Arm Performance libraries please post a
message on the Compilers and Libraries support forum. See below for guidance on how to do
this effectively.

Reporting issues
To get help with any issue that you are experiencing, it helps to report information about the
version of Arm Performance Libraries that you are using and the system that you are running on.

You can obtain the necessary system and library information by running the libarmpl.so file (or
any of the other libarmpl*.so files). You can find the libarmpl.so file in the ${ARMPL_DIR}/lib
directory of your installation.

You should load the Arm Performance Libraries environment module for your system before
running libarmpl.so.

module load armpl
${ARMPL_DIR}/lib/libarmpl.so

We also recommend using perf-libs-tools, which is an Open Source project that can
be used to profile your usage of Arm Performance Libraries, and also includes some
scripts to visualize the data it produces. Providing the output reports from a perf-
libs-tools run of your application when posting on the forum is incredibly useful,
especially when reporting performance-related issues.

Other releases of Arm Performance Libraries
Arm Performance Libraries is also available:

• As part of Arm Compiler for Linux.

• For macOS, compatible with LLVM.

• For Windows, compatible with MSVC and LLVM.

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 17

https://learn.arm.com/install-guides/armpl/
https://developer.arm.com/downloads/-/arm-performance-libraries
https://developer.arm.com/downloads/-/arm-performance-libraries
https://developer.arm.com/downloads/-/arm-compiler-for-linux
https://developer.arm.com/documentation/101004/latest/arm-performance-libraries-reference-guide
https://community.arm.com/support-forums/f/compilers-and-libraries-forum
https://github.com/ARM-software/perf-libs-tools
https://developer.arm.com/documentation/102574/latest/
https://developer.arm.com/documentation/109362/latest/
https://developer.arm.com/documentation/109362/latest/

Get started with Arm Performance Libraries (stand-alone
Linux version)

Document ID: 102620_2404_00_en
Version 24.04

Further information

Copyright © 2022–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 17

	Get started with Arm Performance Libraries (stand-alone Linux version)
	Contents
	1. Overview
	2. Installation
	3. Environment configuration
	4. Compile and test the examples
	5. Optimized math routines – libamath
	6. Optimized string routines – libastring
	7. Library selection
	8. Further information

