
Arm Compiler for Linux OpenMP settings
Version 1.0

Non-Confidential
Copyright © 2022, 2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 03
102580_0100_03_en

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Arm Compiler for Linux OpenMP settings

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-03 4 April 2024 Non-Confidential Image update

0100-02 4 March 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of
the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm Limited ("Arm"). No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether the
subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject
to changing conditions, information, scope, and data. This document was produced using
reasonable efforts based on information available as of the date of issue of this document.
The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not
represent Arm’s view of the scope of its obligations. You acknowledge and agree that you possess
the necessary expertise in system security and functional safety and that you shall be solely
responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by
Arm herein. conjunction with any Arm technology described in this document, and to minimize
risks, adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS
PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

makes no representation with respect to, and has undertaken no analysis to identify or understand
the scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express
or implied approval or endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that
any permitted use, duplication, or disclosure of this document complies fully with any relevant
export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. Please follow Arm’s trademark usage
guidelines at https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-1121-V1.0

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 14

https://www.arm.com/company/policies/trademarks

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 14

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Contents

Contents

1. Overview...6

2. Set the number of OpenMP threads... 7

3. Control the placement of OpenMP threads..11

4. Report OpenMP settings..13

5. Related information... 14

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Overview

1. Overview
To avoid multithreading performance problems when using Arm Compiler for Linux, it is important
that you have the appropriate environment set up.

This guide will help you avoid some of the common pitfalls.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Set the number of OpenMP threads

2. Set the number of OpenMP threads
To set the number of threads to use in your program, set the environment variable
OMP_NUM_THREADS. OMP_NUM_THREADS sets the number of threads used in OpenMP parallel regions
defined in your own code, and within Arm Performance Libraries. If you set OMP_NUM_THREADS to
a single value, your program uses a single level of parallelism. In this case, nested parallelism is
disabled.

The information about setting OMP_NUM_THREADS applies to both compilers supported
by Arm Performance Libraries in release 22.0: Arm Compiler 22.0 and GCC 11.2.

For example, consider the following code, which defines a nested parallel region:

#include <stdio.h>
#include <omp.h>

int main() {
 #pragma omp parallel
 {
 printf("outer: omp_get_thread_num = %d omp_get_level = %d\n",
 omp_get_thread_num(), omp_get_level());
 #pragma omp parallel
 {
 printf("inner: omp_get_thread_num = %d omp_get_level = %d\n",
 omp_get_thread_num(), omp_get_level());
 }
 }
}

> armclang -o a1.out -fopenmp threading.c
> OMP_NUM_THREADS=2 ./a1.out
outer: omp_get_thread_num = 0 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2
outer: omp_get_thread_num = 1 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2

> gcc -o g1.out -fopenmp threading.c
> OMP_NUM_THREADS=2 ./g1.out
outer: omp_get_thread_num = 0 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2
outer: omp_get_thread_num = 1 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2

The program above reports the thread number and level of parallel nesting. Executables built with
either GCC or Arm Compiler for Linux show the same behavior when OMP_NUM_THREADS is set to a
single value (and all other settings use default values).

The example above sets OMP_NUM_THREADS=2 and the output shows that two threads are used for
the outer parallel region. The nested parallel regions create no new threads:

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Set the number of OpenMP threads

Figure 2-1: no nested parallelism

Execution
time

Master thread

The actual number of threads used during execution of your program might
differ from the value specified in OMP_NUM_THREADS if the number of threads is
set explicitly in the code using the OpenMP API, or if a system-defined limit is
encountered.

OMP_NUM_THREADS can also be set to a comma-separated list of values. Where a list of values are
passed to OMP_NUM_THREADS, the values denote the number of threads to use at each level of
nesting, starting from the outermost parallel region.

The default behavior when using a list of values with OMP_NUM_THREADS differs between Arm
Compiler for Linux and GCC. For example, using the same executables as compiled earlier:

> OMP_NUM_THREADS=2,2 ./a1.out

outer: omp_get_thread_num = 0 omp_get_level = 1
outer: omp_get_thread_num = 1 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2
inner: omp_get_thread_num = 1 omp_get_level = 2
inner: omp_get_thread_num = 0 omp_get_level = 2
inner: omp_get_thread_num = 1 omp_get_level = 2

> OMP_NUM_THREADS=2,2 ./g1.out
outer: omp_get_thread_num = 0 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2
outer: omp_get_thread_num = 1 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Set the number of OpenMP threads

The example above specifies that the two parallel regions in the code can each use two threads.
The Arm-compiled executable creates a new thread in each of the two inner parallel regions,
enabling nested parallelism:

Figure 2-2: nested parallelism

Execution
time

Master thread

However, the GCC-compiled executable shows the same output as with OMP_NUM_THREADS=2,
keeping nested parallelism disabled.

The reason for this difference in behavior is because the OpenMP runtime provided with Arm
Compiler for Linux (version 21.1 and later) uses OMP_NESTED=true when OMP_NUM_THREADS is a
comma-separated list. The OpenMP runtime provided with the GCC 10.2 (and later) compiler has
OMP_NESTED=false when OMP_NUM_THREADS is a comma-separated list.

Notes:

• The OMP_NESTED setting is being deprecated for OpenMP 5.0.

• This is a change of behavior for executables linked to the OpenMP runtime in Arm Compiler for
Linux (version 21.1 and later). Previous Arm Compiler for Linux behavior matched the current
behavior for gcc.

To enable nested parallelism for the GCC-compiled executable, explicitly turn on nesting:

> OMP_NESTED=true OMP_NUM_THREADS=2,2 ./g1.out
outer: omp_get_thread_num = 0 omp_get_level = 1
outer: omp_get_thread_num = 1 omp_get_level = 1
inner: omp_get_thread_num = 0 omp_get_level = 2
inner: omp_get_thread_num = 1 omp_get_level = 2
inner: omp_get_thread_num = 0 omp_get_level = 2

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Set the number of OpenMP threads

inner: omp_get_thread_num = 1 omp_get_level = 2

Nested parallelism in Arm Performance Libraries is handled in the same way as shown in these
examples; if an Arm Performance Libraries routine is called from a parallel region in your code,
then the routine spawns threads in the same way as shown for the nested parallel region in the
examples above.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Control the placement of OpenMP threads

3. Control the placement of OpenMP
threads

The value of the environment variable OMP_PROC_BIND affects how threads are assigned to cores
on your system (also known as thread affinity). If OMP_PROC_BIND=false or is unset, then threads
are unpinned; they might be migrated between cores in the system during execution, and thread
migration will most likely degrade performance significantly.

Arm recommends setting OMP_PROC_BIND to either true, close or spread, as required.

If set to close then the OpenMP threads are pinned to cores close to the parent thread.
OMP_PROC_BIND=close is useful where threads in a team are working on locally shared data. For
example, if threads are pinned to neighboring cores there might be a performance benefit from the
data being stored in a shared level of cache.

If set to spread then the OpenMP threads are pinned to cores that are distant from the parent
thread. OMP_PROC_BIND=spread is useful to avoid contention on hardware resources. For example,
if threads are working on large amounts of private data then there might be an advantage to using
spread to reduce contention on a shared level of cache or memory bandwidth.

Setting the value to true avoids thread migration, but does not specify a particular affinity policy.

Another option is to set OMP_PROC_BIND to master. If OMP_PROC_BIND=master, all OpenMP threads in
a team are pinned to the same core as the master thread.

• OMP_PROC_BIND can be set to a comma-separated list of the values described
above, which sets the affinity policy separately for each level of nested
parallelism.

• The values assigned to OpenMP environment variables are case insensitive.

The descriptions above describe how OpenMP threads are pinned to cores in the system.
However, the OpenMP specification uses the term place to denote a hardware resource for which
threads can have affinity. The environment variable OMP_PLACES allows you to define what is meant
by a place in the system.

OMP_PLACES can be set to one of three pre-defined values: threads, cores or sockets. Setting
OMP_PLACES=threads assigns OpenMP threads to hardware threads in the system. On a system
where a single core supports multiple hardware threads (for example, Marvell ThunderX2 systems
with SMT>1), assigning OpenMP threads to hardware threads allows for the co-location of several
threads in a single core.

If the value is set to cores then each OpenMP thread is assigned to a different core in the system,
which might support more than one hardware thread.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Control the placement of OpenMP threads

If the value is set to sockets then each OpenMP thread is assigned to a single socket in the system,
which contains multiple cores. Where sockets is set, the OpenMP threads might migrate in the
assigned socket.

To more finely control the placement of OpenMP threads in your system, set OMP_PLACES to a list of
numbers that indicate the IDs of hardware places in your system (typically hardware threads). There
is a considerable amount of flexibility availability using OMP_PLACES, including the ability to exclude
places from thread placement. If you are interested in this level of control, refer to the OpenMP
specification and experiment on your system.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 14

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Report OpenMP settings

4. Report OpenMP settings
Another useful environment variable to use when running OpenMP-enabled programs
is OMP_DISPLAY_ENV. OMP_DISPLAY_ENV can be set to one of true, false or verbose. If
OMP_DISPLAY_ENV=true is set, on startup your program displays the version of OpenMP along with
the value for all of the OpenMP internal control variables (ICVs), which are affected by environment
variables, such as those seen in this document, in addition to other factors.

There might be a discrepancy between the value of your environment variables and
ICVs reported at runtime because ICVs can be controlled in other ways.

If OMP_DISPLAY_ENV=verbose is set, the values of any implementation-specific variables are
displayed in addition to the standard OpenMP ICVs.

If OMP_DISPLAY_ENV=false or is undefined, no output is produced.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 14

Arm Compiler for Linux OpenMP settings Document ID: 102580_0100_03_en
Version 1.0

Related information

5. Related information
Here are some resources related to material in this guide:

• To learn more about OpenMP thread mapping, see the OpenMP thread mapping topic in the
Porting and Tuning HPC Applications for Arm guide.

• To learn more about Arm Performance Libraries, see the Arm Performance Libraries Reference
guide.

Copyright © 2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 14

https://developer.arm.com/documentation/101725/0300/thread-mapping
https://developer.arm.com/documentation/101725/latest
https://developer.arm.com/documentation/101004/latest

	Arm Compiler for Linux OpenMP settings
	Contents
	1. Overview
	2. Set the number of OpenMP threads
	3. Control the placement of OpenMP threads
	4. Report OpenMP settings
	5. Related information

